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A B S T R A C T

In this paper, we evaluate the cost of the electrification of an existing bus network. We
propose a family of bi-objective mathematical models to demonstrate the trade-off between
strategic (i.e., battery sizing and the locations of charging stations) and operational decisions
(i.e., battery degradation). The proposed mathematical models investigate different charging
policies and measure their impacts on overall cost. Battery degradation is estimated by a tailored
and linearized semi-empirical approach and is explicitly incorporated in the proposed mixed-
integer linear models. The impact of different charging policies on reducing the overall costs is
evaluated for a bus network in Rotterdam. The results show that allowing for flexibility in the
loss of energy levels at each bus cycle results in savings up to 17% in battery aging.

1. Introduction

The Netherlands is one of the most progressive EU countries when it comes to reducing CO2 emissions. In 2016, the Dutch
government signed an agreement with all public transport providers requiring that, from 2030 onward, no diesel buses will be
allowed to operate. As a result, public transport operators need to adapt the existing infrastructure to accommodate electric buses
(see Waterstaat, 2016; Edenhofer, 2015). In recent years, several initiatives have taken place designed to incorporate Battery-
powered Electric Bus (BEB) services in public transport systems (see Lajunen, 2014a; Li, 2016; Xu et al., 2016 and World,
2008).

While diesel buses can often run for an entire day without having to refuel, BEBs may need to be charged several times a
day, limiting their capabilities to operate. To overcome this issue, there are three types of solutions for recharging BEBs: station-
based charging, wireless lane-based charging and battery swapping (Li, 2016; Chen et al., 2017). In this research our focus is on
electrification of a bus system with station-based charging. With the emerge of fast-charging technology, BEBs have the opportunity
of being charged en-route while passengers board and alight. This technology enables BEBs to extend their service time. Their
operation becomes similar to diesel buses and transport agencies can easily adapt them with their current timetable and vehicle
scheduling plans (Augé, 2015).

On the other hand, the operation of BEBs also poses various strategic, tactical, and operational challenges (Scarinci et al., 2019) At
a strategic level, the Public Transport Operator (PTO) needs to design its network’s infrastructure by choosing the type and location
of charging stations and the size of the bus batteries. The selected infrastructure has to be aligned with classical constraints, such
as the PTO’s network structure, schedule requirements, fleet size, and staffing considerations (Abdelwahed et al., 2020).
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The cost function for designing a network of electric buses can be formalized using two components: initial investment costs,
nd battery aging costs. Especially for the network of fast-charging BEBs, the battery lifetime plays a key role in the network
esign decisions, for cost-related reasons. According to Quarles et al. (2020), the average battery price for an electrical bus is
stimated to be around $100,000, and that could be even higher for fast-charging buses with newer technologies. As a result,
aving more comprehensive network design models that explicitly take battery degradation into account could save the public
ransport operators substantial costs, given their large fleet sizes. However, estimating battery lifetime is difficult, due to their
igh dependency on operational factors like State-Of-Charge (SOC) and Depth-Of-Discharge (DOD), and temperature as direct
onsequences of infrastructural design decisions (Barré et al., 2013).

In literature, the electrification of a bus network is usually designed in one of the three following ways: (i) the location of charging
tations is known and the model decides the size of the batteries, (e.g., Perrotta et al., 2014), (ii) battery capacities are given, and
he model decides the location of the charging stations (e.g., Sebastiani et al., 2016,) and (iii) the proposed model decides both the
attery sizes and the location of the charging stations (e.g., Kunith et al., 2017). Even though the cost of battery replacements is
ubstantial, none of the above-mentioned researches takes battery degradation (i.e., battery aging) into account when determining
he battery sizes, charging locations, or both, because of the computational burden of incorporating nonlinear and complex battery
egradation estimation functions in the optimization models.

In this paper, we propose a family of bi-objective mathematical models to optimize and assess the overall costs of electrification
f an existing bus network, with the aim of finding a trade-off between strategic decisions (i.e., battery sizing and the location and
he power level of charging stations) and operational decisions (e.g., daily DOD and SOC variation of batteries). We estimate the
attery degradation function by a tailored and linearized semi-empirical approach, (Hoke et al., 2011). This function is incorporated
xplicitly in the optimization model and contains three main contributing factors in relation to battery degradation: DOD, SOC, and
emperature.

We evaluate our models using a bus line in Rotterdam and show that incorporating battery degradation can increase battery
ifetime by 17% without increasing the initial investment. We also provide extensive results on assessing the impact of more
onservative as opposed to more risky charging strategies on the overall cost. The outcomes show that allowing for flexibility in
harging and discharging patterns can significantly reduce overall costs.

The remainder of this paper is organized as follows. In Section 2, we present a summary of relevant literature. We describe
he characteristics and assumptions of the problem in Section 3, while the battery degradation estimation method is introduced
n Section 4. In Section 5, we discuss the family of mathematical models used to design infrastructure and an iterative algorithm
ntended to solve the model is presented in Section 6. The computational results are presented in Section 7 and, discuss the conclusion
nd possible avenue for future research in Section 8.

. Related literature

In the context of electric vehicles, the adaptation of road networks to accommodate charging stations have been extensively
tudied in the literature, see, Shen et al. (2019) for a comprehensive review. At strategic level, most studies focus on designing
harging infrastructures by taking into account various factors such as uncertainty in driving range, demand variation and capacity
f charging stations., see also, Lee and Han (2017), Kınay et al. (2021), He et al. (2013), Yıldız et al. (2019) and, Zhang et al.
2017), Xu et al. (2017) for public charging stations, Brandstätter et al. (2017), Bekli et al. (2021), Hua et al. (2019) for car-sharing
ystems. At operational level, most papers focus on developing models and algorithm to extend battery lifetime, see, Pelletier et al.
2018), Schoch et al. (2018), Adler and Mirchandani (2014), Xu et al. (2021).

In contrast to road transportation network, the electrification of a bus network involves tackling codependent problems at
trategic and operational levels. Earlier studies have generally focused on one of these perspectives. Strategic level problems involve
he locations and power levels of the charging stations (see Chen et al., 2018; Li, 2016; Mohamed et al., 2017; Abdelwahed et al.,
020), while operational level problems involve the development of charging strategies that determine where and how long a
articular bus needs to be charged. The solution to operational problems can provide valuable insights and help estimate battery
ifetime. In this paper, we address both the location of charging stations and the type of batteries. Meanwhile, operational decisions
ike State-Of-Charge (SOC) and Depth-Of-Discharge (DOD) are used as the variables of the model to incorporate battery degradation
i.e., aging) in strategic decisions.

.1. Strategic level decisions

This section introduces different types of strategic level problems whose decision variables are associated with battery sizing
nd/or charging locations. The first group of studies on designing BEB networks assumes that the location of charging stations is
nown, while a decision has to be made about battery sizing (see Rios et al., 2014; Perrotta et al., 2014). For example, Sinhuber
t al. (2012) estimate the batteries’ energy consumption to decide about their sizes relative to the locations of the charging stations.

The second group of studies assumes that the battery types and capacities are known, and the decision to be made involves the
ocations of charging stations (see Sebastiani et al., 2016 and Xylia et al., 2017). An (2020) proposes a stochastic optimization
odel to simultaneously determine the location of charging stations and bus fleet size, while considering variations in charging
emand. This paper assumes all batteries are large enough to cover at least one round trip. Lin et al. (2019) propose a multi-stage
lanning approach to electrify the bus network taking into account the power grid and demand evolution for electric buses over
2

ime. Yıldırım and Yıldız (2021) introduce a column generation approach to determine the optimal configuration of electric buses
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taking into account multiple depots, battery sizing combined with the decision on recharging technologies. Paul and Yamada (2014)
propose a model for the electrification of a bus network. The authors consider a fleet of BEBs whose battery sizes are known, and
introduce an optimization model to maximize the number of trips the electric buses can make.

To further reduce the cost of electrifying the bus network, the last group uses both battery sizing and the location of charging
tations as strategic decision variables. Compared to the categories mentioned above, there is a limited number of papers dedicated
o this topic. Rogge et al. (2015) use the existing bus timetable to propose a two-stage optimization approach. In the first stage,
hey position one charging station at each terminus and then determine the battery size for each route in the second stage. Their
roposed approach limits the location of charging stations relative to the terminus. By relaxing this assumption, Kunith et al. (2017)
ntroduces a mixed-integer model to design the network by determining the location of charging stations and the size of batteries
imultaneously. Pelletier et al. (2019) present a comprehensive optimization approach that determines the cost-effective transition
olution from conventional to electric fleets. The model considers bus purchase cost, salvage value, operating cost, and the cost of
harging stations. The model determined the fleet composition and required charging infrastructure for the transition period. In
his paper, we also determine both battery sizes and charging locations. Below, we introduce the operational level decisions before
ighlighting our contributions compared to existing literature.

.2. Operational level variables

As mentioned at the beginning of Section 2, operational level variables are associated with the factors contributing to battery
egradation (i.e., aging) such as State-of-Charge (SOC) and Depth-Of-Discharge (DOD). The main challenge is how to estimate
attery aging given these variables in an efficient and a reliable manner. For a BEB network at operational level problems, battery
ifetime is in most cases either ignored or assumed to be defined parametrically. According to literature, there are three approaches
o estimating battery degradation: (i) electrochemical, (ii) empirical, and (iii) semi-empirical methods (see Barré et al., 2013
nd Pelletier et al., 2017).

The first group (electrochemical simulation models) evolves around the theories explaining the actual cause of degradation at a
olecular level. They look to explain the degradation mechanisms based on the loss of lithium ions and other active materials. At
strategic planning level, one can only predict the battery’s operating pattern, and such detailed information cannot be predicted

recisely. As such, electrochemical simulation models have limited practicality to be incorporated into the decision-making process
t a strategic level (Marano et al., 2009).

The second group (empirical models) use large empirical data sets to fit the lifetime functions. They predict the battery’s lifetime
hrough interpolation and extrapolation of test results and field data. The empirical models are designed to predict the impact of a
articular factor on battery degradation. In reality, several factors affect the degradation process of batteries, limiting the practical
pplicability empirical models (see Xu, 2013 and Marano et al., 2009).

To overcome the shortages and challenges of the above-mentioned methods, the last group (semi-empirical methods) is proposed
o model battery capacity degradation for battery life assessments (Xu et al., 2016). These methods combine theoretical and
xperimental observations to predict battery life, taking into account various factors that affect battery degradation. In case of not
aving experimental observations, the semi-empirical model can be fitted to the output of other battery degradation formulation.
his feature makes them conceptually compatible with many degradation models. In recent years, these methods have been

ncorporated successfully in operational problems to estimate battery lifetime. Pelletier et al. (2018) use semi-empirical methods
o include battery degradation in solving electric vehicle scheduling problems. Barco et al. (2017) use semi-empirical methods to
etermine the optimal routing and scheduling of electric vehicles in a case study in Colombia, while Arslan et al. (2015) use these
ethods to identify the minimum cost path for Plug-in Hybrid Electric Vehicles (PHEV).

.3. Summary and contributions

In this paper, we introduce a bi-objective optimization model to design a BEB infrastructure for the electrification of an existing
us network. The decision variables are defined at a strategic level to determine battery sizes and charging station locations, as
entioned in Section 2.1. Operational variables like SOC and DOD are included in the model to estimate battery degradation,

ia the tailored semi-empirical function discussed in Section 2.2. In Section 3, we describe the framework of the problem and the
omponents of the network under consideration, while the details of the battery degradation function are described in Section 4.

. Problem description

In this study, we design a network of electric buses (by electrifying an existing bus network) to minimize overall costs. The
ost function has two components: (i) initial investment (purchasing charging stations and buses) and (ii) costs related to battery
egradation. In this section, we present the network and discuss its characteristics. Fig. 1 contains a schematic representation of bus
ine. We present the bus network as a set of lines (noted by 𝑙 ∈ 𝐿). For line 𝑙, all buses start and end their journeys from/at the

depot, connected to the terminal., represented by Terminal A in Fig. 1. The depot is always equipped with chargers for overnight
charging and is not part of the decision. For each line, the fleet size and the frequencies are given. We define a set of charger
station types, 𝑡 ∈ 𝑇 , and a set of stops, 𝑠 ∈ 𝑆. For each line the set of stops are presented by 𝑆𝑙 and 𝑆 = ∪𝑙∈𝐿𝑆𝑙. If at stop 𝑠 ∈ 𝑆, we
3

decide to install a charger, then we have a charging station of type 𝑡 ∈ 𝑇 . As shown in Fig. 1, some stops, such as stop 2 and stop
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Fig. 1. A bus route model of circular bus line.

|𝑆|− 1, are shared between both directions. However, stops 3 and |𝑆|− 2 are only used in one direction. As mentioned, earlier, the
model will not only decide on the location of the charging stations, but also the size of batteries.

Below, we discuss the components of the network and their associated definitions and characteristics.

Bus cycle. For a given line, the bus cycle is defined by a visiting order of stations, starting from the departure to the arrival point
(e.g., Terminal A in Fig. 1). The bus’s daily operations are presented by several bus cycles. For stop 𝑠 ∈ 𝑆, we define parameter 𝛿𝑠
as the dwell time denoting the time planned for passengers’ to board/alight. We also define parameter 𝜇𝑠 as the amount of energy
required for a given bus to move from stop 𝑠 to its successor. Between two stops, the energy consumption can vary during the day
due to variations in travel demand and traffic congestion. However, we assume that these variations have a negligible impact on
our point estimate.

We note that the operations of both circular and back-and-forth bus lines are presented by a bus cycle. This can be achieved by
allowing stations to be visited in one or both directions. In this paper, a bus cycle shows one full trip of a given bus from a terminus
to the same terminus. In this paper, terminus has a geographical meaning which shows the location at which a bus trip ends and
terminal is an expression we use to show one of the types of charging stations. If a bus has a circular route, then each station is
visited once. But, for a back-and-forth route, each station is visited at most twice. Fig. 1 illustrates the bus cycle for a circular line.

Charging stations. As suggested by Zanarini et al. (2020), we consider three types of charging stations. The first one is the so-called
Fast-Feeding Station (ℱ ), which provides fast charging at high power with the integrated energy storage system, making it possible
to recharge a battery within 15 to 20 s, Augé (2015). An example to show the operations of these charging stations developed by
ABB can be found in Infrastructure (2015)

The second one is called Standard Feeding Station (𝒮 ), which does not have an integrated storage system. Like ℱ , it is a fast-
charging system but with a lower power and capacity. The last one is named Terminal Feeding Station (𝒯 ), that charges at a lower
rate than 𝒮 . The set of charging stations then can be defined as 𝑇 = {ℱ ,𝒮 ,𝒯 }. We need to indicate that the depot is different from
a terminus, and it is always equipped with a charging station (not part of our decision-making process).

Battery. In this network, batteries have a modularized design that can be selected from a set of pre-defined configurations, presented
by 𝑖 ∈ 𝐼 . For line 𝑙, we assume each bus performs a certain number of cycles. Therefore, all operated buses are assumed to be
equipped with homogeneous batteries. As the depot is equipped with a charging station, we assume that batteries are fully charged
at the beginning of each day. This assumption is motivated from the current practice and is not restrictive to our model. When a
bus is connected to the Fast-Feeding Station (ℱ ), it follows a constant power–constant voltage charging approach. According to this
approach, the battery state-of-charge can be precisely approximated by a linear function up to 90% of the capacity of the battery
(Tomaszewska et al., 2019). This is not the case for the remaining 10% (i.e., the battery requires more time to be fully charged).
In this paper, Fast-Feeding stations are used to charge the batteries during bus dwell time which is relatively short. Therefore, we
assume that the state-of-charge can be increased up to 90% of the battery capacity. Finally, the battery reaches the end of its life
when its capacity is reduced to 80% of its initial nominal capacity. At this point, the battery has to be replaced.

Battery cycle. A battery cycle is defined as the elapsed time between two consecutive charges at charging stations. In Section 4, we
provide details about the definition and estimation of battery degradation function.

4. Battery degradation estimation

Battery degradation is divided into two components, calendar aging and cycle aging. Calendar aging is the irreversible proportion
of lost capacity during storage caused by battery storage conditions and is independent of the infrastructure design (Erdinc et al.,
2009). Cycle aging, on the other hand, is associated with the impact of battery utilization periods called cycles (charge or discharge)
during daily operations (Barré et al., 2013). In this paper, we are interested in estimating battery degradation resulting from cycle
aging. This estimation function will be incorporated in our optimization framework involving the choice of the type and location of
charging stations. This section presents a semi-empirical approach introduced earlier in Section 2.2 to estimate battery degradation.

We define 𝑔𝑐𝑦𝑐𝑙𝑒(𝐷𝑂𝐷,𝑆𝑂𝐶, 𝑡𝑒𝑚𝑝) as an estimation function to calculate relative lifetime loss of battery taking three degradation
factors: (1) Depth-of-Discharge (𝑔𝐷𝑂𝐷), (2) State-Of-Charge (𝑔𝑆𝑂𝐶 ), and (3) the battery’s temperature (𝑔𝑡𝑒𝑚𝑝) (Hoke et al., 2011). Each
component of the 𝑔𝑐𝑦𝑐𝑙𝑒 can be estimated separately using an empirical model. Empirical models can provide a reliable estimation
4
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Fig. 2. Battery and bus cycles.

of the End-Of-Life (EOL) of batteries when experiments are conducted using new batteries. The reason is that the fitted distributions
might not be as precise if used batteries are utilized to gather the data (Pesaran et al., 2009).

Estimation of relative battery lifetime. For each component of 𝑔𝑐𝑦𝑐𝑙𝑒, we estimate the degradation as a relative lifetime loss ( 𝛥 ),
in which  is the maximum estimated lifetime and 𝛥 the actual lifetime under a given operating time interval. Eq. (1) shows the
elationship between 𝑔𝐷𝑂𝐷, 𝑔𝑆𝑂𝐶 and 𝑔𝑡𝑒𝑚𝑝. Each one of these factors is estimated using an empirical method.

𝑔𝑐𝑦𝑐𝑙𝑒(⋅) = 𝑔𝐷𝑂𝐷(⋅) + 𝑔𝑆𝑂𝐶 (⋅) + 𝑔𝑡𝑒𝑚𝑝(⋅) (1)

These three degradation factors considered in Eq. (1) can cause amplifying effects on each other. In this paper we consider the
above semi-empirical model proposed by Hoke et al. (2011) to model battery aging. Two assumptions facilitate the tractability of
the model without jeopardizing its precision. (1) The effect of each degradation factor (i.e., 𝑔𝐷𝑂𝐷(⋅), 𝑔𝑆𝑂𝐶 (⋅), 𝑔𝑡𝑒𝑚𝑝(⋅)) is assumed
ndependent from other ones, and (2) these effects are assumed to be independent from battery’s age (time-invariant over the battery
ifetime). In Hoke et al. (2011), the authors show that despite imposed assumptions made in estimating battery lifetime, the outcome
s compatible with the model proposed by NREL (The National Renewable Energy Laboratory). In Smith et al. (2010), the authors
how that this semi-empirical model behaves similar to the physical data. In the following section, we explain these estimations
eparately.

.1. Depth-Of-Discharge (DOD)

For each bus cycle, the Depth-Of-Discharge (DOD) is defined as the highest value of battery discharge over all battery cycles,
s shown in Fig. 2, where the DOD represents the maximum usage of battery capacity at each bus cycle. Over all battery and bus
ycles, the more frequently the battery’s level reaches the maximum capacity usage, the higher its impact on the battery degradation
ill be. An empirical model that fits a distribution function over-collected data is used to estimate DOD per bus cycle.

To estimate the 𝑔𝐷𝑂𝐷 in Eq. (1), we use the concept of energy throughput introduced by Marano et al. (2009), which is expressed
s the expected amount of energy a battery can store and deliver. For a given battery cycle with the highest DOD (shown by 𝐷𝑂𝐷)
ver all bus cycles, the energy throughput is calculated by 𝐸𝑐𝑦𝑐𝑙𝑒 = 𝐷𝑂𝐷 × 𝜅𝑖 where 𝑖 ∈ 𝐼 is the set of battery configurations and 𝜅𝑖

is capacity associated with the battery configuration 𝑖. As noted by Hoke et al. (2011), choosing the highest DOD will provide an
accurate estimation. It also leads to a solution with a uniform charging/discharging pattern.

We also define the average depth-of-discharge over all battery cycles, presented by 𝐷𝑂𝐷𝑎𝑣𝑔 , used to estimate the number of
cycles (𝑁) that can be executed by the battery before reaching its EOL (The battery capacity is 80% of its initial nominal value).
The battery manufacturing company provides this empirical information. Eq. (2), proposed by Hoke et al. (2011), is used to estimate
the number of cycles.

𝑁 =
(

𝐷𝑂𝐷𝑎𝑣𝑔

145.71

)
−1

0.6844
(2)

Given the information presented above, the total energy throughput over the battery lifetime is estimated as, 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑁×𝐷𝑂𝐷𝑎𝑣𝑔×
𝜅𝑖. Finally, the degradation function is estimated as follows,

𝑔𝐷𝑂𝐷 ≈
𝛥𝐷𝑂𝐷


=

𝐸𝑐𝑦𝑐𝑙𝑒

𝐸𝑡𝑜𝑡𝑎𝑙
=

𝐷𝑂𝐷 × 𝜅𝑖
𝑁 ×𝐷𝑂𝐷𝑎𝑣𝑔 × 𝜅𝑖

(3)

As 𝑁 , 𝐷𝑂𝐷 and 𝐷𝑂𝐷𝑎𝑣𝑔 are all variables, 𝑔𝐷𝑂𝐷 is nonlinear. Eq. (3) also represents the relative battery lifetime loss resulting
from the depth of discharge. For the sake of simplicity, we define 𝑚 = 1

𝑁×𝐷𝑂𝐷𝑎𝑣𝑔
. Therefore, Eq. (3) can be replaced by 𝑔𝐷𝑂𝐷 =

𝐷𝑂𝐷. Later, we present an iterative approach to deal with the nonlinearity of 𝑔𝐷𝑂𝐷.
5
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4.2. State-Of-Charge (SOC)

The 𝑔𝑆𝑂𝐶 function in Eq. (1) estimates the loss of battery lifetime resulting from the average State-Of-Charge (SOC), which in
act shows the range of charge level within which the bus operates, as shown in Fig. 2. We note that a smaller range of the SOC
esults in a smaller negative impact on the battery lifetime loss (see, Markel et al., 2009, Pesaran et al., 2009). Similar to 𝑔𝐷𝑂𝐷,
he SOC function is estimated using an empirical method. In this paper, we consider the estimation for a given operating day. The
elative lifetime loss of the battery associated with the SOC is presented as follows:

𝑔𝑆𝑂𝐶 ≈
𝛥𝑆𝑂𝐶


= 24

(

0.4179 ⋅ 𝑆𝑂𝐶𝑎𝑣𝑔 − 0.1685
𝜁 ⋅ 15 ⋅ 8760

)

(4)

According to Hoke et al. (2011), in Eq. (4), 0.4179 is the estimated slope of linear SOC degradation function and 0.1685 is
its estimated intercept. In addition, 𝜁 shows the maximum capacity fade at EOL of the battery. Finally, 𝛥𝑆𝑂𝐶

 is estimated for an
average of 15 years lifetime of the battery resulting in 15 ⋅ 8760 number of hours. As can be seen in this equation, a higher average
SOC results in a higher relative battery lifetime loss. The average state of charge, 𝑆𝑂𝐶𝑎𝑣𝑔 , is affected by the location of the charging
stations and the battery types. Later, we show how 𝑆𝑂𝐶𝑎𝑣𝑔 can be incorporated into our proposed family of MIP formulations.

4.3. Temperature

The last component in the 𝑔𝑐𝑦𝑐𝑙𝑒(⋅) function is presented by relative battery lifetime loss caused by the battery’s temperature,
represented by 𝑔𝑡𝑒𝑚𝑝. The battery’s temperature affects its lifetime, known as temperature degradation, which varies according to the
rate at which the battery is charged or discharged. Here, we consider the degradation resulted from charging batteries. Longer and
more frequent charging times increase the battery’s temperature and consequently reduce its lifetime. The degradation resulting
from discharging occurs independent from the design of the network therefore, it is left out of the degradation function.

We adapt the empirical model proposed by Hoke et al. (2011) to estimate the relative battery lifetime loss resulted from the
battery temperature. In this model, one hour at temperature 𝑇 𝑒𝑚𝑝 uses up a fractional lifetime 1

8760ℒ (𝑇 𝑒𝑚𝑝) in which the function
ℒ (𝑇 𝑒𝑚𝑝) shows the total number of years the battery would last at temperature 𝑇 𝑒𝑚𝑝. Here, if the battery is charged at a station
equipped with charger type 𝑡 ∈ 𝑇 = {ℱ ,𝒮 ,𝒯 } then, 𝑇 𝑒𝑚𝑝 = 𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 + 𝑅 ⋅ 𝑃 𝑡 in which 𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 is the ambient temperature, 𝑅 is
the thermal resistance and 𝑃 𝑡 is the power of charger type 𝑡 (kW). Similarly, if the battery is charged at the depot, the temperature
is calculated by 𝑇 𝑒𝑚𝑝 = 𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 + 𝑅 ⋅ 𝑃 𝑑𝑒𝑝. In case, no charging is performed, the temperature is 𝑇 𝑒𝑚𝑝 = 𝑇 𝑒𝑚𝑝𝑎𝑚𝑏.

As the batteries have to be charged, we cannot avoid temperature-related degradation. Therefore, instead of considering the total
degradation, we are interested in considering the degradation that could have been avoided. Based on the temperature function
stated above, the minimum temperature while charging can be achieved when the charger has the minimum power. We assume
that the charger installed at the depot has less power compare to the ones installed at the terminus and stops. At the depot, the
charger with 𝑃 𝑑𝑒𝑝 requires 𝛿𝑑𝑒𝑝 hours to charge the battery. In this case, the baseline can be calculated as 𝛿𝑑𝑒𝑝

8760⋅(𝑇 𝑒𝑚𝑝𝑎𝑚𝑏+𝑅⋅𝑃 𝑑𝑒𝑝) .
To determine the degradation that could have been avoided, we determine the relative degradation if the battery is charged

t terminus or stops. We already know that 𝛿𝑠 ≤ 𝛿𝑑𝑒𝑝 as the chargers at the terminus or stops have more power than those at the
epot. Therefore, we would like to estimate relative degradation if we have a dwell time of 𝛿𝑑𝑒𝑝 to charge the battery. In this case

the degradation is estimated as 𝛿𝑠
8760⋅(𝑇 𝑒𝑚𝑝𝑎𝑚𝑏+𝑅⋅𝑃 𝑡) +

𝛿𝑑𝑒𝑝−𝛿𝑠
8760⋅ℒ (𝑇 𝑒𝑚𝑝𝑎𝑚𝑏)

. Here the first term shows the degradation when the battery is
charged at station 𝑠. The second term shows the degradation for the remaining time (𝛿𝑑𝑒𝑝−𝛿𝑠) in which the battery does not receive
any charge.

By subtracting the baseline from the estimated degradation, for stop 𝑠 and charger of type 𝑡, the temperature-related degradation
can be estimated as

𝛥𝑡
𝑠


=

𝛿𝑠
8760 ⋅ ℒ (𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 + 𝑅 ⋅ 𝑃 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛥∕ fast charging 𝑡∈𝑇

+
𝛿𝑑𝑒𝑝 − 𝛿𝑠

8760 ⋅ ℒ (𝑇 𝑒𝑚𝑝𝑎𝑚𝑏)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛥∕ not charging
at the depot

(5)

−
𝛿𝑑𝑒𝑝

8760 ⋅ ℒ (𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 + 𝑅 ⋅ 𝑃 𝑑𝑒𝑝)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛥∕
slow charging at the depot

Here we have to note that 𝛿𝑠 is a parameter. For charging station type ℱ , the dwell time can be considered fixed. For other
types of charging stations (𝒮 ,𝒯 ), the battery may require less time to be fully charged (reaching %90 of its SOC level). As the dwell
times are short (less than 5 min), this has a negligible impact on the estimated value.

Knowing (5), the total degradation can be estimated by (6).

𝑔𝑡𝑒𝑚𝑝 ≈
𝛥𝑡𝑒𝑚𝑝


=
∑

𝑡∈𝑇

∑

𝑠∈𝑆

𝛥𝑡
𝑠


(6)

In contrast to the case involving DOD and SOC, estimated 𝛥𝑡𝑒𝑚𝑝
 is incorporated as a parameter in the proposed MIP models.

In the section below, we introduce a family of mathematical models. The tailored semi-empirical approach to estimate the relative
battery lifetime loss, presented in Eq. (1), is incorporated in all these models.
6
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Table 1
Notations — sets and parameters.
Sets

𝑙 ∈ 𝐿 Set of bus lines
𝑖 ∈ 𝐼 Set of pre-defined battery configuration
𝑡 ∈ 𝑇 Set of charger type 𝑇 = {ℱ ,𝒮 ,𝒯 }
𝑠 ∈ 𝑆𝑙 Set of stops for line 𝑙
𝑠 ∈ 𝑆 Set of all bus stops
𝑠 ∈ 𝑆𝒯 Set of terminus
𝑑 ∈ 𝐷 Set of stops whose charging stations can be potentially shared for

both directions
𝑆𝑑 ⊆ 𝑆 Subset of stop pairs that can be location at 𝑑 ∈ 𝐷

Parameters

𝜏𝑠𝑙 Travel time from stop 𝑠 to its successor in line 𝑙
𝜈𝑠𝑙 The required energy to reach the depot from stop 𝑠 line 𝑙
𝜇𝑠𝑙 Energy consumption between stops 𝑠 and its successor in line 𝑙
𝛿𝑠 Dwell time at stop 𝑠
𝛿𝑑𝑒𝑝 dwell time at the depot with its associated fixed charger type
𝛽𝑙 fleet size for line 𝑙
𝜅𝑖 Capacity of battery configuration 𝑖
𝜔 Upper bound on the chargeable SOC
𝜁 Maximum capacity fade at the End-Of-Life (EOL)
𝜙𝑡 Maximum charged energy at charging station type 𝑡
𝜌𝑙 Number of cycles executed by a given bus per day, for line 𝑙
𝜂𝑖 Battery lifetime under normal condition
𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 Ambient temperature
𝑅 thermal resistance
𝑃 Charging power (kW)
𝑃 𝑡 power of charger type 𝑡
𝑃 𝑑𝑒𝑝 Power of charger at depot
𝛤𝑖 Purchasing cost of battery 𝑖
𝛾 𝑡𝑠 Cost of installing charging station type 𝑡 at stop 𝑠
𝛼𝑡
𝑑 Cost saved when one charging station type 𝑡 is installed at stop 𝑑

that covers both directions
𝑝𝑡 lifetime of charging station type 𝑡 ∈ 𝑇

5. Family of mathematical models

In this section, we present three mathematical models to electrify an existing bus network. According to their associated charging
olicies, these models are distinguished from one another in ways that could result in different battery degradation costs. The aim
s to minimize the total cost of both investment and battery aging.

The first model, called M1, assumes that all buses must be fully charged at the start of their cycle. The second model, M2,
ssumes that onboard batteries can lose a certain amount of energy in each bus cycle. In fact, M2 is a relaxation of M1. The energy
oss involved is a decision variable in the model and it is the same for all bus cycles. At the end of a working day, the remaining
nergy on board should not drop below a predefined level. Finally, the last mathematical model, called M3, allows for a separate
oss of energy level at each bus cycle resulting in a relaxation of model M2. Model M2 and M3 allow us to assess the impact of
nitial SOC and charging patterns on battery aging. The choice of charging policy represents the level of risk aversion and expected
perational flexibility. For example, model M3 has limited flexibility to cope with unexpected events, including detours due to road
losure and charging station failure. The introduction of these three charging policies enables public transport authorities to choose
design that meets their level of risk aversion. The summary of notations are reported in Tables 1 and 2.

.1. Model M1: Full charge policy

The first proposed mathematical model (M1) can also be seen as the baseline model. In this problem, we assume that all buses
ust be fully charged at the beginning of each cycle. Therefore, no loss of energy level is allowed per cycle. We first present the
athematical model in its bi-objective form. The 𝜖-constraint formulation is presented in objective function part. Defining 𝑔𝑐𝑦𝑐𝑙𝑒(⋅)

s a function returning the battery degradation cost and 𝑔𝑐𝑜𝑠𝑡 as a function denoting the investment costs, the mathematical model
o design the bus network is presented as follows:

min 𝑓 (𝑔𝑐𝑜𝑠𝑡, 𝑔𝑐𝑦𝑐𝑙𝑒(⋅)) (7)
𝑠𝑡.

(8)–(41)
7
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Table 2
Notations — variables.
Variables

𝑔𝑐𝑦𝑐𝑙𝑒𝑙 (⋅) Estimation function calculates lifetime loss of battery taking into
account degradation factors, for line 𝑙

𝑔𝐷𝑂𝐷
𝑙 Relative lifetime loss of battery related to the Depth-of-Discharge

(DOD) for line 𝑙
𝑔𝑆𝑂𝐶
𝑙 Relative lifetime loss of battery related to State-of-Charge (SOC), for

line 𝑙
𝑔𝑡𝑒𝑚𝑝 Relative lifetime loss of battery related to temperature
𝑁𝑙 Number of cycles, for line 𝑙
𝐷𝑂𝐷𝑎𝑣𝑔

𝑙 Average depth-of-discharge over all battery cycle for line 𝑙
𝐷𝑂𝐷𝑖𝑙 Highest DOD of battery cycle for battery type 𝑖 ∈ 𝐼
𝑆𝑂𝐶𝑎𝑣𝑔

𝑖𝑙 Average state-of-charge for battery 𝑖
𝑏𝑖𝑙 Binary variable equals to one if the battery configuration 𝑖 ∈ 𝐼 is

selected for line 𝑙
𝑥𝑡𝑠 Binary variable taking value one if the charger type 𝑡 is installed at

stop 𝑠 and zero, otherwise.
𝑥′ 𝑡
𝑑 Binary variable taking value one if the charger type 𝑡 is installed at

𝑑 ∈ 𝐷
𝑧𝑠𝑙 Energy level upon arrival of the bus at stop 𝑠, for line 𝑙
𝑤𝑠𝑙 The energy level upon departure from stop 𝑠 for line 𝑙
𝑦𝑠𝑙 The amount of energy level charged at stop 𝑠 for line 𝑙
ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 Represents the area underneath the SOC-graph during the bus dwell

time for line 𝑙
ℎ𝑡𝑟𝑎𝑣𝑒𝑙
𝑠𝑙 Denote the area under the SOC-graph when bus moves from stop 𝑠

to its successor for line 𝑙
𝑜𝑙 Minimum energy level of the battery on board of the bus for line 𝑙
𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 Continuous variable show the difference in energy level between

the starting and ending of each bus cycle.

The mathematical model has three blocks of constraints: (i) constraints related to the strategic variables (location and type of
harging stations, and battery sizing), (ii) constraints related to the operational variables (e.g., SOC variation), and (iii) constraints
elated to the degradation. In the following parts, we first describe each block of constraints followed by the objective function.

trategic variables and constraints. As mentioned in Section 3, for line 𝑙 ∈ 𝐿 a bus cycle presents a certain order of bus stops
𝑠 ∈ 𝑆𝑙 = {1, 2,… , |𝑆|}. Bus stop 𝑠 can be shared with multiple bus lines. We denote the set of all bus stops by 𝑆 = ∪𝑙∈𝐿𝑆𝑙. The bus
tops show the potential locations for installing charging stations. We define the binary variable 𝑥𝑡𝑠 with a value of one if charging
ype 𝑡 is installed at stop 𝑠 ∈ 𝑆, and zero otherwise. For line 𝑙, we assume that all buses are equipped with the same battery
onfiguration chosen from the set 𝑖 ∈ 𝐼 . The binary variable 𝑏𝑖𝑙 taking value one if the battery configuration 𝑖 ∈ 𝐼 is selected for
us line 𝑙. Constraint (8) assures that only one battery type is selected and installed in all buses operating in the same line. At each
top 𝑠, one charging station 𝑡 ∈ 𝑇 can be installed at the most, represented by Constraint (9). In this problem, in order to follow
he existing conventional design, we assume that Terminal Feeding Stations (𝒯 ) are installed at the stops identified as terminus. Let
𝑆𝒯 ⊂ 𝑆 be the set of terminus, Constraints (10) enforce the model to install terminal feeding stations at the stops identified as
terminus.

∑

𝑖∈𝐼
𝑏𝑖𝑙 = 1 ∀𝑙 ∈ 𝐿, (8)

∑

𝑡∈𝑇
𝑥𝑡𝑠 ≤ 1 ∀𝑠 ∈ 𝑆, (9)

𝑥𝒯𝑠 = 1 ∀𝑠 ∈ 𝑆𝒯 . (10)

For a given bus cycle, a charging station can be used for both directions, as shown in Fig. 1 for stops 1 and |𝑆|−1. We define 𝑑 ∈ 𝐷
as the set of stops whose charging stations can be shared in both directions. As such, 𝑆𝑑 ⊂ 𝑆 presents a subset of stop pairs that can
be located at 𝑑 ∈ 𝐷. Consequently, binary variable 𝑥′𝑡𝑑 indicates whether charging station type 𝑡 is installed at 𝑑 ∈ 𝐷. Constraints
(11) show the relation between 𝑥′𝑡𝑑 and 𝑥𝑡𝑠. In other words, the purpose of this constraint is to take into account the potential cost
saving (calculated in the objective) achieved by the economy of scale for the infrastructural construction.

𝑥
′𝑡
𝑑 ≤ 1

2

∑

𝑠∈𝑆𝑑

𝑥𝑡𝑠 ∀𝑡 ∈ 𝑇 , ∀𝑑 ∈ 𝐷 (11)

Operational variables and constraints. The second part of the constraints address the batteries energy level during the bus cycles.
For line 𝑙, variable 𝑧𝑠𝑙 shows the energy level upon arrival at stop 𝑠, while variable 𝑤𝑠𝑙 shows the energy level upon departure from
stop 𝑠. Finally, 𝑦𝑠𝑙 presents the amount of energy level at stop 𝑠. As mentioned in Section 3, 𝜇𝑠𝑙 represents the energy consumption
between two successive stops, i.e., 𝑠 and its successor. Constraint (12) shows the energy level of the bus upon arrival at stop 𝑠. When
8

he bus leaves stop 𝑠, the energy level of battery is equal to the energy level upon arrival plus the energy received at the charging
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Fig. 3. SOC level for each pair of stops equipped with chargers to calculate the 𝑆𝑂𝐶𝑎𝑣𝑔 .

station, shown by Constraint (13).

𝑧𝑠𝑙 = 𝑤𝑠−1,𝑙 − 𝜇𝑠−1,𝑙 ∀𝑠 ∈ 𝑆𝑙 ⧵ {1}, 𝑙 ∈ 𝐿, (12)

𝑤𝑠𝑙 = 𝑧𝑠𝑙 + 𝑦𝑠𝑙 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿, (13)

At stop 𝑠, if charging station of type 𝑡 ∈ 𝑇 is installed, the amount of energy received by battery (𝑦𝑠𝑙) is calculated by min(𝜙𝑡, 𝛿𝑠𝑃 𝑡)
where 𝜙𝑡 is the maximum charged energy at charging station type 𝑡 in kWh, 𝛿𝑠 shows the dwell time at stop 𝑠 in seconds and 𝑃 𝑡 is
the maximum power at station type 𝑡 in kW. The above-mentioned relationship is formalized via the following constraints.

𝑦𝑠𝑙 ≤
∑

𝑡∈𝑇
𝑥𝑡𝑠𝜙

𝑡 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿, (14)

𝑦𝑠𝑙 ≤
∑

𝑡∈𝑇
𝑥𝑡𝑠𝛿𝑠𝑃

𝑡 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿, (15)

During the operation, the SOC can vary within a given range, which is predefined by the operator. We previously introduced
parameter 𝜅𝑖 as the capacity of battery configuration 𝑖 ∈ 𝐼 , and 𝑏𝑖 ∈ 𝐵 as a binary variable equaling one if battery configuration 𝑖
is selected. The lower bound on the SOC is shown by 𝜅𝑖𝜁 , where 𝜁 is a proper number showing the maximum capacity fade at the
battery’s EOL. As discussed in Section 3, all chargers in the set 𝑇 use a constant power–constant voltage charging approach, which
means the battery cannot be fully charged and its charged level is bounded by 𝜅𝑖𝑤 where 𝑤 is the upper bound (proper number)
on the chargeable SOC. Constraint (16) guarantees the continuation of bus operation until the onboard battery of the bus reaches
its EOL. Constraint (17) defines this upper bound for the battery charge. Constraint (18) assures that the battery onboard of the bus
is fully charged at the beginning of the bus cycle.

𝑧𝑠𝑙 ≥
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜁 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿, (16)

𝑤𝑠𝑙 ≤
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜔 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿 (17)

𝑤1𝑙 =
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜔 𝑙 ∈ 𝐿, (18)

Note that, based on our assumption, all buses start their first cycle with a fully charged battery. This assumption applies to all
mathematical models proposed in this paper. Finally, to protect the bus operation in case of failure, all buses must maintain a
minimum energy level to reach the depot. For stop 𝑠, we define 𝜈𝑠 as the required minimum energy to reach the depot. This
condition is applied by Constraints (19).

𝑤𝑠𝑙 ≥
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜁 + 𝜈𝑠𝑙 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, (19)

Constraints related to battery degradation estimation. Constraints (20)–(23) are introduced to incorporate battery degradation
behavior associated with the State-Of-Charge of batteries. More precisely, these constraints are used to calculate the average SOC
(i.e., 𝑆𝑂𝐶𝑎𝑣𝑔 previously introduced in Section 4.2) that is used to calculate 𝑔𝑆𝑂𝐶 in Eq. (4).

Fig. 3 presents the SOC level between a pair of stops. Here station 𝑠 is equipped with a charger and no charger is installed at
station 𝑠 + 1. To calculate the 𝑆𝑂𝐶𝑎𝑣𝑔 , we divide the area under the graph into two trapezoids. Constraints (20) and (21) calculate
the average SOC for all stops except the depot for a given bus. The first trapezoid in Fig. 3 is associated with the bus’s SOC level
upon its arrival at stop 𝑠. If at stop 𝑠, we install a charging station, then the SOC level increases. The second trapezoid shows that
the SOC level drops while traveling between stop 𝑠 and 𝑠 + 1. The 𝑆𝑂𝐶 is calculated by summing up these two trapezoid areas.
9
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We define an auxiliary variable associated with each trapezoid. For stop 𝑠 in line 𝑙, variable ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 represents the area underneath

he SOC-graph during the bus dwell time. Given that each bus can on average perform 𝜌𝑙 cycles per day, Constraint (20) shows how
𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 is calculated using 𝑧𝑠𝑙, 𝑤𝑠𝑙 and 𝛿𝑠𝑙. Similarly variable ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙 denotes the area under the SOC-graph when bus moves from stop

𝑠 to its successor This value is calculated using 𝑤𝑠𝑙, 𝑧𝑠+1,𝑙, 𝜌𝑙 and 𝜏𝑠𝑙 shown by Constraint (21) that presents the travel time between
the two stops. 𝜏𝑠𝑙 is the travel time from stop 𝑠 to its successor.

ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 = 1

2𝜌𝑙(𝑧𝑠𝑙 +𝑤𝑠𝑙)𝛿𝑠 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, (20)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙 = 1
2𝜌𝑙(𝑤𝑠𝑙 + 𝑧𝑠+1,𝑙)𝜏𝑠𝑙 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, (21)

elow, 𝜈
|𝑆|,𝑙 indicates the required energy to reach the depot from the last stop (noted by |𝑆|) of line 𝑙. Constraint (22) calculates

he average SOC of a given bus during its dwell time at the depot (𝛿𝑑𝑒𝑝 is the dwell time at the depot). Constraint (23) shows the
verage state-of-charge while traveling from the last station |𝑆| of line 𝑙 to the depot. The travel time is noted by 𝜏𝑑𝑒𝑝,𝑙.

ℎ𝑑𝑤𝑒𝑙𝑙
𝑑𝑒𝑝,𝑙 = 1

2 (
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖 +𝑤

|𝑆|,𝑙 − 𝜈
|𝑆|,𝑙)𝛿𝑑𝑒𝑝,𝑙 ∀𝑙 ∈ 𝐿, (22)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙
|𝑆|,𝑙 = 1

2 (𝑤|𝑆|,𝑙 + (𝑤
|𝑆|,𝑙 − 𝜈

|𝑆|,𝑙))𝜏𝑑𝑒𝑝,𝑙 ∀𝑙 ∈ 𝐿 (23)

The sum of all h-variables is equal to the area under the SOC-graph for a full day. We divide this sum by the battery capacity
nd the number of seconds (i.e., 86400) in a day, to determine the average SOC. Constraint (24) is used to determine the average
OC for battery configuration 𝑖. For line 𝑙, if battery 𝑖 ∈ 𝐼 is selected (i.e., 𝑏𝑖𝑙 = 1), the value of 𝑆𝑂𝐶𝑎𝑣𝑔

𝑖,𝑙 will be equal to the
alculated average SOC in the optimal solution. Otherwise, the right-hand side of the Constraints (24) will have a negative value
nd 𝑆𝑂𝐶𝑎𝑣𝑔

𝑖,𝑙 = 0 in the optimal solution. Note that, if 𝑏𝑖𝑙 = 0, then the first term in the right-hand side of Constraints (24) is always
reater than the second term.

𝑏𝑖𝑙 − 𝑆𝑂𝐶𝑎𝑣𝑔
𝑖,𝑙 ≤ (24)

∑

𝑗∈𝐼 𝑏𝑗𝑙𝜅𝑗
𝜅𝑖

−

∑

𝑠∈𝑆𝑙

[

ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 + ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙

]

+ ℎ𝑑𝑤𝑒𝑙𝑙
𝑑𝑒𝑝,𝑙 + ℎ𝑡𝑟𝑎𝑣𝑒𝑙

|𝑆|,𝑙

86400𝜅𝑖
∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿,

Constraints (25), estimates the degradation associated with SOC.

𝑔𝑆𝑂𝐶
𝑙 = 24

(0.4179
∑

𝑖∈𝐼 𝑆𝑂𝐶𝑎𝑣𝑔
𝑖𝑙 − 0.1685

𝜁 ⋅ 15 ⋅ 8760

)

(25)

So far, we have estimated the average SOC used to calculate 𝑔𝑆𝑂𝐶
𝑙 as a component of battery degradation function 𝑔𝑐𝑦𝑐𝑙𝑒𝑙 . Next, we

im to estimate the 𝑔𝐷𝑂𝐷
𝑙 function (another component of 𝑔𝑐𝑦𝑐𝑙𝑒𝑙 or battery degradation function) by introducing Constraints (26)

nd (27). We define variable 𝑜𝑙 to present the minimum energy level of the battery on board of the bus operate in line 𝑙. This value
s bounded by 𝑧𝑠𝑙 (i.e, stored battery energy level upon arrival at stop 𝑠) as follows,

𝑜𝑙 ≤ 𝑧𝑠𝑙 . ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿, (26)

he depth-of-discharge for battery configuration 𝑖 is presented by Constraint (27). Here, only one 𝐷𝑂𝐷𝑖𝑙 variable assumes a positive
alue. The degradation associated by DOD is estimated by Constraint (28), in which 𝑚 = 1

𝑁𝑙×𝐷𝑂𝐷𝑎𝑣𝑔
𝑙

as defined in Section 4.1.

𝐷𝑂𝐷𝑖𝑙 ≥ 𝑏𝑖𝑙 −
𝑜𝑙
𝜅𝑖

∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (27)

𝑔𝐷𝑂𝐷
𝑙 = 𝑚

∑

𝑖∈𝐼
𝐷𝑂𝐷𝑖𝑙 , ∀𝑙 ∈ 𝐿, (28)

Finally, the degradation associated with the temperature is estimated by Constraint (29).

𝑔𝑡𝑒𝑚 =
∑

𝑠∈𝑆

∑

𝑡∈𝑇

𝛥𝐿𝑡
𝑡𝑒𝑚𝑝,𝑠

𝐿
𝑥𝑡𝑠 (29)

Objective function: As mentioned earlier, the objective function is to minimize 𝑓 (𝑔𝑐𝑜𝑠𝑡, 𝑔𝑐𝑦𝑐𝑙𝑒(⋅)), in which 𝑔𝑐𝑜𝑠𝑡 shows the investment
costs and 𝑔𝑐𝑦𝑐𝑙𝑒(⋅) the costs resulting from battery degradation. We present these two objectives in a linear fashion using the 𝜖-
constraints method. It is also possible to express the problem with a single objective function that translates all the cost values in
monetary units. However, there are three main reasons for the choice of this bi-objective formulation: First, weighted-sum method
only returns a single optimal solution. Whereas, with the 𝜀−constraints method, one can generate the Pareto Frontier. With this
frontier, we aim at providing a series of design solutions. Based on several post-processing techniques, practitioners could then
decide which scenario is more suitable. Second, we study the problem at the strategic level when the time horizon is given. Battery
lifetime is the output of our model. Therefore, battery cost is not fixed for the selected horizon (we may need one or several battery
replacements). Incorporating these conditions will result in an intractable non-linear model. However, by choosing a given solution,
one can easily convert the battery lifetime into a monetary value in a post-processing phase. Finally, explaining the problem as a
10

single objective adds an extra layer of complexity to the solution, meaning that one needs to analyze the sensitivity (and stability
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of the solution) based on the weights assigned to each objective. The investment costs (30) are a combination of battery purchasing
cost and the cost of installing charging stations.

𝑔𝑐𝑜𝑠𝑡 = min
∑

𝑙∈𝐿

∑

𝑖∈𝐼
𝛽𝑙
𝛤𝑖𝑏𝑖𝑙
𝜂𝑖

+
∑

𝑡∈𝑇

[

∑

𝑠∈𝑆 𝑥𝑡𝑠𝛤
𝑡
𝑠 −

∑

𝑑∈𝐷 𝑥𝑡𝑑𝛼
𝑡
𝑑

𝑝𝑡

]

(30)

For battery type 𝑖 ∈ 𝐼 , we let 𝛤𝑖 be its purchasing cost and 𝜂𝑖 is an upper bound for battery lifetime. Here, we have to note that
we use 𝜂𝑖 to normalize the purchasing cost of the battery. The first term in Eq. (30) shows the normalized purchasing cost where 𝛽𝑙
is the fleet size. In the second part of the function (showing the investment costs in relation to infrastructure), 𝛤 𝑡

𝑠 is introduced as
the cost of installing charging station type 𝑡 at stop 𝑠, and 𝛼𝑡𝑑 presents the cost saved when one charging station type 𝑡 is installed at
stop 𝑑 that covers both directions. Finally, 𝑝𝑡 shows the lifetime of charging station type 𝑡 ∈ 𝑇 . The second objective in this problem
has to do with limiting battery degradation, whose function is expressed by 𝑔𝑐𝑦𝑐𝑙𝑒(⋅) first introduced in Section 4. We express this
objective by an 𝜖-constraint shown in Constraint (31).

𝜖𝑑𝑒𝑔 ≥
∑

𝑙∈𝐿
𝛽𝑙(𝑔𝑆𝑂𝐶

𝑙 + 𝑔𝐷𝑂𝐷
𝑙 ) + 𝑔𝑡𝑒𝑚𝑝 (31)

Finally, the domain of variables are presented as follows.

𝑥𝑡𝑠 ∈ {0, 1} ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆, (32)

𝑥𝑡𝑑 ∈ {0, 1} ∀𝑡 ∈ 𝑇 , ∀𝑑 ∈ 𝐷, (33)

𝑏𝑖𝑙 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (34)

𝑦𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 𝑖𝑛𝐿, (35)

𝑧𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿, (36)

𝑤𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆𝑙 , 𝑙 ∈ 𝐿 (37)

𝑜𝑙 ≥ 0 ∀𝑙 ∈ 𝐿, (38)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙 , ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, (39)

𝐷𝑂𝐷𝑖𝑙 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (40)

𝑆𝑂𝐶𝑎𝑣𝑔
𝑖𝑙 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿. (41)

In the following section, we introduce the second model that suggests a different charging strategy to evaluate the impact on the
overall costs.

5.2. Model M2: Same charging policy for all bus cycles

In Model M1, we assumed that the battery is fully charged at the start of each bus cycle, which could limit the opportunities to
identifying a network configuration that allows for lower battery degradation (a with it, a more cost-efficient solution). This section
presents additional constraints to the model shown in Section 5.1 to relax the full charge assumption. Here, we define a continuous
variable 𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 to show the difference in energy levels between the start and finish of each bus cycle.

𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 = 𝑤1,𝑙 −𝑤
|𝑆|,𝑙 , (42)

Fig. 4 shows the battery SOC level during the operation if the SOC can be reduced by 𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 at each bus cycle. By adding the term
(𝜌𝑙 −1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 to Constraints (16), (19) and (24) we are able to guarantee their validity at each bus cycle. Note that 𝜌𝑙 is the number
of cycles executed by a given bus per day. The modified constraints are presented as follows:

𝑧𝑠𝑙 ≥
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜁 + (𝜌𝑙 − 1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, (43)

𝑤𝑠𝑙 ≥
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜁 + 𝑣𝑠 + (𝜌𝑙 − 1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (44)

𝑜𝑙 ≤ 𝑧𝑠𝑙 − (𝜌𝑙 − 1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿, (45)

In addition, the constraints associated with the calculation of the SOC need to be adapted to account for the gradual decrease in
battery energy level throughout the day. Constraints (22) and (23) are modified to calculate the area under the SOC graph at the
depot. The revised constraints are presented below,

ℎ𝑑𝑤𝑒𝑙𝑙
𝑑𝑒𝑝,𝑙 = 1

2 (
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖 +𝑤

|𝑆|,𝑙 − (𝜌𝑙 − 1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙 − 𝜈
|𝑆|,𝑙)𝛿𝑑𝑒𝑝,𝑙 (46)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙
|𝑆|,𝑙 = 1

2 (𝑤|𝑆|,𝑙 + (𝑤
|𝑆|,𝑙 − 𝜈

|𝑆|,𝑙) − (𝜌𝑙 − 1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙)𝜏𝑑𝑒𝑝,𝑙 (47)
11
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Fig. 4. Battery SOC level during operation considering 𝛥𝑐𝑦𝑐𝑙𝑒.

To calculate the average SOC, we define ∑

𝑠∈𝑆𝑙
𝜏𝑠𝑙 as the total time it takes to complete a single bus cycle. For each bus cycle, the

area underneath the SOC graph in Fig. 3 reduces with an area of 𝛥𝑐𝑦𝑐𝑙𝑒,𝑙
∑

𝑠∈𝑆𝑙
𝜏𝑠𝑙. The sum of these excess areas must be subtracted

from the sum of the ℎ-variables. The total excess can be expressed as follows,

(1 + 2 + 3 +⋯ + 𝜌𝑙 − 1)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙
∑

𝑠∈𝑆𝑙

𝜏𝑠𝑙 =
1
2
(𝜌2𝑙 − 𝜌𝑙)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙

∑

𝑠∈𝑆𝑙

𝜏𝑠𝑙 (48)

Finally, Constraint (24) is replaced by the following constraints,

𝑏𝑖𝑙 − 𝑆𝑂𝐶𝑎𝑣𝑔
𝑖𝑙 ≤

∑

𝑗∈𝐼 𝑏𝑗𝑙𝜅𝑗
𝜅𝑖

−

∑

𝑠∈𝑆𝑙

[

ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 + ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙

]

− 1
2 (𝜌

2
𝑙 − 𝜌𝑙)𝛥𝑐𝑦𝑐𝑙𝑒,𝑙

∑

𝑠∈𝑆𝑙
𝜏𝑠𝑙

86400𝜅𝑖
(49)

∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿.

The remaining constraints are the same in model M1. The following section presents the final model that accounts for different
charging policies at each bus cycle.

5.3. Model M3: Different charging policy for each bus cycle

Model M2 allows for battery energy reduction after each bus cycle. In Model M3, we evaluate the impact of allowing for different
energy level losses after each bus cycle on the cost of battery degradation. In other words, M3 is the relaxation of M2. We further
modify the M1 formulation to allow for variations in the SOC level during the day by duplicating bus stops for every bus cycle. To
track the energy level status for each cycle separately, we define a new set 𝑆′

𝑙 = {1,… , |𝑆|, |𝑆|+1,… , 2|𝑆|,… , (𝜌𝑙 −1)|𝑆|,… , 𝜌𝑙|𝑆|}.
To make sure that a charging station is installed at each duplicated stops, Constraint (50) is added to M1.

𝑥𝑡𝑠 = 𝑥𝑡𝑠−|𝑆|, ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆′
𝑙 |𝑠 > |𝑆|, 𝑙 ∈ 𝐿, (50)

The remaining constraints are similar to the ones presented in M1 and are adapted by using the set 𝑆′
𝑙 .

6. Linearization of degradation function

Models M1, M2, and M3 present three charging policies designed to charge an existing bus network. They all share the same
objective function with two components. Investment costs are the main objective function, while battery degradation is presented
as an 𝜖-constraint, previously shown by Eqs. (30) and (31) (see Ngatchou et al., 2005 for an overview of 𝜖-constraint methods). In
this section, we present our approach to solving these proposed models.

First, we need to tackle the nonlinearity introduced by the degradation function, Eq. (1), in M1 to M3 models. In Section 5.1, we
linearized 𝑔𝑆𝑂𝐶 (⋅) function and incorporated its associated constraints in the model. The function 𝑔𝑡𝑒𝑚𝑝 is linearized with the help
of enumeration. The only remaining source of nonlinearity is then the 𝑔𝐷𝑂𝐷

𝑙 function. In this section, we introduce an iterative
approach to deal with this by solving a series of linear integer problems. Earlier, we presented a nonlinear empirical function
𝑔𝐷𝑂𝐷
𝑙 = 𝑚𝐷𝑂𝐷𝑖 to estimate the battery degradation caused by the depth-of-discharge for each type of battery. In Section 5.1, we

presented Constraints (26) and (27) to calculate 𝐷𝑂𝐷𝑖. Both 𝑚 and 𝐷𝑂𝐷𝑖 are variables that make 𝑔𝐷𝑂𝐷 a nonlinear function.
The main idea behind our proposed iterative approach is to calculate the 𝐷𝑂𝐷𝑖 for a given network configuration (including

the decisions about the type of batteries and locations of charging locations) and to find its associated value of 𝑚 . We first need to
12
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Fig. 5. Graphical depiction of all the stops on bus line 33.

calculate the 𝐷𝑂𝐷𝑎𝑣𝑔
𝑙 that can be easily done for a given network design, after which the value of 𝑁 is calculated by Eq. (2) and

the degradation function 𝑔𝑐𝑦𝑐𝑙𝑒 becomes linear.
Algorithm 1 presents the pseudocode of the iterative approach to solving M1, M2 and M3. We first define the notations applied

in the algorithm. For a given charging policy M1, M2 or M3, we obtain an optimal solution called 𝑋∗. Estimated value of 𝑚𝑙 is
presented by �̂�𝑙 and �̂�𝐷𝑂𝐷

𝑙 is the estimated value of 𝑔𝐷𝑂𝐷
𝑙 . Vector �⃗�∗ contains all feasible solutions given different values of 𝑚𝑙, that

satisfies the 𝜖-constraint associated with the battery degradation.
In the first step of the algorithm, we set an initial value for �̂�𝑙. Then, we solve the MILP whose optimal solution is presented by

𝑋∗. Given the 𝑋∗ and �̂�𝑙, we estimate the value of �̂�𝐷𝑂𝐷
𝑙 . By using the 𝑋∗, we obtain the actual value of 𝑚 and consequently, 𝑔𝐷𝑂𝐷

𝑙
is calculated (steps 5 and 6). Then, we verify whether 𝑋∗ is still feasible given the true value of 𝑔𝐷𝑂𝐷

𝑙 (i.e., feasibility condition:
𝑔𝑐𝑦𝑐𝑙𝑒 ≤ 𝜖). If this is the case, then we add 𝑋∗ to the vector of feasible solutions, 𝑋∗. We then update the value of �̂� and repeat steps
3–9 till either |�̂�𝐷𝑂𝐷

𝑙 − 𝑔𝐷𝑂𝐷
𝑙 | ≤ 𝜎𝑙 where 𝜎𝑙 is a predefined small value or no new solution can be found. Finally, 𝑋∗ (best solution)

is obtained by finding the argmin cost function given the vector 𝑋∗.
Algorithm 1: Iterative approach to solve models 𝑀1, 𝑀2 and 𝑀3

Input: Model 𝑀𝑗 𝑗 = 1, 2, 3
DOD estimation function

Output: Best solution
1 Initialize �̂�𝑙
2 do
3 𝑋∗ ← solve 𝑀𝑗 𝑗 = 1, 2, 3
4 �̂�𝐷𝑂𝐷

𝑙 ← get DOD value (𝑋∗, �̂�𝑙 , 𝑙).
5 𝑚𝑙 ← get true 𝑚𝑙(𝑋∗)
6 𝑔𝐷𝑂𝐷

𝑙 ← get DOD value (𝑋∗, 𝑚, 𝑙)
7 if 𝑔𝑐𝑦𝑐𝑙𝑒 is infeasible with the new 𝑔𝐷𝑂𝐷

𝑙 then
8 add 𝑋∗ to 𝑋∗.
9 end
10 �̂�𝑙 ← 𝑚𝑙
11 until |�̂�𝐷𝑂𝐷

𝑙 − 𝑔𝐷𝑂𝐷
𝑙 | ≤ 𝜎𝑙 for all 𝑙 or no new solution can be found;

12 𝑋∗ ← argmin cost give 𝑋∗

7. Computational results

In this section, we discuss the computational results. We apply our proposed models on bus line 33 in Rotterdam. We aim to
evaluate the trade-off between the location of charging stations and their layout (i.e., number of charging stations, battery size,
etc.) and battery degradation patterns. In fact, we investigate the benefit of applying different charging policies on battery lifetime.
The details of our studied case are described in Section 7.1. In Section 7.2, we present the Pareto-frontier for models M1, M2, and
M3. We discuss how the infrastructure design will evolve by varying the 𝜀-value. We show that considering operational variables
(e.g., SOC variation) can significantly reduce the investment cost. The benefits of integrating battery degradation in infrastructure
design are discussed in Section 7.3. In Section 7.4 we present the extension of the results at the network level.

7.1. Case study description

We study the plan for the electrification of bus line 33, which moves between Rotterdam airport and the main train station.
Figs. 5 and 6 present the locations of the various stations and the bus line that operates daily between 6 AM and midnight. Each
round trip takes 51 min, and a fleet of 6 buses provides the service for this line. We assume that trips are distributed equally among
these buses and that bus performs 16 cycles per day, i.e., 𝜌1 = 16.

We use Google Maps to calculate the distances and travel times between each pair of stops assume that the dwell time at different
stops adheres to a Normal distribution (expressed in seconds). For stops along the route, the dwell time is set by choosing a random
number from 𝑁(15, 5). The dwell time for terminals is chosen randomly from 𝑁(210, 70). The dwell time at the terminal at the end
of the bus cycle is defined such that the total duration of one cycle is exactly one hour. Finally, between each pair of stops, we
calculate the consumed energy based on the approach proposed by Barco et al. (2017).
13
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Fig. 6. Bus line 33 depicted on the map.

Table 3
Specification of charging stations.
Parameter description Value Unit Ref.

Max. Power of 𝑃ℱ 600 kW Pihlatie and Paakkinen (2017)
stations 𝑃 𝒮 200 kW Pihlatie and Paakkinen (2017)

𝑃 𝒯 100 kW Pihlatie and Paakkinen (2017)
𝑃 𝑑𝑒𝑝𝑜𝑡 50 kW Pihlatie and Paakkinen (2017)

Max. charged 𝜙ℱ 10.00 kWh Pihlatie and Paakkinen (2017)
energy by stations 𝜙𝒮 2.0 kWh Pihlatie and Paakkinen (2017)

𝜙𝒯 5.0 kWh Pihlatie and Paakkinen (2017)

Cost of installing 𝛤ℱ
𝑠 200,000 e Lajunen (2014b)

charging stations 𝛤 𝒮
𝑠 150,000 e Lajunen (2014b)

𝛤𝒯
𝑠 120,000 e Lajunen (2014b)

Savings of both ways 𝛼ℱ
𝑑 100,000 e Lajunen (2014b)

installing charging 𝛼𝒮
𝑑 75,000 e Lajunen (2014b)

stations 𝛼𝒮
𝑑 120,000 e Lajunen (2014b)

Lifetime of charging 𝑝ℱ 4,380 days Lajunen (2014b)
stations 𝑝𝒮 4,380 days Lajunen (2014b)

𝑝𝒯 4,380 days Lajunen (2014b)

Table 3 presents the specification of charging stations. We use the information provided by Pihlatie and Paakkinen (2017) to
determine the maximum power of charging station type 𝑡 as well as the maximum charged energy, 𝜙𝑡 at station type 𝑡. The rest of
the required information including 𝛤 𝑡

𝑠 , 𝛼
𝑡
𝑠 and 𝑝𝑡 is obtained from (Lajunen, 2014b).

Parameters associated with batteries are presented in Table 4. Parameters related to the state-of-charge and the depth-of-
discharge are borrowed from Hoke et al. (2011), while parameters associated with the temperature component of the degradation
function are obtained from Barco et al. (2017).

7.2. Infrastructure design and charging policies

In this section, we discuss the computational results of our proposed models to evaluate the impact of different charging policies
on battery degradation and overall costs. We implement Algorithm 1 in Java and use CPLEX 12.9 to solve the optimization problems.
These models are solved on a computer with a 3.5 GHz processor and 16 GB RAM. All models can be solved in less than one hour.
No significant difference have been observed by using different epsilon value. We present the Pareto frontiers for model M1, M2
and M3 in Fig. 7.

The costs of installing charging stations, battery costs and battery lifetime (in days) are presented in Figs. 7(a), 7(c) and 7(e).
The change of infrastructure cost under different 𝜀-values as well as the estimated achieved lifetime of batteries for each model are
presented in Figs. 7(b), 7(d) and 7(f).
14
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Table 4
List of parameters related to batteries.
Parameter description Value Unit Ref.

Ambient Temp. 𝑇 𝑒𝑚𝑝𝑎𝑚𝑏 25 𝑜𝐶 Hoke et al. (2011)
Thermal resistance 𝑅 4.10−5 C∕W Hoke et al. (2011)

LB on the usable SOC 𝜁 0.20 Assumptions

UB on chargeable SOC 𝜔 0.90 Assumptions

Cap. of bat. conf. 𝜅𝑖 5𝑖 kWh Assumptions
𝑖 ∈ 𝐼 = {1,… , 16}

Marginal cost of battery 𝛤𝑖 1000 e∕kWh Lajunen (2014b)

Upper bound for 𝜂𝑖 3,650 days Lajunen (2014b)
Battery lifetime

The total investment cost and battery lifetime have opposite relationships. By imposing lower 𝜀-values, i.e., a longer lifetime for
battery, each model first tends to find a solution with a larger onboard battery (the battery cost increased by reducing the 𝜀-values
in Figs. 7(a), 7(c) and 7(e)). Then, by further decreasing the value of 𝜀, it is more beneficial to add the number of charging stations
resulting in higher investment cost. As can be seen in Figs. 7(a), 7(c) and 7(e), the station cost remains constant while 𝜀-value
decreases. In our case, the smallest 𝜀-value in which a solution is found 1.4 × 10−3 equivalent to the lifetime of approximately 4500
days.

Comparing the solutions of the model M1 (full charge policy) and M2 (same charging policy for all bus cycles), we identify two
patterns by varying allowed degradation. For 𝜀 ≥ 1.85 × 10−3, we observe that relaxing the full-charge policy allows us to identify
a network design with fewer charging stations (the station costs of the solutions reported in M2 is less than M1). Therefore, larger
onboard batteries are installed while the total costs are reduced (higher battery cost). For smaller values of 𝜀, both M1 and M2 find
similar solutions in terms of the number of stations and battery sizes.

Model M3 (which imposes different charging policies for each bus cycle), on the other hand, finds solutions with the same number
of stations as M2, but with smaller on board batteries for all values of 𝜀. This result shows the significance of optimizing the charging
policy at a strategic level. We note that although the solution of model M3 provides a solution with a minimum degradation, most
of the time, it may also be less flexible while coping with unexpected events (e.g., detour due to construction, failure of charging
stations, etc.). Therefore, careful examinations are required to choose one of the designs provided by M1, M2, and M3.

7.3. Benefits of including battery degradation on infrastructural design

In this section, we discuss the benefits of incorporating battery degradation when designing the BEBs infrastructure. We compare
the solutions of the proposed M1, M2, and M3 models with their associated mathematical models (called O1, O2, and O3) in which
battery degradation is not incorporated into the design decisions.

Table 5 summarizes the comparative results for our case study presented in Section 7.1. For M1, M2, and M3, we group the
solutions with similar characteristics based on the number of stations and battery sizes. For the non-similar ones, we provide the
range of solution values. The column called ‘‘class of solutions’’ presents the network configuration associated with the obtained
solutions. The group of solutions are called A, B, C and D. Column 𝜀-value report the imposed 𝜀 value. For each solution, the
information about the batteries and charging stations are reported under the columns ‘‘Battery size’’, ‘‘Battery lifetime’’, and
‘‘Charging facilities’’. Finally column under ‘‘Station costs’’ reports the cost associated with the installation of charging stations.

By comparing the outcome of the different models, including and excluding battery degradation, we see that for a similar design
(i.e., same battery size, number of stations, and costs), our proposed models (M1, M2, and M3 models) manage to improve battery
lifetime. The corresponding rows in Table 5 are summarized in Table 6. Here, we compare the design obtained by models 𝑂1, 𝑂2
and 𝑂3 with the one obtained by corresponding 𝑀𝑗 model. Among the Pareto solutions resulting from models 𝑀𝑗 , we choose the
one which has the same design as model 𝑂𝑗 (i.e., in terms of the number of charging stations, battery size and investment costs). The
results show that incorporating battery degradation in designing the network of BEBs leads to significant improvements in battery
lifetimes (%5, %15, and %17 for M1. M2 and M3, respectively) without increasing investment costs. Although both models use the
same infrastructure. Models 𝑀𝑗 positioned them in a way that increases battery lifetime, which is not the case for models 𝑂𝑗 . From
an economic perspective, these savings can be translated to 0.77%—4.74% of total investment cost, depending on the charging
policy.

Finally, we investigate the relationship between battery lifetime and battery sizes for solutions with a similar number of charging
stations. The corresponding Pareto solutions are summarized in Table 7. The first row shows the benchmark case when no battery
degradation is incorporated into the objective function, but we allow for different charging policies. In the subsequent rows, we
gradually increase the size of batteries proportional to the benchmark case.

For each model, three solutions are presented. The first group of solutions has a slightly larger battery size (i.e., less than two
times the battery size in the benchmark solution). The second group has a larger battery size (more than two times larger than the
benchmark), while the third group has slightly higher station costs (one additional station is installed). This shows that if the battery
15
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Fig. 7. Pareto frontiers for the 𝜖-constraint bi-objective models M1, M2 and M3.

to increase between 66% to 94%, and combining this with the installment of an extra station improves the results between 105%
to 118%. These are cost-efficient solutions compared to the benchmark depending on the costs related to stations and the marginal
costs involved in increasing the fleet’s battery size.

7.4. Bus network

The previous sections discuss the impact of charging policies on infrastructure design and the benefit of considering battery
degradation while designing infrastructure. This section investigates the changes in infrastructure design (i.e., type and the number
of charging stations and battery sizes) when bus lines have partially shared stops.

We extend the single line network to create a network of two lines hub-and-spoke structure in which both lines start their trip
from the central depot. Both lines share the same characteristics in terms of the number of stops, energy consumption between each
16
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Table 5
Solution comparison between models excluding battery degradation (O1, O2, and O3) and the solutions of the Pareto-frontier obtained by models M1, M2, M3

Model Class of solutions 𝜀 Battery Battery Charging facilities Station costs

Name Description value size (kWh) lifetime (days) #ℱ #𝒮 e

O1 – 15 1835 6 0 1,140,000

M1 A Same station costs, 4.11E−03 15 1929
small battery ⋮ ⋮ ⋮ 6 0 1,140,000

1.88E−03 40 3360

B Same station costs, 1.83E−03 45 3490
large battery ⋮ ⋮ ⋮ 6 0 1,140,000

1.60E−03 70 3909

C Large battery, 1.57E−03 75 4047 6 1,240,000
increasing station ⋮ ⋮ ⋮ ⋮ 0
costs 1.43E−03 80 4305 10 1,740,000

D 1.40E−03 80 4442 16 1 2,790,000

O2 20 1458 5 0 1,040,000

M2 A Same station costs, 4.11E−03 20 1713
small battery ⋮ ⋮ ⋮ 5 0 1,040,000

1.88E−03 50 3335

B Same station costs, 1.83E−03 45 3564
large battery ⋮ ⋮ ⋮ 6 0 1,140,000

1.60E−03 70 3916

C Large battery, 1.57E−03 75 4047 6 1,240,000
increasing station costs ⋮ ⋮ ⋮ ⋮ 0 ⋮

1.43E−03 80 4306 10 1,740,000

D 1.40E−03 80 4439 15 1 2,790,000

O3 20 1479 5 0 1,040,000

M3 A Same station costs, 4.11E−03 20 1774
small battery ⋮ ⋮ ⋮ 5 0 1,040,000

1.93E−03 40 3108

B Same station costs, 1.83E−03 50 3371
large battery ⋮ ⋮ ⋮ 6 0 1,140,000

1.64E−03 70 3978

C 1.57E−03 70 3952 6 0 1,240,000

D 1.49E−03 75 4267 10 0 1,740,000

Table 6
Comparison between battery lifetime gains when including and excluding degradation.
Model number 1 2 3

Battery lifetime O 1835 1458 1479
(in days) M 1929 1713 1774

Difference (days) 94 255 295

Imp. (%) 4.87 14.81 16.53

Battery cost O 49.05 82.30 81.14
per day (e) M 46.66 70.05 67.64

Battery cost O 179019.07 300411.52 296146.04
planning horizon (e) M 170295.49 255691.77 246899.66

Difference (e) 8723.58 44719.75 49246.38

(%) of investment cost 0.77% 4.30% 4.74%

pair of stops, and so on. We then define nine case scenarios for this extended two line network based on the bus frequencies and
the percentage of shared stops (except the depot) across the network between two lines.

The descriptions of these networks are described in Table 8 and their associated schematic representations are shown in Fig. 8.
he generated instances are categorized into three groups. In the first group (N1–N3), bus lines have no shared stops (except the
entral depot). In the second group, the first six stops are shared between two bus lines (N4–N6). Finally, in the third group (N7–N9),
he first 12 stops of the bus lines are shared. Within each group, one bus line always performs 16 cycles per day, and the other one

runs 16, 24, and 32 cycles. Note that bus bunching is not considered in the presented model.
We use model M3 to design the infrastructure. In order to have a fair comparison between instances, we only accept the solutions

in which the battery lifetime is within the range (3500 − 4000) days and report the solution with the highest battery lifetime. The
17
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Table 7
Achieved improvement in battery lifetime when larger batteries are installed. Three solutions are presented for
every model. The increase in costs, battery size and battery lifetime is compared to its associated benchmark
model 𝑂𝑖, 𝑖 = 1, 2, 3. The increase in station costs is 0% for the solutions where it is omitted.
Solution Charging policy

Class Description 1 2 3

Benchmark Battery size 15 kWh 20 kWh 20 kWh
Model 𝑂𝑖 Lifetime (days) 1835 1458 1479

A Input: Battery size ×1.7(25 kWh) ×1.5(30 kWh) ×1.5(30 kWh)
Model 𝑀𝑖:
increase in : Lifetime (days) 54%(2827) 80%(2625) 80%(2655)

A Input: Battery size ×2.3(35 kWh) ×2.5(50 kWh) ×2.0(40 kWh)
Model 𝑀𝑖:
increase in : Lifetime (days) 74%(3207) 128%(3335) 49%(3108)

C,B Input: Battery size 5.0(75 Wh) ×2.8(55 kWh) ×2.5(50 kWh)
Model 𝑀𝑖:
increase in: Station cost 8.77% 9.62% 9.62%
increase in: Lifetime (days) 120%(4047) 157%(3749) 76%(3667)

Fig. 8. Schematic representation of the networks.

Table 8
Characteristics of the generated scenarios.

Instance name

N1 N2 N3 N4 N5 N6 N7 N8 N9

Shared stops 0 0 0 6 6 6 12 12 12
𝜌1 16 16 16 16 16 16 16 16 16
𝜌2 16 24 32 16 24 32 16 24 32

of charging stations, the number of shared charging stations, and the total number of installed charging stations. The battery size
selected for each bus line is reported under the column ‘‘Battery size’’.

Instance N1 shows a bus network with two independent bus lines, which we use as a benchmark to compare other instances.
or N1, the model results in an identical infrastructure design. This outcome is expected as both lines have similar characteristics.
hen the number of shared stops increases (instances N4 and N7), the model proposes the same number of charging stations with a

light modification on their positions. In these cases, the battery capacity remains the same. On the other hand, as bus lines contain
hared bus stops, the total number of installed charging stations decreases. By increasing the number of cycles, the model increases
he size of batteries and the number of charging stations for the second line. However, when they share several stops, the model
uggests to install terminal feeding station shared between two lines.

. Conclusion

In this paper, we examine the electrification of an existing bus line and proposed a family of mathematical models to make
etwork design decisions related to the location of charging stations, their power type and battery sizing, while taking the costs
f battery degradation into account. We used a semi-empirical approach to estimate battery degradation and incorporated it into
he mathematical models. We presented a bi-objective approach, in which the first objective counts for the investment cost and the
econd objective estimates the battery degradation (formulated as 𝜀-constraints).
18
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Table 9
Design decisions for each network.
Name Charging facilities Battery size (kWh)

𝐿1 𝐿2 𝐿1 𝐿2

#ℱ #𝒮 #ℱ #𝒮 Shared Total

N1 6 0 6 0 0 12 55 55
N2 6 0 7 0 0 13 55 60
N3 6 0 8 0 0 14 60 65
N4 6 0 6 0 3 9 55 55
N5 6 1 6 1 4 10 55 65
N6 5 2 7 2 4 12 65 70
N7 6 0 6 0 4 8 55 55
N8 6 2 8 2 6 12 60 70
N9 5 3 6 3 7 10 65 70

We applied our models to a bus line in Rotterdam and showed that incorporating battery degradation into the design process
an significantly increase battery lifetimes without increasing the investment costs. Moreover, our results indicate that we can
xtend the battery lifetime by allowing flexibility in the charging/discharging policy. In this research, we assume that the BEBs
perate in a deterministic environment. Although that assumption can provide realistic estimations in a number cases, it may not be
uitable for bus networks with high demand fluctuations, because the energy being consumed can vary significantly during the day,
esulting in reduced battery lifetimes. As an extension to the current research, we are interested in addressing uncertainties related
o energy consumption in the design decisions. Our models can be extended to incorporate uncertainties in energy consumption
sing stochastic or robust optimization methods.
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Appendix. Model M3

min
∑

𝑙∈𝐿

∑

𝑖∈𝐼
𝛽𝑙
𝛤𝑖𝑏𝑖𝑙
𝜂𝑖

+
∑

𝑡∈𝑇

[

∑

𝑠∈𝑆 𝑥𝑡𝑠𝛤
𝑡
𝑠 −

∑

𝑑∈𝐷 𝑥𝑡𝑑𝛼
𝑡
𝑑

𝑝𝑡

]

(A.1)

𝜖𝑑𝑒𝑔 ≥
∑

𝑙∈𝐿
𝛽𝑙(𝑔𝑆𝑂𝐶

𝑙 + 𝑔𝐷𝑂𝐷
𝑙 ) + 𝑔𝑡𝑒𝑚𝑝 (A.2)

∑

𝑖∈𝐼
𝑏𝑖𝑙 = 1 ∀𝑙 ∈ 𝐿, (A.3)

∑

𝑡∈𝑇
𝑥𝑡𝑠 ≤ 1 ∀𝑠 ∈ 𝑆, (A.4)

𝑥𝒯𝑠 = 1 ∀𝑠 ∈ 𝑆𝒯 , (A.5)

𝑥
′𝑡
𝑑 ≤ 1

2

∑

𝑠∈𝑆𝑑

𝑥𝑡𝑠 ∀𝑡 ∈ 𝑇 , ∀𝑑 ∈ 𝐷, (A.6)

𝑧𝑠𝑙 = 𝑤𝑠−1,𝑙 − 𝜇𝑠−1,𝑙 ∀𝑠 ∈ 𝑆′
𝑙 ⧵ {1}, 𝑙 ∈ 𝐿, (A.7)

𝑤𝑠𝑙 = 𝑧𝑠𝑙 + 𝑦𝑠𝑙 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.8)

𝑦𝑠𝑙 ≤
∑

𝑡∈𝑇
𝑥𝑡𝑠𝜙

𝑡 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.9)

𝑦𝑠𝑙 ≤
∑

𝑡∈𝑇
𝑥𝑡𝑠𝛿𝑠𝑃

𝑡 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.10)

𝑧𝑠𝑙 ≥
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜁 ∀𝑠 ∈ 𝑆′

𝑙 , 𝑙 ∈ 𝐿, (A.11)

𝑤𝑠𝑙 ≤
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜔 ∀𝑠 ∈ 𝑆′

𝑙 , 𝑙 ∈ 𝐿, (A.12)

𝑤1𝑙 =
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖𝜔 𝑙 ∈ 𝐿, (A.13)

𝑤𝑠𝑙 ≥
∑

𝑏𝑖𝑙𝜅𝑖𝜁 + 𝜈𝑠 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.14)
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𝑖∈𝐼
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𝑥𝑡𝑠 = 𝑥𝑡𝑠−|𝑆|, ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆′
𝑙 |𝑠 > |𝑆|, 𝑙 ∈ 𝐿, (A.15)

ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 = 1

2 (𝑧𝑠𝑙 +𝑤𝑠𝑙)𝛿𝑠 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.16)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙 = 1
2 (𝑤𝑠𝑙 + 𝑧𝑠+1,𝑙)𝜏𝑠𝑙 ∀𝑠 ∈ 𝑆′

𝑙 , 𝑙 ∈ 𝐿, (A.17)

ℎ𝑑𝑤𝑒𝑙𝑙
𝑑𝑒𝑝,𝑙 = 1

2 (
∑

𝑖∈𝐼
𝑏𝑖𝑙𝜅𝑖 +𝑤

|𝑆|,𝑙 − 𝜈
|𝑆|,𝑙)𝛿𝑑𝑒𝑝,𝑙 ∀𝑙 ∈ 𝐿, (A.18)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙
|𝑆|,𝑙 = 1

2 (𝑤|𝑆|,𝑙 + (𝑤
|𝑆|,𝑙 − 𝜈

|𝑆|,𝑙))𝜏𝑑𝑒𝑝,𝑙 ∀𝑙 ∈ 𝐿 (A.19)

𝑏𝑖𝑙 − 𝑆𝑂𝐶𝑎𝑣𝑔
𝑖,𝑙 ≤ (A.20)

∑

𝑗∈𝐼 𝑏𝑗𝑙𝜅𝑗
𝜅𝑖

−

∑

𝑠∈𝑆𝑙

[

ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 + ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙

]

+ ℎ𝑑𝑤𝑒𝑙𝑙
𝑑𝑒𝑝,𝑙 + ℎ𝑡𝑟𝑎𝑣𝑒𝑙

|𝑆|,𝑙

86400𝜅𝑖
∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿,

𝑜𝑙 ≤ 𝑧𝑠𝑙 . ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.21)

𝐷𝑂𝐷𝑖𝑙 ≥ 𝑏𝑖𝑙 −
𝑜𝑙
𝜅𝑖

∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (A.22)

𝑔𝐷𝑂𝐷
𝑙 = 𝑚

∑

𝑖∈𝐼
𝐷𝑂𝐷𝑖𝑙 , ∀𝑙 ∈ 𝐿, (A.23)

𝑔𝑡𝑒𝑚 =
∑

𝑠∈𝑆

∑

𝑡∈𝑇

𝛥𝐿𝑡
𝑡𝑒𝑚𝑝,𝑠

𝐿
𝑥𝑡𝑠 (A.24)

𝑥𝑡𝑠 ∈ {0, 1} ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆′, (A.25)

𝑥𝑡𝑑 ∈ {0, 1} ∀𝑡 ∈ 𝑇 , ∀𝑑 ∈ 𝐷, (A.26)

𝑏𝑖𝑙 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (A.27)

𝑦𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 𝑖𝑛𝐿, (A.28)

𝑧𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿, (A.29)

𝑤𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆′
𝑙 , 𝑙 ∈ 𝐿 (A.30)

𝑜𝑙 ≥ 0 ∀𝑙 ∈ 𝐿, (A.31)

ℎ𝑡𝑟𝑎𝑣𝑒𝑙𝑠𝑙 , ℎ𝑑𝑤𝑒𝑙𝑙
𝑠𝑙 ≥ 0 ∀𝑠 ∈ 𝑆′

𝑙 , 𝑙 ∈ 𝐿, (A.32)

𝐷𝑂𝐷𝑖𝑙 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (A.33)

𝑆𝑂𝐶𝑎𝑣𝑔
𝑖𝑙 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿. (A.34)
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