

Delft University of Technology

Mapping of Lattice Surgery-based Quantum Circuits on Surface Code Architectures

Lao, L.; van Wee, B.; Ashraf, Imran; van Someren, J.; Khammassi, N.; Bertels, K.; Almudever, C.G.

DOI
10.1088/2058-9565/aadd1a
Publication date
2019
Document Version
Accepted author manuscript
Published in
Quantum Science and Technology

Citation (APA)
Lao, L., van Wee, B., Ashraf, I., van Someren, J., Khammassi, N., Bertels, K., & Almudever, C. G. (2019).
Mapping of Lattice Surgery-based Quantum Circuits on Surface Code Architectures. Quantum Science and
Technology, 4(1), 1-20. Article 015005. https://doi.org/10.1088/2058-9565/aadd1a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/2058-9565/aadd1a
https://doi.org/10.1088/2058-9565/aadd1a

Mapping of Lattice Surgery-based Quantum
Circuits on Surface Code Architectures

L. Lao, B. van Wee, I. Ashraf, J. van Someren, N.
Khammassi, K. Bertels, C. G. Almudever

Delft University of Technology, The Netherlands

Abstract. Quantum error correction (QEC) and fault-tolerant (FT) mecha-
nisms are essential for reliable quantum computing. However, QEC considerably
increases the computation size up to four orders of magnitude. Moreover, FT
implementation has specific requirements on qubit layouts, causing both resource
and time overhead. Reducing spatial-temporal costs becomes critical since it is
beneficial to decrease the failure rate of quantum computation. To this purpose,
scalable qubit plane architectures and efficient mapping passes including place-
ment and routing of qubits as well as scheduling of operations are needed. This
paper proposes a full mapping process to execute lattice surgery-based quantum
circuits on two surface code architectures, namely a checkerboard and a tile-based
one. We show that the checkerboard architecture is 2x qubit-efficient but the tile-
based one requires lower communication overhead in terms of both operation
overhead (up to ∼ 86%) and latency overhead (up to ∼ 79%).

Keywords: quantum computing, surface code, lattice surgery, qubit placement and
routing, operation scheduling, qubit plane architecture

1. Introduction

By exploiting superposition and entanglement, quan-
tum computing can outperform classical computing
while solving certain problems. For example, quan-
tum computers can factor large numbers using Shor’s
algorithm with an exponential speedup over its best
classical counterparts [1]. When adopting the circuit
model as a computational model, algorithms can be
described by quantum circuits consisting of qubits and
gates. Such a circuit representation is hardware ag-
nostic and assumes, for instance, that any arbitrary
interaction between qubits is possible and both qubits
and gates are reliable.

However, real quantum processors have specific
constraints that must be complied to when executing
a quantum algorithm, a procedure for mapping
quantum circuits is therefore required. One of the
main constraints in current quantum experimental
platforms is the limited connectivity between qubits.
A promising qubit structure that is being pursued for
many quantum technologies like superconductors [2,3]
and quantum dots [4, 5], is a 2D grid architecture
that only allows nearest-neighbour (NN) interactions.
Other 2D qubit structures such as the quantum
processors from IBM [6], Google [7], and Rigetti [8]
have even more restrictive connectivity constraints.
This means that non-neighbouring or non-connected
qubits need to be moved or routed to be adjacent for
interacting -i.e. performing a two-qubit gate, resulting
in an overhead in the number of operations as well as
the execution time (latency) of the circuit.

Placing frequently interacting qubits close to each
other combined with efficient routing techniques -
e.g. shortest path- can help to reduce the movement
overhead. In addition, exploiting available parallelism
of operations will reduce the overall execution time
of the circuit. Note that reducing the number of
operations and the total circuit latency will be of
benefit to decrease the failure rate of computation [9,
10]. Therefore, efficiently mapping quantum circuits
on a specific qubit structure, including placement and
routing of qubits and scheduling of operations, is
necessary for reliable quantum computation. Many
works have been done to map physical quantum
circuits on different qubit structures. [11–18] propose
algorithms to map physical circuits on quantum
processors with 2D NN structures. [19–21] and [22]
respectively focus on IBM and Rigetti processors

which both only support interactions on dedicated
neighbours.

Moreover, quantum hardware is error prone,
that is, the qubits loose their states (or decohere)
extremely fast and quantum operations are faulty. For
instance, superconducting qubits decohere in tens of
microseconds [23] and quantum operations have error
rates ∼ 0.1% [24] compared to ∼ 10−15 for CMOS
based devices. Therefore, quantum error correction
(QEC) and fault-tolerant (FT) mechanisms are needed
to protect quantum states from errors and make
quantum computing FT. This is achieved by encoding a
logical qubit into multiple error prone physical qubits
and applying FT (logical) operations on such logical
qubits [25]. However, QEC significantly increases
the computation size up to four orders of magnitude.
Furthermore, this FT implementation may lead to
more and/or different constraints on the encoded
logical circuits, e.g., interaction restrictions between
two logical qubits. Consequently, the mapping of fault-
tolerant quantum circuits may become more difficult
because it should consider both physical-level and
logical-level constraints. In addition, it may require
the definition of a virtual layer called qubit plane
architecture to provide scalable management of qubits
and support fast execution of fault-tolerant operations.

Several papers [26–31] have discussed how to map
FT quantum circuits onto 2D quantum architectures
based on concatenated codes such as Steane code.
However, not many papers focus on surface code
(SC) [32], currently one of the most promising QEC
codes. [33–35] optimize quantum circuits based on
defect surface codes in terms of geometrical volume
defined by the product of # qubits and # gates (or
time) of the circuit. [36] evaluates both planar
and defect surface codes in terms of qubit resources
and circuit latency. However, they assume two-qubit
gates (CNOT) between two planar qubits can be
performed transversally, which is an over-optimistic
assumption given the limited connectivity in current
quantum technologies. Fortunately, a technique called
lattice surgery [37, 38] can be used to perform a two-
qubit gate between two planar qubits in a 2D NN
architecture. Nevertheless, the mapping of quantum
circuits based on lattice surgery and the required qubit
plane architecture have been hardly researched. [37]
introduces a scalable qubit architecture for efficiently
supporting lattice surgery-based two-qubit gates. [39]
proves that the optimization of lattice surgery-based

2

quantum circuits on its geometrical volume is NP-hard.
This paper will focus on the mapping of lattice

surgery-based quantum circuits onto surface code qubit
architectures. The contributions of this paper are the
following:

• We derive the logical-level constraints of the
mapping process when the lattice surgery is used
to perform FT operations on planar surface codes.
We further provide the quantification of these
logical operations, which are used for the mapping
passes.

• Based on the qubit plane architecture presented in
[37], we propose two different qubit architectures,
namely a checkerboard architecture and a tile-
based one, that support lattice surgery-based
operations. For the tile-based architecture, we
present an approach to fault-tolerantly swap tiles
by lattice surgery, which is 3x faster than a
standard SWAP operation by 3 consecutive logical
CNOT gates. In addition, we also apply similar
techniques to perform a FT CNOT gate between
tiles where logical data qubits are not located in
the required positions.

• We propose a full mapping procedure, including
placement and routing of qubits and scheduling
of operations, to map FT quantum circuits onto
the two presented qubit architectures and evaluate
these architectures on their communication over-
head.

The paper is organized as follows. Section 2
introduces the basics of FT quantum computing. We
introduce two qubit plane architectures of interest in
Section 3 followed by the proposed mapping passes in
Section 4. The evaluation metrics and benchmarks
are shown in Section 5. The experimental results are
discussed in Section 6. Section 7 concludes.

2. FT quantum computing

Like in classical computing, quantum computing is also
built on a two-level system named qubit. A qubit
however can be in a superposition of states |0〉 and
|1〉: |ψ〉 = α |0〉 + β |1〉 where α and β are complex
numbers. Quantum states can be transformed by
performing quantum operations on them. Commonly-
used quantum gates include single-qubit gates, such
as Pauli-X, -Y , -Z, Hadamard (H), S and T , and
two-qubit gates, such as the Controlled-NOT (CNOT)
and SWAP. In a CNOT gate, the target qubit ‘T’ is
flipped only if the control qubit ‘C’ is |1〉. A SWAP
gate interchanges the states of two qubits and can be
implemented by three consecutive CNOT gates. The
gate set {H,S, T,CNOT} is one of the most popular
universal sets of quantum gates, meaning that any

X Z
D1

D2

D3

D4

D5

D6

D7

D8

D9

A1 A2

A3

A4

A5

A6

A7 A8

(a) (b)

Figure 1. (a) The qubit layout of a distance-3 surface code,
where data qubits are on the vertices (solid circles) and X- and
Z-ancilla qubits are on the purple and pink plaquettes (open
circles), respectively. (b) Error syndrome measurement circuits
for X- and Z-stabilizers (XD5,D2,D4,D1 and ZD6,D3,D5,D2).

arbitrary quantum gate can be approximated within
a particular precision by a finite sequence of those
gates. Any quantum algorithm can be described by a
quantum circuit which consist of qubits and quantum
gates.

2.1. Quantum error correction

As mentioned before, quantum systems are error prone
so that QEC is required for reliable computation.
The idea of QEC is to encode a logical qubit into
many physical qubits and constantly check the system
to detect possible errors. The number of errors
that can be corrected is determined by the code
distance d which is defined as the minimum number
of physical operations required to perform a logical
operation. Surface code is one of the most promising
QEC codes because of its high tolerance to errors
(around 1%) and its simple 2D structure with only
NN interactions as shown in Figure 1(a). It consists
of two types of qubits, data qubits (solid circles)
for storing computational information, and X- or Z-
ancilla qubits (open circles) used to perform stabilizer
measurement. The stabilizer measurements are also
called error syndrome measurements (ESM) of which
circuit description is shown in Figure 1(b). Note that
the CNOT gates are only performed between ancilla
qubits and their nearest-neighbouring data qubits. We
define a SC cycle as the interval between the starting
points of two consecutive ESM.

In surface code, there are two main ways of
encoding a single logical qubit, using a planar [40]
or a defect approach [41]. In planar SC, a single
lattice is used to encode one logical qubit. In defect
SC, a logical qubit is realized by creating defects in a
lattice. For both codes, an implementable universal
set of FT logical operations are initialization (Init)
and measurement (MSMT) of qubits, Pauli, H, S, T
and CNOT gates. However, planar SC requires less
physical qubits to encode one logical qubit for the

3

C

A T

X

Z
0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

(a)

C

A

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

(b)

C

A

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

(c)

Figure 2. (a)Three planar SC-based logical qubits with d =
3. A 90-degree elbow-shaped qubit layout is required for
implementing a lattice surgery-based CNOT gate between qubits
‘C’ and ‘T’. ‘C’ is the control qubit, ‘T’ is the target qubit,
and ‘A’ is the ancilla qubit in either |0〉 or |+〉 state. (b) The
integrated lattice ‘AC’ and (c) the separated lattices ‘A’ and ‘C’,
after merging and splitting ‘A’ and ‘C’, respectively.

same code distance. In the near-term implementation
of quantum computing, qubits are scarce resources
and current quantum technologies are pursuing a
realization of planar SC quantum hardware [3]. This
paper therefore focuses on planar surface code. Note
that the FT implementation of defect SC [41–44] differs
from planar SC, leading to different implications on the
mapping procedure.

2.2. Fault-tolerant mechanisms

Figure 2(a) shows three logical qubits based on
distance-3 planar SC and they are labeled as ‘A’, ‘T’
and ‘C’, respectively. Each logical qubit consists of
17 physical qubits and has two types of boundaries,
Z-boundaries and X-boundaries. For instance, in
lattice ‘A’, the left and right boundaries are Z-type
and the top and bottom boundaries are X-type. In
planar SC, initialization, measurement, Pauli gates,
and H can be implemented transversally, i.e., applying
bitwise physical operations on a subset of the data
qubits, and then performing ESM to detect errors. The
FT implementation of S and T gates in surface code
requires ancillary qubits prepared in specific states
called magic states. However, the preparation of
magic states is not fault-tolerant and produces states
with low fidelity that need to be purified by a non-
deterministic procedure called state distillation [45–
49]. This distillation procedure is repeated until the
measurement results indicate one state is successfully
purified. On top of that, multiple rounds of successful
distillation may be required to achieve the desired
state fidelity. Therefore, magic state distillation is
the most resource- and time-consuming process in FT
quantum computing. Since the S and T gates can be
performed only if their corresponding magic states have
been delivered, an online or dynamic scheduling and

(a) (b)

Figure 3. The circuits (a) and (b) to realize the measurement-
based CNOT gates. ‘C’ is the control qubit, ‘T ’ is the target
qubit. An ancillary qubit is prepared in state |0〉L (a) or |+〉L
(b).

run-time routing may be required for efficient circuit
execution [35]. In this paper, we assume magic states
have been prepared and properly allocated whenever S
and T gates need to be performed. We will investigate
the dynamics of magic state preparation in future work.

In principle, a FT logical CNOT gate between two
planar logical qubits can be performed transversally,
i.e., applying pairwise physical CNOT gates to the data
qubits in the two lattices. However, this transversal
CNOT cannot be realized in current quantum
technologies which only allow NN interactions in
2D architectures. Alternatively, a measurement-
based procedure [50] which is equivalent to a CNOT
gate can be applied and its circuit representations
are shown in Figure 3. The joint measurement
MXX (MZZ) is realized by first merging two logical
qubits and then splitting them, where their adjacent
boundaries are Z-(X-)type boundaries. The outcomes
of these measurements will determine whether the
corresponding Pauli corrections should be applied (see
Appendix A for more details).

The qubit layout for performing the measurement-
based CNOT gate in the 2D NN architecture is shown
in Figure 2(a). The realization of the circuit in
Figure 3(b) is achieved as follows: 1) lattices ‘A’
and ‘C’ are merged and then split; 2) lattices ‘A’
and ‘T’ are merged and then split; and 3) measure
‘A’. The merge and split operations are implemented
by a technique called lattice surgery [37, 38]. For
instance, the merge and split of lattice ‘A’ and ‘C’
are implemented by performing ESM on the integrated
lattice (Figure 2(b)) and on the separated lattices
(Figure 2(c)), respectively. In general, a surgery-based
CNOT takes 4d+ 1 SC cycles. It is worthy to mention
that a split operation between qubits ‘A’ and ‘C’(‘T ’)
can happen simultaneously with a merge operation
between qubits ‘A’ and ‘T ’(‘C’). Furthermore, a split
operation between two qubits and a measurement on
one of them can be performed in parallel. By exploiting
the parallelism, the execution time in SC cycles can be
reduced to 3d.

4

Figure 4. The qubit plane architecture proposed in [37] for
lattice surgery-based planar surface codes, where each patch can
hold one logical qubit shown in Figure 2(a).

2.3. Implications on the mapping problem

Based on the FT implementation of logical operations
on planar SC, we derive the following constraints that
must be taken into account by the mapping process as
well as its implications.

Constraints: 1) The physical 2D NN interaction
constraint is intrinsically satisfied by the construction
of surface codes, thus the physical-level mapping
becomes trivial; 2) A surgery-based CNOT gate
requires that the qubits ‘C’ and ‘T’ together with the
ancilla qubit ‘A’ are placed in particular neighbouring
positions, forming a 90-degree elbow-shaped layout.

Implications: 1) Logical qubits that need to
interact and are not placed in such neighbouring
positions need to be moved, for instance by means of
SWAP operations. The movement of qubits introduces
overhead in terms of both qubit resources and
execution time; 2) Therefore, in lattice surgery-based
SC quantum computing, it is essential to pre-define a
qubit plane architecture for efficiently managing qubit
resources and supporting communication between
logical qubits; 3) In addition, operations for moving
qubits should be defined; 4) It is necessary to initially
place highly interacting logical qubits as close as
possible and apply routing techniques to find the
communication paths.

Based on the above observations, we will introduce
two slightly different plane architectures and mapping
passes for efficient execution of lattice surgery-based
quantum circuits in the following sections.

3. Qubit plane architecture

A qubit plane architecture is a virtual layer that
organizes the qubits in different specialized and pre-
defined areas such as communication, computation and
storage [28, 30]. Qubit architectures should be able
to manage qubit resources efficiently and provide fast
execution of any quantum circuit.

In [37], a layout that supports lattice surgery-
based CNOT gates on planar SC is presented. As

(a) (b)
Figure 5. (a) The checkerboard architecture (c-arch) and (b)
the tile-based architecture (t-arch).

shown in Figure 4, it consists of several patches.
The gray patches of the lattice are used for allowing
qubits to perform CNOT operations, whereas the
pink patches are used for holding logical data qubits.
Then, only 1/4 of the available patches contains
logical data qubits. Based on this layout, we propose
two slightly different qubit plane architectures, the
tile-based architecture (t-arch) and the checkerboard
architecture (c-arch) as shown in Figure 5. The
pink and purple patches are where logical data qubits
containing information can be allocated (data patches),
whereas the gray patches are assisting logical qubits
(ancilla patches) that are used for performing logical
CNOT gates and for communication. These two
architectures differ in: i) the number of logical
data qubits that can allocate, ii) the way movement
operations are implemented, iii) the steps required for
performing a CNOT between neighbouring logical data
qubits, and iv) the number of neighbours.

Logical data qubit allocation: In the
checkerboard architecture, logical data qubits can be
assigned to any of the pink patches, that is, 1/2 of the
total patches are used to hold data qubits. In the tile-
based architecture, a lined area consisting of 4 logical
patches is defined as a basic computation tile and at
most one logical data qubit can be allocated in each
tile, that is, in either the pink or the purple patch.
Then, only 1/4 of the total number of patches can be
used for allocating logical data qubits.

Movement operations: One typical way to
move physical qubits is through SWAP operations in
which the state of the qubits is exchanged. Usually, a
SWAP gate is implemented by applying 3 consecutive
CNOT gates. The same principle can be applied for
moving logical qubits. In this case a logical SWAP
is realized by performing 3 consecutive lattice surgery-
based CNOT gates, which is extremely time-consuming
(9d SC cycles). In the checkerboard architecture,
we will use such a swap method called c-SWAP for
moving logical qubits because of the limited number
of ancilla patches. In the tile-based architecture, we
propose to use a faster movement operation, which

5

(a) (b) (c) (d)

Figure 6. A t-SWAP between tiles 1 and 2. (a) Logical qubits
are in patches A1 and D2. (b) Merge A1, B1 and D2, C2; (c)
merge B1, A2 and C2,D1, and measure D2, A1; (d) measure B1,
C2.

(a) (b) (c)

(d) (e)

Figure 7. A t-CNOT between tiles 1 and 2. (a) Control and
target qubits are in patches A1 and D2 (b) Merge A1, B1 and
D2, C2; (c) measure A1 and D2 and merge D1, C2; (d) merge
B1,D1; (e) measure D1. The CNOT is performed in steps c), d)
and e).

is analogous to the measurement-based procedure for
CNOT gates, to swap data information between two
horizontally or vertically adjacent tiles. This swap
operation called t-SWAP only takes 1x logical CNOT
gate time regardless of locations where data qubits are
allocated inside the tiles -i.e. purple or pink patches.
It is realized by ’moving’ qubits to neighbouring
horizontal and vertical patches (see Appendix B).
Figure 6 shows an example of how to swap two
logical data qubits placed in adjacent tiles by using
the t-SWAP operation. Similarly, one can perform
a t-SWAP between any other pair of patches in the
horizontally or vertically adjacent tiles.

CNOT operations: As mentioned in Section 2,
the control and target qubits need to be placed
in patches that form a 90-degree elbow-shaped in
order to perform a lattice surgery-based CNOT. In
the checkerboard architecture, two neighbouring data
patches are always in such 90-degree locations so that
a lattice surgery-based CNOT gate can be directly
performed between them. We called this operation
c-CNOT and it is implemented by 3 steps, taking
3d SC cycles as described in the previous section.
However, in the tile-based architecture, a CNOT
operation called t-CNOT between two data qubits
placed in horizontally, vertically, or diagonally adjacent
tiles may need some pre-processing, depending on
where data qubits are allocated. If the control and
target logical qubits are already placed in patches
forming a 90-degree shape, then one can perform the
CNOT directly, e.g., patch D1 with patches A4, A2,

A5. Otherwise, logical data qubits need to be moved
to the required locations before performing the CNOT
gate as shown in Figure 7.

Similarly, one can perform a t-CNOT between any
other pair of patches in adjacent tiles. The t-CNOT
with and without pre-processing takes 4d and 3d SC
cycles, respectively. In the results section, we will
assume that a t-CNOT always takes 4d SC cycles for
simplicity.

Number of neighbours: In the checkerboard
architecture one data patch can only interact with 4
adjacent data patches, e.g., the neighbours of patch
8 are 4, 5, 10, 11 in Figure 5(a). As mentioned in
Section 2, a logical ancilla is required for performing
a lattice surgery-based CNOT gate. To avoid ancilla
conflicts when performing multiple logical CNOT gates
simultaneously in the checkerboard, only the upper
ancilla patch adjacent to the two interacting data
patches can be used. For instance, ancilla 1 (2) will be
used when performing a CNOT between data qubits
2 and 4 (2 and 5). In the tile-based architecture, one
tile can interact with at most 8 neighbours, e.g., the
neighbours of tile 5 are 1, 2, 3, 4, 6, 7, 8, 9. However,
logical CNOT gates between data qubits in tiles 1 and
5, and between data qubits in tiles 2 and 4 cannot be
performed simultaneously because of ancilla conflicts.
To avoid such conflicts for now, we only assume 6
neighbours per tile; we remove the right-top and left-
bottom neighbours of each tile, e.g., remove tiles 3 and
7 from the neighbour list of tile 5.

In the next section, we will introduce the
procedure for mapping lattice surgery-based quantum
circuits onto both qubit architectures. We will then
evaluate their communication overhead in terms of
both operation overhead and latency overhead in
Section 6 .

4. Quantum circuit mapping

The mapping of quantum circuits involves initial
placement and routing of qubits and scheduling of
operations. The need for QEC significantly enlarges
the circuit size, which makes the mapping problem
even more complex. For instance, in surface codes one
logical qubit is encoded into O(d2) physical qubits and
one logical operation is implemented by O(d3) physical
operations, where d is the code distance. Therefore, we
propose to perform the mapping of quantum circuits
before going to the physical implementation of logical
qubits and operations. It means that each logical
qubit is treated as one single unit, and each logical
operation is regarded as one single instruction. Once
the mapping is finished, logical operations need to be
expanded into the corresponding physical operations.
We use a library to translate each logical operation

6

Table 1. The execution time in SC cycles of different logical
operations, d is the code distance.

Init & MSMT Pauli H S T

Cycles 1 1 4d 14d 17d

c-CNOT c-SWAP t-CNOT t-SWAP

Cycles 3d 9d 4d 3d

into pre-scheduled physical quantum operations (see
Appendix C). During the translation, the address of
underlying physical qubits corresponding to a logical
qubit can be retrieved by maintaining a q-symbol table
[51].

Table 1 depicts the execution time of different
logical operations on planar surface codes expressed
in SC cycles. It includes single-qubit operations as
well as the two-qubit operations used in both qubit
architectures presented previously. The execution time
of different operations is used in the scheduling and
routing passes. Furthermore, we will use these numbers
for calculating the overall circuit latency in Section 5.

In order to illustrate the different steps in the
mapping of quantum circuits, we will use the circuit in
Figure 8(a) described by a quantum assembly language
(QASM). This is the encoding circuit of the 7-qubit
Steane code [[7, 1, 3]] and it can also be used to distill
the magic states for S gates [42]. In this case, we
assume each qubit is a logical qubit encoded by a
distance-7 planar SC and each operation is a FT
operation implemented by the techniques in Section 2
and Section 3.

4.1. Scheduling operations

The objective of the scheduling problem is to
minimize the total execution time (circuit latency) of
quantum algorithms meanwhile keeping the correctness
of the program semantics. Similar to instruction
scheduling in classical processors, the correctness can
be achieved by respecting the data dependency [52]
between quantum operations. Analogous to classical
computing, two kinds of data dependency can be
defined for quantum computing: true dependency,
which is the dependency between two single-qubit gates
and between a single-qubit gate and a CNOT gate, and
name dependency, which is the dependency between
two CNOT gates which have the same control (or
target) qubit.

We convert a QASM-described quantum circuit
into a data flow-based weighted directed graph, which
is called Quantum Operation Dependency Graph
(QODG) and shown in Figure 8(b). In this graph
G(VG, EG), each operation is denoted using a node vi,
and the data dependency arising from two consecutive
operations on a same qubit, e.g., vi followed by vj , is
represented using a directed edge e(vi, vj). VG and EG

are the node set and edge set of G, respectively. We

(a) (b) (c)

Figure 8. The QASM description of the Steane [[7, 1, 3]]
encoding circuit and its QODG. (a) The serial QASM
representation; (b) The QODG; and (c) The scheduled parallel
QASM representation. ‘qwait’ is an instruction specifies the
waiting time until the next instruction can be issued.

also define E1
G and E2

G as the collection of edges that
exhibits true and name dependency, respectively. Svi

represents the starting time of operation vi and Tvi
indicates its latency. The scheduling objective is to
minimize the total circuit latency (Formula 1) while
preserving the data dependency between operations
(Formula 2).

min sup
∀vi∈VG

(Svi + Tvi) (1)

subject to

(Svi + Tvi) 6 Svj , ∀e(vi, vj) ∈ EG (2)

Note that two CNOT gates which share the same
control or the same target qubit are commutable,
meaning that they can be executed in any order
except in parallel. This commutation property has
not been considered in previous works [11–15, 26–31].
In this paper, we take commuted CNOT gates into
account and replace the optimization condition 2 with
conditions 3 and 4:

Svi + Tvi 6 Svj , ∀e(vi, vj) ∈ E1
G (3)

(Svi −Svj) 6 Tvj or (Svj −Svi) 6 Tvi , ∀e(vi, vj) ∈ E2
G

(4)
With respect to different dependencies, the

scheduler will exploit parallelism and output the
operation sequence with timing information, which
is an as-soon-as-possible (ASAP) schedule. An as-
late-as-possible (ALAP) schedule can be also easily
implemented by scheduling operations in the reverse
order (Figure 8(c)).

4.2. Placing and routing qubits

The QAP-model for initial placement of qubits:
The goal of qubit placement is to find an optimal initial
placement of the qubits that minimizes communication

7

overhead. Similar to the placement approaches in [15,
28, 53], the initial placement problem is formulated
as a quadratic assignment problem (QAP) with
the communication overhead represented using the
Manhattan distance:

min

 m∑
i=1

m∑
j=1

n∑
k=1

n∑
l=1

cijklxikxjl

 (5)

subject to

m∑
i=1

xik = 1, ∀k = 1, · · ·n (6)

n∑
k=1

xik = 1, ∀i = 1, · · ·m (7)

xik = {0, 1} (8)

where m(n) is the number of locations(qubits),
xik(jl) = 1 or 0 indicates whether qubit k(l) is assigned
to location i(j) or not, cijkl = DijRkl is the cost of
separately assigning qubit k and l to locations i and j.
Dij is the Manhattan distance between locations i and
j, and Rkl is the number of interactions between qubits
k and l in the circuit. Constraints 6 and 7 ensure a one-
to-one mapping from qubits to locations. A location is
a tile in the tile-based architecture and a data patch in
the checkerboard architecture. For instance, the initial
placements of the Steane [[7, 1, 3]] encoding circuit in
the m = 3×3 tile-based architecture and the m = 3×3
checkerboard architecture are shown in Figure 9.

In this paper, the scheduling and QAP models
are solved with integer linear programming (ILP). The
scheduling uses the linearization method by [54], and
the QAP uses the method proposed by [55]. ILP can
only solve small-scale problems in reasonable time as
the ones used in this paper. Even though for near-
term implementation in FT quantum computing, these
numbers largely suffice. For large-scale circuits, one
can either partition a large circuit into several smaller
ones or apply heuristic algorithms to efficiently solve
these mapping models [11–13,15,26,27,29].

The routing algorithm: The introduced two
SC qubit architectures require routing of qubits, which
involves finding communication paths and inserting the
corresponding movement operations, for instance by
means of the SWAP operations. An efficient routing
should minimize the number of inserted movement
operations as well as the increased latency. In this
paper, qubits are routed based on a sliding window
(buffer) principle as shown in Algorithm 1. The
algorithm will find a path for the first not NN
instruction- i.e. CNOT operation in which qubits are
not NN- inside the buffer. We adopted the breadth-
first search (BFS) algorithm to find all possible shortest

(a) (b)

Figure 9. The initial placements of the Steane [[7, 1, 3]]
encoding circuit in (a) the tile-based architecture which has 3×3
tiles and (b) the checkerboard architecture which has 3× 3 data
patches in the dashed region (rotated by 45 degrees).

paths. Then, in order to select the communication
path the algorithm looks back and forward. The look-
back finds the maximum interleaving of movement
instructions (SWAPs) with previous instructions. The
look-ahead will look how the positions of the qubits
involved in a certain path is changed and how it affects
future two-qubit operations; that is, we want to avoid
to move away qubits that are already close to each
other and need to interact in the future. Once the path
is selected, the instructions inside the buffer will be
rescheduled using the ASAP strategy. Then the buffer
will output routing instructions and will be fed with
new ones. This process repeats until all CNOT gates
can be performed in the pre-defined qubit architecture.

The results of routing the Steane [[7, 1, 3]]
encoding circuit onto the tile-based and checkerboard
architectures are shown in Figure 10 and Figure 11,
respectively. The inputs of the routing process
include 1) the pre-scheduled circuit using an ALAP
approach in Figure 8(c); 2) the initial placement in
a pre-defined architecture in Figure 9. The routing
process selects the communication path and inserts
SWAP operations when two qubits for a coming
CNOT gate are not neighbours and then the qubit
layout is changed. Figures 10 and 11 show the final
circuits with the intermediate qubit layouts after a
full mapping procedure on the tile-based architecture
and the checkerboard architecture respectively. Note
that the operations inside each dashed block will be
executed on the qubit layout marked in the same
color and the current layout will be transformed into
the next one after performing the inserted SWAP
operation(s). Moreover, the final circuits after routing
are totally different from the original circuit with an
ALAP scheduling. This is because the operations
inside each routing buffer has been rescheduled using
an ASAP approach. For comparison purposes, a hand-
optimized mapping of the Steane [[7, 1, 3]] encoding
circuit on the 3× 3 tile-based architecture is described
in Appendix D, including ALAP pre-scheduling, initial
placement, and routing.

8

Algorithm 1 Routing algorithm

Input: Defined qubit architecture and its size,
initial placement, scheduled QASM-file

Output: Routed QASM-file
1: Define instruction buffer, B, length l = window

size
2: Fill B with instructions from input-QASM
3: while B is not empty do
4: # Check if an instruction (ins) is NN
5: for ins in B[0 : l/2] do
6: # If an instruction is not NN, start routing
7: if ins is not NN then
8: # Find different paths
9: paths = all shortest paths for ins based

on BFS
10: # Look-back
11: for p in paths do
12: p.length = #cycles from in p −

#cycles p can
interleave with instruction in B[0 :

ins]

13: # Look-ahead to other ins (o i)
14: for p in paths do
15: Place qubits based on p
16: p.length +=

∑
o i∈B[ins:l] shortest

path
for o i in #cycles

17: Insert path with min. length and update
placement

18: Break for-loop

19: Reschedule B[0 : ins]
20: Write B[0] to output-QASM
21: Fill B from input-QASM with qubit placement

5. Metrics and benchmarks

In order to evaluate the impact of the mapping passes
as well as the proposed qubit plane architectures we
define the following metrics:

Qubit efficiency Eq: It is calculated as

Eq = #Data
#AllQubits ; where # AllQubits refers to

the total number of logical qubits in a predefined
qubit architecture for executing a quantum algorithm,
including both logical data qubits and logical ancilla
qubits, and # Data is the number of logical data
qubits.

Circuit latency: It is the total execution time
of a quantum algorithm in SC cycles. Even though
reducing the circuit latency may have an overall
negligible impact on the exponential performance
improvement, it may be important for the algorithms
with polynomial speedup. More importantly, shorter
latency will also decrease the failure rate of the
executed circuit.

Figure 10. The final circuit and the intermediate qubit layouts
after mapping the Steane [[7, 1, 3]] encoding circuit onto the tile-
based architecture.

Figure 11. The final circuit and the intermediate qubit layouts
after mapping the Steane [[7, 1, 3]] encoding circuit onto the
checkerboard architecture.

Latency overhead: It is the percentage of
latency used for moving qubits, and it is calculated as
LR−LS

LS
; where LR and LS are the circuit latency with

and without considering routing qubits, respectively.
Operation overhead: It is the percentage of

inserted movement operations and it is calculated as
#SWAPs
#Gates ; where # Gates is the number of operations

of the quantum algorithm which has not been routed
(see Table 2) and # SWAPs is the total number

9

Table 2. Quantum algorithm benchmarks
Benchmarks # Qubits # Gates #CNOT Rcg% Rcd% Rtsg% Size

7-enc 7 21 12 52.38 42.55 0 3×3

15-enc 15 53 35 64.15 60.17 0 4×4

Adder0-5 16 306 126 41.18 26.1 48.0 4×4

Adder1-8 18 289 129 44.64 22.38 45.3 5×5

Adder1-16 34 577 257 44.54 22.16 44.9 6×6

Multiply4 21 1655 722 43.63 18.20 44.4 5×5

Shor15 11 4792 1788 37.31 21.03 48.4 4×3

sqrt7 15 7630 3089 40.48 6.41 43.72 4×4

sqrt8 12 3009 1314 43.67 4.63 43.50 4×3

ham7 7 320 149 35.63 5.67 41.56 3×3

hwb5 5 233 107 45.92 5.52 42.06 3×2

hwb6 6 1336 598 44.76 5.26 42.96 3×2

hwb7 7 6723 2952 43.91 4.64 43.62 3×3

rd73 10 230 104 45.22 4.61 42.61 4×3

rd84 15 343 154 44.90 4.63 42.86 4×4

of SWAP operations that are inserted for routing
qubits. Reducing the number of operations for qubit
communication helps to improve the computation
fidelity.

Communication overhead: It is expressed
in terms of both operation overhead and latency
overhead.

The benchmarks used for this mapping evaluation
are shown in Table 2 from Qlib [56] and RevLib [57].
These circuits are decomposed into ones which
only contain the gates from the fault-tolerantly
implementable universal set {Pauli, H,CNOT, S, T}
on surface codes. We characterize these benchmarks in
terms of percentage of CNOT gates Rcg = #CNOTs

#Gates ,

percentage of edges which have name dependency (E2
G)

in the QODG Rcd =
|E2

G|
|EG| , and percentage of expensive

T, T † and S, S† gates Rtsg = (#Ss+#Ts+#S†s+#T †s)
#Gates .

The first two benchmarks are encoding circuits of
different QEC codes which are used for preparing
magic states on SC [42]. Table 2 also shows the
size (R × C) of a qubit plane architecture, where R
and C represent the number of data qubits in the x
axis and y axis of the defined qubit plane architecture,
respectively.

6. Results

We map the benchmarks shown in Table 2 onto the
two introduced qubit architectures using the proposed
mapping passes. As shown in Table 1, the execution
time of different operations is determined by the code
distance d which is a tunable parameter of the mapping
procedure. In this section, only the mapping results for
distance-3 and distance-7 planar SC are presented, the
results for other distances will be similar.

We first analyze the impact of the CNOT
commutation property (Section 4.1) on the latency of
scheduled quantum circuits. We only show the results
for the ALAP scheduling as they are similar to the
ASAP scheduling. Figures 12 (13) compares the
proposed scheduling models for distance 3 (distance

7) with and without taking the commutation property
into account. For the encoding circuits, the scheduling
considering commutation can significantly reduce the
circuit latency, 28.1% (23.7%) for 7-enc and 34.4%
(34.5%) for 15-enc, compared to the scheduling without
considering commutation. This is because they have
a high percentage of commutable CNOT gates (Rcd)
meanwhile the percentage of expensive gates (Rtsg) is
much lower (0). In contrast, for the other benchmarks
the benefit of considering commutation is negligible,
up to ∼ 4% (∼ 4%) for adder0-5.

Furthermore, we perform the full mapping
procedure proposed in Section 4, including scheduling,
placement and routing, on both the tile-based
architecture (t-arch) and the checkerboard architecture
(c-arch). The scheduling is implemented by the ALAP
approach with considering commutation property. The
initial placement is achieved by either the smart
approach based on Manhattan distance or the naive
method which places qubits in order. Note that the
effect of initial placement is not always important [31],
depending on the benchmarks (see Appendix E). In
this section, the best mapping result of the above two
placement approaches for each benchmark is chosen.

Communication overhead: As mentioned
previously, the mapping process results in an increase
of the number of quantum operations (operation
overhead) as well as in an increase in the circuit latency
(latency overhead). We evaluate the communication
overhead of mapping quantum circuits on different
qubit plane architectures, namely the tile-based
architecture (t-arch) and the checkerboard architecture
(c-arch). Figure 14 and 15 show the comparison
between t-arch and c-arch for distance 3 and 7
surface codes, respectively. The mapping results for
both distances are similar and the t-arch achieves
less communication overhead because it has a higher
number of nearest neighbours.

The operation overhead in the t-arch compared to
the c-arch is reduced by 20.0% (7-enc) up to 81.4%
(hwb5) for d = 3 and by 8.0% (15-enc) up to 86.4%
(hwb5) for d = 7 . The latency overhead when mapping
on the t-arch shows a reduction of 3.2% (adder1-
8), 16.3% (multiply-4) and up to 69.1% (7-enc) for
distance 3. And 1.0% (adder1-8), 25.6% (shor-15) and
up to 79.4% (7-enc) for distance 7. Note that this
latency reduction is not only due to the less number of
movement operations but also due to the use of much
faster movements (t-SWAP) although the CNOT gates
(t-CNOT) are slightly slower.

Qubit efficiency: As mentioned in Section 3,
1/4 and ∼ 1/2 of the total number of patches are
used for allocating logical data qubits in the tile-
based architecture and the checkerboard architecture,
respectively. Therefore, the qubit efficiency in the t-

10

Figure 12. Comparison of the scheduling models with and without considering the commutation property (d = 3).

Figure 13. Comparison of the scheduling models with and without considering the commutation property (d = 7).

Figure 14. Comparison of mapping FT circuits onto different qubit architectures (d = 3). The latency overhead for the first two
circuits are larger than 1 as shown in the sub-figure.

arch is Eq = 1/4 and the qubit efficiency in the c-arch
is Eq ≈ 1/2.

Based on the above observations, we can conclude
that although the tile-based architecture is less qubit
efficient than the checkerboard architecture, it can
also substantially reduce the communication overhead
in terms of operation overhead (up to ∼ 86%) and
latency overhead (up to ∼ 79%). As we mentioned
previously, decreasing the communication overhead
helps to improve the computation fidelity. Therefore,
one may have to compromise between qubit efficiency
and communication overhead for the realization of

quantum algorithms.

7. Conclusion

We have proposed two SC qubit plane architectures
to efficiently support the execution of lattice surgery-
based quantum circuits. We developed a full procedure
for mapping small-scale quantum algorithms onto
these two SC architectures. The experimental results
show the following observations. First, the proposed
scheduling considering the commutation property
provides faster circuit execution than the scheduling

11

Figure 15. Comparison of mapping FT circuits onto different qubit architectures (d = 7).

without considering commutation. Secondly, the
mapping procedure causes communication overhead
in terms of both operation overhead and latency
overhead. Moreover, the communication overhead
highly depends on how qubits are organized and
moved, that is, the qubit plane architectures. The tile-
based architecture considerably decreases the number
of movements and also supports faster execution
compared to the checkerboard though it is less qubit-
efficient.

As future work, we will focus on heuristic
scheduling and placement algorithms as well as
different routing techniques for large-scale quantum
benchmarks. Furthermore, we will consider the
dynamics of quantum computation such as magic state
distillation for S or T gates and qubit routing for
performing ‘neighbouring’ CNOT gates. Then we
will investigate their implications on quantum circuit
mapping. In addition, we will investigate different
qubit architectures, for instance, an architecture with
specialized communication channels for moving qubits
and pre-defined regions for preparing magic states.

References

[1] P. W. Shor, “Algorithms for quantum computation:
Discrete logarithms and factoring,” in SFCS, 1994.

[2] R. Barends et al., “Superconducting quantum circuits at
the surface code threshold for fault tolerance,” Nature,
vol. 508, no. 7497, pp. 500–503, 2014.

[3] R. Versluis et al., “Scalable quantum circuit and control
for a superconducting surface code,” arXiv:1612.08208,
2016.

[4] C. D. Hill et al., “A surface code quantum computer in
silicon,” Science advances, vol. 1, no. 9, p. e1500707,
2015.

[5] R. Li et al., “A crossbar network for silicon quantum dot
qubits,” arXiv:1711.03807, 2017.

[6] IBM, “Quantum experience.”
[7] S. Boixo et al., “Characterizing quantum supremacy in

near-term devices,” arXiv:1608.00263, 2016.
[8] E. A. Sete et al., “A functional architecture for scalable

quantum computing,” in ICRC, pp. 1–6, IEEE, 2016.
[9] L. S. Bishop et al., “Quantum volume,” tech. rep., 2017.

[10] N. M. Linke et al., “Experimental comparison of two
quantum computing architectures,” Proceedings of the
National Academy of Sciences, p. 201618020, 2017.

[11] T. S. Metodi et al., “Scheduling physical operations in a
quantum information processor,” in SPIE, 2006.

[12] M. Whitney et al., “Automated generation of layout and
control for quantum circuits,” in CF, 2007.

[13] M. J. Dousti and M. Pedram, “Minimizing the latency of
quantum circuits during mapping to the ion-trap circuit
fabric,” in DATE, 2012.

[14] M. Yazdani et al., “A quantum physical design flow using ilp
and graph drawing,” Quantum information processing,
vol. 12, no. 10, pp. 3239–3264, 2013.

[15] T. Bahreini and N. Mohammadzadeh, “An minlp model
for scheduling and placement of quantum circuits with a
heuristic solution approach,” JETC, vol. 12, no. 3, p. 29,
2015.

[16] A. Lye et al., “Determining the minimal number of swap
gates for multi-dimensional nearest neighbor quantum
circuits,” in ASP-DAC, pp. 178–183, IEEE, 2015.

[17] R. Wille et al., “Look-ahead schemes for nearest neighbor
optimization of 1d and 2d quantum circuits,” in ASP-
DAC, pp. 292–297, IEEE, 2016.

[18] A. Farghadan and N. Mohammadzadeh, “Quantum
circuit physical design flow for 2d nearest-neighbor
architectures,” International Journal of Circuit Theory
and Applications, vol. 45, no. 7, pp. 989–1000, 2017.

[19] IBM, “Qiskit, quantum information software kit.”
[20] A. Zulehner et al., “An efficient methodology for

mapping quantum circuits to the ibm qx architectures,”
arXiv:1712.04722, 2017.

[21] M. Siraichi et al., “Qubit allocation,” in ACM-CGO, pp. 1–
12, 2018.

[22] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compil-
ing quantum circuits to realistic hardware architectures
using temporal planners,” Quantum Science and Tech-
nology, vol. 3, no. 2, p. 025004, 2018.

[23] D. Ristè et al., “Detecting bit-flip errors in a logical qubit
using stabilizer measurements,” Nature communications,
vol. 6, no. 6983, 2015.

[24] J. Kelly et al., “State preservation by repetitive error
detection in a superconducting quantum circuit,”
Nature, vol. 519, no. 7541, pp. 66–69, 2015.

[25] M. A. Nielsen and I. L. Chuang, Quantum computation and
quantum information. Cambridge university press, 2010.

[26] S. Balensiefer et al., “Quale: quantum architecture layout
evaluator,” in SPIE, 2005.

[27] M. J. Dousti and M. Pedram, “Leqa: latency estimation
for a quantum algorithm mapped to a quantum circuit
fabric,” in DAC, 2013.

[28] M. J. Dousti et al., “Squash: a scalable quantum mapper

12

considering ancilla sharing,” in GLSVLSI, 2014.
[29] M. Ahsan, Architecture Framework for Trapped-Ion

Quantum Computer based on Performance Simulation
Tool. PhD thesis, Duke University, 2015.

[30] J. Heckey et al., “Compiler management of communication
and parallelism for quantum computation,” in ASPLOS,
2015.

[31] C.-C. Lin et al., “Paqcs: Physical design-aware fault-
tolerant quantum circuit synthesis,” IEEE Transactions
on VLSI Systems, vol. 23, no. 7, pp. 1221–1234, 2015.

[32] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice
with boundary,” arXiv:9811052, 1998.

[33] A. Paler et al., “Synthesis of arbitrary quantum circuits to
topological assembly,” Scientific reports, vol. 6, p. 30600,
2016.

[34] A. Paler et al., “Fault-tolerant, high-level quantum circuits:
form, compilation and description,” Quantum Science
and Technology, vol. 2, no. 2, p. 025003, 2017.

[35] A. Paler et al., “Online scheduled execution of quantum
circuits protected by surface codes,” arXiv:1711.01385,
2017.

[36] Javadi-Abhari et al., “Optimized surface code communi-
cation in superconducting quantum computers,” in MI-
CRO, pp. 692–705, ACM, 2017.

[37] C. Horsman et al., “Surface code quantum computing by
lattice surgery,” New Journal of Physics, vol. 14, no. 12,
p. 123011, 2012.

[38] A. J. Landahl and C. Ryan-Anderson, “Quantum com-
puting by color-code lattice surgery,” arXiv preprint
arXiv:1407.5103, 2014.

[39] D. Herr et al., “Optimization of lattice surgery is np-hard,”
npj Quantum Information, vol. 3, no. 1, p. 35, 2017.

[40] E. Dennis et al., “Topological quantum memory,” Journal
of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505,
2002.

[41] R. Raussendorf et al., “A fault-tolerant one-way quantum
computer,” Annals of physics, vol. 321, no. 9, pp. 2242–
2270, 2006.

[42] A. G. Fowler et al., “Surface codes: Towards practical large-
scale quantum computation,” Physical Review A, vol. 86,
no. 3, p. 032324, 2012.

[43] R. Raussendorf and J. Harrington, “Fault-tolerant quantum
computation with high threshold in two dimensions,”
Physical review letters, vol. 98, no. 19, p. 190504, 2007.

[44] R. Raussendorf, J. Harrington, and K. Goyal, “Topological
fault-tolerance in cluster state quantum computation,”
New Journal of Physics, vol. 9, no. 6, p. 199, 2007.

[45] S. Bravyi and A. Kitaev, “Universal quantum computation
with ideal clifford gates and noisy ancillas,” Physical
Review A, vol. 71, no. 2, p. 022316, 2005.

[46] S. Bravyi and J. Haah, “Magic-state distillation with low
overhead,” Physical Review A, vol. 86, no. 5, p. 052329,
2012.

[47] A. M. Meier, B. Eastin, and E. Knill, “Magic-state
distillation with the four-qubit code,” arXiv:1204.4221,
2012.

[48] C. Jones, “Multilevel distillation of magic states for
quantum computing,” Physical Review A, vol. 87, no. 4,
p. 042305, 2013.

[49] E. T. Campbell and M. Howard, “Unifying gate synthesis
and magic state distillation,” Physical Review L, vol. 118,
no. 6, p. 060501, 2017.

[50] D. Gottesman, “Fault-tolerant quantum computation with
higher-dimensional systems,” arXiv:9802007, 1998.

[51] X. Fu et al., “A heterogeneous quantum computer
architecture,” in CF, 2016.

[52] J. L. Hennessy and D. A. Patterson, Computer architecture:
a quantitative approach. Elsevier, 2011.

[53] A. Shafaei et al., “Qubit placement to minimize communi-
cation overhead in 2d quantum architectures,” in ASP-

DAC, 2014.
[54] A. Richards et al., “Spacecraft trajectory planning

with avoidance constraints using mixed-integer linear
programming,” JGCD, vol. 25, no. 4, pp. 755–764, 2002.

[55] L. Kaufman and F. Broeckx, “An algorithm for the
quadratic assignment problem using bender’s decompo-
sition,” EJOR, vol. 2, no. 3, pp. 207–211, 1978.

[56] C.-C. Lin et al., “Qlib: Quantum module library,” ACM-
JETC, vol. 11, no. 1, p. 7, 2014.

[57] D. M. Miller et al., “A transformation based algorithm for
reversible logic synthesis,” in DAC, pp. 318–323, IEEE,
2003.

[58] D. Gottesman, “The heisenberg representation of quantum
computers,” arXiv:9807006, 1998.

Appendix

A. Lattice surgery-based CNOT

A CNOT is a gate applying on two qubits, the target
qubit undergoes anX gate only if the control qubit is in
|1〉. One way to validate a CNOT implementation is to
check the transformation of logical X and Z operators
using the Heisenberg representation [58] as follows:

CNOT †(X ⊗ I)CNOT = X ⊗X (A.1)

CNOT †(I ⊗X)CNOT = I ⊗X (A.2)

CNOT †(Z ⊗ I)CNOT = Z ⊗ I (A.3)

CNOT †(I ⊗ Z)CNOT = Z ⊗ Z (A.4)

For instance, the CNOT gate transforms an X in the
control qubit into the target qubit in Equation (A.1).
We can verify the measurement-based procedure [50],
which is described by the circuits in Figure 3(a) and
3(b), by examining these transformations ((A.1)-(A.4))
as shown in Equations (A.5) and (A.6) respectively.
These equations illustrate how different measurements
transform stabilizers and logical operators. ‘C’, ‘T’,
and ‘A’ represent the control, target, and ancillary
qubit, respectively. ‘S’ and ‘L’ represent the stabilizers
and logical operators, respectively. For example,
after performing measurements MIXX in (A.5), the
stabilizer IZI is transformed into (−1)MIXX IXX and
the logical operator IIZ is transformed into IZZ.
Equations (A.5) and (A.6) show that the measurement-
based procedure does satisfy the transform relations in
Equations (A.1)-(A.4) and it is thus equivalent to a
CNOT.

CAT
S IZI (−1)MIXX IXX (−1)MZZIZZI (−1)MIXI IXI
L XII XII (−1)MIXXXXX (−1)MIXX+MIXIXIX

ZII
MIXX→ ZII

MZZI→ ZII
MIXI→ ZII

IIX IIX IIX IIX
IIZ IZZ IZZ (−1)MZZIZIZ

(A.5)
CAT

S IXI (−1)MZZIZZI (−1)MIXX IXX (−1)MIZI IZI
L XII XXI XXI (−1)MIXXXIX

ZII
MZZI→ ZII

MIXX→ ZII
MIZI→ ZII

IIX IIX IIX IIX
IIZ IIZ (−1)MZZIZZZ (−1)MZZI+MIZIZIZ

(A.6)

13

The joint measurement MXX (MZZ) is realized
by merge and split operations using lattice surgery
[37, 38]. The basic operations of lattice surgery are
to stop measuring some existing stabilizers and start
to measure some new stabilizers. For example, the
merge operation for MZZ on the qubits ‘A’ and ‘C’
in Figure 2(a) is performed by ceasing to measure
X7X8 and X10X11, starting to measure Z6Z7Z9Z10,
Z8Z11 and X7X8X10X11, that is, performing d rounds
of ESM on the merged lattice in Figure 2(b). This
means the two lattices ‘A’ and ‘C’ are integrated into
one single lattice. Similarly, the split operation is
implemented by ceasing to measure Z6Z7Z9Z10, Z8Z11

and X7X8X10X11, starting to measure stabilizer X7X8

and X10X11 , that is, performing d rounds of ESM
individually on each lattice ‘A’ and ‘C’ in Figure 2(c).
The splitting procedure divides the merged lattice back
into two lattices. Afterwards, one needs to read out the
outcome of each joint measurement for further logical
Pauli corrections. The measurement result of MZZ is
interpreted into 0 (1) if the number of ‘−’ syndromes
from the new stabilizers Z6Z7Z9Z10 and Z8Z11 during
the merge is even (odd).

B. Lattice surgery-based movement

The lattice surgery-based joint measurements can be
used to ‘move’ logical qubits to other locations. As
mentioned previously, the adjacent boundaries should
be in both X- or Z-type when performing such a joint
measurement. Assuming that the qubit patches in the
same row (column) of the tile-based architecture in
Figure 5(b) have Z−(X-)type adjacent boundaries, we
introduce two basic movements: horizontal movement
(Figure B1) and vertical movement (Figure B2). A
logical state in A can be moved to its horizontally
(vertically) adjacent position B (C) by first performing
a joint measurement MXX (MZZ) between A and B
(C) followed by a Z (X) measurement on A. This
horizontal (vertical) movements mimics the procedure
in Equation (B.1) (Equation (B.2)), that is, the logical
operators in patch A are transformed into patch B
(C). It means that the logical state in A is moved
to patch B (C). One can progressively move one
logical state from one patch to the other by applying
these horizontal movements and vertical movements as
shown in Figure B3.

AB
S IZ (−1)MXXXX (−1)MZIZI
L XI MXX XI MZI (−1)MXX IX

ZI ZZ (−1)MZI IZ
(B.1)

(a) (b) (c)

Figure B1. (a) Patch A is a logical qubit in state |ψ〉 and patch
B is an ancilla in state |0〉. First perform the joint measurement
MXX realized by a merge (b) and a split (c), then perform the
measurement MZ on patch A, the state |ψ〉 is moved to patch
B.

(a) (b) (c)

Figure B2. (a) Patch A is a logical qubit in state |ψ〉 and patch
C is an ancilla in state |+〉. First perform the joint measurement
MZZ realized by a merge (b) and a split (c), then perform the
measurement MX on patch A, the state |ψ〉 is moved to patch
C.

AC
S IX (−1)MZZZZ (−1)MXIXI
L XI MZZ XX MXI (−1)MXI IX

ZI ZI (−1)MZZ IZ
(B.2)

(a) (b) (c) (d)

Figure B3. (a) Patch A is a logical qubit in state |ψ〉, patch B
and D are ancillas in states |0〉 and |+〉, respectively. The state
|ψ〉 is moved to patch D in 3d SC cycles as follows: First perform
the joint measurement MZZ between A and B (b); then perform
the joint measurement MXX between B and D; finally perform
the measurement MX on patch A.

C. FT library

After the logical-level mapping, the physical-level
mapping becomes trivial for several reasons. First,
there is no need to place and route physical qubits
since surface codes intrinsically satisfy the 2D NN
constraint. Secondly, as discussed in Section 2, each
of the universal set of logical operations (preparation,
measurement, Pauli, H, CNOT, S and T gates) on
planar SC is implemented by a certain series of SC
cycles.

14

As shown in Figure C1, each cycle is composed of
two time slots, one purple slot for performing physical
single-qubit gates and one gray slot for performing one
round of ESM. Depending on the logical operation,
a single-qubit gate such as Identity, Pauli gates or
H gate needs to be performed during each purple
slot. For instance, a logical X gate on the distance-
3 planar surface code (Figure 1(a)) can be realized by
one SC cycle, that is, first performing bit-wise physical
X gates on qubits D1, D2, D3 (purple slot) and then
performing 1 round of ESM (gray slot). Therefore, a
library can be built to translate each logical operation
into pre-scheduled physical quantum operations. Since
the operations in a purple slot are bit-wise and
performed in parallel, one only need to pre-schedule
the operations of error syndrome measurement.

Figure C1. The decomposition of logical operations into SC
cycles.

The ESM circuits for X and Z stabilizers are
shown in Figure 1(b). One full round of ESM on the
distance-3 planar surface code (Figure 1(a)) is sched-
uled and performed as follows (in QASM):
{ prepz A2 | prepz A7 | prepz A5}
{ h A2 | h A7 | h A5 | prepz A1 | prepz A3 | prepz A6}
{ cnot A2, D5 | cnot A7, D9 | cnot A5, D7 | cnot D2, A1 | cnot
D6, A3 | cnot D8, A6 | prepz A8 | prepz A4}
{ cnot A2, D2 | cnot A7, D6 | cnot A5, D4 | cnot D9, A8 | cnot
D3, A3 | cnot D5, A6 | h A4}
{ cnot A2, D4 | cnot A7, D8 | cnot A4, D6 | cnot D1, A1 | cnot
D5, A3 | cnot D7, A6 | h A5}
{ cnot A2, D1 | cnot A7, D5 | cnot A4, D3 | cnot D8, A8 | cnot
D2, A3 | cnot D4, A6 | measure A1 | measure A5}
{ h A2 | h A4 | h A7 | measure A3 | measure A6 | measure A8}
{ measure A2 | measure A4 | measure A7}

However, a more realistic scheduling needs to
consider the underlying hardware constraints such as
the allowed primitive operations, their execution time,
frequency multiplexing, etc. A scalable scheme for
executing the ESM of surface code on superconducting
qubits with NN coupling can be found in [3].

D. Hand-optimized mapping example

In this section, we show a hand-optimized mapping
of the Steane [[7, 1, 3]] encoding circuit in the 3 × 3
tile-based architecture. Using the Quantum Operation
Dependency Graph shown in Figure 8(b), instructions
have been scheduled in an ALAP manner (Figure
D1(a)). In addition, qubits have been placed in
the lattice based on the number and frequency of
interactions (Figure D1(b)). For the routing, one of
the shortest paths is ‘randomly’ selected, resulting
in the insertion of SWAPs shown in Figure D2.

(a) (b)

Figure D1. The hand-optimized (a) scheduling and (b) initial
placement in a 3×3 tile-based architecture of the Steane [[7, 1, 3]]
encoding circuit.

Figure D2. The final circuit and the intermediate qubit layouts
after manually mapping the Steane [[7, 1, 3]] encoding circuit
onto the tile-based architecture.

Compared with the proposed mapping procedure, the
hand-optimized approach shows an increase of the
communication overhead in terms of both latency
overhead (15.9%) and operation overhead (25%).

15

Figure E1. Comparison of mapping FT circuits with different initial placements on the checkerboard architecture (d = 3).

Figure E2. Comparison of mapping FT circuits with different initial placements on the tile-based architecture (d = 3).

Figure E3. Comparison of mapping FT circuits with different initial placements on the checkerboard architecture (d = 7).

E. Initial placements

In this section, we examine how initial placement
affects the mapping results.

Figures E1 and E2 show the comparison of
the proposed smart placement based on Manhattan
distance with a naive placement which locates qubits in
order, where logical qubits are encoded by the distance-
3 surface code. For some benchmarks, the use of
the smart initial placement effectively decreases the
operation overhead on both the c-arch and the t-arch,
from ∼ 8.3% up to 37.5% (rd84, adder0-5, multiply-4,

rd73, adder1-8, adder1-16, 15-enc) and from ∼ 7.4%
up to 50% (adder1-8, hwb7, shor-15, multiply-4, rd84,
adder1-16, 7-enc, 15-enc), respectively. Furthermore,
the smart placement approach reduces the latency
overhead of the c-arch and t-arch by 7.0% to 31.1%
(rd73, shor-15, rd84, multiply-4, ham7, adder1-8, 7-
enc, adder0-5, 15-enc) and by 7.4% to 62.3% (shor-
15, adder1-16, hwb7, sqrt7, 15-enc, adder0-5, 7-enc),
respectively. However, for other benchmarks, the
smart placements provide marginal reductions or even
increases in communication overhead on both qubit
architectures. This is because the position of the

16

Figure E4. Comparison of mapping FT circuits with different initial placements on the tile-based architecture (d = 7).

qubits will change after each SWAP operation, and
the possible benefit of the smart initial placement
will progressively disappear as the circuit execution
advances.

Figures E3 and E4 show similar results for
distance-7 surface code. For some benchmarks,
the use of smart initial placements can effectively
decrease the communication overhead compared to
naive placements. The smart initial placement
decreases the operation overhead on the c-arch and
the t-arch, from ∼ 15.8% up to 51.0% (adder1-16, rd84,
adder0-5, adder1-8, 7-enc, 15-enc) and from ∼ 6.7% up
to 33.3% (adder0-5, rd84, ham7, adder1-16, multiply-
4, 15-enc, adder1-8, 7-enc), respectively. Moreover,
the smart placement approach reduces the latency
overhead of the c-arch and t-arch by 10.2% to 31.1%
(shor-15, multiply-4, rd73, rd84, 7-enc, adder1-8, 15-
enc, adder0-5) and by 5.7% to 74.7% (rd73, adder1-
8, 15-enc, adder0-5, 7-enc), respectively. However,
for other benchmarks, the benefits from smart initial
placements disappear on both qubit architectures.

17

