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Summary 

Plastic pollution is one of the most challenging global environmental problems. Currently, more than 1000 rivers 

transport approximately 80% of the plastic influx into the oceans. Naturally, more and more companies are 

interested in tackling this problem. One of them is Noria Sustainable Innovators, a company based in Delft 

(Netherlands). It is focussed on the detection, removal, and reuse of plastic from Dutch waterways. The company 

has the ambition to automate the detection of plastic for a wide range of applications. The quantification of plastic 

and understanding its spatiotemporal variability are crucial for the mitigation of plastic pollution. Current 

monitoring methods (e.g., visual counting) are tedious, time-consuming, and labour-intensive. Furthermore, the 

detection of different plastic debris objects could provide more insight about the source of plastic pollution. 

 This thesis explores the feasibility of automating plastic detection in waterways using modern deep 

learning (DL) algorithms named convolutional neural networks (CNNs) with image classification and object 

detection techniques. To train these models, a large dataset is required. Due to the unavailability of data, images 

were gathered in a controlled environment with two GoPros and a Huawei P30. The data was aggregated during 

sunny and cloudy conditions, different camera heights (2.7m and 4.0m) and angles (0 and 45 degrees).   

 For the simplest case (2.7m/0 degrees), a maximum accuracy of 87.6% was obtained for the multiclass 

classification of plastic debris in images, using the DenseNet121 model. By applying a majority vote for the three 

best performing models (DenseNet121, ResNet50 and InceptionV3), the accuracy could be increased to 91%. A 

qualitative and quantitative analysis found that the following factors influence the model performance negatively:  

presence of organic material, wind, transparent objects, submerged objects, small objects, overlapping and 

occluding plastic debris, sun glint and reflection of other objects on the water surface. Sunny conditions yielded a 

lower accuracy (79%) than cloudy conditions (90%), explained by the presence of sun glint.   

 By applying object detection, the error sources influencing the model performance could be reduced. For 

training and testing data from 2.7m/0 degrees on one class (‘plastic debris’), the YOLOv4 model yielded an 

accuracy of 95.61% (GoPro). For four classes (e.g., plastic bottles, other plastic, paper, metal tins) an average 

accuracy of 66.04% was found, indicating that the model experienced difficulties distinguishing different floating 

debris in water. Furthermore, it was also shown, that the use of a different image source (Huawei P30), does not 

have a negative effect on the accuracy (96.63%) compared to the original image source (GoPro).  

 Furthermore, due to height differences, discrepancy in object sizes and different camera settings, the 

trained model had large difficulties generalizing to a dataset from Indonesia (12.23%). On the other hand, training 

on the dataset from Indonesia and testing on the dataset from 2.7m/0 degrees achieved an accuracy of 63.51%. 

Although the error sources could be reduced, the model was still negatively impacted by small, transparent objects, 

submerged objects and the presence of sun glint.        

 This study clearly showed that Deep Learning-based computer vision can detect floating plastic debris 

with a high accuracy and have the potential to automate the process of plastic detection in the future. Future work 

would comprise the following aspects: sensor improvements (polarising filter for sun glint and multispectral sensor 

for continuous monitoring), data collection from the natural environment and different image sources, 

implementation of guidelines for Citizen Science platforms, addition of an object tracking module for monitoring 

(YOLOv4) and focussing on the detection of specific plastic debris objects after the removal from waterways.  
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1 Introduction 

The emergence of plastic pollution has become one of the most significant and challenging environmental 

problems of our times.  From the 1950s onwards, where plastic had been invented for the use of sanitary and 

inexpensive material with near to limitless possibilities, it has gradually substituted paper and glass in the 

packaging of food and other goods, wood in furniture and metal in the productions of cars [1]. In this timeframe 

until 2018, the worldwide production of plastic has been largely expanded with a manufacturing increase from 1.7 

to 359 million tons per year [2].  

Furthermore, from the nine billion tons of plastic ever produced by mankind, only a mere fraction of 9% has 

been recycled [3], resulting in the fact that annually 4.8 to 12.7 million tons of plastic wind up in the world’s oceans 

[4]. Plastics are resistant to biodegradation, however due to gradual wear off, macroplastics fragmentize into finer 

pieces named microplastics. Depending on the size of plastic, this can lead to either entanglement or ingestion by 

marine organisms, potentially leading to serious injuries and death [5]. Overall, it can be said that the presence of 

plastic litter in oceans and waterways is a global problem, associated with substantial impacts on the environment, 

public health, and economy.  

Recently revealed by a study [6], it was found that plastic emissions are distributed over more rivers than 

previously assumed, with small urban rivers being amongst the main polluters. Through recent field observations 

and model calibration the study by [6] showed that more than 1000 rivers accouSnt for approximately 80% (Figure 

1) of the global plastic flux with quantities ranging from 0.8 – 2.7 million metric tons per year.  

 Another current study by [7] concludes that a significant reduction of plastic debris in oceans can only be 

accomplished with collection systems at rivers or with a combination of river barriers and ocean cleanup devices. 

Therefore, it is crucial to focus on the removal of plastic in rivers now and in the future.      

 

Figure 1 Distribution of riverine plastic emissions into the ocean per river class (image from [6]) 
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Currently, most available research focusses on the quantities and detection of marine plastic instead of riverine 

plastics, resulting in the fact that riverine plastics are presently understudied [5]. Another key problem is that a 

knowledge gap exists regarding  the distribution of plastic, due to its spatiotemporal variability [1] [8] [9]. It is 

therefore also crucial to focus on the detection of plastic debris to implement effective prevention strategies for 

the removal of plastic debris from waterways.        

 Numerous in situ and modelling approaches to conduct river plastic monitoring have been proposed in the 

recent past [10], including human visual counting [9] [11] [12], debris sampling by the use of drifting nets [13] [14] 

[15] and floating surface booms [16] [17]. Although the mentioned in situ methods provide site-specific data, these 

methods require additional equipment which includes cranes or boats and numerous people to perform 

measurements [5] [9]. Additionally, these techniques have a labour-extensive nature and are therefore inadequate 

for the application at different locations [5].        

 Alternatively, modelling approaches provide an option using secondary data, which is previously collected 

data that is accessible for researchers. Secondary data can include data on mismanaged plastic litter, population 

density, geography and hydrological properties to approximate the input of riverine plastic into oceans [2] [8] [10]. 

Nevertheless, although these models offer a first-order estimation of the local and global river plastic fluxes, they 

are highly dependent on approximations from a small amount of in situ measurements [18]. Therefore, model-

based approximations are still prone to a large range of uncertainty, since the scarcity of field measurements is 

preventing the further progression of comprehending the dynamics of riverine plastic fluxes [4] [8] [11]. 

 Video camera technology presents an alternative method, as these systems are frequently deployed as 

monitoring systems [19]. Especially products such as security cameras, drones and smartphones are easily 

accessible gadgets which can be used for monitoring purposes [10]. Although these image sources can provide 

sufficient temporal and spatial resolution for detection of riverine plastic, most of the existing methods currently 

developed are based on the visual detection and manual labelling of plastic fragments, which is a highly labour-

intensive and time-consuming task [1]. It is also stated in a study by [10] that while the manual localization of 

plastic in images is viable that the automation of detecting plastic is a complex task.     

 In recent times modern artificial intelligence (AI) algorithms named convolutional neural networks (CNNs) 

have been widely used in object recognition and classification problems [1] [10]. CNNs fall into the category of 

deep learning and are a representation-learning method that supply the computer with raw data in form of images. 

This allows the automatic discovery of certain representations required for object recognition and classification 

[1] [10] [20]. Specifically, the emergence of CNNs have made computer vision (CV) techniques such as image 

classification, object detection and segmentation highly effective.      

 Due to the shortcomings of in situ methods and modelling approaches with respect to plastic monitoring 

this study explores an alternative method that is needed for the detection of plastic debris.   

 As this study was supported by Noria Sustainable Innovators, a company based in Delft which is focussed 

on the detection, removal, and reuse of plastic from Dutch waterways, it is evident that there is a practical need of 

an automatized system to detect plastic in water. This leads to the conclusion that parties with similar ambitions 

such as Rijkswaterstaat (RWS) would also profit from this research, which is one of my main intentions. Given 

these circumstances, the objective of this study becomes clear, namely, to develop and automated method for the 

detection of floating plastic debris. 

Several previous studies that my work relates to suggested that the detection of floating plastic debris in 

a marine or riverine setting with deep learning-based computer vision could be applied effectively in the form of 

image classification [20] [21], object detection [10] [22] and segmentation [1]. This leads to the assumption that 

techniques of this nature have the potential to automate the process of plastic detection in water. Considering the 
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relevance of the issue and the acute nature of the underlying problem of plastic in waterways, the available studies 

do not seem sufficient to adequately cover this topic. Based on this, it can be assumed that work and validation is 

needed on multiple cases studies to prove and generalize findings. This leads to the following research question: 

 

Does Computer Vision based on Deep Learning techniques have the potential to 

automate the detection of floating plastic debris in waterways? 

However, for the application of deep learning algorithms for this study firstly a dataset in the form of images needed 

to be aggregated. The main problem is that that (open source) data on floating plastic debris is scarce. Gathering 

sufficient data for the application of deep learning algorithms is complex due to lacking monitoring networks. 

Additionally, a large majority of data from Citizen Science platforms such as CrowdWater or Litterati was 

unserviceable for the purpose of this study since a lot of images did not even contain plastic debris. To ensure a 

high accuracy of CNN based models a large dataset for training with several thousand images is required to ensure 

a high accuracy [22] [23]. Therefore, an additional method had to be found for the aggregation of a data that 

represents floating plastic debris in waterways. The gathered images served as the foundation for the application 

of deep learning-based computer vision techniques.       

 For the given duration of this research data collection from the natural environment would have been too 

time-consuming due to the spatiotemporal variability of plastic objects in waterways. To tackle these time 

constraints the process of capturing useful images and videos for the application of deep learning algorithms was 

accelerated in a controlled environment. Therefore, experiments were carried out at the Green Village which is a 

testing facility for sustainable innovation at Delft University of Technology. One of the central requirements was 

to ensure that the representation of the data was not limited by this approach. Once the dataset was gathered it 

was important to select a method of data analysis appropriate to the subject matter. To address the question ...  

 

1. How do different deep learning architectures compare in terms of model performance for the 

classification of plastic debris objects? 

 

... I compared different deep learning architectures since the accuracy of detecting plastic can vary depending on 

the used deep learning architecture.        

 To assess whether the training set is adequately representative for the detection of floating plastic debris, 

it is inevitable to utilize datasets that were gathered in different locations and settings [10]. As the method to be 

developed should be applicable to any location and setting the requirement is to make the method as generalizable 

as possible. Therefore, one leading question of this work must be:  

 

2. How is the generalization influenced across datasets obtained using different sources of 

imagery (e.g., GoPro and mobile phone) and locations? 

The main idea of the experiments was to record floating plastic debris in a water body in form of a video, Therefore, 

plastic was tossed into the water, which was then recorded by different devices. For the experiments, plastic debris 

was gathered with volunteers from canals in Alkmaar (Netherlands). It is suggested by [10] and [11] that the 

detection of plastic debris objects is dependent on several parameters such as the weather conditions, sun 

orientation, characteristics of litter (e.g., colour, size, shape and floatability) and camera characteristics (height 

and angle). Since no other comprehensive deep learning-based study exists that explores the influence of weather- 
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and camera specific parameters on the detection of plastic debris in waterways, images were recorded for different 

weather conditions, camera heights and camera angles. Therefore, following aspect needs to be considered:  

 

3.  In what way do various parameters (weather conditions, camera height and angle) influence 

the detection of plastic debris? 

Inspired by the ambition of Noria - to make a distinction between different plastic objects - this question become 

one of the leading questions of my study. This could potentially give insight about the origin of certain objects. 

With this knowledge, the origin of plastic debris could be tracked down more efficiently. Parties or industries 

responsible for the discharge of these objects could then be held accountable. This leads to the last of the four 

subquestions that I will particularly focus on in the following research report:   

4. To what extent can a deep learning model distinguish between different floating objects of 

interest (e.g., plastic bottles, bags, metal tins, paper) on the waterway? 

1.1   Limitations 

This study merely aims to explore the possibilities of deploying deep learning-based computer vision techniques 

for the automated detection of plastic debris in waterways. Therefore, the products developed in this study form a 

foundation for automating plastic detection in waterways. The computational resources for this study were limited 

to the Graphical Processing Units (GPUs), offered by Google Colaboratory. The resources could be utilized for 12 

hours continuously. Due to this limitation, the models could not be trained until full convergence.

 Furthermore, this research will only consider floating macroplastics, which are defined as particles, items 

and objects larger than 25mm [24] [25]. Due to the limitation of RGB cameras, only floating plastic debris were 

considered. Suspended plastic debris were consequently not considered.  

1.2 Embedding of the research project 

AidroLab was chosen as the first Artificial Intelligence laboratory hosted by the Civil Engineering & Geosciences 

faculty at Delft University of Technology. Their mission is to develop novel artificial intelligence techniques that 

can exploit the abundance of data to improve the resilience of the urban water systems. This Master thesis project 

was conducted as an internship in collaboration with Noria Sustainable Innovators. Furthermore, the thesis was 

part of a PhD research from AidroLab that focusses on the ‘Development of Artificial Intelligence techniques for 

monitoring and plastic removal in urban waterways’. The PhD is carried out in collaboration with Noria and 

Rijkswaterstaat (RWS). The findings of this study can be used to complement the PhD research.  

1.3 Report structure 

The second chapter will provide the reader with the needed technical background to comprehend the content of 

this thesis. The third chapter (‘Methodology’) focusses on the description of the data collection, the data 

processing, the description of used model architectures and the evaluation of model performances by means of 

accuracy metrics. After discussing these aspects, the results (chapter 4) and discussion (chapter 5) will be 

presented. This will lastly be followed up by the conclusions from this research (chapter 6) and recommendations 

for future research and applications (chapter 7).  
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2 Theoretical background 

This chapter will supply the reader with the necessary theoretical background to understand this report. Firstly, 

the term ‘plastic debris’ will be introduced, which will focus on the type and size of objects that will be considered 

in this study (section 2.1). The following section (section 2.2) will focus on the video camera technology in 

combination artificial intelligence (AI), with a specific focus on convolutional neural networks (CNN). 

2.1 Definition of plastic debris 

Since plastic hotspots are a real-life representation, these will be considered to determine the type of objects 

encountered in surface water systems in the Netherlands. Figure 2 visualizes real-life plastic debris hotspots that 

were found during fieldwork activities with Noria Sustainable Innovators. These and other encounters of plastic 

debris hotspots in the environment lead to the following definition of a plastic hotspot: 

‘A plastic debris hotspot is a (stagnating) accumulation of debris with varying sizes and shapes, which does 

not only include the presence of plastic (e.g., plastic bottles, bags and other plastics), but other kinds of 

objects such as paper, metal tins, glass bottles and organic material. These hotspots are encountered in 

areas of low flow velocities, dead ends in canals, infrastructure (e.g., bridges) and riverbanks.’  

1 2

3 

4 

Figure 2 Real-life plastic debris hotspots in Leeuwaarden (1), Den Haag (2) and Alkmaar (3). Image (4) characterizes the sort 

of plastic debris that can be found in hotspots (gathered in Leeuwaarden) 
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This definition is in line with the perception Noria has of plastic debris hotspots. The range of plastic debris objects 

also corresponds to the litter items encountered in a two-hour canoeing session in the canals of Leiden 

(Netherlands) in a study from [26]. The definition of a plastic hotspot was needed to determine the type of objects 

that represent the variety of floating plastic debris that are found in waterways. It is important to mention, that the 

methods developed in this study do not refer to the detection of plastic hotspots but to the floating objects that 

accumulate in these hotspots.          

 One area of concern is the classification of plastic sizes throughout studies since consistent terming and 

dimensions for data comparison are lacking [5] [27], due to differences in sampling protocols [27]. A segregation 

of plastic by size is advisable for the determination of the plastic pollution source and the environmental impact. 

For plastic sampling the most widely used categorization classifies plastic debris into microplastics (1 – 5 mm), 

mesoplastics (5 – 25 mm) and macroplastics (> 25 mm). This convention has been adopted by the UN Environment 

Programme (UNEP), MSFD Technical Subgroup on Marine Litter, National Oceanic and Atmospheric 

Administration (NOAA) and studies by [24] and [25]. The categorization is visualized in Figure 3 and this study will 

only consider macroplastics (>25 mm).        

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

MICROPLASTIC 

<5mm 

MESOPLASTIC 

5 – 25mm 

MACROPLASTIC 

> 25mm 

Figure 3 Most common categorization of plastic into categories of microplastic (<5 mm), mesoplastic 

(5-25 mm) and microplastic (>25 mm) (image taken and adapted from [5] 
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2.2 Combining Video Camera Technology and Artifical Intelligence (AI)  

Video camera technology presents a method for an automated approach in the detection of floating plastic debris, 

as these systems are frequently deployed for monitoring purposes [19]. Especially security cameras, drones and 

smartphones are easily accessible gadgets which can be used for monitoring and offer three main benefits [10]. 

 Firstly, the use of video cameras offers the opportunity to observe floating plastic in turbid rivers, which 

comprise the largest fraction of riverine plastic transport [10] [28]. According to a study by [10], it is possible to 

observe macroplastics for a height of 4-9 m, if a camera is installed perpendicular to the water surface.   

 Secondly, according to a research by [29] Unmanned Aerial Vehicles (UAVs) such as drones have 

established themselves as a low-cost and reliable image-capturing tool, allowing high accuracy monitoring of 

aquatic environments. Furthermore, through the deployment of UAVs for aerial surveys the monitoring of riverine 

plastic is less dependent on the local environment, as opposed to methodologies whereby existing infrastructure 

and accessible areas are required [30], such as static cameras.     

 Lastly, smartphones also offer a source for monitoring, especially in combination with Citizen Science data 

collection platforms. One example is a mobile application named ‘CrowdWater’ that includes a photographic 

documentation module for macroplastic in an urban or natural environment [26] [31].     

 Although video cameras, UAVs and mobile phones can identify and locate plastic debris in images most 

of the existing methods currently developed are based on the visual detection and manual labelling of plastic 

fragments, which is a highly labour-intensive and time-consuming task [1]. 

 

Within machine learning three primary paradigms of learning can be distinguished, namely: unsupervised, 

supervised and reinforcement learning. A task is called unsupervised learning, if only the input data is known and 

the algorithm is still capable of learning and discovering specific features on its own.    

 On the other hand, in supervised learning tasks the input and the output of the data are already known, 

but this technique also encompasses the mapping of an input to an output. To be able to predict the outcomes, 

data needs to be labelled beforehand, such that the algorithm can learn from these examples. The model is thus 

supervised or guided in the process of training itself on how to predict a certain output. For supervised learning a 

distinction can be made between a regression (continuous output) or a classification task (discrete output).  

 Reinforcement learning is a process whereby interaction takes place between an agent and its 

environment, resulting in a feedback or a signal that reflects the performance of the agent related to its task.

 This study applies supervised learning for the detection of floating plastic debris, therefore unsupervised 

and reinforcement learning techniques will not be discussed further. For image classification the problem at hand 

becomes a classification task. If an object detection algorithm is considered, algorithms can either be distinguished 

as a classification or regression task. This is dependent on the chosen algorithm.    

 Modern artificial intelligence (AI) algorithms named convolutional neural networks (CNNs) have been 

widely used in classification problems and object recognitions [1] [10]. Connecting the automatization of plastic 

detection based on a deep learning approach offers added advantages, such as saving valuable search time, lower 

expedition costs and an increase in the accuracy of detecting larger fragments of plastic [20]. A study by [20] 

suggests, that the application of CNN algorithms can facilitate a faster and more accurate creation of tools for the 

detection and classification of afloat plastic debris. This suggests, that the application of CNNs for this study are 

a favourable method. But how do CNNs work and what advantages do they have for this study compared to other 

methods? 
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2.2.1 (Deep) Neural Networks 

Artificial Neural Networks (ANN) are a class of machine learning algorithms based on the functioning of the human 

brain. The first of such methods to have been proposed, is the single hidden layer neural network (Figure 4). In 

this model, three layers can be distinguished, namely: the input, hidden and output layer. The input layer performs 

no computational processing. However, it receives an input that needs to be mapped to the output variable by 

specified operations. If a 32x32 greyscale image is considered, the total number of neurons is equal to 1024, 

whereby each neuron contains the greyscale value of the corresponding pixel. A neuron is a node in the network, 

where impulses (or signals) from different sources assimilate. The number of neurons in the output layer is 

dependent on the desired output variables of the dataset. As an example: the CIFAR-10 dataset e.g., distinguishes 

between 10 different classes, therefore the size of the output layer would be equal to the number of classes. 

 Furthermore, in between the input and output layer, hidden layers with an arbitrary number of neurons 

can be found. Within hidden layers most of the processing takes place. The number of hidden layers and neurons 

in these layers are a design choice and are dependent on the problem at hand. If the number of hidden layers is 

equal or larger than two, the network becomes by definition a deep neural network (DNN).  

 A neural network is called fully-connected or dense, if all neurons in a layer (𝑙) are connected to all neurons 

in the subsequent layer (𝑙 + 1). The conveyed information from a neuron in layer 𝑙 to a neuron in the following layer 

𝑙+1 is multiplied by a weight 𝑤𝑗𝑖 , which is the weight of the connection between the 𝑖-th input neuron and the 𝑗-th 

hidden neuron. A bias term (𝑏𝑗) of the 𝑗-th hidden neuron is added to the multiplied value of the input (𝑥𝑖) and the 

weight 𝑤𝑗𝑖 . All the information gathered in layer 𝑙 is then summarized in every individual neuron of layer 𝑙 + 1.  

 Until this point, all performed operations within the neural network were only a combination of linear 

functions. The addition of non-linearity is needed, such that the designed network can model more complex 

relationships between the input and output. Consequently, the value of each neuron passes through an activation 

function (𝜑), resulting in a non-linear input for the following layer. The mathematical function for a single neuron 

(𝑎𝑗) and the output layer is represented in equation (1) and (2): 

 𝜑(𝑎1) 

𝜑(𝑎2) 

𝜑(𝑎3) 

𝜑(𝑎4) 

𝑎2 

𝑎3 

𝑎4 

𝑥1 

𝑥2 

𝑥3 

𝑦1 

𝑦2 

𝜑(𝑦1) 

𝜑(𝑦2) 

𝑎1 
 

Figure 4 Single hidden neural network with input layer, one hidden layer and an output layer. The 

nodes represent the neurons and the arrows between the neurons visualize the connections 

between the individual neurons and the applied weights  

Input (ith-layer) Hidden (jth-layer) Output (kth-layer) 
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(1)         

 

(2)   

 

Equation (2) illustrates, that the non-linear output of the hidden layer is multiplied by a new set of weights (𝑤𝑘𝑗) 

in the subsequent layer, followed by the addition of a bias term (𝑏𝑘) and the application of an activation function 

(𝜑). It becomes evident that the addition of more hidden layers implies, that the network will be capable of 

predicting more complex relationships, depending on the depth of the network.  

Forward and Backward Propagation 

To understand how an ANN or DNN can predict the result of the input based on equation (1) and (2), the processes 

of forward and backward propagation within a network needs to be explained. The computation of a NN with 

respect to the input is commonly known as forward propagation. To correctly predict the outcome, the network 

needs to search and find a specific combination of weights and biases, such that the input data can be mapped to 

the correct output. Therefore, the model firstly initializes a random set of weights to assess the accuracy on 

predicting the proper outcome. The error or loss, which is based on the difference between the predicted and true 

outcome, is calculated by a loss function. For simplicity it is assumed that 𝛽 is a vector containing all weights and 

biases across all layers of the neural network, 𝐽 is the loss function, 𝑦 the observed values and ŷ  the predictions 

which were obtained during forward propagation. Since 𝑦 are observations which do not change their value, 

following equation can be defined:  

(3)       

A process called ‘gradient descent’ updates every model parameter based on the derivative of the loss function, 

aiming to find the optimal combination of parameters by minimizing the loss function. This is represented by the 

following equation: 

(4) 

where 𝜂 represents the learning rate, which governs the magnitude of the update. The choice of the learning rate 

can have a major impact on the efficiency and success of gradient descent. This can cause drastic updates and 

divergence if the learning rate is too high and slow convergence and many updates if the learning rate is too low. 

Therefore, most commonly an adaptive reduction procedure is applied to the learning rate during the training.

 This process is also called backpropagation. This process computes the partial derivatives of a loss 

function with respect to the parameters of an ANN. Depending on the structure of the ANN, this requires the 

derivation via chain rule for the parameters in the hidden layers. By knowing the partial derivative the parameters 

can be adjusted according to the error. The calculated loss is back propagated through the network by updating 

each weight and bias, yielding whether the loss decreases for the updated parameters.   

𝑎𝑗 = 𝜑 (∑(𝑤𝑗𝑖𝑥𝑖) + 𝑏𝑗

𝑚

𝑖=1

) 

 

𝑦𝑘 = 𝜑 (∑(𝑤𝑘𝑗𝑎𝑗)

𝑁

𝑗=1

+ 𝑏𝑘) = 𝜑 (∑(𝑤𝑘𝑗𝜑 (∑(𝑤𝑗𝑖𝑥𝑖) + 𝑏𝑗

𝑚

𝑖=1

))

𝑁

𝑗=1

+ 𝑏𝑘) 

 

 

𝐽 = 𝑓(𝑦, ŷ) = 𝑓(𝛽) = 𝑓({𝛽𝑖, 𝑖 = 1…𝑛}) 

 

𝛽𝑖 ∶=  𝛽𝑖  −  𝜂
𝜕𝐽

𝜕𝛽𝑖
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This procedure is continued until a point is reached, where the model has stopped learning. This is indicated either 

by stagnating or decreasing accuracies or stagnating and increasing losses, or if the model has reached the desired 

performance. One complete pass of data through the network by forward- and backward propagation is defined as 

one epoch. Especially with deep learning algorithms, the quantity of data is often too large for a computationally 

efficient pass through a network before the weights and biases are updated. Therefore, the dataset is split into 

smaller sets, also known as mini-batches. After every pass of a mini-batch through the network, the model weights 

and biases will be updated. To what extent these parameters are updated, is dependent on the used optimizer 

algorithm.  

2.2.2 Convolutional Neural Networks (CNNs) 

The principles of NNs also apply to CNNs, however CNNs are much more efficient if large-sized input data, such 

as images are used. If a fully-connected ANN is considered, whereby the input is a commonly used image size 

(224x224), the size of the input vector for a greyscale image would be an input vector with 50.176 features. 

Considering RGB images, whereby the three colour dimensions ‘R’ (Red), ‘G’ (Green) and ‘B’ (Blue) need to be 

considered, the input vector contains 224x224x3 = 150.528 features. If the NN with four neurons in the hidden 

layer in Figure 4 is taken as example, 602.112 weights and biases would need to be updated in the first hidden 

layer, if a 224x224x3 RGB image is considered as input, This example illustrates, that NNs are computationally 

inefficient for larger sized data. For what reason CNNs are much more efficient than ANNs for larger sized input, 

will be explained in the following paragraphs.        

 A CNN architecture typically includes alternating convolutional and pooling layers (Figure 5), which is 

followed by one or more fully-connected layers. In addition to several activation functions, different regularization 

components such as batch normalization and dropout can be integrated to optimize the performance of the CNN 

[32]. Common CNN architectures are commonly divided into two sections, namely: feature extraction and a 

classifier or regressor. The different CNN units are crucial in the assembly of a CNN architecture, since the 

arrangement of these components determine the performance of the model. This subparagraph will provide an 

explanation on the roles, functioning and mathematical background of the different CNN components. 

Figure 5 Classical CNN architecture with a segregation into feature extraction, classification and probabilistic distribution. These 

sections include an input image, kernels (filters), convolutional (section 2.2.2.2) + Rectified Linear Unit (ReLU) layer (section 

2.2.2.3), pooling layers (section 2.2.2.4), a flatten layer, fully-connected layers (section 2.2.2.7) and an output vector with 

probabilities depending on the defined classes 
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2.2.2.1 Structure of digital input image 

The input to a convolutional layer is represented by a 𝑁𝑥𝑀𝑥𝐷 image, whereby 𝑁 is the height of the image, 𝑀 is 

the width of the image and 𝐷 the number of channels. Every pixel in an image represents a certain numerical value 

associated with the brightness of a specific pixel. The depth of an image is dependent on whether greyscale or 

RGB images are used as an input. RGB images possess three colour channels, consequently resulting in 𝑁𝑥𝑀𝑥3 

image corresponding to the respective colour channel, whereas for greyscale images the spatial dimension is 

𝑁𝑥𝑀𝑥1. RGB and greyscale images store numerical values from 0 to 255. This range represents a trade-off between 

the efficiency of storing data (256 values ≙ 1 byte) and the sensitivity of the human eye, which can only distinguish 

between a limited number of shades originating from the same colour [33].  

2.2.2.2 Convolutional layers  

Convolutional layer operations comprise the ‘sliding’ of a set of convolutional kernels (or ‘filter’) over the input 

image, which is a matrix of weights. Convolutional kernels operate by splitting the image into small sections, 

commonly also known as ‘receptive fields’ [32]. The kernel convolves with the input images, by using a set of 

weights and multiplying these with the corresponding elements of the receptive field [32]. One receptive field 

generates one node in the feature map. Mathematically, convolutional operations can be defined as follows:  

(5) 

where 𝑖𝑐(𝑥, 𝑦) expresses an element of the input image tensor 𝐼𝑐, which comprises an elementwise multiplication 

with 𝑒𝑙
𝑘(𝑢, 𝑣) index of the 𝑘𝑡ℎ convolutional kernel 𝑘𝑙 belonging to the 𝑙𝑡ℎ layer. The feature map of the 𝑘𝑡ℎ 

convolutional operation can consequently be expressed as follows:  

(6) 

For every time a convolutional operation is performed, the dimensionality of the image shrinks until the image 

vanishes. Furthermore, since the kernel convolves over the image, the impact of the pixels located on the boundary 

of the image is significantly smaller than those situated in the centre of the image. This process could lead to loss 

of information. To solve this issue, it can be chosen to pad the boundaries (‘same’ padding) of the image with an 

additional pixel border (Figure 6), such that either the input and output size of the are the same, or the output is 

larger than the input size. If no padding is applied, this refers to ‘valid’ padding, whereby the original image size is 

used for the convolutional operations, ultimately resulting in a shrunken output size. 

Figure 6 Visualization of ‘Padding’ in CNNs, with ‘valid’ padding (Left) and ‘same’ padding (Right) are represented with stride=1  

INPUT:   Blue grid 

 

FILTER:   Blue shaded grid (3x3) 

 

OUTPUT VALUE:  Shaded green square 

 

OUTPUT GRID:  Green grid 

𝑓𝑙
𝑘(𝑝, 𝑞) =  ∑∑𝑖𝑐(𝑥, 𝑦)𝑒𝑙

𝑘

𝑥,𝑦

(𝑢, 𝑣) 

𝑐

 

 

𝐹𝑙
𝑘 = [𝑓𝑙

𝑘(1, 1), … , 𝑓𝑙
𝑘(𝑝, 𝑞),… , 𝑓𝑙

𝑘(𝑃, 𝑄)] 
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Additionally, the size of the ‘stride’ or ‘step length’ of the filter needs to be considered in convolutional layers. The 

‘stride’ can be increased if less overlap of the receptive field or a reduction of spatial dimensions is desired.  

 Lastly, a concept named convolution over volume is an important aspect that not only allows convolutional 

operations to be carried out on RGB images, but it also permits to apply a multitude of kernels on a single layer.  

Commonly, a multitude of filters are used in convolutional layers to extract more information and features from the 

image, resulting in a number of feature maps that are equivalent to the number of filters used in a convolutional 

layer. It is a prerequisite that the applied filter and the input have the same number of dimensions. In three-

dimensional space, the matrix multiplication between the filter and the image, is applied to all three colour 

channels. If it is desired to use multiple filters for the detection of features in an image, the convolutional operation 

for each filter is carried out separately, followed by summing the channels and adding a bias to the resulting feature 

map. Following equation can be applied to calculate the output dimension of a convolutional layer [33]: 

 

(7)  

whereby 𝑛 represents the image size, 𝑓 the filter size, 𝑛𝑐 channel number present in the image, 𝑝 the applied 

padding, 𝑠 the used stride and 𝑛𝑓 the number of filters.       

 One key advantage of CNNs compared to fully connected neural networks is parameter sharing [32]. 

Parameter sharing allows convolutional layers to exploit spatial inductive bias and grants translational 

equivariance. This means that an object of interest can be recognized regardless of its position in the image, 

whereas ANNs would have to learn to recognize the object in each position separately.    

 Next to parameter sharing, the concept of local connectivity, whereby each neuron is only linked to a 

subset of the input image, is a powerful attribute of CNNs. Convolutional layers exploit a ‘spatial inductive bias’ 

since correlation among pixels in images is usually local. Therefore, wasting resources by connecting the entire 

input would be redundant. Local connectivity and parameter sharing make CNNs more efficient compared to 

densely connected NNs, due to the reduction of parameters and consequently computation time. 

 Lastly, ‘hierarchical feature extraction’ works well for CNNs in image classification tasks. This entails that 

filters in the first layers of the network recognize edges and other basic features in the image. Deeper layers 

recognize more complex and abstract parts of the object or entire objects. 

2.2.2.3 Activation function 

Activation functions serve as a decision function and they help in learning complex patterns [32]. When 

transforming the feature maps of convolutional layers, the activation function can be written as follows:  

(8) 

 where 𝐹𝑙
𝑘 is the feature map of a convolution, which is fed to an activation function 𝑔𝑎(. ) that includes 

non-linearity and returns a transformed output 𝑇𝑙
𝑘 of the 𝑙𝑡ℎ layer [32]. The addition of non-linearity is needed 

because the neural network would otherwise only be a combination of linear functions, limiting the flexibility and 

creation of more complex functions during training [34]. The Rectified Non-Linear unit (ReLU) is commonly used 

as the activation function for DNNs since it prevents the vanishing gradient problem opposed to other activation 

[𝑛, 𝑛, 𝑛𝑐] ∗ [𝑓, 𝑓, 𝑛𝑐] =  [[
𝑛 + 2𝑝 − 𝑓

𝑠
+ 1] , [

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1] , 𝑛𝑓] 

𝑇𝑙
𝑘 = 𝑔𝑎(𝐹𝑙

𝑘) 
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functions [35]. This problem refers to a large and rapid decrease of the gradients caused by backpropagation. Once 

the shallower layers of the CNN are reached, the update for the weights nearly vanishes [1]. 

2.2.2.4 Pooling layers 

Different extracted features, which are the output of a convolutional operation, can occur at various locations of 

an input image. According to [32], the position of the features becomes less important, if the approximate position 

of the feature opposed to others is preserved. Pooling is a local operation, that outputs the dominant response 

within a region by simultaneously downsampling the respective feature map, thereby decreasing the number of 

parameters and consequently also the computational burden. Most commonly, two main types of pooling are 

applied, namely: maximum and average pooling. The procedure of these two operations is visualized in Figure 7. 

The mathematical representation of the pooling operation is given by equation (9):    

(9)             

where 𝑍𝑙
𝑘 symbolizes the pooled feature map of the 𝑙𝑡ℎ layer for the 𝑘𝑡ℎ input feature map 𝐹𝑙

𝑘 and 𝑔𝑝(. ) describes 

the type of pooling operation [32]. The most important advantage of applying pooling operations, is the addition of 

generalizability by making the model more robust against errors created by translational invariance [36] [37], by 

extracting features that are invariant to positional shifts and smaller distortions [32] [38]. The reduction of the 

feature map with respect to invariant features firstly controls the complexity of the model and secondly improves 

the generalization capability by the reduction of overfitting.   

2.2.2.5 Dropout 

Overfitting usually occurs, if a model with large learning capability is trained on a small dataset and the model can 

memorize the used training data. This results in a minimal generalization power of the model by ‘fitting to the noise’ 

[1]. In other words: the model produces a good fit with the used training data, while this does not translate well to 

new and unseen data. With a scarcity of training data, the model learns patterns specifically associated to the 

training data, which are irrelevant for other data. One technique to diminish overfitting is Dropout. This is a 

technique that introduces regularization to the network, by randomly omitting nodes or connections in forward 

propagation with a predefined probability in the network, aiming to decrease overfitting and thus improving 

generalization of the network.          

 

Figure 7 Example of maximum pooling (Left) and average pooling (Right) for a 4x4 matrix, whereby maximum pooling takes the 

maximum value of the respective color-coded section and average pooling the average value (image from [79]) 

𝑍𝑙
𝑘 = 𝑔𝑝(𝐹𝑙

𝑘) 
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The intuition behind this procedure is that the input will be passed to a differently configured and smaller NN 

architecture due to the random omission of nodes during forward propagation, If one training example is 

considered, the neuron learns some specific feature of the example during gradient descent, which is also 

dependent on the input values. As the layers become more random in nature due to dropout, each neuron is forced 

to learn the entirety of the training example, rather than only learning one specific feature. The neuron cannot rely 

on any feature, because the inputs will randomly be eliminated and therefore the neuron is ‘reluctant’ to put too 

much weight on any input. Therefore, the neuron is required to spread out the weights more evenly.   

2.2.2.6 Batch normalization (BN) 

Batch normalization (BN) layers are used to address issues related to the internal covariate shift within feature 

maps [32]. Internal covariate shift is a phenomenon which refers to the change in distribution of the input to layers 

in the network. This slows down convergence by forcing the learning rate to take on a small value. Batch 

normalization standardizes the inputs to the layers and therefore stabilizes the learning process of the model. The 

mathematical formula for a feature map 𝐹𝑙
𝑘 is given by equation (10): 

 

(10) 

whereby 𝑁𝑙
𝑘represents the normalized feature map, 𝐹𝑙

𝑘 is the input feature map, 𝜇𝐵 is the mean of a feature map 

for a mini batch and 𝜎𝐵 the variance. To avoid a division by zero, a term for the numerical stability 𝜀 is added. Next 

to standardizing the input to every layer, BN also adds a slight regularization effect next to dropout by adding some 

noise to the values in the mini batch, also helping to improve the generalization capability of the network.  

2.2.2.7 Fully connected layer (FCL) 

For classification or regression purposes, the FCL is predominantly located at the end of a network. Unlike 

convolutional and pooling operations, the use of a fully connected layer is a global operation. In CNNs, FCL layers 

are used to build the final classifier or regressor that processes the feature extracted by the network to make a 

prediction. In the case of Figure 5, the output from the feature extraction stages is collapsed into a 1D feature 

vector, also called the flatten layer. The FCL can be a NN, which takes the flattened vector from the feature analysis 

as an input and applies weights to predict the proper labels. The mechanism of a FCL is identical to a NN in terms 

of computation, however in the last layer the activation functions can vary. In case of binary classification, a sigmoid 

function is used as the activation of the output neurons, a softmax function in case of a multiclass classification 

and a linear function for regression. Sigmoid and softmax functions output probabilities corresponding to the 

predefined classes, whereby the sum of the probabilities for all classes is equal to 1. The linear activation function 

outputs an unbounded numerical value.   

2.2.3 Computer Vision (CV) 

Deep learning algorithms have made computer vision (CV) tasks highly effective in today’s world. Specifically, the 

arrival of CNNs have made CV practical for industrial applications. The field of computer vision aims to provide 

computers with the ability to identify, classify and categorize visual information encompassed in imagery or video 

data [39], such as humans with their eyes. Within computer vision, image analysis deals with the extraction of 

𝑁𝑙
𝑘 =

𝐹𝑙
𝑘 − 𝜇𝐵

√𝜎𝐵
2 + 𝜀
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important information from images, which should not be confused with image processing that focusses on the 

alteration of an image and the subsequent creation of a new image with improved characteristics [39]. Within 

image analysis, three categories can be distinguished, namely: 

1. Image Classification and Localization (Figure 8 B) 

2. Object Detection (Figure 8 C) 

3. Image Segmentation (Figure 8 A and D) 

In image classification the aim is to assign a class to an entire image. This could include for example classifying 

x-rays with cancer or not (binary classification) and the classification of a handwritten digit (multiclass 

classification). The image cannot be partitioned into segments and by processing the image all at once, regions in 

the image will be included that do not include any information. By segregating the image into segments, the 

important segments can be used for further processing. The idea of image classification can be extended by 

localization, which involves the assignment of a class to an image and the localization of an object with a bounding 

box within the image (Figure 8). Nevertheless, image classification and localization are restricted, because it can 

only detect a single object in an image.        

 Object detection builds upon the idea of image classification with localization, whereby multiple objects 

can be present in the image, which require localization and classification with bounding boxes. This is also depicted 

in Figure 8, whereby two classes receive different bounding boxes. Nevertheless, object detection does not convey 

any information about the shape as the bounding boxes have either rectangular or square shapes.   

 Instance segmentation combines the ideas of object detection and semantic segmentation. Semantic 

segmentation is comparable to image classification, however instead of classifying the entire image, every pixel in 

the image is assigned to predefined classes, without localizing the desired object. Instance segmentation touches 

upon the idea of classifying each pixel of a different class by also making a distinction between various objects of 

the same class. Therefore, a pixelwise mask is created for every object contained in an image.   

 

 

Figure 8 Computer vision techniques for image analysis with Semantic segmentation (A), Classification + Localization (B), 

Object detection (C) and Instance Segmentation (D) (image taken from [80]) 

A B C D 
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3 Methodology 

The main goal of this research was to investigate whether deep learning-based computer vision techniques can 

detect floating plastic debris in waterways. The applied methodology to achieve this objective will be described in 

the following paragraphs. This chapter consists of four main parts, namely: research guidelines and choices 

(section 3.1), data collection (section 3.2), image classification (section 3.3) and object detection (section 3.4). All 

the necessary code with respect to this study (pre-processing, image classification and object detection) can be 

found on https://github.com/ajv95/floatingplasticdebrisdetection.  

3.1 Research guidelines and choices 

Firstly, the simplest computer vision technique, namely image classification was applied, to assess whether plastic 

debris can be detected in images. For this purpose, the performances of a custom-made baseline model were 

compared against those of five state-of-the-art and widely applied models presented in the literature. Most 

commonly a technique named transfer learning is applied when using these models. This encompasses the idea 

of utilizing models, that were already pre-trained on larger benchmark datasets such as ImageNet, on a completely 

new classification task. Transfer learning can be applied due to the property of CNNs, whereby the first layers of 

a network learn standard features such edges, textures, or corners. Deeper layers learn more sophisticated and 

specific features which are dependent on the dataset and the task at hand [1]. By applying transfer learning the 

use of available task-specific data can be optimized since training can be done for deeper convolutional blocks or 

the classifier or regressor. This method is especially useful for the reduction of computational time and datasets 

with a limited number of samples.          

 To have a comparative benchmark and ascertain whether pre-trained models are indeed superior in terms 

of performance, these models were tested against a newly built model, but also tested against the same 

architectures trained from scratch.  The best performing model was then selected for assessing the influence of 

instrumental and environmental factors.  

Since image classification has its clear limitations due to its impractical nature of merely assessing the presence 

of plastic objects in an image, object detection was applied in a subsequent step.    

 The main disadvantage of object detection algorithms is however, that the labelling procedure is much 

more time-consuming compared to the labelling for image classification. In object detection labelling entails to 

annotate all objects of interest in an image by means of a rectangular box. For image classification, the images 

merely need to be sorted according to their class. To reduce the amount of time spent on labelling, practical 

monitoring aspects for the detection of plastic debris, such as weather conditions, camera height and camera angle 

were assessed by means of image classification. The evaluation of weather- and camera specific parameters is an 

important aspect since no other comprehensive study exists, that explores the influence of weather- and camera 

specific parameters on the detection of plastic debris in waterways.  

For the quantification of plastic and the evaluation of the generalization ability for other locations and other image 

sources, YOLOv4 (‘You Only Look Once’) was used. YOLOv4 was chosen as an object detection model since it only 

requires one conventional GPU for operating in real-time. The problem with the most accurate CNNs nowadays is 

that these networks do not operate in real-time, requiring a large number of GPUs for training [40]. The 

https://github.com/ajv95/floatingplasticdebrisdetection
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computational resources for this study were limited to the Graphical Processing Units (GPUs), offered by Google 

Colaboratory. This platform uses a 12GB NVIDIA Tesla K80, T4, P4 and P100 GPUs, that can be utilized for 12 

hours continuously. GPUs are predominantly used for deep learning applications, as these units can simultaneously 

process several parallel processes due to the larger number of cores compared to conventional Computer 

Processing Units (CPUs). This allows more efficient and accelerated computation of parallel processes. YOLOv4 

was therefore a suitable object detection algorithm for this study, since it only requires one conventional GPU, 

which is offered as free service by Google Colaboratory.       

 Furthermore, it was chosen not to utilize segmentation techniques such as semantic or instance 

segmentation since a study by [41] suggests, that some of the best methods require nearsupercomputer 

processing power for the training phase. 

Globally, the research was divided into two stages (Figure 9), which summarize the previously discussed guidelines 

and choices for this study. The key aspects of the two flowcharts, related to the data collection, image classification 

and object detection will be described in the following sections. 

 

  

Figure 9 Research segregation into two stages, whereby the 1st stage focusses on image classification with the comparison 

a baseline model and pre-trained models followed by the assessment of instrumental and environmental factors (weather 

conditions, camera height and camera angle) with the best performing model. The 2nd stage focusses on object detection, 

which aims to evaluate the generalization for other locations and images sources and the quantification of plastic debris 
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3.2 Data collection 

This section aims to describe the data collection for the controlled and natural environment. For data collection in 

the controlled environment experiments were carried out on the premises of Green Village, which is located on the 

campus of Delft University of Technology. For data from the natural environment a dataset by [10] using static 

cameras at bridges in Jakarta (Indonesia) was used.  

3.2.1 Dataset controlled environment 

 

 

 

 

  

 

 

 

 

 

 

 

 

The main idea of the experiments was to record floating plastic debris in a water body with different image sources. 

Since the water body at the Green Village is stagnant with no plastic flux, floating objects were gathered with 

volunteers from canals in Alkmaar (Netherlands) to have a real-life representation of floating plastic debris from 

waterways. Furthermore, plastic from household waste was used to create more variability in the dataset. In total, 

626 plastic debris objects were used, whereby 270 items were used for training data and 356 items for test data. 

An impression of the objects is given in Figure 10.        

 Two static cameras were used in the experiments, namely the GoPro HERO4 Silver and GoPro MAX 360 

(Figure 11). The GoPro HERO4 was either mounted at location (2) or (4) and the GoPro MAX360 at location (1) 

and (3). The location was dependent on whether measurements were carried out for the centre or the right bank 

of the water body (Figure 11). Lastly, the mobile device Huawei P30 Pro was also used to gather images. 

Since the water body is stagnant, wind was the main transport mechanism and therefore the floating barrier had 

to be placed based on the prevailing wind direction. Furthermore, the cameras and an external power supply were 

fixed to a wooden plank. All cameras used the following settings for taking videos (Table 1): 

GV 

1 2 

3 4 

5 

Figure 10 Impression of plastic debris objects used for the experiments at Green Village(1: Plastic bottles, 2: Metal tins, 3: 

Various plastic objects, 4: Plastic bags, 5: Paper) 
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Resolution Frames per second (fps) Field of view (FOV) 

1080p 24 Linear 

Table 1 Camera settings for GoPro HERO4 silver and GoPro MAX 360 

 A resolution of 1080p = 1920x1080 (16:9) ratio was used. This resolution had to be used, since this was the highest 

available resolution for the GoPro HERO4 Silver. The frames per second (fps) were set to the lowest possible value 

to reduce the required storage capacity. Furthermore, a linear field of view (FOV) was used that applies corrections 

to the fisheye distortion caused by the lenses. By using this FOV, horizons and verticals get straightened by also 

narrowing the perspective. This is an advantage compared to the wide FOV, whereby the fisheye view creates 

curvature of straight lines, leading to the distortion of objects and shapes.     

 Overall, 11 days between February and April were chosen to conduct experiments. The selection of 

experimental days was dependent on the three following factors: precipitation and the direction of wind. 

Measurements could not be carried out during rainy conditions since the GoPro HERO4 Silver was not waterproof. 

Lastly, the prevalent wind direction had to either be from N/NW or S/SE direction for plastic transport to occur. 

Ultimately, the influence of instrumental and environmental factors was assessed by evaluating different weather 

conditions (sunny vs. cloudy), camera heights (2.7m vs. 4.0m) and camera angles (0 degree vs. 45 degree) for 

which data was gathered accordingly. The mounting height of a camera in the Green Village was limited by the 

maximum height of the bridge (4.0 m). Next to mounting the static cameras perpendicular to the water surface, a 

camera angle of 45 degrees was also tested. This was done to assess whether different angles can be used for 

the detection of plastic debris, potentially providing more flexibility with respect to taking images and videos. 

Figure 11 Experimental setup at Green Village. The GoPro Hero was mounted on the bridge on location (2) + (4) and the GoPro 

Max on location (1) + (3), depending on whether the measurements were carried out for middle of the water body or on the 

banks. The cameras and an external power supply were fixed to a wooden plank. The floating barriers were used to intercept 

the floating plastic. This example shows both cameras at a height of 4 meters and an angle of 45 degrees.  

Right Bank 

Left Bank 
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Lastly, no other study addressed the influence of weather conditions on the detection of floating plastic debris, 

therefore the detection ability during sunny and cloudy conditions was also evaluated.  

Once the video material had been gathered, the data was pre-processed before it could be used in a model. The 

data pre-processing for image classification and object detection can be found in section 3.3.1 and 3.4.1 

respectively. The next section will discuss the data collection from the natural environment.   

 

3.2.2 Dataset natural environment 

For the evaluation of generalization for other locations, a dataset from a study by [10] was used, whereby a static 

camera was mounted on five bridges at different waterways in Jakarta (Indonesia), Data collection took place from 

30th April to 12th May 2018. At each location, the camera model Dahua Easy4ip IPC‐HDBW1435EP‐W recorded 

continuous video sequences of 1080p and 10 fps. A part of the dataset is available on [42]. The height of the 

measurements for this dataset was 4.5m. This refers to the monitoring location BKB-Grogol from the study by [10].  

3.3 Image classification 

This section describes all steps that were included in the image classification stage. This comprises the pre-

processing of data, model construction from scratch, transfer learning and relevant accuracy metrics to evaluate 

model performances.  

3.3.1 Data pre-processing  

After the video material had been gathered at the Green Village, the audio files of these videos had to be extracted 

(Figure 12). This was done with FFmpeg, an open-source software that consists of a vast number of libraries 

specialized in processing video, audio and multimedia files. The extraction of the audio was necessary, because if 

the raw video was processed with the VideoToImage tool, only the first few frames were saved. This behaviour 

suggested, that when a certain frame is reached, that the algorithm switches to a different non-video stream track 

within the processed video file. After a certain frame is reached, the VideoToImage tool merely iterates over empty 

frames, explaining the fact that no images are saved. 

After extracting the audio file, the videos could be processed in the VideoToImage tool. With this tool, images could 

be saved at predefined framerates. All the videos were recorded with 24 fps and since images were saved either 

at 3 s or 5 s intervals, the frames per second were equivalent to 72 or 120 fps respectively. The chosen time interval 

was dependent on the velocity of plastic debris in the water, whereby 72 fps were chosen for higher velocities 

Figure 12  Workflow of data pre-processing for image classification 
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(higher presence of wind) and 120 fps for lower velocities (lower presence of wind). The following calculations 

gives an example for the number of output images generated for a 20 min video and intervals of 72 fps: 

 

 

After generating the images per video, these images were inspected and manually categorized according to four 

different classes (Table 2). The categorization with four classes in this study, follows the same categorization as 

used by the Citizen Science platform CrowdWater [43]. Furthermore, this categorization was also used to evaluate 

whether image classification techniques, next to correctly predicting the presence of plastic debris in an image, 

can also give a rough indication about the number of plastic debris objects in an image.   

Class Description Number of objects 

0 No plastic 0 

1 Little plastic 1-2 

2 Moderate plastic 3-5  

3 Lot of plastic 6-10 

                                        Table 2 Class, description and number of plastic debris objects for this study 

After categorizing suitable images according to the predefined classes, the categorized images were re-assessed 

to guarantee label consistency. But what could be defined as suitable images for this research? 

An article by [44] suggests, that one of the benchmark datasets for image classification ImageNet, has an 

estimated label error rate of 5.8%. This is equivalent to 812.000 wrongly classified images, if the entire dataset of 

14.000.000 million images with 1000 classes is considered. Model performances using this flawed dataset therefore 

do not have any explanatory power or informative value, since these models were applied on a flawed dataset. 

Taking this as an example, it is therefore important to set guidelines regarding the labelling procedure. This will 

ensure transparency and consistency, such that in future work the labelling procedure can easily be reproduced 

Especially if multiple people conduct labelling on the same dataset, it is important that the labelling is consistent. 

 For this study, Figure 13 presents the image choices that had to be made for the aggregation of the 

dataset. Scenario (1) is the simplest inclusion of an image to the dataset, where no occlusion, overlap or cut-off 

from the image boundary are present. Images whereby multiple plastic debris objects overlapped, such as in 

scenario (2), were also included, since it can also occur in the natural environment that floating objects are 

intermingled. A choice had to be made regarding the degree of object cut-off at the boundary of an image. If only 

a small fraction of the object was visible (scenario (3)), the image was not added to the dataset. On the other hand, 

if the majority of the object crossed the boundary of the image, the image was included. Including this type of 

images has the potential advantage, that the model does not only learn the distinct shapes of the objects, but that 

new appearances of object shapes get created by a certain cut-off on the image boundary.    

 Lastly, scenario (5) and (6) represents two images from the same experiment, with a 30 s time difference 

between them. The images clearly show that a hardly discernible displacement of the objects has taken place. If 

the location of objects has not or hardly changed compared to preceding images these images, as depicted in 

scenario (6), will not be included in the dataset. An inclusion of these images would entail, that the model 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 =
24 [𝑓𝑝𝑠] ∗ 20 [𝑚𝑖𝑛] ∗ 60 [

𝑠
𝑚𝑖𝑛]

72 [𝑓𝑝𝑠]
= 400  
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technically trains on almost identical images, since the location of the objects barely changed. A representation of 

selected images per class for the Green Village data can be found in Appendix B.1.  

3.3.2 Datasets 

After establishing the guidelines with respect to the categorization of images, the assembled datasets will be briefly 

discussed. For the construction of the baseline model and the assessment of available state-of-the-art models, 

training and validation data from 2.7m/0 deg was used (Train 1 and Validation 1 in Table 3). This was done, because 

the most amount of data was gathered for this setting.  

Dataset Characteristics Number of images 

Train 1 2.7m/0 deg 4005 

Train 2 (Data Augmentation) 2.7m/0 deg 7948 

Train 3 All heights + angles 5915 

Validation 1 2.7m/0 deg 801 

Test - Cloudy 2.7m/0 deg 479 

Test - Sunny 2.7m/0 deg 623 

Test 1 2.7m/45 deg 689 

Test 2 4.0m/0 deg 621 

Test 3 4.0m/45 deg 345 

Table 3 Training, validation and test data for the entire image classification stage 

A validation or development set is most commonly used for the selection of the most suitable model and used for 

the tuning of hyperparameters. Furthermore, the effects of data augmentation were also assessed for the 

construction of the baseline model. Therefore, the 4005 images recorded from 2.7m/0 deg were augmented. This 

Figure 13  Visualization of image choices for dataset, whereby crossed out images ((3) and (6)) represent the type of images 

that were omitted from the dataset 

1 2 3 

6 4 5 
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resulted in another training dataset (Train 2 - Data Augmentation) with 7948 images. The performed data 

augmentation operations are described in section 3.3.4. Based on the highest validation accuracy, the best 

performing model was then chosen. This model was subsequently used to assess the influence of different 

instrumental and environmental factors. This refers to all the test datasets listed in Table 3. To also assess the 

influence of a larger dataset with different heights and angles on the test accuracies, the original dataset (Train 1) 

was expanded with 1910 images from 2.7m/45 deg, 4.0m/0 deg and 4.0m/45 deg. This resulted in a new training 

dataset with 5915 images from all heights and angles (Train 3).   

3.3.3 Custom-made baseline model 

To establish a minimum model performance, to which other available models can be compared to, a baseline model 

needed to be established. As a starting point, the architectural principles of the VGG16 model were used, which is 

a CNN with 138.423.208 million parameters developed by [45], that achieved a test accuracy of 92.7% on the 

ImageNet dataset.           

 The main principle of the VGG model architecture involves the stacking of convolutional layers with 3x3 

kernel-sized filters, followed by a maximum pooling layer. Jointly, these layers can be considered as ‘blocks’ which 

can be repeated after each other, whereby the number of filters per block is increased (e.g., 32, 64, 128, 256 or 

512) with increasing depth of the network. The major problem with VGG is the extremely long computation time 

due to the large number of parameters. Since the computational resources in this study were limited to one GPU, 

a baseline model had to be built that had significantly less parameters, but still achieves a satisfactory model 

performance. The following stepwise approach for building a model from scratch, taking the VGG model as a 

guideline in terms of architecture, was followed (Figure 14):  

An in-depth description with respect to the buildings blocks of a CNN can be found in section 2.2.2 ‘Convolutional 

Neural Networks (CNNs). The models were constructed in the Python 3 programming language by using the deep 

learning libraries TensorFlow and Keras.          

Due to the limited available processing power, the original rectangular 1920x1080x3 images were resized to a 

commonly used square input of 224x224x3 for CNNs. A batch size of 32 was used, since smaller batch sizes are 

noisier compared to larger batch sizes and therefore offer more potential for regularization.    

Figure 14 Flowchart describing the stepwise approach for custom-made baseline model in this study 
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The Adaptive Moment Estimation (Adam) optimizer, which is a stochastic gradient descent method proposed by 

[46] was used. The Adam optimizer includes an adaptive learning rate, governed by two decay rates (𝛽1 and 𝛽2). 

These parameters determine to what extent the gradients from the previous batch are used to update the weights 

after the current batch, by giving a timescale during which the learning rate decays. The authors of [46] suggest 

values of 𝛽1 = 0.9 and 𝛽2 = 0.999, which will also be used in this study. Higher beta parameters entail, that 

previously calculated gradients influence the weight update to a lesser extent. The initial learning rate was set to 

0.001. Next to the Adam optimizer, the sparse categorical cross entropy was used as a loss function, which is 

commonly used for multilabel classification problems. The number of epochs was arbitrarily set to 30.  

  Before feeding the data to the model, the RGB images had to be pre-processed by scaling the input to 

values between 0 and 1 by dividing the pixel values of the images by a value of 255. This normalization is needed 

to ensure that each input has a similar distribution, which accelerates the process of convergence. After converting 

the images to a suitable input, different model configurations were evaluated.  

A more precise description with values and steps for all operations with respect to the baseline model are listed in 

Appendix C.1. For every step, the best model was selected based on the losses, accuracies, degree of overfitting 

and the number of parameters, since the aim was to build a computationally efficient and accurate model.

 Firstly, different configurations of convolutional blocks were assessed, followed by evaluating the 

influence of either a maximum or average pooling layer after the convolutional blocks. Therefore, five different 

configurations of convolutional layers and blocks were tested.       

 The implementation of batch normalization layers aimed to accelerate and stabilize the process of 

convergence. Next to the main regularization technique dropout, batch normalization can also have a regularizing 

effect. It is common practice to place batch normalization layers after every convolutional block to standardize the 

non-linear output. This practice was also applied in this study. The tuneable parameter in batch normalization 

layers is the momentum parameter, that determines how much the moving average of the previous batch influences 

the calculation of the current batch normalization. High momentum values encompass slow learning of the moving 

mean due to the higher lag. Values ranging from 0.5 – 0.9 were tested for the momentum. For the dropout layers, 

probabilities for omitting random nodes ranged from 0.2 – 0.7. Research by [47] shows, that model performance 

decreases if dropout layers are applied before batch normalization. A harmonic approach to combine both of these 

strategies, as suggested by the authors of [47], is to apply dropout after the last batch normalization block, which 

will also be adopted in this study.          

 Before the feature maps from the last convolutional layer are fed to the classification stage, commonly 

every single feature map is collapsed into a 1D vector, before being passed to the FCN layers. However, there are 

other techniques such as Global Average or Maximum Pooling, which take the average or maximum value for each 

single map respectively, without converting the entire feature map into a single column. Next to that, a hybrid 

global pooling layer by combining global average and maximum was tested, which is a simplified version of a global 

pooling method as suggested by [48].          

The addition of more than one dense layer in the classifier can enhance the networks ability to classify features, 

that were extracted in the feature extraction stage. The number of hidden layers and number of neurons in these 

layers were determined with the Keras Tuner. This is a tool, which determines the optimal set of hyperparameter 

for a model. Within the tuner a Random Search algorithm was used, which randomly samples hyperparameter 
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combinations for testing the model performance. The search space was defined by combinations of 1 – 4 dense 

layers with varying number of neurons (16, 32, 64, 128, 256 or 512).     

 Lastly, the optimal learning rate was also evalulated with the Keras Tuner. Therefore, the search space 

was defined by four different learning rates, namely 0.1, 0.001, 0.0001 and. 0.00001. 

3.3.4 Data Augmentation 

Data augmentation is a technique that artificially expands the training data by random image transformations of 

the existing samples [1], which can be used to reduce overfitting and thus contributes to the improvement of 

generalization power of the model. For this study four different techniques were applied, namely: horizontal and 

vertical flipping, brightening, darkening and the addition of random salt and pepper noise. Techniques such as e.g., 

cropping, rotation or zooming were not assessed because this could lead to the omission of plastic debris objects 

in an image and consequently an undesirable label transformation [49], if the incorrect parameter values are 

chosen for these operations. To assess the effectiveness of data augmentation, up to two transformations were 

done for Train 1. This resulted in a total of 7948 images (Table 3). The image transformations were done via a 

machine learning platform named Roboflow. One image example of data augmentation is given in Figure 15 .  

It is important to mention, that image transformations could contain the application of more than one technique. 

An augmented image could for example be vertically flipped, have a brightness adjustment of +15% and a salt and 

pepper noise injection of 5 pixels. The number of applied techniques per images were randomly generated.

 Horizontal and vertically flipping was done to make the model more robust towards object orientation. 

This technique has proven to be successful on benchmark datasets, such as ImageNet or CIFAR-10. Furthermore, 

a higher accuracy could also be achieved in the study by [10] through horizontal and vertical flipping, which makes 

this technique also interesting for this research. A 50% probability existed for either horizontal or vertical flipping. 

Furthermore, it was chosen to apply a range of 0% to +35% for brightening and – 35% to 0% for darkening. Variation 

in brightness can help the model to be more resilient towards changes in lighting or camera settings.  

 Lastly, a study by [50] found, that blur and noise have the most adverse impacts on image classification 

tasks. Noise can be ignored by the human eyes, however slight pixel changes can have a detrimental influence on 

the networks prediction ability. The injection of noise could potentially help, to make the model more robust 

towards camera artifacts, which is an undesired modification of data caused for example by the compression of 

images. A study by [49] also suggests, that the addition of noise can help CNNs to learn more robust features. It 

Figure 15 Implementation of data augmentation techniques (Left: vertical flipping, noise injection and slight brightness 

increase, Right: larger noise injection and larger brightness increase) 
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was chosen only to assess the implementation salt and pepper noise by applying salt and pepper noise injection 

between 0 to 10% of the pixels.  

3.3.5 Transfer Learning 

For the application of pre-trained models with transfer learning, three main strategies can be distinguished:  

1) Training with pre-trained weights 

For this strategy, the model is instantiated with pre-trained weights acquired by training on another 

dataset (e.g., ImageNet). To ensure that the model parameters are not updated during training the layers 

are frozen, meaning that no model parameters are trainable. The old classifier of the model is substituted 

with a new classifier, that relates to the new dataset and the problem at hand. This is also the case for 

the following two strategies.  

2) Fine-tuning 

This method consists of unfreezing the deeper layers of the model, whilst keeping the remaining model 

layers frozen. The intention behind this method is that earlier layers learn more generic and simple 

features which can be found in most of the datasets. Deeper layers learn more complex patterns, which 

are specifically related to the dataset that is used for training.  

3) Training from scratch 

This approach implies the re-training of the entire model, by making every layer in the network trainable. 

Consequently, the model does not make use of pre-trained weights.  

For this study, it was chosen to train with pre-trained weights and training from scratch. The process of fine-tuning 

is the most time-consuming strategy, since it comprises a trial-and-error process of unfreezing a number of layers, 

connected to frequently running a model to assess the performance.  

The selection procedure of five state-of-the-art models was based on the number of parameters these models 

contained. Overall, two smaller, one medium-sized and two larger models were selected to compare the 

performance of existing deep learning architectures with the baseline model. The models including their size, top 

1-accuracy, top 5-accuracy and number of parameters are given in Table 4. The models were originally proposed 

for the ImageNet dataset and the listed top 1-accuracy and top 5-accuracy were achieved by training on ImageNet. 

Model Size Top-1 accuracy Top-5 accuracy Parameters 

ResNet50 98 MB 0.749 0.921 25,636,712 

InceptionV3 92 MB 0.779 0.937 23,851,784 

DenseNet121 33 MB 0.750 0.923 8,062,504 

MobileNetV2 14 MB 0.713 0.901 3,538,984 

SqueezeNet 0.5 MB 0.572 0.803 1,235,496 

Table 4  Characteristics (size, top-1 accuracy, top-5 accuracy and parameters) for state-of-the-art models used in this study 

The top-1 and top-5 accuracy metrics indicate whether the model prediction with the highest probability exactly 

corresponds to the ground truth label, or whether the five highest probabilities match the true label. It can be seen 

that there is a trade-off between the computational speed (size and parameters) and the accuracy of the model, if 

e.g., SqueezeNet or MobileNetV2 are compared to the other three models. It is noticeable, that DenseNet121 
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outperforms ResNet50 in terms of accuracy, although the model is a third of the size of ResNet50. A more precise 

explanation with respect to all five model architectures can be found in Appendix C.2 – C.7. All models, except for 

SqueezeNet, were available in Keras alongside the pre-trained weights. For the implementation of SqueezeNet 

with its pre-trained weights, the code from [51] was used and adapted.  

3.3.6 Dealing with class imbalances 

Class imbalances within the datasets had to be addressed, which was problem for the data in this study. 

Imbalanced datasets can cause problems in classification tasks, since balanced datasets exceed imbalanced 

datasets in terms of model performance, as suggested by studies from [52] and [53]. This research applied a cost 

sensitive technique, that addresses the learning process itself by introducing class weights, entailing a higher 

penalty to the loss function if an underrepresented class is wrongly classified. This forces the model to improve on 

learning these classes [52]. The following formula was applied to assign class weights to all four classes: 

 

(11) 

whereby 𝑖 represents the respective class for which the class weight is calculated. Other methods for addressing 

class imbalance, such as sampling techniques or one-class learning [52] [53], will not be discussed in this report. 

The class weights were applied for every image classification dataset in this study.  

3.3.7 Accuracy metrics 

Model performance for classification problems is commonly based on the confusion matrix and the different 

metrics that can be derived from it. For each image, the four following scenarios can occur, if it is assumed that 

the processed image belongs to class ‘0’ – No plastic:        

I. Actual = Class 1, 2 or 3  Predicted = Class 1, 2 or 3 TRUE NEGATIVE  (TN) 

II. Actual = Class 1, 2 or 3  Predicted = Class 0  FALSE POSITIVE  (FP) 

III. Actual = Class 0   Predicted = Class 1, 2 or 3 FALSE NEGATIVE  (FN) 

IV. Actual = Class 0  Predicted = Class 0  TRUE POSITIVE  (TP) 

The confusion matrix is attained by adding occurrences of TN, FP, FN and TP and placing them in a single matrix. 

The rows correspond to the ground truth classes (e.g., the actual outcomes) and the columns represent the 

predicted classes. By combining the confusion matrix cells, more sophisticated metrics can be obtained that 

evaluate different features of the classification performance. The standard metrics to evaluate the classification 

performance are the accuracy, precision, recall and the F1-score.        

 The accuracy (defined in equation (12)) measures all the correctly identified images belonging to a certain 

class, whether it is a TN or a TP. Nevertheless, it can be a misleading metric if an imbalanced dataset is considered. 

If for example a dataset is considered whereby 5 out of 100 images contain plastic debris, a naive model predicting 

no plastic for all 100 images, will yield an accuracy of 95%. Therefore, precision and recall are used, which divides 

the accuracy metric into two different components. 

𝐶𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 = 
(

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠

)

4
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(12) 

 

The precision (defined in equation (13)) represents the ability of a model to detect only the relevant classes. This 

metric gives the percentage of the correct predictions per class.     

 

(13) 

 

 

Recall on the other hand, corresponds to the ability of the model to identify all the relevant true labels per class 

(defined in equation (14)). It gives the percentage of TP detected amongst all relevant true labels. In an ideal 

model, the precision and the recall would be equal to 1, indicating that the model predicts every input correctly.  

 

(14) 

 

The F1 score (defined in equation (15)) gives the weighted average of the recall and the precision. This metric is 

especially useful for imbalanced data [1] [54]. If the dataset is highly imbalanced, as in the previously considered 

example, the classifier can reach a low misclassification rate if it chooses the majority class for every prediction. 

Considering the previous dataset and a model that is constructed for only predicting plastic debris objects in an 

image, the precision would be equal to 0.05 (TP = 5, FP = 95) but the recall would be equal to 1 (TP = 5, FN = 0). 

Consequently, the F1-score would be equal to 0.095, balancing the high discrepancy between precision and recall. 

This also emphasizes the fact that not just one metric should be considered. 

 

(15) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝐴𝑙𝑙 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙𝑠
 

𝐹1 =
2 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
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3.4 Object detection and localization 

The entire workflow for the object detection stage is depicted in Figure 16. Due to the constraints of image 

classification, object detection and localization was applied, to make the detection of plastic debris objects viable 

for practical applications. This section describes the methodology used for the implementation and evaluation of 

the YOLOv4 model on different datasets. Firstly, the data pre-processing will be described, followed by the 

application and model structure of YOLOv4 and the accuracy metrics to assess the model performance. The 

technical background for object detection algorithms in general and specifically the YOLOv4 model can be found 

in Appendix D.1 and D.2  

3.4.1 Data pre-processing 

This section describes the data processing of the Green Village data (section 3.4.1.1) as well as the data from the 

study by [10] (section 3.4.1.2), which was used to assess the generalization ability of the YOLOv4 model. 

3.4.1.1 Green Village data 

The labelling procedure for object detection comprised the selection of readily categorized images from the image 

classification (section 3.3.1) stage. Images from the moderate (class ‘2’) and lot (class ‘3’) of plastic class were 

selected to conduct annotations. To train the YOLOv4 algorithm on recognizing and localizing plastic debris, these 

objects had to be labelled per image. This was done by a free and open-source graphical image annotation tool 

written in Python, named LabelImg by [55]. With this tool rectangular bounding boxes can be drawn to localize the 

desired objects in an image. For the YOLO labelling format, a .txt file with an identical name corresponding to each 

Figure 16 Workflow for object detection stage depicting the labelling procedure for annotating images which are used as 

input for the YOLOv4 model. This generates trained weights and statistics that are used for the assessment of the model 

performance. The trained weights were then used on test images for the detection of plastic debris objects. 
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image file was created. Each .txt file contains the necessary information about the annotations made for every 

image, given in the following format: 

<object class> <x center> <y center> <width> <height> 

The file contains the object class, representing the object present in the bounding box, the coordinates (x and y 

center) for the centre of the rectangle and the width and height of the bounding box (Figure 16). A YOLO label file 

can contain multiple object labels, for which each new line represents a new object. The annotations are 

normalized and lie within a range of 0 – 1, which is relative to the width and the height of the image.  

 Furthermore, labelling guidelines had to be established for the Green Village data, to guarantee consistent 

labelling. The guidelines for the dataset from this study are listed here below:  

1) Labelling the entirety of a plastic debris object 

It is important do draw tight bounding boxes for every plastic debris object in an image. However, a small 

buffer should be left around the object, since this guarantees that the entire object is covered by the 

bounding box. Cutting of objects or not annotating objects at all, could lead to more false negatives in the 

model. Examples of a good and bad annotation is given by the green and red bounding boxes, respectively. 

 

 

 

 

2) Labelling of occluded and overlapping objects 

In the natural environment it can also occur, that multiple plastic debris objects are occluded or overlap 

such as in a plastic hotspot. Therefore, it is also important to label multiple occluded objects, as if they 

are fully visible. This trains the model to understand the true boundaries of an object. Examples of a good 

and bad annotation for occlusion cases are given by the green and red bounding boxes, respectively. 

 

 

3)  Labelling of image boundary objects 

Partial objects, that were cut off due to the boundary of the image, were also labelled. However, this was 

dependent to what extent these objects were still visible in the frame. If only a small fraction of the object 

was visible in the image, the image was not included in the dataset. An exemplification of boundary cases 

that were included and that were not included in the dataset, are depicted below.  
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4) Labelling images with presence of organic material 

For the model to distinguish between plastic debris objects and other floating materials such e.g., organic 

material in the form of wood or leaves, images with the presence of all these objects also had to be 

labelled. This also helps the model to become more robust with respect to inhomogeneous conditions, 

where plastic debris are not the only objects present in the water.   

 

 

 

 

 

 

It is important to mention, that only images from 2.7m (0 degrees) were annotated, because the assessment of 

model performance with respect to the height was carried out with image classification. The annotations were 

firstly made with the following four classes: plastic bottles (0), other plastic (1), paper (2) and metal tins (3). The 

distribution of annotations amongst all classes for the training and testing data is presented in Appendix C.1. It 

can be seen that the data is largely unbalanced, especially for the test data, The annotations for four classes could 

subsequently be easily converted to one class, if all the objects were considered as plastic debris. For the Green 

Village data with one class, following training dataset and test datasets were used (Table 5):  

Table 5 Datasets for Green Village with number of images, annotations and average annot/image 

3.4.1.2 Dataset ‘Automated River Plastic Monitoring Using Deep Learning and Cameras’  

The A-RPM data was used for an object detection algorithm in the research by [10], therefore the annotations 

were already available. Overall, 472 images were available for training data and 53 images for test data. This split 

was predefined by [42] and used for this study. The floating plastic throughput per image was much larger for this 

dataset, compared to the Green Village data (Table 6).  

Dataset Number of images Annotations Average (annot/image) 

Training A-RPM 472 9823 20.8 

Test A-RPM 53 1208 22.8 

Table 6 Dataset A-RPM (Automated River Plastic Monitoring) with number of images, annotation and average annot/image 

Dataset Number of images Annotations Average (annot/image) 

Training GV GoPro 1327 7076 5.4 

Test GV GoPro 183 1104 6.0 

Test GV Huawei 238 985 4.1 
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3.4.2 Application of YOLOv4 model 

The source code from Alexey Bochkovskiy [40], one of the creators of YOLOv4, was used and customized for the 

application of YOLOv4 on the detection of plastic debris. The model was run through ‘Darknet’, which refers to an 

open-source framework for neural networks. Additionally, another repository by [56] was utilized. The described 

configurations are based on the suggested guidelines by Alexey Bochkovskiy, which can also be found via [57].

 The YOLOv4 model has readily been trained on the COCO dataset, which is a large-scale object detection 

dataset with 80 classes. These pre-trained weights (162 MB) were used to train the model on the detection of 

plastic debris objects. There are a few adjustable parameters based on the recommendations by Alexey 

Bochkovskiy, which depend on the number of classes that are used for object detection. These will be briefly 

explained in the following paragraphs.         

 Firstly, the image sizes were set to 416x416. This can be any value multiple of 32, however the minimum 

should be 416x416. Larger image sizes would entail prolonged computational time. The batch size was set to 64 

with a subdivision of 16. The subdivisions stand for the number of mini-batches made from a batch. In this case 4 

images per mini-batch are forwarded to the GPU for processing. This process will be repeated 16 times until the 

maximum batch size is reached, which will then be followed by a new iteration of 64 images. The number of 

maximum batches (or maximum number of iterations) was set to 6000 for one class and to 8000 for four classes. 

It is suggested, to calculate this by multiplying the number of classes by 2000, but not having less than 6000 and 

not more than 10000 iterations [57]. Furthermore, the steps were set to 80% and 90% of the maximum batch, 

respectively. These steps indicate a learning rate change, whereby the learning rate is multiplied by a predefined 

scaling factor of 0.1.           

 Furthermore, the number of filters in each of the three convolutional layers before each YOLO layer, are 

calculated by (classes+5) x 3. For one class the number of filters had to be set to 18 and for four classes 

consequently to 27. Lastly, the learning rate (0.001), momentum (0.949) and decay rate (0.0005) were predefined 

values. Once the training and test data was uploaded to Darknet and all the parameters were adjusted, the YOLOv4 

model simulations could be carried out. Based on the highest test accuracy, the model weights were also saved. 

After completion of the computation, the model was evaluated based on the prediction of bounding boxes on test 

images and unseen images containing plastic debris. Furthermore, different accuracy metrics (Precision, Recall, 

IoU, F1-score, Average Precision (AP) and Mean Average Precision (MAP)) were used to assess the model 

performance (section 3.4.3).  

3.4.3 Accuracy metrics 

The Intersection over Union (IOU) metric is the area of overlap between the object and the detected box 

(intersection) divided by the area of the union of the object and the detected box (Figure 17 C). In this case a TP 

is the correct detection of a plastic debris object, whereby the detection with its associated IoU value needs to 

exceed a certain threshold. A FP is a wrong detection whereby the detection and its IoU value is below a certain 

threshold. This threshold value was set to 0.5. A FN refers to a ground truth label that was not detected.  Another 

performance indicator in object detection is the average precision (AP), whereby the area under the curve (AUC) 

is calculated for the precision-recall curve. For every image with annotations, the model calculates precision and 

recall values for the precision-recall curve can be plotted, based on the collected detections for TP and FP. YOLOv4 
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uses a 11-point interpolation approach, which aims to describe the shape of the precision precision-recall curve 

by taking the average of the precision at eleven equally spaced recall values, ranging from 0 – 1 [58], given by the 

following formula: 

  

 

whereby 𝜌𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟) is defined as the maximum precision whose recall value is greater than 𝑟 [58]. 

Consequently, the mean average precision (mAP) takes the mean of the AP amongst all classes.  

 

3.4.4 Generalization assessment 

The generalization ability was assessed by the model performance for different dataset configurations. The 

combinations are listed in Table 7: 

Abbreviation Training set Image source 

train 

Test set Image source 

test 

Number of 

classes 

GEN1 Green Village 

(2.7m/0 deg) 

GoPro Green Village 

(2.7m/0 deg) 

GoPro 1 

GEN2 Green Village 

(2.7m/0 deg) 

GoPro Green Village 

(2.7m/0 deg) 

Mobile Phone 1 

GEN3 Green Village 

(2.7m/0 deg) 

GoPro Green Village 

(2.7m/0 deg) 

GoPro 4 

GEN4 A-RPM Dahua Easy4ip Green Village 

(2.7m/0 deg) 

GoPro 1 

GEN5 Green Village 

(2.7m/0 deg) 

GoPro A-RPM Dahua Easy4ip 1 

Table 7 Different dataset combinations for the assessment of the generalization ability with characteristics (training set, image 

source training set, test set, image source test set and the number of classes) 

𝐴𝑃 = 
1

11
∑ 𝜌𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟)

𝑟∈{0,0.1,…1}

 

Figure 17 Accuracy metrics for object detection with precision, recall and Intersection over Union (IoU) (images taken from [58]) 

A B C 
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4 Results  

This section describes the attained results for image classification and object detection with YOLOv4. 

4.1 Image classification 

Firstly, the model results for the stepwise approach of building a baseline model (section 4.1.1) and training with 

pre-trained weights from ImageNet and from scratch for five different model architectures (section 4.1.2) will be 

presented. The abbreviations used for datasets in this section are listed in Table 3.  

 BASELINE MODEL  DENSENET121 MODEL 

 Precision Recall F1-score  Precision Recall F1-score 

Class 0 0.91 0.89 0.90 0.98 0.96 0.97 

Class 1 0.67 0.83 0.74 0.89 0.81 0.85 

Class 2 0.87 0.64 0.74 0.81 0.91 0.86 

Class 3 0.70 0.91 0.79 0.87 0.76 0.81 

  

Accuracy   0.79   0.88 

Macro Average 0.79 0.82 0.79 0.89 0.86 0.87 

Table 8 Accuracy metrics (Precision, Recall, F1-score, Accuracy and Weighted Average) for Baseline model and Densenet121 

model trained on Train 1 (2.7m/ 0 deg) and Validation 1 (2.7m/ 0 deg) 

 

Figure 18 A: Confusion matrix for Baseline model (Train 1 and Validation 1), B: Confusion matrix for DenseNet121 (Train 1 and Validation 1) 

A B 
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4.1.1 Baseline model 

The results for the stepwise addition of the CNN building blocks and the final CNN model can be found in Appendix 

D.1. The confusion matrix of the baseline model is given in Figure 18 A and other relevant statistical metrics are 

listed in Table 8.           

 Firstly, the results show, that the stepwise addition of additional convolutional blocks increases the best 

validation accuracy from 33.66% to 71.18%. This indicates that the increase in number of filters through the addition 

of convolutional blocks, enables the model to learn more complex features related to the shape of plastic debris 

objects. VGG5 produced the best model results, by achieving the least amount of overfitting and losses and the 

highest validation accuracy with 71.18%. With the addition of pooling methods, maximum pooling gave the highest 

accuracy on the validation data with 75.9%.       

 Furthermore, due to overfitting regularization techniques such as Batch Normalization and Dropout had 

to be applied. The results show that the training process is slow for a momentum of 0.99, compared to the other 

evaluated momentum values. Batch Normalization did not produce the desired regularization to reduce overfitting, 

however the training process could be accelerated by setting the initial learning rate to 0.001. A momentum of 0.6 

was chosen since this yielded the highest validation accuracy and lowest loss. With the implementation of Dropout, 

overfitting could significantly be reduced. Dropout values of 0.6 or 0.7 regularized too strongly since the training 

accuracy showcases an asymptotic behaviour from 15 epochs onwards. Therefore, a Dropout value of 0.5 was 

chosen since this also yielded the highest validation accuracy with 75.8%.      

 A Global Average Pooling layer was added before the FCN layer, because it generated the highest 

validation accuracy with 77.6%. In literature it is commonly suggested that global pooling operations should replace 

FCN layers and be fed directly into the output layer. However, this did not yield favourable results and therefore 

the Global Average Pooling was added before the FCN layers. Another reason for adding this pooling layer instead 

of a flatten layer is that the number of parameters could be reduced from 4.409.748 to 1.214.868.  

 Lastly, the configuration of the FCN layers was tested with the Keras Tuner. Up to this point, a FCN layer 

with 128 neurons was used. The search space for fine-tuning was defined by combinations of 1 – 4 FCN layers 

with varying number of neurons (16, 32, 64, 128, 256 or 512). The highest validation accuracy (78.9%) was attained 

with two FCN layers with 64 and 256 neurons respectively. After this step the construction and optimizing process 

of the baseline model was finalized.         

 The baseline model achieved an accuracy of 79%. The confusion matrix and statistical metrics show, that 

the largest amount of FN could be found for class 2 (Recall = 0.64) with 104 images being wrongly classified as 

class 1 or class 3. In 71 images, the model falsely predicted class 1 as the correct class (Precision = 0.67). Overall, 

class 0 performed the best with a F1-score of 0.90. Class 1 and 2 performed the worst, with a F1-score of 0.74. 

4.1.2 Data Augmentation 

To further improve the model performance, it was assessed whether data operations by means of data 

augmentation could further increase the accuracy. Results for data augmentation showed, that the validation 

accuracy was reduced by approximately 9% when trained on Train 2, compared to the baseline model trained on 

Train 1. With data augmentation, the model only performed better for class 1 (F1-score = 0.76), compared to 

training with the original dataset. All the other classes performed worse with respect to the F1-score.    
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4.1.3 Transfer Learning 

The graphs with respect to the training and validation accuracies for each model can be found in Appendix D.2. 

The classifier for the transfer learning models was substituted with the classifier from the baseline model. The 

preceding architecture remained unaltered. Four different learning rates were tested (0.1, 0.01, 0.001 and 0.0001). 

The learning rates yielding the highest validation accuracy are listed in Table 9. 

 PRE-TRAINED WEIGHTS TRAINING FROM SCRATCH 

Model LR Training 

time 

Validation 

accuracy 

LR Training 

time 

Validation 

accuracy 

ResNet50 0.0001 15 min 45.44% 0.0001 102 min 82.40% 

InceptionV3 0.0001 12 min 54.56% 0.001 87 min 81.52% 

DenseNet121 0.0001 15 min 62.67% 0.0001 112 min 87.60% 

MobileNetV2 0.0001 6 min 60.67% 0.0001 63 min 75.03% 

SqueezeNet 0.0001 3 min 66.70% 0.0001 19 min 73.91% 

Table 9 Transfer learning results for training with pre-trained weights from ImageNet and training from scratch with learning 

rate, training time (Tesla K80) and validation accuracies 

The results for the five selected models showed, that a large discrepancy exists between the validation accuracy 

for training with pre-trained weights or training from scratch. In every case, training from scratch yielded an 

improvement for the validation accuracy. The least improvement was found for SqueezeNet (+7.21%), whereas the 

largest improvement was found for ResNet50 (+36.96%). Overall, it can also be seen, that the larger models are 

superior in terms of validation accuracy, compared to the smaller models, if the model was trained from scratch. 

Nevertheless, the main disadvantage of training from scratch are longer computation times.   

 Lastly, it can be seen that all the models experienced severe overfitting (Appendix D.2). Since these are 

state-of-the-art models which also apply regularization techniques to prevent overfitting, the overfitting could 

potentially be attributed to an insufficient amount of training data.       

 The best validation accuracy (87.60%) was achieved with DenseNet121. This is an improvement of 8.70% 

compared to the validation accuracy of the baseline model. Overall, 702 from 801 images were classified correctly 

(Figure 18 B). Amongst all classes, class 3 has the lowest F1-score with 0.81 (Table 8). Images that did not contain 

plastic debris performed the best with a F1-score of 0.97. The true positives (TPs) for class 2 increased from 188 

to 266 compared to the original dataset. Consequently, the recall greatly improved by 0.27 compared to the baseline 

model. However, the precision decreased marginally for class 2, as the false positives (FPs) increased. For class 

3, the recall increased but the precision decreased. Compared to the baseline model, the DenseNet121 model 

performs better for every category, if the F1-score is considered.  

4.1.4 Ensemble Prediction 

Furthermore, a majority vote for the best three performing models (ResNet50, InceptionV3 and DenseNet121) was 

applied. For this procedure, the class predictions for the validation set from every model were compared. In a case, 

whereby two models agreed, and the third model disagreed with respect to the predictions, the vote was given to 

the majority prediction. If no majority was present the vote was given to the prediction of DenseNet121 since this 

model performed the best. This procedure ultimately yielded an increase of 4% for the validation accuracy (91%). 
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4.1.5 Misclassified examples 

This section addresses potential error sources in the form of misclassified examples (Figure 19) from the validation 

set. Hereby, the misclassifications from DenseNet121 model were considered since it was the best performing 

model amongst all evaluated models. 

The misclassifications by the model are predominantly due to the characteristics of the natural environment and 

the plastic debris itself. The most apparent source of error is caused by the presence of sun glint (images (1) and 

(2) from Figure 19). Due to reflection, the reflective regions in the water can be mistaken for plastic debris by the 

model during sunny days. The segregation of these objects from its surroundings becomes less dominant through 

the effect of sun glint. Furthermore, the reflection of objects could also be a source of error (image (3) Figure 19). 

If non-windy conditions prevail there is barely any distortion of the water surface, therefore making the water 

surface act similar to a mirror of the surrounding area. The reflection of the bridge, the wooden plank of the camera, 

trees and the building at the Green Village can be seen on the water surface. The model predicted a moderate 

amount of litter, although the predicted amount was little litter (1-2 objects). No other plastic objects are visible 

in the image and therefore it could be assumed that the model falsely detects object reflections as plastic debris.  

Another important factor seems to be the characteristics of the plastic debris itself (images (3), (4) and (5) from 

Figure 19 Misclassified examples for the dataset Validation 1 with its true and predicted label. The examples show that reflection due to sun 

glint, similar color of plastic debris as water surface, smaller objects and submerged objects are potential error sources. 

Reflection 

Reflection 
Reflection objects 

Similar color  

as water 

Missed detection  

smaller plastic debris  

Missed detection 

submerged plastic 

debris  

1 2 3 

4 5 6 



38 

 

Figure 19). The model seems to have difficulties in predicting the correct class for objects similar to the colour of 

the water, smaller objects, transparent or submerged objects.      

 The potential error sources are merely an assumption made by inspection of misclassified examples. For 

this reason, it was important to get an insight about how the model extracts information from images once they 

are passed through convolutional blocks. Therefore, a small network was built whereby an image was passed 

through three convolutional layers followed by maximum pooling. The suggested procedure by [59] was followed. 

The kernel sizes were set to 4, 8 and 16. The output were the feature maps of every convolutional and maximum 

pooling layer. To showcase the operations within a CNN to detect potential error sources, images (2) – (6) from 

Figure 19 were selected. The feature maps for images (3) – (6) from Figure 19 can be found in Appendix D.3, 

whereas the feature map for image (2) is shown in Figure 20.     

 The results show that the activations under the influence of sun glint are in the same range for reflective 

regions on the water surface and plastic debris. This phenomenon is showcased in Figure 20 whereby the red 

encircled areas demonstrate that the model wrongfully identifies plastic debris in the reflective regions. The 

reflection of other objects also seems to have a negative impact on the detection ability of the model, since the 

reflection of the wooden plank seems to have a similar activation as the plastic debris objects.   

 Furthermore, an occurrence that was difficult to detect in the misclassified images is the influence of the 

wind in form ripples on the water surface. For image (5) the small plastic debris object and spaces in between the 

ripples seem to have similar activations, which is also caused by the reflection of light. Since the object and the 

distance between ripples is relatively small, the model cannot make a clear distinction and therefore loses its 

ability to identify the smaller object. The activations for the submerged object and the object which has a similar 

colour as the water surface are not as pronounced as the other floating plastics. This could potentially explain a 

missed detection since the activations of these areas get smoothened out with increasing network depth.  

Figure 20 Visualization of feature maps with a convolutional and maximum pooling layer with increasing 

kernel size (4, 8 and 16) for an image with predicted class 3 and true class 2 (image (2) in Figure 20) 
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4.1.6 Impact of instrumental and environmental factors 

The last step with respect to image classification was the assessment of relevant parameters for the detection of 

plastic debris in an image. Since the DenseNet121 model achieved the highest validation accuracy on the 

Validation 1 dataset, this model was used for the assessment of the parameters. Therefore, firstly the model 

weights for Train 1 and Validation 1 were used to evaluate the influence of the height and angle of the camera. To 

validate whether the model performance could be improved with expansion of the dataset, the DenseNet 121 

model was re-trained on Train 3. For the evaluation of weather conditions, the Validation 1 was split into two test 

datasets, namely Test – Sunny and Test - Cloudy representing sunny and cloudy conditions, respectively. The 

confusion matrices and F1-scores for training on Train 1 and Train 3 can be found in Appendix D.4 and D.5, 

respectively. Overall, following accuracies were achieved (Table 10): 

MODEL WEIGHTS (TRAIN 1 (4005 images): 2.7m/0 deg) 

Dataset Characteristics Test accuracy 

Validation 1 2.7m/0 deg 88% 

Test 1 2.7m/45 deg 84% 

Test 2 4.0m/0 deg 85% 

Test 3 4.0m/45 deg 54% 

RE-TRAINING (TRAIN 3 (5915 images): All  heights + angles) 

Dataset Characteristics Test accuracy 

Validation 1 2.7m/0 deg 89% 

Test 1 2.7m/45 deg 87% 

Test 2 4.0m/0 deg 88% 

Test 3 4.0m/45 deg 59% 

RE-TRAINING (TRAIN 1 (4005 images): 2.7m/0 deg) 

Dataset Characteristics Test accuracy 

Test - Sunny 2.7m/0 deg 78% 

Test - Cloudy 2.7m/0 deg 90% 

Table 10 Test accuracies for different datasets to assess the influence of instrumental and environmental factors  

The results show that only a minor decrease in test accuracy was found for Test 1 (84%) and Test 2 (85%), if these 

values are compared to the accuracy achieved with Validation 1 (88%). Compared to the other configurations, a 

considerable drop in accuracy (54%) could be observed for Test 3 with the lowest F1-score of 0.32 for Class 3. In 

98 cases, the model classified images belonging to class 3, as class 2. Due to the extended field of view caused by 

the tilt of the GoPro, the size appearance of plastic debris located further upstream seems to reach a threshold, 

where the model is incapable of detecting the object. This phenomenon is exemplified in Figure 21 A, whereby 

potentially undetectable objects are highlighted within the red encircled area.     

 By training on Train 3 (5915 images) the overall accuracies for all configurations could be increased. 

Improvements of 1% (Validation 1), 3% (Test 1), 3% (Test 2) and 5% (Test 3) were found. It is important to mention, 

that images taken for Test 2 had to be cropped, because close to half of the image captured parts of the bridge 

instead of the water body. By applying this procedure, the test accuracy could be improved from 46% to 85%.  

 Furthermore, a signifcant difference in test accuracy was found for sunny (78%) and cloudy (90%) 
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conditions. This confirms the adverse impacts due to sun glint. This assessment also yielded two further potential 

error sources for the dataset Test-Cloudy. The presence of organic material (Figure 21 B) and overlapping objects 

(Figure 21 C) can negatively influence the prediction ability of the model. Organic material can be seen as additional 

plastic debris, whereby the overlap of two or more objects can be seen as one object by the model.  

  .  

 

 

 

 

 

 

 

 

 

4.2 Object detection  

Due to the limitations showcased by image classification, it was examined whether object detection could 

overcome these constraints. The training and test dataset combinations listed in Table 7 (section 3.4.4 

‘Generalization assessment’) were used for the assessment.  

4.2.1 Model results Green Village data with one class 

The first evaluation focussed merely on the gathered data from Green Village. The results are listed in Table 11. 

Dataset 

combination 

TP FP FN Precision Recall F1-score Average IoU mAP@ 

IoU=0.5 

GEN1 1019 189 57 0.84 0.95 0.89 70.95% 95.61% 

GEN2 948 217 37 0.81 0.96 0.88 69.95% 96.63% 

Table 11 YOLOv4 model results for GEN1 (Test: GoPro data) and GEN2 (Test: Huawei P30) with true positives (TP), false 

positives (FP), false negatives (FN), precision, recall, F1-score, average intersection over union (IoU) and the mean average 

precision (mAP) for an IoU = 0.5 

For the first simulation, the YOLOv4 model was trained and tested on the dataset combination GEN1. The model 

results yielded a mAP of 95.61% on the test data, if an IoU of 0.5 was considered. Overall, 1019 of 1076 plastic 

debris objects were correctly localized. In 57 cases, the model was not capable of detecting the annotated object. 

A larger number of 189 FPs was found, indicating the misclassification of non-plastic objects as plastic. For this 

reason, the precision score is considerably lower (0.84), than the recall (0.95). Overall, a F1-score of 0.89 was 

found. Lastly, the average IoU, thus the overlap of the detected and ground truth box, was 70.95%.   

Figure 21 A: Misclassified example for Test 3 exemplifying the problem of detecting objects further upstream due to the change 

in appearance of size, B: Misclassified example for Test – Cloudy due to presence of organic material, C: Misclassified example 

due to overlapping objects 
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The model results for GEN2 show, that only minimal deviations exist with respect to the statistical metrics, if the 

results are compared to the results from GEN1. A higher quantity of FPs suggest that the model had more 

difficulties detecting plastic debris for GEN2, hence resulting in a lower precision (0.81). The highest achieved mAP 

(96.63%) is 1.02% higher compared to the mAP for training and testing on GoPro data.    

UNDETECTED 

SUBMERGED 

OBJECT 

UNDETECTED 

SMALL OBJECT 

UNDETECTED 

SMALL OBJECT 

MISCLASSIFIED 

OBJECT OUTSIDE OF 

WATER BODY 

TEST DATA 

MISCLASSIFIED 

SUN GLINT AS 

PLASTIC DEBRIS 

Figure 22 Examples of misclassified and undetected plastic debris objects based on the YOLOv4 model weights from GEN1. 

Each bounding box is linked to a confidence score that represents the certainty of a detected object being plastic debris 

calculated by the model. 
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To evaluate the ability of the model to accurately plastic debris in images, the model weights attained for the 

highest mAP accuracy were applied to images from the test data to get a visual representation of the predicted 

bounding boxes. In Figure 22 examples can be seen, whereby at least one plastic debris object was misclassified 

or undetected. Appendix E.6 represents cases whereby all present plastic debris object in an image were correctly 

classified. Images were chosen, whereby the DenseNet121 model deemed to have difficulties predicting the correct 

class due to a higher level of complexity in certain images. This refers to the following conditions: presence of 

organic material, transparent, submerged and small plastic debris, overlapping and occluding plastic debris, sun 

glint and reflection of other objects on the water surface.      

 The cases for which all plastic debris objects could be identified in an image clearly show, that the YOLOv4 

model can make a distinction between floating organic material and plastic debris. Additionally, the model can 

make a clear distinction between occluded and overlapping plastic debris. The detection of submerged and 

transparent objects is highly dependent on the degree of submergence or transparency of the object. 

Corresponding images in Appendix E.6 show, that the model is experiencing difficulties detecting these objects 

with these characteristics, as the calculated confidence score is 0.72 for a transparent object and 0.56 for a 

submerged object. A missed detection for a transparent and submerged object (Figure 22) shows, that an 

increased level of transparency or submergence make it impossible for the model to identify the relevant object.

 Furthermore, smaller objects or smaller appearing objects due to the field of view, are problematic for 

detection, as also experienced for image classification. An additional source of error is the surrounding 

environment, in form of the banks at Green Village. The algorithm detects a protruding PVC pipe directed towards 

the water body with a confidence score of 0.52 (Figure 22).       

 Sun glint still remains a potential source of error (Figure 22) for object detection. It is important to note, 

that the confidence score of the misdetected plastic debris due to sun glint is equal to 0.39. By setting the 

confidence threshold score to 0.5 as in the model iterations, the misdetection would have been omitted from the 

predictions.  

4.2.2 Model results Green Village data with four classes 

SCORES PER CLASS 

Class Description TP FP Average precision (AP) 

0 Plastic bottles 115 55 79.99% 

1 Other plastic 679 197 87.51% 

2 Paper 28 33 35.63% 

3 Metal tins 26 63 61.02% 

OVERALL SCORES AMONGST ALL CLASSES 

TP 848 Precision 0.71 Average IoU 62.02% 

FP 348 Recall 0.77 mAP@IoU=0.5 66.04% 

FN 256 F1-score 0.74  

Table 12 YOLOv4 model results for GEN3 listing the number of true positives (TP), false positives (FP) and average precision 

(AP) per class. The overall scores include the TP, FP, FN, precision, recall, F1-score, average intersection over union (IoU) and 

the mean average precision (mAP)  
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Furthermore, it was also evaluated whether the model can make a distinction between different kinds of floating 

debris (e.g., plastic bottles, other plastic, paper, metal tins) by using the dataset configuration GEN3.The model 

results per class and overall scores are presented in Table 12. The AP for plastic bottles (79.99%) and other plastic 

(87.51%) were reasonably high. However, substantial declines in AP were found for metal tins (61.02%) and paper 

(35.63%). The overall mAP, by taking every class into consideration, was 66.04%. Overall, approximately a 30% 

decline in AP compared to the single class object detection for plastic debris was found. The lower average IoU 

for four classes (62.02%) as compared to one class (70.95%) also suggests, that the model experiences more 

difficulties detecting the ground truth bounding boxes.  

 

1 2 

3 4 

Figure 23 Examples of misclassifications from test data indicated by the red encircled areas. 1: Image with only plastic 

bottles (four FPs for metal tins), 2: Image with only metal tins (two FPs for paper + one FN for metal tins), 3: Image with all 

classes (one FP for metal tins and other plastic each), 4: Image with only metal tins (three FNs for metal tins, two FPs for 

other plastic and one FP for plastic bottles) 
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The misclassified examples for the test data (Figure 23) show, that some randomness exists in the prediction of 

the bounding boxes. Overall, 27 plastic debris objects from four different classes are present in the four images. 

From all these objects, 13 items were correctly and 12 items were wrongly classified and four items remained 

undetected. This also explains the lower precision (0.64) compared to the recall (0.73), due to a higher number of 

FPs. It seems that the model is not able to make a clear distinction between the different objects.  

         

4.2.3 Generalization ability to another location and setting 

Lastly, the generalization ability for other locations was evaluated. Since no data from the natural environment was 

available for the Netherlands a dataset from [10] was used, as previously explained. The results are presented 

below (Table 13):  

Dataset 

combination 

TP FP FN Precision Recall F1-score Average 

IoU 

mAP@ 

IoU=0.5 

GEN4 67 11 1141 0.86 0.06 0.10 59.37% 12.23% 

GEN5 797 1089 279 0.42 0.74 0.54 31.82% 63.51% 

Table 13 YOLOv4 model results for GEN4 and GEN5 training listing the number of true positives (TP), false positives (FP), false 

negatives (FN), precision, recall, F1-score, average intersection over union (IoU) and the mean average precision (mAP) for an 

IoU = 0.5 

The model results for GEN4 show that precision is reasonably high (0.86), whereas the recall is extremely low 

(0.06). The average IoU for the detection of the relevant objects is equal to 59.37%, also indicating a satisfactory 

performance once the model can predict the ground truth label. Nevertheless, if the 1208 annotations from the A-

RPM test dataset are considered, the model is not able to detect these annotations in 94.5% (1141 FNs) of the 

cases. Overall, this results in a F1-score of 0.10 and a mAP of 12.23%.    

 In Figure 24 (A and B) two examples are presented, which showcase the large discrepancy with respect 

to the model predictions and the ground truth labels. The model can predict larger and clearly visible plastic debris. 

However, once the size of these objects reaches a certain threshold, the model is not able to detect these objects. 

This also holds for transparent objects or objects that are further submerged in the water.  

 By using GEN5 an opposite behaviour could be observed. The model wrongfully detected regions in the 

water as plastic debris, although these areas were not annotated as such (1089 FPs), resulting in a low precision 

(0.42). For 27.8% (279 FNs) of the annotations, the model is not able to detect them, resulting in a recall of 0.74. 

Overall, the average IoU is significantly lower (31.82%), whereas the F1-score (0.54) and mAP (63.5%) are 

substantially higher.  

Lastly, the example in Figure 24 C shows, that the model mistakes patches of sun glint for plastic debris. These 

patches are much smaller compared to objects used for the experiments in the Green Village. This also indicates 

that the labelling of small plastic debris in the A-RPM training dataset leads to difficulties for the model in the form 

of high FP rates. It could be concluded that there is a large discrepancy in object sizes between the datasets from 

the Green Village and A-RPM. This led to either high FP or FN rates.  
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Figure 24 Corresponding images with predictions from YOLOv4 and ground truth labels. A: Model correctly predicts three objects 

but 19 objects remained undetected (GEN3), B: Model predicts three correct objects, but 36 objects were left undetected (GEN3), 

C: Model correctly predicts five objects, one object was left undetected and 13 objects were wrongly classified as plastic debris 

PREDICTIONS (3 bounding boxes) GROUND TRUTH (22 bounding boxes) 

PREDICTIONS (3 bounding boxes) GROUND TRUTH (39 bounding boxes) 

GROUND TRUTH (6 bounding boxes) PREDICTIONS (19 bounding boxes) 

A (GEN3) 

C (GEN4) 

B (GEN3) 
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5 Discussion 

The discussion will be segregated into three different sections, namely: image classification, object detection and 

implication of results. The implication of results will place the work of this study into perspective. 

5.1 Image classification 

For the construction of the baseline model the loss, degree of overfitting and highest validation accuracy were 

used as guidelines for selecting the best configuration. This was also applied to evaluate the five selected state-

of-the-art models. The results showed that large fluctuations (validation losses and accuracies) and overfitting 

were present until 30 epochs were reached.        

 Firstly, it needs to be mentioned that models with as many parameters as the ones at hand need to be 

fed with significantly more data, which could be an explanation for this behaviour. Furthermore, due to the present 

background noise in the images (e.g., differences in lighting or wind conditions) it could be the case that the 

algorithm potentially learns the pattern of the noise, rather than the actual sign in the form of plastic debris objects. 

This is also supported by a study of [60] who found that the neural network often has difficulties converging if the 

signal to noise ratio is low. A low signal to noise ratio is present if the background occupies more than 50% of the 

image [60]. This phenomenon was also showcased for cropping of data from 4.0m/0 deg, whereby the test accuracy 

could be drastically improved from 46% to 85%. This suggested the reduction of background noise leads to an 

increase of the model accuracy. Additionally, the variations can also be linked to potential difficulties of the model 

to correctly detect certain images in the validation set due to the detected error sources and differences in the 

training and test data.         

 Secondly, apart from the quantity of data and complexities in the images, the stochastic nature of the 

learning algorithm could also lead to these fluctuations [61]. For a deterministic algorithm, the same output is 

produced if the initial state or conditions remain unaltered, not introducing any form of randomness. However, the 

Adam optimizer is a stochastic algorithm, which possesses intrinsic randomness for the generation of parameter 

values, implying that the same set of parameters and initial conditions can lead to different outputs [61]. Therefore, 

the results could vary once the same model was run consecutive times.      

Since regularization techniques such as 

Batch Normalization and Dropout could 

only limit overfitting to a certain extent, 

data augmentation was applied. Data 

augmentation led to a decrease in accuracy 

by approximately 9%. A study by [62] 

proves, that data augmentation does not 

provide the CNN with invariance, because 

the network learns to be invariant to 

transformations of images that are 

comparable to images in the training 

dataset. It was shown that merely one 

downward translation of a single pixel can 

Figure 25 Example of augmented image from validation set with noise 

injection and increased brightness (encircled areas highlight plastic debris) 
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lead to a decrease in accuracy up to 30%. The distribution of images in the training dataset is highly biased, which 

can result in shortcomings with respect to invariance that do not follow this bias [62]. This bias could have also 

been present for this study, since the training and validation set were inherently different with respect to weather 

conditions and characteristics of the plastic debris. Therefore, it seems that the best solution to evaluate whether 

the degree of overfitting can be limited by gathering additional training data.      

 Another possible explanation for the adverse effects of data augmentation could be the chosen 

transformation techniques. An augmented image example with increased brightness and noise injection is 

presented in Figure 25. It can be seen, that through the introduction of these techniques, the plastic debris does 

not clearly segregate itself anymore from the surrounding water and consequently the objects become less 

recognizable. Furthermore, increased brightness potentially emulates similar effects as caused by sunny 

conditions, leading to a decrease in the validation accuracy. The random injection of noise possibly also makes the 

detection of smaller plastic debris object more challenging. Although the validation accuracy decreases with data 

augmentation, it can be argued, that the negative impact might have been caused by the choice of techniques. 

This however could not be assessed, since the transformation techniques were combined in images, rather than 

applying every method separately. A study by [20] found that the detection of marine plastic debris increased from 

83.1% to 87.9% when the number of images increases from 1000 to 4000 by the generation of new images through 

data augmentation. Therefore, techniques such as zooming, shifting, flipping and rotation were used separately 

per image. This emphasizes the fact that the separate implementation of data augmentation techniques has the 

potential to boost the validation accuracy.   

With respect to transfer learning, a study by [63] suggests that poor model performances with pre-trained weights, 

could be explained by a mismatch in the domain between the images the model was originally trained on and for 

what it was utilized. The distribution of images and classes from the ImageNet dataset are fundamentally different 

compared to the images and classes which were used in this study. Deeper layers in CNNs can recognize features 

belonging to the images the model was trained on. The more specific and complex features detected for the 

ImageNet dataset are seemingly not applicable for the detection of plastic debris. Therefore, re-training the model 

eliminates the problem of domain transferability, since the model is re-trained on one custom dataset, rather than 

using pre-trained weights from another dataset. Since training with pre-trained weights yielded unsatisfactory 

model results it can be argued, that training the last convolutional layers by fine-tuning could have overcome the 

problem of domain transferability by also decreasing the computational time compared to training from scratch. 

 The results with respect to pre-trained weights are contradicting compared to a study by [20]. In this 

research the VGG16 model pre-trained on the ImageNet dataset achieved an accuracy of 86% on the detection of 

marine plastic debris in the form bottles, buckets, or straws. However, the dataset required cropped images with 

a central alignment of the object. This could indicate that the mitigation of background noise by cropping elevates 

model performances. Another possible explanation could be the fact, that the study by [20] used 9600 images, 

whereas only 4005 images were used in this study for the assessment of pre-trained weights. 

The better performance of larger models (Resnet50, Inception V3 and DenseNet121) can be explained by the fact 

that larger models can represent more complicated functions than smaller models with fewer parameters. The use 

of a small network can lead to problems with respect to identifying more complex features, explaining the lower 

accuracies for MobileNetV2 (75.03%) and SqueezeNet (73.91%).     
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Furthermore, it is noteworthy that the DenseNet121 model outperformed much deeper networks (ResNet50 and 

InceptionV3) with approximately a third of the total parameters. The main problem with ResNet50 is the fact, that 

the identity shortcut skips the residual blocks for the preservation of features, leading to limited representation 

ability of the model [64] [65]. DenseNet121 has an inherently different approach, as it does not depend on the 

representation power of an extremely deep network, since it reuses the learned features. This is done by dense 

concatenation of feature maps from previous layers that are used as inputs for subsequent layers [65] [66]. 

InceptionV3 also makes use of concatenation operations, however DenseNets are simpler and more efficient [66]. 

Nevertheless, the highest computation time was found for DenseNet121, which is caused by the more intense use 

of GPU due to concatenation operations and the use of small convolutions [65].  

Additionally, it became evident, that image classification has its flaws with respect to the detection of plastic 

debris. Studies by [21] [67] [68] suggest that the training of neural networks with imagery including reflectance in 

the form of shadows or sun glint can be considered as problematic. This research supports these findings since 

the reflectance of objects in the form of shadows the presence of sun glint seemed to hamper the model 

performance. However more case studies will be needed to confirm these findings. It is suggested by [21] that 

data collection should take place during optimal meteorological conditions should take place whereby the reflection 

of objects and sun glint can be avoided.       

 Furthermore, since the entire image is used as an input, it became difficult to comprehend what the model 

perceives. The misclassified examples and the simplified model for the generation of feature maps gave an 

indication about the perception of the model. Nevertheless, it cannot be fully proven that the made observations 

and assumptions correspond entirely with reality. Therefore, more studies will be needed to confirm the adverse 

impact of the found error sources. Nevertheless, for this research, the use of object detection could also be justified 

since only the relevant objects were annotated, omitting most of the irrelevant background noise.  

Lastly, with respect to the datasets it needs to be mentioned that only a limited number of plastic objects were 

used. In reality every floating plastic debris object is unique with respect to its characteristics. Furthermore, the 

dataset was artificially generated in a controlled environment, therefore the high validation accuracies might be 

inflated. To really evaluate the generalization ability of models with the given dataset from the Green Village, data 

also needs to be gathered from the natural environment. Only afterwards it can be assessed whether the use of 

image classification can be a meaningful tool for the detection of floating plastic debris.      

5.2 Object detection 

The results for the detection of floating plastic debris by means of object detection with YOLOv4 showed, that high 

test accuracies could be achieved for the Green Village data, if only one class was considered. By the introduction 

of four classes, the complexity was increased, which also resulted in a significant decrease in the test accuracy. 

This can be explained by the fact, that the object shapes amongst the classes were almost identical. Items might 

also not appear in their original shape due to deformation, leading to more impediments for the model to predict 

the correct class. This is also suggested in a study by [21] who found resemblance in shape and form for different 

pollution classes. These misclassifications included a mix up between plastic cups and plastic bottles whilst plastic 

bottles and Styrofoam were identified as polystyrene [21].  
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Furthermore, a study by [22] found a mAP of 81.5% for the detection of different pollutants in a marine environment 

(e.g., glass, paper, cardboard, plastic, metal, trash). This value is significantly higher than the mAP of 66.04% found 

for this study. It was a difficult task to gather images realistically with respect to representativeness, as they were 

gathered in a controlled environment. In view of the database in existing studies [20] [22], this also seems to have 

been challenging.          

 Another possible explanation for the large discrepancy in accuracy amongst all classes, is an imbalance 

in the annotations per class for the training and test dataset. Class 2 (‘Paper’) is the least represented class in the 

training data (11.9%), suggesting that the model does not have sufficient training examples to predict this class 

accurately. The recommended number of images according to [40] for each class should be equal to 2000. Overall, 

only 1327 training images and 183 testing images were used. This suggests that four times more training examples 

would have been needed for four classes as opposed to one class. However, it could be seen, that classes with the 

highest number of annotations, had the highest test accuracies, except for metal tins. The model seemingly has 

more difficulties predicting metal tins than plastic bottles, although less training examples were available for plastic 

bottles. This can potentially be explained by the scarcity of annotations metal tins in the test dataset.  

 Furthermore, the labelling procedure should be kept as simple as possible by classifying each plastic 

debris object as one class. With four classes, the model not only requires more training examples, but the labelling 

procedure also becomes more complex. In some scenarios, making a clear distinction between different plastic 

debris is an arduous task. Furthermore, it needs to be guaranteed that the labelling is consistent. With the 

introduction of more classes the probability increases of 

making erroneous annotations. The less complexity is 

introduced in the labelling procedure, the more consistency 

can be reached. Studies by [1] and [21] aimed to classify 

different kinds of plastic litter, using semantic 

segmentation and image classification, respectively. It is 

also suggested by [1], that the visual labelling of plastic 

debris is a tedious task involving a lot of errors. Therefore, 

the question arises whether it is necessary to make a 

distinction between different objects in the water, since 

this further adds complexity to the labelling procedure 

which can negatively influence the model performance.  

It also became evident, that the detection of floating plastic 

debris from the A-RPM dataset has a much higher 

complexity. Often the objects are so small, that it even 

becomes difficult for the human eye, to make a clear 

distinction between plastic debris and other objects such 

as organic material. The poor model performance for GEN1 

can be explained by the different settings, characteristics 

and the size of plastic debris compared to the A-RPM 

dataset. A glaring flaw of the Green Village dataset is that 

 

Figure 26 Example of an image taken by a mobile phone 

whereby originally only parts of a bridge are detected as 

plastic debris, but once zooming was applied, actual plastic 

debris could be detected 
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only images from one height and angle (2.7m and 0 deg) were annotated. This made the model accuracy 

susceptible to smaller or smaller appearing objects. For this phenomenon two examples can be given. Firstly, one 

key disadvantage by labelling small objects could be observed with the presence of sun glint, whereby a large 

quantity of small sun glint patches was detected as plastic debris. Secondly, an example is given in Figure 26 

whereby the model detected parts of the bridge. This could be remedied by specifically zooming to regions with 

plastic debris. 

One of the two comparable studies for the detection of plastic debris with object detection in rivers is the study by 

[10]. In the research by [10] a baseline accuracy of 68.7% was found, whereas in this study an accuracy of 95.6% 

was found for GEN1. It is suggested by [69] deep learning algorithms tend to perform worse in non-Western 

countries and households with lower incomes, which would confirm these findings. Nevertheless, this comparison 

needs to be treated with caution, since the A-RPM dataset was recorded in another country with different settings. 

 With respect to the settings the A-RPM dataset was recorded from higher altitudes and the images were 

captured with a fisheye view that produces strong curvature and visual distortion. Fisheye view creates a wider 

panoramic view, however the curvature could lead to a deformation of the present objects in the water body.

 Furthermore, the data in the study by [10] was aggregated for five locations in a natural environment with 

flowing water. The data from the Green Village was gathered in one location and a controlled environment with a 

stagnant water body. It is stated by [10] that training on data from one single location is insufficient to gain 

satisfactory generalization to other locations since large accuracy fluctuations could be found for the detection of 

plastic debris for five different locations in Jakarta. This indicates that generalization is already difficult for 

geographically similar locations. This is also suggested in a study by [69] which proves that these algorithms 

perform poorly on the recognition of these objects around the world, suggesting that generalization to different 

locations and situations is a difficult task. However, it also needs to be mentioned that the worst accuracy (20.5%) 

was achieved for the highest altitude (8.0 m) in the study by [10] indicating that a different setting could also have 

an adverse impact.          

 This emphasizes the fact that images from different locations in the natural environment in the 

Netherlands need to be gathered to evaluate the generalization ability within the Netherlands. The inclusion of 

data from other locations to the original training dataset also improved the generalization ability of the model in 

the study by [10]. To overcome the adverse impact of all these factors the YOLOv4 model could be trained on a 

combined dataset of the Green Village and A-RPM data. This may make the model robust towards height 

differences, smaller plastic debris and object characteristics, resulting in improved generalization.  

 With respect to pre-trained weights, it was observed that training with pre-trained weights for object 

detection yielded much better results as compared to image classification. This can potentially be explained by the 

fact that a lower margin of error is present for object detection as compared to image classification. Whereas 

image classification takes the entire image into account including the background noise, object detection 

specifically focusses on the object of interest by omitting unnecessary background noise. 

Lastly, for practical applications this research sets a foundation, however additional data and research will be 

required. Monitoring with RGB cameras is limited to daytime hours. Studies by [70] and [71] investigated the 

detection of floating plastic litter and patches with multispectral sensors. This is also supported by a study of [21] 

which states that multispectral sensors could further improve plastic identification in the natural environment. 
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These sensor types would allow for continuous monitoring throughout day and night.     

 Lastly, the YOLOv4 model needs to be able to count the number of plastic debris objects passing through 

a frame for practical monitoring applications. Up to this point, the model is able to detect plastic debris, however 

for monitoring purposes, a real-time tracker would be needed to quantify the plastic debris. 

5.3 Implication of results 

Combining image classification and object detection this study provided an innovative approach that has not yet 

been used in this form in other studies. Existing methods were adapted for this research so that they could be 

applied with fewer resources. This can be seen as an achievement of this work.  

 Furthermore, this research effectively demonstrated that deep learning-based computer vision models 

can detect floating plastic debris in images with a high accuracy. The test accuracies for the baseline model and 

state-of-the-art models showed that the focus should not be placed on the development of new models, but rather 

utilizing existing state-of-the-art models. This is also supported by the results for object detection with the YOLOv4 

model. This emphasizes the fact, that a paradigm shift should take place from a model-centric to a data-centric 

approach. There is no scarcity of well performing available models, but qualitatively meaningful data with respect 

to floating plastic debris is a rare commodity. To attain the required amounts of data for such a data centric 

approach help from Citizen Science Platforms such as CrowdWater is needed. Clear guidelines should be given by 

these platforms with respect to the collection of data, such that also deep learning algorithms can make use of the 

uploaded data.           

 Additionally, this study generated various datasets that can be used to further explore the detection of 

plastic debris in waterways. Especially for parties such as Noria and RWS these datasets can be valuable since 

this study generated the first available datasets that are representative of Dutch conditions. It was shown that the 

generalization to other countries and even other locations is difficult. Therefore, Dutch based parties that are 

interested in the detection of plastic debris in waterways with deep learning techniques should focus on the 

collection of data within the Netherlands. By aggregating the first datasets that are representative of Dutch 

conditions, the first steppingstone was set to build upon for the development of deep learning-based computer 

vision techniques in the Netherlands for the detection of plastic debris in waterways.    

 By investigating and proving potential error sources that influence the model performance, future research 

can include these aspects for setting up guidelines with respect to data collection. To make other research more 

comparable, the labelling procedures from this study can be adopted. This study also showed that variability in the 

dataset is an important aspect since the addition of data from different configurations (2.7m/45 deg. 4.0m/0 deg 

and 4.0m/45 deg) to the original dataset (2.7m/0 deg) could improve the test accuracies. This emphasizes the 

importance of variable data for the improvement of the model performance.     

 Overall, the products from this study yielded important insights with respect to monitoring guidelines for 

plastic detection in waterways and possibilities of deploying automated systems. Finally, it can be summarised 

that this study contributes to the research of an underrepresented but highly relevant problem that hits the current 

nerve of the time. It is desirable that, building on my study, methods and approaches can be further developed and 

improved in the future in relation to the underlying research interest. The results presented can have added value 

for solving the increasing plastic occurrence in global waters in practice. This will be addressed in more detail in 

chapter 7 after drawing conclusions of the key findings of this work in the following.  



52 

 

6 Conclusion 

The purpose of this research was to explore how computer vision and deep learning techniques can be applied for 

the detection of floating plastic debris in Dutch waterways. This study clearly showed that computer vision and 

deep learning techniques can detect floating plastic debris with a reasonable accuracy. These techniques 

consequently have the potential to be utilized for various applications with respect to the detection of floating 

plastic debris in waterways, Below, the main conclusions with respect to the sub questions are listed.  

(1) For image classification the model accuracy of a from scratch-built baseline model and state-of-the art 

models were compared. The final baseline model achieved an accuracy of 79% on the Validation 1 dataset. 

Training with pre-trained weights from the ImageNet dataset for five chosen state-of-the-art models resulted 

in unsatisfactory model performances, with the highest model accuracy achieved by SqueezeNet (66.70%). 

By training from scratch, model accuracies could be greatly improved, with InceptionV3 (81.5%), ResNet50 

(82.4%), DenseNet121 (87.6%) outperforming the baseline model. By applying a majority vote from the three 

best performing models, the accuracy could be boosted to 91%. With implementation of the object detection 

model YOLOv4 with pre-trained weights, plastic debris objects were detected with a mAP of 95.61%.  

 

(2) The use of a mobile phone (Huawei P30) yielded a marginally higher accuracy (96.63%) compared to a GoPro 

(95.61%). It is therefore a promising result that no decrease in the model accuracy was observed if another 

image source was utilized.  Furthermore, it seemed that the model trained on the GV data had large difficulties 

generalizing to the A-RPM data (12.23%), due to height differences, discrepancy in object sizes and different 

camera settings, Training on the A-RPM data and testing on the GV data, yielded a model accuracy of 63.51%. 

It appeared that better model performances can be achieved with the A-RPM data, due to better 

generalization across varying object sizes.   

 

(3) By applying image classification, it was found that following factors influence the detection of plastic: 

presence of organic material, wind, transparent, submerged and small plastic debris, overlapping and 

occluding plastic debris, sun glint and reflection of other objects on the water surface. Sunny conditions 

deemed to be less favourable (78%) than cloudy conditions (90%), which can be attributed to the presence 

of sun glint. Furthermore, high model accuracies were found for following datasets: Validation 1 (88%),  

Test 1 (84%) and Test 2 (85%). Additionally, it was identified that if the field of view is too large (Test 3) and 

the appearance of objects decrease with distance from the camera, that the model accuracy decreases 

substantially (54%). By the implementation of object detection, the influence of error sources was reduced. 

The results indicated, that the remaining negatively influencing factors were small, transparent and 

submerged objects and the presence of sun glint.  

 

(4) For the distinction of four different plastic debris classes the YOLOv4 model performed well on the detection 

of plastic bottles (79.99%) and other plastic (87.51%). A decrease in AP was experienced for metal tins 

(61.02%) and paper (35.63%). The large discrepancy in accuracies may be attributed to the increased 

complexity of detecting different object shapes in water and the large class imbalances. 
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7 Recommendations for future research 

From the results, conclusions and discussion recommendations for future research could be extracted. These will 

focus on five main aspects, namely: sensor improvements (A), limitation of error sources (B), data collection (C), 

application for monitoring (D) and application for detection of specific plastic debris object (E).  

A. SENSOR IMPROVEMENTS 

(1) Prevention and diminishing sun glint 

The most straightforward and simple method to limit the adverse effects of sun glint is to avoid capturing 

images on sunny days. Another solution would be to filter the recorded images based on the presence of 

sun glint in specific images, since some images might not contain sun glint. However, this might be not 

the most favourable option since the model should be able to effectively detect floating plastic debris 

during sunny conditions. Polarizing filters can be used to reduce the influence of sun glint [30] [72]. 

Nevertheless, attention needs to be paid to potential information loss for rapidly changing weather 

conditions, caused by a too strong polarising filter. It is recommended, to explore the possibilities of 

implementing polarising filters.  

(2) Sensor types for continuous monitoring 

A clear limitation is that monitoring with RGB cameras is only possible during daytime. To evaluate 

whether continuous monitoring is possible throughout day and night, it is recommended to experiment 

with multispectral sensors. The images are consequently not limited to the lighting conditions, since 

multispectral images capture data based on the emitted wavelength of objects. 

  

B. LIMITATION OF ERROR SOURCES 

(1) Detection of small objects 

To make the YOLOv4 model more accurate with respect to the detection of small objects, it is 

recommended to annotate images from different heights and angles for object detection. This increases 

the variability in the dataset, such that the model will also be able to detect smaller and smaller appearing 

objects in the future.  

(2) Influence of wind 

It is recommended, to further explore the influence of wind on the detection ability of the model. Image 

classification showed that through the influence of wind, the activations of smaller objects get lost in the 

activations of the ripples. However, this was done by means of a qualitative analysis rather than a 

quantitative analysis. 

(3) Use of two stage-detector for object detection 

Due to GPU constraints for this study and the ambition to implement the model in real-time, it was chosen 

to use the YOLOv4 model. Nevertheless, a two-stage detector for object detection (e.g., R-CNN or Faster 

R-CNN) could further improve the model results. Therefore, it is recommended, once more computation 

resources are available, to experiment with two-stage detector algorithms, as also used in the study by 

[10]. 
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C. DATA COLLECTION 

(1) Data natural environment 

For generalization to other locations, it is recommended to gather data from the natural environment. 

Therefore, it is firstly important to gather data on small scale. This would refer to mounting a camera to a 

narrow water body with approximately the same width as the water body in the Green Village. Beforehand, 

locations should be selected, that experience continuous flow of plastic debris. To also assess whether 

there is a large decrease in validation accuracy, cameras should be mounted at heights exceeding 4.0m. 

It is recommended, to mount the camera horizontally or with a slight angle to the water surface and 

recording with a linear FOV.         

 If the model is able to accurately predict plastic debris in these locations, the size of the 

monitoring locations can be scaled up. This refers to broader canals, rivers or waterways, where multiple 

cameras can be mounted next to each other. Hereby it is important, that there is no visual overlap between 

the cameras, to reduce the probability of plastic debris objects being detected multiple times. Problems 

for continuously mounting a camera are available infrastructure, power supply and storage space for 

videos and images on the camera. The camera needs to be fixed at an easily accessible location that also 

ensures continuous power supply. To decrease the storage space demands, images can be taken at 

specified time interval instead of taking videos. A more sophisticated approach would be to connect the 

device(s) to a cloud system where the images or videos can be uploaded automatically.  

(2) Data from Citizen Science 

Citizen Science has the potential to be a significant contributor for valuable data that could be used for 

deep learning algorithms. However, platforms such as CrowdWater need to establish specific guidelines 

with respect to data collection. This study showed with the analysis of influential parameters, which 

factors are important for the image quality and the associated model performance. The decision process 

for people uploading their images to this platform should be kept as simple as possible. It is further 

recommended, to look into the implementation of an image classification step, before images are 

uploaded. It could be utilized as tool to sort images based on the presence of plastic debris in waterways.  

(3) Data augmentation 

Another improvement point for the future is the implementation of data augmentation. It is recommended 

to evaluate the influence of different data augmentation techniques separately. This should not be limited 

to techniques used in this study, but the scope should be extended to other techniques. This specifically 

refers to image classification, since data augmentation is implemented in the YOLOv4 model.  

(4) Extension of image sources 

For the future it is also recommended to extend the image sources (e.g., drones). This would give the 

opportunity to assess whether floating plastic debris can be detected from the air with deep learning 

algorithms.  This would further allow Noria to carry out aerial surveys on waterways for the detection of 

floating plastic debris. Furthermore, research by [70] and [71] showed, that it is possible to detect floating 

plastic litter and patches with Sentinel-2 Imagery. It is therefore thus recommended to evaluate, whether 

satellite imagery can be used for the detection of floating plastic debris in waterways.  

 



55 

 

(5) Labelling procedure 

For the future it is recommended that clear labelling guidelines are established, once more monitoring 

locations and data are available For this the guidelines from this study can be used. It is also important to 

ensure consistency in case more people are involved in the labelling of data. To measure consistency, 

independent labellers could label a sample of images, which could then be compared. 

 

D. APPLICATION FOR MONITORING 

(1) Object tracking 

This study recommends adding an object tracking module to the YOLOv4 model, such that the detected 

objects can effectively be tracked and counted. To assess the accuracy of the model with respect to the 

quantification of objects, the counted number of objects by the model should be compared to human 

visual counting. This should be done for several videos from different locations and different conditions 

to ensure variability. Object tracking also offers the opportunity to associate the number of counted 

objects to weight quantification of floating plastic debris. 

(2) Real-time detection 

Once enough data has been gathered and labelled from the natural environment and the test accuracies 

are satisfactory, the feasibility of real-time detection can be evaluated. A similar approach can be taken 

as for the data collection in the natural environment. Once real-time detection works on small scale with 

one camera, the size of the monitoring location can be scaled up.  

(3) Sensitivity to submerged plastic debris 

This study clearly showed that the detection of plastic debris with RGB cameras is limited to the water 

surface. Plastic debris transported below the water surface are therefore not considered. A study by [73] 

showed, that echosounders can detect suspended plastics. For weight quantifications across the entire 

water column, a combination of echosounders and cameras could be considered. If merely the surface 

share is considered, echosounders could be also used to validate the quantity of detected floating plastic 

debris by the YOLOv4 model. 

 

E. APPLICATION FOR DETECTION OF SPECIFIC PLASTIC DEBRIS OBJECTS 

(1) Assembly line 
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Since Noria also has the ambition to make a distinction between the different kinds of plastic debris in 

waterways, another approach is recommended. Due to the complexity of making a separation between 

these objects in the water, as well as for a human (e.g., labelling) and the model, it is recommended to 

apply object detection once the objects were removed from the water. This can be done by means of an 

assembly line, whereby depending on the detected object, a robotic sorting system directs the item to an 

object specific container. An advantage of this approach is, that all the background noise from the natural 

environment gets eliminated. Furthermore, the objects can be captured with high resolution from a close 

distance.  
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Appendices 

A – Datasets 

A.1 – Impression of Green Village images per class 

  

Figure A.1 Impression of Green Village data per class with resized images (224x224) 
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B – Model architectures 

B.1 – Stepwise operations for baseline model construction 

Operation Methods 

Configuration 

convolutional layers 

Opt1:  16,16 - 32,32 

Opt2:  16,16 - 32,32 - 64,64  

Opt3:  16,16 - 32,32 - 64,64 - 128,128 

Opt4:  16,16 - 32,32 - 64,64 - 128,128 - 256,256 

Opt5:  16 - 32 - 64 - 128 - 256 

Maximum or average 

pooling 

Testing either maximum or average pooling after every convolutional block 

Batch Normalization Momentum values between 0.5 – 0.9  

Dropout Dropout values between 0.2 – 0.5  

Flatten, Global Average or 

Maximum Pooling 

Configurations with either Flatten, Global Average, Global Maximum or a 

Hybrid Global Pooling layer 

Fully-connected layer Keras tuner testing for 1-4 dense layers and predefined number of neurons 

per layer (16, 32, 64, 128, 256) 

Data Augmentation Influence of horizontal and vertical flipping, brightening, darkening and noise 

 

B.2 – ResNet50 

ResNet50 is the most popular CNN architecture amongst all 

ResNet architectures [74]. The novelty about ResNet is the 

introduction of a concept called ‘skip connection’. With this 

procedure layers in the neural network are skipped and the output 

of a layer is fed as input to the following layers. This is done 

instead of only feeding this output to the next layer. The main idea, 

is that the process of backpropagation is run through the identity 

function by the use of vector addition [75]. Since the gradient will 

be multiplied by one, the value of the gradient in the earlier layers 

will be maintained. The use of identity mapping consequently 

mitigates the effects of a vanishing gradient. The main concept of Residual Networks (ResNets) is also depicted 

in Figure C.3.1. The residual blocks are stacked together and the identify function is used for the preservation of 

the gradient. Another reason for the use of skip connections is the transport of information from earlier layers. For 

a large majority of tasks it is desired, that information retrieved in earlier layers is also used for learning in deep 

layers. According to [75], the learned features in earlier layers hold semantic information to some extent. Without 

the use of skip connections, the generated abstraction level of this information would have been too high. 

Figure C.3.1 Concept of skip connection ResNet 

(image from [81]) 
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B.3 – InceptionV3 

The typical Inception module is presented in Figure C.4.1. Inception 

networks use filter sizes of 1x1, 3x3 and 5x5 for different branches to 

extract multiscale information [74]. The main design criteria of an 

Inception network are the computational efficiency and practicality 

[74]. Instead of using one large filter size, these networks separate 

larger filter sizes into smaller convolutions by using e.g., two stacked 

convolution filters (3x3) rather than a 5x5 filter [74]. Furthermore, 

Inception modules also use asymmetrical convolutions e.g using a 1x3 

followed by 3x1 convolutional filer, instead of a 3x3 filter. These smaller 

convolutions are used to reduce the number of parameters. In principle, 

the Inception module concatenates feature maps produced by varying 

small filter sizes. 

 

B.4 – DenseNet121 

To ensure maximum flow of information between 

all the layers, DenseNet models heavily utilize the 

concatenation of feature maps. DenseNet 

connects all the layers with each other by means 

of concatenation [74]. Every layer concatenates 

all the previous layers and passes itself to all the 

following layers, as depicted in Figure C.5.1. It is 

suggested by [74], that DenseNet models mitigate 

the vanishing gradient problem and further boost 

the propagation of features. Due to the 

narrowness of each output layer, the number of 

parameters are greatly reduced compared to ResNet50 and InceptionV3. However, the dense blocks commonly 

have much larger inputs due to the concatenation of preceding layers. For the reduction of inputs and consequently 

the improvement of computational efficiency, a 1x1 convolution is used as bottleneck feature before every 3x3 

convolution [74]. For the input passed into a 1x1 convolution the height and width of the input remain the same, 

however the third dimension or filter dimension can be altered to reduce the dimensionality. Overall, DenseNet 

models result in more compacted models whilst ensuring a high level of feature reusability. 

B.5 – MobileNetV2 

MobileNet was originally designed for mobile and embedded applications and is considered as a lightweight 

architecture due to its low number of parameters [74]. This architecture makes use of depthwise separable 

convolutions, which divides convolutional operations into a depth- and pointwise convolution. Depthwise 

convolution refers to the application of a 3x3 filter that extracts the spatial relation between features, whereas 

pointwise convolution uses a 1x1 convolution to capture the relation between channel features [74] (Figure C.6.1). 

Figure C.4.1 Main principle of Inception 

module (images taken from [82]) 

Figure C.5.1 DenseNet principle of feature map concatenation (image 

taken from [66] 
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Furthermore, MobileNetV2 uses the following two optimized mechanisms: 

inverted residual structure and linear bottlenecks [74]. The inverted residual 

structure follows the same principal as the residual blocks for ResNet50, 

however MobiletNet architectures follow a narrow (1x1) - widen (3x3) – narrow 

(1x1) pattern. It can be seen in Figure C.6.1, that the inverted residual block 

connects the narrow layers with a skip connection. Due to the squeezing of 

layers where the skip connections are present, the performance of the network 

is negatively influenced. With a linear bottleneck, the non-linearities in the 

narrow layers are removed [74] and consequently the last convolutional layer 

of a residual block produces a linear output that is combined with the initial 

activations [76].  

B.6 – SqueezeNet 

The primary aim of SqueezeNet is to reduce the number of parameters 

while maintaining an acceptable accuracy [74]. The SqueezeNet 

architecture follows three main principles for the reduction of 

parameters and consequently computational time: replacement of 3x3 

filter with 1x1 filters, decreasing the number of input channels and 

downsampling deep in the network such that convolution layers produce 

large feature maps [74]. This is achieved by a ‘fire module’ that uses 

‘squeeze’ and ‘expand’ convolutions. In the squeeze module, the input is 

fed through a 1x1 convolution, which is followed by an ‘expand’ module 

that comprises an expansion with a combination of 1x1 and 3x3 

convolutions. SqueezeNet contains 50x less parameters (1.25 million) 

than AlexNet. 

C – Object Detection  

C.1 – Class Balance for four classes (YOLOv4 model) for training and testing data 

 

 

 

 

 

 

 

 

38.7% 

23% 

11.9% 

26.4% 

73.4% 

12.6% 11.0% 
3.0% 

Figure C.6.1 Concept of MobileNetV2 

Figure C.7.1 Main principle of SqueezeNet 

architecture 
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C.2 – Intuitive description of object detection for YOLO algorithm 

Compared to an image classification task, where the softmax unit outputs the probabilities for every class if the 

input image is considered, object detection outputs additional values which represent the characteristics of the 

bounding box (x and y coordinate, width and height). All the parameter values can be given in with the following 

vector: 

𝑦 =  

[
 
 
 
 
 
 
 
𝑝𝑐

𝑏𝑥

𝑏𝑦

𝑏ℎ

𝑏𝑤

𝑐1
𝑐2

𝑐3 ]
 
 
 
 
 
 
 

   

whereby 𝑦 represents the output vector, 𝑝𝑐 the probability that one of the classes is present (0 - 1), 𝑏𝑥 the x 

coordinate for the centroid of the rectangle, 𝑏𝑦 the y coordinate for the centroid of the rectangle, 𝑏ℎ the height 

rectangle, 𝑏𝑤 the width of the rectangle, 𝑐1 presence of class 1 (‘pedestrians’), 𝑐2 presence of class 2 (‘car’) and 𝑐3 

presence of class 3 (‘motorcycle’). The values for each class is either 0 or 1, depending on the presence of the 

object in the image.  

One approach to object detection algorithms is a sliding windows approach, whereby a small rectangular box slides 

over an image with a specified stride. These cropped image regions are then fed to a convolutional network 

(ConvNet), whereby the ConvNet determines whether an object is present in the cropped region. This process can 

then be repeated with larger sliding windows. One large disadvantage of this method is the large computational 

costs, due to the sliding windows over an image, extracting these regions and feeding them independently to a 

ConvNet. By choosing a larger stride, the computation cost can be reduced, however this could be associated with 

lower accuracies for detecting an object, caused by the larger granularity due to the increased stride.   

The solution is a convolutional implementation of the sliding window approach. Instead of passing cropped regions 

sequentially to a model, the entire image can be implemented and all the predictions can be made convolutionally 

at the same time. If it is assumed that the input for the ConvNet are 14x14x3 images, the test image is 16x16x3 

and stride is 2 pixels, the ConvNet is run four times to retrieve four labels corresponding to the image regions. The 

computations done by these ConvNets is highly redundant due to the high overlap between the sliding window 

Figure D.2.1 Convolutional implementation of sliding window. The top row gives the dimension of the blue grid (normal sliding  

window approach) and the bottom row the dimension with inclusion of the yellow grid (convolutional sliding window) 
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regions. By the implementation of a convolutional sliding window approach, a lot of computation can be shared 

through these four forward passes. 

This results in the fact that instead of having a 1x1x4 output volume for each sliding window region, a 2x2x4output 

volume is created with a convolutional implementation, if the last layer in Figure D.2.1 is run through a 1x1 filter. 

The blues subset (1x1x4) represents the results for the upper left corner (14x14 image) and the other three yellow 

squares (1x1x4 volume) give the results for the upper right, lower left and bottom right for a 14x14 image.  

 In conclusion, a convolutional implementaiton combines four forward passes into one compuation, 

whereby a lot of the computations are shared in the regions where the image is identical [77].  

The convolutional implementation of sliding windows is 

computationally more efficient, however outputting the most 

accurate bounding box prediction still remains a challenge. If 

the image in Figure D.2.2 is considered, for each grid cell the 

output vector 𝑦 is outputed. The total output for this image 

would correspond to a 3x3x8 volume. Consequently, the 

100x100x3 input should be mapped to 3x3x8 output volume with 

a ConvNet. In this example, if an object is present, the 𝑝𝑐 

component should be equal to 1 for the middle left and right grid 

cell. Nevertheless, it needs to be mentioned, that this approach 

works well when only one object is present in a grid cell. 

Commonly in practice, a finer grid size is also used, to avoid the 

presence of multiple objects in a grid cell. For the object, the midpoint of target is considered, which is then 

assigned to the specific grid cell. The x and y coordinate, the height and the width are specified relative to the grid 

cell. Values of the x and y coordinate are between 0 – 1. The height and the width can have a larger value than 1, 

if the size of the bounding box exceeds the size of a single grid cell. Once the model calculates a bounding box for 

a certain object, the predicted bounding box can be compared to the ground truth bounding box. This is done by 

the Intersection over Union (IoU), which describes the degree of overlap between two bounding boxes (as 

described in section 3.4.3). Most commonly an IoU threshold of 0.5 is used.       

One occuring problem is that the applied algorithm 

might find a multitude of detections for the same 

object (Figure D.2.3). A method named ‘nonmax 

suppression’ is a method which ensures, that the 

algorithm detects each obejct only once. If many 

grid cells are used in the computation, the 

probability of more than grid cell indicating the 

presence of the centroid of the object is higher. 

The model firstly outputs the probability of every 

bounding box prediction. The model then selects 

the most confident bounding box prediction. 

Figure D.2.2 Example for bounding box predictions  

with a 3x3 grid (image taken from [77]) 

Figure D.2.3 Example of multiple detection with different 

probabilities for the predicted bounding boxes (image taken from 

[77])) 
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Afterwards the ‘nonmax suppression’ method the evaluates all of the remaining rectangles. All bounding boxes 

that have a high IoU (>0.5, since bounding box predictions below that threshold will be omitted) with the most 

confident prediction will then be suppressed. In the case of Figure D.2.3, the bounding box predictions with a 

probability of 0.8 and 0.9 will be retained, whilst the remaining rectangles will be discarded.    

The last remaining problem is the fact, that each 

object in an image is assigned to a specific grid cell, 

which contains the centroid of the object. To detect 

multiple objects within a grid cell, the idea of anchor 

boxes can be used (Figure D.2.4). Beforehand, 

predefined shapes (or anchor boxes) are defined by 

the model whereby two predictions can be 

associated with these two anchor boxes. Therefore, 

output vector 𝑦 will not only contain 8 entries, but 

16 entries per grid cell, since two anchor boxes fall 

into the same grid cell for this example. The 

parameters 𝑐1, 𝑐2, 𝑐3 then decode to which class a certain anchor box belongs. In principle, the object is still 

assigned to a grid, however the object is also assigned to an anchor box for this specific grid cell with the highest 

IoU value. In practice, more than two anchor boxes are usually applied.     

 This section was intended to give the reader an intuitive explanation with respect to the YOLO algorithm. 

Since there are different versions of the YOLO algorithm, the following section will briefly introduce the YOLOv4 

model architecture.  

D.3 – Model architecture YOLOv4  

Typically, there are two types of model architectures for object detection algorithms, namely one or two stage 

detectors. An one stage detector is capable of detecting an object without the need of a preliminary step (e.g., 

YOLO algorithms). Two stage detectors use a preliminary step to generate a region of interest that is then used 

for object detection and the prediction of bounding boxes (e.g., R-CNN or Faster R-CNN). This also suggests, that 

the use of an one-stage detector consumes less time. In the backbone of an object detection model, the essential 

features in the form of feature maps are extracted from an input image. In the case of the YOLOv4 model 

Figure D.2.4 Example of anchor boxes for two different objects in a 

grid cell 

Figure D.3.1 Typical model architectures of object detection algorithms with one- and two stage detectors 
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CSPDarknet53 is used. The neck and head (‘dense prediction’ in Figure D.3.1) are subsets of the backbone, which 

aim to improve the feature discriminability and robustness of the model. For YOLOv4, Spatial Pyramid Pooling 

(SPP) and a Path Aggregation Network (PAN) are used. SPP removes the constraint of the network to input a fixed 

image size and PAN allows for a better propagation and transport of layer information through the entire network 

[78]. The head (or the detector) finally outputs a vector prediction (𝑦), as described in the previous section 

(Appendix D.2). For this component the head of YOLOv4 was used for the YOLOv4 model.    

 In the backbone and detector YOLOv4 makes use of ‘bag of freebies’ and ‘bag of specials’. The bag of 

freebies refers to methods that only change the training strategy or only increase the training [40], while limiting 

the cost of inference. These methods comprise data augmentation, the use of focal loss due to semantic bias 

caused by class imbalance, label smoothing and improvements to the objective function of Bounding Box (BBox) 

regression [40]. The bag of specials increases the inference cost by a minor amount but in return the accuracy of 

object detection is greatly improved. These methods enlarge the receptive field, introduce an attention mechanism, 

strengthen feature integration and introduce a post-processing step to assess the model prediction results. 

 This section aimed to give a brief introduction to the YOLOv4 model. The entire model comprises an 

enormous amount of steps and computations. All technical details and subtleties are not within the scope of this 

research. For more in depth explanation the original YOLOv4 research paper [40] or [78] can be utilized.  
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D – Model Results 

D.1 – Baseline model 

 

Appendix E.1 Training and validation accuracies for A: Convolutional Blocks, B: Pooling Methods, C: Batch Normalization, D: Dropout, E: Classifiers, 

F: Final CNN model 
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D.2 – Transfer Learning 

D.3– Visualisation of feature maps in convolutional operations 

 

Influence of other reflected objects on the water surface (Image 3 in Figure 19) 
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Plastic debris object with similar colour as water (Image 4 in Figure 19) 

 

Small plastic debris object (Image 5 in Figure 19) 
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Submerged plastic debris object (Image 6 in Figure 19) 
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D.4 – Confusion matrices and statistical metrics for the impact of environmental and 

instrumental factors (Train 1: 2.7m/0 deg)  

(A) (B) 

(C) (D) 

(E) (F) 
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 TEST-

SUNNY 

(A) 

F1-score 

TEST-

CLOUDY 

(B) 

F1-score 

TEST 1 

 

(C) 

F1-score 

TEST 2 

Uncropped 

(D) 

F1-score 

TEST 2 

Cropped 

(E) 

F1-score 

TEST 3 

 

(F) 

F1-score 

Class 0 0.90 0.97 0.95 0.60 0.96 0.82 

Class 1 0.73 0.90 0.75 0.22 0.84 0.57 

Class 2 0.68 0.90 0.77 0.42 0.79 0.48 

Class 3 0.77 0.85 0.86 0.64 0.61 0.32 

       

Accuracy 0.78 0.90 0.84 0.46 0.85 0.54 

UNCROPPED (4.0m/0 deg) 

CROPPED (4.0m/0 deg) 
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D.5 – Confusion matrices and statistical metrics for impact of environmental and instrumental 

factors (Train 3: All heights + angles)  

 

 VALIDATION 1 (A) 

F1-score 

TEST 1 (B) 

F1-score 

TEST 2 (C) 

F1-score 

TEST 3 (D) 

F1-score 

Class 0 0.98 0.98 0.97 0.87 

Class 1 0.88 0.86 0.87 0.66 

Class 2 0.86 0.79 0.82 0.54 

Class 3 0.82 0.68 0.75 0.30 

     

Accuracy 0.89 0.87 0.88 0.59 

(A) (B) 

(C) (D) 
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D.6 – YOLOv4 Object Detection correct predictions for one class 
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