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Abstract

Currently one of the major drawbacks of interplanetary travel is the cost of these types of missions. Mission
to extra-terrestrial bodies require a large amount of propellant to complete, which often takes up a large part
of the mass budget of the spacecraft. This requires larger launchers to be used to get the spacecraft into the
required orbit, which increases the cost of these missions. An often used method to decrease the propellant
used during an interplanetary mission is the gravity assist. The gravity assist uses the gravitational influ-
ence of a planetary body to increase its heliocentric velocity. This is done by exchanging some of the planets
momentum as it orbits the Sun to the spacecraft. The increase in velocity is limited by several factors: the
gravitational influence of the body, the closest distance possible between the body and the spacecraft, and
the orientation of the planetary bodies relative to each other. A new method has been proposed by McRonald
and Randolph [1990] called the aerogravity assist, which improves upon the gravity assist by increasing the
angle over which the spacecraft can turn using the aerodynamic forces it experiences while travelling through
the atmosphere of the planetary body. This increase in the velocity bending angle increases the heliocentric
velocity compared to the gravity assist, and also allows for changes in inclination of the interplanetary or-
bit using less propellant. This report investigates both the atmospheric and interplanetary trajectory of the
aerogravity assist, and combines them to understand the benefit of the aerogravity assist for interplanetary
trajectories.

A modular simulation environment is designed using the TU Delft Astrodynamics Toolbox to simulate the
atmospheric trajectory of the aerogravity assist. This simulator allows the selection of different types of ac-
celeration and environment models. The waverider is selected to be the vehicle used during the aerogravity
assist, as it is able to obtain high lift-over-drag ratios which reduce the drag losses during the atmospheric sec-
tion of the maneuver. The specific aerodynamic characteristics and heating models of the selected vehicle are
evaluated and incorporated into the simulator. From this simulation environment, the optimal atmospheric
trajectories were investigated using an optimization algorithm. It was found that this specific problem is
extremely sensitive to the selected optimization algorithm, the tuning parameters of the optimization algo-
rithm, and the objecive and decision variables that are used. The MOEA/D algorithm was selected to find the
optimal atmospheric trajectories for Mars, Earth, and Venus, where the objective variables were chosen to
be the atmospheric bending angle and the incoming and out-going inclination difference. It was found that
using the angle-of-attack and bank angle as control variables, an atmospheric bending angle of 120.5 degrees
and an inclination difference of 0.2 degrees could be obtained at Mars. Using the control action instead of the
inclination difference as objective variable at Mars showed that the atmospheric bending could be increased
to 151.2 degrees while maintaining an inclination difference of below 3 degrees, and smoothed the trajectory
in the process. For Earth and Venus the same optimization scheme was employed. They were able to obtain
atmospheric bending angles between 70 and 50 degrees, while obtaining inclination differences below 1.5
degrees. For Venus, the heat load was also optimized instead of the inclination difference and it was found
that the peak heat flux decreased by around 1000 W/cm2, while decreasing the atmospheric bending angle
by around 10 degrees.

A mission planner was designed to be able to investigate the effect of the aerogravity assist on interplan-
etary trajectories. To increase the accuracy of this mission planner, the numerically found atmospheric tra-
jectories are used to determine the possible interplanetary trajectories. Pareto fronts were created for Mars,
Earth, and Venus for a range of incoming velocities that showed the possible velocity bending angles and out-
going velocities that can be achieved using an aerogravity assist. These Pareto fronts were then implemented
in the mission planner to determine the influence of the AGA on an interplanetary trajectory. Several differ-
ent interplanetary trajectories were investigated using both gravity and aerogravity assists. It was found that
due to the fact that for Earth and Venus higher velocities are needed to travel through the atmosphere, the
aerogravity assist would lose too much velocity and thus not improve upon the gravity assist. However, for
Mars an increase was found of 4 km/s compared to the gravity assist for a trajectory to Saturn using fly-by’s at
Mars and Jupiter. Taking into account the extra mass of the thermal protection system, the decrease of mass
was found to be around 60 percent, which could be used to lower the cost of the launcher or increase the
scientific output of the mission by adding instruments to the payload.
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1
Introduction

1.1. Background
In the field of space exploration travelling to other solar system bodies to investigate their properties has
been an important goal for many years. These bodies can tell us more on important scientific topics such as:
the origin of life [Ehrenfreund and Charnley, 2000], where the water on Earth originates from [Altwegg et al.,
2015], how the solar system evolved over time [Porco, 2006], and many others. Furthermore, technological
advances that come along with these interplanetary missions not only benefit the space industry, but also
everyday life on Earth1. The private sector is now also getting involved in travelling to extra-terrestrial bodies,
as some companies enter the field of asteroid mining2 or space tourism3. These activities all require physical
exploration of the body, as remote sensing is not able to reach the accuracy of having instruments, or humans,
on the body itself.

There are several methods to reach extra-terrestrial bodies. The simplest method, which has been used
extensively in the past, is the high thrust impulsive maneuver. This method uses an engine to deliver a high
amount of thrust for a short period of time to reach an interplanetary transfer orbit towards the target body.
This method can only be used to reach bodies that are close to Earth and in a similar orbit, e.g. Mars, Venus, or
the Moon. Reaching bodies that are further away requires a large amount of propellant, which takes up mass
and thus requires a larger (more expensive) launch vehicle. There are other options like low thrust trajectories
[Breakwell and Rauch, 1966], which use a continuous low thrust maneuver to steer the spacecraft to the target
body. This method shows a lot of promise; however, the high power requirements when a spacecraft is far
away from the Sun limits the possibilities as larger and more efficient solar panels are required. Another
method is the solar sail [Leipold et al., 2003], which uses the momentum exchange of photons originating
from the Sun to propel the spacecraft. This method, however, is not as widely used as other methods and
requires extensive research and testing before it can be used.

A method that is currently frequently used to reach bodies that are further away is the gravity assist [Battin,
1959]. When a spacecraft, on a hyperbolic trajectory, makes a close approach with a large body an exchange
of momentum occurs between the two bodies. In the reference frame of the larger body, the spacecraft enters
the gravitational sphere of influence while accelerating towards the body and exits it again while decelerating.
No change in velocity has occurred from the stand point of the large body. However, if observed from the Sun’s
reference frame, i.e. the heliocentric or ecliptic reference frame, the spacecraft does experience a change in
velocity due to the fact that the larger body is also moving in an orbit around the Sun. The velocity gain of the
spacecraft is proportional to the amount over which the velocity vector is turned during its encounter with
the larger body. To increase the heliocentric velocity of the spacecraft it approaches behind the body, and to
decrease the heliocentric velocity (to move towards the Sun) the spacecraft needs to approach the body from
the front.

An analogy that can help understand the gravity assist is that of a ball bouncing of the front of a train.
Imagine a ball being thrown from a train station at 30 km/h towards a train moving at 50 km/h in the direction

1https://www.nasa.gov/sites/default/files/files/Benefits-Stemming-from-Space-Exploration-2013-TAGGED.pdf,
Benefits Stemming from Space Exploration, ISECG, September 2013, accessed: October 22, 2018

2https://www.planetaryresources.com/, Planetary Resources, accessed: October 22, 2018
3https://www.spacex.com, SpaceX, accessed: October 22, 2018

1
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2 1. Introduction

Figure 1.1: The paths of both Voyager mission through the Solar System. Courtesy of NASA.

of the train station. The train driver will see the ball moving towards the train at 80 km/h, and see the ball
bounce off the train again at 80 km/h. However, the people at the train station will see the ball leave the train
station at 30 km/h, and see the bounce ball off the train (assuming no energy loss) with 130 km/h (the 80
km/h of the ball bouncing in the trains reference frame, and the 50 km/h of the trains movement combined),
which is a 100 km/h increase. In this analogy the train is the large planetary body, the ball is the spacecraft,
and the train station is the Sun.

There are many missions that have used (multiple) gravity assists to reach the target body. One exam-
ple is the Rosetta mission [Villefranche et al., 1997], which used two gravity assists around Earth and one
gravity assist around Mars to reach the comet 67p/Churyumov-Gerasimenko. A more complex example is
that of Voyager 2, which performed gravity assist around Jupiter, Saturn, Uranus, and Neptune to escape the
gravitational influence of the Sun (see figure 1.1).

A problem of the gravity assist is the limitation in the possible velocity bending angle. The velocity bend-
ing angle determines the velocity increase of the spacecraft and is proportional to the gravitational influence
of the large body and the closest distance between the spacecraft and the planetary body. The gravitational
influence is set by the body that is used for the gravity assist and the spacecraft-body separation is limited
due to several factors. One is the environment of the larger body, which could cause damage to the spacecraft
(e.g. electronics could be damaged due to harsh radiation environments at Jupiter), or negatively affect the
velocity of the spacecraft (e.g. drag of the atmosphere when this is not desired). This bending angle limitation
is the main drawback of the gravity assist, as it limits the velocity gain, and requires very specific configura-
tions of planets. For example, Voyager 2’s trajectory (shown in figure 1.1), called “the Grand Tour”, allowed
the use of several gas giants for gravity assists. However, this will only be possible again in around 200 years
[Flandro, 1966].

These limitations led to the development of a new maneuver called the aerogravity assist by McRonald
and Randolph [1990]. This maneuver works using the same principle of the gravity assist. However, it uses
the atmosphere of the body to increase the velocity bending angle of the spacecraft. Using the aerodynamics
of the vehicle, it counteracts the centrifugal force that is trying to move the vehicle away from the body by
pointing the lift vector towards the center of the body. This allows the vehicle to turn over a larger angle
compared to a gravity assist. The drag experienced when flying through the atmosphere needs to be limited
as this can diminish the performance of the maneuver if it outweighs the gain in velocity due to the bending
angle. Furthermore, the velocity difference between the body, and the spacecraft that is on a hyperbolic orbit
is extremely large, thus the heating that occurs during atmospheric flight can be a large problem for the design
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of the vehicle.
The aerogravity assist belongs to a class of maneuvers called the aero-assisted maneuvers. These ma-

neuvers use the atmosphere of a planet to alter the orbit of the spacecraft. One of these maneuvers is called
aerobraking, and uses the atmosphere to lower the apoapsis of the orbit [Spencer and Tolson, 2007]. When
arriving at an orbit around the planet, the spacecraft can enter the atmosphere at periapsis and use the drag
experienced during atmospheric entry to change the height at the point furthest from the planet, which is
called the apoapsis. This maneuver is more efficient then using an impulsive thrust to lower the apoapsis,
but it does require the spacecraft to have systems in place that can overcome the high mechanical loads and
the heating that occurs during entry of the atmosphere. Several missions have used the aerobraking ma-
neuver [Spencer and Tolson, 2007]. The Magellan mission used aerobraking successfully at Venus, where
it performed 730 atmospheric passes, and saved 1.2 km/s in ∆V . Additionally, the Mars Global Surveyor
(MGS), and the Mars Reconnaissance Orbiter (MRO) both used aerobraking to reach their desired scientific
orbit around Mars. The other aero-assisted maneuver is called an aerocapture [Spilker and R., 2005]. This
maneuver uses the atmosphere of a planet to change the orbit of the spacecraft from a hyperbolic one, to an
elliptical orbit (changing from an interplanetary orbit to an orbit around the target planet). This maneuver
has not been performed yet as the mechanical and heat loads are significantly higher then for aerobraking,
thus extensive research and development on trajectory and subsystem analyses needs to be performed first.

The vehicle required for the aerogravity assist has to have several capabilities that previously used space
vehicles did not posses. Gliding at high altitudes requires the vehicle to generate a significant amount of lift
in low density conditions [Huang et al., 2011]. As the speeds at these altitudes tend to be high, the shape
of the vehicle should also minimize the drag experienced at these high velocities. These types of vehicles
have been studied extensively as they could allow the development of hypersonic planes and re-usable space
launch capabilities (see e.g. Nonweiler [1959], Tincher and Burnett [1994], and McClinton et al. [2005]). In
recent years several test flights of these hypersonic vehicle have been performed in combination with aero-
breathing propulsion [McClinton et al., 2005]. The X-43 vehicle is a NASA project that was designed to per-
form hypersonic research and test several different aero-breathing propulsion systems [Voland et al., 2006]. It
showed to be able to fly at a peak Mach number of 7 and keep within the allowable constraints. Another flight
tested vehicle is the Hypersonic Test Vehicle 2 (HTV-2) [Walker, 2008]. The HTV-2 test vehicle was designed by
DARPA to investigate the capabilities of a hypersonic glider to reach any location on Earth within one hour.
The design of a vehicle specific for an aerogravity assist has only been performed in theory (see e.g. Anderson
et al. [1991] and Armellin et al. [2007]).

Due to its complexity and risks, the aerogravity assist has not undergone a lot of research and testing.
McRonald and Randolph [1990] and Anderson et al. [1991] developed simple analytical models for the at-
mospheric flight and vehicles capable of performing the aerogravity assist. Combining these analytical ap-
proximations with interplanetary flight was done by Bonfiglio et al. [2000], Sims et al. [2000], and Henning
et al. [2014]. Besides the general research done on interplanetary flight, Lohar et al. [1994] and Edelman
and Longuski [2017] focused more on finding optimal atmospheric trajectories using several analytical ap-
proaches. Additionally, Armellin et al. [2007] developed a method to optimize the vehicle shape together with
the atmospheric trajectory of the vehicle. More recently, Lyons et al. [2008] and Casoliva et al. [2008] investi-
gated guidance and control strategies for atmospheric flight during an aerogravity assist. This thesis will use
the work of a previous Master thesis performed at the TU Delft Astrodynamics and Space Missions depart-
ment by Hess [2016] on using genetic algorithms and node control to find optimal atmospheric trajectories
for an aerogravity assist at Mars and Jupiter. What is missing from the current state of the art, is the design of a
mission planner that uses these accurate, numerically computed, atmospheric trajectories to design possible
interplanetary trajectories using the aerogravity assist. This will give more accurate performance measures
for the aerogravity assist, and allow more specific research to be done on key problem areas for the aerograv-
ity assist. Furthermore, the investigation of atmospheric trajectories has previously been limited to mainly
Mars using limited control and optimization strategies. This research project will build an accurate aerograv-
ity assist mission planner, and do a full investigation on possible atmospheric trajectories at Mars, Earth, and
Venus using various optimization strategies.



4 1. Introduction

1.2. Research Goals
This thesis tries to answer a basic question related to the aerogravity assist:

How much does the aerogravity assist improve the performance of interplanetary trajectories compared
to a gravity assist?

Answering this question will push the knowledge of this maneuver even further by improving the state of the
art on several different levels. To be able to do this, several research goals have been made that, if achieved,
can answer the main research question stated before. These research goals are stated here:

1. Build a simulation environment that can simulate the trajectory of a specific vehicle through the atmo-
spheres of several different planets.

2. Build a mission planner that can simulate a specific interplanetary trajectory using both gravity assists
and aerogravity assists.

3. Find optimal atmospheric trajectories for an aerogravity assist and use them to find optimal interplan-
etary trajectories.

4. Compare the optimal interplanetary trajectories using only gravity assists with optimal trajectories that
use the aerogravity assist.

Achieving the first goal allows for a tool that can be used in the search for optimal trajectories. Previous re-
search has used several assumptions to create a set of analytical equations that describe the motion of the
vehicle through the atmosphere (see e.g. Lohar et al. [1996] and Sims et al. [2000]). The simulator will allow
for more realistic models to be implemented. These more accurate models can then be used to compare
the results of the simplified equations with. Furthermore, it allows several applications that require a higher
accuracy (e.g. sensitivity analyses and guidance algorithm testing) to be performed. Finally, it can be used
together with numerical optimization algorithms to find different kinds of optimal trajectories. Part of this
goal is designing a realistic vehicle to be used in the simulation. An accurate aerodynamic and heating model
can be used to get more information on the feasibility of the aerogravity assist. One sub-goal is to show that
using the set-up developed in this thesis, no artificial increase in reference area is needed for the vehicle to
successfully find AGA trajectories (as was needed in Hess [2016]). The purpose of goal two is similar to the
first goal, as it will allow for the determination of optimal interplanetary trajectories. This mission planner
has to be able to use both gravity assists and aerogravity assists as these types of maneuvers need to be com-
pared with each other. The challenge in this goal is to realistically implement the aerogravity assist into the
interplanetary trajectory, as this will give insight into the possibilities when using an aerogravity assist. The
third and fourth goal will take the tools developed for the first two goals, and use them to answer the main
research question.

1.3. Outline
Chapter 2 will describe the flight dynamics of the vehicle, discussing the reference frames needed to express
all necessary quantities, the setup of the equations of motion for the vehicle, the relevant models needed to
describe the different forces acting on the vehicle, the models detailing the environments through which the
vehicle moves, and the simulation of the guidance and control system that is responsible for steering the ve-
hicle through the atmosphere. The aerodynamics of the vehicle when it travels through the atmosphere are
one of the most important parts of the aerogravity assist to understand. Chapter 3 discusses the relevant flow
regimes in which the aerodynamics need to be modelled, how to model the aerodynamics, which vehicle type
can be used in an aerogravity assist, and the heating of the vehicle that exists through the interaction of the
airflow with the vehicle. The different numerical methods that are needed to simulate the aerogravity assist
are discussed in chapter 4. This chapter goes through the integrators that are needed to solve the equations of
motion, different interpolation methods, the least squares fitting procedure that is needed to find a function
that approximates a data-set, and the optimization algorithms that will create the optimal trajectories. Chap-
ter 5 goes over how to design the simulator, using everything that has been discussed in the previous chapters.
It then also verifies that every module of the simulator works as expected. Chapter 6 discusses the theory of
interplanetary flight, how to develop a mission planner that can simulate interplanetary trajectories, and
how to use the atmospheric trajectory simulator to incorporate the aerogravity assist in the interplanetary
mission planner. Using the theory and setup discussed in the previous chapters, the results for the optimal
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atmospheric trajectories are discussed in chapter 7. This chapter first discusses the possible parameters that
can be used to construct the optimal trajectories, it compares the performance of the different optimization
algorithms, and then discusses the found trajectories. Chapter 8 discusses the results for the implementation
of the atmospheric trajectories into the mission planner, and the optimal interplanetary trajectories that are
created using both gravity assists and aerogravity assists. Finally, chapter 9 goes over all the goals stated in
section 1.2, and discusses the conclusions that can be taken from them using all the previous chapters in this
thesis. Afterwards, a few recommendations are given for future research projects on the aerogravity assist.





2
Flight Dynamics

The aerogravity assist (AGA) is a complex maneuver due to the variety of environments the spacecraft expe-
riences and the systems that are required to handle them. First, the spacecraft approaches the planet at an
altitude where there are no significant atmospheric effects and thus the gravitational influence of the central
body will be the main force acting on the spacecraft. The spacecraft then enters the top layers of the atmo-
sphere, where the air is relatively thin. To model the motion of the spacecraft at these altitudes, a combination
of astrodynamics and aerodynamics is required. Gradually the air becomes thicker and the dominant forces
acting on the vehicle are aerodynamic of nature. After the spacecraft has flown at the lowest altitude, the
spacecraft goes through all of the different environments again until it exits the sphere of influence of the
planet. To be able to successfully execute an AGA, one needs to be able to accurately describe all of the dy-
namics and environments and know where the uncertainties are in these models. This will be the subject of
the coming chapter.

First, in section 2.1 the different reference frames that will be used to define the various forces will be
discussed. After these frames are defined, the basic equations of motion are set up in section 2.2. The various
components of the equations of motion discussed in section 2.2 will then be discussed individually in more
detail in section 2.3. In section 2.4, the environment models that are needed to calculate the accelerations
acting on the vehicle are discussed, and compared with each other. Finally, section 2.5 describes the method
by which the control and guidance system will be simulated.

2.1. Reference Frames
All forces and coordinates are expressed relative to a specific reference frame. These parameters may look
different, and have different values, in different reference frames. Thus it is important to understand how
these reference frames are defined and how one can switch between the different reference frames. This
section will first list all the different reference frames that are used in this research project. Afterwards, the
most important reference frame transformations are discussed in 2.1.1. All of the reference frames discussed
hereafter are adapted from Mooij [1994].

Ecliptic reference frame This frame has its origin at the barycenter of the Solar System with its x-axis point-
ing to the position of the mean equinox at J2000 (January 1st, at 12 hrs), its y-axis in Earth’s orbital plane per-
pendicular to the x-axis, and the z-axis completing the right-handed orthogonal frame. This reference frame
can be used to determine the heliocentric position of the spacecraft and planets.

Inertial planetocentric frame The origin is defined to be at the center of the central body the spacecraft is
orbiting, with its z-axis pointing towards the north of the body aligned with the rotation axis of the body. The
x-axis points towards zero longitude at J2000, and the y-axis completes the right-handed orthogonal frame.

Non-inertial/Rotating planetocentric frame This frame is the same as the inertial planetocentric frame,
but now the x- and y-axis rotate with the central body. The x-axis points towards zero longitude in the equa-
torial plane and the y-axis completing the right-handed orthogonal frame. With this frame it is possible to
define the state with respect to the surface of the body.

7
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Vertical frame The centre of the frame lies at the centre of mass (com) of the spacecraft, with the z-axis
pointing towards the com of the central body, the x-axis towards the north, and the y-axis completing the
right-handed orthogonal frame. This reference frame allows us to use more intuitive variables. See figure 2.1.

Body-fixed reference frame The centre of the frame is again at the com of the vehicle, but now with the
x-axis in the plane of symmetry of the vehicle, pointing towards the front of the vehicle. The z-axis is also
in the plane of symmetry of the vehicle pointing downwards. And the y-axis completes the right-handed
orthogonal frame. See figure 2.3.

Aerodynamic reference frame Also with the centre at the com of the vehicle, but now with the x-axis point-
ing towards the direction of the airspeed, the z-axis in the opposite direction of the lift vector, and the y-axis
completing the right-handed orthogonal frame. This frame, in combination with the body-fixed framem,
allows us to describe the state with respect to the free-stream flow. See figure 2.2.

Trajectory reference frame The centre of this frame is at the com of the vehicle. The x-axis points towards
the direction of the airspeed, the z-axis lies in the vertical plane and points towards the surface, and the y-axis
completes the right-handed orthogonal frame. See figure 2.2 and 2.1.

2.1.1. Frame Transformations
In this section the transformation matrices are given that can be used to transform parameters from one
frame to another. These matrices are all orthonormal, which leads to the following identity:

[C A/B ]−1 = [C A/B ]T =C B/A (2.1)

where C A/B is the transformation matrix of frame B to frame A. Thus, if a transformation matrix is known that
can transform parameters from frame B to frame A, the inverse transformation (frame A to frame B) can also
be derived by taking the transpose of the known transformation matrix.

Another relation that holds for transformation matrices is the following:

C A/C =C A/B C B/C (2.2)

This means that any transformation can be done using intermediate transformation matrices.
All of the transformation matrices given in here can be derived using one or more of the following ele-

mentary rotation matrices:

Cx =


1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 (2.3) Cy =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (2.4)

Cz =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 (2.5)

where the subscript of each matrix indicates around which axis the rotation takes place (a rotation over an
angle of θ). Using successive elementary rotations, the reference frame transformations below can be derived
[Mooij, 1994].

Rotating planetocentric to Inertial planetocentric frame For this transformation only the rotation rate of
the planet is needed, ω, and the time since the two frames coincided, t . The matrix is given by:

C I /R =Cz (−ωp t ) =


cosωp t −sinωp t 0

sinωp t cosωp t 0

0 0 1

 (2.6)
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Trajectory to Vertical reference frame For this transformation the flight path angle γ is needed and the
heading angle, χ (see figure 2.1):

C V /T =Cz (−χ)Cy (−γ) =


cosχcosγ −sinχ cosχsinγ

sinχcosγ cosχ sinχsinγ

−sinγ 0 cosγ

 (2.7)

Aerodynamic to Trajectory reference frame For this transformation the bank angle with respect to the
airspeed is needed, σ (see figure 2.2):

C T /A =Cx (σ) =


1 0 0

0 cosσ sinσ

0 −sinσ cosσ

 (2.8)

Body to Aerodynamic reference frame This transformation matrix uses the two aerodynamic angles: the
angle of attack α and the sideslip angle β (see figure 2.3):

C A/B =Cz (β)Cy (−α)


cosαcosβ sinβ sinαcosβ

−cosαsinβ cosβ sinαsinβ

−sinα 0 cosα

 (2.9)

More rotation matrices exist that transform between all the various reference frames, the ones mentioned
here are the most important ones and if other transformations are needed, they can be found in Mooij [1994].

Figure 2.1: The trajectory reference frame (subscript T) and the vertical reference frame (subscript V) with the angles representing rota-
tions between them. Adapted from Mooij [1994].
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Figure 2.2: The aerodynamic reference frame (subscript A) and the trajectory reference frame (subscript T) with the angles representing
rotations between them. Adapted from Mooij [1994].

Figure 2.3: The body-fixed reference frame (subscript B) and the aerodynamic reference frame (subscript AV) with the angles represent-
ing rotations between them. Adapted from Mooij [1994].

2.2. Equations of Motion

The equations of motion are a set of differential equations that describe the dynamics of the spacecraft as it
performs the AGA. The simulator will construct these equations from the user defined settings and solve them
using a numerical integrator. This section will describe the set-up of these equations, whereas section 2.3 will
discuss the possible acceleration models from which the equations of motion are built. Each simulation can
differ from other simulations by selecting different acceleration models that will be part of the equations of
motion. The selection of acceleration model can increase the accuracy of the simulation, but also the run-
time. Thus depending on the purpose of each simulation, different acceleration models are chosen.

It is important to note that this research project will only consider the translational motion of the space-
craft. The torques acting on the vehicle and the control forces necessary to correct for them are not in the
scope of this thesis and will need to be investigated in another report. The way in which several rotational
parameters will be implemented into the simulation is discussed in section 2.5.

A simple model can be used to set up a set of analytic equations of motion, this is done in Mooij [1994]
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and shown here:

dr

d t
=V sinγ (2.10)

dΘ

d t
= V cosγsinχ

r cosφ
(2.11)

dφ

d t
= V cosγsinχ

r
(2.12)

dV

d t
=−D(α)

m
− g sinγ+ω2

p r cosφ(sinγcosφ−cosγsinφcosχ) (2.13)

dγ

d t
= 1

V

[
L(α)

m
cosσ−

(
g − V 2

r

)
cosγ

]
+2ωp cosφsinχ+

ω2
p

V
r cosφ(cosγcosφ+ sinγsinφcosχ) (2.14)

dχ

d t
= 1

V cosγ

[
L(α)

m
sinσ− V 2

r
cos2γcosχ tanφ

]
−2ωp (tanγcosφcosχ− sinφ)+

ω2
p

V cosγ
r cosφsinφsinχ

(2.15)

where Θ and φ are the longitude and latitude respectively, γ the flight path angle, χ the heading angle, α the
angle of attack, σ the bank angle, and ωp the angular velocity of the planet’s rotation. These equations give
an insight into the motion of the vehicle and can be used to verify the trajectories produced by the simulator.

To be able to produce more general equations, which can use more accurate models, Newton’s second law
is used. The forces can be decomposed into three different parts: the gravitational forces, the aerodynamic
forces, and the perturbation forces. A general equation of motion can then be set up which can be expanded
upon by adding more accurate models to the specific parts of the equation:

F I = m
d 2r I

d t 2 = F I
g r av +F I

aer +F I
per t (2.16)

where the superscript I is added to define the forces in an inertial frame. Using Eq. (2.16), the accelerations
acting on the vehicle can be produced. This can be put into the numerical integrator which can propagate
the state of the vehicle over time. The state of the vehicle is defined as the position and velocity of the bodies
inside the simulation in an inertial reference frame (either the ecliptic or planetocentric reference frame,
depending on the application and scope).

The gravitational forces include the force that the central body is exerting on the spacecraft. The grav-
itational influences of third-bodies will be separated and put under the perturbing forces. More accurate
gravitational models require the modelling of the mass distribution inside the central planet, this is thus dis-
cussed in section 2.4.1. The aerodynamic forces become important once the vehicle enters the atmosphere
of the planet. These forces are discussed in section 2.3.4, and several models for the atmosphere are investi-
gated in section 2.4.3. As the interaction between the airflow and the vehicle is extremely important for the
AGA, it is discussed in more detail in chapter 3. The perturbing forces are all remaining forces not mentioned
here, and provide a higher accuracy to the equations of motion if implemented. The most important of these
perturbation forces are discussed in section 2.3 together with the previously mentioned forces.

2.3. Acceleration Models
The equations of motion discussed in section 2.2 are constructed by the simulation software from the selected
acceleration models. Acceleration models define the accelerations of the vehicle from the state of the vehicle
and the environment models. The research question and goals stated in chapter 1 mention the performance
of the AGA as the main parameter that needs to be measured. Choosing certain acceleration models can in-
crease the accuracy with which an AGA trajectory is modeled. However, if this does not change the achievable
performance of the AGA compared to a less accurate model, the gain in choosing a more accurate model is
not justified for this research project. Thus a trade-off needs to be made for the choice of acceleration model
between the gain in accuracy of the performance of the AGA and the increase in computational effort that
specific model requires. This section discusses the possible models that can be used in the simulator. The
specific selection of which models will be used is discussed in chapter 5 and 8 where the results for the AGA
performance are produced and discussed.
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2.3.1. Central Gravity
The simplest model for the gravitational force a body exerts on another body is the central gravity model and
is given by Wakker [2015]:

F1 =−Gm1m2

r 3
1

r1 (2.17)

where G is the universal gravitational constant, mi is the mass of body i and r1 = |r1| is the distance from m2

to m1. The subscript of F defines on which body the force is acting. This equation is based on a body that has
a spherical symmetric mass distribution and assumes that the bodies don’t intersect. If we assume that one
of the bodies is much larger (m1 << m2) and we apply Newton’s second law we get:

d 2r1

d t 2 =− µ

r 3
1

r1 (2.18)

where µ is the gravitational parameter (=Gm2) which is introduced as this parameter is known with a higher
degree of accuracy then the two individual parameters [Wakker, 2015].

This equation works well for bodies with a mass distribution that is radially symmetric; however, for all
planets this is not completely the case. The non-uniform mass distribution of planets introduces a perturba-
tion to the body if only equation 2.18 is used [Wakker, 2015]. In section 2.3.2 it is described how this model
can be improved for an object with an arbitrary mass distributions.

2.3.2. Spherical Harmonics
To describe the gravitational force of a body with a non-uniform mass distribution, the spherical harmonics
series are used [Montenbruck and Gill, 2000]. Spherical harmonics are a set of orthogonal functions that can
describe functions on the surface of a sphere. For the gravity of a non-uniform body these functions can
be used to describe the concentration of mass beneath a surface element. After a lengthy calculation the
gravitational potential of a non-uniform body can be described as follows:

U = µ

r

∞∑
n=0

n∑
m=0

Rn

r n Pnm(sinφ)(Cnm cos(mΘ)+Snm sin(mΘ)) (2.19)

where r ,φ andΘ describe the position with respect to the center of the sphere, the latitude, and the longitude
respectively. R is the mean radius of the sphere and Pn(sinφ) are the Legendre polynomials. Cnm and Snm are
constants that depend on the mass distribution of the body. The potential can be related to the acceleration
of the smaller body by:

d 2r1

d t 2 =∇IU (2.20)

The potential rotates together with the planet, thus when calculating this a transformation is needed from
the rotating frame to an inertial frame, and the gradient should be taken in the inertial reference frame. How
the specific constants Cnm and Snm are calculated is discussed in section 2.4.1.

2.3.3. Third-Body Perturbations
Third-body perturbations are gravitational perturbations not due to the gravity of the central body the space-
craft is orbiting, but due to another body that exerts a gravitational force on the spacecraft. These pertur-
bations can have a significant effect on the orbit of the spacecraft over longer periods of time [Montenbruck
and Gill, 2000]. Due to the large distances involved in this perturbation, the differences between the central
gravity model and the spherical harmonics model are negligible. Thus the simpler central gravity field model
can be used to calculate the effect of the third-body perturbation. The equations of motion for a three-body
problem can be constructed as follows [Wakker, 2015]:

d 2ri

d t 2 =G
m j

r 3
i j

ri j +G
mk

r 3
i k

ri k {i , j ,k} = {1,2,3} (2.21)

Where ri j = r j − ri .
The magnitude of the perturbing force depends on the mass of the perturbing body and inversely on

the distance to the perturbing body. For a solar system spacecraft, the largest third-body perturbation is
generally the Sun [Wakker, 2015]. However, this perturbation is already much smaller then the second order
spherical harmonics perturbation. Just as was said before, if high accuracy is needed for the determination
of a trajectory, this perturbation can be included in the simulation.
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2.3.4. Aerodynamic forces
To be able to calculate the aerodynamic forces acting on the vehicle when in the atmosphere, several param-
eters need to be calculated or estimated. The equation for the lift, drag, and side force in the aerodynamic
reference frame are as follows:

L = 1

2
ρV 2Sr e f CL (2.22)

D = 1

2
ρV 2Sr e f CD (2.23)

S = 1

2
ρV 2Sr e f CS (2.24)

where ρ is the density of the medium in which the vehicle is moving, V is the velocity with respect to the
airflow, Sr e f is the reference area of the vehicle, and CL , CD , and CS are the lift, drag, and side force coefficients
respectively. These coefficients depend on: the shape of the vehicle, the Mach number, airspeed, α, and the
flow regime. The density is dependent on the atmosphere and the height of the vehicle above the surface of
the body, and Sr e f needs to be chosen so that it is consistent with the values of the aerodynamic coefficients.

These forces are calculated in the aerodynamic reference frame, thus to include them in the equations of
motion they need to be transformed from the aerodynamic reference frame to the inertial reference frame:

F I
aer o =C I /RC R/V C V /T C T /A[−D −S −L]T (2.25)

The aerodynamic forces are one of the main forces acting on the spacecraft during the AGA, and thus are
studied in more detail in chapter 3.

2.3.5. Radiation Pressure
Most of the radiation hitting a spacecraft originates from three different sources: the Sun, radiation being
reflected by the planet the satellite is orbiting (due to its albedo), and radiation emitted by the planet itself
(due to thermal radiation or other sources like a planets magnetosphere). Another smaller perturbation exists
due to the fact that a spacecraft can be heated up one one side more then on the other side. This causes a
photon thrust which exerts a small force on that side of the spacecraft. These forces are all relatively small
and do not influence the spacecraft over relatively short periods of time compared to the other forces. Thus
we shall only consider the largest of these forces here, namely the solar radiation pressure [Montenbruck and
Gill, 2000].

The satellite will absorb and reflect photons of the Sun due to the solar flux experienced by the satellite.
This solar flux is defined as the amount of solar photons crossing a unit area per unit time. A simple equation
can be set up that determines the force that a satellite experiences due to the solar radiation, assuming that
the illuminated part of the satellite only has surfaces which are perpendicular to the incoming photons and
that the surface of the satellite only reflects and absorbs the photons specular and not diffuse [Montenbruck
and Gill, 2000]:

Fr ad =−Φ
c

CR A
r¯
r 3¯

AU2 (2.26)

where Φ is the solar flux, c is the speed of light in vacuum, A is the illuminated area of the satellite, r¯ is the
distance between the Sun and the satellite, and CR is the reflectivity coefficient, defined as: CR = 1+ε, where
ε is the reflectivity of the satellite.

CR is the hardest factor to determine and many orbit determination programs put it as a free parameter
when calculating the radiation pressure [Montenbruck and Gill, 2000]. When the spacecraft becomes more
complicated (e.g. solar panels and scientific instruments on the surface of the spacecraft) equation 2.26 be-
comes less accurate.

A more accurate method is described in Früh and Jah [2014], where the spacecraft shape is divided into
a large number of facets. The radiation is then modelled as rays coming from a specific location and hitting
each facet individually. This allows for several effects to be modelled. Firstly, self-shadowing can be modelled
as the ray stops when it hits the first facet. Furthermore, as the force is calculated for each individual facet,
the torque due to the radiation pressure can be calculated. The main disadvantage of this method is that it re-
quires large computation times as it traces the rays from the source across a large area. This method is mainly
used when the solar radiation pressures is one of the largest perturbations, e.g. high area to mass ratio space
debris, and might be inefficient for vehicles where the solar radiation pressure is not a large perturbation, or
when short periods of time are considered.
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Planet D/O J2 σJ2

Mars 110 2.0 ·10−3 3.1 ·10−11

Venus 21 1.997 ·10−6 6.915 ·10−9

Earth 280 1.1 ·10−3 3.5 ·10−13

Table 2.1: J2 coefficients for different planets, where D/O stand for the degree and order of the model available. The data is adapted from
Dirkx [2015]

2.4. Environment Models
The environment model determines various parameters for the acceleration models mentioned in section
2.3, and thus also influences the accuracy and computation time of the simulation. Just as for the acceleration
models, the performance of the AGA is the main driver for the selection of the environment model. If it is
expected that the achievable performance changes significantly when a more accurate model is taken, it will
be taken into account when selecting the specific environment model.

This section will go through several possible environment models and their respective (dis-)advantages.
First the gravity field model is discussed in section 2.4.1, where the determination of the spherical harmonics
constants will be mentioned. Afterwards, the ephemeris models of the planets are examined in section 2.4.2.
Finally, the atmosphere models are investigated in detail in section 2.4.3.

2.4.1. Gravity Field
Section 2.3.2 discussed the spherical harmonics method for the calculation of the gravity field potential of
a body with an arbitrary mass distribution, where Eq. (2.19) shows how the potential is calculated for this
model. µ, Cnm , and Snm are the main environmental inputs of the model and can be determined using
various methods, as discussed in Montenbruck and Gill [2000]. One of those methods is the tracking of a
satellite in orbit around the planet and fitting the spherical harmonics model to observations of the position
and velocity of the satellite. Another method is called gravimetry, where the gravitational acceleration is
calculated using a test mass and observing its inertial reaction. If then r , R and µ are known, the gravitation
force can be calculated that is acting on the spacecraft. The further discussion of these methods is out of the
scope of this thesis, and readers are referred to e.g. Montenbruck and Gill [2000] or Lissauer and de Pater
[2013] for more information.

A widely used notation is that of the Jn , which is defined as:

Jn =−Cn0 (2.27)

For n = 2 this notation change is used to measure the relative oblateness of a planet. In table 2.1 some planets
with their J2 coefficients (and their respective uncertainties σ) are listed. Some studies on the AGA use the
Newtonian gravity model and then add the spherical harmonics expansion with only the J2 term in the model
as a perturbation (see e.g. Hess [2016]) instead of using spherical harmonics as the main gravitational model
and using higher order terms in it. Spherical harmonics can be used when a high accuracy is needed for
the determination of the gravitational accelerations. However, it also increases the computation time of the
simulations as the summation in Eq. (2.19) (containing all the gravitational coefficients) is evaluated at each
time-step.

2.4.2. Ephemeris
To be able to determine the position of a spacecraft relative to the position of a planet, not only the position
of the spacecraft needs to be known, but also the orbital position of the planet. This is what is called an
ephemeris. The ephemeris can be used if a specific mission needs to be analyzed as this requires the position
of the planet at the precise moment that this mission is performed. The ephemeris is also needed when
interplanetary travel is considered as the relative position of planets is important to find the trajectory of the
spacecraft between them.

Analytical expressions for the ephemeris of a planet can be used as this decreases the computation time
of the simulation (as the ephemeris tables are usually fairly large), but this will also decrease the accuracy.
Thus if accuracy is the main driver of a simulation a database is needed that uses up-to-date ranging data
and numerical simulations of the evolution of the orbits of planets.
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Geocentric differences INPOP13c - INPOP10e INPOP13c - DE430 INPOP10e - DE423

α

[mas]
δ

[mas]
ρ

[km]
α

[mas]
δ

[mas]
ρ

[km]
α

[mas]
δ

[mas]
ρ

[km]

Mars 1.19 0.38 0.204 0.35 0.21 0.129 2.1 0.62 0.47

Venus 0.17 0.22 0.023 0.33 0.16 0.017 0.85 0.42 0.045

Jupiter 0.52 0.23 0.60 6.85 9.55 2.98 0.81 0.74 1.11

Table 2.2: The maximum differences in geometric parameters (the declination, δ, the right ascension, α and the range, ρ) between
several models and versions. Data adapted from Fienga et al. [2014]

Two of the most widely used ephemeris databases are the Jet Propulsion’s Lab Development Ephemeris
(JPL-DE) and the French INPOP database [Fienga et al., 2014]. Both of these databases are based on the latest
observations of several interplanetary missions like the Venus Express (VEX) and the Mars Express (MEX)
missions using the Very Long Baseline Interferometry (VLBI) technique, range and range rate observations,
and optical astrometry . The differences between the models and their versions can be seen in table 2.2.
These differences show the uncertainty that there is in the location of the planets. The uncertainties in the
ephemeris can cause the spacecraft to miss its target, or enter the atmosphere at the wrong location, which
then require corrective maneuvers to correct for that increase the propellant needs for a mission.

Both ephemeris databases are available through the SPICE toolkit [Arora and Russell, 2010], which is also
used in this research project as it was readily available.

Next to the translational ephemeris discussed above, there is also a need for a rotational ephemeris. The
rotational ephemeris defines the rotation matrix of the body-fixed reference frame, and its time derivative,
with respect to an inertial reference frame. The rotation of the body has a significant effect on the dynamics
of the spacecraft in the atmosphere as can be seen in Eqs. (2.10) - (2.15), thus it is important to get an accurate
ephemeris model for the rotational model. The SPICE ephemeris model also includes a rotational ephemeris
for several planets, thus this ephemeris shall be used in the simulations for this research project.

2.4.3. Planetary Atmospheres
Planetary atmospheres have a large influence on the dynamics of the vehicle during an AGA. Modelling plan-
etary atmospheres is needed to calculate various aerodynamic forces and heating rates that influence the
vehicle and its motion through the atmosphere. For the calculations of these quantities, the density needs to
be known to calculate the aerodynamic forces, the temperature and pressure for quantities like the Reynolds
number and Mach number, and the composition of the atmosphere for the heating rate and Knudes number
(see chapter 3 for more information). Atmospheric models can be divided into two categories: the standard
models and the reference models [Mooij, 1994]. The standard models contain a list of values for the quanti-
ties mentioned earlier that represent the values for mid-latitudes and averaged over year-round conditions.
The reference atmosphere models are more representative for specific geographical locations, certain sea-
sonal conditions, and other effects like geomagnetic variations. It is important to note that for all atmosphere
models the accuracy decreases when conditions are needed at high altitudes, as the conditions at these al-
titudes change rapidly over time due to the Solar activity and are thus hard to predict [Picone et al., 2002].
When performing an AGA the vehicle will go through these higher altitudes twice, but the main gliding flight
will take place at lower altitudes.

The selection of the specific atmosphere model depends on its use inside the research project. As was
stated before, the goal of this thesis is to measure the performance of the AGA compared to the GA and not
simulate a specific mission. Most atmosphere models that offer high accuracy at the cost of computational
efficiency are used for specific mission analysis and system design purposes [Duvall et al., 2005] which require
a model that allows for the simulation of the precise conditions at a certain moment in time. Thus it is im-
portant when selecting the atmosphere model to consider the influence that the accuracy of the atmosphere
model has on the performance metrics for the AGA.

This section will go through all the options and describe the differences between the different models.
Which atmosphere model for each planet is used to obtain the results is discussed in chapter 5. First the
simplest model for an atmosphere is discussed: the exponential atmosphere.
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Planet Scale height [km]

Earth 8.5

Mars 11.0

Venus 16.0

Jupiter 24.0

Table 2.3: Scale height of different planets. The data is taken from Lissauer and de Pater [2013]

Exponential Atmosphere
A simple first-order model for any atmosphere is called the exponential atmosphere [Lissauer and de Pater,
2013]. The exponential atmosphere is based on several assumptions, namely that the atmosphere is a perfect
gas which is at rest as the pressure balances out the gravity (hydrostatic equilibrium). Furthermore, the tem-
perature, molecular composition, and the gravitational acceleration (g = g0) is constant for different heights.
The assumption of hydrostatic equilibrium can be expressed as follows:

d p =−ρg0dh (2.28)

where p is the pressure, ρ is the density, g the gravitational constant, and h the height in the atmosphere.
This equation can be solved and rewritten using the perfect gas equation, to arrive at:

ρ

ρ0
= e−

h−h0
H (2.29)

where H is the scale height, given by:

H = RT

g0
(2.30)

where R is the gas constant and T is the temperature. For the purpose of this thesis, the scale height is
assumed to be constant. In table 2.3, different scale heights are given for various planets. The exponential
model is not the most accurate model as it is based on several assumptions as was stated before. However,
as it can be implemented into the simulation using just one equation, it is computationally efficient and can
thus be used for situations where this is the main driver.

As will be shown in chapter 3, the composition of the atmosphere needs to be known to be able to calculate
various parameters. The exponential atmosphere model does not take the composition of the atmosphere
into account, thus it is important to discuss the assumptions needed to still be able to calculate these param-
eters. Earth’s atmosphere consists of 77 percent N2, 22 percent O2, and roughly 1 percent other molecules
(e.g. CO2, O3, H2O, etc., see Lissauer and de Pater [2013] for a more detailed compositional analysis of the
planetary atmospheres). Thus, for the case of an exponential atmosphere, it is assumed that the Earth’s at-
mosphere consists of 77 percent N2 and 23 percent O2, and that this composition is constant as a function of
altitude. Both the atmospheres of Venus and Mars consist of roughly 96 percent CO2, and around 3 percent
N2, thus this shall be taken as the composition of the atmospheres of Venus and Mars.

Mars AtmosphereModel
There are several atmospheric models that are used for missions to Mars. One of the main models is the Mars
Global Reference Atmospheric Model, or Mars-GRAM, which is an engineering level model (i.e. applicable
for engineering purposes) that was used in various missions [Justus et al., 2002]. This model has been used
for various aerobraking missions like the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (MO), and the
Mars Global Surveyor (MGS). From the surface to 80 km above the surface the model is based on data of the
NASA Ames Mars General Circulation Model (MGCM). From 80 km and above Mars-GRAM is based on the
University of Michigan Mars Thermospheric General Circulation Model (MTGCM). One of the main advan-
tages of this model is the ability to do Monte Carlo like analysis as it can introduce various perturbations in
the model that reflect real variations in the Martian atmosphere. The latest version of Mars-GRAM is the 2010
version and it has been compared with data from the Thermal Emission Spectrometer (TES) instrument on
board the MGS for low altitudes and with data from the MRO, MO, and MGS missions for higher altitudes
by Justh et al. [2011]. The observed versus measured density ratios are around 1.0 for equatorial cases and
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Figure 2.4: Temperature measurements of the landing of Opportunity compared with different scenarios of the MCD, Oppotunity landed
during a dust storm. Adapted from Millour et al. [2015].

Figure 2.5: Temperature difference between the Mars Express Radio measurements and the MCD. Adapted from Millour et al. [2015].

around 1.1 and 1.2 for higher latitudes and heights. For altitudes above 100 km, the ratios are again around
1.0 for around the equator, but they increase significantly towards the poles. For the MGS mission the aver-
age ratio is 1.8 with a maximum of 10.7, for MO the average is 0.99 and a maximum of 8.2 and lastly for the
MRO the average is 0.9 with a maximum of 3.6. This shows again the uncertainty there is at higher altitudes;
however, it also shows that the most accurate data is at lower latitudes and thus when designing a mission
this should be taken into account.

Another widely used Mars atmosphere model is the ESA Mars Climate Database (MCD) [Millour et al.,
2015]. This model is made using General Circulation Model numerical simulations and validated by obser-
vational data of the Viking, Opportunity, and MGS missions. It can simulate different scenarios like dust
storms and cold and warm temperature environments. In figures 2.4 and 2.5, differences between in-situ
measurements and the MCD can be seen for the temperature profiles. In figure 2.4, measurements of the
Opportunity mission in the landing phase, which was performed during a small dust storm [Millour et al.,
2015], are shown. This data shows a relatively large difference between a real dust storm scenario and the
opportunity situation. As there aren’t many dust storm measurements at higher altitudes from rovers it is ex-
pected that this difference is large. In figure 2.5 the difference between certain measurements from Martian
orbit are much lower and show a higher correspondence with the EMCD.

The EMCD model was readily available, and contained a large amount of scenarios and conditions that
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Figure 2.6: Density of the Martian atmosphere as a function of altitude, given both for the exponential atmosphere, and at 0 longitude
and latitude for the EMCD.

can be easily accessed by an out-of-the-loop software program. Furthermore, it is relatively accurate and
has been validated by several missions. The EMCD was thus chosen as the Mars atmospheric model for
high accuracy applications. The exponential atmosphere for Mars and the EMCD for 0 degree latitude and
longitude, in a non-perturbed scenario, is shown in figure 2.6. It can be seen that for lower altitudes, the
exponential atmosphere and EMCD are relatively close to each other, but for higher altitudes they start to
diverge from each other. This is due to the fact that most of the assumptions for the exponential atmosphere
do not hold anymore at higher altitudes where the atmosphere is thinner. Moreover, the upper atmosphere is
also highly dependent on external processes like the Solar cycle [Lissauer and de Pater, 2013], thus it is more
variable and unpredictable over time.

Venus AtmosphereModel
For Venus less information is available about the atmosphere than for Mars. The widely used atmospheric
model for Venus is the Global Reference Atmospheric Model (Venus-GRAM). This model is based upon the
VIRA model, developed in the 1980’s, for altitudes up to 200 km. Above these altitudes the model is extended
by taking into account several assumptions [Justh et al., 2006]:

• VIRA conditions and constituents at 250 km are used as lower boundary values.

• Constant (exospheric) temperature is assumed above 250 km (exospheric temperature = local VIRA
temperature at 250 km).

• Hydrostatic conditions are computed separately for each constituent (diffusive separation).

• Total pressure is computed from constituent partial pressures.

• Mass density is computed from constituent number densities.

The VIRA model is based only on data of missions in the 1970’s, when Venus was extensively studied by the US
and the Soviet Union, like the Pioneer Venus Probes and Orbiter (PVO), and the Venera 10, 12, and 13 landers.
Later VIRA models included data from the VEGA mission. A more current mission is the Venus Express (VEX)
[Svedhem et al., 2007], which flew between 2005 and 2015 around Venus to observe its atmosphere. On board
the VEX is the Venus Express Radio Science experiment (VeRa) which uses radio measurements to probe the
atmosphere of Venus. The difference between VeRa results and the VIRA model (and the updated VIRA-2
model) are shown in figure 2.7. It can be seen that differences is in the order of 5-10 K for lower altitudes and
becomes larger at higher altitudes.
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Figure 2.7: Results of VeRa onboard the VEX for mid latitudes (between 35 and 55 degrees) compared to the VIRA and VIRA-2 model.
Adapted from Tellmann et al. [2009].

Figure 2.8: Exponential atmosphere for the atmosphere of Venus.

Unfortunately, the implementation of the Venus-GRAM model into the simulation was not possible in the
time schedule for this research project. Thus for Venus, only the exponential atmosphere was implemented,
which is shown in figure 2.8. If this figure is compared with figure 2.6, it can be seen that the atmosphere of
Venus is much denser and also continues up to higher altitudes then the atmosphere of Mars.

Earth AtmosphereModel
There are many models that try to accurately describe the distribution and profile of various quantities of
the Earth’s atmosphere. As there are more satellites around the Earth then any other planet in the Solar Sys-
tem, and as the Earth’s atmosphere is observed by a large variety of instruments, the accuracy by which the
atmosphere is known is higher then for other planetary bodies.

One of the older, simpler, models is the 1976 US Standard Atmosphere. This atmosphere model is built up
from several sections, in which the temperature profile is treated as a linear function of height. The slope of
these linear temperature curves is called the lapse rate and is determined through several measurements of
rockets and satellite experiments. The density and pressure are then calculated using the same expressions
(and thus with the same assumptions) as for the exponential atmosphere.

Another model is the Earth-GRAM model. This model can reproduce the temperature, density, pressure,
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Figure 2.9: The density as a function of altitude for the exponential atmosphere model, and the NRLMSISE-00 model.

winds, and constituents as a function of time, height, and geographical location on Earth [Justus et al., 2004].
The model consists of the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas
(GUACA) data from the surface up to 27 km. Afterwards it is based on the Middle Atmosphere Program (MAP)
data, until 120 km, where after it is based on the NASA Marshall Engineering Thermosphere (MET) model.
Justus et al. [2004] compared the Earth-GRAM model with measurements from the Naval Research Laboratory
(NRL) and found that the model has a correlation factor of 0.93 with the NRL data. Hess [2016] determined,
however, that the Earth-GRAM model is only available to US citizens, and thus cannot be used in this research
project.

The NRLMSISE-00 model is another model that is based on empirical data and is often used in trajec-
tory analyses [Picone et al., 2002]. The NRLMSISE-00 model has been a continuation of previous models
and contains measurements (taken during the period of 1965-1983) from: the incoherent scatter radar (ISR),
mass spectrometers, solar ultraviolet (UV) occultation, pressure gauges, falling spheres, grenade detonations,
satellite drag measurements, and satellite-borne accelerometers. The composition, density, temperature,
and pressure in the upper atmosphere is highly dependent on the geomagnetic activity, and is thus not com-
pletely predictable. The NRLMSISE-00 model takes into account several measurements taken at these alti-
tudes, and averages over them all. Thus when taking data from the model at higher altitudes, the uncertainty
will also be higher. Due to its high accuracy, studied in Picone et al. [2002], and the availability of this model,
the NRLMSISE-00 model was chosen to be used for high accuracy applications. A comparison between the
exponential atmosphere and the NRLMSISE-00 atmosphere is given in figure 2.9.

2.5. Guidance and Control System
To be able to perform a successful AGA, the vehicle will need to be able to follow a certain reference trajectory
by controlling (part of) the dynamics of the vehicle. The subsystems responsible are the guidance and control
systems.

The guidance system of the vehicle determines the difference between the desired state of the vehicle
(from the reference trajectory), and the current state of the vehicle. The current state of the vehicle is the
output of the navigation system, which is assumed to be able to produce the state without any uncertainty to
the guidance system. From this measurement, the guidance logic will produce a desired command to correct
for any existing differences. These guidance commands are then given to the control system. The control
system will first transform these guidance commands to control commands, from which they are then issued
to the specific control surfaces (or other forms of control systems, e.g. thrusters, reaction wheels, etc.) to
be executed. The control commands are vehicle specific as they depend on which control actuators are on-
board, and how they relate to the forces and moments acting on the vehicle.

These systems and how they are simulated in this research project are discussed in the following sections.
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First in section 2.5.1, the variables that determine the guidance and control commands are discussed. After-
wards, the node control method used in the simulation is discussed in section 2.5.2. Finally, section 2.5.3 will
examine the bank reversal algorithm needed for the lateral guidance.

2.5.1. Guidance and Control Variables
In this analysis, only the atmospheric part of the trajectory will be mentioned, the guidance and control dur-
ing exo-atmospheric flight will not be discussed. Furthermore, it is assumed that the guidance and control
systems are ideal. Consequently, there are no uncertainties in these systems and the desired guidance vari-
ables will be perfectly translated to the control variables and to the actual state of the vehicle. These assump-
tions are made as the goal for this thesis is not to determine if the on-board systems are capable of achieving
a specific goal. The goal is to determine what the advantage is of an AGA compared to a GA in a general case.
Once this is determined, more accurate guidance, navigation, and control systems can be tested in future re-
search to determine their feasibility in achieving the performances determined in this thesis for more specific
mission scenarios.

The vehicles state is altered by the forces and moments acting on the vehicle. The forces will influence
the translational state of the vehicle, whereas the moments will influence the rotational state of the vehicle.
The influence of the different torques on the vehicle are out of the scope of this thesis, thus only the effect of
forces on the vehicle are taken into account, and the attitude will only be influenced by the control system of
the vehicle. To alter the state of the vehicle and drive it towards the desired state, the direction and magnitude
of the forces acting on the vehicle need to be controlled. It is assumed that the vehicle cannot use thrusters
during atmospheric flight, controlling the vehicle can only be done using the aerodynamic forces acting on
the vehicle. Thus the lift L and drag D force will be used to direct the vehicle to its desired state. As is shown
in figure 3.5, L and D can be changed in magnitude using the angle of attack α, which is defined in figure
2.3. α changes the aerodynamic coefficients present in Eq. (2.22) and (2.23), thus it indirectly influences the
magnitude of the forces. The sideslip angle β has a smaller influence on the aerodynamics of the vehicle,
thus it is assumed that β remains constant and does not change L and D during flight. Another variable that
can be used to control the aerodynamic forces is the bank angle σ, which is defined in figure 2.2. σ does not
control the magnitude of the aerodynamic forces, but it does change the direction of the lift vector, which
changes the normal component of the lift force. However, this also changes the tangential component, and
thus induces a lateral movement.

Lyons et al. [2008] listed the differences between using σ as the only guidance variables and keeping α
constant, and vice-versa. Using α allows a large range of initial flight path angles, γi , to be used. This is due
to the fact that the magnitude of the lift force can be altered and thus the region of γi that avoids skipping
and too steep trajectories can be altered using α. Furthermore, α does not induce a lateral movement, which
changes the orbital plane of the outgoing interplanetary trajectory. Changing the orbital plane using an im-
pulsive thrust is expensive [Wakker, 2015], and thus avoiding undesired differences in orbital planes should
be avoided. The problem with α control is that changing this angle over larger values may not be feasible
at hypersonic velocities. Furthermore, if it is possible, it would require a thermal protection material to be
present not only at the nose of the vehicle, but also on all surfaces that are exposed during higher values of α.

σ control allows the vehicle to fly at a pre-determined, constant, α. This can remove the disadvantages
of the α control, but it also induces an out-of-plane motion which needs to be accounted for in the guidance
system (this is discussed in section 2.5.3). Furthermore, due to the fixed L during entry, γi is restricted to a
small range of values and thus navigation uncertainties can result in a skip out of the atmosphere, or a entry
that is too steep. Hess [2016] and Casoliva et al. [2008] found several AGA trajectories at Mars using σ only
control. However, for Hess [2016], it was also required to increase the size of the vehicle by a factor of 10 as the
constant lift magnitude was not sufficient for the original design (this is improved upon in this thesis, as will
be shown in section 3.2). This shows that selecting only σ as a guidance variable is feasible, but has several
problems. Lyons et al. [2008] showed that usingα as the single guidance variable can result in successful AGA
trajectories, but also argued that the values needed for α would not be feasible during actual flight.

A method of improving upon the disadvantages of both these method is to combine them to use both α

andσ as the guidance variables. This method has been used for the Space Shuttle [Harpold and Graves, 1979],
and for several mission studies [Papp, 2014]. Both have shown feasible results for entry studies. However, for
the AGA there have only been a small amount of studies investigating the effects of using both α and σ as
control variables. Armellin et al. [2006] investigated this effect; however, they used the lift coefficient directly
as a control variable instead of α. This was done as the lift and drag coefficients as a function of α were not
known. This thesis hopes to improve upon this study by using a realistic waverider with its aerodynamic
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Figure 2.10: An example diagram of how the node control method works for the bank angle σ.

characteristics know for a large range of α to investigate the effect of using both α and σ as control variables.
As was mentioned in the beginning of this section, this study assumes an ideal guidance and control

systems. This means that the commanded guidance variables, (α,σ)C , are transferred to the control system
without any errors, and that the control system is able to immediately drive the current values of (α,σ), to the
commanded values. In a non-ideal system, the control algorithm would have needed to transform (α,σ)C

to a desired control surface deflection angle, and then the aerodynamic effects of this deflection would need
to be simulated to determine if (α,σ)C is reached. As was mentioned earlier, this is out of the scope of this
research project, and will thus be left for future research.

In the remainder of this project, α and σ will be referred to as the control variables, as they are the same
as the guidance variables.

2.5.2. Node Control
To obtain the control commands for the vehicle, a special method is needed which can produce a continuous
control command history along the entire trajectory. A method used before by Dijkstra et al. [2013] and Hess
[2016] is called node control. This method places nodes along the trajectory at certain intervals determined by
an independent variable, x, and assigns values to the control variables at each node. The control commands
at each node are then patched together using an interpolator. The nodes can be grouped together using a
guidance matrix Γ:

Γ=



x0 α0 σ0

x1 α1 σ1

...
...

...

xn αn σn

 (2.31)

Each row in this guidance matrix represents a node Nn , with corresponding values for the αn and σn control
variables at independent variable location xn . A visual example of this method for σ can be seen in figure
2.10.

An optimizer will be used to find the atmospheric trajectory of the vehicle, which will select the values
of the second and third columns of Γ. The independent variables xn are decided beforehand and used as an
input to the optimizer as it will then determine the optimal values at each location xn .

One of the important criteria for the selection of x is if the maximum value of this independent variable
is known beforehand. If this is not the case, an estimate must be made for the final value. If this estimate
is too low, the optimizer will be limited, and if it is too high, the optimizer will not be efficient as it has too
determine values for the dependent variables which will not be reached. Dijkstra et al. [2013] developed a
node control algorithm for a re-entry problem using the normalized specific energy, Ê , as the independent
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variable. Ê was chosen to start at a value of 1, and when it reaches the surface of the Earth (at an altitude
and final velocity of 0, thus 0 kinetic and potential energy) the value of Ê is 0. This allows the algorithm to
constrain the values of the nodes between 0 and 1. Hess [2016] determined that this would not be a suitable
choice for the aerogravity assist as the value of Ê is not known at the end of the trajectory due to the fact that
the state at the end of the maneuver is not known beforehand.

A candidate for a bounded independent variable is the atmospheric bending angle. This independent
variable gives the angle between the point that the vehicle enters the atmosphere (with a pre-determined
value for the start of the atmosphere), and the current location in the atmosphere. This variable can be ex-
pressed mathematically as follows:

cosθ(t ) = r I
0 · r I (t )∥∥r I

0

∥∥∥∥r I (t )
∥∥ (2.32)

where θ(t ) is the atmospheric bending angle at time t , r I
0 is the initial inertial position of the vehicle, and

r I (t ) is the inertial position of the vehicle at time t . The same problem will arise with the atmospheric bend-
ing angle as with the specific energy; however, for the atmospheric bending angle a limit can be set at 180
degrees. This limit can be set because of the fact that if an atmospheric bending angle larger then 180 degrees
is chosen, it would be better to enter the atmosphere from the other side. This limit will allow a distribution
of nodes between 0 and 180 degrees. If the final bending angle will be smaller then 180 degrees, the nodes
between the final value and 180 degrees will still be set but not reached by the vehicle.

The nodes only define the control variables at certain points along the trajectory. To be able to determine
a continuous control profile, an interpolator needs to be used to connect the different nodes. This is shown
in figure 2.10 and is discussed in more detail in section 4.2.

The final consideration is the number of nodes that will be used in the guidance algorithm. Hess [2016]
has performed an analysis of the optimization performance under various amount of nodes. It was found
that 10 nodes would result in the quickest convergence and the most robust solutions. Thus this number of
nodes will be used in the remainder of this research project.

2.5.3. Lateral Guidance
As was discussed in section 2.5.1, when using a bank angle, σ, that is not equal to 0 degrees or 180 degrees,
the vehicle will move in a lateral direction as the lift vector will have a component in that direction. If an
orbital plane change is desired, this can be used to control the vehicle to obtain the target final inclination.
However, when the orbital plane change is not desired, or the target inclination has not been achieved, an
algorithm needs to be designed that can minimize this deviation. One of the methods to do this is the bank
reversal. A bank reversal is executed when the predicted final out-going orbital inclination exceeds a certain,
pre-defined, tolerance. Once this tolerance is exceeded, the sign of the bank angle will change to reverse the
direction of the lateral component of the lift vector. This algorithm has been used on previously flown mis-
sions like the space shuttle [Harpold and Graves, 1979], and has been used in other AGA studies [Casoliva
et al., 2008]. For the AGA, it was found by Lyons et al. [2008] that for the exit leg of the trajectory, the bank re-
versal would create unplanned energy losses. Casoliva et al. [2008] has designed algorithms to diminish these
effects, but havingα as one of the control variables can decrease the needed bank reversals by decreasing the
use of σ.

To increase the accuracy of the bank reversal in the simulation, the change in σ should not be instanta-
neous, but instead follow the following rule:

σ(ti+1) =σ(ti )+ σ̇ ·∆t (2.33)

where ∆t is the time-step of the simulation. The bank angle rate σ̇ is chosen to be ±20 degrees per second as
this corresponds to space shuttle values [Harpold and Graves, 1979] and was also used in previous waverider
studies [Casoliva et al., 2008]. ∆t can pose a problem during the simulation, as the time-step size could be
variable (see chapter 4 for more information). This could be solved by implementing a fixed guidance algo-
rithm time-step, as was done by Hess [2016]. However, having a constant ∆t would decrease the complexity
of simulation. Which approach is taken is discussed in section 4.1.





3
Aerothermal Dynamics and Environment

As the vehicle starts to enter the top layers of the atmosphere, the dynamics of the vehicle change as aerody-
namic forces start to act on the vehicle. Furthermore, the interaction between the surface of the vehicle and
the boundary layer that starts to develop due to the viscous flow generates heat that increases the tempera-
ture of the vehicle.

The vehicle will enter the atmosphere at hypersonic speed (defined to be where the Mach number M is
greater then 5 [Anderson, 2006]). At hypersonic speeds there are several effects that need to be taken into
consideration when designing the vehicle and the mission. The first one is called the thin shock layer effect.
The shock wave that exists in hypersonic flow has a smaller angle between the body and the shock wave for
larger Mach numbers, thus at hypersonic speeds this angle can be small enough to interact with the viscous
boundary layer that has grown from the surface of the body. This can induce complications in the calculation
of various aerodynamic and thermodynamic parameters. A second problem with hypersonic flight is the fact
that for hypersonic flow the boundary layer will grow very fast, and through this, interact with the outer in-
viscid flow. This is called the viscous interaction and has a large influence on the pressure distribution on the
vehicle and thus on the aerodynamic lift, drag, and side force. The high temperature that the vehicle achieves
during the hypersonic flight also brings challenges as these high temperatures affect the composition and
chemistry of the flow around the vehicle. This in turn affects the heating of the vehicle. Finally, the rarefied
air at high altitudes changes the equations we can use to calculate the aerodynamic forces that act on the
vehicle. This is not necessarily a hypersonic effect, but it is an effect that hypersonic vehicles (including the
vehicle that will perform the AGA) will undergo. All of these effects make the modeling of the aerothermo-
dynamics of the vehicle complex and thus an in-depth analysis needs to be made of the various methods to
calculate the forces and heating rates.

Section 3.1 will discuss the basics of the aerodynamics that need to be considered for this research project.
The different flow regimes are considered in this section, together with the different methods available to cal-
culate the aerodynamic coefficients during these different flow regimes. In the following section, section 3.2,
the type of vehicle that can be used for the AGA is discussed, and a design analysis is performed to determine
the properties of the final vehicle. Then, in section 3.3, the heating phenomena are deliberated upon, which
is then linked to the thermal protection system in section 3.4.

3.1. Aerodynamics
The aerodynamics are an important part of the aerogravity assist, as it is used to control the vehicle to increase
the bending angle. As was discussed in section 2.3.4 there are three aerodynamic forces that can express the
influence of the airflow on the vehicle: the lift force L, the drag force D , and the side force S. Eq. 2.22 and 2.23
give the expressions needed to calculate L and D respectively. The side force S is also important when there
is a component of the flow hitting the spacecraft from the side (e.g. winds in the atmosphere). However, only
L and D will be used in this thesis as the S component is usually much smaller then the other aerodynamic
forces. Looking back at Eq. 2.22, 2.23, and 2.24, there are several quantities that need to be determined
to calculate the aerodynamic forces. V and ρ can be determined from the flight conditions, and Sr e f is a
constant parameter that is determined by the selection of vehicle. The complexity lies in the aerodynamic
coefficients CL , CD , and CS . These coefficients are dependent on the Mach number M , the shape of the
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Figure 3.1: The Knudsen number for the three exponential atmosphere models as a function of altitude. The reference length of the
vehicle is taken to be 5 meters.

vehicle, the angle-of-attack α, the sideslip angle β (see figure 2.2), the specific flow regime (see section 3.1.1),
and several other parameters. There are various analytic and numeric methods that are able to approximately
determine these coefficients, which will be discussed in section 3.1.2, section 3.1.3, and section 3.1.4. Which
method needs to be used is also determined by the type of flow experienced by the vehicle. Thus, these
different flow regimes are first discussed in section 3.1.1.

3.1.1. Flow Regimes
The air in the atmosphere is a combination of various molecules. These molecules remain in the atmosphere
mainly due to gravity, but the concentration of these molecules is not homogeneous. At low altitudes the
molecules are very close together and the air can be seen as a continuous flow. However, at higher altitudes
most of the molecules are spaced far apart and the flow cannot be seen as continuous anymore. This regime
is called the free molecular, or rarefied, flow. A number that describes the type of flow is called the Knudsen
number [Anderson, 2006]:

K n = λ

L
=

mp /(
p

2πσ2
pρ)

L
(3.1)

where λ is the mean free path length (the mean distance before a molecule hits another particle), L is the
characteristic length of the vehicle, mp the mass of the particle, and σp the collisional diameter of the parti-
cle. According to Anderson [2006], a continuum flow is considered when K n < 0.03, a transitional flow when
0.03 < K n < 1.0 and a free-molecular flow when K n > 1.0. Other authors, e.g. Hess [2016], use a larger tran-
sitional flow, from 10−3 to 10 for this region, but the exact numbers have no clear theoretical basis and both
ranges may be equally valid. Thus the ranges of Anderson [2006] are used in this project. The masses and col-
lisional diameter of the various particles are determined from the molecular composition of the atmosphere
models discussed in section 2.4. Figure 3.1 shows the altitudes corresponding to various flow regimes.

3.1.2. Local Surface Inclination Methods
Local inclination methods are a very powerful tool in the calculation of the aerodynamic coefficients of a
vehicle. Local inclination methods use equations where the aerodynamic coefficients are only dependent on
the angle the surface of the vehicle makes with the incoming flow. The local term comes from the fact that for
each vehicle the surface is divided into panels, which are not aerodynamically coupled with each other. It is
important to first note that the local inclination methods discussed here provide the pressure coefficient Cp
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and in some cases the shear stress coefficient Cτ. To obtain CL , CD , and CS , several steps have to be taken.
First the aerodynamic force vector in the body reference frame can be calculated as follows:

F B
aer o =−q∞

N∑
i=1

(Cp,i Ai ni +Cτ,i Ai ti ) (3.2)

where N is the number of panels used to discretize the surface of the vehicle, q∞ the dynamic pressure, Ai is
the surface area of the i th panel, ni is the normal vector of the i th panel, and ti is the tangential vector of the
i th surface. The minus sign in front is used as the pressure and shear stress act in the opposite direction as
the normal and tangential vector. The aerodynamic coefficients can then be calculated as follows:

CL

CS

CD

= 1

Sr e f q∞
C A/B F B

aer o (3.3)

where C A/B is the frame transformation matrix from the body frame to the aerodynamic frame. Thus the
pressure and shear stress coefficient produced by the local inclination method can be transformed to the
aerodynamic coefficients using these transformations.

The methods discussed in this section are the Modified Newtonian method, the tangent wedge/cone
method, and the corresponding methods for transitional and rarefied flow. The specific selection of the
method(s) that are used to determine the aerodynamic coefficients are discussed in section 3.2.

The Newtonian method is a local surface inclination method that models the flow of air as a so called
Newtonian flow. These flows are modelled as a stream of particles that when hitting a wall would transfer all
of its momentum to its tangential component. This allows the calculation of the pressure coefficient (which
can be used to determine the other aerodynamic coefficients) using the following formula [Anderson, 2006]:

Cp = 2sin2θ (3.4)

where θ is the angle between the incoming flow and the surface of the vehicle. This formula was first used by
Newton in subsonic flows, but quickly discarded due to the lack of real-gas effects and the fact that it could
only work for an inviscid flow. However, for high Mach numbers the shock angle is very small and when the
flow is deflected by the shock, it travels parallel to the surface downstream. The geometry of a hypersonic
flow closely resembles the geometry of a Newtonian flow and it was quickly found that Newton’s method
of determining the pressure coefficient works very well for high Mach numbers. The predictions made by
the Newtonian method can be made more accurate by modifying the physical assumptions underlying it.
For the Newtonian method, it was assumed that the shock wave is attached to the surface of the vehicle.
However, if this assumption is disregarded, and the loss of total pressure over the shockwave is considered,
the Newtonian method can be improved. This method is called the Modified Newtonian method, and is given
by the following equation [Anderson, 2006]:

Cp =Cp,max sin2θ (3.5)

Cp,max is the value of the pressure coefficient at the stagnation point behind the normal shock wave, given
by:

Cp,max = 2

γM 2∞

[(
(γ+1)2M 2∞

4γM 2∞−2(γ−1)

)γ/(γ−1) (
1−γ+2γM 2∞

γ+1

)
−1

]
. (3.6)

where γ is the ratio of specific heats, and M∞ is the free-stream Mach number of the flow.
Another method called the tangent-wedge/tangent-cone method (the wedge is used for two dimensional

analyses and the cone for three dimensions) can also be used to determine the aerodynamic coefficients. This
method is rather straightforward as it calculates the pressure at a certain point by calculating the pressure
downstream of a shockwave with a flow deflection angle that is equivalent to the local angle at that point.
The flow deflection angle is the angle that the flow is deflected over after travelling through the shockwave
created by the vehicle. This method has less of a theoretical basis compared to Newton’s method, but it has
been shown by Gillum and Lewis [1997] to yield accurate results for hypersonic vehicles.

Relations that were found by Newton and others have one flaw and that is that they can only be used for
inviscid continuum flow [Hart et al., 2014]. When calculating parameters for a continuum flow the Navier-
Stokes equation is used, which is a simplification of the Boltzmann equations. The Boltzmann equation
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describes a thermodynamic system which is not in equilibrium (e.g. a fluid with a heat gradient). The Navier-
Stokes equations, which can explain the characteristics of a viscous flow, are derived from this Boltzmann
equation using various simplifications based on a continuous flow. When the flow is rarefied, the Boltzmann
equation cannot be simplified to the Navier-Stokes equation anymore and other methods need to be derived.
Hart et al. [2014] came up with a method by analyzing the particle-surface interaction during collisions. When
a particle (or molecule) hits the surface it can reflect of the surface in two ways: specular reflection and diffuse
reflection. In specular reflection the collision is elastic, where the normal momentum component is reversed
and the tangential component is preserved. For a diffuse reflection the particle is reflected according to a
Maxwellian distribution for a temperature equal to the temperature of the reflected molecule. The reflected
molecule can be defined by two parameters: the tangential and the normal momentum accommodation
parameters:

σN = pi −pr

p1 −pw
(3.7)

σT = τi −τr

τi
(3.8)

where p is the pressure normal to the surface, τ the shear stress pressure and i , r , and w represent the incident
molecule, reflected molecule, and the wall respectively. If σN = σT = 0 we deal with specular reflection and
for σN =σT = 1 the molecules reflect diffusely. The full derivation of how these assumptions and definitions
are used to determine an equation for the pressure and shear stress coefficients is not within the scope of this
research project. Thus only the final equation is shown in Eqs. (3.9) and (3.10), and interested readers are
referred to Hart et al. [2014] for a more detailed analysis.
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(3.9)

Cτ =−−σT cosθ

s
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π

[
e−(s sinθ)2 +p

πs sinθ(1+er f (s sinθ)
]

(3.10)

s = V∞p
2RT∞

(3.11)

Here, s is the freestream molecular speed ratio, an analogue for the Mach number, T∞ the freestream tem-
perature, Tw the wall temperature, R the gas specific constant, and V∞ the freestream velocity.

The region between the free molecular flow and the continuum flow is called the transitional regime and
can be defined to be for a Knudsen number of 0.03 < K n < 1.0. To model this region analytically a bridging
function was made empirically from Space Shuttle measurements by Blanchard and Buck [1986]:

F (K n) = sin2
[

2+ log10K n

8
π

]
(3.12)

this bridging function can then be used as follows to calculate the force coefficient:

C̄x = Cx −Cxcont

CxF M −Cxcont

= F (K n) (3.13)

where the subscript x is the wanted force coefficient, F M is the coefficient found in the free molecular regime
and cont in the continuum regime. This equation was also implemented in numerical simulations by Ronse
and Mooij [2014] and Hess [2016] to model the transitional flow regime.

3.1.3. Numerical Methods
The previous section dealt with mainly analytical equations to determine aerodynamic forces. All of these
techniques had as an advantage that they only depended on the local angle of the flow with the vehicle. This
significantly reduces the computation time as this angle is easily determined. However, for a more accurate
description of the aerodynamics of the vehicle, a computational fluid dynamics (CFD) program would be
needed. These programs use sophisticated algorithms to solve various equations (e.g. Euler, Navier-Stokes,
Boltzmann, etc.) around the vehicle and predict various parameters. However, for hypersonic speeds, CFD
analyses are much harder as different effects that were not present during subsonic and supersonic flight
now have a major influence on the aerodynamics [Bertin and Cummings, 2006]. These problems include
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shock-boundary layer interaction, thin shock layers, entropy layers, viscid/inviscid interaction and real gas
effects (for example, dissociation and for high temperatures ionization), which are discussed in more detail
at the beginning of the chapter. Another problem that many hypersonic vehicles face is the fact that they
fly through rarefied air (i.e. the free molecular regime). As was discussed earlier, this does not allow for the
use of simplified equations, e.g. Navier-Stokes, anymore. Thus the full Boltzmann equation needs to be
solved, which is computationally intensive [Hart et al., 2014]. There have been several probabilistic methods
that are able to approximate the solution to the Boltzmann equation [Bird, 1994]. One of the most widely
used methods is called the Direct Simulation Monte Carlo Simulation (DSMC), which will be discussed in the
following section.

Direct SimulationMonte Carlo
The DSMC method was developed by Bird [1994], and is based on three stages for every time step (which
is a user chosen discretization of the time inside the simulation). In the first stage the equations of motion
of the particles in the flow are solved, including external force terms like the gravity. The only exception
for forces that are not included in the solving of the equations of motion are the inter-molecular collisions.
The equations of motion are solved numerically by a numerical solver, which can be chosen depending on
the use of the simulator. After the molecules are propagated to their new state, the physical space of the
simulated volume is divided up in cells. If in one of these cells there are multiple molecules, the simulator
will make pairs of these molecules. Using statistical tools and kinetic theory, a probabilistic value is assigned
to each pair. This probabilistic value can be calculated several ways, but it still has to adhere to physical
conditions, including the distribution given by the Boltzmann equation. If the probabilistic value is larger
then a certain pre-determined value, the two molecules will collide and their momentum vectors are updated
to the post-collision values. The final stage of the simulation is the application of boundary conditions. One
of these boundary conditions is checking if some molecules have hit the vehicle or checking if new molecules
can enter the simulated volume from outside the boundaries. These boundary conditions can be set by the
simulator, but as said earlier, they have to adhere to physical limits. The force acting on the vehicle is then
obtained from the particles that have hit the surface of the vehicle, which is also located in the simulated
volume.

The advantage of this method is the fact that the propagation of the state of the particle and the calcula-
tion of the collision of particles are separated. This requires much less computation time as if this was not
separated, every molecule had to be checked for a collision. The only requirements that the DSMC method
has is that the time step needs to be much smaller then the mean molecular collision time and that the gas is
in the free molecular regime, as in this regime only molecular collisions dominate and no other long distance
inter-molecular forces are present. The DSMC works best at high Knudsen numbers as the computation time
would increase significantly with lower Knudsen numbers. This simulation method has already been used in
missions by Moss et al. [1999] to calculate re-entry aerodynamics. Furthermore, Boyd [2015] has tested the
DSMC against other models and wind tunnel tests, for which the results are shown in figure 3.2. The results
show that compared to the modified Newtonian method the DSMC agrees much more with experimental
data from the wind tunnel. Thus for higher Knudsen numbers (free molecular flow), the DSMC method is
superior. For lower Knudsen numbers (partly the transitional flow and continuum flow), the DSMC method
will be computationally expensive, and thus not practical to use for this research project.

3.1.4. Selection of Methods
Dirkx and Mooij [2011] performed an analysis of which method for the continuum flow is appropriate for
which type of vehicle shape. It was determined that for high inclination ’flat’ vehicle shapes, at hypersonic
conditions, the modified Newtonian method works best. As will be discussed in section 3.2, the vehicle used
for the AGA has a low inclination ’flat’ shape, and thus the modified Newtonian method is selected to be
used as the preferred method. Gillum and Lewis [1997] determined that the modified Newtonian method
corresponds well to wind tunnel tests, and Dirkx and Mooij [2011] validated the Newtonian method further
using aerodynamic data of the Space Shuttle and the Apollo capsule. This method was readily available to
use due to the work done by Ronse and Mooij [2014].

For the free molecular flow, the options are between the analytical equations given in section 3.1.2, and
the DSMC numerical method given in section 3.1.3. A comparison between these two methods was per-
formed by Hess [2016], and it was found that there are several differences between the results from these two
methods. First, it was found that the local inclination methods for the free molecular flow would lead to a
discontinuity in the drag and shear stress coefficient profile as several panels would be in the shadow zone
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Figure 3.2: Aerodynamics as calculated by the DSMC method (the simulator is called MONACO, the modified Newtonian method (MN),
analytic equations from free molecular theory (FMF) and from wind tunnel data (M∞ = 10.0 and K n = 0.065). Figure a) shows the results
for the drag coefficient, and figure b) shows the results for the pitch moment coefficient. Adapted from Boyd [2015].

(the zone shielded from the incoming flow). For a local inclination method, θ would first be very close to zero
(thus close to a maximum for cosθ, thus also for CD and Cτ) before the panels would get into the shadow
zone. When the angle of attack (α) then changes to get these panels completely into the shadow zone, the
maximum will then suddenly jump to zero. The DSMC method has shown that it can avoid this behaviour,
and thus increase the accuracy of the aerodynamic coefficients. Furthermore, previous studies used these
(free molecular flow) local inclination methods on blunter bodies [Ronse and Mooij, 2014]. These blunt bod-
ies do not have sharp edges, contrary to waveriders, and are thus more suitable for these methods. It was thus
chosen that for the free molecular flow aerodynamic modelling, the DSMC method will be used. Specifically
using the SPARTA1 software package, created at the Sandia National Laboratories.

Finally, the transitional flow will be modelled according to a weighted average between the continuum
and free molecular flow, given by Eq. 3.12.

3.2. Hypersonic Waveriders
In chapter 2 it was already mentioned that the dynamics of the vehicle during the AGA are dependent, sepa-
rately, on the lift and drag force experienced by the vehicle. However, according to McRonald and Randolph
[1990], the L/D ratio is more important for the dynamics of the vehicle. If the L/D ratio is high, the losses
due to drag will be minimized and the spacecraft will fly more efficiently. This in contrast with other hyper-
sonic vehicles as their primary goal is to reduce speed and minimize heating by using atmospheric drag and
blunted noses (e.g. the Apollo vehicles returning to Earth). Early on in the development of the AGA, various
authors (see e.g. McRonald and Randolph [1990] and Anderson et al. [1991]) already found that the hyper-
sonic waverider class of vehicles were the best option for the execution of an AGA due to their aerodynamic
design, see figure 3.3. Hypersonic waveriders have a slender design which generates an attached shock wave
all along its leading edge during hypersonic flight. A high pressure zone is generated behind the shock wave
on the side of the vehicle that is facing the incoming flow. This pressure zone cannot “leak” to the other side of
the waverider as it is shielded by the attached shock wave. Thus, the pressure zone generates a high amount
of lift. In combination with a slender body reducing the drag, the vehicle can generate high values for the L/D
ratio.

Starkey and Lewis [1999] parameterized the shape of a hypersonic waverider using five parameters: l , w ,
m, θ, δ and n. The equations that describe the design of the waverider are as follows:

yp = Axn (3.14)

yl =C (x tanθ− z)m (3.15)

zu = (yu/B)1/n (3.16)

1https://sparta.sandia.gov/

https://sparta.sandia.gov/
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Figure 3.3: The shape of a waverider with the equations describing the geometry. Adapted from Armellin et al. [2007].

zl = x tanθ−
( 2yl n

l

w xn−m

)1/m

(tanθ− tanδ) (3.17)

where yp describes the planform view, yl the lower base surface, zu and zl describe the lower surfaces, and
A, B , and C are constants. In figure 3.3 the waverider is shown with the equations describing them.

3.2.1. Mission Heritage
The hypersonic waverider is a relatively new vehicle which was first proposed by Nonweiler [1959]. Most of
the research and development on this vehicle since then has been theoretical. However, recently there have
been some developments as waverider like vehicles have undergone more practical tests.

A hypersonic wind tunnel test has been performed on a blunted waverider at Mach 14 by Gillum and
Lewis [1997]. These blunted edges were added to analyze the losses in flow “spillage” between the upper and
lower area, as the theoretical infinitely sharp edges for hypersonic waveriders are not feasible (due to heating
and mechanical loads). It was found that the losses due to the spillage are minimal, however the drag induced
due to the blunted edges was higher and could diminish the aerodynamic efficiency.

Variations on the waverider design have been flight tested. The Hyper-x project performed several test
flight to investigate the use of hypersonic vehicles with air-breathing propulsion systems [McClinton et al.,
2005]. The X43-a is one of these vehicles which flew successfully at a Mach number of 7 for around one
minute [McClinton et al., 2005]. It was launched from a B-52 aircraft, where an attached booster brought it to
the desired velocity after separation from the aircraft. Once the desired velocity was reached, the test vehicle
detached from the booster and turned on its engine to perform the test flight. During this time it gathered
aerodynamic data to be used in future validation and wind tunnel tests.

Another vehicle that has been flight tested is the Hypersonic Test Vehicle 2 or the HTV-2. This vehicle has
a more waverider like shape, but as it is developed by DARPA and the Air Force, data on the aerodynamics
was not available. What is known is that it was launched on a ballistic missile and it reached a peak Mach
number of about 20 [Walker, 2008].

3.2.2. Waverider Design and Modelling
The waverider can be designed to optimize one or more different objectives, e.g. the L/D ratio, peak heat flux,
total heat load, the drag coefficient, the total volume, etc. The shape of the waverider can be designed accord-
ing to the parametrization showed in figure 3.3, and the aerodynamic properties can be derived according to
the methods discussion in section 3.1.4.

The vehicle design analysis was previously performed by Hess [2016] to determine a suitable waverider
shape for a different AGA study. It was decided that the waverider selected from this analysis will also be used
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Figure 3.4: The selected hypersonic waverider shape.

w [m] l [m] n [-] θ [deg] δ [deg] mass [kg] Sr e f [m2] V [m3]

2.0 5.0 0.5 5.0 9.0 800.0 6.67 1.17

Table 3.1: The properties of the selected waverider.

for this research project, as this will allow comparisons to be made between the studies, and to build upon
the previously done research of that research project. The shape of this waverider is shown in figure 3.4, and
the properties of this vehicle are shown in table 3.1. The specific waverider shape was selected due to its high
aerodynamic efficiency (high L/D) and its relatively low CD compared to other designs. Hess [2016] found
that the reference area (Sr e f ) of table 3.1 was not large enough to be able to generate a sufficient amount of
lift force at Mars to perform a successful AGA. To counteract this, the Sr e f was increased by a factor of 10. This
resulted in a vehicle size that is beyond current launch capabilities. One of the goals of this research project
is to find AGA trajectories that can be performed successfully using the setup of table 3.1.

Figure 3.5 shows the L/D profile as a function of the angle-of-attack α of the vehicle. It can be seen that
the L/D profile of the free molecular flow is significantly lower then the L/D profile of the continuum flow.
If the L/D profile of the free molecular flow could be increased, the vehicle could remain in the less dense
part of the atmosphere for a longer period of time, and thus experience less drag and heating. This could
significantly increase the performance of the AGA. However, the design of this type of vehicle is beyond the
scope of this research project, and is thus left for future research.

3.3. Aerodynamic Heating
Heating of a body during atmospheric entry happens as the surface of the vehicle interacts with the flow
around the body. The heating of the vehicle can be divided into three forms: convection, radiation, and
catalytic recombination. Convection happens when a temperature gradient exists at the wall. The heat is
transported through the boundary layer formed at the surface of the vehicle, in the direction of decreasing
temperature, which in most cases is towards the wall of the vehicle. Radiation heating happens when a sub-
stance becomes hot enough to emit large amounts of thermal radiation, in this case the shock layer, where
this radiation can then heat up the body of the vehicle. The last mechanism is catalytic recombination, which
is heating due to the formation of molecules at the surface of the body. The latent heat of these reactions
happening at the wall can then heat up the body. Authors like Armellin et al. [2007] and Casoliva et al. [2008]
have already shown that convective heating and radiative heating dominate the heating of a body during the
AGA and that catalytic recombination can be ignored. In the next sections we will deal with the models that
predict the heating on the spacecraft during the atmospheric phase.

3.3.1. Convection
As mentioned in section 3.1.3, numerical methods like CFD programs are able to model the flow around a
vehicle and with it predict the heating of the vehicle. However, these programs are time consuming and in
some cases unreliable. Thus, an analytic model is needed that is based on the fundamental principles of
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(a) L/D ratio continuum flow. (b) L/D ratio for the free molecular flow.

Figure 3.5: The waveriders L/D ratio for the two different flow regimes.

heating. The Fourier equation for convective heat conduction is given by Anderson [2006]:

qw =
[

k
∂T

∂y

]
w

(3.18)

where qw is the heating rate at the wall and k is the thermal conductivity of the material transporting the heat.
This equation shows that to have a convective heat flux, a temperature gradient is needed. This equation can
be used as a basis to derive the analytic equations for the convective heat flux. Sutton and Graves [1971]
found an expression for the heating at the stagnation-point for a fully catalytic cold wall and an arbitrary
atmospheric composition:

qc,0 = K

√
ps

RN
(hs −hw ) (3.19)

where qc,0 is the heat flux in MW/m2, ps is the stagnation point pressure in atmospheres, RN the nose ra-
dius of the vehicle, hs is the total enthalpy, hw is the wall enthalpy, and K is a constant dependent on the
constitution of the atmosphere, given by:

K = 9.8297 ·10−5

Pr 0.6

(∑ c0,i

M0,iγ0,i

)−1/2

(3.20)

where Pr is the Prandtl number, c0,i the mass fraction of species i , M0,i the molecular mass of species i , and
γ0,i the transport parameter, for which the exact definition can be found in Sutton and Graves [1971]. The
units of this constant is kg/s · m−3/2 · atm−1/2. Important to note is the fact that Eq. (3.19) is dependent on the
stagnation pressure, and inversely on the nose radius. At hypersonic speeds, the stagnation point pressure
increases significantly compared to (sub-)sonic speeds. Furthermore, the nose radius of waveriders is very
low as will be discussed in section 3.3.3. These two effects result in relatively high heat fluxes during the AGA.

Eq. (3.19) is accurate; however it is also difficult to estimate the required enthalpies. Using the assumption
that the vehicle wall is fully catalytic can simplify the equation. A fully catalytic wall assumes that all atoms
at the wall are recombined, irrespective of the mass fraction of this atom. It was shown by Tauber et al. [1989]
that for these walls, the heating rate is higher then for partially catalytic walls. Thus using this assumption
may result in higher estimates for the heat flux (this can be an advantage as it will naturally give a buffer to
the thermal protection system design). Furthermore, another assumption that can be used is the cold-wall
model (hw << h∞). Using these assumptions, the equation can be simplified to:

qc,0 = kh

√
ρ

RN
V 3 (3.21)
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where qc,0 is now given in W /m2, ρ is the density in kg /m3, V is the airspeed in m/s, and kh is now a dimen-
sionless constant, given by:

kh = K ·
[

1

4

p
2(101325)−1/2

]
(3.22)

Using Eq. (3.21) is a more conservative approach, as Dirkx and Mooij [2014] showed that the heating rate will
be overestimated by around 10% using Eq. (3.21). Furthermore, this form is also used in various other studies,
e.g. Casoliva et al. [2008] and Edelman and Longuski [2017]. Thus, for this research project, Eq. (3.21) will be
used to determine the convective heat flux. The value for kh for several atmospheric compositions are given
in table 3.2.

Composition kh(·10−4)

CO2 1.903

N2 1.749

O2 1.889

0.85 CO2, 0.15 N2 1.845

0.23 O2, 0.77 N2 1.751

Table 3.2: Convective heating constants for various atmospheric compositions. The data is adapted from Sutton and Graves [1971].

3.3.2. Radiation
During atmospheric flight the gas surrounding the vehicle will increase in temperature significantly, which in
turn leads to the gas emitting increasingly higher energetic radiation. This radiation will heat up the vehicle
and can cause increased temperatures on the body.

As said before in sections 3.1.3 and 3.3.1, some CFD programs are able to model this effect. However, these
programs can be quite computationally intensive. An analytic model would decrease the computing time
and give a first-order approximation of the heating. However, to model the radiative heating an assumption
has to be made. The assumption is that thermochemical equilibrium exists, which means that the flow is in
thermodynamical equilibrium (no heat exchange between two systems) and that it is in chemical equilibrium
(a system where both the reactants and products are present, but there is no change in mass fraction of the
respective species). This assumption has been verified by various measurements of Mars missions to be
reasonably accurate [Tauber et al., 1989]. From this, an equation can be made for radiative heating in the
atmosphere of Earth and Mars [Tauber and Sutton, 1991]:

qr =C Ra
Nρ

b f (V ) (3.23)

where C is a constant, RN the nose radius, ρ the atmospheric density and f (V ) tabulated values depending
on the velocity with respect to the atmosphere (values for different atmospheres can be found in Tauber and
Sutton [1991]). C , a, and b are constants depending on the atmosphere of the target planet. This equation is
again dependent on the velocity, density, and nose radius of the vehicle. However, in contrast to convective
heating, a larger nose radius does not mean less heating. Thus, this value needs to be balanced to get a
reasonable value for the total heat load. Tauber and Sutton [1991] found that the equations for radiative
heating for Mars and Earth are accurate to around 10 percent against numerically computed data. For Mars
the specific constants in Eq. (3.23) are:

C = 2.35 ·108

a = 0.526

b = 1.19

For Earth they are:
C = 4.736 ·108

a = 1.072 ·10−6 ·V −1.88 ·ρ−0.328

b = 1.22
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Figure 3.6: Data from the Pioneer-Venus large probe (squares) against predictions from equations 3.24 and 3.25 (solid line). Adapted
from Tauber et al. [2012].

For Venus a different equation was made by Tauber et al. [2012]:

qr = 9.497 ·10−63V 18ρ1.2R0.49
N (3.24)

where this equation is valid for velocities between 10,028 m/s and 12,000 m/s. For velocities below 10,028
m/s:

qr = 2.195 ·10−22V 7.9ρ1.2R0.49
N (3.25)

The verification of these equations for Venus can be found in figure 3.6. It shows good compliance with data
from the Pioneer-Venus large probe.

3.3.3. Leading Edge Design
Both the conductive and radiative heating equations presented in section 3.3.1 and 3.3.2 show that the nose
radius is an important parameter that determines a part of the heat flux experienced by the waverider.

The waverider shown in figure 3.4 has a sharp leading edge, which results in an infinitely small nose radius.
This results in a theoretical infinite heat flux, meaning the equations previously presented cannot be used.
Furthermore, in a practical sense, this type of nose would also be undesirable as the heating rates would be
extremely high and the thermal protection system would not work well with sharp leading edges. Designing
blunt leading edges decreases the heating of the vehicle. However, this would also detach the shockwave
from the leading edge, and thus increase the flow spillage. This reduces the aerodynamic performance of the
vehicle by reducing the L/D .

Several authors (see e.g. Blosser et al. [1995] and Gillum and Lewis [1997]) have investigated the influence
of blunted edges on the aerodynamic performance of waveriders. Blosser et al. [1995] found that the L/D was
reduced by 7 to 10 percent if the leading edge of the vehicle was reduced by 4 percent to allow for blunted
edges. Furthermore, Gillum and Lewis [1997] performed a wind tunnel test to compare a sharp leading edge
waverider with a blunt leading edge waverider. It was found that using a worst case scenario blunted nose,
the maximum L/D of the vehicle was reduced from 4.61 to 3.7. It was noted by Gillum and Lewis [1997] that
this is an unlikely scenario, and that a more realistic blunt nose would decrease the flow spillage.

The nose radius used for this study is derived from previous AGA studies [Lohar et al., 1994] [Casoliva
et al., 2008] [Edelman and Longuski, 2017] to be able to compare the heating results with the results from
these studies. The nose radius taken is 1 meter.

3.4. Thermal Protection System
The thermal protection system (TPS) of a spacecraft protects the payload and other subsystems on board the
spacecraft against the high heat flux and heat loads experienced during atmospheric entry. There are several
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different types of TPS that all have different working mechanisms.

One category of these methods is the reusable TPS. Reusable TPS experiences no change in its properties
after the heating exposure. It has a material with a high emissivity, which helps in radiating out the heat
in the material. Furthermore, it has a low catalycity as this reduces the convective heating. The heat that
enters the material then gets insulated or dissipated through various techniques. Reusable TPS is often used
for missions that have multiple heating periods and for lower heating environments. Ceramic structures are
often used as reusable TPS, for example in the X-38 vehicle [Ortelt et al., 2012]. This vehicle was used for tests
on manned re-entry and has performed several sub-orbital test flights. The TPS material used was a ceramic
composite of Carbon and Silicon (SiC) and for the X-38 it could withstand heat loads of up to around 74
W/cm2. However, in Edelman and Longuski [2017] it was found that the heat load for an AGA is >100 W/cm2,
thus the ceramics on the X-38 have not been tested up to this level of heating. An advantage of this material is
that it is relatively light compared to metallic TPS and it has a high technological readiness level (TRL) [Ortelt
et al., 2012].

Another form of reusable TPS is active-cooling. This form of TPS can be used together with other materials
like the SiC ceramics. The main principle of this technique is to pump a cooling fluid along the surface of the
vehicle that can absorb heat and transport it away. One of the most promising active cooling techniques is
variable transpiration cooling (VTC), described by Gulli et al. [2012]. In VTC, the cooling fluid gets injected
into the boundary layer through a porous material on the surface. This cooling fluid is made to decrease the
temperature gradient at the wall and thus decrease the heating. Gulli et al. [2012] showed that for various flow
rates the heating could be decrease by around 60 percent for a laminar flat plate case. However, this methods
requires a significant increase in mass for the storage of cooling fluids and also the material on the surface
needs to specially made to allow a specific flow rate for the cooling fluid.

Another category of TPS is the non-reusable TPS, from which the ablative TPS is the most commonly used.
An ablative TPS is used more in cases of extremely high heating or if re-usability is not a design consideration.
It is comprised out of several layers which all have a different purpose. One of the layers pyrolysis (changes
chemical state and phase) into several gasses. Part of these gasses get injected into the boundary layer and
reduces the convective heating. Resin from the pyrolysis gets left on the surface of the body, “char”, which
can also have an effect on the heating of the vehicle. Ablative TPS can handle higher thermal loads, but is also
much more complex in its effect on the boundary layer and the heating. This form of TPS has been used on
many different missions at various planets, and is thus also tested extensively [Venkatapathy et al., 2010].

Various studies already did uncertainty analyses on the ablative TPS thickness needed for several different
missions (see e.g. Wright et al. [2007], Mazzaracchio and Marchetti [2010], and Turchi et al. [2017]). They used
a Monte Carlo approach to model how different uncertainties in the TPS affect the final TPS thickness needed
(for an ablative TPS). It was found that uncertainties in the char properties have the most influence on the
final thickness uncertainty. Mainly the char conductivity has a large influence on how uncertain the TPS
thickness is. Uncertainties in the working of the TPS can have influences on the aerodynamic properties of
the vehicle, which need to be researched for an AGA. However, this is out of the scope of this thesis and will
be left for future research.

Ablative TPS have been used in most missions where higher heat loads were expected. Table 3.3 shows
some details from previously flown missions that have used ablative TPS, and table 3.4 shows some currently
used materials and their properties. The three Mars entry missions listed here (Pathfinder, Viking, and MER)
all use the SLA-561V TPS, a silicate based honeycomb structure which is filled with cork [Edquist et al., 2007].
This TPS material was effective as all these three missions were successful. However, for the Mars Science
Laboratory it was found that SLA-561V could fail under a certain combination of conditions [Venkatapathy
et al., 2010]. Thus the Phenolic Impregnated Carbon Ablator (PICA) material (see table 3.4) was chosen to
replace SLA-561V on the MSL. The advanced Carbon-Carbon (ACC) TPS material was developed by industry
to improve the Space Shuttle Carbon-Carbon TPS material. This material was then also used for the Genesis
mission, which returned a sample of solar dust to the Earth. The Avcoat TPS material was used on the Apollo
missions, and has thus been tested successfully under tight constraints. Since then there has been some re-
search in the Avcoat material to be able to use it for the Orion crew return vehicles [Meseguer et al., 2012].
The Heritage Carbon Phenolic TPS is only used for missions with high heat fluxes and heat loads. It has as
a property that it is denser then other TPS materials, and thus has bad insulating capabilities. However, it is
a good ablator and thus effective for missions where the vehicle experiences both high stagnation pressure
and high peak heat flux. For the missions discussed in this research project, the maximum heat fluxes ex-
perienced for Mars are around 500 W/cm2. Thus a material like PICA would be suitable, as it has good peak
heat flux capabilities and has been flight tested. For both Earth and Venus, higher heat fluxes of around 2000
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W/cm2 are experienced, thus the Heritage Carbon Phenolic could be a good choice due to its heritage and
capabilities. However, it is a heavy material and thus it could be replaced by e.g. ACC if the mass would be a
problem. However, it is shown in Laub and Venkatapathy [2003] that the mass is mostly determined by the
heat load and not the peak heat flux, thus this will mostly be the driver for the mass of the TPS. To be able to
give an estimate of the TPS mass fraction, figure 3.7 can be used. The line is fitted through the data points of
previous missions and gives a rough estimate of the TPS mass fraction needed for a specific heat load. The
equation of the fitted line is as follows:

m f r ac,T PS = 0.091Q0.51575 (3.26)

Mission TPS material Peak qst ag [W/cm2] Heat load Q [J/cm2] TPS mass fraction

Apollo Avcoat 500 3 ·104 15%

Galileo (Jupiter) Heritage Carbon Phenolic 30,000 2 ·105 50%

Gemini DC-325 50 - -

Genesis ACC 600 1.7 ·104 20%

Mars Pathfinder SLA-561V 100 4 ·103 8%

Mars Viking SLA-561V 20 1 ·103 3%

MER SLA-561V 50 5 ·103 12%

Pioneer (Venus) Heritage Carbon Phenolic 10,000 1 ·104 13%

Table 3.3: Summary of several previous missions that used ablative TPS. The data is adapted from Laub and Venkatapathy [2003].

TPS material Peak qst ag [W/cm2] Flight Qualification/TRL
V capabilities

< 13
km/s

> 13
km/s

PICA ∼ 1200 Stardust ++ ∼
Avcoat ∼ 1000 Apollo ++ -

ACC >2000 Genesis ∼ ∼
BPA ∼ 1000 TRL 3-4 ∼ -

PhenCarb family 1000−4000 TRL 5-6 ∼ ∼
3DQP ∼ 5000 TRL 4 + +

Heritage Carbon Phenolic 10,000−30,000 Pioneer, Galileo + +

Table 3.4: List of a selected group of available TPS materials. ++: capable; +: capable, but heavy; ∼: needs testing; -: not capable. The
data is adapted from Venkatapathy et al. [2010].
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Figure 3.7: The TPS mass fractions of previous missions compared to the total heat load Q. The solid line is an estimate that can be used
to give a first order approximation of the expected TPS mass fraction.



4
Numerical Methods

The simulation of the AGA is done by taking the state of the spacecraft (the x, y , and z coordinates and the
corresponding velocities) and for each time step propagating them forward to the next time step using the
equations of motion mentioned in section 2.2. The task of propagating the state of the spacecraft is non-
trivial and various authors have already discussed ways of tackling this problem [Press et al., 1992]. In section
4.1 the various methods to propagate the state will be discussed and with it the advantages and disadvan-
tages of them. Then in section 4.2 several methods of interpolation are mentioned, which are needed to
produce a continuous history of states between the time steps. Section 4.3 then explains the least squares
method, which is needed to fit models through data. Finally, in section 4.4, the different numerical optimiza-
tion schemes that can be used to optimize the atmospheric and interplanetary trajectories will be discussed.

4.1. Integrators
A propagator is a formulation of the equations of motion and dynamics of the system to be solved. The inte-
grator is the method by which the governing differential equations needs to be solved [Press et al., 1992]. For
an AGA, the integrator will propagate the equations of motion which are discussed in section 2.2. An inte-
grator is characterized by several parameters, including: the step size (often this can be varied by the user or
the algorithm), the truncation error (the error made when doing a single integration step), the efficiency (the
number of evaluations for a given accuracy), the sensitivity to initial conditions, and the error accumulation.
The key drivers for the selection of the integrator are the accuracy and the efficiency of the integrator. Im-
portant here is that the integrator error should be lower then the model errors. This section will discuss the
options available for the integrators that can be used in the simulation software to integrate the equations of
motion.

The first integrators considered are fixed step-size integrators, namely the Euler-method and the Runge-
Kutta 4 integrator (RK4). The Euler-method is the most simple method available and is mostly used as a
example method as even for simple problems, it will quickly lead to large accumulated errors and low effi-
ciency. It propagates the state as follows:

y(ti+1) = y(ti )+∆t ẏ(ti ) (4.1)

where y is the state vector and ∆t is the time step. This method has as advantages that it is very easy to
understand and very quick, but it is also very inaccurate and inefficient [Press et al., 1992]. Thus, this method
will not be further considered. The RK4 integrator uses the same principle as the Euler-method, but between
two steps it evaluates the equations two more times. Thus, for every step it evaluates the function a total
of 4 times, see figure 4.1. This method increases the accuracy significantly compared to the Euler-method
because of the reduction of the truncation error. The accuracy of the integrator can be increased by just
adding more evaluations between two points, but this would also keep on increasing the computation time
of the integrator.

Another type of integrator is the variable step-size integrator. This integrator changes the step-size ac-
cording to various algorithms. A Runge-Kutta-Fehlberg RKF method uses two different sets of function eval-
uations to determine the required step size. For example, a RKF45 integrator first uses a RK4 method to
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Figure 4.1: Example of how an RK4 integrator works, where the numbers represent at which point the integrator evaluates the equations.
Adapted from Noomen [2016].

determine a solution: yk+1. Next, a RK5 method is used to determine a second solution: zk+1. The integra-
tion is first done with an initial step size ∆t , the new step size will then become s ·∆t , where s is calculated
using the following formula [Press et al., 1992]:

s =
(

tol∆t

2|zk+1 − yk+1|
)1/4

(4.2)

where tol∆t is a user defined tolerance. The same principle holds for the higher order RKF methods, but then
the solutions calculated are of a higher order.

The goal of this thesis is to determine the performance increase of an AGA compared to a GA. If the goal
was to simulate with a high accuracy a specific AGA trajectory that can be used during a mission, a variable
step-size integrator would be taken over a fixed step-size integrator. However, as was shown in section 2.4.3
and will be shown in section 5.2, the model errors are larger then the integrator errors and the error on the
performance metrics are not influenced significantly by the integrator. Furthermore, as the complexity of
the guidance algorithm would be significantly reduced if a fixed step-size integrator is used, an RK4 integra-
tor with a 1 second time-step will be used for the remainder of this thesis. A quantitative validation of this
selection is given in section 5.3.

4.2. Interpolation
As was discussed in section 2.5.2, the control profile of the atmospheric trajectory is determined using the
node control method. The nodes resulting from this method need to be connected to determine a continu-
ous control profile. This is done using interpolation. Interpolation is the process where between two or more
points a function is fitted that is able to give a functional value for points where the simulator has not calcu-
lated a value. In this section three interpolation methods will be discussed briefly: linear interpolation, cubic
spline interpolation, and Hermite spline interpolation.

Linear Interpolation
Linear interpolation is the most simple interpolation scheme available. Between the two points, (x0, y0) and
(x1, y1), a line is fitted with start and end values corresponding to the two points that are used for interpola-
tion. The formula for the line can be given by [Press et al., 1992]:

y = y0 + (x −x0)
y1 − y0

x1 −x0
(4.3)

where the subscript 0 corresponds to the value of the first point and 1 to the value of the second point. The
problem with this method is that it is not continuous in the first derivative across the whole trajectory. This
is not accurate compared to real world examples where quantities cannot jump from one value to another
instantaneously. Furthermore, if a derivative needs to be taken, this method will lead to singularities.

Cubic Spline
With a cubic spline the interpolation between two points is not done by a first-order polynomial as in the
linear interpolation, but with a cubic polynomial. Each function between two points is called a segment. The
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equation for one of these segments is given by:

Si (x) = ai (x −xi )3 +bi (x −xi )2 + ci (x −xi )+di (4.4)

This function has 4 constants that need to be determined. Thus for every segment, there needs to be 4 pieces
of information to determine all of these constants. These four conditions are:

Si (xi ) = yi (4.5)

Si (xi+1) = yi+1 (4.6)

S′
i−1(xi ) = S′

i (xi ) (4.7)

S′′
i−1(xi ) = S′′

i (xi ) (4.8)

(4.9)

These four conditions make sure that the segments between points are smooth in the first derivative, and
continuous in the second derivative. However, they can overshoot the points when the application is sensitive
to higher order derivatives, as can be seen in figure 4.2.

Hermite Spline
A Hermite spline uses the same principle of a cubic spline. However, instead of defining a cubic polynomial
between each point, the Hermite spline is defined by the location and tangent vectors at each data point. This
means that instead of computing the first derivative from the boundary conditions given by Eq. (4.7), the first
derivative is imposed. The tangent vectors are determined such that there is no overshoot in the data values.
First, it is determined if the slope before and after a specific data point changes in sign. If it does, the point is
a local maximum or minimum, thus the first derivative is zero. If there is no sign change, the derivative di is
determined by the weighted harmonic mean:

w1 +w2

di
= w1

δi−1
+ w2

δi
(4.10)

where w1 = 2hi +hi−1, w2 = hi +2hi−1, hi = xi+1 − xi , and δ = (yi+1 − yi )/hi . The derivatives at the ends of
the data points are given by a three-point-formula, given in Hess [2016].

An example of the three interpolation techniques is shown in figure 4.2. It can be seen that the cubic spline
overshoots the data points before or after it reaches the data points. The Hermite spline, however, follows the
data points more closely and does not have jumps at the data points in the function and its derivatives. Thus
the Hermite spline is will be the choice for interpolation in this research project.

4.3. Least Squares Fitting
Fitting is the process of finding a model that tries to represent a data-set. This is needed in this research
project to link the atmospheric trajectories to the interplanetary trajectories, as will be explained in chapter
6. The method that will be used is the least squares method.

Assume a linear model that is used to approximate a data-set containing N data points (xi , yi ), given by:
y(x |a) where x is the vector of quantities from which data is available, and a is a vector containing model
parameters. The goal of the least squares algorithm is to find a, which minimizes the error between the data
and the model, given by the following formula [Press et al., 1992]:

S =
N∑

i=1
(yi − y(xi |a))2 =

N∑
i=1

r 2 (4.11)

The model in Eq.(4.11) can be written downs as follows (assuming a linear model): y(x |a) = Aa, where A is a
matrix, and each entry of y is the result of entering data point xi in the model. Furthermore, the sum from Eq.
(4.11) can be removed completely by making a vector y containing all the data points yi as entries. Together,
the least squares fitting problem can be written as:

S = (y − Aa)T W (y − Aa) (4.12)

where W is a weight matrix, often given by the inverse of the covariance matrix V . This then needs to be
minimized using the following equation:

1

2

∂S

∂a
= (−AT W y + (AT W A)â) = 0 (4.13)
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Figure 4.2: The three different interpolation methods.

This can be re-written to find the best guess â:

â = (AT W A)−1 AT W y = B y (4.14)

The covariance matrix of â can be found as follows [Press et al., 1992]:

V (â) = BV (y)B T (4.15)

Eq. (4.14) thus allows to calculate the best estimate for the model parameters considering the data-set.

4.4. Optimization Algorithms
The work in this thesis consists of two separate optimizations: the optimization of the atmospheric trajectory
of the AGA and the optimization of the interplanetary trajectory.

The problem a general multi-objective optimization algorithm has to solve is formulated as follows:

minimize
x

f (x) = [ f1(x), ..., fm(x)]T

subject to g (x) ≤ ci n

h(x) = ceq

l b ≤ x ≤ ub

(4.16)

where x is the vector of decision variables, f is the fitness vector (a scalar for single-objective problems,
and a vector for multi-objective problems), m the number of objectives, g and h are the functions to be
constrained, ci n are the inequality constraints, ceq are the equality constraints, and l b and ub are the lower
and upper bounds for the decision variables respectively. The objectives and decision variables used in this
thesis are discussed in section 7.1 and 8.2. The implementation and selection of constraints is discussed in
section 4.4.3.

The definition of an optimal solution in a multi-objective optimization problem is not the same as for a
single-objective optimization problem. Several definitions need to be given before the specific algorithms
that are discussed here can be understood.

Take two feasible solutions of the optimization problem: x1 and x2. x2 dominates x1 when the following
conditions hold:

∀i : fi (x1) ≥ fi (x2) (4.17)

∃ j : f j (x1) > f j (x2) (4.18)



4.4. Optimization Algorithms 43

in other words, solution x2 is equal or better then x1 in each individual optimization objective, and for at
least one optimization objective, it must be better then solution x1. A collection of non-dominated solutions
is called a Pareto front, and an individual is called Pareto optimal when it is part of a Pareto front. The goal
of a multi-objective optimization algorithm is thus to find Pareto optimal solutions and improve the Pareto
front.

There are several software packages readily available that have several single- and multi-objective opti-
mization algorithms available. The software package that will be used in this research project is PaGMO 2,
developed by Biscani et al. [2018]. This software package was chosen because it contained a large selection of
algorithms, and it was readily available for use with the simulator. A list of available algorithms can be found
on their website1.

For most problems concerning the generation of atmospheric trajectories for the AGA, and finding opti-
mal interplanetary trajectories, a multi-objective optimization algorithm is needed (see section 7.4 and 8.2).
Thus, the focus of the remainder of this section will be on multi-objective optimization algorithms. Sections
4.4.1 and 4.4.2, and will discuss two of the available multi-objective optimization algorithms in PaGMO 2:
NSGA-II and MOEA/D. Afterwards, section 4.4.3 discussed the implementation of constraints into the opti-
mization algorithms and 4.4.4 goes through the methods to determine the performance of the results from
multi-objective optimization algorithms.

4.4.1. NSGA-II
The non-dominated sorting genetic algorithm (NSGA-II) was developed by Deb et al. [2002]. It is an evolu-
tionary algorithm (from which genetic algorithms are a subset of) based on crowding distance sorting and
dominance of individual solutions. NSGA-II has been used previously by Gang et al. [2005] to optimize at-
mospheric trajectories for re-entry problems. The NSGA-II algorithm has several steps it takes in each gen-
eration. First it selects the best individuals from the off-spring (Q) of the previous generation, and from the
individuals from the previous generation (the parents, P ). From this newly constructed population (of size
2 ·npop ), the individuals are ranked according to their dominance over other individuals. All non-dominated
individuals are placed in rank 1 (F1), and then they are removed from the population. Afterwards, all non-
dominated individuals from the new population (without F1 individuals) are assigned to F2 and removed
from the population. This process is repeated until all individuals are ranked. After this process is done, each
rank will be sorted according to their crowding distance. The crowding-distance is a measure for how many
individuals are “close” to each other. The larger the crowding-distance, the less individuals are closer to you,
the better the solution. Each rank is sorted according to the crowding-distance and then added to the par-
ents of the next generation. As the size of each Fi is smaller or equal to the population size, the process of
crowding-distance sorting and adding Fi to the parents is repeated until the parents are the size of npop . Due
to the fact that each Fi is sorted according to the crowding-distance, even the individuals from the last rank
added to the new parents are better then all other individuals not taken into the new parents. After this is
done, the off-spring of the new parents is created using the evolutionary operators: selection, reproduction,
and mutation. The pseudo-code for this algorithm can be found in algorithm 4.1. A graphical representation
of the optimization procedure is given in figure 4.3.

Algorithm 4.1 NSGA-II algorithm.

1: Rt = Pt ∪Qt . Combine parents and off-spring to create new population.
2: F = non-dominated-sort(Rt ) .F = [F1,F2, ...]
3: Pt+1 =;, i = 1
4: while |Pt+1|+ |Fi | ≤ npop do .Until new generation is full.
5: Crowding-distance-sort(Fi )
6: Pt+1 = Pt+1 ∪Fi . Add crowding-distances sorted rank to new population.
7: i = i + 1
8: end while
9: Crowding-distance-sort(Fi )

10: Pt+1 = Pt+1 ∪Fi [1 : npop −|Fi |] . Add the best npop −|Fi | of the final rank to the new generation.
11: Qi+1 = create-new-population(Pt+1) .Use evolutionary operators to create off-spring.
12: t = t +1 . Go to next generation and repeat until convergence.

1https://esa.github.io/pagmo2/docs/algorithm_list.html, PaGMO 2, accessed: September 21, 2018

https://esa.github.io/pagmo2/docs/algorithm_list.html
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Figure 4.3: A graphical representation of the NSGA-II optimization algorithm, taken from Deb et al. [2002].

4.4.2. MOEA/D
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) was developed by Qingfu Zhang
and Hui Li [2007], and works on the principle of decomposing the multi-objective problem into several scalar
single-objective problems.

This algorithm uses a weight vector λ, with λi ≥ 0 for all i = 1, ...,m, and
∑m

i=1λi = 1. The scalar optimiza-
tion problem is then formulated as follows:

minimize
x

g (x |λ, z∗) = max
1≤i≤m

{λi | fi (x)− z∗
i |} (4.19)

where z∗ is a reference point given by:
z∗

i = min{ fi (x)|x ∈Ω} (4.20)

where Ω is the bounded population space. The principle on which the algorithm can then optimize the
problem is the fact that for each Pareto optimal point x∗ (see section 4.4.1), there exists a weight vector λ
such that x∗ is an optimal solution of eq. (4.19). Furthermore, each optimal solution of eq. (4.19) is a Pareto
optimal solution of eq. (4.16). This means that by altering the weight vector, it is possible to obtain different
Pareto optimal solutions.

The MOEA/D optimization framework can then be set up as follows. First a set of N weight vectors
λ1, ...,λN are generated using either a random or a grid generation process (see Qingfu Zhang and Hui Li
[2007] for a more detailed explanation of these processes), and a reference point z∗ is generated. The prob-
lem can then be decomposed into N scalar optimization problems, using the so called Tchebycheff approach:

g (x |λ j , z∗) = max
1≤i≤m

{λ j
i | fi (x)− z∗

i |} (4.21)

these N problems are then simultaneously optimized using an evolutionary algorithm. The advantage of
this algorithm is that g (x |λ j , z∗) is continuous in λ j . Which means that a solution to problem k can give
information on problem j , ifλk is close toλ j .

The specific steps taken can be seen in algorithm 4.2.

4.4.3. Constraints
The handling of constraints in an optimization algorithm can be done in several ways. One option is to
optimize the constraint variables separately. An example of this is shown in Edelman and Longuski [2017],
where the combined radiative and convective heat flux was minimized given a pre-determined trajectory.
This allows for a good determination of the optimal constraint value; however, it is also possible to diminish
the objective variables when optimizing the constraint value. Another option is to discard the trajectories
which exceed the constraints during the optimization runs (see e.g. Hess [2016]). This will guarantee that
no trajectory can exceed the constraints, however it also results in information being lost in the optimization
process, which can lead to possible sub-optimal solutions as these trajectories might be close to a feasible
solution which is then discarded. This option will discard trajectories which might only exceed the constraints
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Algorithm 4.2 MOEA/D algorithm.

1: EP=; .Used for storing optimal solutions.
2: Select nb closest weight vectors to eachλ j ,

using Euclidian distances, and store
the indices in variable B(i ).

3: Generate initial population x1, ..., x N ,
and set FV (i ) = F (x i ).

4: Initialize z∗. .Done in PaGMO 2 using evolutionary algorithm tactics.
5: while Convergence criterion is not met. do
6: i = 0
7: while i < N do .Until all weight vectors are handled.
8: Select two indices, k and l from B(i ).
9: Generate new solution y from xk and x l

using genetic operators.
10: For each j = 1, ...,m, if z j < f j (y), set z j = f j (y). .Update of z∗.
11: For each j ∈ B(i ), if g (y |λ j , z∗) ≤ g (x j |λ j , z∗), set x j = y

and FV ( j ) = F (y). . update neighbouring solutions.
12: Add F (y) to EP if F (y) if no vectors in EP dominate F (y),

and remove all dominated vectors from EP.
13: i = i + 1
14: end while
15: end while

by a small fraction, but otherwise have good values for the objectives. This can be solved by introducing a
penalty on the fitness function instead of discarding the whole trajectory. The fitness function is defined as
the function that takes the output of the simulation and determines how well the objectives are met. Using a
penalty to include the constraints, the fitness function will be calculated as follows:

f (x) = fob j (x)+ fpen(csi m) (4.22)

where f is the final fitness value, fob j is the fitness determined by the objective value, and fpen is the penalty
function given by:

fpen(csi m) =
Ncon∑
i=1

wi
csi m,i

ci
(4.23)

where Ncon are the number of constraints, wi is the weight corresponding to the i th constraint, csi m,i is the
resulting values for the i th constraint variable (determined for a single trajectory), and ci is the i th constraint.
The weight is set to zero if the constraint is not violated to not allow it to influence the objective fitness func-
tion. Using this method will allow the most information to be stored during the optimization process, but
it will also allow trajectories with broken constraints to be found as optimal. Thus it is important to always
check if these constraints are not exceeded in the final trajectory.

4.4.4. Performance Metrics
Having a single-objective optimization problem, or a multi-objective optimization problem where one of the
variables is more important as a performance metric (see chapter 7), allows the result from an optimization
run to be evaluated using just the value found for this objective variable. Having a multi-objective optimiza-
tion problem where multiple objective variables are important to evaluate the performance of the results,
complicates the evaluation of a single Pareto front. A Pareto front should be evaluated on several criteria:

• Minimal distance between the Pareto front and the theoretical optimal Pareto front.

• A uniform distribution of the Pareto front.

• A wide spread of solutions for each objective.

Zitzler et al. [2000] showed that there are two performance metrics that can be used together to evaluate the
performance of a Pareto front compared to another.
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Figure 4.4: The non-dominated space of a Pareto front. The smaller this space is, the better the Pareto front.

The first performance metric is called the non-dominated space S, and is shown in figure 4.4. This perfor-
mance metric determines the space between the Pareto front, and the theoretical optimal-Pareto front of the
objectives. If S is lower for one Pareto front, there are fewer trajectories that can dominate the Pareto front
and thus the performance of that Pareto front is better. S covers all three criteria for the evaluation of the
Pareto front, thus it cannot evaluate differences between these criteria for different Pareto fronts. A perfor-
mance metric that can be used in combination with S is the coverage of two different Pareto fronts. Take two
Pareto fronts: A and B . The function C (A,B) maps the combination (A,B) to [0,1], and is given as follows:

C (A,B) = {b ∈ B ; ∃a ∈ A : a Â b}

|B | (4.24)

where a Â b means that solution a dominates solution b. This performance metric thus determines the
fraction of Pareto front B that is dominated by A. If C (A,B) = 0, no individual in B is dominated by A, and
if C (A,B) = 1, all individuals in B are dominated by A. It is important to note that C (A,B) is not necessarily
equal to C (B , A)−1. The combination of these two metrics allow Pareto fronts to be evaluated and compared
for all three criteria.



5
Simulator Design and Verification

The previous chapters all discussed the various models and tools needed for the simulation of the atmo-
spheric trajectory of an AGA. These tools and models now need to be combined into a software package that
is able to simulate the AGA and use it for further research.

This chapter discusses how the simulation environment is built, and performs a verification of the simu-
lator. Section 5.1 will first go through how the simulation environment, and the dynamics simulator inside,
are set-up. Then, section 5.2 discusses the process of verifying that each module of the simulator works as
expected. This process includes the verification of the implementation of previously done work into the sim-
ulator (e.g. vehicle aerodynamics of Hess [2016]) and the newly designed modules (e.g. the node control
module). After the modules are all verified separately, the full simulator is verified. Finally, the models that
will be used for the generation of optimal atmospheric trajectories are chosen in section 5.3.

5.1. Atmospheric Trajectory Simulator
The simulation environment was built using the TU Delft Astrodynamics Toolbox, or Tudat1. Tudat was built
by the Astrodynamics and Space Missions section at the TU Delft, and is publicly available.

The atmospheric trajectory simulator consists of several parts. How the environment of the simulator is
built up is shown in figure 5.1. The main module is the dynamics simulator, shown in more detail in figure
5.2, which takes as an input the integrator and propagation settings. The integrator and its settings were dis-
cussed in section 4.1, and need as an input: the type of integrator, (if a fixed time-step integrator is used) the
time-step size, and the initial time from which the simulation is started. The propagation settings describe
the equations of motion of the system (using the user defined acceleration models, defined inside the ac-
celeration list), the different bodies that are used in the simulation, the initial state of the system, for which
condition(s) the simulation is terminated, and which variables are outputted by the simulator.

The vehicle module inside the simulation environment is built up from different sub-modules. The aero-
dynamic interface consists of two tables of aerodynamic coefficients: the table for the continuum flow coef-
ficients and the table for the free molecular flow (FMF) coefficients. How these coefficients are determined,
and on which variables they are dependent on, is discussed in chapter 3. The aerodynamic interface is re-
sponsible for selecting the correct coefficients from the flight conditions during the simulation, and deter-
mining the transitional flow coefficients using Eq. (3.12). The vehicle properties sub-module contains all the
different properties of the vehicle that are used to determine several other parameters during the simulation
(e.g. heating from the nose radius, Knudsen number using the reference length , etc.). Finally, the guidance
sub-module is needed to define the desired control variables needed during the simulation. This is discussed
in more detail in section 2.5.2.

The planets and other Solar System bodies that are used in the simulation are developed in another mod-
ule. This module produces a list of bodies with all of their properties and environment models. The chosen
environment models are: the atmosphere model, the rotational model, the ephemeris, and the gravitational
field model. All of these models are discussed in more detail in section 2.4. After each planetary body has the
selected environment models incorporated, they are combined with the waverider model to a larger list of all
bodies included in the simulation.
1Tudat:http://tudat.tudelft.nl/, TU Delft Astrodynamics Toolbox, accessed: October 22, 2018
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Figure 5.1: The set-up of the simulation environment.

The third module is the accelerations module. In the accelerations module, a list is made which links the
bodies chosen in the simulation bodies list to (multiple) acceleration model(s) and to the body exerting this
acceleration. Thus, for example, a gravitational acceleration model can be implemented, which is exerted by
Mars on the waverider. The acceleration models are divided into three sub-modules, which correspond to
the three different components of the equations of motion defined in section 2.2: the gravitational accelera-
tion models, the aerodynamic acceleration models, and the perturbation acceleration models. The specific
acceleration models that can be selected are discussed in more detail in section 2.3.

Both the simulation bodies list and the acceleration model list are then added to the propagation settings,
which are then used as an input to the dynamics simulator module together with the integrator settings. The
dynamics simulator then performs the simulation and outputs the state variable history and the dependent
variable history for analysis.

The set-up of the dynamics simulator is shown in figure 5.2. The dynamics simulator module is respon-
sible for taking all the settings from the propagator and integrator and using them to simulate the system in
question. The main module is the dynamics modules, shown in blue in figure 5.2. This module collects all
the information of the acceleration models and the current state and control variables, and combines them to
determine the equations of motion of the whole system. The state of all the bodies is then propagated to the
next point in time using these equations of motion and the integrator settings selected by the user. The state
at that point in time is then given to the vehicle system module, the flight conditions module, the guidance al-
gorithm module, and back to the dynamics module. The vehicle systems module uses the state and the flight
conditions at the current point in time to determine the aerodynamic coefficients of the waverider. It also
gives several parameters (the mass, length, and nose radius of the vehicle) to the flight conditions module.
The flight conditions module uses these vehicle parameters, and the current state of the vehicle, to calcu-
late several parameters that are needed in the rest of the dynamics simulator. These parameters include: the
local density, the local pressure, the local temperature, the airspeed, the Mach number, the Knudsen num-
ber, the g-load, the convective and radiative heating, the location with respect to the other bodies, and the
atmospheric composition at that location. The flight conditions are then given to the acceleration and envi-
ronment models, which together can determine the accelerations acting on all the vehicles in the simulation.
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Input Output

List of Bodies with corresponding

acceleration and environment models
State history

Vehicle parameters
Dependent variable history

(e.g. flight conditions, control profile, etc.)

Aerodynamic database

Guidance matrix: Γ

Initial state

Integrator settings

Table 5.1: Inputs and outputs of the atmospheric trajectory simulator.

Figure 5.2: The set-up of the dynamics simulator inside the simulation environment.

This information is then given back to the dynamics simulator. Looking back at the propagated state, this is
given back to the dynamics module and the guidance algorithm. The guidance algorithm takes the reference
trajectory, and calculates the current atmospheric bending angle to determine the desired control variables
(this process is discussed in more detail in section 2.5.2). These control variables are then finally used as an
input to the dynamics module.

This loop is repeated until the dynamics module notices that one of the termination conditions is met.
The simulation will then be terminated and the history of the state of each body, combined with the history
of the dependent variables saved mostly in the flight conditions module, will then be given back to the user.

The inputs and outputs of the simulation can be seen in table 5.1.

5.2. Simulator Verification
After the simulation is built, the different modules inside the simulator need to be verified. This is done by
either testing it to see if the simulator output is the same as the predicted output, or compare it to other
sources. Once these modules are all verified, the simulator can be used further in this research project.

5.2.1. Modules Verification
Each separate module of the simulator first needs to be verified. A part of the simulation modules does not
need to be verified separately as these modules are already part of the Tudat libraries and are verified using
unit tests present in Tudat. These modules are listed below.
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• Planet Ephemerides. The translational and rotational ephemerides of the planets are taken from the
SPICE2 software package, developed at the Jet Propulsion Laboratory. The implementation of these
ephemerides are tested in the unit tests by comparing the Tudat outputted values with the actual values
from SPICE.

• Exponential Atmosphere. The exponential atmosphere model is readily available in Tudat and is ver-
ified by taking hand calculated values and values from the US standard atmosphere and comparing
them with the output of the exponential atmosphere.

• NRLMSISE00 Atmosphere. The NRLMSISE00 atmosphere model has already been implemented in
Tudat and a unit test to verify the implementation has also been developed. This unit test compared
the output values with hard coded values obtained directly from the model.

• Gravity Models. Both the point mass gravity model and the spherical harmonics gravity model are
present in Tudat. The point mass model is verified using hand calculated values, whereas the spherical
harmonics model is checked using values from the National Geospatial-Intelligence Agency (NGA),
retrieved from Matlab3.

• Astrodynamics. Tudat contains several functions for astrodynamical purposes that are used in the sim-
ulator. These functions are mainly to convert between coordinate frames and calculate several proper-
ties of orbits. The coordinate transformations are checked by comparing the coordinate values to hand
calculated values, and the basic functions are tested in the same manner.

• Flight Dynamics. The flight dynamics module in Tudat takes the acceleration and environment mod-
ules and integrates the created equations of motion. This is tested using various unit tests in different
modules by comparing the integrated values with expected, hand calculated values.

All of these unit tests were performed before the simulation was built to ensure a correct usage of these mod-
ules. All of the unit tests passed the verification and can thus be used in the simulator.

The building of the other modules in the simulator was discussed in the previous chapters. These modules
need to be verified before the research can be continued. Below are the modules listed that need to be verified.

• Guidance Algorithm. The guidance algorithm consists of two parts that need to be verified. The first
part is the node control algorithm. This module is tested by inputting a set of α nodes and observing
if the outputted α corresponds to the expected output. As can be seen in figure 5.3, the α flown by the
vehicle in the simulator reaches each node, except for the final two nodes. These final two nodes are
not reached as the simulation stops due to the vehicle leaving the atmosphere before reaching these
nodes. The α profile of figure 5.3 also shows that the connection of nodes is done in a smooth manner,
without any overshoot or discontinuities. This shows the correct implementation of the Hermite spline
interpolator.

The other part of the guidance algorithm is the bank reversal. This part of the algorithm changes the
sign of the bank angle when a certain inclination is reached. This inclination can be set using the
inclination tolerance, itol . itol will be set at 3 degrees from the initial inclination and the bank angle
rate at 20 degrees per second. If the algorithm is correct, the inclination will go over the tolerance value
for a trajectory where σ is used, and a bank reversal is initialized. The results are shown in figure 5.4.
It can be seen that when the inclination exceeds the tolerance, the bank reversal is engaged and the
inclination changes direction. This verifies that the bank reversal algorithm functions as designed.

• EMCD atmosphere model. The ESA Mars Climate Database is used in this research project by the sim-
ulation to obtain the density, temperature, pressure, and ratio of specific heats, as a function of altitude.
The implementation of this model is done off-line and is independent of longitude, latitude, and time.
Thus to verify if the model is correctly implemented (assuming that the model itself is verified, which
was done by comparing them with measurements of several missions by Justh et al. [2011]), the values
from the model were compared with values from the simulation. It was verified that all values (temper-
ature, density, pressure and atmospheric composition) given by the simulation are equal to the values
given by the EMCD.

2https://naif.jpl.nasa.gov/naif/spiceconcept.html, accessed 12 April 2018
3https://nl.mathworks.com/help/aeroblks/sphericalharmonicgravitymodel.html, accessed 12 April 2018

https://naif.jpl.nasa.gov/naif/spiceconcept.html
https://nl.mathworks.com/help/aeroblks/sphericalharmonicgravitymodel.html
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Figure 5.3: The angle of attack as a function of the atmospheric bending angle, where the continuous line is the output of the simulation,
and the rings are the input angle of attack nodes.

• Aerodynamics. The aerodynamic database used in this simulation is retrieved from Hess [2016]. The
database contained the aerodynamic coefficients of the vehicle as a function of the Mach number, angle
of attack, sideslip angle, airspeed, and Knudsen number. The values of the aerodynamic coefficients,
outputted by the simulation, are compared to the values in the database and it was found that these
values are equal. The verification of the generated aerodynamic coefficients was performed by Hess
[2016], and it is thus assumed here that these aerodynamic coefficients are correct.

• Heating. Tudat calculates the heat flux using the Fay-Riddell method. For the purpose of this research,
two new methods, the Sutton-Graves convective heat flux and the Tauber-Sutton radiative heat flux,
were implemented (see section 3.3). Heat fluxes outputted by the simulator were compared to hand
calculated values and shown to be equal. The specific equations used here are verified using mission
data, as is shown in section 3.3.

5.2.2. Full Simulator Verification
Besides the verification of the different individual modules of the simulation, it is also important to verify
that they are incorporated into the simulation well and that the interfaces function correctly. This is done by
verifying the complete simulator.

This verification is done using the analytical equations of motion given by Eqs. (2.10) - (2.15). All of
the parameters present in these equations are outputted by the simulator either though the state history or
through the dependent variable history. These variables can be differentiated numerically using the central
differencing technique [Press et al., 1992]. If the numerically differentiated variables are then compared to
the analytically computed ones using the flight conditions of the simulation, the simulator can be verified.
The results are shown in figure 5.5. It can be seen that the numerical and analytical results coincide, and thus
the simulator behaves as expected.

5.3. Model Selection
The simulator discussed in this thesis is capable of performing various tasks. For example, sensitivity anal-
yses can be done to investigate the sensitivity of the atmospheric trajectory to perturbations. Or guidance,
navigation, and control algorithms can be tested and validated for a specific AGA mission trajectory. These
tasks have in common that they require acceleration and environment models with a high accuracy. Further-
more, numerical inaccuracies (e.g. truncation errors due to the numerical integrator) have to be minimized
to allow for a high fidelity simulation of a specific trajectory. This thesis will use the simulator to determine
the achievable performance of an AGA compared to a GA, which is done by optimizing the atmospheric tra-
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Figure 5.4: Above: the inclination as a function of the atmospheric bending angle. The tolerance is shown by the dotted lines. Below: the
bank angle as a function of atmospheric bending angle.
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Figure 5.5: The verification of the complete simulator, where the dashed line is the analytic equations of motion and the solid line the
numerical solution.
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jectory of the AGA. The optimization process, which is discussed in section 4.4, requires a large amount of
simulations to be run as this will allow the algorithm to find the optimal trajectory. Thus for this thesis it is
important to make a trade-off between accuracy and computational efficiency. In general, a specific model
is selected on the basis that an increase in accuracy of a model does not change the achievable performance
of the AGA significantly compared to a less accurate model which has a significantly lower run-time. The
following discussion goes through the different models and gives a qualitative discussion on which model is
going to be used to develop the results given in chapter 7 and 8.

The exponential atmosphere will be taken as the atmosphere model for each planet. This model is com-
putationally efficient as it can be evaluated using a simple equation and, as was shown in section 2.4, the
exponential model follows the higher fidelity models reasonably well. In general, the flight of the vehicle
through the atmosphere can be separated into three sections: atmospheric entry, equilibrium gliding flight,
and atmospheric exit. As will be shown in section 7.4, the section that influences the performance the most
is the gliding flight. In general, the gliding flight takes place at a certain density of the atmosphere selected by
the optimization algorithm. This density of the gliding flight does not change when a different atmosphere
model is taken, however the altitude does change slightly as the density-altitude profile is different between
models. Thus it is expected that although the specific trajectory that is flown can differ slightly between the
two models, the resulting performance will not change significantly.

All the different aerodynamic regimes (free molecular regime, transitional regime, and continuum regime)
will be implemented into the simulation as the aerodynamic forces dominate most of the simulation. The
central gravity field model will be used, as higher order gravitational coefficients are expected to not have
a large effect due to the shorter flight time and the much higher aerodynamic accelerations. Gravitational
models like the spherical harmonics model also require higher computation times compared to the central
gravity model due to the large number of coefficients present in the equation. The perturbation accelerations
will also not be implemented as they are not as important during the atmospheric flight compared to the
exo-atmospheric flight. This also implies that only a constant ephemeris setting is needed for the central
body as only the relative position between the central body and the spacecraft is needed. This also decreases
the computation time as the ephemeris for the bodies that exert a third-body perturbation do not need to
be implemented. The rotational model is, however, important for the dynamics of the atmospheric flight
(see Eqs.(2.10) and (2.15), and thus a rotational model is taken using the SPICE toolkit. A more quantitative
validation for the use of all of the models given here compared to higher fidelity models is given in section
7.4.2 and appendix B.

Section 4.1 discussed the numerical integration options and chose the RK4 integrator with a 1 second
time-step to be used in this thesis. This selection is discussed and validated in more detail here. The accu-
racy of the RK4 integrator for the integration of the EOM for an AGA has been tested using several integrators
with different time-step sizes. The specific AGA that is used is performed at Earth using the models discussed
before. These trajectories are compared with a baseline trajectory (which reached a final atmospheric bend-
ing angle of 60 degrees), simulated using an RK4 integrator with a time-step size of 0.01 seconds. The other
time-step size were selected between 0.05 seconds and 10 seconds. Furthermore, to diminish the effects of
non-numerical errors on the analysis, the time-step sizes were selected to be integer ratios of each other.
This makes sure that all the different integrators are at least evaluated at the same points in time as the other
integrators, the difference being how many times the integrators are evaluated between those times. The re-
sults are shown in figure 5.6. Both the errors in final location and atmospheric bending angle with respect
to the baseline trajectory are shown. The error in location reaches a maximum of 7.5 km for a time-step of
10 seconds, however the error in atmospheric angle is only 0.09 degrees. As will be shown in chapter 7, the
atmospheric angle will be used as an important parameter in this research project. Thus when the goal of the
trajectory generated is to determine this angle, a RK4 integrator with a relatively large time-step can be used
as this will allow relatively quick computation times and less complexity in several simulation components
(compared to variable step-size integrators), while still giving a reliable results. However, for more accurate
purposes, e.g. sensitivity analyses or guidance algorithm testing, a more efficient integrator should be used.



54 5. Simulator Design and Verification

(a) Error in the final position. (b) Error in the final atmospheric angle.

Figure 5.6: The accuracy of the RK4 integrator as a function of the number of evaluations of the EOM. The baseline trajectory is made
with a RK4 inegrator with a 0.01 second time step.



6
Interplanetary Mission Planner

The simulator discussed in chapter 5 covers the aerogravity assist from the entry of the atmosphere to the
vehicle exiting the atmosphere again at the end of the trajectory. This simulator can determine the perfor-
mance of the AGA and show the specific trajectory it needs to take through the atmosphere to reach its goals.
However, to complete the analysis of the AGA, the atmospheric trajectory needs to be linked to the interplan-
etary trajectory to determine its benefits compared to the GA. To be able to do this an interplanetary mission
planner needs to be built that can simulate the whole trajectory, including: departure from the initial planet,
interplanetary travel, gravity assists, aerogravity assists, and capture at the target body. Part of this mission
planner was previously developed by Musegaas [2012], whose mission planner will be used as a basis for the
mission planner developed in this thesis. Musegaas [2012] developed a planner that could calculate the total
∆V and time-of-flight (TOF) of a pre-defined trajectory using only gravity assists at the intermediate planets.
The mission planner assumptions are that patched conics is used, no perturbations are considered, and the
mission planner uses only single revolution transfers to build the transfers between planets. This thesis will
focus on adding the aerogravity assist to this planner and seeing how this can make a difference compared to
a gravity assist at the same location.

Section 6.1 will discuss the different mission segments of the interplanetary mission planner, and how the
atmospheric trajectory simulator of chapter 5 will be used to develop the aerogravity assist mission segment.
In the next section, section 6.2, the design of the mission planner and its verification are discussed.

6.1. Mission Segments
The interplanetary mission planner consists of various trajectory models (discussed in section 6.2) for each
leg of the mission. These trajectory models are built up from mission segments, which are astrodynamics
functions that are used to determine various parameters of the trajectory. Each separate trajectory model
uses different mission segments, or uses them in a different order, compared to other models. This section
will discuss the different mission segments and what they can be used for in the mission planner.

Section 6.1.1 discusses the Lambert targeter, which can be used to determine a Keplerian trajectory be-
tween two points in space for a given time-of-flight. Then, section 6.1.2 explains how a gravity assist works,
and how it can be used in the mission planner. How the aerogravity assist will be used inside the mission
planner will then be discussed in section 6.1.3. Finally, the capture of the spacecraft around the target planet
is the focus of section 6.1.4.

6.1.1. Lambert Targeter
A Lambert targeter is an algorithm that can solve Lambert’s orbital boundary-value problem. Lambert’s prob-
lem can be stated as follows[Gooding, 1990]: find an unperturbed orbit connecting two points in space, P (t0)
and P (t f ), around a central body, C , given a specific time-of-flight (TOF): ∆t = t f − t0. There will always be
at least one solution, which depend on the geometry of the triangle connecting the central body, P (t0),and
P (t f ) and on the specified TOF ∆t . The geometry of this problem is shown in figure 6.1.

Observing figure 6.1, there must always be two different solutions: the one covering the ellipse over an
angleφ, or the one over an angle 2π−φ. However, as interplanetary trajectories are considered and all planets
move in a counter-clockwise direction around the Sun, the clockwise solution can be neglected.
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Figure 6.1: The geometry of the Lambert problem.

It was shown by Lambert that the solution to this problem only depends on the semi-major axis a, the
sum of the distances r1 and r2, and the chord c, which is summarized in Lambert’s Theorem [Wakker, 2015]:

p
µ(t f − t0) = f (a,r1 + r2,c) (6.1)

Since the TOF, r1, r2, and c are known, the problem becomes finding the appropriate a for the orbit linking
P (t0) and P (t f ).

There are various methods to solve this problem efficiently. The explanation and discussion of these
methods is out of the scope of this thesis and readers are referred to either Gooding [1990] or Secretin [2012]
for a more detailed explanation of the various methods to solve Lambert’s problem. This mission planner
uses Izzo’s method [Izzo and Dario, 2014] to solve Lambert’s problem. It was found by Musegaas [2012] that
this method is relatively efficient and accurate, and thus it was chosen to be used in this research project. It
is also noted that for the mission planner not only the ellipse section connecting the two points is necessary,
but also the initial and final velocity along the ellipse are needed. The method to obtain these velocities is
discussed in Secretin [2012] and will be used in the mission planner.

6.1.2. Gravity Assist
Chapter 1 already gave an introduction on what the gravity assist (GA) is and the working principle behind it.
This section will go into more detail behind the GA, discuss the mathematical framework behind it, and how
it is implemented in the mission planner.

The principle behind the GA is the exchange of momentum between the spacecraft and planet during the
fly-by. Using the conservation of momentum, the following equation can be set-up:

msV I ,−
s +mpV I ,−

t = msV I ,+
s +mt V I ,+

t (6.2)

where the subscript s stands for the spacecraft, the subscript t for the target planet, the superscript − stands
for the incoming leg, and the superscript + stands for the outgoing leg. The velocities in this equation are
taken in the inertial (ecliptic) reference frame. This equation can be rewritten to:

∆Vs =V I ,+
s −V I ,−

s = mt

ms
(V I ,−

t −V I ,+
t ) (6.3)

As the mass of a planet is significantly larger then the mass of the spacecraft the velocity of the planet remains
unchanged, whereas the velocity of the spacecraft does change significantly.

A detailed 2D geometry of the complete maneuver is given in figure 6.2 and a diagram representing the
velocity vectors is given in figure 6.3. V ′

t gives the component of Vt in the plane spanned by the incoming and
outgoing hyperbolic excess velocities: V −∞ and V +∞. V∞ is defined as follows:

(V P
∞)2 = (V P

s )2 − (V P
esc )2 (6.4)

where Vesc is the escape velocity of the target planet. Due to energy conservation, the magnitude of V −∞ and
V +∞ is equal. However, these velocities are bent over an angle δwhich results in a gain in the inertial velocity of



6.1. Mission Segments 57

Figure 6.2: The geometry of the gravity assist. Adapted from Melman [2007].

Figure 6.3: A velocity vector diagram for the gravity assist.
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Planet hmi n [km] Mission

Mercury 200 Messenger

Venus 284 Cassini

Earth 306 Galileo

Mars 257 Rosetta

Jupiter 42895 Pioneer 11

Saturn 20612 Pioneer 11

Uranus 81533 Voyager 2

Neptune 4482 Voyager 2

Pluto 9600 New Horizons

Table 6.1: The minimal height for an GA for all the planets achieved during several different missions. Data adapted from Melman [2007].

the spacecraft after the GA. This principle is sketched in figure 6.3. If the spacecraft passes behind the planet
(as in figure 6.2), V +∞ gets aligned more with V ′

t and thus V I ,+
s is increased. If the spacecraft would be pass in

front of the target planet, V I ,+
s would be decreased.

Looking at figure 6.2, some important relations can be derived for the GA. Using the conservation of mo-
mentum, the following relation can be stated:

BV∞ = rpVp (6.5)

where B is the impact parameter (defined in figure 6.2) and the subscript p is used to determine quantities
at the pericenter (the superscript of V∞ is omitted as for a GA it remains constant). Wakker [2015] gives an
equation for rp :

rp =− µ

V 2∞
+

√
µ2

V 4∞
+B 2 (6.6)

Using this equation, and equations describing the geometry of an hyperbola, the following relation for the
velocity bending angle can be found:

sin
δ

2
= 1

e
= 1

1+ rp (V P,−)2

µ

= 1√
1+ B 2V 4∞

µ2

(6.7)

This equation shows that the velocity bending angle δ can be increased if: B is decreased, V∞ is decreased,
or if the planet is heavier. The performance of the GA is constrained by the radius of the planet, as if rp is too
small the spacecraft could impact on the surface of the planet. This constraints can be expressed as follows
in an equation using the expression for the escape velocity given in Wakker [2015]:

B ≤ Rt

√
1+ V 2

esc

V 2∞
(6.8)

This is a theoretical limit that needs to be taken into account when designing an GA. However, there are more
parameters that also need to be taken into account. Harsh radiation environments close to the planet could
harm the spacecraft subsystems, or the atmospheric drag close to a planet could slow down the spacecraft if
an AGA is not used. A summary of the minimal heights above the planets used by previous missions is given
in table 6.1. These heights will be used in the mission planner when calculating the GA.

The previous discussion was focused on the theoretical basis of the GA, the following section will use this
theoretical basis to derive a method of implementing the GA into the mission planner. The mission planner
allows the GA to be powered, i.e. an impulsive thrust maneuver can be applied at the pericenter, to obtain the
optimal trajectory [Musegaas, 2012]. The method starts with the planetocentric velocity vectors:

V P,±
s =V I ,±

s −V I
t (6.9)
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where the superscript P is the vector represented in the planetocentric reference frame, and I in the ecliptic,
inertial, reference frame. The angle between V P,−

s and V P,+
s gives the desired velocity bending angle δ. Adding

the bending angle before and after the impulsive thrust at the pericenter gives a relation between rp and δ:

δ= δ−+δ+ = arcsin
1

1+ rp |V P,−
s |2
µ

+arcsin
1

1+ rp |V P,+
s |2
µ

(6.10)

This equation allows the maximum possible δ to be found by setting rp to the minimum value (from table
6.1). The additional ∆V needed, and the method to calculate it, depends on if the maximum δ is sufficient
for the desired δ or not. If the desired δ can be met, Eq.(6.10) will be used to solve for rp . rp can then be used
to find the incoming and outgoing pericenter velocities. The difference between the pericenter velocities is
the ∆V needed for the GA. To solve Eq. (6.10), a root-finding scheme needs to be employed. Musegaas [2012]
discusses two different options for how to solve Eq.(6.10) using a Newton-Raphson scheme (using either the
pericenter radius or the eccentricity), which will not be repeated here for brevity. If the maximum δ is not
sufficient for the desired δ, an extra impulsive thrust needs to be performed [Wakker, 2015]:

∆Vbend = 2V∞ sin
∆δ

2
(6.11)

Thus, the spacecraft will approach at rp,mi n , apply an impulsive thrust to patch the pericenter velocities, and,
as discussed in Wakker [2015], will perform the impulsive thrust calculated by Eq.(6.11) to patch the bending
angle once it leaves the SOI.

6.1.3. Aerogravity Assist
The basic principle of the aerogravity assist (AGA) has already been discussed in chapter 1, and more detail
was provided on the different sections and subsystems of this maneuver in the previous chapters. This section
will summarize the basic principle of the AGA, give some useful relations between the different parameters
of the AGA, and discuss how the AGA will be used in the mission planner.

The AGA works on the same principle as the GA, that the exchange of momentum between the central
body and the spacecraft increases the heliocentric velocity (i.e. the velocity in the ecliptic reference frame) of
the spacecraft as was shown in Eq. (6.3). The geometry of the AGA is shown in figure 6.4. The difference with
the GA is the fact that using the lift of the vehicle inside the atmosphere, the centrifugal force is counteracted
and the vehicle can bend more around the central body compared to the GA. The gain of a longer velocity
bending angle δ is shown in figure 6.5, where it can be seen that even though V +

∞,AG A is reduced compared
to V +

∞,G A due to the atmospheric drag, the larger δAG A increases the heliocentric velocity V +
s,AG A significantly

compared to V +
s,G A . However, if a vehicle is used that is not aerodynamically efficient, or the vehicle stays in

the atmosphere too long, V +
∞,AG A will not be large enough to increase V +

s,AG A compared to V +
s,G A .

As was mentioned in section 6.1.2, the mission planner starts with the incoming and outgoing heliocentric
velocities (i.e. taken in the ecliptic reference frame). From these velocities, the planetocentric velocity can be
calculated using Eq. (6.9). At the start and end of the AGA mission segment, when the spacecraft enters and
exits the SOI of the central body, the following assumption can be made: V ±∞ =V P,±

s . The mission planner thus
receives the desired V −∞ and V +∞ from the Lambert targeter of section 6.1.1 and from the previously mentioned
assumption, and from this it can calculate the desired bending angle for the AGA. This is similar to the GA;
however, as the vehicle needs to enter the atmosphere, the initial velocity at the edge of the atmosphere needs
to be calculated (at this point the simulation, discussed in chapter 5, will start). This can be done using the
conservation of energy:

Vatm =
√
|V∞|2 + 2µ

ratm
(6.12)

where ratm will be defined in chapter 7. Once the vehicle enters the atmosphere, it will travel through it over
an angle called the atmospheric bending angle θ. The relation between the achieved velocity bending angle
δ(t f ) and θ can be found from figure 6.4 [Casoliva et al., 2008]:

δ(t f ) = 1

2
δG A(ti )+θp (ti )+ 1

2
δG A(t f )−θp (t f )+θ(t f ) (6.13)

where δG A can be taken from Eq.(6.7) using e(ti ) and e(t f ), and θp is defined as follows (where j can be either
the initial or final value):

θp (t j ) = arctan

(
v(t j )2 sinγ(t j )cosγ(t j )

v(t j )2 cos2γ(t j )−1

)
(6.14)
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Figure 6.4: Geometry of the aerogravity assist. Adapted from Casoliva et al. [2008].

Figure 6.5: A velocity vector diagram for the aerogravity assist.
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where γ is the flight path angle, and v the normalized velocity defined by:

v(t j ) = V (t j )√
µ

r (t j )

(6.15)

The only unknown variable in Eq. (6.13) is now θ, which can be determined by several different methods.
Henning et al. [2014] implemented a method to combine the atmospheric and interplanetary sections

of the AGA into a mission planner. The interplanetary section uses a similar set-up as the mission planner
of Musegaas [2012], where the V∞ before and after an (A)GA is determined using a Lambert targeter. From
this, the minimal needed L/D for that mission is determined using a two-point boundary value problem for
the atmospheric section. This set-up uses several assumptions that this thesis improves upon. First, the
aerodynamics of the waverider in Henning et al. [2014] are approximated using an user chosen maximum
lift coefficient and a parabolic drag polar to determine its drag coefficient. Furthermore, the lift coefficient
CL is directly used as the control parameter (in contrast to α and/or β) and is allowed to vary freely between
0 and its maximum. Additionally, no heating constrains were added to the atmospheric optimization and
the motion of the vehicle in the atmosphere was limited to 2 dimensions. This approach gives a good first
indication of the possibilities of an AGA, but lacks accuracy in the possible atmospheric trajectories and will
be improved upon in this thesis.

There are two approaches that can be used to implemented the AGA into the mission planner: in-the-loop
atmospheric optimization (as is done Henning et al. [2014] using analytic optimization) and out-of-the-loop
atmospheric optimization. The first option takes as an input the conditions at the start of the atmosphere
from the mission planner and optimizes the atmospheric trajectory to find the optimal θ. If needed, the ∆V
needed to reach the desired values of V +

∞, f and δ f will also be calculated. The problem with this approach

is the computation time of one interplanetary trajectory. As will be discussed in chapter 7, the time it takes
to run an optimization of the AGA with 3 seeds is around 15 hours (3.50 GhZ AMD A10 Radeon R7 processor
with 10 cores, and 8 GB RAM). For an optimization of the whole interplanetary trajectory, the atmospheric
trajectory will then be optimized around 600 times, which makes the total run time in-feasible.

The out-of-the-loop atmospheric optimization significantly decreases the run time as this method opti-
mizes the atmospheric trajectories before the interplanetary trajectory is optimized. This is done by finding
optimal atmospheric trajectories for a range of V −∞, where θ and V +∞ are maximized. Then, θ is used in Eq.
(6.13) to calculate δ(t f ) and form a Pareto front together with V +∞, which is shown in figure 6.6. Through the
Pareto front in 3D-space (V −∞(t f ), V +∞(t f ), and δ(t f )), a function is fitted that acts as a limiting surface for
the mission planner. The mission planner will now input the desired parameters: V −

∞, f , V +
∞, f , and δ f , and

calculate the performance metrics defined as:

∆V∞ =V +
∞, f −V +

∞(t f ) (6.16)

∆δ= δ f −δ(t f ) (6.17)

if the performance metrics are negative, the parameters will be seen as reachable and ∆VAG A = 0. If the
performance metrics are positive, as in figure 6.6, a ∆V will be added to the interplanetary trajectory. There
are three different options for the correctional burn: ∆Vv∞ , ∆Vδ, and ∆Vc . ∆Vv∞ is a burn to correct for the
deficiency in V +∞ and is equal to Eq. (6.16). ∆Vδ is used when there is a deficiency in the final bending angle
δ and is corrected using Eq.(6.11). Finally, ∆Vc is used when there is a deficiency in both V +∞ and δ, and is
calculated according to the following equation [Casoliva et al., 2008]:

∆Vc =
√

|V +
∞, f |2 +|V +∞(t f )|2 −2|V +

∞, f ||V +∞(t f )|cos∆δ (6.18)

where it is assumed that no extra ∆V is needed to correct for out-of-plane corrections. The method with the
smallest ∆V is the one that is used.

The out-of-the-loop atmospheric optimization method is significantly better then the in-the-loop method
from a computational efficiency standpoint, as the atmospheric trajectory only needs to be optimized for a
pre-defined range of V −∞ instead of for each individual in an interplanetary trajectory optimization run. How-
ever, the gaps between the V −∞ that are not optimized are assumed to also have optimal trajectories, which is
not guaranteed. This requires that if an AGA trajectory is found, the atmospheric trajectory should always be
checked afterwards to exist. Due to its advantages over the in-the-loop method, the out-of-the-loop atmo-
spheric optimization method is selected to be used for the AGA mission segment.
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Figure 6.6: A diagram that shows how the ∆V for the out-of-the-loop aerogravity assist is calculated. The black dots are previously
optimized trajectories and the grey dot is the desired output of the mission planner.

6.1.4. Departure and Capture
At the start and end of a trajectory there always needs to be a departure and capture maneuver respectively.
The departure maneuver is a maneuver from a parking orbit around the departure planet to achieve a specific
V∞, and a capture maneuver is used to decelerate from a hyperbolic orbit with a specific V∞ to a parking orbit
around the target body. Both of these ∆V can be calculated using the following equation [Wakker, 2015]:

∆V =
√

2µ

a(1−e)
+V 2∞−

√
2µ

a(1−e)
− µ

a
(6.19)

where a and e are the parking orbit parameters. These maneuvers are always implemented at the end and
start of an interplanetary trajectory, and thus the parameters of these final orbits always needs to be given.

6.2. Mission Planner Design
Each interplanetary trajectory is made up from several mission segments, all calculated in a specific order.
However, to be able to build a range of different interplanetary trajectories, a more general set-up needs to be
made for the mission planner. This section will discuss how the mission planner is designed and how it is able
to calculate the different parameters needed to be able to do an analysis for a specific interplanetary trajec-
tory. The design of the mission planner using only GAs is performed by Musegaas [2012], the incorporation
of the AGA is novel to this thesis.

6.2.1. Software Architecture
The complete interplanetary trajectory is built up from different legs. For this specific model, there are three
different types of legs: departure leg, swing-by leg, and capture leg. Each leg is made up of different mission
segments. However, the initial and final conditions are the same for each type of leg. The three types of legs
can be seen in figure 6.7 and are explained in more detail below:

• Departure Leg This leg starts from a parking orbit around the departure planet and ends at the SOI
of the next planet. This leg requires information of the parking orbit, namely a and e, together with
the required hyperbolic excess velocity to be able to determine the required ∆V for this the departure
maneuver. The departure leg is built by first using a Lambert targeter between the departure and target
planet, and then using the departure velocity to calculate the departure ∆V .

• Swing-by Leg This leg starts when the vehicle enters the SOI of the swing-by planet, where it performs
either a GA or an AGA, and ends when it reaches the SOI of the target planet. Multiple of these legs
can be stringed together. The leg starts with a Lambert targeter between the swing-by body and the
target body. The departure velocity found by this Lambert targeter is then used together with the arrival
velocity given from the previous leg to calculate the GA or AGA ∆V .
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Input Output

Planetary sequence Total mission ∆V

Leg type sequence r (t ) and V (t ) along the whole trajectory

Departure time Location and magnitude of ∆V maneuvers

TOF of each leg Planetary trajectories

a and e of parking orbits

Ephemeris of planets

Table 6.2: Inputs and outputs of the mission planner.

• Capture Leg The capture leg also starts at the entrance of the SOI of the capture planet. This leg only
consists of the maneuver to enter the parking orbit around the capture planet. The capture leg uses the
arrival velocity from the previous leg and calculates the capture ∆V using this velocity.

The basic idea of the mission planner is that depending on the input, it adds different types of legs together
to form a complete interplanetary trajectory. The order of the types of legs cannot be selected freely, as a
departure leg always has to be put at the beginning of the trajectory or after a capture leg, the swing-by leg
can only come after a departure leg or another swing-by leg, and the capture leg can only come after a swing-
by leg or a departure leg.

The mission planner uses several assumptions to build the final interplanetary trajectory [Musegaas,
2012]:

• The patched-conics approximation is used, which assumes that the trajectory is built up from Keplerian
orbits without any perturbations. Inside the SOI of a planet, the central body to calculate the orbit is
the planet itself, and outside the SOI the Sun acts as the central body for the Keplerian orbit.

• The sequence of the planets in the trajectory is selected beforehand.

• No deep space maneuvers (DSM). The only times an impulsive maneuver is allowed, is at the departure
planet, capture planet, or swing-by planet.

• Each transfer is in a counter-clockwise direction and consists of only one revolution.

The use of a DSM is incorporated into mission planner of Musegaas [2012], and was shown to be able to
improve some interplanetary trajectories compared to the GA only trajectories. However, as is discussed in
Musegaas [2012], the incorporation of a DSM complicates the optimization of the interplanetary trajectory
significantly, and is thus left for future research. Using these assumptions, the mission planner will build the
interplanetary trajectories using the input parameters and produces several output parameters to be able to
analyze the trajectory. The specific inputs and outputs of the mission planner are shown in table 6.2. An
example of how the interplanetary mission planner builds an interplanetary trajectory is shown in figure 6.7.

6.2.2. Verification
A detailed verification process was employed by Musegaas [2012] to test each individual leg against legs from
the Cassini-1 mission. This test was only done for the GA assist case and not for the AGA case as the AGA has
not yet been flight-tested. The Cassini-1 mission used a EVVEJS trajectory, where the GA was employed at
VVEJ. The results for each individual leg can be found in Musegaas [2012]. The full model verification will be
looked at closer here.

The best, putative, results can be found using ESA’s Global Trajectory Optimization Problems1 (GTOP)
database, which contains the full Cassini-1 trajectory. GTOP finds that the ∆V for this trajectory is 4930.7268
m/s. To be able to compare this the same ephemeris needs to be used as else the ∆V could change signifi-
cantly. If, for example, the by Tudat used JPL approximate planet position ephemeris2 is used in the mission
planner, the ∆V would be 5635.9550 m/s. However, if the GTOP ephemeris is used, the ∆V is 4930.7284 m/s.

1GTOP: https://www.esa.int/gsp/ACT/projects/gtop/gtop.html. Accessed October 22, 2018
2Approximate Planet Positions: https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf. Accessed October 22, 2018

https://www.esa.int/gsp/ACT/projects/gtop/gtop.html
https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf
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Figure 6.7: The set-up of the trajectory model and the mission planner.
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This shows both that: the results are incredibly sensitive to the ephemeris database, and that the mission
planner is able to reproduce the results from an already verified software program. This means that the mis-
sion planner works correctly, and that if an accurate interplanetary trajectory needs to be found an accurate
ephemeris model needs to be used. However, for a comparative analysis, like is done in this research project,
a less accurate (quicker) ephemeris model could be used if it is used for each interplanetary trajectory. The
fact that the mission planner is this sensitive to the ephemeris database could be explained by the sensitivity
of the Lambert targeter. Musegaas [2012] found that the main difference between the ephemerides was the
location of Venus in the z-plane, and that thus a large part of the extra ∆V came from the Venus-Venus leg.

Several other trajectories, beside the Cassini-1 trajectory, were also used to verify the mission planner to
be able to show that it works for multiple types of trajectories. These trajectories include the Messenger and
Cassini-2 trajectories, and are shown to correspond with expected results in Musegaas [2012].

Verifying an interplanetary trajectory with an AGA is harder, as there are no baseline trajectories to com-
pare with. Authors including Bonfiglio et al. [2000] and Henning et al. [2014] both describe interplanetary
trajectories using an AGA that can be used as validation. However, the assumptions made in terms of wa-
verider aerodynamics and atmospheric trajectories are not compatible with the set-up used in this thesis (as
was described in section 6.1.3) which uses more accurate models. As the same input and output variables are
used as in the GA model, the only part that needs to be verified is if the output of the AGA software model is
the same as is expected from a hand-calculated value. This was done by taking an incoming and outgoing
velocity for a GA at Mars, Venus, and Earth, calculating the desired δ, seeing where this trajectory would end
up in the limiting surface for the respective planets (shown in chapter 8), and comparing the hand-calculated
∆V with the mission planner ∆V output. It was found that for all three planets the values correspond, thus it
can be assumed that the AGA works as expected within the mission planner.





7
Atmospheric Trajectory Optimization

This chapter will focus on using the simulator described in chapter 5 to find optimal atmospheric trajecto-
ries for an aerogravity assist at Earth, Mars, and Venus. These optimal trajectories are generated using the
optimization algorithms discussed in section 4.4, and thus the set-up and settings of these algorithms are
discussed in this chapter, next to the trajectories they will produce.

First, section 7.1 will discuss the choice of variables that can be used by the optimizer to generate a specific
trajectory, and the variables that are used as objectives by the optimizer will be discussed. Furthermore, a
Monte Carlo analysis will be used to investigate these different variables in more detail. Afterwards, using
the information from the Monte Carlo analysis, the full set-up of the optimizer will be discussed in section
7.2. Then, section 7.3 will use what is discussed before to decide on which specific algorithm is to be used to
generate the optimal atmospheric trajectories. Finally, these trajectories will then be shown and discussed in
section 7.4.

7.1. Decision and Objective Variables
To optimize the atmospheric trajectory for the AGA, a selection must be made between the decision variables
that are used to find an optimum and the objective variables which are used to define what the optimum is.
Depending on the specific problem and what needs to be analyzed, the selection of which variables will be
used changes. Thus, it is important that a large selection of variables are analyzed to get a better idea of the
relations between them and how they can be used in the optimization algorithm.

The inputs and outputs of the atmospheric simulator, shown in table 5.1, determine the possible decision
and objective variables. A selection of these input and output variables are used in a Monte Carlo analysis to
determine their properties when trying to find optimal atmospheric trajectories. However, before the Monte
Carlo analysis is performed, the selected variables are listed below:

• σi , the bank angle nodes of the trajectory. See figure 2.2 for a definition of the bank angle. A change
in the bank angle will also change the direction of the lift vector, thus it can affect the trajectory of the
waverider. In total, 10 nodes will be set spaced evenly over θ.

• αi , the angle of attack nodes of the trajectory. See figure 2.3 for a definition of the angle of attack. As
was shown in section 3.2.2, α has a large influence over the L/D ratio, and thus also on the trajectory
itself. In total, 10 nodes will be set spaced evenly over θ.

• γi , the initial flight path angle. See figure 2.1 for a definition of the flight path angle. This variable
determines how steep the waverider will enter the atmosphere.

• V −∞, the incoming hyperbolic excess velocity, which in term determines the velocity at which the wa-
verider enters the atmosphere.

The objective variables are the quantities that are optimized by the optimization algorithm. The objective
variables cannot be influenced directly by the optimizer, but they are a result of a specific selection of decision
variables. Selecting different objective variables can result in a completely different trajectory being found,
and thus it is important to understand the specifics of each of these possible variables. An important note is
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(a) First α node. (b) First σ node.

Figure 7.1: The results for the Monte Carlo analysis for the first control nodes as a function of θ. The red dots represent trajectories with
final altitudes below zero kilometres, the green dots represent trajectories which leave the atmosphere again.

that it is possible to interchange an objective variable with a constraint. Whether a variable is chosen to be
used as an objective variable or a constraint variable is discussed in section 7.2. A list of objective variables is
given here:

• θ, the final atmospheric angle. This variable shows how long the vehicle stays in the atmosphere, which,
as was shown in chapter 6, directly relates to the heliocentric velocity gain.

• ∆i , the change between in-going and out-going orbital inclination. This change shows how well the
AGA can perform a certain plane change, or reduce the unwanted out-of-plane motion.

• ∆δ, the difference between a target velocity bending angle and the true value found at the end of the
trajectory.

• ∆R A AN , the change between in-going and out-going right ascension of the ascending node.

• C A, the control action. This is a measure for how much the vehicle needs to exert control effort during
a trajectory. It is calculated by integrating the sum of σ̇2 and α̇2 over the whole trajectory.

• Qst ag , the heat-load experienced at the stagnation point of the vehicle. A measure of the mass needed
for the TPS system.

• qconv , the maximum convective heat flux experienced by the vehicle.

• qr ad , the maximum radiative heat flux experienced by the vehicle.

• gload , the maximum g-load experienced by the vehicle. This is a measure for the aerodynamic forces
acting on the vehicle.

Section 7.1.1 will analyze the decision and objective variables listed above in more detail using a Monte Carlo
analysis.

7.1.1. Monte Carlo Analysis
To determine what the effect is of the decision variables on the objectives, a Monte Carlo analysis was per-
formed. Monte Carlo analyses try to understand the distribution of certain values by running a large number
of simulations and changing certain values by a random amount for each run. A vector containing all possible
decision variables is made for each simulation run. The values of the variables in this vector are drawn from
a uniform distribution and are thus slightly different each run. A specific combination of decision variables
will result in certain values for all the objectives. If a large number of runs are performed, the dependencies
between the decision and objective variables can be analyzed. For this analysis, all the decision and objective
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Figure 7.2: Monte Carlo analysis results for the initial flight path angle γ as a function of the final atmospheric bending angle θ. The red
dots represent trajectories with final altitudes below zero kilometres, the green dots represent trajectories which leave the atmosphere
again.

variables discussed in the first part of section 7.1 are taken, and 10,000 runs are performed at Mars (the con-
clusions taken from the results of the Monte Carlo analysis at Mars are similar to those for Earth and Venus,
thus only Mars is discussed here). The results from this Monte Carlo analysis are used in section 7.2 to help
select the decision, objective, and constraint variables.

First, the two control variables are analyzed: the angle of attack α and the bank angle σ. The results for θ
and the first control nodes are shown in figure 7.1 and the complete results can be found in appendix A. All
10 nodes are varied for each trajectory and trajectories which end in the vehicle reaching an altitude of below
zero kilometres and trajectories that end with the vehicle leaving the atmosphere again are separated by red
and green dots respectively. Only the first control nodes as a function of θ are shown here, as the results for all
other nodes and objective variables are similar and have the same conclusion. Furthermore, as the for most
trajectories θ < 50°, the nodes spaced at higher values of θ do not influence the trajectory significantly. Figure
7.1 shows that there is no discernible relation between a single control node and the atmospheric bending
angle achieved. Furthermore, the maximum bending angle found is around 50 degrees, which is not close
to the optimal values that can be found as will be described in section 7.4. This shows how sensitive the
performance of the AGA is to the different control variables. It was found that for this Monte Carlo analysis,
only 1 in 50,000 trajectories produced an atmospheric bending angle larger then 90 degrees. This shows the
need for a robust global optimization algorithm to optimize θ.

In figure 7.2, the Monte Carlo results are shown for the initial flight path angle γi against the final atmo-
spheric bending angle θ. Contrary to the results forα andσ, a clear shape can be observed in this relationship.
There seems to be a region of γi between −16 degrees and −13 degrees for which θ is optimal. For larger γi

(on the right side of the figure) there are only green trajectories, which mean that the vehicle quickly skips
out of the atmosphere again after entering it. For smaller γ, the vehicle will either enter the atmosphere and
reach an altitude of below zero kilometres (red dots), or it will leave the atmosphere again after entering it
(green dots). It can also be seen that the spread in dots for a single value of γi is larger for trajectories where
the vehicle enters the atmosphere then for trajectories where the vehicle immediately skips out. For these
steeper trajectories, the vehicle enters the atmosphere to lower altitudes, thus experiencing more aerody-
namic forces. These aerodynamic forces are controlled by α and σ, and thus for the same γi there are several
possible θ, corresponding to different values of α and σ. From this analysis, it can be concluded that for an
optimal AGA atmospheric trajectory, γi should be optimized as well. γi is set by the incoming hyperbolic
orbit, thus to achieve the desired angle, an impulsive maneuver should be performed.



70 7. Atmospheric Trajectory Optimization

In Hess [2016], the same behaviour of γi was observed as was discussed before. In his work, only σ was
used as a control variable for the atmospheric trajectory of the AGA. This required the extra constraint that
γi should be small enough to allow the vehicle to enter the atmosphere, and not skip out. This was needed
as optimal AGA trajectories start with σ = 180deg (lift down), which means that if any uncertainty in the
initial conditions would result in the vehicle skipping of the atmosphere the vehicle will not be able to add
downward force to correct for this. In this research project, α is added to the control variable to be able to
correct for this deficiency in σ only control. As in the case of α and σ control, α could be altered to add a
larger downward force.

Figure 7.3 shows the distribution of all the objective variables discussed in the beginning of section 7.1.
Each subplot in the figure shows the dependency between the two corresponding objective variables. The
red dots (trajectories which reach an altitude of below 0 km) are not shown for ∆i , ∆δ, and ∆R A AN , as these
quantities require the vehicle to exit the atmosphere at the end of flight. This figure can tell if there are cor-
relations between different objective variables and thus which could be important to use in the optimization
algorithm.

The first important results to observe is that, as expected, all the heating variables have a positive cor-
relation, i.e. if either the radiative or convective heating is high the other heat flux will also be high. This
relationship can still be observed in the heat load Q; however, in this case it is much less strong. This can
be explained by the fact that for trajectories with high peak heat fluxes, it is possible that the length of the
trajectory is not as long as for trajectories with lower peak heat fluxes. This could results higher heat loads
for the longer trajectories with lower peak heating. ∆δ also has a dependency on the heating variables. For
∆δ this can be explained by the fact that for high heat fluxes θ is generally also lower (see figure 7.3), thus the
atmospheric section, which can alter the path of the vehicle significantly, is much shorter.

Another important observation is the relation between∆R A AN and∆i . Hess [2016] discussed the option
of having∆R A AN also minimized together with∆i in the optimization algorithm. This would ensure that the
target orbital plane is reached. However, in figure 7.3 it is shown that if ∆i is minimized, ∆R A AN will also be
minimal. Thus having both as objective variables would be redundant. A physical explanation can be given
using Gauss’ variation-of-parameters equations for ˙R A AN and i̇ [Wakker, 2015]:

d R A AN

d t
=

√
a(1−e2

µ

N sinu

sin i (1+e cos φ)
(7.1)

d i

d t
=

√
a(1−e2

µ

N cosu

(1+e cos φ)
(7.2)

where u is the argument of latitude (sum of latitude and argument of perigee) and N is the out-of-plane
acceleration. These equations show that when i changes over time, the R A AN will follow as most of the
terms in both equations are equal. This corresponds to what was found in the Monte Carlo analysis.

Comparing the control action C A with the other objective variables, it can be seen that all the red trajec-
tories, which do not leave the atmosphere, have a significantly lower C A then the green trajectories. This can
be explained, partly, by the fact that red trajectories are shorter then green trajectories, thus there is less C A
exerted. However, it is also partly due to the control effort required to return the waverider to the exit of the
atmosphere.

Finally, looking at θ it can be seen that higher values of the g-load correspond to red trajectories and
generally lower values of θ. The same holds for the peak convective and radiative heat flux. However, the heat
load shows a slight increase when higher θ are reached as these trajectories stay longer in the atmosphere
and are thus subject to more heating.

Using the results of the Monte Carlo analysis, the set-up of the final optimization can be determined. This
is done in the following section.

7.2. Optimization Set-up
This section uses the Monte Carlo analysis done in section 7.1.1 to determine which variables should be used
as decision variables, objective variables, and constraints. At the end of this section, a final set-up for the
optimization is presented.

For the atmospheric trajectories of the AGA there are several constraints that need to be included. The two
constraints that will be added to the fitness calculation are the maximum heat flux (radiative and convective
combined) and the maximum g-load. These are chosen as the goal of this thesis is to find atmospheric trajec-
tories that can be flown using current technology. Thus it is more important to find trajectories that are within



7.2. Optimization Set-up 71

Figure 7.3: The results of the Monte Carlo analysis for all possible objectives. The histograms show the distribution of the respective
objective variable.
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the allowable ranges of current TPS technology, then to find heating and mechanical load optimal trajecto-
ries. As was shown in section 7.1.1, the heat load Q can be minimized to reduce the peak heat flux. However,
this does not guarantee that the peak heat flux is under the maximum allowable vehicle constraint as Q could
be small due to low heating over the whole trajectory, with a short peak heat flux which is over the constraint.
Thus, for Mars, a heat flux constraint of 500 W/cm2 is used, which is adapted from the study of a similar
vehicle in Dijkstra et al. [2013]. The maximum g-load will be chosen to be 15 g, which is adapted from an-
other aerogravity assist study [Casoliva et al., 2008]. Due to the atmospheres of Earth and Venus being much
denser and the velocities much higher due to their higher gravitational influence, the heat flux constraint of
500 W/cm2 cannot be met for these planets. After several test optimization runs, it was found that for both
atmospheres a maximum peak heat flux of 2000 W/cm2 still provided decent results while not exceeding the
heating constraints. The g-load constraint is selected from previous studies (see e.g. Casoliva et al. [2008] and
Hess [2016]) to be 15 g for all planets. Two other constraints that will not be included in the fitness function
are the necessity of the outgoing orbit to be hyperbolic (final eccentricity larger then 1) and the vehicle to
leave the atmosphere at the end of the trajectory (final altitude larger then zero). These constraints will not
be added to the penalty function, but used as conditions for the trajectory. This means that if the constraints
are violated, that trajectory is discarded. This is done for several reasons. The altitude and eccentricity are
important in the classification of the maneuver. If the altitude reaches 0 km at some point, it is considered
to be an entry. If the eccentricity is smaller then 1 at exit, it is considered to be an aerocapture. Thus using
this approach allows the optimizer to only optimize AGA trajectories. Furthermore, as more terms are added
to the penalty fitness function, the optimizer will have more trouble with converging on the global optimum
as there are an increasing amount of parameters influencing the fitness value. As the optimization algorithm
cannot distinguish between the individual terms, improving the fitness value will become harder. Thus it was
chosen to not incorporate these variables into the fitness function.

From the variables discussed at the beginning of section 7.1, several possible options for objective vari-
ables can be selected. The goal of the atmospheric trajectory optimization is to find the maximum achievable
performance of the AGA. As was discussed in section 6.1.3, one of the main parameters that can be used as a
performance metric is θ. This directly relates to the velocity bending angle δ, which in term directly relates
to the increase in heliocentric velocity and possible mission profiles. Due to this discussion, and the fact that
this variable has been used in previous research (e.g. Casoliva et al. [2008], Henning et al. [2014], and Hess
[2016]), the final atmospheric bending angle is chosen to be one of the objective variables. ∆δ would require
a pre-determined target value to determine. The goal in this thesis is not the find an atmospheric trajectory
for a specific mission, but to find the maximum capabilities of an AGA. Thus ∆δ is not used as an objective
variable here. As discussed in section 2.5, the bank angle σ is used as a control variable and thus an out-of-
plane motion is induced during atmospheric flight. Two of the parameters that characterize the orbital plane
are i and R A AN . As unwanted orbital plane changes can be costly to correct, it is important to minimize the
change in these variables. Section 7.1.1 showed that these two variables are connected, and that minimizing
one of these variables would likely also minimize the other. As Hess [2016] used the change in i as an objec-
tive variable, this will also be the selected variable here instead of the R A AN . The remaining two variables
are the heat load Q and the control action C A. The heat load was shown to be influenced by θ in the Monte
Carlo simulation as lower values of θ lead to shorter heating periods and thus lower Q. C A has shown similar
attributes as longer atmospheric flight times require more use of the control systems. Both these variables
are important for the increased complexity of several vehicle systems (e.g. the TPS and control system) com-
pared to the GA. However, they do not influence the maximum achievable heliocentric velocity gain, which
is the main goal for the optimization of the atmospheric trajectory. These variables can be used to improve
specific trajectory parameters after the maximum performance is obtained to decrease the complexity of the
vehicle design, as will be shown in section 7.4.

The decision variables that will be used for the trajectory optimization are based partly on the Monte
Carlo analysis done in section 7.1.1 and the control system discussed in section 2.5. Both αi and σi for all
ten nodes are selected to be decision variables for the atmospheric trajectory optimization. Even though the
Monte Carlo analysis showed no direct relationship between θ and the control nodes, it is expected that this is
not due to the fact that there is no dependency between the two parameters. As was discussed in section 7.1.1,
this is likely due to the fact that a random selection of control nodes yields a small chance of finding the right
combination of nodes to achieve higher bending angles. Furthermore, figure 7.2 shows that for trajectories
which skip out of the atmosphere quickly there is less of a spread in achieved θ then for trajectories which
entered the atmosphere. These trajectories thus experience more aerodynamic accelerations. This showed
thatα andσ do have an influence on the trajectory, and are thus important to control the trajectory to achieve
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optimized objective variables. Additionally, as was already discussed in section 7.1.1, γi will be used next to
the control nodes as a decision variable.

Now that the settings of the optimization have been discussed, a summary of the optimization is given
below:

• Objective Variables

– -θ(t f )

– ∆i

• Decision Variables

– α0, . . . ,α9

– σ0, . . . ,σ9

– γi ni t

• Constraints

– qmax,M ≤ 500 W/cm2; qmax,E ≤ 2000 W/cm2; qmax,V ≤ 2000 W/cm2

– gload ,max ≤ 15

– h(t ) > 0

– e f > 1

– −20° ≤αi ≤ 20°

– |σi | ≤ 180°

A negative sign is put before θ as the optimization algorithms can only minimize the objective functions.
The constraints for αi were chosen because of the limits of the aerodynamic database. The bank angle σ
is constrained to be only positive, as the sign of the bank angle is given by the lateral guidance algorithm
discussed in section 2.5.3.

The optimization algorithm uses a fitness function to determine the optimal solution. As was discussed
in section 4.4.3, the fitness function will not only include the objective variables, but also the constraints. As
these constraints are normalized, the objectives should also be normalized to make the units compatible.
The fitness functions are thus developed as follows:

fθ =−θ(t f )

π
+wg

gload

gload ,max
+wq

qconv +qr ad

qmax
(7.3)

f∆i = ∆i

π
+wg

gload

gload ,max
+wq

qconv +qr ad

qmax
(7.4)

f =
 fθ

f∆i

 (7.5)

The weights in the penalty function of equation (7.5) also have to be determined before the optimization
is performed. Only three different weights could be examined: 0.1, 1, and 10. These were selected as each
part of Eq. (7.5) is normalized, and thus the three chosen weight represent the influence of different orders
of magnitude on each part of Eq. (7.5). For each combination of heat flux and g-load weights, three differ-
ent optimization runs at different seeds were performed for Mars. The objective of this optimization was to
maximize the final atmospheric bending angle. It was quickly determined that if a value of 0.1 was used the
optimal trajectories would have a large chance of exceeding the constraints. Thus, this value was dismissed.
Combinations of the other two values are shown in figure 7.4. The first conclusion that can be made is the fact
that the gload ,max constraint does not influence the results of the optimizer. This shows that the gload ,max

never gets higher then the constraint value and is thus never activated. Comparing the values for the qmax

constraint shows that the higher weight of 10 increases the likelihood of the optimization converging on bet-
ter solutions. Furthermore, the convergence also happens earlier compared to the lower weight value. The
(10,10) weights were thus chosen to be used. It is possible to test more values for the weights inside and out-
side the tested range to see if improvements can be made. However, as will be shown in section 7.3, there
are other parameters whose influence on the performance is much larger then that of the constraint weights.
Thus this is left for future research.
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Figure 7.4: The optimization runs for 4 different combinations of weights on the maximum heat flux and maximum g-load. From top-left
clockwise, the values are (where it is shown as (wq , wg )): (1,1), (1,10), (10,1), and (10,10).

7.3. Optimization Algorithm Comparison
To decide on which optimization algorithm to use, the algorithms that were discussed in section 4.4 are now
compared by trying to optimize an atmospheric trajectory of Mars using the two different algorithms.

This section will compare the two algorithms and discuss the effect the tuning parameters have on the
performance of the algorithm. Due to the fact that one optimization run requires a large amount of time to
complete ( 5 hours for 750 generations, using a 3.50 GhZ AMD A10 Radeon R7 processor with 4 cores, and 8
GB RAM), it was not possible to perform an extensive tuning of the algorithms to be able to select the most
efficient and robust algorithm-parameter combination. Thus, this will be left for future research.

Figure 7.5 shows the performance of the other two algorithms for the θ objective for three different seeds.
Three different seeds are used to eliminate some of the random nature of the algorithms in the analysis. A
larger amount of different seeds would increase the reliability of the analysis. As was stated earlier, this would
take a large amount of time to perform and will be left for future research. The MOEA/D algorithm performs
much better then the NSGA-II algorithm. The MOEA/D algorithm converges to more optimal solutions com-
pared to NSGA-II, and it does this also for all three seeds. The NSGA-II converges much quicker then the
MOEA/D algorithm, which means that a more exploratory method is desirable as it would not converge pre-
maturely. The performance of the NSGA-II could be increased by changing several tuning parameters to
increase the exploration of the solution space. However, tuning both algorithms and determining the best
combination of tuning parameters and algorithm requires a large amount of time and is thus left for future
research. For the remainder of this thesis, the MOEA/D algorithm will be used to optimize the atmospheric
trajectory.

There are several parameters that can be used to change the performance of the MOEA/D algorithm. The
first one is the population size np . The population size influences the exploration of the search space, as a
larger population size will increase the exploration. However, this also increases the computation time of the
optimization run if the same number of generations is taken. Thus, the population size selection is a trade
off between exploration and computational efficiency. From previous research (e.g. Hess [2016]), and several
test runs performed at: np = 60, 80, 100, 120, a population size of 100 was selected as these yield the best
results while remaining computationally efficient.

When the off-spring is made from the current generation, there are two parameters that have an influence
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Figure 7.5: The results for an optimization run at Mars for the two different multi-objective algorithms.

on the new generation. The crossover rate Cr is used to define the chance of two individuals in the population
crossing over and generating a new off-spring. Cr can determine how fast a local optima is exploited by the
algorithm. This can help the optimization find optima quicker, but also result in premature convergence. The
other parameter is the differential weight F . This parameter determines how much an individual is crossed
over with (how much of the other individuals chromosomes are used in the off-spring). This can increase the
exploration, but also decrease the chance of the population converging to an optima. There are no general
rules on optimal values for these parameter, thus a small comparison was made using different values for
these parameters to observe their influence on the performance of the algorithm. Using MOEA/D, the same
problem as for the algorithm selection was optimized. Each optimization run had a different combination
of tuning parameters with all the other settings kept equal. The parameter values used are: F = [0.5,1.0]
and Cr = [0.3,0.5,0.7,1.0]. The results for one seed are shown in figure 7.6. The results are distributed fairly
randomly and no conclusion can be made on if increasing or decreasing one of the parameters will improve
the performance of the algorithm. However, it does tell that the AGA problem is extremely sensitive to any
changes in the optimization algorithm and that if sub-optimal results are found, the first strategy to improve
the results could be to alter F and Cr .

The last parameter that will be inspected is the neighbourhood size nb . This parameter is mentioned in
algorithm 4.2 and determines the amount of weight vectors in the neighbourhood of λ. A higher value of
nb can increase exploration, but also decrease the chance of converging on the global optimum. Ishibuchi
et al. [2013] showed that nb should be somewhere between 2 and 10 percent of np , but Hess [2016] found it
to be 20 percent. For the best parameters found before (np = 100, F = 0.5, Cr = 0.5), 5 nb values were chosen:
nb = 5, 10, 15, 20, 30. Figure 7.7 shows the results of this analysis. Again, it is noted that the spread of results
is high, thus nb also has a large influence on the performance of the algorithm. nb = 5 was found to perform
the best as it was the only setting that was able to reach an optimum near the theoretical minimum.

This section was meant to demonstrate the sensitivity of the problem to the chosen optimization algo-
rithm and the parameters of that optimization algorithm. Due to the fact that only a small number of opti-
mization runs at different seeds were performed, and the search space of the different parameters was not
detailed enough, no general conclusion can be given on the optimal combination of algorithm and parame-
ters. In the remainder of this research project, the MOEA/D optimizer will be chosen to optimize the atmo-
spheric trajectories. The algorithm parameters will be set as follows: Np = 100, F = 0.5, Cr = 0.5, nb = 5, as
this combination of parameters has shown to be capable of (near) optimal θ.
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Figure 7.6: The results for different values of Cr and F for the MOEA/D algorithm.

Figure 7.7: The results for different values of nb for the MOEA/D algorithm.
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Parameter Value

hi

Mars: 163 km

Earth: 200 km

Venus: 350 km

V −∞ 5.0 km/s

Latitude 17.19°

Longitude 68.75°

χ 34.38°

Table 7.1: Initial conditions for the simulation runs.

(a) ∆i optimization run. (b) C A optimization run.

Figure 7.8: The two final populations (for all seeds) for the Mars atmospheric trajectory optimization runs. The left figure contains the
results for the optimization using ∆i as objective variable, and the right figure the results for C A as objective variable. The circled dots
are individuals that are not dominated by any other individual, and thus form a Pareto front.

7.4. Results
This section will explore the atmospheric trajectories that can be produced for an AGA at Mars, Earth, and
Venus.

The MOEA/D algorithm will run the simulation at three independent seeds (seed 1: 12345677890, seed
2: 9876543210, and seed 3: 123454321) each producing a fitness value using Eq. (7.5). The initial conditions
of these simulations are shown in table 7.1. The results for the different planets are shown and discussed
separately in the next sections. A summary and comparative discussion of all the results is given in section
7.4.4.

7.4.1. Mars
The final population of the optimization at Mars for all seeds are shown in figure 7.8a. The individuals that
are a part of the Pareto front spanned by all the different seeds combined are encircled. It can be seen that the
Pareto front covers a small region of the objective space where the θ are spanned between 114 degrees and 121
degrees, and the ∆i is limited to between 0 and 0.25 degrees. This shows that the combination of σ and α as
control variables is capable of achieving relatively high atmospheric bending angles, while still maintaining
a low ∆i . Figure 7.8a shows that there are a lot of individuals (mostly from other seeds) that do not reach
the putative optimal Pareto front. This shows that the convergence behaviour is poor for this problem and
that it is possible that the found Pareto front could be improved upon for different combinations of seeds and
settings.
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To investigate the atmospheric trajectory in more detail, a trajectory from the Pareto front was selected.
This specific trajectory can be seen in figure 7.8a with the label “trajectory 1”. The trajectory is shown in more
detail in figure 7.9, where trajectory 1 is represented by the solid line.

As was shown in figure 2.6, the atmosphere of Mars is relatively thin. This results in less drag experienced
by the waverider as it travels through the atmosphere. Furthermore, lower velocities compared to other plan-
ets are needed to travel through the atmosphere and escape again as the gravitational influence of Mars is
not as significant. This also reduces the drag experienced by the vehicle and the heating rate of the vehicle.
As the waverider needs to exit the atmosphere on a hyperbolic orbit to escape the gravity field of Mars again,
it cannot experience too much drag as this could slow down the waverider until it is captured by the gravity
field of Mars. Figure 7.9 shows that the velocity at the end of the trajectory is just larger then the escape veloc-
ity of Mars (dotted line), which means that the optimal trajectory stays inside the atmosphere for as long as
possible until it reaches the maximum θ when the velocity is just high enough to exit the atmosphere again
on a hyperbolic trajectory.

The influence of adding α as a control variable can be seen through several parameters. The L/D of
the vehicle does not remain constant at the highest L/D value as it would be for a σ only trajectory. In this
case, the L/D changes significantly over the whole trajectory. Over the first and final couple of degrees that
the vehicle travels through the atmosphere, the L/D of the vehicle changes as the vehicle travels through the
different flow regimes. This is thus not necessarily due to changes inα. Afterwards, the L/D does not reach the
maximum value until halfway through the trajectory, where it immediately turns negative afterwards. This is
peculiar as previous research (see e.g. McRonald and Randolph [1990]) has shown that having the vehicle at
high values of L/D increases the performance of the AGA. The fact that the optimization algorithm has not
found a trajectory where L/D is at a maximum for the whole trajectory shows that either using α decreases
the performance of the AGA, or that there are other factors that keep the L/D from being maximum over
the whole trajectory. As high values of θ are still found, which also do not differ significantly from previous
research (see e.g. Hess [2016]) that has used only σ as a control variable, shows that the performance has
not been decreased due to α. A possible reason can be that, as can be seen in figure 3.5, the peak in the L/D
profile is steep and even changing the value of α slightly will result in the L/D being changed significantly.
This makes finding a maximum L/D profile harder for the optimizer (as well as giving the guidance algorithm
hard constraints for deviations in α from the nominal trajectory). An advantage of the smaller values for
L/D is the fact that the g-load is also significantly lower, as can be seen in figure 7.9. Observing the control
variables shows that α changes significantly during the trajectory. At some points the value of α induces a
negative L, which acts as a large bank reversal as the lift vector is turned 180 degrees. However, the bank
angle profile still contains 5 bank reversals, which will increase the complexity of the on-board guidance
and control systems. Furthermore, the trajectory through the atmosphere is not smooth, which translates to
multiple heat flux peaks in the heating profile. This complicates the design of the TPS system as the heat load
increases significantly.

To improve the control variable profiles, a different strategy to the optimization is needed. Instead of ∆i
being optimized, the control action, C A, will be optimized. C A is defined as follows:

C A =
∫ t f

t0

α̇2 + σ̇2d t (7.6)

Using C A as a objective variable will decrease the change in value of the control variables during the trajec-
tory, and thus decrease the bumps induced by the variable lift and drag coefficients. The final population of
the C A optimization is shown in figure 7.8b. As before, the circled individuals are part of the Pareto front. The
color of the individuals in figure 7.8 show the value of the other optimization’s run second objective variable.
As can be seen, the C A is improved significantly compared to the∆i trajectories while the∆i still remains rel-
atively low (around 3 degrees). Two trajectories have been selected to be shown in more detail. One of these
trajectories (trajectory 3) has a similar performance in θ as the maximum found θ for the ∆i optimal trajec-
tory (this trajectory is not part of the Pareto front to show how one of the off-Pareto trajectories differ from
the Pareto front trajectories). The other trajectory (trajectory 2) has a θ that has been increased by around 30
degrees. This shows that C A trajectories are also capable of achieving higher performances for the AGA. The
two C A optimal trajectories that have been labelled in figure 7.8 are shown in figure 7.9 as the dashed line
(trajectory 2) and the dashed-dotted line (trajectory 3).

The use of C A has shown to be able to remove the bumps completely from the trajectory, which reduces
the amount of q peaks to only 1. Furthermore, as was discussed in section 2.5.1, changing α over large
amounts during hypersonic flight is often not possible or desired. Using C A as an objective variable has
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significantly reduced the changes needed for α, as for most of the trajectory α stays constant, except for the
start of the trajectory. The σ profile is also improved as no bank reversals are needed. This reduces the com-
plexity of the on-board guidance and control systems significantly. Thus a C A optimal trajectory increases
the feasibility of an AGA trajectory at Mars.

It is important to note that the reason that the∆i optimal trajectories are not as smooth as the C A optimal
trajectory is not, necessarily, a physical reason. As there were no influences on the fitness function of the C A
or any other parameters that measure the “smoothness” of the trajectory, the optimizer did not take this
factor into account and found the trajectories shown in figure 7.8 instead. If one of these factors would be
incorporated in the fitness value, the final trajectory could have been smoother. Furthermore, if trajectory 2
was part of the ∆i final individuals seen in figure 7.8a, it would also be part of the Pareto front found there
as θ(t f ) is larger then the largest θ(t f ) found in that optimization run. Thus, under different settings and a
different seed, the optimizer could have also found that trajectory as part of the ∆i optimal individuals.

Figure 7.10 shows the results of figure 7.8, with different parameters being shown as the color of the in-
dividuals. The γi of all individuals are shown in figures 7.10a and 7.10b. They all lie close together (between
13.6 and 14.15 degrees) and thus show that there is a small region of γi which result in optimal trajectories.
Looking at figures 7.10c and 7.10d, the final hyperbolic excess velocities for the higher θ are all close to 0.
This, as was discussed before, is due to the fact that the vehicle needs to escape the gravitational influence of
the planet once it exits the atmosphere of the planet. Lower θ trajectories have more velocity left at the end of
the trajectory as they experience less drag due to the early exit. However, comparing figures 7.10c and 7.10d
shows that for similar θ the exit hyperbolic excess velocity is much greater for C A optimal trajectories. Thus,
the drag experienced during these trajectories is much less. This could be due to the different control profiles
or due to the different densities which are flown through as can be seen in figure 7.9. Finally, the peak heat
fluxes are shown in figures 7.10e and 7.10f. This figure shows that the trajectories within each seed all have
similar peak heat fluxes. However, the three different seeds all have different peak heat fluxes. The Pareto
fronts (the circled individuals) both lie close to the constraint value, which shows that if this peak heat flux
constraint is increased the Pareto front might have been improved. As for similar θ different peak heat fluxes
are observed for trajectories that have higher ∆i or C A, it can be argued that it might be beneficial to select
e.g. trajectory 3 over trajectory 1 as it has similar θ and ∆i with a decrease in qmax of around 200 W/cm2.
However, this depends on the context and objectives of the mission.

7.4.2. Earth
Figure 7.11a shows the results for the final population of each seed for the trajectory optimization at Earth.
Compared to Mars, Earth has a thick atmosphere and thus larger aerodynamic forces are experienced by the
waverider during its trajectory. Additionally, the gravitational influence of Earth is larger then that of Mars.
Thus, a vehicle in a hyperbolic orbit around Earth has a much larger velocity then around Mars, which results
in higher velocities inside the atmosphere and thus more drag experienced by the vehicle. This results in a
lower θ(t f ) being reached compared to Mars. The ∆i of the trajectories in the Pareto front are close to 0.
This is due to the fact that σ has not yet had a large influence on the out-of-plane movement during the
shorter trajectory compared to Mars. To investigate the atmospheric trajectory around Earth in more detail, a
trajectory marked as “trajectory 1” in figure 7.11a from the Pareto front is shown in more detail in figure 7.12.

It can be seen that compared to figure 7.9, the velocities experienced at Mars are much higher as the
escape velocity is about 6 km/s higher. This results in higher amounts of drag, and thus a lower θ(t f ) as the
vehicle has to leave the atmosphere quicker before the velocity is below the escape velocity. Having the lowest
altitude of the waverider higher in the atmosphere could help, as the density of the atmosphere is not as high
there and thus the drag would also be lower. However, the aerodynamic forces would also not be high enough
to sufficiently control the waverider, and thus the waverider would either leave the atmosphere or go deeper
into the atmosphere again where it would encounter higher drag forces.

As discussed in chapter 2, Earth has various acceleration and environment models that can be used to
improve the accuracy of the simulation. For the simulations used in the optimization of the AGA, lower fi-
delity models are used (e.g. the exponential atmosphere and central gravity) as this significantly reduces the
computational time of the optimization algorithm. To ensure that these lower fidelity optimal trajectories are
representative for trajectories where more accurate models are used, an optimization was run using higher
fidelity models. The NRLMSISE-00 model was used instead of the exponential model to increase the accu-
racy of all the atmospheric parameters. The difference between the exponential model and the NRLMSISE-00
model is mainly experienced at higher altitude as the NRLMSISE-00 model incorporates certain solar weather
data. The original simulation used only the gravity of the Earth. For this simulation both the gravity of the
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Figure 7.9: Optimal atmospheric trajectories for an AGA at Mars. The solid line represents trajectory 1 from figure 7.8, the dashed and
dashed-dotted line represent trajectory 2 and 3 respectively from figure 7.8. The light dotted line in the velocity figure represents the
escape velocity at the exit altitude.
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(a) ∆i optimization, γ decision variable. (b) C A optimization, γ decision variable.

(c) ∆i optimization, V +∞ variable. (d) C A optimization, V +∞ variable.

(e) ∆i optimization, qmax decision variable. (f) C A optimization, qmax decision variable.

Figure 7.10: The final individuals for the Mars optimization runs with three different variables shown using the color of the markers in
the figures.
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(a) ∆i optimization run with low fidelity models. (b) ∆i optimization run with high fidelity models.

Figure 7.11: The two final populations (for all seeds) for the Earth atmospheric trajectory optimization runs. The left figure contains the
results for the optimization using low fidelity models and the right figure the results for the high fidelity models. The circled dots are
individuals that are not dominated by any other individual, and thus form a Pareto front.

Sun and the Moon are also included, using the SPICE ephemeris model for their relative location. These
third-body perturbations can have small effects on the accelerations of the vehicle. However, they are ex-
pected to be much lower then the central body gravitational acceleration and the aerodynamic accelerations.
For the gravity of Earth, the central gravity model was replaced by a spherical harmonics model with degree
and order of 4. This model allows for several aspects of the mass distribution of the Earth (e.g. the oblateness
of the Earth) to be modelled in the gravitational acceleration. These analyses have also been done for Mars
and Venus and are shown in appendix B for brevity. The results for the final population for the three seeds
are shown in figure 7.11b. The final population does have a different distribution as for the low fidelity model
optimization. However, when the Pareto front of the high fidelity optimization is observed, it can be seen that
the obtained values for both θ and ∆i are similar to those of the low fidelity optimization. The difference in
distribution over the objective space shows the sensitivity of the optimizer to changes in the model. As the
goal is to determine the maximum possible performance of the AGA, this difference in distribution is allow-
able as long as the performance metrics are similar. Again, one trajectory is chosen from the Pareto front,
here labeled as “trajectory 2”, and shown in more detail in figure 7.12 as the dashed line. As can be seen, the
difference between the two trajectories are not large. One of the main differences that can be observed is
the fact that the lowest point is around 10 km lower for trajectory 2. This was observed to be due to the fact
that the density at this point is the same for both trajectories. However, this does not correspond to the same
altitude for both atmosphere models and thus the equilibrium gliding altitude is different. Additionally, the
L/D profile is slightly lower for trajectory 2 along the whole trajectory. The α profile could be the reason, as it
slightly differs from each other, mainly at the start and end of the trajectory. This could be due to the larger
difference between the exponential atmosphere model and the NRLMSISE-00 model at higher altitudes as is
shown in figure 2.9. Another observation that can be made is the fact that σ remains close to 180 degrees for
the whole trajectory. Only at the start of the trajectory a small out-of-plane motion is induced by σ deviating
slightly from 180 degrees. However, no bank reversal was needed as this motion did not induce a large change
in the inclination.

Figure 7.13 shows more information on all the optimized individuals. Figures 7.13a and 7.13b show again
that most individuals have similar γi . Thus a small range of γi show to be optimal, as was the case for Mars.
The difference with Mars is that Earth trajectories have a less steep γi . Thus the peak for the optimal γi can
differ significantly between planets. The exit hyperbolic excess velocity is shown in figures 7.13c and 7.13d.
Similar results as for Mars are seen for Earth, except for the fact that V +∞ decreases quicker as a function of θ,
which results in the lower θ(t f ) compared to Mars. Figures 7.13e and 7.13f show the peak heat flux reached
for each individual. Compared to the AGA at Mars, most of the individuals show similar peak heat fluxes
near the constraint value of 2000 W/cm2. There are, however, several trajectories which have exceeded the
constraint by about 1500 W/cm2 for the low fidelity model optimization. This can also be seen in figures
7.13a and 7.13b where the trajectories seem to enter the atmosphere at a slightly steeper angle. The fact
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that these trajectories with a higher heat flux do not improve on the Pareto front individuals is likely due to
the optimization algorithm looking for trajectories that decrease the peak heat flux to minimize the penalty
instead of using that heat flux penalty and increasing the θ. As the Pareto fronts show that their peak heat flux
is near the constraint value, the performance would likely be increased if the heat flux constraint would be
increased.

7.4.3. Venus
The final population for each seed is shown in figure 7.14a. The θ that is reached by the individuals in the
Pareto front, shown as the encircled dots, is larger then those of Earth as the escape velocity at the exit altitude
of Venus is slightly lower (about 1 km/s). This results in lower velocities inside the atmosphere, and thus less
drag experienced by the vehicle. For the ∆i objective variable, it can be seen that most of the non-dominated
individuals are between 1 degree and 1.5 degree inclination change. There is one individual that is able to
reach a much lower ∆i as the other individuals, while still obtaining a relatively large θ(t f ). This individual
also dominates a large part of the other individuals due to its low∆i . The individual with the largest θ(t f ) was
taken to be inspected in more detail. This trajectory is labeled “trajectory 1”in figure 7.14a, and is shown as
the solid line in figure 7.15.

From the three planets discussed in this thesis, Venus has the most dense atmosphere with a relatively
high scale height. Due to this fact, the AGA starts at an altitude of 350 km and only reaches a lowest altitude of
around 160 km. The atmospheric angle that is reached is still lower then that of Mars as the dense atmosphere
of Venus and high velocities required slows down the waverider significantly. A difference between the other
planets is that a second dip is found after the flight path angle reaches 0 for the first time. This allows the
waverider to stay longer in the atmosphere, but it also generates a second heat flux peak next to the first one
generated during the first part of the trajectory. This second heat flux peak is around 1000 W/cm2 higher then
the first peak and hits the heat flux constraint set by the optimization algorithm. This second heat flux peak
increases the TPS mass required to be able to execute this trajectory as the heating period is also extended for
a longer period of time. Furthermore, theσ profile of this trajectory is not ideal, as at the start of the trajectory
an out-of-plane lift force is present due to the fact that σ is not equal to 0 or 180 degrees. This is corrected
later in the trajectory by a bank reversal, which ensures a relatively low ∆i . However, as can be seen in figure
7.14a, there are trajectories with an even lower ∆i (also with a lower θ(t f )).

To be able to reduce the influence of the heating during the trajectory of the waverider, a different opti-
mization strategy was applied to the problem. Instead of the inclination difference being optimized, the heat
load Q (the integrated heat flux over the whole trajectory) was also optimized. The population of the final
generation for all the seeds of this optimization is shown in figure 7.14b. It can be seen that for this optimiza-
tion most of the final population is part of the Pareto front. As can be seen from the colors of the dots in both
figure 7.14a and figure 7.14b, the performance of ∆i is relatively similar for both optimization runs; however,
the heat load Q is significantly reduced. The only disadvantage is that the maximum possible θ(t f ) is smaller
for the Q optimal trajectories. The trajectory with the highest θ(t f ) is again selected to be studied in more
detail, and is labelled in figure 7.14b as “trajectory 2”. Trajectory 2 is shown completely in figure 7.15 as the
dashed line. The Q optimal trajectory significantly reduces the peak heat flux reached together with the total
heat load of the trajectory. This is done by removing the second dip in the atmosphere. However, this also
reduces θ(t f ) of the trajectory as the second dip also serves to keep the waverider in the atmosphere for a
longer period of time. Thus a trade-off needs to be made where the gain in ∆V (thus decrease in propellant
mass) due to the larger atmospheric angle is compared with the gain in TPS material due to the larger heat
load of the trajectory.

Additional results on the Pareto fronts of the AGA at Venus are shown in figure 7.16. The γi shown in fig-
ures 7.16a and 7.16b show again the small region of γi for which optimal trajectories exist. These trajectories
also show more similarity in γi compared to Earth, which shows that AGA trajectories at these planets have
similarities in their optimal trajectories. What can also be observed is the relation between γi , θ, and Q. When
γi becomes steeper, θ and Q become higher. V +∞ shown in figures 7.16c and 7.16d show similar behaviour as
AGA trajectories at other planets, where V +∞ decreases as θ increases due to the longer periods of high drag
experienced. Figure 7.16e shows that for different seeds the peak heat fluxes are different, and within the
seeds the peak heat fluxes are similar for each trajectory. These heat fluxes are also all close to the maximum
allowed heat flux of 2000 W/cm2. If this is compared with figure 7.16f, it can be seen that the peak heat fluxes
are decreased significantly. This shows that for similar θ there are trajectories that can significantly reduce
the heat fluxes experienced. However, these trajectories are not found for the highest θ found in figure 7.16e.
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Figure 7.12: Optimal atmospheric trajectories for an AGA at Earth. The solid line represents trajectory 1 from figure 7.11, and the dashed
line represents trajectory 2. The light dotted line in the velocity figure represents the escape velocity at the exit altitude.



7.4. Results 85

(a) Low fidelity models optimization, γ decision variable. (b) High fidelity models optimization, γ decision variable.

(c) Low fidelity models optimization, V +∞ variable. (d) High fidelity models optimization V +∞ variable.

(e) Low fidelity models optimization, qmax decision vari-
able.

(f) High fidelity models optimization, qmax decision vari-
able.

Figure 7.13: The final individuals for the Earth optimization runs with three different variables shown using the color of the markers in
the figures.
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(a) ∆i optimization run. (b) Q optimization run.

Figure 7.14: The two final populations (for all seeds) for the Venus atmospheric trajectory optimization runs. The left figure contains the
results for the optimization using ∆i as objective variable, and the right figure the results for Q as objective variable. The circled dots are
individuals that are not dominated by any other individual, and thus form a Pareto front.

7.4.4. Comparative Discussion
Previous sections have discussed the results of the AGA trajectories at Mars, Earth, and Venus separately. Fur-
thermore, they have touched upon the similarities and differences between the trajectories at each planets
and discussed the reasons of these differences. This section will summarize these results together and com-
pare the results with each other and with previous research.

The AGA trajectories at Mars significantly outperformed trajectories at other planets for the maximum
achievable θ. Using ∆i as the second objective variable resulted in a maximum θ(t f ) = 120.5°, and using
C A instead of ∆i resulted in θ(t f ) = 151.2°. Maximum heat fluxes close to the heat flux constraint of 500
W/cm2 were found for the Pareto optimal solutions. However, if similar θ trajectories are taken which have
a degradation of the performance in the second objective variable, the maximum heat flux peak could be
reduced by around 100 W/cm2. Several studies have tried to optimize an AGA at Mars with a pre-defined
θ(t f ) to inspect the trajectory. Henning et al. [2014] showed trajectories which reached a θ(t f ) of around 100
degrees using initial velocities of around 10 km/s, not considering heating of the vehicle. This value falls well
within the maximum performance achieved in this thesis. Lohar et al. [1996] maximized AGA trajectories for
their outgoing heliocentric velocities considering heating and found trajectories with θ(t f ) = 81.36°, with a
peak heat flux of 392 W/cm2. The outgoing hyperbolic excess velocity was found to be 6 km/s, which as can
be seen from figure 7.10c is higher then the velocity found here. This is likely due to the fact that in their
work, the outgoing velocity was maximized and thus a different trajectory was found that achieved higher
exit velocities. Hess [2016] performed a similar study as was done in this thesis. The differences are mainly
in the fact that Hess [2016] only used σ as a control variable and that the Sr e f of the waverider was increased
by a factor of 10. Hess [2016] found for an initial velocity of 8.0 km/s a θ(t f ) = 153°. This θ(t f ) is reached by
trajectories found in this thesis using C A as the second objective variable using α and σ as control variables.
As for this trajectory the Sr e f did not need to be increased to allow for this θ(t f ), the benefit of α as an extra
control variable is clearly shown.

The AGA trajectories at Venus and Earth have shown to achieve lesser θ(t f ) then the AGA trajectories at
Mars. This is mainly due to the e constraint which requires to be above 1.0 to leave the planet again on a
hyperbolic trajectory (see figures 7.13c, 7.13d, 7.16c, and 7.16d). The velocities at these planets are much
higher then at Mars, thus more energy is lost due to drag which results in the vehicle leaving the atmosphere
at lower values of θ. The heat flux constraints at these planets also limit the achievable θ(t f ) as most of the
optimization solutions are close to the heat flux constraint of 2000 W/cm2. Most of the previous studies on
atmospheric trajectories use Mars due to the reasons listed above. This means that there are only a limited
number of studies that can be used as a comparison for Earth and Venus. Lohar et al. [1994] performed a study
of an AGA at Venus maximizing the heliocentric exit velocity. Similar assumptions as Henning et al. [2014] are
taken where the control variables is the lift coefficient, which can be changed between its maximum and
0 freely during the trajectory. It was found that a maximum of 63 degrees for θ(t f ) is achievable. Heating
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Figure 7.15: Optimal atmospheric trajectories for an AGA at Venus. The solid line represents trajectory 1 from figure 7.14, and the dashed
line represents trajectory 2. The light dotted line in the velocity figure represents the escape velocity at the exit altitude.



88 7. Atmospheric Trajectory Optimization

(a) ∆i optimization, γ decision variable. (b) Q optimization, γ decision variable.

(c) Q optimization, V +∞ variable. (d) Q optimization, V +∞ variable.

(e) ∆i optimization, qmax decision variable. (f) Q optimization, qmax decision variable.

Figure 7.16: The final individuals for the Venus optimization runs with three different variables shown using the color of the markers in
the figures.
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rates were found to be much less then in this thesis. However, this is due to the fact that the maximum lift
coefficient taken in Lohar et al. [1994] is much higher then what is achievable for the waverider in this thesis.
Mars is able to achieve better performances for the atmospheric trajectories, however having studies also
focused on Earth and Venus allows for different mission geometries to be considered for the AGA and is thus
important to investigate.

Figures 7.8, 7.11, and 7.14 show that the convergence behaviour of this problem is poor as there are a
significant amount of optimized individuals who have not converged to the putative Pareto front. Thus, it
is possible that the putative solution found in this thesis is also not the true optimal solution, and thus the
performance of the AGA could be improved. This can be shown to be true if an in-depth analysis is performed
of the optimization algorithm combined with the optimization settings of this problem. This analysis can
result in an optimal setup of the optimizer and thus in improvements in the putative solutions found here.





8
Interplanetary Trajectory Optimization

Chapter 7 discussed the atmospheric trajectory of the AGA. This chapter will take the trajectories of chapter
7 and connect them with the interplanetary phase of a mission. This will show if the AGA can improve the
performance of interplanetary trajectories compared with a GA only mission and how it is able to do this. As
the theory behind the mission planner is given in chapter 6, and the theory behind the optimization is given
in chapter 4, this chapter will mainly focus on the problems that are discussed here and the results for the
interplanetary trajectories.

First, in section 8.1, the connection between the atmospheric trajectories and the interplanetary trajecto-
ries using Pareto fronts is discussed. The specific Pareto fronts for Mars, Earth, and Venus are all shown and
discussed separately. Afterwards, section 8.2 goes through the interplanetary trajectories that will be tested,
how they are going to be tested, and the results for each trajectory are shown. Finally, section 8.3 takes some
of the previous sections results and investigates them in more detail.

8.1. Aerogravity Assist Pareto Front
Section 6.1.3 discussed how the AGA mission segment was implemented into the interplanetary mission
planner. This mission segment required a Pareto front for each planet that would limit the possible AGA
trajectories. Before the interplanetary trajectories can be found, these Pareto fronts need to be generated and
put into the mission planner.

To generate these Pareto fronts, a swing-by leg is set-up as was discussed in chapter 6. The incoming
velocity at the SOI of the planet is taken first and using a Lambert targeter the outgoing velocity at the exit of
the SOI is then found. These velocities were then used to find the required δ, and together they are used as
an input for the GA mission segment. Thus, for the AGA a Pareto front is needed with the incoming velocity,
the outgoing velocity, and δ contained in it. This results in the following optimization scheme:

• Objective Variables

– -θ f

– -|V +∞| = −V +∞

• Decision Variables

– α0, . . . ,α9

– σ0, . . . ,σ9

– γi ni t

• Constraints

– qmax,M ≤ 500 W/cm2; qmax,E ≤ 2000 W/cm2; qmax,V ≤ 2000 W/cm2

– gload ,max ≤ 15

– h(t ) > 0

91
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– e f > 1

– −20° ≤αi ≤ 20°

– |σi | ≤ 180°

which is almost the same as in chapter 7. However the ∆i objective is changed to the -V +∞ objective and
instead of only using 1 value for V −∞, a range of values was taken separated in increments of 1 km/s. The ∆i
is controlled here using solely the lateral guidance algorithm discussed in section 2.5.3, which has shown to
work in reducing orbital plane changes even though ∆i is not optimized in section 7.4. During initial testing,
it was found that after optimizing the trajectories using the before mentioned set-up, the trajectories would
all converge to an optimum where θ(t f ) was low and V +∞ almost equal to V −∞. The reason for this could be
the fact that these trajectories were much easier to find by the optimization algorithm, thus the optimization
would converge quickly to these solutions. As a Pareto front that is more spread across θ(t f ) is more desirable,
a different approach was taken. The new method takes trajectories where θ(t f ) is small, and penalizes V +∞
according to the value of θ(t f ) and a pre-defined penalty value θpen . The fitness function for the velocity
objective thus looks as follows:

fV +∞ =−V +∞
V −∞

+wg
gload

gl oad ,max
+wq

qconv +qr ad

qmax
+ fv,pen(θ) (8.1)

where V −∞ was used to normalize the objective as it is not possible to have V +∞ > V −∞ as this would mean that
the vehicle has gained energy in the atmosphere without using an impulsive thrust. The θ penalty function
penalizes the fitness with a value of θpen/θ(t f ) if θ(t f ) < θpen , and be equal to 0 if it is larger then the penalty
function. Each optimization (for each V −∞) was performed for three different seeds to minimize random ef-
fects on the optimization results. If for a specific V −∞ trajectories were found that would exceed one of the
constraints, they will not be included in the Pareto front.

The optimization gives a range of points in 3D-space that each represent a trajectory found by the op-
timizer. To obtain a surface that can be evaluated at any point in this space, a polynomial needs to be fit
through all of these optimal trajectories. This is done using the least squares fitting method discussed in sec-
tion 4.3. Comparing the residuals between data and model, it was found that a polynomial of the first order in
V −∞ and of the third order in δwould result in the best fits. The equation for this polynomial is thus as follows:

V +
∞ = p00 +p10V −

∞+p01δ+p11V −
∞δ+p02δ

2 +p12V −
∞δ

2 +p03δ
3 (8.2)

This method assumes that in between the optimal trajectories, there also exists optimal trajectories. As these
regions have not been explored by the atmospheric optimizer, there is no 100 percent certainty that there exist
optimal trajectories in these regions. However, using trajectories that are distributed evenly over the whole
space increases the accuracy, which is done by selecting a wide range of V −∞. Furthermore, larger regions on
the Pareto fronts that contain no trajectories are identified after the Pareto front is generated, and removed
from the final Pareto front. These empty regions, together with other regions of the space that are not covered
by the Pareto front will have a flag that will be given to the mission planner algorithm. If this flag is found, a
GA trajectory will be used instead of an AGA trajectory.

For each of the three planets discussed in chapter 7, a Pareto front is created. Each one will be discussed
separately in the following sections.

Planet p00 p10 p01 p11 p02 p12 p03

Mars 2380.0 0.85 -1048 -0.3385 641.6 0.03174 -160.4

Earth 11070.0 0.5121 -6379 -0.312 2059 0.02376 -385.2

Venus 1636.0 0.8908 263.9 0.008134 -20.19 -0.1481 -15.19

Table 8.1: Pareto front parameters for each planet.

8.1.1. Mars
The Pareto front, or the limiting surface, of Mars is shown in figure 8.1. The distribution of the residuals,
which shows the difference between the actual Pareto front and the fitted surface, is shown in figure 8.2. Most
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Figure 8.1: The limiting surface for the AGA at Mars, where the dots are the optimal trajectories.

of the absolute residuals are below 300 m/s, and only a small amount of trajectories show higher deviations
compared to the surface. The standard deviation found for the residuals was found to be 184,85 m/s, this
value can thus be taken as the uncertainty in the final value of the found velocity. As was discussed in chapter
7, an AGA at Mars can achieve large atmospheric bending angles and thus also large δ are reached in the
Pareto front. Initial velocities smaller then 2 km/s showed bad performances, as the initial velocity was not
high enough to generate high bending angles. Thus, these trajectories were not added to the Pareto front
of Mars. Furthermore, higher initial velocities, those above 7 km/s, could not find optimal trajectories that
did not exceed the peak heat flux constraint, thus they were also removed from the Pareto front. Another
constraint that is put into each Pareto front is the fact that V −∞ ≥ V +∞. This limits one side of the Pareto front
as can be seen in figure 8.1. Furthermore, the Pareto front cannot go below V +∞ = 0, as this means the vehicle
is captured in an orbit around the planet instead of leaving it on a hyperbolic orbit. Furthermore, δ larger
then 180 degrees are also not included as this means that it would be better to enter the atmosphere from
the other side. Outside of the constraints on the Pareto front mentioned before, the optimal trajectories are
evenly spread across the surface and no regions of the Pareto front need to be discarded as a result. For an
incoming velocity of 5 km/s, there is a region of larger δ that is not filled with trajectories. This region could
be removed from the Pareto front; however, as for both larger and smaller V −∞ there are optimal trajectories
in this region, it is assumed that the lack of optimal trajectories there is due to the seeds used and not due to
any physical reason. Thus it was chosen to leave this section in the final limiting surface.

8.1.2. Earth
As was discussed in chapter 7, Earth’s atmosphere is relatively thick and the gravitational influence is relatively
high. Thus, when entering the atmosphere the vehicle experiences a large amount of drag. This drag slows the
vehicle down quickly, and thus the vehicle has to leave the atmosphere again before it doesn’t have enough
velocity anymore to escape the gravity field of Earth. As was shown in Eq. (6.13), θ is important for the total
velocity bending angle. However, the GA contribution also adds to the total velocity bending angle of the
AGA, which for Earth is relatively high. This results in relatively high δ found for the Pareto front of Earth,
which can be seen in figure 8.3, even though the θ is relatively low for Earth AGA’s. The thicker atmosphere
does have other disadvantages that can be seen in the Pareto front. First of all, just as for Mars, the lower
V −∞ are removed as the velocity of the vehicle is not high enough to results in reasonable results. However,
for Earth this happens for velocities lower then 3 km/s, whereas for Mars this was at 2 km/s. Second, for
higher velocities, the maximum δ becomes lower as the drag and heating becomes significantly higher. Thus
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Figure 8.2: The distribution of the residuals of the Mars Pareto front compared to the fitted surface.

for these higher incoming velocities, parts of the Pareto front are missing for higher δ. Finally, the range of
δ covered by the AGA Pareto front is much smaller then that of Mars, as the V +∞ decreases much quicker as
a function of δ. All of these facts combined result in a much smaller region which is covered by the AGA
Pareto front compared to the Pareto front of Mars. This will make it harder for the optimizer to find a good
AGA trajectory at Earth that fits in the larger interplanetary trajectory. The distribution of the residuals of the
fitted surface are shown in figure 8.4. These residuals are more closely distributed around 0.0 m/s compared
to Mars and Earth. This results in a more accurate representation of the found Pareto front for Earth of the
limiting surface. The found standard deviation of the residuals is equal to 21.06 m/s.

8.1.3. Venus
The Pareto front for Venus can be seen in figure 8.5, and the residuals for the fitted surface are shown in
figure 8.6. The residuals of Venus show the same order of magnitude values as Mars; however, compared to
Mars there are no large outliers present over 1 km/s. The standard deviation of the residuals was found to
be 202.27 m/s, which is similar to that of the Mars limiting surface. Venus has the thickest atmosphere of all
the planets and also has a similar gravitational influence as Earth. Thus it suffers from the same problems as
Earth. For Venus, the drag experience by the vehicle is also high, and thus V +∞ also decreases fast as δ becomes
higher. Low V −∞ are also not present in the Pareto front as those trajectories are do not have sufficient velocity
to achieve reasonable δ. One of the bigger differences between Venus and Earth is the fact that there are
several trajectories found above a V −∞ of 6.5 km/s. For Earth, these trajectories were not found as the heating
constraints were violated. The fact that these trajectories are there for Venus and not Earth could be due to
the fact that the composition of the atmospheres are different, and thus different heating functions are used.
Or it could be due to the fact that the optimizer could not find these for Earth with this specific combination
of seeds and tuning parameters. Due to time constraints, it was not possible to test which of these might be
the origin of the difference.

8.2. Interplanetary Trajectories
There are several differences between the method of finding optimal interplanetary trajectories and finding
optimal atmospheric trajectories. First of all, the objective and decision variables are limited due to the design
of the mission planner. As the planetary sequence is fixed, the only possible decision variables will be the
departure time and the time-of-flight, TOF, of each leg. The objective variables are also limited to the possible
output of the mission planner. From the state of the vehicle along the trajectory, there are several parameters
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Figure 8.3: The limiting surface for the AGA at Earth, where the dots are the optimal trajectories.

Figure 8.4: The distribution of the residuals of the Earth Pareto front compared to the fitted surface.
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Figure 8.5: The limiting surface for the AGA at Venus, where the dots are the optimal trajectories.

Figure 8.6: The distribution of the residuals of the Venus Pareto front compared to the fitted surface.
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t0 [MJD2000] TOF1 [days] TOF2 [days] TOF3 [days] TOF4 [days]

LB UB LB UB LB UB LB UB LB UB

EMJS 3650 7300 80 400 600 2000 600 2000 - -

EVEJS 3650 7300 80 400 80 400 600 2000 60 2000

EVEJ 3650 7300 80 400 80 400 600 2000 - -

EVVEJ 3650 7300 80 400 80 400 80 400 600 2000

EVEEJ 3650 7300 80 400 80 400 80 400 600 2000

Table 8.2: The bounds for all the interplanetary trajectories. These bounds are based on the bounds used in Vasile and Pascale [2006].

that can be deduced. There are two of these parameters that are the most important performance measures
for these types of interplanetary trajectories. The total∆V needed to execute an interplanetary trajectory can
give a indication of the mass needed for a specific mission and thus it is also gives a good indication of the
cost of the mission. The other objective parameter is the TOF of the complete mission. If the TOF is shorter,
the spacecraft will be exposed less to the harsh environment of interplanetary space, and a longer section of
the mission lifetime could be spent at the target instead of during interplanetary flight. Previous research has
also used either one, or both, of these variables (see e.g. Musegaas [2012], Vasile and Pascale [2006], Secretin
[2012]), and thus the trajectories that were found can be used to give an indication of typical performances.

An advantage of the optimization process of interplanetary trajectories compared to the atmospheric
trajectories is the fact that no numerical integration is used in the mission planner. This significantly reduces
the computation time of one trajectory evaluation. This allows the use of a large amount of different seeds
and combination of tuning parameters to be used to find the optimal trajectories. This gives a higher chance
of finding the global optimum compared to the atmospheric trajectory optimization.

Due to the large amount of optimization runs that will be performed, and that the objective of this chap-
ter is to observe the differences between GA and AGA optimal trajectories, different performance metrics
will be used to determine the performance of the Pareto front that the optimizer will produce for a specific
optimization run. The specific metrics that will be used is explained in section 4.4.4.

In section 8.2.1, the trajectories that will be optimized, and the approach to find the optimal trajectories,
are discussed. Section 8.2.2 will then go over the results for these different interplanetary trajectories.

8.2.1. Problem Description
The interplanetary trajectory problems that will be optimized are shown in table 8.2 together with the search
space for all the decision variables. The abbreviations for each trajectory represent the sequence of planets,
where the first letter is the departure planet (in all cases this is Earth) and the final letter is the capture planet
(either Saturn or Jupiter). Each trajectory problem will have a optimization run using only a GA, and for each
planet where it is possible an AGA. Thus, for example, for EMJS there will be one optimization run using a GA
at Mars and Jupiter, and there will be an optimization run using an AGA at Mars and a GA at Jupiter. Whereas
for EVEJS, there will be a GA run, an AGA at Venus run, and an AGA at Earth run. There will be no runs where
an AGA at two different planets are used, as the design of a vehicle that can perform an AGA at two different
planets is currently not feasible.

An optimization run for an interplanetary trajectory problem consists of 500 individual optimizations of
the problem, called trials, which are performed at different seeds. For each trial, the settings for the optimiza-
tion algorithm remain the same. Once the 500 trials have been performed, the final population of each trial
is saved and the optimization algorithm will change settings and do another 500 trials. Only F and Cr will
be changed, and np and nb will remain the same. These two parameters were selected as Musegaas [2012]
showed that the influence of the other tuning parameters is relatively low. There will be 15 different combi-
nations of tuning parameters. F will be varied between: [0.2,0.4,0.6,0.8,1.0], and Cr will be varied between
[0.4,0.6,0.8]. This will give a reasonably large exploration of the objective space, and thus a large chance of
finding the global optimum. The final problem that will be optimized for each trial is given below:

• Objective Variables

– ∆V
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Sbest ·107 [-] ∆Vbest [m/s] T OFbest [days]

EMJS
GA 3.08 9898.35 1280

Mars AGA 2.39 5831.29 1280

EVEJS

GA 2.38 5520.47 1360

Venus AGA 2.07 5588.79 1360

Earth AGA 2.38 5520.47 1360

EVEJ

GA 1.08 5554.53 760

Venus AGA 0.966 5569.84 760

Earth AGA 1.08 5554.53 760

EVVEJ

GA 1.53 5209.49 840

Venus 1 AGA 1.50 5600.66 840

Venus 2 AGA 1.53 5209.49 840

Earth AGA 1.53 5209.49 840

EVEEJ

GA 2.04 9773.71 840

Venus AGA 2.15 9953.17 840

Earth 1 AGA 2.00 9773.71 840

Earth 2 AGA 2.04 9773.71 840

Table 8.3: Interplanetary trajectory results.

– T OFtot

• Decision Variables

– t0

– T OF1, . . . ,T OFnl

• Constraints

– see table 8.2

8.2.2. Results
After all the interplanetary trajectories have gone through the analysis discussed in section 8.2.1, the best
trajectories for each of the following three metrics are found: S, ∆V , and T OF . The values found for each
metric do not necessarily correspond to the same trajectories or Pareto fronts in each row, they are the best
values found for all the different seeds, for each algorithm setting. The results are shown in table 8.3.

The first observation that can be made is the fact that for all the trajectories, the minimum TOF can be
met. This is expected as, if the ∆V is not limited, the ideal TOF can be met using large impulsive maneuvers
to get any desired TOF optimal trajectory. For the ∆V it is harder to get optimal trajectories.

The EMJS trajectory shows a big improvement in both the ∆V and the non-dominated size S, compared
to the GA trajectory. An increase of 4067.06 m/s was found in the optimal ∆V trajectory, and a decrease of 7
percent was found in the optimal non-dominated space for the best Pareto front. A more detailed summary
of the results for the EMJS trajectory is given in figure 8.7. These figures show the results of all the different
algorithm settings for the three different metrics of table 8.3, and it shows the mean coverage C of each of
the different S-optimal Pareto fronts found for each setting, where it takes the mean of all the calculated C
compared to the other algorithm settings. For both the GA and the AGA, the optimal TOF of all the different
settings are relatively the same and are all close to the minimum possible TOF. For the ∆V , the AGA improves
upon the GA for all settings, and within the AGA the optimal ∆V trajectories for each setting only differ by a
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maximum of 5 m/s. This shows that an AGA∆V optimal trajectory is relatively easy to find, and that there are
multiple options for an AGA trajectory that will improve upon the GA trajectory as for each setting a different
trajectory was found. The non-dominated space S shows that, compared to the ∆V , not all the AGA settings
will improve upon all the GA settings results. However, if comparing the same settings, each result for the AGA
does improve upon the results for the same setting of the GA. What has to be mentioned is that the setting
with the best S does not have the best mean C , which means that it gets dominated, on average, by several
individuals of the other settings’ Pareto fronts. This means that the best non-dominated space Pareto front
might not be the best overall Pareto front, and another front with a lower value for C could be selected as the
best overall Pareto front.

Several of the Pareto fronts from figure 8.7 are shown in figure 8.8. The Pareto fronts that are selected, for
both the GA and AGA, are: the Pareto fronts containing the best ∆V (GA: F = 0.6, Cr = 0.8, AGA: F = 0.4, Cr =
0.4), the Pareto fronts with the best non-dominated size S (GA: F = 0.2, Cr = 0.4, AGA: F = 0.2, Cr = 0.4),
and the Pareto fronts with the best combined non-dominated size S and mean coverage C (GA: F = 0.4, Cr =
0.6, AGA: F = 0.4, Cr = 0.4). The non-dominated size is a measure for the area in which new solution can
dominate the ones part of the Pareto front. The mean C measures the average fraction of the Pareto front
which is dominated by other Pareto fronts. It is imported to note that the AGA Pareto front that has the best
∆V is not the same as the Pareto front that has the best combined S and C , even though the values for the
algorithm parameters are the same. Figure 8.8 shows that the Pareto fronts for the GA and AGA are located
around the same values for the TOF, and are significantly different in their ∆V requirements. It can also
be seen that for the trajectories with the minimal ∆V a TOF of roughly 9 years is expected, which can be
minimized by also increasing the∆V cost. However, this is the same for both the AGA and the GA, thus this is
not a disadvantage of the AGA alone. The difference between the optimal S Pareto fronts and the combined
S and C optimal Pareto fronts can be seen in the difference in spread of the Pareto fronts. The S Pareto front
is more concentrated around a small area, which thus reduces the S of that Pareto front. However, this might
not be optimal as only a small part of the solutions are given by that Pareto front. The combined S and C
Pareto front has an increase in spread compared to the S optimal Pareto front, which leads to a slightly higher
S, but also a better C is found as it spreads more across the Pareto front and thus dominates more of the other
Pareto fronts.

Figure 8.9 shows the same Pareto front as in figure 8.8; however, the color of the markers now define the
value of one of the decision variables. For both the AGA and GA Pareto fronts, the departure date is relatively
similar for individuals that have similar total TOF. This could mean that for all individuals a similar solution
was explored, where small differences in the departure date resulted in different TOF and ∆V . Furthermore,
the change in departure date shows to have less influence on the ∆V then the TOF. If the TOF of the different
legs are inspected, it can be seen that the most changes between Pareto fronts and individuals are for the final
two legs: MJ and JS. For the best ∆V Pareto fronts, it can be seen that for ∆V higher then 14 km/s there are
several individuals with a low total TOF and a low TOF for the MJ leg, as is expected. However, for the AGA
Pareto front there are individuals that have similar total TOF, with lower TOF for the MJ leg. Furthermore, this
is compensated for the JS leg, where the inverse has happened and the AGA JS legs are longer then the GA
JS legs for the ∆V optimal Pareto fronts. This shows that mission profiles for the AGA are different after the
AGA has been performed, and that the approach to the GA including departure date does not have a large
influence for these specific Pareto fronts. The optimal S and combined S and C Pareto fronts show similar
behaviour for the departure date, where this date is similar for all individuals found in each Pareto front. For
the TOF of each leg, it can be seen that each leg has a significantly lower TOF then the ∆V Pareto fronts.
Which is expected as the total TOF of both the S and combined S and C Pareto fronts are significantly lower
for most of the individuals. Between the AGA and GA Pareto fronts there are less differences. Which results in
similar mission profiles, where the main difference is the significant decrease in required ∆V .

Looking at table 8.3, other then the EMJS trajectory there are no AGA interplanetary trajectories among
the trajectories that are considered here that improve upon the GA trajectories in ∆V . There are several tra-
jectories that slightly improve S compared to the GA trajectory, but these are only a couple of percents and
cannot be weighed against the increased complexity of an AGA. The fact that there is no improvement is most
likely due to the fact that either Earth or Venus is used for an AGA in these trajectories. As was shown in sec-
tion 8.1, the Pareto fronts for Earth and Venus cover significantly less of the search space then the Pareto front
of Mars. Furthermore, the area that is covered by the Pareto front is not optimal as V +∞ decrease quickly as a
function of δ due to the drag experienced in these thicker atmospheres. Thus, trajectories that require long
bending angles, which is the main reason of the increase in performance of the AGA, also decrease the veloc-
ity significantly. This could cause large ∆V requirements for certain trajectories. This point is eluded upon
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(a) Mars GA.

(b) Mars AGA.

Figure 8.7: The statistics of the results for both the GA and AGA of the EMJS trajectory.
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Figure 8.8: Several different Pareto fronts for the EMJS trajectory. The specific fronts are taken from figure 8.7.

(a) Departure date. (b) TOF EM leg.

(c) TOF MJ leg (d) TOF JS leg

Figure 8.9: The values of the decision variables for the different Pareto fronts shown in figure 8.8.
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Figure 8.10: The location of the population of several different AGA Pareto fronts for EMJS on the limiting surface of Mars shown in figure
8.1.

more in section 7.4.4.
The EMJS trajectory shows the best promise for an AGA as it increases the performance significantly com-

pared to the GA, and thus this trajectory will be studied in more detail in the next section.

8.3. EMJS Trajectory

(a) Mars GA. (b) Mars AGA.

Figure 8.11: The interplanetary trajectory of the EMJS, for both the GA and the AGA at Mars.

The three different AGA Pareto fronts showed in figures 8.8 and 8.9 are now shown in the Mars Pareto front in
figure 8.10. Except for two individuals located around V +∞, most of the individuals are concentrated around
the same region. This location is around the edge of the possible V −∞ and in a region of lower δ f . Thus the
optimal trajectories for an AGA at Mars in the EMJS trajectories require a high initial velocity and V +∞ to not
be reduced by drag significantly. Thus, it is likely that the performance of the interplanetary trajectory can be
improved by the atmospheric trajectory if the Pareto front is extended beyond its maximum V −∞ and reduces
the slope of V +∞ less to allow higher bending angles. The edge can be extended by allowing the heat flux
constraint to be increased, or by changing the aerodynamic performance of the waverider to allow flight at
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tdep [MJD2000] T OF [days] ∆V [m/s]

Earth departure
GA 4367.238 388.202 3273.18

AGA 4391.988 399.99 3365.46

Mars swing-by
GA 4755.44 1262.407 5764.64

AGA 4791.987 1263.669 1609.14

Jupiter swing-by
GA 6017.847 1999.142 0.411876

AGA 6055.647 1998.439 18.033

Saturn capture
GA 8016.989 - 860.116

AGA 8054.086 - 838.66

Table 8.4: EMJS trajectory.

V −∞ [m/s] V +∞ [m/s] δ [deg]

GA 5618.85 7157.6 74.47

AGA 6811.43 5773.87 97.23

Table 8.5: Mars swing-by parameters.

less dense altitudes. This can also decrease the drag losses and reduce the slope of V +∞. Testing how this can
be done and if it improves the interplanetary trajectory performance is left for future research as it is out of
the scope of this thesis.

Figure 8.11 shows both the optimal ∆V trajectories of the GA and AGA EMJS problem. Table 8.4 gives the
start time of each leg, the TOF of each leg, and the ∆V required for each leg. The trajectories are relatively
similar, from both figure 8.11 and table 8.4 it can be seen that the start date of the trajectory only differ by
about 24 days, and thus the configuration of planets is also relatively similar. Looking at the departure times,
TOF, and ∆V for the Earth departure leg, the Jupiter swing-by leg, and the capture leg at Saturn, it can be
seen that the differences are minimal. The Mars swing-by leg also doesn’t show significant differences in the
departure time and TOF of the leg; however, the ∆V is improved by 4155 m/s. The specific differences of the
two maneuvers are shown in table 8.5.

The increased performance of the AGA compared to the GA can be attributed to two parts. The first is the
fact that the velocity bending angle is increased by around 23 degrees. This increase in bending angle can
increase the heliocentric velocity of the spacecraft compared to the GA maneuver, and thus require less ∆V .
The second part is the ∆V required to perform the maneuver. For the GA, a bending angle of 74.47 degrees,
and an exit hyperbolic excess velocity of 7157.6 m/s are not possible through an un-powered GA. Thus, to
reach these parameters a large impulsive maneuver is used, which costs a significant amount of ∆V . For the
AGA, this ∆V cost is significantly less. As can be seen in figure 8.1, when the required δ of 97.23 degrees is
reached, the V +∞ has not been decreased significantly. This is due to the fact that Mars has a lower gravitational
influence then Earth or Mars. This reduces the required velocities to remain in a hyperbolic orbit and thus
reduce the gravity losses while in the atmosphere. Thus after travelling over larger θ, less ∆V is needed to
correct for the drag losses.

Now that the merit of the Mars AGA is shown, and the parameters for this trajectory are found, it is impor-
tant to check if the atmospheric trajectory is feasible and what the resulting trajectory looks like.

To find this trajectory, another optimization has to be performed. For this trajectory, it is important not
to maximize the bending angle or the exit velocity, but to minimize the difference between the desired and
final values of these parameters. As these differences have to be optimized for δ, V +∞, and i , and, as was seen
in chapter 7, there are other variables (e.g. C A or Q) that can be optimized to improve the trajectory, it is
important to find an objective variable that can combine these parameters. Eq. (6.18) gives the ∆V needed
to correct for the difference between the desired bending angle δ f and the actual bending angle δ(t f ), and
for the difference between the desired hyperbolic exit velocity V +

∞, f and the actual hyperbolic exit velocity
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(a) C A optimization run. (b) Q optimization run.

Figure 8.12: Pareto fronts for the ∆V optimization runs. The whole population for the three seeds are shown, the individuals that are
circled are not dominated by any other individuals and are thus part of the Pareto front.

V +∞(t f ). This equation assumes that there is no inclination off-set, but it can be adapted to include this. The
equation then looks as follows [Casoliva et al., 2008]:

∆V ⊥
∞ =V +

∞(t f )sin(|∆i |) (8.3)

∆V ∥
∞ =

√
|V +

∞, f |2 +|V +∞(t f )|2 cos2(|∆i |)−2|V +
∞, f ||V +∞(t f )|cos∆δcos(|∆i |) (8.4)

∆V∞ =
√

(∆V ⊥∞)2 + (∆V ∥
∞)2 (8.5)

This can be used as an objective variable together with either C A or Q to generate trajectories that minimize
the propellant mass needed to correct for the differences between the desired and final values of the AGA.
The final trajectories ∆V∞ should be close to, or below, the value found in table 8.4 (1609 m/s), to verify that
the mission planner is able to find feasible AGA trajectories.

The setup of the optimization is the same as in section 7.4. However, the objective variables are now
changed to ∆V∞ and to either C A or Q. C A is used to smoothen the atmospheric trajectory and decrease the
change in α over the whole trajectory. Q is used to minimize the TPS mass fraction needed for the AGA. If
this mass fraction is larger then the propellant mass decrease due to the lower∆V of the AGA, the AGA would
not be found beneficial compared to the GA. The initial conditions of the simulation are kept the same as in
section 7.4, except for the V −∞, which is taken from table 8.5. Both of these optimizations are performed for
three different seeds and the combined final population is shown in figure 8.12.

For both optimization runs, there are several individuals that are not dominated by any other individual
in the population and are thus part of the Pareto front. These individuals are encircled in figure 8.12. For the
C A optimization, the individual with the lowest∆V = 1829 m/s is found to differ with the expected∆V = 1609
m/s by 210 m/s. When compared to the residuals shown in figure 8.2, the difference of 210 m/s falls within a
large part of the residuals of the Pareto front of Mars. Furthermore, comparing the 210 m/s with the increase
in ∆V for the gravity assist at Mars shows that this difference does not affect the conclusion that can be
drawn with respect to the performance increase of the AGA. The difference between the estimated ∆V and
the true ∆V is likely due to the uncertainty in the surface fitted through the Pareto front for the Mars AGA,
and the inclusion of ∆i into the ∆V calculation. Furthermore, as was shown in section 7.4, the convergence
behaviour of the atmospheric trajectory optimization is rather poor, thus differences in the solution for which
the two different optimizations are performed is expected. The difference of 210 m/s should be investigated
further in future research to improve the accuracy of the interplanetary mission planner.

To inspect the atmospheric trajectories, several trajectories are selected from both Pareto fronts. For the
C A Pareto front three trajectories were selected that are spaced evenly over the Pareto front. These trajectories
are highlighted in figure 8.12a and shown in detail in figure 8.13. For the Q trajectory, there are only two
individuals that are part of the Pareto front, thus these ones are also selected to be shown in more detail.
These trajectories are also highlighted in figure 8.12b and shown in detail in figure 8.14.
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Mwet [kg] Mpr op [kg] MT PS [kg] Mr es [kg]

GA 800 680 0 120

AGA 800 456 151 193

Table 8.6: Masses for the two different missions.

The three C A trajectories all have a similar θ of between 80 and 90 degrees. This shows that the desired δ
is reachable by all three trajectories. Furthermore, due to the fact that ∆i is part of the ∆V objective variable,
and the fact that C A is used as the second objective variable, the bank angle σ remains close to constant at
an angle of 180 degrees for the whole trajectory. This minimized the out-of-plane movement and thus the
offset in inclination. The largest source of ∆V is thus the V +∞ difference. The velocity of the vehicle does not
go down to just above the escape velocity as in section 7.4, as this is done to minimize the velocity difference.
However, as it is not possible to completely reach the target value of V +∞ due to the drag losses when reaching
the desired δ, there is still a ∆V maneuver required to increase the velocity when exiting the atmosphere.
Observing the heat profile, it can be seen that both trajectory 2 and 3 have two heat flux peaks. This is not
beneficial as the heat load is increased and thus also the TPS mass. This can be solved by minimizing the heat
load Q.

The Q optimization trajectories show similar results as the C A trajectories for the reached θ and the final
velocities. However, for these trajectories the heat load is significantly lowered (even though there still exists
a second, smaller heat flux peak for one of the trajectories). The downside is that for these trajectories, the
bank angle does not stay constant and an out-of-plane movement is thus present, which requires an increase
in∆V . Taking the heat load for trajectory 1 (1.6 ·105 J/cm2) and inferring the TPS mass fraction using the data
from previous missions given in table 3.3 and Eq. (3.26), it can be estimated that the mass fraction needed
is roughly 44 percent of the dry mass of the spacecraft. Figure 3.7 shows that Eq.(3.26) has a rather large
uncertainty compared to the data, especially between Q = 3 ·104 and Q = 2 ·105. Thus the TPS mass fraction
given here is a rough estimate. This mass fraction can be compared with the decrease in propellant mass
from the ∆V decrease due to the use of the AGA. As for the departure maneuver a part of the rocket can be
used to depart from the parking orbit, this maneuver is not taken into account for the mass calculation. Using
Tsiolkovsky’s rocket equation where Isp is the specific impulse of the rocket:

∆V =−Isp g0 ln
Mdr y

Mwet
(8.6)

and the following fact for the propellant mass fraction:

Mpr op

Mwet
= 1− Mdr y

Mwet
(8.7)

the propellant mass can be calculated using the following equation:

Mpr op

Mwet
= 1−exp

(
− ∆V

Isp g0

)
(8.8)

Filling in the ∆V of the GA at Mars from table 8.4 and the ∆V from trajectory 1 of figure 8.14 in Eq.(8.8) using
Isp = 350 s gives the distribution of masses for the mission vehicles of the GA and the AGA in table 8.6. As can
be seen, the increase in available mass for this mission is 60 percent larger when an AGA is used then for the
GA mission profile. This mass can either be reduced to minimize the launch costs from Earth, or it can be
used towards the payload or other subsystems of the vehicle to increase the value of the mission.
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Figure 8.13: Three selected trajectories from the ∆V and C A optimization results seen in figure 8.12. Trajectory 1 is the solid line,
trajectory 2 the dashed line, and trajectory 3 the dashed-dotted line.
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Figure 8.14: Three selected trajectories from the ∆V and Q optimization results seen in figure 8.12. Trajectory 1 is the solid line, and
trajectory 2 is the dashed line.





9
Conclusion and Recommendations

9.1. Conclusion
In chapter 1, several goals were stated that needed to be achieved during this research project:

1. Build a simulation environment that can simulate the trajectory of a specific vehicle through the atmo-
spheres of several different planets.

2. Build a mission planner that can simulate a specific interplanetary trajectory using both gravity assists
and aerogravity assists.

3. Find optimal atmospheric trajectories for an aerogravity assist and use them to find optimal interplan-
etary trajectories.

4. Compare the optimal interplanetary trajectories using only gravity assists with optimal trajectories that
use the aerogravity assist.

Together, these goals should allow for an answer to the main research question of this thesis:

How much does the aerogravity assist improve the performance of interplanetary trajectories compared
to a gravity assist?

This section will go through these goals and discuss the main conclusions that can be made about them. At
the end of this section, an answer will then be given for the main research question based on the conclusions
of the research goals.

The Simulation Environment
The simulation environment was built using the TU Delft Astrodynamics Toolbox. The complete set-up of
the simulator is discussed in section 5.1 and the selection of the specific models used in the generation of
atmospheric trajectories is discussed in 5.3. The models used are based on the fact that the goal of this thesis
is to show the feasibility of AGA trajectories and determine the achievable performance characteristics.

The development of the guidance and control system is discussed in section 2.5. This system was assumed
to be perfect, thus meaning that the desired control variables are directly translated to the vehicles state. This
assumption is made as the main goal is not to test what systems are needed to fly a specific AGA trajectory,
but to find feasible trajectories and determine the gain of an AGA compared to a GA. Previous research (see
e.g. Casoliva et al. [2008], Lyons et al. [2008], and Hess [2016]) used either the bank angle σ or the angle-of-
attack α as the only control variable, and kept the other variable constant during flight. Section 2.5.1 lists the
advantages and disadvantages of using each separate control strategy. It was decided to use both α and σ

as control variables to combine the advantages of both control variables, and diminish the disadvantages of
each of them. Hess [2016] found that using σ only control, an aerogravity assist for a vehicle with a reference
area of 6.67 m2 was not possible at Mars and increased the surface area by a factor of 10. For the same vehicle,
using both σ and α as control variables, it was found that an aerogravity assist could be performed using the
same reference area as before. Furthermore, no constraints needed to be set on γi as using α allows for more
controllability during atmospheric entry.

109



110 9. Conclusion and Recommendations

The aerodynamics of the vehicle are one of the most important aspects of an AGA, thus this is discussed
in detail in chapter 3. A waverider designed by Hess [2016] is used in this thesis where the aerodynamic
characteristics of this vehicle are determined in the three different aerodynamic regimes discussed in section
3.1.1. It was found that the L/D of this vehicle is 10 times larger for the continuum flow then for the free
molecular flow.

Both the convective and radiative heating is simulated during the AGA. To protect the vehicle, an analysis
was done of possible thermal protection systems (TPS). A maximum heat flux of 500 W/cm2 at Mars and
2000 W/cm2 at Earth and Venus was put as a constraint for the atmospheric trajectories, and thus from this a
material can be selected. For Mars, it was determined that PICA would be suitable for the TPS, and for Venus
and Earth, the Heritage Carbon Phenolic material was deemed as suitable.

Mission Planner
The mission planner architecture was based on the work done by Melman [2007] and Musegaas [2012] and
is discussed in detail in section 6. The mission planner assumed single revolution Keplerian transfer with no
external perturbations and using no deep space maneuvers.

A key contribution of this thesis is the implementation of the numerically found AGA atmospheric tra-
jectories into the interplanetary mission planner. Henning et al. [2014] developed a similar method to find
interplanetary AGA trajectories using optimal control theory and a simplified dynamical model for the atmo-
spheric trajectories. This thesis developed a novel method and improves on Henning et al. [2014] by moving
the calculation of atmospheric trajectories out of the interplanetary optimization loop and implementing
heating constraints, improved and more accurate control strategies, and a realistic dynamical model. The
mission planner designed in this thesis allows for more realistic interplanetary trajectories to be found and
increasing the accuracy of the AGA and GA trajectory comparisons.

Atmospheric Trajectory
An optimization algorithm was used to find atmospheric trajectories for the aerogravity assist. To investigate
the search space of the optimization problem and the dependencies between the possible decision and ob-
jective variables, a Monte Carlo analysis was performed. This analyses resulted in the conclusion that the
optimal solutions for the atmospheric trajectory are located in a small volume inside the search space and
that to find this solution, a global optimization algorithm is needed. The Monte Carlo analysis also helped in
the determination of the optimal optimization set-up, discussed in section 7.2.

The performance of two optimization algorithms, MOEA/D and NSGA-II, are determined in section 7.3.
It was found that the performance of the MOEA/D is more desirable then that of the NSGA-II algorithm. The
effect of the algorithm settings was also investigated and it was shown that changing one of these settings can
already have a large effect on the solution found by the optimization algorithm. The fact that a large amount
of local minima were found in this analysis, in combination with the poor convergence behaviour shown by
several of the results in section 7.4, shows that future research should be focused on tuning the optimization
algorithm to be able to find the global optimum for the atmospheric trajectory.

The atmospheric trajectory for an aerogravity assist at Mars, Earth, and Venus were optimized, where
θ and ∆i were chosen as the objective variables. It was found that the trajectories part of the Pareto front
at Mars were able to reach the largest bending angles of all the planets investigated: θ = (114°,121°), with
∆i = (0°,0.25°). However, the trajectory was also found to not be smooth due to the changes in the L/D
induced by α. This was solved by minimizing the control action (C A) instead of ∆i which minimizes the
changes in α and σ during the trajectory. Using C A resulted in a smoother, more desirable, trajectory for
Mars. Furthermore, the maximum θ found was increased by 30 degrees. Both Earth and Venus trajectories
showed smaller θ then Mars, as their atmospheres are much thicker and thus the velocity was reduced quicker
due to the drag losses. Furthermore, due to the higher gravitational influence of the two planets, the velocities
to remain in a hyperbolic orbit are much higher and thus the drag experienced is also higher. The Pareto
front of Earth trajectories were comprised of trajectories for which θ = (40°,56°). The Pareto front at Venus
performed slightly better with: θ = (68°,70°). The trajectory at Venus experiences two heat flux peaks, which
is undesirable as the TPS mass fraction would need to be high. This was solved by optimizing the total heat
load Q instead of∆i . The results not only showed that the second heat flux peak was removed, the maximum
heat flux was also diminished by 1000 W/cm2. However, θ was significantly reduced for this trajectory. For
Earth, it was also tested if the accuracy of the environment and acceleration models used influences the found
trajectory. The achieved performance of the two different optimizations were found to be equal. The flown
trajectories were different due to the fact that the gliding equilibrium flight took place at different altitudes. It
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was found that the density at which the trajectories performed the gliding equilibrium flight was equal, thus
the difference in trajectory is mainly due to the difference in density profiles of the atmosphere models.

Interplanetary Trajectory
The implementation of the AGA into the mission planner can be found in section 6.1.3 and the limiting sur-
faces of the three different planets are found in section 8.1. It was found that the different V −∞ were limited
to between: 2 and 7 km/s for Mars, 3 and 6.5 km/s for Earth, and 3 and 8.5 km/s for Venus. These limits are
present due to the fact that either the vehicle does not have a high enough velocity to exit the gravitational
field again after the AGA, and because of the fact that for higher initial velocities, the maximum heat flux
is exceeded. It was found that the Pareto front of Earth and Venus cover a smaller space then that of Mars.
Furthermore, the V +∞ drops off much quicker for Earth and Venus compared to Mars, due to the larger drag
losses. The misfits between the optimized atmospheric trajectories and the fitted surface were found to be
generally around 200 m/s for Mars and Venus, whereas the misfits for Earth are more in the area of 20 m/s.

The different interplanetary trajectories that are optimized can be found in section 8.2. From the results
of 5 different planetary sequences, it was observed that only an aerogravity assist at Mars could significantly
increase the performance of the interplanetary trajectory compared to a gravity assist. The lowest found
non-dominated space was decreased by 7 percent for the aerogravity assist, and the ∆V was decreased by
4067 m/s. For each trajectory that used an aerogravity assist at Venus or Earth, the performance was not
increased compared to the gravity assist. It was determined that at Earth and Venus the velocities during
atmospheric flight are much higher due to the larger gravitational influence. Furthermore, the atmospheres
at these planets are much thicker then at Mars. These physical effects increase the drag loss and heating
experienced by the vehicle, which in turn decreases the possible V −∞ range, decreases the possible δ, and
increases the drop in V +∞ as a function of δ.

The Mars aerogravity assist was investigated in more detail, and it was found that the parameters for the
gravity assist and aerogravity assist for the ∆V optimal trajectory are relatively similar. The main differences
were the increase of 23 degrees in δ, and the fact that for the aerogravity assist 4155 m/s less∆V was required
to perform the swing-by maneuver. To observe the atmospheric trajectory of this Mars aerogravity assist,
and verify that the ∆V found by the mission planner is accurate, an optimization was performed for the
atmospheric trajectory, where the objective variable is the ∆V needed to achieve the desired trajectory. Two
different optimization runs were performed, where one run used C A as the second objective variable, and
the other one used Q as the second objective variable. It was found that for the C A trajectory, the ∆V is
increased by 210 m/s compared to what was expected. This increase corresponds to the standard deviation
of the misfits and is not significant enough to make the performance of the aerogravity assist less then that
of the gravity assist. Furthermore, σ was kept almost constant at 180 degrees for the complete trajectory
and no bank reversals were performed. This decreases the complexity of the guidance and control system
significantly. The Q optimal trajectories show trajectories that decrease the heat load compared to the C A
trajectory. However, the optimal ∆V of the Q trajectory is slightly higher then that of the C A trajectory. It
was found that, taking the parameters of the Q optimal trajectory, the difference between the propellant
mass needed for the extra ∆V of a gravity assist trajectory and the TPS mass needed for the aerogravity assist
is 60 percent. This 60 percent could thus be used for extra mass towards the payload, or other important
subsystems of the spacecraft. There is a large uncertainty in the TPS mass fraction, and thus this number
is a rough approximation. However, it shows a promising result for the use of an AGA in an interplanetary
mission.

9.2. Recommendations
There are several sections of the AGA that can be investigated in more detail, which are listed below.

Optimal Solution Search
It was already shown in this thesis that the optimization process for this problem is complex. The behaviour
of the decision and objective space was not predictable, and the convergence behaviour of the solutions
found in section 7.4 was not optimal. Increasing the computational time of the optimization algorithm using
either large clusters of processors, or using more efficient algorithms could significantly help the search for
optimal trajectories. This would allow a more extensive tuning operation to be done for the generation of
optimal atmospheric trajectories. Having the optimal setup of the optimization algorithm could increase the
likelihood of finding optimal trajectories, and even possibly find better trajectories then are currently found.
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The optimal setup can furthermore be found by performing a dedicated study on the decision and objec-
tive space of this problem. This thesis had performed a preliminary analysis using a Monte Carlo analysis,
which can be improved upon in future research. Musegaas [2012] gives various methods by which this can
be done, and provides several ways of implementing the results of this analysis into the set-up and tuning
process of the optimization algorithm.

Increasing Technological Readiness Level
The main research of this thesis was focused on finding interplanetary and atmospheric trajectories for the
aerogravity assist. A logical next step would be to focus more on individual vehicle systems and find if cur-
rent technology allows for these trajectories to be performed. A disadvantage of using α for control was that
changing α over large amount of degrees might not be possible at hypersonic speeds. Studying if the trajec-
tories found here have this problem, and if so, how it could be solved, could give more insight in what the
optimal control strategy is for an aerogravity assist. Furthermore, in this thesis, it was assumed that there
were no perturbations in the environment compared to the expected conditions, and that there are no un-
certainties in the control and navigation systems. Performing a sensitivity analysis gives information on how
these uncertainties and perturbations might affect the trajectory of the vehicle. Combining this with the de-
velopment of a guidance algorithm that corrects for these uncertainties and perturbations, might give more
insight into the feasibility of the aerogravity assist.

A rough estimate was used to determine the mass of the TPS. As the heating of the vehicle is one of the
main drawbacks of the AGA, a more in depth analysis of the heating effects and the design of the TPS is needed
to determine more accurate heating constraints for trajectory optimization, and determine the effects of the
TPS on the dynamics of the vehicle.

Vehicle Dynamics
Due to the low performance of the waverider at higher altitudes, it could be of interest to investigate if the
aerodynamic performance at high Knudsen numbers could be increased. This was especially a problem at
Earth and Venus as the higher velocities increased the drag experienced by the waverider at these planets.
The development of a vehicle that performs better at higher Knudsen numbers could allow for the waverider
to fly at higher altitudes and thus experience less drag. This could increase the performance at Venus and
Earth, and thus also increase the amount of optimal interplanetary trajectories. Furthermore, flight and wind
tunnel tests of waverider type vehicles have not been performed extensively. These types of research could
give more insight in the feasibility and properties of these types of vehicles.

The mission planner in this thesis could be expanded to increase the amount of situations it can simu-
late. Currently, the mission planner allows only single revolution trajectories to be found, and no deep space
maneuvers were considered. Adding multiple revolutions allow for more possible trajectories to be found
by the optimization algorithm. Deep space maneuvers could be beneficial for aerogravity assists as they can
alter the state of the spacecraft before entering the atmosphere to prepare for an aerogravity assist, or correct
for the drag losses experienced during atmospheric flight. This increase in ∆V for the deep space maneuver
could be offset by a decrease in the ∆V needed for an aerogravity assist compared to a gravity assist.

The investigation of trajectories was limited to only 5 different combinations of swing-by bodies. To in-
crease the accuracy of the conclusions made about aerogravity assists, extra trajectories need to be consid-
ered. Trajectories that go further then Saturn, and trajectories towards the inner Solar System have not been
considered yet, and might give different results. Furthermore, this thesis was not concerned with the amount
of possible launch dates for aerogravity assist trajectories. Investigating this could show more advantages to
using an aerogravity assist compared to a gravity assist.



A
Monte Carlo Results

The results for the Monte Carlo analysis for both the angle-of-attack nodes (figure A.1) and the bank angle
nodes (figure A.2) are shown in this appendix. The Monte Carlo analysis was performed using 10,000 differ-
ent runs, where for each run the value at each control node is altered. Each objective variable is explained in
more detail in section 7.1. All 10 nodes are varied for each trajectory and trajectories which end in the vehicle
reaching an altitude of below zero kilometres and trajectories that end with the vehicle leaving the atmo-
sphere again are separated by red and green dots respectively. For ∆i , ∆δ, and ∆R A AN , the red trajectories
are not shown, as these quantities are not valid for trajectories that do no leave the atmosphere.

Figure A.1: The Monte Carlo results with 10,000 runs for the angle-of-attack control nodes. The red dots represent trajectories where the
vehicle reaches zero kilometres altitude, and the green dots represent trajectories where the vehicle leaves the atmosphere again.
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Figure A.2: The Monte Carlo results with 10,000 runs for the angle-of-attack control nodes. The red dots represent trajectories where the
vehicle reaches zero kilometres altitude, and the green dots represent trajectories where the vehicle leaves the atmosphere again.



B
Model Selection Validation

(a) Mars high fidelity optimization run. (b) Venus high fidelity optimization run.

Figure B.1: Pareto fronts for the high fidelity optimization runs. The whole population for the three seeds are shown, the individuals that
are circled are not dominated by any other individuals and are thus part of the Pareto front.

Figure B.1 shows the final population for the optimization runs at Mars and Venus using high fidelity mod-
els. For Mars the EMCD atmosphere model, 4th degree spherical harmonics gravity field, and third body
perturbation of the Sun was used. Venus also uses the 4th degree spherical harmonics gravity field and third
body perturbation of the Sun, however due to time constraints a higher fidelity atmosphere model was not
available. It can be seen that the performance of the Pareto fronts found for this optimization set-up is sim-
ilar to the ones found in section 7.4. The distribution of the individuals is different, which means that the
specific trajectories might not be similar. The goal of this thesis is not to simulate trajectories that need to
be flown, but to generate feasible AGA trajectories and determine their achievable performance. Thus as the
performance is similar for high and low fidelity models, it is valid to use the low fidelity models to generate
the trajectories for this thesis.
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