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Abstract

Offshore wind turbines are being placed all over the world. The increased popularity of these structures
comes with a boost to the development of wind turbines in general, resulting in larger and higher construc-
tions. To ensure the support structures of the turbines are able to withstand the extreme loads and environ-
mental conditions, it is subjected to a series of tests and checks, prescribed by codes and standards. This
thesis focuses on buckling checks, with global buckling in particular.

Several codes and standards define buckling checks, differing in approach. For example, the global buck-
ling check is based on global buckling (compromised stability due to an axial force), but also takes eccentric-
ities into account. How these parameters and safety factors are incorporated is analyzed for the Eurocode
and the DNVGL, which are considered the most relevant design standards regarding offshore wind turbines
around the Netherlands. Difference between both global buckling checks are analyzed using a monopile
based reference wind turbine.

Looking to the more mechanical term of global buckling (also called Euler buckling), one finds an expres-
sion for the buckling load, based on the flexural stiffness and the buckling length of the structure. However,
both parameters vary over the height of the support structure: the monopile has one relevant buckling value,
where the flexural stiffness varies with its geometry. Therefore the buckling length cannot be constant for the
structure. To tell something about this buckling length, the support structure is modeled with Euler beams as
visualized in the figure. Subsequently the buckling force is analyzed, a constant value for the flexural stiffness
is derived and the buckling length is calculated. Finally, the influence of the soil conditions on the buckling
length of the structure is analyzed.

To determine whether a second order analysis is required to calculate the buckling force of the support
structure, a comparison is made. Two Euler-Bernoulli beam models are introduced, one with a second order
term, one without. The influence of the term on the bending, rotation, moment and shear force is analyzed,
as well as the influence of the Euler buckling force. Subsequently an incremental load factor is introduced to
incorporate the second order effect in the more simplified beam model.

Finally, the relevance of global buckling is considered. How relevant is the global buckling check for the
currently installed wind turbines, and how relevant will it be for the larger support structures that are to be
expected? To answer these questions, comparisons are made between the buckling checks and how far from
failing the checks are. Subsequently, the local buckling is introduced to compare the global buckling check to
the local buckling check regarding relevance.

Below, the most important results and conclusions are given below:

• The buckling check of the DNVGL and the Eurocode differ for result. However, the unity check is a
factor 20 lower than critical.

• A buckling length of more than twice the length of the structure (from the seabed to the top) should be
used for Euler buckling analysis.

• The second order term affects the total displacement- and moment distribution minimally: approxi-
mately 5% of the total moment (and displacement) is contributed by the second order term.

• Local buckling and global buckling are equally important, regarding the Eurocode. Both unity checks
result in approximately the same values, which is a factor 20 away from being critical.
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1
Introduction

1.1. General introduction into offshore wind turbines
For over a century, wind has been used to produce electrical energy. Initially, the produced energy used to
be stored in batteries, since access to a general power network was not yet established [SOURCE]. However,
these days wind turbines are directly connected to general electrical power grid. Throughout the years the de-
sign of wind turbines showed growth in quantity, efficiency, power and reliability. The combination of these
factors resulted in a reduced price per watt for a wind turbine, which makes the production, installation and
operation of a wind turbine more cost effective and hence more attractive for investors. Figure 1.1 visual-
ized the growth of both the average power and rotor diameter of a wind turbine throughout recent years.
It is expected that this trend will continue: wind turbine manufacturer DONG Energy has announced their
expectation that wind turbines in 2024 can produce 16 MW.[12].

Figure 1.1: Power of a single wind turbines from 1985 - 2010 (source: DONG Energy)

Wind farms are situated at both on- and offshore locations. The advantage for offshore relates to the broad
availability of suitable locations and the reliability of the wind compared to onshore locations. However,
offshore wind farms do require an elaborate support structure to withstands weather and climate conditions
that may occur at sea. The design of this support structure should consider the following conditions:

• Wind loads in operation and during storms;
• Sea-states including water elevation, waves and currents;
• Ice loading;
• Salt water: erosion of substructure and rotor-nacelle assembly (RNA);
• Scour;

1



2 1. Introduction

• Marine growth.

1.2. Design of a support structure
The offshore wind industry relies on several types of support structures. The most common bottom founded
support structures are as, visualized in Figure 1.2:

• Monopile;
• Tripod;
• Jacket;
• Gravity based.

Figure 1.2: Support structure types (from left to right: monopile, tripod, jacket, gravity based)[12]

The most used substructure is the monopile. Due to its simplicity (a cold formed hollow tube with a large
diameter), it is relatively easy to fabricate. With the specially developed monopile installation vessels, the in-
stallation process is being optimized, which reduces installation time and costs. Other types of substructures
typically come with larger material-, fabrication- and/or installation costs.

A support structure is designed based on a couple of design criteria. One of these criteria is that it needs
to withstand several combinations of loads. These load combinations are described in design standards as
limit states. Several different limit states are distinguished[17]:

• Fatigue limit state (FLS);
• Serviceability limit state (SLS);
• Ultimate limit state (ULS).

These limit states define loads to assess the support structure for respectively its fatigue life, integrity
during operation and resistance to extreme environmental conditions. For example, the fatigue of a support
structure is assessed using the entire spectrum of expected environmental conditions over its serviceability
life. However, the structural integrity is used using extreme environmental conditions, following from ULS
load combinations. Checks performed with these ULS load combinations are enlisted below [4] [17]:

• Yield check: are the internal stress levels approaching the yield stress of the material;
• Global buckling check: is the structural stability due internal- and external loads being compromised;
• Local buckling check: is the stability locally being compromised, for example due to pressure differ-

ences.
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• Foundation check: is the designed penetration depth in combination with the soil stiffness able to
withstand extreme environmental conditions

Section 2 elaborates more on these checks. Both the Eurocode and DNVGL are discussed.

Figure 1.3 shows a typical layout of a monopile based wind turbine, including terminology. The subsoil-
and submerged section is called the monopile. The section that is partially submerged, is called the transition
piece. This section forms a connection between the monopile and the tower (top section). The transition
piece often offers facilities such as a boat-landing or an external J-tube, to guide the power cable from the
seabed to the tower, which is referred to as the top section of the support structure. The entire structure from
subsoil to RNA is referred to as the support structure.

Figure 1.3: Terminology monopile based wind turbine Figure 1.4: Loads on a monopile based offshore wind turbine

General loads exerted on the monopile are visualized in Figure 1.4. Horizontal loads are simplified as a
locally applied thrust force and a distributed hydrodynamic force. Weight of both the support structure and
the rotor nacelle assembly (RNA) is shown as vertical point loads, distributed over the height structure.

1.3. Problem statement
Buckling is a failure mode of a structure due to issues with stability. With regards to offshore monopiles,
typically two types of buckling are distinguished: global buckling and local buckling. A visualization of both
buckling types is shown in Figure 1.5. In this figure, global buckling occurs due to a vertical load only. When
this vertical load reaches its buckling value, the structure may bend due to a small imperfection or load. Lo-
cal buckling, however, is a failure mechanism that is occurs due to the stresses within the zone of an initial
imperfections [1]. When the structure is perfect, without imperfections, local buckling will not occur. How-
ever, since every object is fabricated with tolerances and imperfections, local buckling will occur. Examples
of imperfections are ovalisation in a round hollow tube, or surface damage.
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Figure 1.5: Global buckling (left) and local buckling (right) [13]

Global buckling is a failure that typically is initiated by a bend of a structure. This bend results in an in-
ternal moment, originating from the eccentricity of the mass of the structure. Due to this internal moment,
a larger bend is obtained, which subsequently results in a larger eccentricity and a larger internal moment.
This increasing internal moment is referred to as the second order moment[19].
The magnitude of the second order moment is affected by the length of the structure. When a longer structure
bends, the eccentricity of its center of gravity is larger, resulting in a larger second order moment. However,
the eccentricity of the center of gravity is affected by more parameters than the length of the structure only.
Leonhard Euler defined an equations for so called Euler Buckling [19], applicable on the Euler-Bernoulli beam
theory. Euler buckling takes boundary conditions of the structure into account, by considering an effective
length, instead of the true length of the structure. Figure 1.6 visualizes several common situations, includ-
ing its boundary conditions [19]. For example, the most left structure in this figure (denoted with a 1), is a
cantilever beam with a rigid boundary condition in the bottom and a free boundary condition at the top.

Figure 1.6: Several most common effective lengths [19]

Figure 1.7 plots the plastic yield strength (Fy ) and the Euler strength of a beam, where the Euler strength is
the resistance against Euler buckling and the slenderness parameter is based on the cross sectional geometry
of the structure. Note that when one compares the Euler strength with the yield strength, a larger slender-
ness results in a lower buckling strength. However, when a bifurcation point between the plastic- and Euler
strength is reached (as visualized in Figure 1.7), the yield strength of the material becomes dominant, and
the column fails due to yielding. Around this bifurcation point, failure may occur at a lower load due to local
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effects. Also note that this figure is based on a structure without imperfections.

Figure 1.7: Plastic strength vs buckling strength [13]

The geometry of a support structure of an offshore wind turbine is a structure which should be checked
for global buckling: the structure is a hollow tube with limited flexural stiffness and a mass on the top end.
Due to horizontal loads, initiated by environmental conditions (wind and water forces), an eccentricity of the
top mass is initiated. This eccentricity results in a second order moment in the support structure. A combina-
tion of the direction and magnitude of these parameters will initiate global buckling, which make it relevant
for analysis.

Currently, designs of support structures for offshore wind turbines are subjected to a buckling check.
These checks are defined by design standards, such as the Eurocode [4] and the DNVGL [3]. Several factors
are taken into account, making the checks applicable for the support structure of an offshore wind turbine:

• Correction factor for the shape of the moment line;
• Reduction factor for used cross sectional geometry (due to the slenderness of the structure);
• Material factors;
• Reduction due to other imperfections.

These parameters are incorporated in a unity check. Section 2 elaborates on the buckling checks as per
DNVGL and the Eurocode. However, since the support structure of an offshore wind turbine is embedded
in soil, is built from sections with varying cross sectional properties, and is subjected to a variety of environ-
mental conditions, a more complex system is obtained than, for example, visualized in Figure 1.6. This thesis
elaborates on the encountered complexities, and how these are to be dealt with.

1.4. Research questions
Research questions are defined and used as guideline during this thesis. This allows a structured approach,
resulting in clear results, discussion, conclusions and recommendations. All research questions are enlisted
below. In section 1.5, the research questions are discussed, including the chosen approach. Note that research
questions 1, 2, 3 and 4 refer to global buckling, and 4 includes analysis of local buckling.

1. Where do the differences regarding global buckling originate between the Eurocode and the DNVGL?
2. How should the buckling length of an offshore wind turbine be chosen?
3. Is a second order analysis required to determine whether global buckling is relevant in the design of an

offshore wind turbine?
4. When does global buckling become relevant, referring to both extreme (design) conditions and local

buckling?
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1.5. Approach
1.5.1. Where do differences regarding global buckling originate between the Eurocode

and the DNVGL?
A difference between the approach of the global buckling check of the Eurocode and DNVGL is noted. Both
standards defined a unity check to assess wether global buckling is an issue or not. However, the structure
of these unity checks differ by means of parameter definition. To obtain insight in the differences in the
standards regarding the global buckling check, the standards are analyzed thoroughly by means of a base-
case and an in-depth analysis of the used parameters. This research question is discussed in section 2.

1.5.2. How should the buckling length of an offshore wind turbine be chosen?
This research question follows from the standard Euler buckling cases. In these cases, as visualized in Figure
1.6, typical cases are defined for rigid-, free- and hinged boundary conditions. The length of the structure is
factorized to an effective length, to include effects regarding buckling of the boundary conditions. However,
since the support structure of a wind turbine is embedded in soil, one is dealing with a non-standard case.
This research question is defined to determine how the effective length of a wind turbine like structure should
be chosen. To do this, several cases are defined. Beginning with the derivation of the buckling force of a
cantilever beam, the complexity of the support structure is increased, with for example a Winkler foundation
for the subsoil section, and differences in cross sectional areas at the relevant elevations. The developments of
the used models is discussed in section 3. The buckling length regarding the most complex model (including
soil springs and diameter variations) is discussed in section 4.

1.5.3. Is a second order analysis required to determine whether global buckling is rele-
vant in the design of an offshore wind turbine?

A model including a vertical force, variation in cross sections and an embedded section is defined to analyze
the magnitude of the second order effect, with respect to a model without this second order term. The results
regarding deflection and moment variations are compared, leading to a discussion regarding the relevance of
this second order term in this application.
Furthermore, the final model is compared to the approach, as one follows regularly for the design of a monopile
support structure (based on design standards). The results of both the model including the second order term
and the approach per design standards are compared, analyzed and discussed in section 4 and 5.

1.5.4. When does global buckling become relevant?
The relevance of global buckling regarding an offshore wind turbine should be determined. A final model is
defined which is used to determine the effect of different parameters. This model, consisting of varying cross
sectional properties, a lateral thrust force, a distributed hydrodynamic force and a Winkler foundations for
the sub-soil section, is derived in section 4. A more in depth analysis, including a parameter study is per-
formed in section 5.
Also local buckling is included to determine when global buckling becomes relevant. A check based on design
standards is performed using a reference wind turbine. Subsequently, variations in parameters are applied to
verify when global buckling is relevant over local buckling.



2
Design standards

2.1. Introduction
For the design of a support structure of an offshore wind turbine, several checks are to be performed. Among
others a global buckling check should be performed to ensure global buckling is will not occur. This buckling
check is performed conform a design standard (such as the DNVGL and Eurocode). However, the buckling
checks in these standards differ slightly.
This chapter elaborates on these global buckling checks, but also discusses a local buckling check. In a later
chapter, these codes are compared and discussed regarding relevance. Research question 1, regarding the
differences between the Eurocode and the DNV/GL is awnsered in section

2.2. DNVGL, global buckling check
The DNVGL is a collaboration between Det Norske Veritas and the Germanischer Lloyd. This standard de-
scribe among others what design criteria are for a support structure of an offshore wind turbine. This para-
graph elaborates on the global buckling check that is to be carried out, to ensure global buckling will not
occur. The check comes from following sources. [2][3][6]

The global buckling check is defined as a unity check:

Nd

κNp
+ βm Md

Mp
+∆N ≥ 1 (2.1)

Where:

• Nd and Md are respectively the design normal force and moment
• Np and Mp are the resistance for resp. the normal force and moment
• κ is the flexural buckling coefficient
• βm is the moment factor, determined with the moment line of the structure
• ∆N is the slenderness parameter.

For this buckling check the structure is modeled as a cantilever beam. The pile is fixed sub-soil (1 times
the diameter beneath the soil) to account for the relative loose top layer of sand and scour. Now the plastic
compression- and moment resistances are calculated:

Np = Aσy

γM
(2.2)

Mp = Dσy

2IγM
(2.3)

Mp = Wp fy

γM
(2.4)

7



8 2. Design standards

Wp = D3 − (D −2t )3

6
(2.5)

Where:

• A is the cross sectional area
• D is the outer diameter of the pile
• t is the wall thickness of the pile
• Wp is the plastic section modulus
• σy is the yield stress of the material
• γM is the material factor

Now the reduced slenderness ratio λ and φ can be determined as follows:

λ=
√

NpγM

Nki ,d
(2.6)

φ= 0.5(1+α(λ−0.2)+λ2) (2.7)

Where α is valued 0.2 and Nki ,d is the (normal) elastic buckling force, calculated below.

Nki ,d = π2E I

L2
buck

(2.8)

Where E is the elasticity modulus of the steel and Lbuck is the length of the pile from soil to top, enlarged with
1 time the diameter of the pile to take the loose top soil layer into account.
With above parameters determined, the flexural buckling κ can be determined:

κ=
1.0, for λ≤ 0.2

1

φ+
p
φ2−λ2

, for λ≥ 0.2
(2.9)

Nd and Md follow from the loads on the monopile. The normal design force is a combination of the
masses of the pile and rotor nacelle assembly (RNA), where the value for the design moment is determined
by the thrust force and the wave loading.

Finally, the slenderness parameter ∆n can be determined, which is an additional safety factor depending
on the slenderness of the system.

∆n = mi n(0.25κλ2,0.1) (2.10)

With all discussed parameters the unity check can be entered and the global buckling check can be per-
formed. Reference is made to section 5.5 where the DNVGL and the Eurocode are compared.

2.3. Eurocode, global buckling check
For a cross section, 4 classes are defined. These cross sectional classes define what the leading design param-
eters should be regarding several checks (among others the yield stress check and the buckling checks). We
are interested in the class regarding a monopile based offshore wind turbine. This type of structure is classi-
fied as class 3:

’Class 3 cross-sections are those in which the stress in the extreme compression fiber of the steel member as-
suming an elastic distribution of stresses can reach the yield strength, but local buckling is a liable to prevent
development of the plastic moment resistance.’

The buckling check in the Eurocode is comparable to those in the DNV and GL. The unity check that is to
be assessed is given below:

NE d
χy NRk

γM1

+kz y
My,E d +∆My,E d

χLT My,Rk

γM1

+kzz
Mz,E d +∆Mz,E d

Mz,Rk
γM1

≤ 1 (2.11)
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NE d
χz NRk
γM1

+ky y
My,E d +∆My,E d

χLT My,Rk

γM1

+ky z
Mz,E d +∆Mz,E d

Mz,Rk
γM1

≤ 1 (2.12)

Where:

• NE d ,My,E d and Mz,E d are resp. the design normal force and bending moment in resp. the y- and z-
directional bending

• ∆My,E d and ∆Mz,E d are the moment due to the shift of the centroidal axis due to bending
• χz ,χy and χLT are resp. the flexural buckling term and the the reduction factor due to lateral torsional

buckling
• ky y and ky z and kz y are interaction factors
• γM1 is a partial factor for resistance of members to instability assessed by member check

We look more in detail to these parameters in the table below.

Table 2.1: Eurocode global buckling parameters

Parameter Unit Description
NE d N Calculated as summation of the RNA mass and tower weight
Mi ,E d N m Moment in the structure as result of lateral forces
∆Mi ,E d N m For class 4 cross sections, this parameter may be neglected.
χz − Is determined using so-called buckling curves.

χLT − This lateral torsionnal component is 1, since torsion is
not taken within the scope of this check

NRk N This resistance parameter is defined as NRk = fy A
Mi ,Rk N m This resistance parameter is defined as Mi ,Rk = fy Wel ,i

ki i − These interaction factors are calculated below.

Note that the torsion is not taken into account, hence, after simplifying with the assumptions as per Table
2.1, the following unity check remains:

NE d
χz NRk
γM1

+ky y
My,E d

χLT My,Rk

γM1

≤ 1 (2.13)

χz is determined. From the code we obtain the buckling curves in Figure 2.1. Since a monopile is a
hollow circular shaped cross section we use curve c. Now the non-dimensional slenderness parameter λ is
calculated.

λ=
√

A fy

Ncr
(2.14)

Where:

• A is the cross sectional area of the monopile. For the reference model, a value of 1.1 [m2] is used.
• fy denotes the yield stress of the material, typically around 250MPa.
• Ncr is the Euler Buckling force

Ncr = π2E I

(2L)2 (2.15)

From Figure 2.1, we can find a value for χz .
Finally the coupling term ky y is being determined. This term is dependent on the type of structure (type

3), as given below:

ky y =CmyCmLT
µy

1− NE d
Ncr

(2.16)

Cmy = 1 = 1+
(
π2E I |δx |

L2|ME d (x)
|−1

)
NE d

Ncr
(2.17)

CmLT = 1,0 (2.18)
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Figure 2.1: Buckling curves, curve c for hollow circular cross sections

µy =
1− NE d

Ncr

1−χy
NE d
Ncr

(2.19)

With this, all parameters regarding the global buckling check as per Eurocode are discussed. Section 5.5
elaborates on this check by applying it to the reference wind turbine.

2.4. Eurocode, local buckling check
To determine when global buckling becomes relevant with regards local buckling, a local buckling check is
defined. The Eurocode discusses two types of local buckling check: stress- and strain based checks.
The stress based local buckling check used in this thesis is discussed in the Eurocode-1993-6 [5] and sum-
marized below. Figure 2.2 shows an overview of the symbol and sign definition regarding this local buckling
check.

Figure 2.2: Symbol and sign definition local buckling of a cylindrical shell

(
σx,E d

σx,Rd

)kx

+ki

(
σx,E d

σx,Rd

)(
σθ,E d

σθ,Rd

)
+

(
σθ,E d

σθ,Rd

)kθ
+

(
τxθ,E d

τxθ,Rd

)kτ
≤ 1 (2.20)

With:

• σx is the meridional buckling stress
• σθ is the circumferential buckling stress
• τxθis the buckling shear stress
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• kx ,kθ,kτ,ki buckling interaction parameter

Since the pile is hollow and filled with sea water (up to sea level), the inside pressure is equal to the out-
side pressure. Therefore there is no significant circumferential stress. The terms relevant to circumferential
buckling are therefore small, and may be neglected, resulting in the following unity check (dependent on the
compressive stress and lateral shear components):(

σx,E d

σx,Rd

)kx

+
(
τxθ,E d

τxθ,Rd

)kτ
≤ 1 (2.21)

The resistance- and design parameters regarding the compression- and shear stresses on the pile are dis-
cussed more thoroughly in section XX. Below, relevant buckling interaction parameters are discussed.

The length of the shell segment is characterised byω, which subsequently is used to determine the critical
meridional buckling stress σx,Rcr .

ω= lp
r t

(2.22)

σx,Rcr = 0.605ECx

( r

t

)
(2.23)

With:

• r is the radius of the pile;
• t is the thickness of the pile;
• Cx depends on ω, for this thesis taken as 1,0 (medium long cylinder).

kx = 1.25+0.75χx (2.24)

Where χτ depends on the relative slenderness λx .

λx =
√

fyk /σx,Rcr (2.25)

σx,Rcr = 0,60ECx
t

r
(2.26)

λpx =
√

α

1−β (2.27)

αx = 0,62

1+1,91(∆wk /t )1,44 (2.28)

∆wk = 1

Q

√
r

t
t (2.29)

with:

• the meridional squash limit slenderness λx0 is taken as 0,20
• Q is teh compression fabrication quality parameter, taken as 25 (high).
• Plastic range factor β is 0,60.
• fyk is the characteristic yield strength (335N /mm2)

Subsequently the buckling interaction parameter kτ is calculated:

kτ = 1.75+0.25χτ (2.30)

λτ =
√(

fyk /
p

3
)

/τxθ,Rcr (2.31)

λpτ =
√

α

1−β =
√

0,60

1−0,65
= 1,3093 (2.32)
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τxθ,Rcr = 0,75ECτ

√
1

ω

t

r
(2.33)

Where Cτ is 1,0 (medium length cylinder) and λτ0 is equal to 0,40. For the base case as discussed in section 4
the following applies: λt au ≤λτ0, χτ = 1,0.

Finally, all parameters are discussed to determine the design- and resistance stresses for the unity check.
σx,Rd and τxθ,Rd are determined:

σx,Rd = χx fyk

γm1
(2.34)

τxθ,Rd = χτ fykp
3γm1

(2.35)

With safety factor γm1 = 1,1.

2.5. Differences global buckling check Eurocode-DNVGL
Comparing both checks, many equalities are found, as listed below:

• Both the Eurocode and the DNVGL define the check as a unity check
• Both the normal force and moments are taken into account;
• The maximum allowed normal force is factorized by a global buckling factor, taking the slenderness

and sensitivity to global (Euler) buckling into account;
• Another parameter is introduced to factorize the resistance of a bending moment to account for the

slenderness.
• Both checks take several safety factors into account, to allow for small (fabrication) errors.

However, more interestingly is where differences occur. These are found in the safety factors. Where the
Eurocode elaborates on these safety factors in more detail than the DNVGL, a higher accuracy is obtained.
Subsequently, the DNVGL takes a larger safety factor into account, likely resulting in a more conservative
result.



3
Theoretical framework

3.1. Introduction
In this chapter a model is developed that is used to obtain insight in buckling of a support structure of an
offshore wind turbine, leading to a final model. The final model is used to answer research questions 3 and
4, and is discussed in chapter 4. However, to validate and understand the final model, a range of interme-
diate models is obtained. These models will offer insight in the relevance of different components of the
final model. Also, this chapter will lead to the answer of research question 2. This means that Euler buckling
is evaluated, including a reduction factor regarding effective length, that serve as modules for the final model.

Starting at a uniform cantilever beam with only a vertical load, more parameters are added. An overview
of the discussed models is given below. The models are derived and discussed more thoroughly in the para-
graphs to come. A visualization of the models is given in Figure 3.1, and will be discussed separately in the
following paragraphs. Firstly, a definition of the model is given, including general assumptions.

1. Cantilever beam with axial load (Figure 3.1 a);
2. Free-free beam with axial load and soil springs (Figure 3.1 b);
3. Free-free beam with axial load and partly embedded in soil springs (Figure 3.1 c);
4. Cantilever beam with axial load and lateral load (Figure 3.1 d);
5. Free-free beam with axial load, lateral load and soil springs (Figure 3.1 e).

ksoil

w(x)

x
ksoil

w(x)

x
ksoil

w(x)

x

Fv

w(x)

x

w(x)

x

Fh

a cb d e

Fv Fv Fv Fv

Fh

Figure 3.1: Different beam models

13



14 3. Theoretical framework

3.2. Beam theory
An offshore monopile is typically modeled as a bending beam, using on of many beam theories. The Tim-
oshenko beam theory and the Euler-Bernoulli beam theory [14] are mostly used for structures such as the
monopile of an offshore wind turbine. However, for offshore monopile-like structures, no significant differ-
ences in results is noted [10].
Higher order and more sophisticated beam theories such as Ghughal [16] and Reddy [7] are considered. How-
ever, it is noted that these higher order beam theories make the model unnecessary complicated [10]. There-
fore one can conclude that results obtained with the simpler beam theory such as the Euler and Timoshenko
beam theories, suffice for the model as defined in this thesis.
Since the researcher is more familiar with the Euler Bernoulli beam theory, this theory is used throughout this
thesis.

3.3. Model definition
3.3.1. General assumptions
A semi-analytical model is developed. Several assumptions are made, which are discussed in this paragraph.
The analytical model is developed using the Euler-Bernoulli beam theory (reference is made to section 3.2. A
general form of the ordinary differential equation, containing all relevant parameters, is given below. Subse-
quently, each parameter is discussed regarding assumption and simplifications. Note that w(x) denotes the
deflection of the beam at elevation x.

E I (x)
d 4w(x)

d x4 +Fv (x)
d 2w(x)

d x2 +ksoi l (x)w(x) = q(x) (3.1)

• E I (x) is the flexural stiffness of the beam. This parameter consists of the elasticity modulus (E), and the
moment of inertia (I ). Since the moment of inertia is dependent on among other the diameter and wall
thickness of the pile, a variation per elevation is noted. However, it is assumed that the cross sectional
parameters of each section remains constant, and therefore: E I (x) = E I . Note that the flexural stiffness
may vary between the used sections.

• Fv (x) is the vertical force component in the pile, initiated by gravity (including the top mass and the
mass of the pile). Since the mass of a pile is distributed over the length of the pile, Fv varies over the
height x. However, to simplify the models and due to insignificance of the weight of the pile with respect
to the top mass, it is assumed that Fv is constant over a single section of the beam. Thus: Fv (x) = Fv .

• ksoi l (x) denotes a stiffness of a soil. This parameter typically varies over the depth of the soil. However,
it is assumed that this parameter is constant over the sub-soil section to simplify the analysis. Therefore:
ksoi l (x) = ksoi l . Reference is made to section4.4.2 for more details on the soil stiffness parameter.

• q(x) denotes a distributed horizontal load. This parameter is used to define a hydrodynamic force over
the submerged section of the support structure. Details on this parameter are discussed in section 3.8.

Rewriting and incorporating above assumptions gives a more workable form:

d 4w(x)

d x4 +α2 d 2w(x)

d x2 +βw(x) = q(x)

E I
(3.2)

Where α2 = Fv
E I and β= ksoi l

E I
Relation between the deflection w(x), rotation φ(x), moment M(x) and shear force V (x) are given below.

The directions of the signs are defined in Figure 3.2.

φ(x) =−d w(x)

d x
(3.3)

M(x) =−E I
d 2w(x)

d x2 = E I
dφ(x)

d x
(3.4)

V (x) =−E I
d 3w(x)

d x3 = E I
d 2φ(x)

d x2 = E I
d M(x)

d x
(3.5)

Since one is interested in the horizontal force component (due to the horizontal thrust- and hydrodynamic
force), and not in the perpendicular forces, a horizontal force component Sz is defined.

Sz (x) =V (x)+Fvφ(x) (3.6)
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Figure 3.2: Definition signs

3.3.2. Reference offshore wind turbine
A reference turbine is defined to use as guideline regarding parameter definition throughout this thesis. This
reference turbine, including support structure and environmental conditions, is based on 2 reports: Defini-
tion of a 5-MW Reference Wind Turbine for Offshore System Development [8] discusses the “NREL offshore
5-MW baseline wind turbine” in detail. Several support structures with relevant environmental conditions
are discussed in Support Structure Concepts for Deep Water Sites [18] by UpWind.

Throughout this chapter reference is made to these reports, containing relevant design parameters. Note
that due to simplifications regarding geometry and load, a set op simplified parameters is defined. These
parameters are discussed more in depth in chapter 4.

3.4. Cantilever beam with vertical load

Fv

w(x)

x

Figure 3.3: Beam model with vertical force

The equation of motion of this beam is based on equation 3.2, as given below:

d 4w(x)

d x4 +α2 d 2w(x)

d x2 +β(x)w(x) = q(x)

E I
(3.7)

However, since this cantilever beam is free of soil (ksoi l = 0) and does not contain a distributed load (q(x) = 0,
the equation is simplified to:

d 4w(x)

d x4 +α2 d 2w(x)

d x2 = 0 (3.8)
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With α2 = Fv /E I
Boundary conditions at the top and the bottom of the beam are defined as resp. free and clamped, mathe-
matically represented by the following relations:

x = 0 : w = 0 and φ= 0

x = L : M = 0 and Sz = 0

A definition of w(x) is required to obtain a workable solution. The following form is tried:

w(x) =
4∑

n=1
Cne iλn x (3.9)

Where λn denotes the eigenvalues of the system and Cn are integration constants. We obtain λ from the
characteristic equation, given below.

λ4 +α2λ2 =λ2(λ2 −α2) = 0 (3.10)

λ1,2 =±(α) λ3,4 = 0 (3.11)

Solving this standard ordinary differential equation problem, we obtain the following equation for w(x).
Note that subsequently this equation is written in a more convenient form, where C1 and C2 are not equal to
C̃1 and C̃1

w(x) =C1e iαx +C2e−iαx +C3x +C4 = C̃1cos(αx)+ C̃2si n(αx)+C3x +C4 (3.12)

This solution is derived to the following relations:

φ(x) = C̃1αsi n(αx)− C̃2αcos(αx)−C3 (3.13)

M(x) = C̃1Fv cos(αx)+ C̃2Fv si n(αx) (3.14)

V (x) =−C̃1Fvαsi n(αx)+ C̃2Fvαcos(αx) (3.15)

Sz (x) =V (x)+Fvφ(x) =−C̃1Fvαsi n(αx)+ C̃2Fvαcos(αx)+Fv (C̃1αsi n(αx)− C̃2αcos(αx)−C3) (3.16)

Sz (x) = FvC3 (3.17)

Substituting these relations in the boundary conditions, one obtains a system of equation, as given in the
matrix equations below: 

1 0 0 1
0 −α −1 0

E Iα2cos(αL) +E Iα2si n(αL) 0 0
0 0 −Fv 0




C̃1

C̃2

C3

C4

= 0 (3.18)

Since one is not interested in the trivial solution, it can be concluded that the constants C3 and C̃2 are 0. We
obtain the following system: [

1 1
E Iα2cos(αL) 0

][
C̃1

C4

]
= 0 (3.19)

When the determinant of the given matrix is equal to 0, a solution is found.

det

[
1 1

E Iα2cos(αL) 0

]
=−E Iα2cos(αL) = 0 (3.20)

This is the case when cos(αL) = 0, thus αL = 1
2 nπ, where n gives the mode of the system (n = 1,2, , ...n). The

lowest value where buckling occurs is for n=1, corresponding to the lowest buckling mode of this structure. A
higher value for n denotes a higher order buckling mode.
α=p

Fv /E I = π
2L

Fbuck = E Iπ2

4L2 (3.21)
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Table 3.1: Design parameters partly embedded beam

Parameter Unit Description
E 210 [GPa] Elasticity modulus
Dpi l e 6 [m] Pile diameter
tpi l e 0.06 [m] Wall thickness
L 104 [m] Length of pile (from seabed to RNA)

When looking back to Figure 1.6, it can be concluded that the obtained solution is equal to the rule of
thumb, as given in standard case 1 (cantilever beam).
To check with what order of buckling forces one is dealing, a set of parameters is defined to analyze the
buckling force of a cantilever beam. Table 3.1 gives the magnitude of the relevant parameters. Note that the
values are fictional, but based on the reference model.

Fbuck = E Iπ2

4L2 = 236M N (3.22)

3.5. Free-free beam with soil springs

ksoil

w(x)

x

Fv

Figure 3.4: Beam model with vertical force and soil springs

The governing equations are as equation 3.2. In this case, the distributed force q(x) is equal to 0, and thus
the following equation is obtained:

d 4w(x)

d x4 +α2 d 2w(x)

d x2 +βw(x) = 0 (3.23)

With: α2 = Fv
E I and β= ksoi l

E I
We are looking for a solution in the following form:

w(x) =
4∑

n=1
Cne iλn x (3.24)

The characteristic equation is defined, and solved for the eigenvalue, where λ denotes this eigenvalue of the
system.

λ4 +α2λ2 +β= 0 (3.25)

λ2 =−α
2

2
±

√(
α2

2

)2

−β (3.26)

Given that both the soil stiffness ksoi l and compressive force Fv are positive, two cases are distinguished,
based on the real and complex roots of the eigenvalues:
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1. Case 1: α4/4 <β: Roots contain a real- and an imaginary part.
2. Case 2: α4/4 >β: All roots are completely imaginary.

A quick calculation offers insight in which region the reference offshore wind turbine is found. Magni-
tudes of the used values are based on the reference wind turbine. Note that these values are meant to obtain
insight what case is expected to be relevant for this study.

α= Fv

E I
= 350e3×9.81[N ]

1012[N m2]
= 10−6[m−2] β= k

E I
= 108[N /m2]

1012[N m2]
= 10−4[m−2] (3.27)

α4

4
−β= (10−6)4

4
−10−4 << 0 (3.28)

Thus case 1 is relevant for this case. When the vertical force Fv is increased to the magnitude of buckling
value (Fv = 1e9, α = 1e − 3), which is relevant for buckling analysis, the comparison will result as follows,
concluding that by a significant difference in magnitude in values for the relevant parameters, one is still
dealing with case 1.

α4

4
−β= (10−3)4

4
−10−4 << 0 (3.29)

Below, both case 1 and case 2 are discussed more thoroughly.

Case 1: (α4/4) <β
The eigenvalues for the beam with Winkler foundations are given and rewritten:

λ2 =−α
2

2
±

√(
α2

2

)2

−β (3.30)

λ2 =−
(
α

2
+ i

√
β−

(α
2

)2
)

, −
(
α

2
− i

√
β−

(α
2

)2
)

(3.31)

Using algebra, the eigenvalues are rewritten to a more convenient form:

λ=±P ± iQ (3.32)

With:

P =

√√√√√
β

4
+ α

4
Q =

√√√√√
β

4
− α

4
(3.33)

Substituting these eigenvalues in the general solution as in equation 3.24, one obtains the following:

w(x) =C1e(P+Qi )x +C2e(P−Qi )x +C3e(−P+Qi )x +C4e(−P−Qi )x (3.34)

Using Eulers formula e i x = cos(x)+ i sin(x), we can rewrite the general solution to trigonometric form.
Note that Cn 6= C̃n

w(x) = C̃1eP x cos(Qx)+ C̃2eP x sin(Qx)+ C̃3e−P x cos(Qx)+ C̃4e−P x sin(Qx) (3.35)

Note that this general solution is used for all following models, where soil springs are used.

Case 2: (α/2)2 ≥β
However, the solution of case 2 is less relevant for the analysis of buckling, the general solution is derived
below.

When (α/2)2 ≥β, pure imaginary eigenvalues are obtained. The eigenvalues will become:

λ2 =−
(
α

2
+

√
β−

(α
2

)2
)

, −
(
α

2
−

√
β−

(α
2

)2
)

(3.36)
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λ1,2 =±i

√
α

2
+

√(α
2

)2
−β , λ3,4 =±i

√
α

2
−

√(α
2

)2
−β (3.37)

Substituting these eigenvalues in equation 3.24 and subsequently converting to a trigonometric function,
concludes the following function:

w(x) = C̃1 cos(λ1x)+ C̃2 sin(λ1x)+ C̃3 cos(λ3x)+ C̃4 sin(λ3x) (3.38)

Note that this case is not relevant regarding any buckling study. Case 1 contains lower values for the
vertical force, including several buckling forces.

3.5.1. Buckling force

The general solution is determined (equation 3.35). To obtain a set of equations, describing the subsoil beam,
boundary conditions are defined:

x = 0 : M = 0 and Sz = 0

x = L : M = 0 and Sz = 0

The moment M and horizontal force Sz are derived as per equations 3.3 to 3.6. Combining these relations
with the boundary conditions gives a set of governing equations. For the sake of convenience (the obtained
solutions are long), these relations are determined in using mathematical software Maple, and not given here.

The obtained set of equations can be written in matrix form. Table 3.2 gives magnitudes of the used
parameters. Note that the given values are fictional, but based on the reference wind turbine.

Table 3.2: Design parameters subsoil

Parameter Unit Description
E 210 [GPa] Elasticity modulus
ksoi l 1e8 [N /m2] Soil stiffness
Dpi l e 6 [m] Pile diameter
tpi l e 0.06 [m] Wall thickness
L 28 [m] Penetration depth of the pile

The determinant of the set of governing equations is determined and equalized to 0 (det (Msubsoi l = 0)).
When this equation is satisfied, the stability of the beam is compromised and buckling will occur. Figure 3.5
plots the logarithmic value of the determinant to the vertical force Fv . Note that the first buckling force is
reached around Fv = 6e9N . However, when a larger penetration depth is chosen, a larger buckling force is
obtained (reference is made to Figure 3.6, which shows the stabilizing properties of soil springs.

When comparing these buckling forces to that of a cantilever beam (as obtained in section 3.4), a signifi-

cant difference is noted: Fbuck,canti l ever = E Iπ2

4L2 = 2.5e8), which is a factor 40 lower than the buckling force of
the embedded beam. This significant difference is caused by the stabilizing effect of the soil springs. When
the beam bends, a force in the opposite direction acts on the beam. This force works counter-bending, and
with that counter-buckling.
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Figure 3.5: Determinant subsoil beam (L = 28m)

Figure 3.6: Determinant subsoil beam (L = 100m)

3.6. Free-free beam with axial load and partially supported by soil springs

ksoil

w(x)

x

Fv

Figure 3.7: Beam model partly supported with soil springs
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This model introduces interface conditions. Instead of a beam consisting of one section, two-sectioned beam
is defined. These beams are connected by means of interface conditions. The lower subsoil beam is denoted
by subscript 1, the upper beam is denoted by subscript 2.

For the embedded section (with the Winkler foundation), the general solution as discussed in section 3.5
is used. For the suspended section reference is made to the cantilever beam (section 3.4), or for the sake of
convenience given below.

w1(x) =C11eP x cos(Qx)+C12eP x sin(Qx)+C13e−P x cos(Qx)+C14e−P x sin(Qx) (3.39)

w2(x) =C21cos(αx)+C22si n(αx)+C23x +C24 (3.40)

With:

P =

√√√√√
β

4
+ α

4
Q =

√√√√√
β

4
− α

4
(3.41)

The boundary and interface conditions are given below. Note that the interface conditions are applied at
x = x1, which is at the seabed (for the reference model x1 = 28m).

x = 0 : M1 = 0 and §z,1 = 0 (3.42)

x = L : M2 = 0 and Sz,2 = 0 (3.43)

x = x1 : w1 = w2 and φ1 =φ1 (3.44)

M1 = M2 and Sz,1 = Sz,2 (3.45)

To analyze the buckling behavior of this system, the determinant of the system of governing equation is
taken. Used parameters are given in Table 3.3. The determinant of this system is plotted against the vertical
force in Figure 3.8. In here, several buckling forces can be noted. Note that the order of magnitude of the
buckling forces of the partly embedded pile is comparable to the buckling force of a cantilever beam (refer-
ence is made to section 3.4.

Table 3.3: Design parameters partly embedded beam

Parameter Unit Description
E 210 [GPa] Elasticity modulus
ksoi l 1e8 [N /m2] Soil stiffness
Dpi l e 6 [m] Pile diameter
tpi l e 0.06 [m] Wall thickness
x1 28 [m] Penetration depth of the pile
L 132 [m] Length of pile (including pen. depth)
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Figure 3.8: Determinant partly embedded pile

Subsequently a study is performed to analyze the sensitivity of the system to the termβ, withβ= ksoi l /E I .
A factor β/β0 is introduced, where β0 is determined with the values of Table 3.3. Note that a logaritmic scale
for the x-axis is selected to visualize the inflence of the variation in β on the buckling force Fbuck . The first
buckling force as visualized in Figure 3.8 is shown with the red line.
From this figure one can conclude that the variation of β is not significantly affecting the buckling force.
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Figure 3.9: Sensitivity of β with respect to the buckling force Fbuck

3.7. Beam model with axial- and lateral force, partly supported with soil
springs

Finally, a beam with two sections is defined, including a vertical- and lateral load component. The upper
section is free, the lower section is embedded in the soil, which is modeled with soil springs. A visualization
of this model is given in Figure 3.10.



3.8. Submerged pile 23

ksoil

w(x)

x

Fv

Fh

Figure 3.10: Beam model with axial- and lateral force, partly supported with soil springs

The general solutions of both the upper- and lower sections are discussed in resp. section 3.4 and section
3.5, as given below:

w1(x) =C11eP x cos(Qx)+C12eP x sin(Qx)+C13e−P x cos(Qx)+C14e−P x sin(Qx) (3.46)

P =

√√√√√
β

4
+ α

4
Q =

√√√√√
β

4
− α

4
(3.47)

w(x) =C21cos(αx)+C22si n(αx)+C23x +C24 (3.48)

With:
α=

√
Fv /E I β= ksoi l /E I (3.49)

Note that in this model the cross sections remain constant over the height of the beam and the vertical force
is applied at the top of the beam, and is also constant over the height of the support structure. Both ends of
the structure are free, thus the boundary- and interface conditions follow as:

x = 0 : M1 = 0 and §z,1 = 0 (3.50)

x = L : M2 = 0 and Sz,2 = Ft (3.51)

x = x1 : w1 = w2 and φ1 =φ1 (3.52)

M1 = M2 and Sz,1 = Sz,2 (3.53)

Deriving the general solution to the rotation, moment and shear distributions and subsequently substi-
tuting these equations in the boundary- and interface conditions, one obtains a set of equations describing
the properties of the model. A plot of the bending characteristics of this model is given in Figure 3.11. Used
parameters are given in Table 3.4. Note that the maximum moment is around the seabed (x = 28m), which is
visualized in Figure 3.11

3.8. Submerged pile
Finally, a derivation of the submerged pile is discussed. Due to loads from waves and currents, a distributed
horizontal load acts on the members. This load is varies over the height of the structure, since water particle
velocity increase towards the water surface. For more details on the force resulting from waves and currents,
reference is made to section 4.4.4. This load distribution is simplified to be linearly decreasing from the water
surface to the seabed, as shown in Figure 3.12

Since the force decreases linearly, it is assumed that the force can be mathematically expressed as follows:

q(x) = Ax +B (3.54)



24 3. Theoretical framework

Figure 3.11: Displacement-, rotation-, moment-, and shear distribution partly embedded support structure with thrust force

Table 3.4: Design parameters cantilever beam with lateral load

Parameter Unit Description
E 210 [GPa] Elasticity modulus
Dpi l e 6 [m] Pile diameter
tpi l e 0.06 [m] Wall thickness
ksoi l 1e8 [N /m2] Soil stiffness
x1 28 [m] Embedded length
L 132 [m] Total length of pile
Fv 3.5e6 [N ] Vertical force (based on RNA mass)
Ft 1e6 [N ] Lateral thrust force

The governing differential equation regarding the submerged pile section is defined as:

d 4w(x)

d x4 +α2 d 2w(x)

d x2 = q(x)

E I
(3.55)

Where α2 = Fv
E I .

A general solution to this differential equation exists of a homogeneous- and a particular solution, resp.
whom and wpar t . whom is not different than a the dry monopile section:

whom(x) =C1 cos(αx)+C2 sin(αx)+C3x +C4 (3.56)

Subsequently the particular solution (below) is defined and tried. Note that a factor x2 is added to obtain
unique terms with respect to the homogeneous solution.

wpar t (x) = (r x + s)x2 (3.57)

Substituting this solution in the governing differential equation gives:

d 4
(
r x3 + sx2

)
d x4 −α2 d 2

(
r x3 + sx2

)
d x2 = Ax +B

E I
(3.58)

0+ Fv

E I

d 2
(
r x3 + sx2

)
d x2 = Ax +B

E I
(3.59)
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Figure 3.12: Simplied wave- and current force

Solving this equation gives the following solution (also substituting α2 = Fv /E I ):

Fv

E I

( r x

6
+ s

2

)
= Ax +B

E I
(3.60)

Fv r x

6
+ Fv s

2
= Ax +B (3.61)

r = 6A

Fv
and s = 2B

Fv
(3.62)

Thus, the general solution can be expressed as below. Parameters A and B are obtained using the Morison
equations, as discussed in section 4.4.4:

w(x) =C1 cos(αx)+C2 sin(αx)+C3x +C4 +
(

6Ax

Fv
+ 2B

Fv

)
x2 (3.63)





4
Final model

4.1. Introduction
A final model is defined to analyze the bending and buckling characteristics of a support structure of an
offshore placed wind turbine, as visualized in Figure 4.1. This model is used to analyze research questions 3
and 4, regarding the relevance of global buckling and the second order effect in the buckling check. A beam
model is derived, following from section 3. Section 5 analyzes results obtained with this final model.

4.2. Beam model
Chapter 3 discusses several beam models into depth. This theoretical framework is used to derive and discuss
the final model.

The final model is built with Euler Bernouli beams, divided in 4 sections. A visualization of this beam
model is given in Figure 4.1. From bottom to top, the following sections are distinguished:

1. Monopile fully embedded in Winkler Foundations.
2. Submerged monopile section. A horizontal force as result of waves and current act on the pile, increas-

ing from the seabed to water level.
3. Dry monopile section. This section typically contains a transition piece, allowing connection between

the monopile and the tower.
4. Tower section. This typically tapered section is simplified as a pile with constant diameter. On the top

of this section, a horizontal thrust force is applied, as well as a vertical force representing the weight of
the rotor nacelle assembly.

A uniformly distributed vertical force is applied on each section, to include the mass of the piles. Note
that the vertical forces are constant over each cross-section to simplify the general solutions of the model.

4.3. Governing equations
The general form of the governing equations are given below. For details on the derivation, reference is made
to section 3. 

E I1
d 4w1(x)

d x4 +Fv1
d 2w1(x)

d x2 +ksoi l w1(x) = 0, for 0 < x < x1

E I2
d 4w2(x)

d x4 +Fv2
d 2w2(x)

d x2 = q(x), for x1 < x < x2

E I3
d 4w3(x)

d x4 +Fv3
d 2w3(x)

d x2 = 0 for x2 < x < x3

E I4
d 4w4(x)

d x4 +Fv4
d 2w4(x)

d x2 = 0 for x3 < x < L

(4.1)

The boundary conditions are on both the top- and bottom of the structure free-free. Or in mathematical
terms:

x = 0 : M1 = 0 and Sz,1 = 0

x = L : M4 = 0 and Sz,4 =−Ft

27
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Figure 4.1: Layout analytical model wind turbine

All sections are rigidly connected to each other, without any external effects. Therefore, the interface
conditions are mathematically expressed as follows:

x = xn : wn = wn+1 and φn =φn+1 (4.2)

Mn = Mn+1 and Sz,n = Sz,n+1 (4.3)

Solving the governing differential equations results in the following general solutions for the displacement
of the sections:

w(x) =


w1(x) =C11eP X cos(Qx)+C12eP X sin(Qx)+C13e−P X cos(Qx)+C14e−P X sin(Qx), for 0 < x < x1

w2(x) =C21 cos(αx)+C22 sin(αx)+C23x +C24 − Ax3

6α2
− B x2

2α2
, for x1 < x < x2

w3(x) =C31 cos(αx)+C32 sin(αx)+C33x +C34, for x2 < x < x3

w4(x) =C41 cos(αx)+C42 sin(αx)+C43x +C44, for x3 < x < L
(4.4)

With:

• P =
√√

β
4 + α

4

• Q =
√√

β
4 − α

4

• α2
n = Fv,n/E In

• β= ksoi l /E I1

• A = Fhydr o

E I2(x2−x1)

• B =− Fhydr o x1

E I2(x2−x1)
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4.3.1. Euler buckling force
As discussed in chapter 3, the Euler buckling force of a structure can be determined by substituting the gen-
eral solution of the set of equations into the boundary- and interface conditions. To ease analysis, the set of
equations is to be written in matrix form (equation 4.5). All factors of the integration constants C11 to C44,
denoted as ~C are enclosed in matrix M . The external horizontal forces, i.e. the thrust force induced to the
rotor and the wave- and current- force exerted on the wet monopile, are enclosed in vector Fh .

Note that it is required to derive the general solutions to resp. rotationφ(x), moment M(x) and horizontal
force Sz (x), as discussed in section 3.3.

M~C = ~Fh (4.5)

Where M represents the governing equations of the structure in a 16 x 16 matrix. ~C is a vector of the 16
integration constants C11...C44. ~Fh represents a vector with external load parameters. However, the stability
regarding global buckling depends on the internal components only, hence the external force vector ~Fh is
kept out of the equation.
Euler buckling occurs when the set of governing equations becomes unstable. This happens when the deter-
minant of matrix M is equal to zero. This computation is performed using mathematical processing software
Maple.

det
(
M

)= 0 (4.6)

Note that this computation is independent of force vector ~Fh . The material, geometry and vertical force
component are used to calculate the buckling force.
Since the vertical force component varies over the length of the pile due to the mass of the pile, a definition is
given for Fv1 to Fv4, as visualized in Figure 4.1.

Fv4 = g (mtop +ηm4) (4.7)

Fv3 = g (mtop +m4 +ηm3) (4.8)

Fv2 = g (mtop +m4 +m3 +ηm2) (4.9)

Fv1 = g (mtop +m4 +m3 +m2 +ηm1) (4.10)

With:

• mtop is the top mass (RNA mass)
• g is the gravitational acceleration
• η is the fraction of the pile section taken into account (elaborated on below)
• mi the total mass of each pile section.

The mass of the pile sections apply at the top of that section. Since this mass is applied constantly over
the entire section of the pile, a fraction of the pile (and thus not the entire pile) is taken into account.

Since the mass of each section is applied to the top of each section (and therefore applies to the entire
section), it is chosen to factor the mass of the calculated section with η. This ensures that the vertical force
taken into account is not over-conservative. To obtain insight in the buckling behavior of an offshore wind
turbine, the top mass (mtop ) is used as variable parameter.

The factor η is set to 1/3. Since the cumulative mass increases linearly over the height of a section, a trian-
gularly shaped load shape is obtained. The center of area of this load shape is found at 1/3 from the bottom
of a section: hence η= 1/3.

From the cantilever beam we learned that there are more buckling values, each corresponding to a eigen-
mode or buckling shape. Therefore, multiple solutions for det (M) are to be expected. However, buckling will
occur at the first value for the variable when the load is increased gradually, when the determinant of this
matrix is equal to 0. In this case, the variable parameter is mtop . Figure 4.2 plots the relation between the top
mass and the determinant of the system. Note that at each crossing with the horizontal axis, Euler buckling
will occur.

As visualized in Figure 4.2, global buckling might occur when an RNA mass of 1.17 · 107 kg or larger is
being applied. Reference is made to section 5 for a more elaborate analysis regarding the global buckling of
this model.



30 4. Final model

0 1.2 2 4 6 88.4 10 12

m
top

 [kg] 107

1070

1075

1080

1085

1090

D
et

(M
) 

[-
]

 Euler Buckling - top mass

Figure 4.2: Euler buckling final model: Determinant vs mtop

4.3.2. Second order term
An incremental load factor is introduced to incorporate an increase in moment due to the eccentricity of the
mass due to bending of the piles. This eccentricity results in a larger moment along the piles, hence in a
larger deformation resulting in more eccentricity in the pile. Thus: when the displacement w increases, the
moment M increases. The total moment is defined as below:

Mtot (x) = M1(x)+M2(x) (4.11)

M1 describes the moments along the pile as result of the horizontal forces. M2, in addition, is the result of
the eccentricity of the masses, distributed over the top- and along the pile.

Since the governing equations of the final model contains a second order term, the incremental load fac-
tor is accounted for.

To determine the magnitude of the second order moment, equation 4.11 is rewritten:

M2(x) = Mtot (x)−M1(x) (4.12)

Note that the total moment is defined by the final model including all vertical loads, where M1 is obtained by
neglecting these vertical forces. The system of equations to obtain M1 becomes:

E I1
d 4w1(x)

d x4 +ksoi l w1(x) = 0, for 0 < x < x1

E I2
d 4w2(x)

d x4 = q(x), for x1 < x < x2

E I3
d 4w3(x)

d x4 = 0, for x2 < x < x3

E I4
d 4w4(x)

d x4 = 0, for x3 < x < L

(4.13)
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Solving these ordinary differential equations provide us with the following general solution:

w1(x) =


w1(x) =C11e−βx cos(βx)+C12e−βx sin(βx)+C13eβx cos(βx)+C14eβx sin(βx), for 0 < x < x1

w2(x) =C21x3 +C22x2 +C23x +C24+, for x1 < x < x2

w3(x) =C31x3 +C32x2 +C33x +C34, for x2 < x < x3

w4(x) =C41x3 +C42x2 +C43x +C44, for x3 < x < L
(4.14)

In section 5 the effect of this second order moment is analyzed and discussed.

4.4. Parameters
4.4.1. Monopile sections
The substructure is divided in 4 sections, see figure 4.1 for a visualization of the sections. Below the sections
are listed from top to bottom:

• Tower
• Dry monopile
• Submerged monopile
• Subsoil monopile

Several parameters are simplified to allow fast analysis of the model. For example, diameters and wall thick-
nesses of each sections are modeled as being constant over the length of the section. The elasticity modulus
and density of steel used troughout this thesis are given below. Note that the density of steel is adjusted to
account for internal components such as internal cables and the other equipment installed inside the pile.

• E = 210GPa
• ρsteel = 8500kg /m3

The moment of inertia (I ) and the cross sectional area (A) for a round tubular section is calculated below:

I = π

64
(D4

o −D4
i ) A = π

4
(D2

o −D2
i ) (4.15)

Where Do and Di are resp. the outer- and inner diameter of the pile, where the inner diameter is dependent
on the wall thickness t .
A distribution of the diameter- and thickness of the support structure of the reference turbine are given in
Figure 4.3. Quantification of the parameters regarding the reference model are given in table 4.1.

Figure 4.3: Diameter- and wall thickness distribution reference model
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Table 4.1: Parameters reference model

Parameter Unit Subsoil Submerged
Dry

Monopile
Tower

xl ower m 0 x1 = 28 x2 = 50 x3 = 60
xupper m x1 = 28 x2 = 50 x3 = 60 L = 142
Do m 6.1 6.1 5.75 5.0
w t mm 75 60 60 30
I m4 6.44 5.2 4.34 1.45
A m2 1.42 1.13 1.07 0.47

4.4.2. Soil stiffness
For this model linear soil springs are used to simulate the soil-pile interaction. One method to determine
this soil stiffness is to use so called p-y curves. These curves visualize the relation between the lateral pile
displacement and the soil pressure by means of the following expression:

ksoi l ,py =
pi

y
(4.16)

Where ksoi l ,py is the soil stiffness, y is the lateral displacement of the pile and pi is the soil pressure (see
expression below). Note that this method is applicable for sandy soils only.

pi = Apu tanh

(
ks H y

Apu

)
(4.17)

pu = (0.115 ·100.0405φz +0.5711̇00.0555φD)σv (4.18)

ks = (0.008085φ2.45 −26.09)103 (4.19)

With:

• A is the factor for static- or cyclic loading (0.9 throughout this thesis).
• H is the depth
• y is the lateral displacement
• φ as internal friction angle. This method is relevant for 29 ≤φ≤ 45.
• σv is the effective vertical stress at the considered depth.

Pressure in the soil σv is calculated at the relevant relevant depth in the soil, including the weight of the
water column and the soil:

σv = g (hw aterρw ater +hsoi lρsoi l (4.20)

Throughout this thesis the following values are applied, unless mentioned differently:

• g is the gravity, 9,81m/s2 on this planet;
• ρw ater is the density of seawater (1025kg /m3);
• hsoi l is the reference depth of the soil stiffness. Taken as 9m;
• ρsoi l is the soil density, taken as 1010kg /m3 [11]

Table 4.2: Parameter definition soil types

Soil types
H
[m]

A
[−]

φ[11]
[deg .]

σv

[kPa]
kpy

[N /m3]
Loose sand 28 0,9 29 318 1,01e8
Medium sand 28 0,9 33 318 1,66e8
Dense sand 28 0,9 38 318 2,45e8
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4.4.3. Thrust force
Wind powers the rotor to rotate, which is used to drive the the generator in the hub of the wind turbine. To
control the power that is generated by means of the blades, a blade-pitch system is installed. This system
rotates the blades to a certain angle to ensure both the integrity of the structure and the power production.
Figure 4.4 visualizes this pitch angle. On the left a low pitch angle is set to ensure the blade is as flat as possible.
However, when the wind speed increases, the pitch angle is increased, resulting in a smaller frontal surface of
the blade. This also results in a lower lateral force on the tower.

Figure 4.4: Blade pitch (left: wind up to rated wind speed, right: wind exceeding rated wind speed)

Due to this control system, the maximum thrust force is reached at the rated wind speed. At this wind
speed, the maximum power the generator can handle is used, but the blade is still pitched minimally. For
the reference model this results in a maximal thrust force Ft of 1000 kN . Note that this load is static. Due to
propagating eddies the wind speed may locally exceed the rated wind speed. Since the pitch system can not
react on these eddies, the total thrust force might be slightly higher.

4.4.4. Hydrostatic force
Waves and currents are flowing around the monopile of the wind turbine. These flows result in a hydrostatic
force that acts on the monopile. However, to allow the model to be analyzed analytically, the force is deter-
mined to be linearly decreasing: At mean sea level the force is considered maximal, where at the seabed the
force is considered to be 0. The force distribution is schematically shown in Figure 3.12

The hydrostatic force q(x) force is defined in equation (ref equation below)

q(x) = Fh
x −x1

x2 −x1
(4.21)

Where x1 and x2 describe elevations for resp. the seabed and water level. Fh is a factor that describes the
maximum force, acting at mean sea level on the pile, calculated using the Morison equation:

Fmor i son = π

4
D2ρw ater Cm u̇ + 1

2
Cdρw ater Du|u| (4.22)

where D is the diameter of the pile,Cm and Cd are resp. the inertia- and drag coefficient, ρw ater is the density
of water and u and u̇ are resp. the water particle velocity and acceleration. Typical values for inertia- and drag
coefficient Cm and Cd are resp. 0.7 [15] and 2.0 [15].

The water particle velocity is typically a combination of the current speed and the wave speed. The maxi-
mum wave velocity and acceleration are determined using Airy theory. Based on orbital motions of the water
particles in the wave, an expression is formed for the maximum particle velocity.

u = ucur r ent +uw ave (4.23)



34 4. Final model

Fh(x)

Fv

Figure 4.5: Simplied hydrostatic force

uw ave = ζωekz (4.24)

u̇w ave = ζω2ekz (4.25)

Where ζ is the wave amplitude,ω is the wave frequency, k is the wave number and z is the vertical location
of the water particle. When the water particle velocity expression is derived with respect to time, we obtain
the particle acceleration term [9]. The maximum wave velocity and acceleration is reached at z = 0, the top
of the wave.

Note that the values for the required parameters are dependent on the limit state that is checked. For
example, when an ultimate limit state (ULS) is tested, a wave that exists once every 50 years is used to de-
termine the hydrostatic loads. Also note that these hydrostatic forces are simplified by taking the maximum
wave velocity- and acceleration at mean sea level, where actually the wave exceeds this level. This is compen-
sated by decreasing the force over height linearly instead of quadratically.

Parameters for the hydrostatic load regarding the reference model are given in Table 4.3.

Table 4.3: Hydrostatic load

Parameter Value Unit Parameter Value Unit
ucur r ent 1.5 m/s ζ 17.48 m
Cd 0.7 − ω 0.578 r ad/s
Cm 2.0 − uw avemax 10.1 m/s
ρw ater 1020 kg /m3 u̇w avemax 5.84 m/s2

D 6.1 m Fh 406 kN /m
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Analysis

5.1. Introduction
This chapter elaborates on the analysis of the final model and elaborates on- and discusses the results, keep-
ing the research questions in mind. Firstly the buckling length comes to order. How can a buckling length be
chosen for a preliminary buckling check? Subsequently the second order effect is analyzed, referring to the
second order term in the governing differential equations of the beam models. Finally, a case- and sensitiv-
ity study is carried out, analyzing the relevance of several parameters and also comparing the local buckling
check to the global buckling check.

5.2. Buckling length
The Euler buckling force is defined as per equation 5.1. In this section a definition is sought for the buckling
length Lbuck (ref. equation 5.2.

Fbuck = π2E I

L2
buck

(5.1)

Lbuck =
√
π2E I

Fbuck
(5.2)

However, a monopile based offshore wind turbine is not clamped at the bottom, nor is the geometry
constant over the height of the structure. Therefore, the buckling length is approached from two angles:

• The varying geometry, inclined at the seabed
• Boundary condition at the seabed: what influence has the soil on the buckling length?

5.2.1. Varying geometry
In this section a buckling length Lbuck is determined. This length is calculated using the following equation:

Lbuck (x) =
√
π2E I (x)

Fbuck
(5.3)

However, note that the stiffness term E I (x) is dependent the geometry, and thus on the height of the pile.
Reference is made to Figure 5.1 for a visualization of the varying diameter- and wall thickness of the base case
as discussed in section 4.
Assuming that the buckling force is a constant, the bucklnig length must vary over the height of the structure
with a non-constant stiffness term (referring to equation 5.3). To obtain a buckling length, constant over the
length of the structure, a constant stiffness term needs to be obtained.

35
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Figure 5.1: Diameter- and wall thickness distribution reference model

This constant stiffness term E I is determined by computing the displacement of the rotor nacelle assem-
bly using the model and parameters as discussed in section 4, as per reference model. This displacement is
subsequently used to determine a value of the stiffness term, which is used to calculate a buckling length.
The used loadcase and obtained displacement are enlisted below. Note that for this study both water forces
and tower/pile drag are neglected.

A stiffness term E I is determined, using rules of thumb for a cantilever beam [19]. Note that the values
used below follow from the final model as discussed in 4.

δmax = F L3

3E I
→ E I = F L3

3δmax
(5.4)

E I = 1e6 ·1043

3 ·0,717
= 5.2e11[N m2] (5.5)

With:

• E I is the flexural stiffness term, independent of height x
• δmax is the maximum displacement at the top of the structure
• L is the length of the support structure from seabed to RNA
• F is the lateral load, induced by the wind on the RNA

The buckling length of the reference turbine follows from equation 5.3. Since we determined the buckling
force in section 4.3.1 using the final model, one can enter the following expression and conclude the buckling
length:

Lbuck =
√
π2E I

Fbuck
=

√
π25.2e11

1.3e8
= 228[m] (5.6)

228 meter is a factor 2,2 higher than the actual length of 104 meter (from seabed to RNA). Note that this
factor is even higher than the factor 2 which corresponds to the buckling length of a cantilever beam, as
visualized in Figure 1.6.

5.2.2. Foundation
To determine what the effects of the foundation-pile interaction is on the buckling length of a monopile, a set
of soil conditions is defined. Reference is made to section 4.4.2 where the modeling of the pile-foundation
interaction is discussed.
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Three soil types are distinguished in this thesis. Also the penetration depth of the soil is taken into ac-
count, resulting in the loadcases presented in Table 5.1. Note that both the soil type and the penetration
depth vary in the loadcases. Reference is made to section 4.4.2 for more details on the different parameters.

Table 5.1: Loadcases buckling length soil stiffness

Loadcase Soil types
H
[m]

A
[−]

φ

[deg .]
σv

[kPa]
kpy

[N /m3]
1. Loose sand 28 0,9 29 318 1,01e8
2. Medium sand 28 0,9 33 318 1,6e8
3. Dense sand 28 0,9 39 318 1,3e8
4. Medium 15 0,9 33 318 1,6e8
5. Medium 50 0,9 33 318 1,6e8

Now the influence of the buckling length is being determined. As in section 5.2.1, the buckling length is
determined using equation 5.4. Note that the same (constant) flexural stiffness E I is being used as in section
5.2.1.

Table 5.2: Buckling length: soil conditions

Loadcase Soil types
H
[m]

Lbuck

[m]
1. Loose sand 28 211,75
2. Medium sand 28 210,00
3. Dense sand 28 209,10
4. Medium 15 239,38
5. Medium 50 209,75

The various buckling lengths as result of the different soil stiffness’s and penetration depths are given in
Table 5.2. Here it can be noted that the influence of the foundation parameters does influence the buckling
length.

A loose soil stiffness results in a longer buckling length than a more dense variation of the soil. This can
be explained by means of the buckling shape of the structure. When a shape is inclined at one side and free at
the other side, the buckling shape can be mirrored, and the buckling length is taken as twice the length of the
pile. A visualization of the buckling length is enclosed in Figure 5.2 Here, however, we have a non-inclined
boundary condition. Therefore the buckling shape of the pile is angled at the seabed and the buckling length
is different.
To verify whether the findings were plausible, the soil stiffness was increased, approaching infinity, resulting
in a buckling length of twice the length, equal to a cantilever beam.
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Figure 5.2: Buckling length of a cantilever beam

Regarding the penetration depth of the pile, the same effect is noticed as with the soil stiffness variation.
A larger penetration depth stiffens the structure, which leads to a shorter buckling length. However, when the
penetration depth is lengthened to infinity, a buckling length is obtained that is larger than for a cantilever
beam. This is explained by the buckling shape: at the seabed the pile is not vertical, hence the buckling shape,
and therefore the buckling length is longer. A visualization of the deformation shapes is given in Figure 5.3.
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Figure 5.3: Sensitivity penetration depth:deformation curves

5.3. Second order term
The set of ordinary differential equations describing the model as discussed in section 4 (for convenience
given below), consists of 4 differential equations, each containing a second order derivative. This second
order term describes the influence of the vertical load on the displacement of the structure. The influence of
this second order term will be analyzed and discussed in the sections below.
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5.3.1. Base case study
The final model as discussed in chapter 4 gives a set of ordinary differential equations, including a second
order term. However, section 4.3.2 discusses a derivation of the same model, withou a second order term.
Figure 5.4 visualizes the differences in displacement, rotation, moment and shear force over the height of the
structure.
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Figure 5.4: Euler buckling final model: Determinant vs mtop

In these figures it can clearly be seen that the influence of the second order term (given in blue), is much
smaller than the results of the “first” order term (given in cyan). Figure 5.5 gives the percentage that the 2nd
order term contributes to the total of the displacement, rotation, moment and shear force.
Figure 5.5 provides a visualization of the effect the second order term has on the total amount of deformation,
rotation, moment and shear force. The total value is divided by the contribution of the second order. For
example, the moment is determined as follows. Note that the used parameters are based on the reference
turbine.

M f r ac =
M2nd (x)

Mtot al (x)
(5.7)

The second order term affects the mechanical properties of the structure minimally. Approximately 4,5%
is the contribution of this term. However, this does not mean that the term may or should be neglected
when checking for global buckling. Reference is made to section 5.3.2 where an incremental load factor is
introduced.

5.3.2. Incremental load factor (ILF)
An incremental load factor (ILF) might be beneficial to introduce to allow first order analysis regarding buck-
ling of a monopile based offshore wind turbine. Figure 5.6

The ILF that is introduced is based on the moment lines of the reference turbine, as calculated per chapter
4, as given below:

I LF = 1+ M2nd (x)

M1st (x)
(5.8)



40 5. Analysis

0.035 0.04

w
frac

 [-]

0

20

40

60

80

100

120

140

x
 [
m

]

0.04 0.045

frac
 [rad]

0

20

40

60

80

100

120

140

0.02 0.04 0.06

M
frac

 [-]

0

20

40

60

80

100

120

140

0 0.1 0.2

S
z,frac

 [-]

0

20

40

60

80

100

120

140
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Figure 5.6: Incremental load factor over the height of the pile

An ILF may could be used in the design of an offshore wind turbine.

• Reduce the ILF to a single value for the entire structure. Referring to Figure 5.6, 1.055 would be a rather
conservative value.

• Perform a first order analysis, as per paragraph 4.3.2. Both the moment, shear force and the displace-
ment should be factored by the ILF.

• Perform the required checks as prescribed by the design standards. For example the global buckling
check as described by the Eurocode.
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• Review the design and its parameters to optimize the design.

In this manner, an optimized design can be obtained without using a model based on second order terms.
This may be beneficial for designers

5.4. Sensitivity study
In this section several parameters are discussed on sensitivity, regarding global buckling of a monopile based
offshore wind turbine. The following parameters affect the buckling strength of the structure directly, since
they affect the Euler Buckling equation and are therefore analyzed for sensitivity:

• Soil type and penetration depth
• Pile diameter and wall thickness

5.4.1. Soil type and penetration depth
The soil stiffness and the penetration depth affect the buckling behavior of a structure. The foundation func-
tions as a boundary condition, which is exceeded over a length of the structure. To visualize the influence of
these parameters, the final model is being used. In short: the stability of the structure is analyzed by comput-
ing the different segments analytically. These segments, including the boundary- and interface conditions
are rewritten as a matrix equation (M~C = ~Fh).

Regarding the soil stiffness, a range of quantities is selected based on occurring scenarios. Different types
of sand are taken into account, ranging from very loose to very dense. Also the penetration depth is quanti-
fied according to realistic values. A visualization of both sensitivity curves is given in Figure 5.7.

The values of the soil stiffness are based on very loose sand [11] up to a rigidly connected structure. Ref-
erence is made to section 5.2.2 for relevant calculations of the soil stiffness.

A penetration depth of 8 meter is chosen to be as the lower level. From here, it is chosen to increase the
depth up to 40 meter, from where the buckling behavior is expected not to change any further.
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Figure 5.7: Buckling sensitivity soil stiffness and penetration depth

An increase in soil stiffness results in an increase in global buckling resistance. The maximum buckling
resistance increases to the buckling resistance where the lower boundary condition is rigidly connected in
the seabed (equal as a cantilever beam).

5.4.2. Pile diameter and wall thickness
Flexural stiffness (E I ) is a term used directly in the Euler Buckling equation. This value consists of the Elas-
ticity modulus E , and the inertia term I . This latter term is dependent on the cross sectional dimensions of
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the structure, in this case the diameter D and wall thickness t . The ratio between these values (D/t ratio),
is a major parameter in buckling analysis in general, since it obtains insight the sensitivity to shell buckling
in one simple expression. Therefore it is chosen to use the D/t ratio as a tool to analyze the global buckling
behavior of a monopile based wind turbine.

For this paragraph, the cross sectional area A is kept constant and the diameter is changed. In this manner
the wall thickness is decreased, when the diameter increases.

A = 1

4
π

(
D2 − (D −2t )2) (5.9)

Where D is the outer diameter and t is the wall thickness of the pile.

3 4 5 6 7 8 9 10 11 12

D
1
 [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

m
to

p [k
g]

107

Figure 5.8: Buckling sensitivity D/t ratio

Here it can be noted that the influence of the pile diameter and thickness influences the buckling resis-
tance significantly. This is expected, since the diameter term is present in the inertia term which subsequently
is used in the Euler buckling equation.

However, even for the lower diameter piles, relevance regarding global buckling may be disputable, refer-
ring to the mass of the reference wind turbine is determined to be 350.000 kg [8]. From Figure 5.8 it can be
concluded that at an outer diameter of 3 meter, the RNA would be required to have a mass of 2.700.000 kg.
This is approximately a factor 7,5 larger than the designed mass of the RNA, where the diameter of 3 meter
also is unrealistic small. Also note that the required buckling mass at a more realistic diameter of 6 meter is
around 11.400.000 kg, which is over a factor 32 higher than the design mass.

Furthermore it should be taken into account that global buckling might be irrelevant for these values of
the diameter and wall thickness, however, regarding other failure modes, such as local buckling, it might be
very relevant. In this paragraph the wall thickness decreases when the diameter increases, making it more
sensible for imperfections such as locally concentrated stresses. Section 5.5.2 elaborates on the relevance of
local buckling regarding global buckling.

5.5. Case study
This section elaborates further on the standards as discussed in chapter 2. Firstly, in section 5.5.1 a compari-
son of the buckling checks as per Eurocode and DNVGL is discussed. Are there significant differences, and if
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yes, where do they originate?

Subsequently the local buckling check of the Eurocode is compared to the global buckling check of the
Eurocode. With this comparison the relevance of the global buckling check with respect to the local buckling
check is discussed.

5.5.1. Global buckling check comparison: Eurocode versus DNVGL
Two global buckling checks are applied and compared: the Eurocode [5] and the DNVGL [3]. Both checks are
applied on the reference model, as discussed in chapter 4. The protocol of the checks are discussed in chapter
2. Both buckling checks are given in the equations below. Equation 5.10 describes the check for the Eurocode,
equation 5.11 describes the buckling check for the DNVGL. However, since these checks take non-axial forces
into account, the term global buckling is not strictly correct. Global buckling, as Leonhard Euler described it
[14] is initiated by axial forces only.

NE d
χy NRk

γM1

+kz y
My,E d +∆My,E d

χLT My,Rk

γM1

+kzz
Mz,E d +∆Mz,E d

Mz,Rk
γM1

≤ 1 (5.10)

Nd

κNp
+ βm Md

Mp
+∆N ≤ 1 (5.11)

Both checks consist of a summation of several parameters, which should be smaller or equal to 1. When
this unity check is not satisfied, failure will occur. However, the check as per Eurocode seems more com-
plicated than the DNVGLs check. This is relative, since both checks require some effort to define the non-
moment and non-compression terms. Besides that, the resistance- and design parameters (normal forces
and moments) are comparable. Furthermore, the Eurocode takes torsion into these equations, which are ne-
glected throughout this thesis, and thus this comparison.

It is recommended to review both standards for a complete view of the protocol [5] [3]. However, refer-
ence is made to chapter 2 for a short summary of the relevant sections of these standards.

Regarding the normal force, the Eurocode introduces a term χx where the DNVGL introduces κ. Both
these terms are related to the global buckling effect: the sensitivity regarding global buckling is expressed in
these flexural buckling coefficient.
Regarding the moment term, however, another coefficient is introduced. The DNVGL uses the moment factor
βm where the Eurocode introduces the term interaction factor ky y . Both terms take the slenderness of the
structure into account in this term.

Finally the DNVGL introduces one more slenderness parameter: ∆N . This term is used as extra safety
factor.
Both checks are filled in and compared. To do so, the most sensitive spot of the pile is to be selected: The
normal force and the bending moment are taken on this spot, allowing for a high as possible unity check.
To find this section on the pile, the normal-and moment distributions of the model are analyzed, as given in
Figure 5.9.

In these distributions it can be seen that the maximum moment and the normal force distribution are
maximum around the seabed. Therefore it is chosen to perform the buckling checks at the seabed.

The results of these checks are as follows:

• Global buckling check DNVGL: 0,0438 ≤ 1;
• Global buckling check Eurocode: 0,022 ≤ 1.

It can be noted that these checks point out that buckling will not be an issue for the reference wind tur-
bine. Since the values are resp. a factor 22 and 44 lower, it can be considered that this check is less relevant for
comparable support structures. However, since a trend of larger wind turbines in deeper seas and in a variety
of soil types is noted, one can consider that these checks might become relevant for these turbines.
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Figure 5.9: Normal force- and moment distribution (red), seabed (blue)

5.5.2. Global buckling check versus local buckling check: Eurocode
In this section Eurocode’s global buckling check is compared to its local buckling check. This is done using
the parameters of the reference turbine as input. Firstly, reference is made to chapter 2 for a summary of both
the local and global buckling check. The equations below are the main equations of these checks. Firstly the
global buckling check is given (equation 5.12). Subsequently, the local buckling check is given (equation 5.13.

NE d
χy NRk

γM1

+kz y
My,E d +∆My,E d

χLT My,Rk

γM1

+kzz
Mz,E d +∆Mz,E d

Mz,Rk
γM1

≤ 1 (5.12)

(
σx,E d

σx,Rd

)kx

+ki

(
σx,E d

σx,Rd

)(
σθ,E d

σθ,Rd

)
+

(
σθ,E d

σθ,Rd

)kθ
+

(
τxθ,E d

τxθ,Rd

)kτ
≤ 1 (5.13)

Note that the global buckling check has its focus on normal forces and moments, where the local buckling
check takes stresses into account. The elevation where these checks are taken is on seabed level.

• Global buckling check Eurocode: 0,022 ≤ 1;
• Local buckling check Eurocode: 0,049 ≤ 1.

The local buckling check scores higher on the unity check, meaning that it is closer to failing locally than
globally, and therefore more relevant for the reference wind turbine. However, note that these are two differ-
ent check, which may always be relevant for the design of a support structure of an offshore wind turbine,
especially when the dimensions of the RNA, mean sea level, soil conditions and other parameters are differ-
ent for every different wind turbine. Since the trend is to have larger structures offshore, it is interesting to
see how these new designs affect these buckling checks.

Note that the differences in result between the Eurocode and the DNVGL is over a factor 2, which may
be considered quite high. Reference is made to section 2.5, where it is stated that the DNVGL is likely to
be more concervative than the Eurocode, since the Eurocode goes more into depth. However, the offset
in results may also be declared regarding the range of the solution. The global buckling check is a unity
check, resulting in a failure- or non-failure. Therefore the accuracy of this test should be highest around the
bifurcation point of failure. However, since the results of the tests conducted in this thesis are very small, the
results are distantiated from this bifurcation point and the accuracy may be off.
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Conclusions and recommendations

6.1. Conclusions
From this thesis several conclusions can be formulated. To structurize these conclusions, the research ques-
tions as discussed in section 1.4 are discussed in separate paragraphs. Section 6.2 elaborates on the recom-
mendations. Note that the discussed parameters are based on a model with significant simplifications.

6.1.1. Where do differences regarding global buckling originate between the Eurocode
and the DNVGL?

The Eurocode and the DNVGL are different standards, written and defined by different project groups. There-
fore, differences are noted within the definition of the buckling checks. However, both checks are based on
the same principle:

• Both the Eurocode and the DNVGL define the check as a unity check
• Both the normal force and moments are taken into account;
• The maximum allowed normal force is factorized by a global buckling factor, taking the slenderness

and sensitivity to global (Euler) buckling into account;
• Another parameter is introduced to factorize the resistance of a bending moment to account for the

slenderness.
• Both checks take several safety factors into account, to allow for small (fabrication) errors.

Comparing both checks using a reference support structure and its turbine as input parameters, the re-
sults are as follows:

• Global buckling check DNVGL: 0,0438 ≤ 1;
• Global buckling check Eurocode: 0,022 ≤ 1.

The Eurocode defines that the sensitivity to global buckling is twice as low as the DNVGL. However, both
checks also point out that global buckling is very unlikely to occur for designs, compared to the reference
wind turbine.
What should be considered is that these checks are executed for one situation only. When a totally different
design is subjected to the same checks, other results are expected. However, this does not mean that the
global buckling check will ever be an issue for the design of the support structure.

6.1.2. How should the buckling length of an offshore wind turbine be chosen?
The buckling length of a beam is defined as follows:

Lbuck (x) =
√
π2E I (x)

Fbuck
(6.1)

Since this equation contains a non-constant flexural stiffness E I (x), a varying buckling length over the
height of the structure is obtained. However, a single value of the buckling length is required for analysis. Two
different cases are distinguished:

45
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• A support structure with varying geometry is subjected to a lateral deformation, resulting in the defi-
nition of a single flexural stiffness term for the entire structure. Using this term the buckling length is
calculated;

• A structure with a constant geometry is defined, embedded in a Winkler foundation. Several different
soil conditions are defined and evaluated.

A buckling length of 228 meter is found for the structure with varying geometry. Compared to the length
of 104 meter, which is the actual height of the taken structure, it is a factor 2,2 higher. This is higher than the
factor 2 that is found for a cantilever beam.

This seemingly high buckling length can be explained by the fact that the actual geometry, and thus the
flexural stiffness of the pile varies over the height. Therefore a segmented buckling shape is obtained, corre-
sponding with a long buckling length.

Several soil conditions and penetration depths are defined to create a couple of loadcases. Three soil
stiffness’s are defined (loose, medium and dense sand), along with 3 penetration depths (15, 28, 50 meter)
result in the following buckling lengths:

Table 6.1: Buckling length: soil conditions

Loadcase Soil types
H
[m]

Lbuck

[m]
1. Loose sand 28 211,75
2. Medium sand 28 210,00
3. Dense sand 28 209,10
4. Medium 15 239,38
5. Medium 50 209,75

Note that all buckling lengths are more than twice as long as the normal length of the structure (104 me-
ter). A loose soil stiffness results in a longer buckling length than a more dense variation of the soil. This can
be explained by means of the buckling shape of the structure. When a shape is inclined at one side and free at
the other side, the buckling shape can be mirrored, and the buckling length is taken as twice the length of the
pile. Here, however, we have a non-inclined boundary condition. Therefore the buckling shape of the pile is
angled at the seabed and the buckling length is different.

Regarding the penetration depth of the pile, the same effect is noticed as with the soil stiffness variation.
A larger penetration depth stiffens the structure, which leads to a shorter buckling length. However, when the
penetration depth is lengthened to infinity, a buckling length is obtained that is larger than for a cantilever
beam. This is explained by the buckling shape: at the seabed the pile is not vertical, hence the buckling shape,
and therefore the buckling length is longer.

6.1.3. Is a second order analysis required to determine whether global buckling is rele-
vant in the design of an offshore wind turbine?

The influence of the second order term on the bending and load characteristics is determined by comparing a
model with this second order term to one without this term. Figure 6.1 visualizes the displacement, rotation,
moment and shear force as determined by the model.
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Figure 6.1: Euler buckling final model: Determinant vs mtop

Note that the influence of this second order term is very small compared to the first order term. To vi-
sualize this effect even further, an incremental load factor is introduced. This factor is calculated as follows,
using the moment distributions of resp. the second order term and the first order term. The ILF distribution
is given in Figure 6.2.

I LF = 1+ M2nd (x)

M1st (x)
(6.2)
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Figure 6.2: Incremental load factor over the height of the pile

The incremental load factor is not higher than 1.06 for the reference turbine, and maximum at the top.
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However, to make this ILF usable, one should define a (conservative) value for the ILF, constant over the
height of the structure. In this case, one could consider an ILF of 1,05.

Returning to the research question: a second order analysis is in this case not required, since it effects is
rather small. However, since there is a trend where larger wind turbines are placed in deeper seas, it might
become more relevant (since a higher placed turbine results in a longer support structure, which will bend
over more and thus increases the second order term). A manner to take the second order term into account
might be the ILF.

6.1.4. When does global buckling become relevant?
This thesis approached this question in three manners:

• Euler buckling
• Global buckling as defined per standards: the global buckling checks;
• Global buckling compared to local buckling.

Figure 6.3 shows the sensitivity to Euler buckling. The cyan vertical line gives the vertical force as result of
the top mass. The red vertical lines give the Euler buckling forces. Here it can be noticed that global buckling
is unlikely to become a problem. The top mass requires to be increased by a factor 3, without a design change
in the support structure, for the pile to fail due to buckling. It is more likely that another fail mechanism will
be reached beforehand.
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Figure 6.3: Euler buckling forces

Both the global- and the local buckling checks did not approach the relevant zone of the unity checks:

• Global buckling check DNVGL: 0,0438 ≤ 1;
• Global buckling check Eurocode: 0,022 ≤ 1.
• Local buckling check Eurocode: 0,049 ≤ 1.

It can be concluded that in this configuration the checks are not relevant. Other failure modes such as
fatigue, are likely to be likely to perform better as guideline to design the support structure.
However, comparing the local- and global buckling check from the Eurocode, it can be seen that the local
buckling scores almost twice as high as the global buckling check. Therefore this local buckling check is more
relevant in this configuration. If the global buckling check will ever become relevant is doubtful. Other failure
mechanisms are more demanding, which are likely to be leading in the design of a support structure.
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6.2. Recommendations
From the thesis several recommendations are defined.

Firstly, it s unlikely that the global buckling check will be relevant in the near future in the design of wind
turbines. However, this does not mean that it should not be taken into account. The currently defined checks
are not too complex to perform. Hence it is recommended to keep performing these checks.

When an early design is made and checked for global buckling by means of the Euler buckling equation,
typically a buckling length of twice the length of the structure is chosen. However, since it is found that this
buckling length is some higher than 2, it might be beneficial to incorporate this small addition in the buckling
length. However, how much length should be added is unclear. A large set of designs should be analyzed to
determine a generally applicable factor for the buckling length.

An incremental load factor (ILF) may be a good solution to perform the global buckling check using a
first order model. This type of model allows for more insight in the properties of the model, and is better
approachable for less specialized designers. However, this ILF is likely to be around 1.05, which is not a
significant addition to the total amount of bending, moment or shear force. Since analysis of a design of an
offshore wind turbine requires more in depth analysis for among others fatigue and other failure modes, a
second order model may be available anyway. Therefore analysis with an ILF may be irrelevant, and buckling
analysis should be performed following the currently used methods.
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