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Abstract

Researchers at Delft University of Technology have recently developed an algorithm for opti-
mizing noisy, expensive and possibly nonconvex objective functions for which no derivatives
are available. The data-based online nonlinear extremum-seeker (DONE) was originally devel-
oped for sensorless wavefront aberration correction in optical coherence tomography (OCT)
and optical beam forming network (OBFN) tuning. In order to make the DONE algo-
rithm suitable for large-scale problems, a parallel implementation using a graphics processing
unit (GPU) is considered. This master thesis aims to develop such a parallel implementation
which performs faster than the existing sequential implementation without much change in
obtained accuracy. Since OBFN tuning is a problem that may involve a large amount of
parameters, an OBFN simulation is to be used to compare the parallel implementation to the
sequential implementation. The key of the DONE algorithm is solving a regularized linear
least-squares problem in order to construct a smooth and low-cost surrogate function which
does provide derivatives and can be optimized fairly easily. This master thesis first discusses
the basics of parallel computing, after which several linear least-squares methods and several
numerical optimization methods are investigated. These methods are compared and the most
suitable methods for parallel computing are implemented and tested for increasing dimen-
sions. The final parallel DONE implementation combines the recursive least-squares (RLS)
method with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and optimizes the large-
scale OBFN simulation almost twice as fast as the sequential DONE implementation, without
much change in obtained accuracy.
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Chapter 1

Introduction

The DONE algorithm

Researchers at Delft University of Technology have recently developed an algorithm for op-
timizing objective functions that can be measured in practice but are difficult to model
[1, 2, 3]. The objective function in question may be expensive, noisy and nonconvex. More-
over no derivatives are available, which classifies the algorithm as a derivative-free optimiza-
tion algorithm [4]. The algorithm is referred to as data-based online nonlinear extremum-
seeker (DONE) and aims to converge to the global optimum on a predefined domain, within a
minimal amount of function evaluations. Possible applications for the algorithm are sensorless
wavefront aberration correction in optical coherence tomography (OCT) [2] and tuning of an
optical beam forming network (OBFN) [3].
The derivative-free character of the DONE algorithm is useful for objective functions that
represent the performance of a simulation or an experimental application. In these situations
an analytical expression for the derivative is not available and approximating derivatives
with finite difference computations is either very expensive, in case the measurements are
expensive, or it does not provide reliable results, in case the measurements are noisy. The
online character of the DONE algorithm allows immediate achievement of results, which
improve in accuracy as the amount of measurements increases [1].
The key of the DONE algorithm is constructing a surrogate function using a random Fourier
expansion (RFE) [5]. This surrogate function does provide derivatives and can be optimized
fairly easily using standard numerical optimization methods [6], after which the found op-
timum is used to acquire a new measurement. In order to deal with possible nonconvexity,
random exploration steps are added to evaluation points.
Since practical optimization problems may consist of a large amount of parameters, the com-
putations required to perform a single cycle of the DONE algorithm may become very com-
putationally expensive. Moreover, when the amount of parameters increases, inevitably the
amount of required cycles increases as well. Hence performing the DONE algorithm for large-
scale problems may require a lot of time. A parallel implementation of the DONE algorithm
may yield an improvement in this case.
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2 Introduction

Parallel computing has recently gained a large amount of interest since sequential computing
does not seem to have much more improvement possibilities with respect to computation
speed whereas parallel computing does [7, 8]. A commonly used device for parallel computing
is a graphics processing unit (GPU). Originally GPUs were designed for rendering high-
resolution graphics at high frame rates, however nowadays they are becoming more and more
used in scientific computing as well [9]. Where a central processing unit (CPU) performs
computations sequentially, a GPU performs them simultaneously. For large-scale problems,
using a GPU may result in a large speed-up with respect to only using a CPU. A commonly
used platform for parallel computing is the compute unified device architecture (CUDA)
platform, which is developed by NVIDIA R© [10, 11].

Research questions

The goal of this thesis is to come up with a parallel implementation of the DONE algorithm
on a GPU using CUDA [9, 10, 11]. Moreover the parallel implementation must be proven
to require less run time for a practical large-scale problem than the existing sequential im-
plementation, while maintaining similar accuracy of results. In order to achieve this goal, a
main research question and several sub-questions are to be answered:

What are the possibilities of parallelization of the DONE algorithm by means of
implementing it on a GPU using CUDA, with the focus on achieving a maximum
speed-up factor for large-scale problems, with respect to the existing sequential
implementation, while maintaining correct results?

1. In which scenario is the DONE algorithm used and in which scenario can a parallel
DONE implementation be useful?

2. What are the core elements of the DONE algorithm?
3. How can the DONE algorithm be classified and which other algorithms belong to

the same classification?
4. What are the key concepts of parallel computing on a GPU using CUDA?
5. What are the criteria that determine whether or not a numerical method is suitable

for parallel computing?
6. What are the available numerical methods that can be used for the core elements

and how do they compare with respect to the established criteria?
7. What are the criteria that are important for comparison between sequential and

parallel implementations of the selected methods?
8. Which of the selected methods perform best according to the established criteria?
9. How does the acquired parallel implementation of the DONE algorithm compare

to the existing sequential implementation?
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3

Report structure

The sub-questions are to be used as a guideline for the project. The scenario for the sequen-
tial and parallel DONE algorithm is discussed in Chapter 2. Chapter 3 discusses the core
elements of the DONE algorithm and its classification among other methodology. The key
concepts of parallel computing and the parallel computing criteria are discussed in Chapter
4. In Chapters 5 and 6 the available numericals methods for the core elements are discussed
and they are judged based on the established criteria. Subsequently the implementation
of the selected numerical methods is discussed in Chapter 7. Once the implementation is
completed successfully, the implementations are to be tested using several experiments and
judged based on several experiment criteria, which are discussed in Chapter 8. The results
of these experiments are discussed in Chapter 9. Finally, Chapters 10 and 11 summarize the
answers to the sub-questions and answer the main research question. Also an evaluation and
recommendations for future work are presented.
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Chapter 2

Scenario Description

This chapter describes the scenario in which the DONE algorithm can be used and extends this
scenario to include situations in which a parallel implementation of the DONE algorithm may
be useful. DONE stands for data-based online nonlinear extremum-seeker and is developed
for solving the optimization problem

min
xxx

f(xxx) s.t. xxx ∈ X , (2-1)

where f : Rn 7→ R and X ⊂ Rn. This is the basic description, however the DONE algo-
rithm is developed for the specific situation where no derivatives are available and function
evaluations are noisy and expensive. Here noisy means that there are slight variations be-
tween multiple measurements at the same point and expensive means that measurements are
money-consuming, time-consuming or both. The DONE algorithm also has some tools to
deal with nonconvexity, however this is not one of its main focus points [1].

The DONE algorithm aims to solve the optimization problem (2-1) within as few function
evaluations as possible. It does this by applying function fitting in combination with opti-
mization. A characteristic of the DONE algorithm is that is has a fixed computation time
per cycle. Special structures or sparsity are not exploited. The DONE algorithm can be used
in any situation that meets the description above, however it was originally developed for
sensorless wavefront aberration correction in optical coherence tomography (OCT) [2] and
optical beam forming network (OBFN) tuning [3].

Since OBFN tuning is an application that may involve dimensions of the order n > 100
and function evaluations are expensive, running the DONE algorithm may take a lot of time
for this application. This is due to the fact that the computations that are required for
the DONE algorithm depend strongly on the dimension n and the fact that increasing the
dimension of an optimization problem also increases the required amount of optimization
cycles. A detailed explanation of how the dimension n is related to the required operations
for the DONE algorithm is given in Chapter 3.
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6 Scenario Description

Recently, parallel computing has been gaining more and more interest, since it has very good
possibilities of speeding up existing technology and because sequential computing appears to
have reached its computation speed limit [7, 8, 9]. Especially for large-scale problems parallel
computing may yield a large speed-up, therefore a parallel DONE implementation may be
able to perform OBFN tuning faster than the current sequential DONE implementation.
Figure 2-1 shows a summary of the scenario in which the DONE algorithm can be used and
the scenario in which a parallel implementation of the DONE algorithm may be useful.

Optimization problem?

Derivatives unknown? Gradient-based methods

Noise? Finite differences

Expensive? Filtering

Large-scale? Sequential DONE

Parallel DONE

Figure 2-1: Scenario for using the DONE algorithm [1]. If the answer is ‘yes’ follow the arrows
downward, if the answer is ‘no’ switch from the left column to the right column and follow the
arrows upward.

Naturally, DONE is not the only method that exists for solving a derivative-free optimization
problem. Derivative-free optimization is a difficult task, to which already a lot of research
has been devoted [4]. The DONE algorithm can be classified as a model-based derivative-free
optimization algorithm. The model that is used is however not based on dynamical properties,
but solely on available data, which explains the contrasting term “data-based” in the acronym
DONE.
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Chapter 3

The DONE Algorithm

This chapter discusses the core elements of the DONE algorithm. DONE is developed for
optimizing any objective function f : Rn 7→ R that is noisy, expensive and possibly noncon-
vex, moreover neither analytical derivatives, nor numerical derivatives are available [1]. The
problem at hand is denoted by (2-1) where the feasible region X ⊂ Rn is defined by a lower
bound xxxlb ∈ Rn and an upper bound xxxub ∈ Rn, ensuring that

xxxlb ≤ xxx ≤ xxxub ∀ xxx ∈ X , (3-1)

where the ≤ operator is an element-wise operator.

3-1 Flowchart

Figure 3-1 shows a flowchart representing the DONE algorithm. Each cycle a surrogate
function f̂i : Rn 7→ R is constructed based on available measurements, where i ∈ Z counts
the amount of cycles and measurements. Consequently, per cycle a single measurement is
obtained. Contrary to the objective function, the surrogate function is smooth, low-cost and
does provide derivatives, hence it can be optimized in a rather simple fashion. Subsequently
a new measurement is acquired and the procedure is repeated, ultimately converging to the
optimum. The surrogate function f̂i may however be nonconvex within X , hence multiple
local optima may exist. To prevent getting stuck in a local optimum, DONE adds small
perturbations to the evaluation points.

3-2 RFE Fitting

The DONE algorithm constructs a surrogate function f̂i using a random Fourier expansion
(RFE) [5], which can be interpreted as a single-layered neural network [12, 13] with randomly
selected weights and biases and a trigonometric activation function.

Master of Science Thesis J.H.T. Munnix



8 The DONE Algorithm

Set parameters

Determine problem dimen-
sions and starting point.

Initialization

Define required vari-
ables for the algorithm.

Function evaluation

Take a measurement
at the current point.

RFE fitting

Construct a surrogate
function based on current

and previous measurements.

Exploration

Add a random perturba-
tion to the current point.

Optimization

Optimize the surrogate
function starting from
the perturbed point.

Output

Store found optimal point.

Exploration

Add a random perturbation
to the found optimal point.

Next cycle

Set perturbed optimal point
to be the current point.

Figure 3-1: This flowchart represents the DONE algorithm. The dark shaded steps are the core
elements and the steps which are susceptible for parallel computing.

In this case, a neural network with n ∈ Z inputs and a single output is considered, making
it suitable as a surrogate function for the objective function f . The single-layered neural
network ψ : Rn 7→ R with m ∈ Z neurons and activation function ϕ : R 7→ R is denoted by

ψ(xxx) =
m∑
j=1

wjϕ(ωωωTj xxx+ bj) = wwwTϕ(ΩΩΩTxxx+ bbb), (3-2)

where the respective input weights, biases and output weights are represented by

ΩΩΩ =
[
ωωω1 . . . ωωωm

]
, bbb =

[
b1 . . . bm

]T
, www =

[
w1 . . . wm

]T
.

Every time a new set of input and output measurements {xxxi ∈ X , yi ∈ R} becomes available,
the weights and biases can be determined by the nonlinear least-squares problem

argmin
ΩΩΩ,bbb,wwwi

||yyyi −ψψψi||22 , (3-3)
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where all measurements are gathered into

yyyi =
[
y1 . . . yi

]T
, ψψψi =

[
ψ(xxx1) . . . ψ(xxxi)

]T
.

For standard neural networks, this problem is often solved using nonlinear optimization meth-
ods [13]. For the RFE however, the entries of ΩΩΩ ∈ Rn×m and bbb ∈ Rm are not optimized but
drawn from a certain probability distribution. By defining

aaai =


ϕ(ωωωT1 xxxi + b1)

...
ϕ(ωωωTmxxxi + bm)

 = ϕ(ΩΩΩTxxxi + bbb), (3-4)

AAAi =


ϕ(ωωωT1 xxx1 + b1) . . . ϕ(ωωωTmxxx1 + bm)

... . . . ...
ϕ(ωωωT1 xxxi + b1) . . . ϕ(ωωωTmxxxi + bm)

 =


aaaT1
...
aaaTi

 , (3-5)

where AAAi ∈ Ri×m now only contains known data, the optimal output weight vector wwwi ∈ Rm
can be determined by the regularized linear least-squares problem

wwwi = argmin
www

Ji(www), (3-6)

Ji(www) = ||yyyi −AAAiwww||22 + λ ||www||22 , (3-7)

where Ji : Rm 7→ R is the least-squares cost function and λ ∈ R is the regularization parameter
[14]. This procedure yields a surprisingly good surrogate function if the activation function is
chosen to be an infinitely differentiable function [12]. Moreover this procedure is much faster
and less complex than fully optimizing the weights and biases using the nonlinear least-squares
problem (3-3) [15]. By choosing the activation function to be

ϕ(ωωωTj xxxi + bj) = cos(ωωωTj xxxi + bj), (3-8)

which is infinitely differentiable, and by drawing ωωωj ∼ N (000n, σ2
ωωωIIIn) and bj ∼ U(0, 2π), where

N indicates a normal probability distribution with a mean and a covariance respectively and
U indicates a uniform probability distribution with a lower and an upper bound respectively,
the value of σωωω can be chosen such that the output of the surrogate function only contains
frequencies from a desired frequency range [1]. Now the surrogate function is denoted by

f̂i(xxx) = wwwTi cos(ΩΩΩTxxx+ bbb). (3-9)

Contrary to the objective function f , the surrogate function f̂i is not expensive, not noisy
and does provide derivatives (3-12). It may however still be nonconvex, which is important
to keep in mind.
From here on, in order to fit into the RFE framework, ΩΩΩ will be referred to as the frequency
matrix, bbb will be referred to as the phase vector, www will be referred to as the weight vector
and m will be referred to as the amount of Fourier features.
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10 The DONE Algorithm

3-3 Optimization

Since the DONE algorithm optimizes the surrogate function f̂i instead of the objective func-
tion f , the optimization problem denoted by

xxxi+1 = argmin
xxx

f̂i(xxx) s.t. xxx ∈ X , (3-10)

f̂i(xxx) = wwwTi cos(ΩΩΩTxxx+ bbb) (3-11)

is the problem that has to be solved every ith cycle. The surrogate function f̂i does provide
derivatives, for instance the gradient and Hessian are denoted by

∇xxxf̂i(xxx) = −ΩΩΩ diag(wwwi) sin(ΩΩΩTxxx+ bbb), (3-12)
∇2
xxxf̂i(xxx) = −ΩΩΩdiag(wwwi) diag(cos(ΩΩΩTxxx+ bbb))ΩΩΩT . (3-13)

Here the diag() operator transforms a vector into a diagonal matrix, which ensures that the
gradient and Hessian have the proper dimensions.

3-4 Exploration

Due to the possible nonconvexity of f and f̂i, multiple local optima may exist within X . To
prevent getting stuck in a local optimum, before starting the optimization step, a random
vector ζζζi ∼ N (000n, σ2

ζζζIIIn) is drawn and the current evaluation point is perturbed by

xxxi = min(max(xxxi + ζζζi,xxxlb),xxxub), (3-14)

ensuring that xxxi ∈ X and possibly jumping out of a local optimum of f̂i. Moreover in order
to determine the next evaluation point, the found optimal point xxxi+1 ∈ X is perturbed by a
randomly drawn vector ξξξi ∼ (000n, σ2

ξξξIIIn), which leads to

xxxi+1 = min(max(xxxi+1 + ξξξi,xxxlb),xxxub), (3-15)

ensuring that xxxi+1 ∈ X and possibly jumping out of a local optimum of f . By choosing large
values of σζζζ and σξξξ a rough location of the global optimum may be found and by choosing
small values of σζζζ and σξξξ a detailed location of a possibly local optimum may be found. In
practice the values are often chosen as σζζζ = σξξξ [1].
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3-5 Comparable Methodology 11

3-5 Comparable Methodology

As discussed in Chapter 2 the DONE algorithm is not the only method for performing
derivative-free optimization. Derivative-free optimization methods can be classified as ei-
ther data-based or model-based. Data-based methods, also referred to as direct methods,
determine search directions by computing values of the function f directly, whereas model-
based methods construct a surrogate function for f to guide the search process [4]. Examples
of data-based methods are the Nelder-Mead simplex (NMS) method [16], the coordinate
search (CS) method [4] and Powell’s conjugate directions (PCD) method [17]. Examples of
model-based methods are NEWUOA [18] (acronym not specified in literature), Bayesian op-
timization [19] and DONE. As discussed in Chapter 2 this classification is despite the fact
that DONE stands for data-based online nonlinear extremum-seeker.

Data-based methods

The NMS method uses a set of n+1 points from which a so-called simplex can be constructed.
For each point a measurement is taken and this information is used to replace one of the points
with a new point with a lower function value. This procedure is repeated until a local optimum
is reached [4, 6, 16]. Figure 3-2a illustrates the NMS method

The CS method repeatedly optimizes a function along each of its coordinate directions using
an exact or inexact line search method [6]. The coordinate search method is very similar to
the gradient descent (GD) method, discussed in Section 6-3-1, except that no gradients need
to be computed [4, 6]. Figure 3-2b illustrates the CS method.

Where the coordinate search method is similar to the GD method, the PCD method is similar
to the conjugate gradient (CG) method, discussed in Section 6-3-1 as well. The PCD method
is able to construct conjugate line search directions from previously used directions, however
without requiring the computation of the gradient [6, 17]. Figure 3-2c illustrates the PCD
method.

(a) NMS method (b) CS method (c) PCD method

Figure 3-2: Data-based derivative-free optimization of a two-dimensional quadratic function
using the Nelder-Mead simplex (NMS) method, the coordinate search (CS) method and Powell’s
conjugate directions (PCD) method.

Model-based methods

NEWUOA approaches the problem in a similar fashion to the DONE algorithm. However,
instead of constructing a surrogate function using a RFE, a quadratic surrogate function
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12 The DONE Algorithm

is constructed [18]. For this quadratic surrogate function an analytical expression of the
optimum is available. Moreover some clever tricks are used to allow function fitting with only
a few measurements and to forget measurements that are no longer relevant.
Bayesian optimization is an optimization method which uses Bayes’ theorem [19]. Using a set
of available measurements, a Gaussian process approximation is obtained. The mean of this
Gaussian process can be considered as a surrogate function. It is however not the surrogate
function that is optimized in Bayesian optimization. Both the mean and the covariance
of the Gaussian process are combined in what is referred to as the acquisition function. By
optimizing this acquisition function, a trade-off is made between exploration and exploitation.
Finding points where the surrogate function has low values is referred to as exploitation,
whereas finding points where the uncertainty is high is referred to as exploration. Optimizing
the acquisition function instead of the surrogate function has the property that it aims to
minimize the number of measurements. Moreover it is likely to perform well for objective
functions with multiple local minima [19]. Figure 3-3 illustrates Bayesian optimization.

(a) Objective function after
3 measurements

(b) Objective function after
3 measurements

(c) Acquisition function after
4 measurements

(d) Acquisition function after
4 measurements

Figure 3-3: These are two steps in a one-dimensional Bayesian optimization process. The dashed
line represents the objective function, the solid line represents the mean of the Gaussian process
and the shaded areas represent the covariance of the Gaussian process and the acquisition function.

Comparison

An advantage of NEWUOA over DONE is that NEWUOA provides an analytical expression
for the optimum of the surrogate function, hence it requires no iterative optimization method.
However, this yields a disadvantage as well since the surrogate function based on a RFE used
by DONE is able to globally approximate any continuous function [20] whereas the convex
quadratic surrogate function used by NEWUOA can only do this locally [18]. A difference

J.H.T. Munnix Master of Science Thesis



3-5 Comparable Methodology 13

between NEWUOA and DONE is that NEWUOA dismisses measurements when they are no
longer relevant dan DONE does not. However when necessary this can be easily incorporated
into the DONE algorithm by using a so-called forgetting factor in the RFE fitting step [14].

A key feature of Bayesian optimization is that it optimizes an acquisition function instead of
a surrogate function. This allows for exploitation and exploration, which are very suitable
concepts for finding the global optimum of a nonconvex function. DONE applies two explo-
ration steps to achieve the same result, however the Bayesian approach may be applicable
to DONE as well. The advantage of using a Gaussian process instead of a RFE, is that the
Gaussian process is very useful for establishing the acquisition function. An advantage of
DONE over Bayesian optimization is that for DONE the computation time is independent of
the amount of measurements [1] whereas for Bayesian optimization this not the case [19].
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Chapter 4

Parallel Computing

This chapter discusses the concept of parallel computing and in which cases it may or may
not be useful. Although multiple possibilities exist for parallel computing [7], the focus lies
on graphics processing unit (GPU) programming using the platform compute unified device
architecture (CUDA) [10, 11]. Furthermore a set of criteria is established which can be used
to determine whether or not a numerical method is suitable for parallel computing.

4-1 Basic Concepts of Computing

When developing a numerical algorithm, one may want to make it as fast as possible, in order
to save time, thus save money. Hence useful pieces of information are how the time required
to run the algorithm is influenced by computation, communication and complexity.

Computation speed

Central processing unit (CPU) speed is measured by its clock frequency in clock cycles per
second (or Hertz). The amount of computations that can be performed during each clock
cycle may vary per type of CPU and the clock frequency may vary per type of CPU as well. In
order to express the computation speed in terms that are more related to numerical methods,
often the term floating-point operations per second (FLOPS) is used. The floating-point
format is used to store real numbers. This format can either be single-precision or double-
precision and, as the names suggest, double-precision floating-point numbers require twice as
much storage space as single-precision floating-point numbers [21].

The basic floating-point operations are addition, subtraction and multiplication. These op-
erations typically require one clock cycle. Division is an operation which often requires more
clock cycles than the basic floating-point operations. Therefore, when performing many di-
visions by the same number, it may be wise to compute the inverse of this number once and
use this value for multiplication [9].
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16 Parallel Computing

Communication speed

Often communications are more of a limiting factor than computations. The communication
time tsend ∈ R in seconds of u ∈ Z bits between two memory spaces is denoted by

tsend = α+ βu, (4-1)

where α ∈ R is the latency in seconds and β ∈ R is the bandwidth in seconds per bit [9].
The latency is the amount of time required to set up the connection and the bandwidth is
the amount of time required to transfer a single bit. The communication speed vsend ∈ R in
bits per second is denoted by

vsend = u

tsend
= u

α+ βu
≤ 1
β
, (4-2)

where the upper limit is reached for the ideal case where α = 0.

Computational complexity

The computational complexity of an algorithm is measured by the amount of operations
it performs. Although this is not limited to floating-point operations, the floating-point
operations do provide a good measure for numerical algorithms. Computational complexity
is always measured as a function of the limiting dimensions. For the DONE algorithm these
dimensions are the input dimension n and the amount of Fourier features m. By assuming
the problem is large-scale, the computational complexity gives a good measure for how an
algorithm performs for n→∞ and m→∞.

4-2 Basic Concepts of Parallelism

Flynn’s categories

Computers can be categorized in four categories, known as Flynn’s categories [22]:

• SISD: single instruction stream, single data stream
• SIMD: single instruction stream, multiple data stream
• MISD: multiple instruction stream, single data stream
• MIMD: multiple instruction stream, multiple data stream

Classical sequential computers can be categorized under the SISD category. Since GPUs
contain many processors, which all perform the same operation on different chunks of data,
they are an example of SIMD computing. MISD computers are rarely built and MIMD
computers are the most general form of computers, however there are few classes of problems
that require the MIMD category [9, 22].
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Degree of parallelism

The degree of parallelism D of a numerical method is defined as the number of operations
divided by the number of required parallel stages [23]. For instance the addition of two vectors
aaa ∈ Ru and bbb ∈ Ru to produce a third vector ccc ∈ Ru using

cj = aj + bj ∀ j ∈ {1, . . . , u} (4-3)

can be done using u parallel operations and only one stage is required, which results in

D = u

1 = u.

On the contrary the addition of all entries of a vector aaa ∈ Ru to produce a scalar γ ∈ R using

γ =
u∑
j=1

aj (4-4)

appears to be computable only in a sequential fashion, since the result of a1 + a2 must be
available before a1 + a2 + a3 can be computed. This results in

D = u

u
= 1.

There are clever tricks to improve the degree of parallelism, even for situations like (4-4) [23],
however no full parallelization can be obtained here. Since for many algorithms it is rather
complicated to accurately compute the degree of parallelism, from here on it is considered to
be a qualitative property instead of a quantitative property. The key element in evaluating
the degree of parallelism is the dependency between successive steps of an algorithm.

Computation time

The computation time in seconds of a numerical method executed on ρ ∈ Z parallel processors
is denoted by tρ ∈ R. For u ∈ Z operations the computation times can be computed using

t1 = uτ, (4-5)

tρ =
(
u

ρ
+ ν

)
τ, (4-6)

where τ ∈ R is the computation time in seconds required for a single operation and ν ∈ R is
an overhead factor which is due to for instance data transfers and for which typically holds
that ν > 1 [23]. Hence the relation between tρ and t1 becomes

tρ =
(1
ρ

+ ν

u

)
t1 ≥

t1
ρ
, (4-7)

where the lower bound is reached for the ideal case in which ν = 0.
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18 Parallel Computing

Run time

Since there may be confusion about what is indicated by communication time and com-
putation time, from here on the term run time is employed, which indicates all required
communications and computations for a program to run.

Speed-up factor

The speed-up factor Sρ ∈ R of a numerical method executed on ρ ∈ Z parallel processors
with respect to the same method executed on a single processor is denoted by

Sρ = t1
tρ

= u
u
ρ + ν

= uρ

u+ ρν
≤ ρ, (4-8)

where n ∈ Z is the amount of operations and ν ∈ R is the overhead factor [9, 23]. The upper
bound is reached for the ideal case in which ν = 0. After defining η ∈ [0, 1] as the fraction of
the work which is executed in parallel, the speed-up factor becomes

Sρ = t1
ηtρ + (1− η)t1

= 1
η
ρ + ην

u + 1− η ≤
1

1− η , (4-9)

where the upper bound is reached for the ideal case in which ν = 0 and ρ→∞. This means
that for instance for a parallel work fraction η = 0.9 the speed-up factor will never exceed
(1− 0.9)−1 = 10 [9].

Efficiency

The efficiency Eρ ∈ [0, 1] of a numerical method executed on ρ ∈ Z processors with respect
to the same method executed on a single processor is denoted by

Eρ = Sρ
ρ

= u

u+ ρν
≤ 1, (4-10)

where the upper bound is reached for the ideal case in which ν = 0.

Granularity

Granularity is the ratio of the amount of computation with respect to the amount of com-
munication. Fine-grained parallelism means that the required computations are divided into
small groups and communication occurs frequently, whereas coarse-grained parallelism means
that communication occurs infrequently and is separated by large chunks of computations.
Since on any computer communication is generally slower than computation, coarse-grained
parallelism yields a higher speed-up factor, by allowing the required amount of communi-
cation to hide behind the larger required amount of computation [9]. This is an important
consideration to make when deciding which parts of a numerical method are to be executed
in parallel.
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Performance gain

The most important thing to keep in mind is that parallel computing is only beneficial for
large-scale problems. As can be seen in Figure 4-1, performing a computation on a CPU is
generally faster than performing the same computation on a GPU. So only when multiple
computations are to be performed, parallel computing may yield a speed-up. However there
is also communication time to be considered. Before a GPU can perform computations, the
required data need to be available to the GPU and afterwards the results need to be sent back
to the CPU. Due to these necessities parallel computing only yields a speed-up for large-scale
problems. As discussed, fine-grained parallelism requires communication before and after
every computation and leads therefore to a smaller speed-up than coarse-grained parallelism,
which only requires communications before and after a series of computations.

Figure 4-1: In this figure, computation B depends on computation A, hence these computations
cannot be performed in parallel. In the case of pure parallelism a speed-up is very easily obtained.
In the case of fine-grained parallelism a speed-up is only obtained for large-scale problems. In the
case of coarse-grained parallelism a speed-up is obtained only for large-scale problems as well, but
as can be seen coarse-grained parallelism is more effective than fine-grained parallelism.

Master of Science Thesis J.H.T. Munnix



20 Parallel Computing

As a result of these characteristics, the run time of sequential and parallel implementations of
any numerical method have the expected profile as shown in Figure 4-2. For small dimensions
the sequential implementation will always be faster than the parallel implementation, however
there is a certain cross-over point where the parallel implementation becomes faster than the
sequential implementation. It depends on the computational complexity whether the profile
is linear, quadratic or of an even higher order.

(a) Computational complexity O(n) (b) Computational complexity O(n2)

Figure 4-2: Expected performance gain for parallel computing. For small dimensions, sequential
computing will always be faster than parallel computing. For large dimensions, parallel computing
may yield a speed-up.

4-3 GPU Architecture

GPUs were originally designed for rendering high resolution graphics at high frame rates.
However, recently GPU capabilities have gained a lot of interest in the field of scientific
computing [7]. Nowadays some GPUs are specifically designed for parallel computing in
scientific applications [24, 25]. A GPU contains a certain number of multiprocessors, which
each contain a certain numbers of cores. So-called threads, which are discussed in Section
4-4, can be executed on these cores. The CPU is referred to as the host and the GPU is
referred to as the device [9]. Although double-precision GPUs exist, most GPUs work with
single-precision [9, 24], which is why this project focusses on single-precision as well.

4-4 CUDA Programming

The compute unified device architecture (CUDA) platform is specifically developed by NVIDIA R©

[10, 11] in order to suit the GPU architecture and to gain the most out of its capabilities. A
key element for this is the use of kernels.

Kernels

In CUDA, chunks of code can be gathered in so-called kernels, which are to be executed
in parallel. A kernel can be compared to a function specified by the programmer, which
requires certain inputs and returns a certain output. Where a function call causes the code
in the function to be executed a single time, a kernel call may cause the code in the kernel
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4-4 CUDA Programming 21

to be executed many times simultaneously, each time affecting a different memory location.
In order to structure this massively parallel process of computations and communications, a
certain thread hierarchy and memory hierarchy is used, which is illustrated by Figure 4-3.

4-4-1 Thread Hierarchy

Threads

Each instance of a kernel that is executed is referred to as a thread. Current GPUs are able
to execute many thousands of threads simultaneously. Since a kernel is executed by many
threads simultaneously, it is necessary to identify threads from within the kernel [10], making
sure that each thread operates on its own part of the available data.

Blocks

Threads are organised in blocks, which can be one-, two- or three-dimensional. To identify
each thread within a block, the threadIdx and blockDim variables are available. On current
GPUs the maximum amount of threads per block is 1024 [10].

Grids

Blocks are organized in grids, which can also be one-, two- or three-dimensional. To identify
each block within a grid, the blockIdx and gridDim variables are available. When calling a
kernel, the block dimensions and the grid dimensions must be specified to make sure every
thread has access to the correct memory location [10].

Figure 4-3: This CUDA thread and memory hierarchy example consists of a single grid containing
three blocks, each containing six threads [10]. The right section is a more detailed representation
of one of the blocks in the left section. The arrows represent communication possibilities.
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Streams

The discussed hierarchy is designed to effectively perform parallel computations. When doing
parallel computing, it is important that operations are synchronized at the right moments,
in order to make sure that data are not being transferred to and from the same location at
the same time. As a rule synchronization occurs before and after every CPU computation,
every memory copy, every kernel call and every other CUDA command. Hence the only
parallelism in standard CUDA code occurs either in the user-programmed kernels or in the
pre-programmed CUDA commands. When more parallelism is desired, streams can be used
in order to perform multiple kernels, CUDA commands or even memory copies at the same
time. In this case it is important of course, to accurately track all operations and make sure
that no conflicts occur between different communications and computations. In other words
it is recommended to use streams for completely separate parts of an algorithm, that have no
interdependency.

4-4-2 Memory Hierarchy

In order to allow threads, blocks, grids and streams to effectively deal with memory storage
and communication, different memory locations on the GPU can be used. These memory
locations are shown in Figure 4-3 as well.

Register memory

Threads have access to their own on-chip register memory. Because it is on-chip, register
memory is very fast, moreover it has the same lifetime as the thread itself. Therefore, before
computation, data need to be acquired from the shared memory or the global memory and
after computation, data need to be transferred back to the shared memory or the global
memory [10, 9].

Shared memory

Threads within a block can cooperate by sharing data through the on-chip shared memory.
Because it is on-chip, shared memory is also very fast, moreover it has the same lifetime as
the block itself. Therefore, before computation, data need to be acquired from the global
memory and after computation, data need to be transferred back to the global memory [10].

Global memory

Global memory resides in the device memory and is accessible by all blocks and therefore by
all threads as well. Since it is not on-chip, global memory has a much higher latency and
much lower bandwidth than shared memory [10, 9].
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Constant and texture memory

Constant and texture memory both reside in the device memory and are therefore just as
slow as the global memory. They are accessible by all blocks and therefore by all threads
as well, however they are read-only. In some specific cases, accessing data via the texture
memory may have advantages over accessing data via the global memory [10].

Local memory

Every thread has some private local memory space assigned to it, which resides in the device
memory. Local memory accesses only occur for some automatic variables or when the register
memory is full. Since register memory is much faster than local memory, it is preferable to
avoid the use of local memory [10].

Host memory

Since data transfer between host memory and device memory is very slow, it should be kept
at a minimum level. This can be achieved for instance by moving more code from the host
to the device, even if that means executing kernels with low parallelism. Intermediate data
structures may be created in device memory, operated on by the device, and destroyed without
ever being copied to host memory. Also, because of the overhead associated with each transfer,
batching many small transfers into a single large transfer always performs better than making
each transfer separately [10].

Naturally, there is a limit to the amount of storage space on the GPU. Since the device
memory is the largest memory space, this is the limiting factor. Hence there is always a trade-
off between avoiding communication between host and device and the amount of available
storage space on the device.

4-5 Relevant Tools

There are many tools available for efficiently performing computations, both sequentially
and in parallel. For performing the basic linear algebra subprograms (BLAS) a C library is
available at http://www.netlib.org/blas called CBLAS and a CUDA library is available
called CUBLAS [26]. Since BLAS libraries are highly optimized, it is always recommended to
use these libraries rather than programming manual linear algebra routines. Another library
that may be useful is DLIB, available at http://www.dlib.net. This C++ library consists of
many useful tools, among which a package dedicated to optimization. Also CUDA has some
libraries available for these purposes, for instance the CUSOLVER library consists of some
linear optimization tools [27]. Finally pseudo-random number generation is an important
aspect of the DONE algorithm. The CURAND library is able to generate large amounts of
pseudo-random numbers using parallel computing [28].
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4-6 Recent Developments

The reason that parallel computing has so much more promise for the future than sequential
computing, is that CPU clock rate developments seem to be reaching a limit [7, 8] whereas
GPU developments are still in full progress [24, 25]. Moreover CPU capacities can only be
improved by improving the clock rate whereas GPU capacities can be improved by improving
the clock rate and, more importantly, also by increasing the amount of cores. Figure 4-4a
shows the clock rate improvements of Intel R© CPUs over various releases and also the amount
of cores. As can be seen, in order to improve CPU capacities, the multi-core approach is
applied as well. Figure 4-4b shows the clock rate improvements of NVIDIA R© GPUs over
various releases and also the amount of cores and memory space.

(a) CPU developments (b) GPU developments

Figure 4-4: Recent developments in CPU and GPU production. The releases that are referred
to are listed in Table 4-1.

As can be seen GPU clock rates are still below CPU clock rates, but as discussed in Section
4-2 it is not the clock rate that makes a GPU such a powerful tool but the massive parallelism
that is a result of the large amount of cores. Furthermore the CPU clock rate trend seems
to be that less improvement is made every year [7]. Where CPU clock rates used to improve
with 52% per year, recently this has diminished to 22% per year [8]. As can be seen in
Figure 4-4 the CPU clock rate indeed seems to be reaching its limit whereas the GPU clock
rate and the amount of cores are both still increasing. Physically, it may be expectable
that all clock rates should eventually have an upper limit, whereas the amount of cores can
be extended unlimitedly. This is why parallel computing is so much more promising than
sequential computing. Moreover as can be seen in Figure 4-4b also the available memory on
GPUs increases very rapidly, which allows the large amounts of cores to be used to their full
capacity. Table 4-1 lists which releases are referred to by Figure 4-4 and where the information
originates from.

4-7 Parallel Computing Criteria

Based on the theory discussed in this chapter, several criteria are established which measure
the suitability of a numerical method for parallel computing. Numerical methods that are
candidates for parallel computing should be judged based on the following criteria:
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• Computational complexity
• Degree of parallelism
• Required memory storage

This should help deciding which of the methods are suitable for further research and possible
implementation and which of them are not. It may be interesting to find out if a trade-off
between these criteria may lead to an unexpected best performing method.

CPU releases GPU releases
Legacy Intel R© CoreTM2 NVIDIA R© GeForce R© GTX 280
Legacy Intel R© Celeron R© NVIDIA R© GeForce R© GTX 480
Intel R© Celeron R© NVIDIA R© GeForce R© GTX 580
Legacy Intel R© Pentium R© NVIDIA R© GeForce R© GTX 680
Intel R© Pentium R© NVIDIA R© GeForce R© GTX 780
Intel R© AtomTM NVIDIA R© GeForce R© GTX 980
Previous Generation Intel R© CoreTM i3, i5, i7 NVIDIA R© GeForce R© GTX 1080
Previous Generation Intel R© CoreTM i7 Extreme
2nd Generation Intel R© CoreTM i3, i5, i7
3rd Generation Intel R© CoreTM i3, i5, i7
4th Generation Intel R© CoreTM i3, i5, i7
5th Generation Intel R© CoreTM i5, i7
6th Generation Intel R© CoreTM i3, i5, i7
High End Desktop Processors

Table 4-1: Recent CPU and GPU releases by Intel R© and NVIDIA R© respectively. The CPU
information originates from http://ark.intel.com and the GPU information originates from
http://www.geforce.com/hardware/desktop-gpus. For each CPU release the version at the
top of the list is used in Figure 4-4a.
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Chapter 5

RFE Fitting

This chapter discusses the RFE fitting step of the DONE algorithm, shown in Figure 5-1.
Several methods are presented to solve the regularized linear least-squares problem (3-6, 3-7)
which is established in Section 3-2 and is denoted by

wwwi = argmin
www

Ji(www), (5-1)

Ji(www) = ||yyyi −AAAiwww||22 + λ ||www||22 , (5-2)

where AAAi ∈ Ri×m and yyyi ∈ Ri are augmented every ith cycle of the DONE algorithm with a
new set of measurements {xxxi ∈ X , yi ∈ R}. The goal of the RFE fitting step is to determine
the optimal weight vector wwwi in order to establish the surrogate function f̂i that is to be
optimized in the optimization step.

Set parameters Initialization

Function evaluation

RFE fitting

Exploration

Optimization

Output

Exploration

Next cycle

Figure 5-1: In this flowchart of the DONE algorithm, the RFE fitting step is dark shaded. For a
more elaborate flowchart, see Figure 3-1
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28 RFE Fitting

5-1 Least-Squares Strategy

5-1-1 Optimization-Based Methods

An important remark is that the regularized linear least-squares cost function (5-2) can also
be denoted by

Ji(www) = wwwT (AAATi AAAi + λIIIm)www − 2wwwTAAATi yyyi + yyyTi yyyi (5-3)
= wwwTΦΦΦiwww − 2wwwTsssi + yyyTi yyyi,

from which it immediately becomes clear that it is a quadratic function. The gradient and
Hessian are denoted by

∇wwwJi(www) = 2ΦΦΦiwww − 2sssi, (5-4)
∇2
wwwJi(www) = 2ΦΦΦi, (5-5)

where the Hessian is symmetric and positive-definite, indicating that the cost function (5-3)
is not only quadratic, but also convex. Hence the optimal weight vector wwwi can easily be
computed using the optimization methods discussed in Chapter 6. The methods which are
suitable for this problem are:

• Gradient descent (GD)
• Nesterov’s accelerated gradient descent (NGD)
• Linear Fletcher-Reeves (LFR)
• Nonlinear Fletcher-Reeves (NFR)
• Davidon-Fletcher-Powell (DFP)
• Broyden-Fletcher-Goldfarb-Shanno (BFGS)
• Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

The methods that are not in this list are Newton (N) and Levenberg-Marquardt (LM). It
seems a bit redundant to use methods that perform Hessian inversions iteratively in order to
solve a problem which only requires a single Hessian inversion to obtain the solution (5-6).

5-1-2 Recursive Methods

The solution to the regularized linear least-squares problem (5-1, 5-2) is denoted by

wwwi = (AAATi AAAi + λIIIm)−1AAATi yyyi = ΦΦΦ−1
i sssi, (5-6)

which corresponds to solving a set of linear equations. Since yyyi ∈ Ri and AAAi ∈ Ri×m do not
completely change every cycle, but are merely augmented using
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yyyi =
[
yyyTi−1 yi

]T
, AAAi =

[
AAAi−1

aaaTi

]
,

it is not necessary to solve the full regularized linear least-squares problem every cycle. The
update relations are denoted by

ΦΦΦi = ΦΦΦi−1 + aaaiaaa
T
i , (5-7)

sssi = sssi−1 + aaaiyi, (5-8)

where ΦΦΦi ∈ Rm×m and sssi ∈ Rm do not change in size when an extra measurement is added
[14]. Using these update relations the solution (5-6) can be computed every cycle in a very
efficient, recursive fashion.

Recursive least-squares method

By defining PPP i = ΦΦΦ−1
i and gggi = ΦΦΦ−1

i aaai and starting off with

PPP 0 = λ−1IIIm, www0 = 000m,

the recursive least-squares (RLS) solution can be computed using

γi = (1 + aaaTi PPP i−1aaai)−1, (5-9)
gggi = γiPPP i−1aaai, (5-10)

PPP i = PPP i−1 − γ−1
i gggiggg

T
i , (5-11)

wwwi = wwwi−1 − gggiaaaTi wwwi−1 + gggiyi, (5-12)

which allows quick computation of the optimal weight vector wwwi without having to solve the
full linear least-squares problem (5-1, 5-2) and without having to compute any matrix inverse
or solve a set of linear equations [14].

In applications where temporal aspects play a big role, it may be useful to implement a so-
called forgetting factor, which puts a decaying weight on previous measurements. For the
DONE algorithm this may be useful if older measurements become out of scope and are no
longer representative for the current situation.

Inverse QR method

The recursive least-squares computations (5-9, 5-10, 5-11) can also be expressed as

 1 aaaTi PPP
1
2
i−1

000m PPP
1
2
i−1

 1 000Tm
PPP

T
2
i−1aaai PPP

T
2
i−1

 =

 γ
− 1

2
i 000Tm

gggiγ
− 1

2
i PPP

1
2
i

γ− 1
2

i gggTi γ
− 1

2
i

000m PPP
T
2
i

 , (5-13)
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which can be interpreted as the orthogonal matrix rotation

 1 aaaTi PPP
1
2
i−1

000m PPP
1
2
i−1

ΘΘΘ =

 γ
− 1

2
i 000Tm

gggiγ
− 1

2
i PPP

1
2
i

 , (5-14)

where ΘΘΘ ∈ R(m+1)×(m+1) is an orthogonal rotation matrix which transforms the upper tri-
angular matrix on the left into the lower triangular matrix on the right. This is referred to
as the inverse QR (IQR) method [14]. Note that the upper triangular matrix only contains
entries which are known at the ith cycle, whereas the lower triangular matrix contains entries
which are required to compute wwwi using (5-12). An advantage of this method is that it does
not matter how the orthogonal rotation (5-14) is performed, this can be done in many ways
[14, 29]. The rotation matrix ΘΘΘ can for instance be computed by performing a QR decomposi-
tion [1, 29] or the rotation can be performed using Givens rotations, without even computing
an explicit expression for ΘΘΘ [14, 29].

Since the (lower triangular) square root factor PPP
1
2
i ∈ Rm×m is used, the matrix PPP i = PPP

1
2
i PPP

T
2
i

will always be positive-definite. This makes the inverse QR method more numerically stable
than the standard recursive least-squares method, where PPP i ∈ Rm×m can lose its positive-
definiteness due to numerical inaccuracies [14].

QR method

The QR method is very similar to the IQR method, the difference is that ΦΦΦi is computed
instead of PPP i. This is desirable when λ becomes very large, causing the initial matrix PPP 0 to
become very small. The QR method uses the matrix transformation denoted by


ΦΦΦ

1
2
i−1 aaai

wwwTi−1ΦΦΦ
1
2
i−1 yi

000Tm 1

ΘΘΘ =


ΦΦΦ

1
2
i 000m

wwwTi ΦΦΦ
1
2
i (yi − aaaTi wwwi)γ

1
2
i

aaaTi ΦΦΦ−
T
2

i γ
1
2
i

 , (5-15)

where all entries of the lower triangular matrix on the left are known at the ith cycle and only
the upper left entry and the middle left entry of the upper triangular matrix on the right are
required to compute wwwi. A disadvantage of the QR methods is that a lower triangular set
of linear equations needs to be solved in order to compute the solution whereas the inverse
QR method only requires straightforward matrix and vector computations. This problem can
be overcome by extending the matrices used in the transformation (5-15), however this may
lead to numerical complications [14]. The orthogonal rotation can be performed in a similar
fashion to the inverse QR method.

5-2 Comparison

As discussed in Section 5-1-1 it is not useful to use the Newton method or the Levenberg-
Marquardt method in this case, therefore these methods are not taken into account for the
comparison. Furthermore the conversion of the measurements
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aaai = cos(ΩΩΩTxxxi + bbb) (5-16)

from xxxi ∈ X to aaai ∈ A, where A ⊆ Rm, is required for every RFE fitting method, hence this is
not taken into account for the comparison either. Table 5-1 lists the ranking of all discussed
RFE fitting methods based on the parallel computing criteria established in Section 4-7.
The primary computations are the computations that are inherent to the methods and the
secondary computations are the computations that are required to compute gradient values
(5-4). Note that the RLS, IQR and QR methods do not require any secondary computations.

Method Primary Secondary
RLS O(m2)
IQR O(m2)
QR O(m2)
GD O(m) O(m2)
NGD O(m) O(m2)
NFR O(m) O(m2)
LFR O(m2) O(m2)
DFP O(m2) O(m2)
BFGS O(m2) O(m2)
LBFGS O(m2) O(m2)

(a) Computational complexity

Method Primary Secondary
RLS +++
IQR +++
QR +
GD +++++ +++
NGD +++++ +++
NFR +++ +++
LFR +++ +++
DFP +++ +++
BFGS +++ +++
LBFGS +++ +++

(b) Degree of parallelism

Method Primary Secondary
RLS O(m2)
IQR O(m2)
QR O(m2)
GD O(m) O(m2)
NGD O(m) O(m2)
NFR O(m) O(m2)
LFR O(m) O(m2)
DFP O(m2) O(m2)
BFGS O(m2) O(m2)
LBFGS O(m) O(m2)

(c) Memory storage

Method Suitability
RLS Yes
IQR Yes
QR No
GD Yes
NGD Yes
NFR Yes
LFR Yes
DFP No
BFGS No
LBFGS No

(d) Overall suitability

Table 5-1: RFE fitting methods judged based on parallel computing criteria. The primary columns
indicate the inherent properties of the methods, the secondary columns indicate the properties
that are imposed by gradient computations (5-4).
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Computational complexity

Primarily all methods except for the first-order optimization-based methods have compu-
tational complexity O(m2). However due to the gradient computation (5-4) all optimiza-
tion methods (secondarily) have computational complexity O(m2), so although first-order
optimization-based methods primarily appear to be the better choice, secondarily this is not
the case. Note that the recursive methods do not require any secondary computations.

Degree of parallelism

Since the GD and NGD methods solely require pure vector computations, they are fully
parallelizable and thus have a very high primary degree of parallelism. Since the second-
order optimization-based methods require operations like (4-4), they have a medium primary
degree of parallelism. Since the QR method requires solving a set of linear equations, it has
a low primary degree of parallelism. The gradient computation (5-4) gives the optimization-
based methods a medium secondary degree of parallelism. For the recursive methods the
secondary degree of parallelism is not applicable.

Memory storage

Since the first-order optimization-based methods only need to store vectors and no matrices,
they primarily only require O(m) memory storage. Due to its special structure, this also
applies to the second-order optimization-based method LBFGS. All other methods primarily
require O(m2) memory storage. Since for the optimization-based methods ΦΦΦi ∈ Rm×m needs
to be stored in order to compute the gradient (5-4), secondarily O(m2) memory storage is
required anyway. For the recursive methods, the secondary memory storage is not applicable.
Note that for all methods ΩΩΩ ∈ Rn×m is needed to perform the domain conversion (5-16) and
although this is not taken into account in this comparison, for this O(mn) memory storage
is required no matter what.

Overall suitability

The QR method is dismissed based on the fact that it has a lower degree of parallelism than
its companions IQR and RLS. The DFP and BFGS methods are dismissed based on the fact
that they require both primary and secondary memory storage O(m2). Moreover it is rather
redundant to use a second-order optimization-based method which approximates an inverse
Hessian BBBk while an expression for the real Hessian (5-5) is already available in the form of
ΦΦΦi. Based on this argument, plus the fact that it is rather complicated to implement, LBFGS
is dismissed as well.
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Chapter 6

Optimization

This chapter discusses the optimization step of the DONE algorithm, which is shown in Figure
6-1. Several methods are presented to solve the optimization problem (3-10, 3-11), which is
established in Section 3-3 and is denoted by

xxxi+1 = argmin
xxx

f̂i(xxx) s.t. xxx ∈ X (6-1)

f̂i(xxx) = wwwTi cos(ΩΩΩTxxx+ bbb) (6-2)

where ΩΩΩ ∈ Rn×m and bbb ∈ Rm contain the randomly selected frequencies and phases, wwwi ∈ Rm
is the optimal weight vector constructed in the RFE fitting step and the feasible region X is
defined by a lower bound xxxlb ∈ Rn and an upper bound xxxub ∈ Rn.

Set parameters Initialization

Function evaluation

RFE fitting

Exploration

Optimization

Output

Exploration

Next cycle

Figure 6-1: In this flowchart of the DONE algorithm, the optimization step is dark shaded. For
a more elaborate flowchart, see Figure 3-1
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6-1 Optimization Strategy

Multidimensional optimization problems can be solved using two approaches, the line search
approach and the trust region approach [6]. From here on k ∈ Z is the iteration counter.

6-1-1 Line Search Approach

In the line search approach, each iteration a search direction pppk ∈ Rn is selected along which
is searched for a lower function value. This procedure simplifies the problem of optimizing
the multidimensional function f̂i : Rn 7→ R to a series of evaluations of the one-dimensional
line search function φk : R 7→ R, which is denoted by

φk(αk) = f̂i(xxxk + αkpppk), (6-3)

where αk is the size of the step taken along the search direction pppk. The best strategy is of
course to search for the optimal step size

αk = argmin
α

φk(α). (6-4)

For some functions, like quadratic functions, this can easily be accomplished, however for
most nonlinear functions this may be a time-consuming process. Luckily it suffices to select
a step size which leads to a sufficient decrease in function value [6].

6-1-2 Trust Region Approach

In the trust region approach, a model function ϑk : Rn 7→ R is constructed whose behaviour
near the current point xxxk is similar to that of the actual function f̂i : Rn 7→ R. The model
function ϑk is often chosen to be a quadratic function, of which the exact optimum can
be computed analytically. This model is however only valid in a certain region around the
current point xxxk, which is called the trust region. If the optimum of the model function does
not produce a sufficient decrease in the actual function value, the trust region is probably
too large and is therefore shrunk, after which the procedure is repeated. When a sufficient
decrease in function value is reached, a new model function ϑk+1 is constructed around the
new point xxxk+1 [6].

6-1-3 Comparison

One may point out that the trust region approach can be compared to the DONE algorithm
itself, except that the model function is in this case not quadratic and no derivatives can
be used to construct it. Hence it would be rather ineffective to use a trust region approach
to optimize the surrogate function f̂i : Rn 7→ R, which is already a model of the objective
function f : Rn 7→ R. Moreover the trust region approach requires the optimum of the model
function to be computed analytically, which comes down to solving a set of linear equations.
For large values of n this becomes a very large problem which may be very time-consuming.
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A benefit of the line search approach is that, no matter how large n becomes, the line search
function φk remains one-dimensional. Moreover, no exact minima need to computed what-
soever. Even with a step size that only leads to little decrease of the function value, the
procedure will eventually converge to the optimum. Hence the line search approach allows
the problem at hand (6-1, 6-2) to be solved in a much more efficient fashion than the trust
region approach. For this reason, the trust region approach will not be considered any further.

6-2 Step Size Selection

An important aspect of the line search approach, one which has a very large influence on the
convergence rate of the optimization method, is the selection of the step size αk. As discussed
in Section 6-1-1, it is preferable to select the step size such that the line search function φk is
exactly minimized. However since this may be very time-consuming, less efficient step sizes
may be considered as well.

6-2-1 Fixed Step Size

The most simple approach is to select a fixed step size α in advance. This step size is then
used throughout the entire optimization procedure. The benefit of this approach is that no
extra computations are required during the iterations. Function values do not even need to
be computed at all. The only required operation is

xxxk+1 = xxxk + αpppk, (6-5)

after which a new search direction pppk can be chosen and the next iteration can be started.
A disadvantage of this approach is that the step size may either be too large, resulting in an
increase in function value and thus destroying the convergence, or too small, resulting in a
series of many very small steps where one larger step would have been sufficient.

6-2-2 Wolfe Conditions

In order to deal with the problems that arise when the step size is not properly chosen, the
Wolfe conditions can be taken into account [6]. These conditions may ensure that the step
size is chosen such that convergence is guaranteed within an acceptable amount of iterations.
The Wolfe conditions are denoted by

f̂i(xxxk + αkpppk) ≤ f̂i(xxxk) + c1αkppp
T
k∇xxxf̂i(xxxk), (6-6)

pppTk∇xxxf̂i(xxxk + αkpppk) ≥ c2ppp
T
k∇xxxf̂i(xxxk), (6-7)

where c1 ∈ [0, 1] and c2 ∈ [0, 1] are predefined constants. The first condition is called the
sufficient decrease condition and also sometimes the Armijo condition [6, 30], the second
condition is called the curvature condition [6]. In order to acquire a better understanding of
the Wolfe conditions, they can be transformed into
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φk(αk) ≤ φk(0) + c1αkφ
′
k(0), (6-8)

φ′k(αk) ≥ c2φ
′
k(0), (6-9)

where φk is the line search function discussed in Section 6-1-1 and φ′k is its derivative with
respect to αk. Hence the sufficient decrease condition (6-6, 6-8) dismisses too large step sizes,
as shown in Figure 6-2, and the curvature condition (6-7, 6-9) dismisses too small step sizes,
as shown in Figure 6-3. Note that in these examples c1 = c2.

Figure 6-2: The blue parabola represents φk, the left vertical dashed black line represents αk = 0
and the right vertical dashed black line represents any chosen αk > 0. For too large values of
αk (left subfigure) the yellow upward pointing triangle, which represents φk(0) + c1αkφ

′
k(0), lies

below the blue downward pointing triangle, which represents φk(αk). For sufficiently small values
of αk (right subfigure) the sufficient decrease condition (6-6, 6-8) is satisfied.

Figure 6-3: The blue parabola represents φk, the left vertical dashed black line represents αk = 0
and the right vertical dashed black line represents any chosen αk > 0. For too small values of αk
(left subfigure) the slope φ′k(αk) of the green tangent line is less than the slope c2φ

′
k(0) of the

yellow dashed line. For sufficiently large values of αk (right subfigure) the curvature condition
(6-7, 6-9) is satisfied. Note that some of the slopes are negative in this example.
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As stated the sufficient decrease condition is also called the Armijo condition. Remarkable
is that for the Armijo condition, a value of c1 = 0.5 is suggested [30], whereas for the Wolfe
conditions, a value of c1 = 10−4 is suggested [6]. Of these values c1 = 0.5 is the strictest,
since it requires the largest function value decrease.

6-2-3 Backtracking

Backtracking is a method to select a satisfactory step size. The approach is to start with a
rather large step size and gradually decrease it until the Wolfe conditions are satisfied. A
benefit of this procedure is that the curvature condition (6-7, 6-9) can be omitted since the
satisfactory step size is approached from above [6].

Classic approach

The classic approach is to decrease the step size simply by multiplying it with a predefined
factor τ ∈ [0, 1] until the sufficient decrease condition (6-6, 6-8) is satisfied [6].

Extrapolation approach

The extrapolation approach decreases the step size by constructing a one-dimensional quadratic
model of φk using the available values of φk(0), φ′k(0) and φk(αk). The minimizer of this
quadratic model is taken as the new value for αk, after which a one-dimensional cubic model
can be constructed. By memorizing two subsequent values of αk at a time, new models can be
constructed and minimized iteratively, ultimately converging to a value of αk which satisfies
the sufficient decrease condition [6].

6-3 Search Directions

For the optimization step, first-order and second-order search directions are investigated.
Second-order search directions are more complicated, but they have better convergence prop-
erties. Appendix C discusses how convergence rates can be calculated.

6-3-1 First-Order Methods

For optimization problems, derivatives provide very useful information. First-order meth-
ods use the gradient, which contains information about the direction in which the function
increases the most. From here on, the gradient at the point xxxk is denoted by rrrk = ∇xxxf̂i(xxxk).

Gradient descent method

The gradient descent (GD) method searches in the direction of the negative gradient, which
is also called the steepest descent direction, denoted by
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pppk = −rrrk. (6-10)

A characteristic of the gradient descent method is that, if the optimal step size is used instead
of a predefined step size, successive search directions are related by

pppTk pppk+1 = 0, (6-11)

which indicates that they are perpendicular. If αk is chosen properly, the gradient descent
method converges to the nearest local optimum within a finite amount of iterations [6], more-
over it does so with the sublinear convergence rate O( 1

k ) [31, 32]. Figure 6-4a illustrates the
gradient descent method.

Nesterov’s accelerated gradient descent method

A downside of the gradient descent method is that while the optimum is approached, and thus
the size of the gradient decreases, if αk is fixed, the effective steps also become smaller, which
drastically increases the amount of required iterations. In order to overcome this problem,
Nesterov’s accelerated gradient descent (NGD) method propagates not only the input vector
xxxk but also a momentum vector vvvk, which follow the relations

vvvk+1 = xxxk − αrrrk, (6-12)
xxxk+1 = (1− γk)vvvk+1 + γkvvvk, (6-13)

where the parameter γk is computed using

τk+1 = 1
2 + 1

2

√
1 + 4τ2

k , (6-14)

γk = τ−1
k+1(1− τk), (6-15)

which starts off with τ0 = 0 [31]. A requirement for Nesterov’s accelerated gradient descent
method is that α is the inverse of a Lipschitz constant of the gradient of the surrogate function
(3-12) [31, 33]. The path followed may appear less efficient than the path followed by the
gradient descent method, however it requires much less iterations. Nesterov’s accelerated
gradient descent method excels if the optimum is located in a very shallow area.

If α is chosen properly, Nesterov’s accelerated gradient descent method converges to the near-
est local optimum within a finite amount of iterations, moreover it does so with the sublinear
convergence rate O( 1

k2 ) [31, 32, 34]. Figure 6-4b illustrates Nesterov’s accelerated gradient de-
scent method. Appendix D discusses an interpretation of how Nesterov’s accelerated gradient
descent method can be derived.
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Linear Fletcher-Reeves method

The Fletcher-Reeves method is a conjugate gradient method. Conjugate gradient methods
were initially developed for solving linear sets of equations [35], which results in a quadratic
objective function with a symmetric and positive-definite Hessian HHH ∈ Rn×n. This is demon-
strated in Section (5-1-1). Where the gradient descent method invokes perpendicular search
directions, the conjugate gradient method imposes

pppTkHHHpppk+1 = 0, (6-16)

which indicates that successive search directions are conjugate directions. Conjugate direc-
tions can be computed beforehand by for instance computing the eigenvectors ofHHH. However,
the Fletcher-Reeves method is capable of computing the conjugate search directions itera-
tively. Starting off with the negative gradient as search direction, the next search direction
can be computed using

pppk+1 = −rrrk+1 +
rrrTk+1rrrk+1

rrrTk rrrk
pppk, (6-17)

which only requires the current search direction and the current and next gradient. For
quadratic objective functions an explicit expression for the optimal step size is denoted by

αk = − rrrTk rrrk
pppTkHHHpppk

. (6-18)

If αk is computed properly, the linear Fletcher-Reeves method converges to the global opti-
mum within n iterations, moreover it does so with a quadratic convergence rate [6]. Figure
6-4d illustrates the linear Fletcher-Reeves method.

Nonlinear Fletcher-Reeves method

The linear Fletcher-Reeves can also be extended to nonlinear objective functions. In this case
the step size αk can be selected beforehand and no expression for the Hessian is required,
confirming the first-order character of the Fletcher-Reeves method. If αk is chosen properly,
the nonlinear Fletcher-Reeves (NFR) method converges to the nearest local optimum within
a finite amount of iterations [6]. For quadratic convex objective functions the nonlinear
Fletcher-Reeves method may be able to achieve the same quadratic convergence within n
iterations as the linear Fletcher-Reeves method, however for nonlinear objective functions
the convergence rate is naturally worse or even much worse [6]. Figure 6-4c illustrates the
nonlinear Fletcher-Reeves method.

Master of Science Thesis J.H.T. Munnix



40 Optimization

(a) GD method (157 iterations) (b) NGD method (51 iterations)

(c) NFR method (37 iterations) (d) LFR method (2 iterations)

Figure 6-4: First-order optimization of a two-dimensional quadratic function using the gradient
descent (GD) method, Nesterov’s accelerated gradient descent (NGD) method, nonlinear Fletcher-
Reeves (NFR) method and linear Fletcher-Reeves (LFR) method. GD, NGD and NFR use a fixed
step size, LFR uses the optimal step size.

(a) N method (1 iteration) (b) DFP method (8 iterations)

(c) BFGS method (8 iterations) (d) LM method (6 iterations)

Figure 6-5: Second-order optimization of a two-dimensional quadratic function using the Newton
(N) method, Davidon-Fletcher-Powell (DFP) method, Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method and Levenberg-Marquardt (LM) method. DFP and BFGS use a fixed step size, N and
LM use the unit step size.
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6-3-2 Second-Order Methods

First-order methods may require many iterations to reach the optimum. This is due to the
fact that the gradient does not necessarily point towards the optimum, but merely points
out the steepest descent direction. In order to converge to the optimum faster, higher-order
derivatives can be used, such as the Hessian, which is denoted by HHHk = ∇2

xxxf̂i(xxxk).

Newton method

The Newton (N) method uses the search direction

pppk = −HHH−1
k rrrk. (6-19)

If αk is chosen properly, the Newton method converges to the nearest local optimum within
a finite amount of iterations, moreover it does so with quadratic convergence rate [6]. For
quadratic functions with a symmetric and positive-definite Hessian, by choosing αk = 1,
the Newton method converges to the global optimum within a single iteration. Figure 6-5a
illustrates the Newton method.

The Newton method is a very effective method, but it requires the Hessian to be available
and nonsingular, and for some functions this may be problematic. Quasi-Newton methods
try to resolve this problem by either approximating the Hessian or approximating the inverse
of the Hessian [6].

Davidon-Fletcher-Powell method

The Davidon-Fletcher-Powell (DFP) method is a quasi-Newton method which approximates
the inverse of the Hessian iteratively. Starting off with a certain initial inverse Hessian ap-
proximation the search direction

pppk = −BBBkrrrk (6-20)

is used, after which the next inverse Hessian approximation can be computed using

BBBk+1 = BBBk −
BBBkθθθkθθθ

T
kBBBk

θθθTkBBBkθθθk
+ κκκkκκκ

T
k

κκκTkκκκk
, (6-21)

where the vectors

θθθk = xxxk+1 − xxxk, (6-22)
κκκk = rrrk+1 − rrrk, (6-23)

store information about the previous and current location and gradient. For large values of
k this results in BBBk ≈ HHH−1

k . If αk is chosen such that the Wolfe conditions are satisfied [6],
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the DFP method converges to the nearest local optimum within a finite amount of iterations,
moreover it does so with a superlinear convergence rate [6]. The DFP method requires
more iterations than the Newton method, but much less iterations than the gradient descent
method, without requiring computation and inversion of the actual Hessian. Figure 6-5b
illustrates the DFP method.

Broyden-Fletcher-Goldfarb-Shanno method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a quasi-Newton method which
approximates the inverse of the Hessian iteratively. The BFGS method is an improved version
of the DFP method [6]. Starting off with a certain initial inverse Hessian approximation, the
same search direction as for the DFP method (6-20) is used, after which the next inverse
Hessian approximation can be computed using

BBBk+1 =
(
IIIn −

κκκkθθθ
T
k

κκκTk θθθk

)T
BBBk

(
IIIn −

κκκkθθθ
T
k

κκκTk θθθk

)
+ θθθkθθθ

T
k

κκκTk θθθk
= VVV T

kBBBkVVV k + θθθkθθθ
T
k

κκκTk θθθk
. (6-24)

For large values of k this results in BBBk ≈HHH−1
k . If αk is chosen such that it satisfies the Wolfe

conditions [6], the BFGS method converges to the nearest local optimum within a finite
amount of iterations, moreover it does so with a superlinear convergence rate [6]. Similar to
the DFP method, the BFGS method requires more iterations than the Newton method, but
much less iterations than the gradient descent method, without requiring computation and
inversion of the actual Hessian. Figure 6-5c illustrates the BFGS method.

Limited memory Broyden-Fletcher-Goldfarb-Shanno method

For optimization problems with large input dimensions, the inverse Hessian approximation
takes the form of a very large and dense matrix which can take up a lot of memory storage.
In this case the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method can be
used [36]. Instead of storing BBBk, a set of vectors {θθθj ∈ Rn,κκκj ∈ Rn}j=1...u is stored. Every
iteration, new values are calculated for θθθk and κκκk, which replace the oldest of their respective
values already stored. The inverse Hessian approximation can be computed using the stored
vectors. This method yields satisfactory results for 3 ≤ u ≤ 20 [6]. Since the BFGS method
requires storage of BBBk ∈ Rn×n, θθθk ∈ Rn and κκκk ∈ Rn for a single value of k and the LBFGS
method requires storage of θθθj ∈ Rn and κκκj ∈ Rn for u values of j, only for

n2 + 2n� 2un,
1
2n+ 1� u,

the LBFGS method will drastically reduce the amount of required memory storage. Moreover
it has the same convergence properties as the BFGS method.
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Levenberg-Marquardt method

The Levenberg-Marquardt (LM) method approximates the Hessian using

BBB−1
k = τIIIn +HHHk, (6-25)

where τ ∈ R is a factor which can prevent BBB−1
k ∈ Rn×n from becoming singular. The same

search direction as for the DFP and BFGS methods is used (6-20). Note that for very small val-
ues of τ the Levenberg-Marquardt method mimics the Newton method, whereas for very large
values of τ it mimics the gradient descent method. If αk is chosen properly, the Levenberg-
Marquardt method converges to the nearest local optimum within a finite amount of itera-
tions, moreover its convergence rate will be somewhere between superlinear and quadratic,
depending on the value of τ [6]. Figure 6-5d illustrates the Levenberg-Marquardt method.

6-4 Handling Constraints

The objective function f is constrained by a feasible region X , which is defined by a lower
bound xxxlb ∈ Rn and an upper bound xxxub ∈ Rn. This same feasible region also applies to
the surrogate function f̂i, hence the optimization methods need to be able to deal with these
constraints. Fortunately the constraints are not very complicated, the feasible region X can be
considered a hyper-rectangle. This allows the optimization method to handle the constraints
simply by projecting its trajectory onto the feasible region, using

xxxk+1 = min(max(xxxk + αkpppk,xxxlb),xxxub) (6-26)

where min() and max() are element-wise operators which respectively return the smallest and
the largest value of their arguments.

6-5 Stopping Conditions

In order to determine when to stop iterating, several stopping conditions need to be estab-
lished. There are several reasons why an optimization method should be terminated:

• An optimum is reached.
• No more improvement can be achieved without leaving the feasible region.
• The trajectory does not seem to be converging.
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Reached optimum

A characteristic of an optimum is that the gradient is zero at that location. Hence it makes
sense to stop iterating once

1√
n

∣∣∣∣∣∣∇xxxf̂i(xxxk)∣∣∣∣∣∣2 ≤ ε (6-27)

is satisfied, where ε > 0 is a marginally low value. The reason for using the RMS value of
the gradient in this condition rather than just the norm is that the RMS value ensures equal
comparison for all values of n. Note that this condition may be satisfied for maxima as well
as for minima.

Edge of the feasible region

There are several methods for dealing with constraints. For rather complicated constraints
the Karush-Kuhn-Tucker conditions are a very clean way of checking which constraints are
violated and if any improvement within the feasible region is possible [6]. However in the case
of the DONE algorithm the feasible region is a hyper-rectangle, which allows the condition

1√
n
||xxxk+1 − xxxk||2 ≤ ε (6-28)

to terminate the optimization procedure when it is stuck at the edge of the feasible region.
Basically this indicates that there is no significant difference between the previous point and
the current point, which means that the optimization is stuck at that point.

Divergence

If the optimization procedure does not seem to be converging, it should be terminated as
well. The easiest way to do this is by setting a maximum amount of iterations which should
not be exceeded.

6-6 Analytical Method

Since analytical expressions for the gradient (3-12) and Hessian (3-13) of f̂i are available, the
solution to the optimization problem (6-1,6-2) may also be found using analytical optimiza-
tion. Basic calculus implies that the optimum is located where

∇xxxf̂i(xxxi) = 0, (6-29)
∇2
xxxf̂i(xxxi) > 0, (6-30)

provided that xxxi ∈ X . Since the gradient is denoted by
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∇xxxf̂i(xxx) = −ΩΩΩ diag(wwwi) sin(ΩΩΩTxxx+ bbb), (6-31)

and the term −ΩΩΩ diag(wwwi) does not contain the vector xxx, the optimum may be found by
imposing

sin(ΩΩΩTxxx+ bbb) = zzz, (6-32)
zzz ∈ ker(−ΩΩΩdiag(wwwi)), (6-33)

which leads to

xxxi = (ΩΩΩΩΩΩT )−1ΩΩΩ(arcsin(zzz)− bbb), (6-34)

where the second condition (6-30) needs to be satisfied in order for the found optimum to
be a minimum instead of a maximum or a saddle point. Moreover a translation of the
optimum may be required to ensure xxxi ∈ X . Obviously this method does not require an
iterative scheme, as do the numerical optimization methods, however it does require a kernel
computation and solving a set of linear equations. Moreover it should be kept in mind that
the arcsin() operator does not return finite values for all possible arguments and that the
vector zzz is not unique. Further research is required to investigate if this approach leads to a
practical method for finding xxxi.

6-7 Comparison

Since the analytical method discussed in Section 6-6 requires the research to diverge from the
other methods, it is not taken into account here. Furthermore since the surrogate function f̂i is
a nonlinear function, the LFR method cannot be used in this case. Table 6-1 lists the ranking
of all discussed optimization methods based on the parallel computing criteria established in
Section 4-7. Here the primary computations are the computations that are inherent to the
methods and the secondary computations are the computations that are required to compute
gradient (3-12), Hessian (3-13) and function (3-11) values.

Computational complexity

All first-order methods have primary computational complexity O(n), however due to the
computation of the gradient (3-12) they have secondary computational complexity O(mn).
Similarly the second-order methods have primary computational complexity O(n2) and sec-
ondary computational complexity O(mn), with the exception of the N and LM methods,
which have primary computational complexity O(n3) due to the fact that they require a ma-
trix inversion and secondary computational complexity O(mn2) due to the computation of
the Hessian (3-13).
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Method Primary Secondary
GD O(n) O(mn)
NGD O(n) O(mn)
NFR O(n) O(mn)
N O(n3) O(mn2)
DFP O(n2) O(mn)
BFGS O(n2) O(mn)
LBFGS O(n2) O(mn)
LM O(n3) O(mn2)

(a) Computational complexity

Method Primary Secondary
GD +++++ +++
NGD +++++ +++
NFR +++ +++
N + +++
DFP +++ +++
BFGS +++ +++
LBFGS +++ +++
LM + +++

(b) Degree of parallelism

Method Primary Secondary
GD O(n) O(mn)
NGD O(n) O(mn)
NFR O(n) O(mn)
N O(n2) O(mn)
DFP O(n2) O(mn)
BFGS O(n2) O(mn)
LBFGS O(n) O(mn)
LM O(n2) O(mn)

(c) Required memory storage

Method Suitability
GD Yes
NGD Yes
NFR Yes
N No
DFP No
BFGS Yes
LBFGS No
LM No

(d) Overall suitability

Table 6-1: Optimization methods judged based on parallel computing criteria. The primary
columns indicate the inherent properties of the methods, the secondary columns indicate the
properties that are imposed by gradient calculations, Hessian calculations and function evaluations.

Degree of parallelism

Since the GD and NGD methods only require pure vector computations, primarily they are
fully parallelizable. NFR, DFP, BFGS and LBFGS all require operations in the form of
(4-4), hence their degree of parallelism is medium. Since the N and LM methods require
a matrix inversion, they have a very low degree of parallelism. Since the gradient (3-12)
and Hessian (3-13) computation require operations in the form of (4-4), all methods have a
medium secondary degree of parallelism.

Memory storage

Since the first-order methods only need to store vectors and no matrices, they primarily only
require O(n) memory storage. Due to its special structure, this also applies to the second-
order method LBFGS. All other methods primarily require O(n2) memory storage. Since for
all methods ΩΩΩ ∈ Rn×m needs to be stored anyway, secondarily O(mn) memory storage is
required.
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Overall suitability

The N and LM methods are dismissed based on their high primary and secondary computa-
tional complexity and their low degree of parallelism. The DFP method is dismissed solely
because it is stated that BFGS is the improved version of DFP [6]. Based on the memory
storage LBFGS should be chosen over BFGS, since they score the same on all other criteria.
However, implementing LBFGS is expected to be much more complicated than implementing
BFGS since the update relations for LBFGS are much more complicated [6]. Moreover, since
generally m > n, and all methods secondarily require O(mn) memory storage, having to store
a matrix with memory storage O(n2) is not the limiting factor. Hence BFGS is selected and
LBFGS is dismissed.
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Chapter 7

Implementation

As discussed in Chapters 5 and 6, several methods are available to perform the RFE fitting
step and the optimization step of the DONE algorithm respectively. They all have their
own characteristics, indicating how suitable they are for large-scale problems and for parallel
computing. This chapter discusses how these methods can be implemented, both sequentially
and in parallel.

General implementation properties

As discussed in Section 4-2 all parallel implementations use single-precision floating-points.
In order to acquire a fair comparison, all sequential implementations use single-precision
floating-points as well. The only exception to this rule is the existing sequential DONE
implementation, which uses double-precision floating-points.

Furthermore it is always wise not to store more data than absolutely necessary. Triangular,
symmetric and diagonal matrices do not need to be fully stored. For instance the symmetric
matrix PPP ∈ Rm×m only requires 1

2(m2 +m) floating-points to be stored.

7-1 RFE Fitting

The RFE fitting step can either be performed using optimization-based methods or us-
ing recursive methods. The optimization-based methods that are to be implemented are
gradient descent (GD), Nesterov’s accelerated gradient descent (NGD), nonlinear Fletcher-
Reeves (NFR) and linear Fletcher-Reeves (LFR). The recursive methods that are to be
implemented are recursive least-squares (RLS) and inverse QR (IQR). GD is only included
as basis for the NGD, NFR and LFR methods.
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7-1-1 Characteristic Operations

All RFE fitting implementations can be divided into several blocks of operations that are
characteristic for the RFE fitting framework. These operations are present in all or most of
the RFE fitting implementations.

Initial values

The initial value www0 = 000m is used for all RFE fitting implementations. The initial values
ΦΦΦ0 = λIIIm and sss0 = 000m are used in all optimization-based RFE fitting implementations. The
RLS implementation uses the initial value PPP 0 = λ−1IIIm and the IQR implementation uses the
initial value PPP

1
2
0 = λ−

1
2IIIm, where PPP i = ΦΦΦ−1

i .

Inner and outer loop

All RFE fitting implementations are based on an outer loop, which takes consecutive measure-
ments and passes these measurements to the RFE fitting method at hand to be processed.
The optimization-based RFE fitting implementations require an inner loop, which reflects
their iterative nature. The counter i ∈ Z counts the measurements (outer loop), whereas
the counter k ∈ Z counts the iterations (inner loop). The measurement counter has a fixed
maximum value N ∈ Z whereas the iteration counter k does not have a fixed maximum
value. Note that the parameter vector wwwk is not reset to wwwk = 000m every time the outer loop
is repeated. This ensures that the new surrogate function is built upon the old surrogate
function instead of computing a completely new one from scratch, thus reducing the amount
of required iterations by using the information that is already available.

Taking measurements

RFE fitting can be applied to any function f : Rn 7→ R. The point xxxi can either be drawn
from a certain probability distribution, or be determined using clever estimation techniques,
as does the DONE algorithm.

Domain conversion

All measurements are taken in the input domain X ⊂ Rn, however all data are stored in the
RFE domain A ⊆ Rm. This means that measurements need to be converted from the former
to the latter, using the relation

aaai = cos(ΩΩΩTxxxi + bbb), (7-1)

where xxxi ∈ X and aaai ∈ A.

J.H.T. Munnix Master of Science Thesis



7-1 RFE Fitting 51

Update relations

Every time a new measurement is available, some updates can be performed. For the
optimization-based implementations, the least-squares cost function (5-2) is updated by up-
dating ΦΦΦi and sssi using the update relations (5-7, 5-8). For the RLS implementation, the new
value wwwi can be immediately computed using the update relations (5-9, 5-10, 5-11, 5-12).
For the IQR implementation, this can be done as well, using the IQR update relation (5-14)
combined with the final RLS update relation (5-12).

Gradient calculation

For all optimization-based implementations, calculating the gradient (5-4) is required. For
the sake of simplicity, the least-squares cost function (5-3) can be transformed to

Ĵi(www) = 1
2Ji(w

ww)− yyyTi yyyi = 1
2w
wwTΦΦΦiwww −wwwTsssi, (7-2)

without changing the location of the optimum. This introduces a slightly simpler representa-
tion of the gradient in the form of

rrrk = ΦΦΦiwwwk − sssi. (7-3)

Step size selection

All optimization-based implementations require a step size to be selected. For the NGD
implementation, a requirement is that the step size αi is a Lipschitz constant of the gradient
(7-3) and hence represents the largest possible value of the Hessian ΦΦΦi [31, 33]. In order to
make sure that this requirement is satisfied, the step size

αi = 1
10 ||Φ

ΦΦi||−1
F (7-4)

is used. Here the Frobenius norm is used to determine a scalar value from a matrix and the
factor 1

10 acts as a safety margin. Since this step size should lead to steps that are not too
large and not too small either, it is used in the GD and NFR implementations as well. The
LFR implementation has its own way of computing the step size, such that it is optimal for
every iteration.

Search direction

All optimization-based implementations require a search direction pppk. The GD implementa-
tion uses the negative gradient as search direction, the NGD implementation has no explicit
declaration of the search direction but also incorporates the gradient into its choice of tra-
jectory and the NFR and LFR implementations start off with the negative gradient and
gradually improve the search direction each iteration.
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Trajectory

Moving along the trajectory can be performed by taking a step along the selected search
direction with the selected step size. This holds for all optimization-based implementations,
except for the NGD implementation. The NGD implementation needs to determine a tra-
jectory for the momentum vector vvvk as well as for the weight vector wwwk. The value for the
momentum vector is chosen to be vvvk = xxxk every time the outer loop is repeated.

Convergence test

The inner loop that is present in all optimization-based implementations continues as long as
the RMS value of the gradient is larger than a certain predefined error margin ε. The RMS
value can be obtained by computing the two-norm and dividing it by the square root of the
dimension m, as in (6-27).

Although the LFR implementation is guaranteed to convergence within m iterations, by
maintaining ε as stopping condition rather than blindly performing m iterations, convergence
may even occur in less than m iterations.

7-1-2 Mathematical Implementation

The RFE fitting implementations are represented by Algorithms 1 to 6. Table 7-1 lists all
characteristic operations and at which lines they are incorporated.

Characteristic operations GD NGD NFR LFR RLS IQR
Initial values 1 - 3 1 - 3 1 - 3 1 - 3 1, 2 1, 2
Outer loop 5 - 22 5 - 26 5 - 24 5 - 24 3 - 14 3 - 12
Inner loop 14 - 19 16 - 23 15 - 21 14 - 21
Taking measurements 6, 7 6, 7 6, 7 6, 7 4, 5 4, 5
Domain conversion 9 9 9 9 7 7
Update relations 10, 11 10, 11 10, 11 10, 11 8 - 11 8, 9
Gradient calculation 12, 17 12, 21 12, 17 12, 17
Step size selection 13 14 14 15
Search direction 15 13, 19 13, 19
Trajectory 16 13, 19, 20 16 16
Convergence test 14 16 15 14

Table 7-1: Characteristic operations for the RFE fitting step. The numbers in this table refer
to line numbers in Algorithms 1 to 6, which represent the GD, NGD, NFR, LFR, RLS and IQR
implementations respectively.
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Algorithm 1 RFE fitting using the GD method
1: www0 ← 000m
2: ΦΦΦ0 ← λIIIm
3: sss0 ← 000m
4: k ← 0
5: for i = 1 : N do
6: xxxi ← input measurement
7: yi ← output measurement
8: procedure RFEGD(xxxi, yi, ΦΦΦi−1, sssi−1, wwwk, ΩΩΩ, bbb, ε)
9: aaai ← cos(ΩΩΩTxxxi + bbb)

10: ΦΦΦi ← ΦΦΦi−1 + aaaiaaa
T
i

11: sssi ← sssi−1 + yiaaai
12: rrrk ← ΦΦΦiwwwk − sssi
13: αi ← 1

10 ||ΦΦΦi||
−1
F

14: while ||rrrk||2 m−
1
2 > ε do

15: pppk ← −rrrk
16: wwwk+1 ← wwwk + αipppk
17: rrrk+1 ← ΦΦΦiwwwk+1 − sssi
18: k ← k + 1
19: end while
20: return ΦΦΦi, sssi, wwwk
21: end procedure
22: end for

Algorithm 2 RFE fitting using the NGD method
1: www0 ← 000m
2: ΦΦΦ0 ← λIIIm
3: sss0 ← 000m
4: k ← 0
5: for i = 1 : N do
6: xxxi ← input measurement
7: yi ← output measurement
8: procedure RFENGD(xxxi, yi, ΦΦΦi−1, sssi−1, wwwk, ΩΩΩ, bbb, ε)
9: aaai ← cos(ΩΩΩTxxxi + bbb)

10: ΦΦΦi ← ΦΦΦi−1 + aaaiaaa
T
i

11: sssi ← sssi−1 + yiaaai
12: rrrk ← ΦΦΦiwwwk − sssi
13: vvvk ← wwwk
14: αi ← 1

10 ||ΦΦΦi||
−1
F

15: τk ← 0
16: while ||rrrk||2 m−

1
2 > ε do

17: τk+1 ← 1
2 + 1

2
√

1 + 4τ2
k

18: γk ← τk+1(1− τk)−1

19: vvvk+1 ← wwwk − αirrrk
20: wwwk+1 ← (1− γk)vvvk+1 + γkvvvk
21: rrrk+1 ← ΦΦΦiwwwk+1 − sssi
22: k ← k + 1
23: end while
24: return ΦΦΦi, sssi, wwwk
25: end procedure
26: end for
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Algorithm 3 RFE fitting using the NFR method
1: www0 ← 000m
2: ΦΦΦ0 ← λIIIm
3: sss0 ← 000m
4: k ← 0
5: for i = 1 : N do
6: xxxi ← input measurement
7: yi ← output measurement
8: procedure RFENFR(xxxi, yi, ΦΦΦi−1, sssi−1, wwwk, ΩΩΩ, bbb, ε)
9: aaai ← cos(ΩΩΩTxxxi + bbb)

10: ΦΦΦi ← ΦΦΦi−1 + aaaiaaa
T
i

11: sssi ← sssi−1 + yiaaai
12: rrrk ← ΦΦΦiwwwk − sssi
13: pppk ← −rrrk
14: αi ← 1

10 ||ΦΦΦi||
−1
F

15: while ||rrrk||2 m−
1
2 > ε do

16: wwwk+1 ← wwwk + αipppk
17: rrrk+1 ← ΦΦΦiwwwk+1 − sssi
18: τk ← (rrrTk+1rrrk+1)(rrrTk rrrk)−1

19: pppk+1 ← −rrrk+1 + τkpppk
20: k ← k + 1
21: end while
22: return ΦΦΦi, sssi, wwwk
23: end procedure
24: end for

Algorithm 4 RFE fitting using the LFR method
1: www0 ← 000m
2: ΦΦΦ0 ← λIIIm
3: sss0 ← 000m
4: k ← 0
5: for i = 1 : N do
6: xxxi ← input measurement
7: yi ← output measurement
8: procedure RFELFR(xxxi, yi, ΦΦΦi−1, sssi−1, wwwk, ΩΩΩ, bbb, ε)
9: aaai ← cos(ΩΩΩTxxxi + bbb)

10: ΦΦΦi ← ΦΦΦi−1 + aaaiaaa
T
i

11: sssi ← sssi−1 + yiaaai
12: rrrk ← ΦΦΦiwwwk − sssi
13: pppk ← −rrrk
14: while ||rrrk||2 m−

1
2 > ε do

15: αk ← (rrrTk rrrk)(pppTkΦΦΦipppk)−1

16: wwwk+1 ← wwwk + αkpppk
17: rrrk+1 ← ΦΦΦiwwwk+1 − sssi
18: τk ← (rrrTk+1rrrk+1)(rrrTk rrrk)−1

19: pppk+1 ← −rrrk+1 + τkpppk
20: k ← k + 1
21: end while
22: return ΦΦΦi, sssi, wwwk
23: end procedure
24: end for
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Algorithm 5 RFE fitting using the RLS method
1: www0 ← 000m
2: PPP 0 ← λ−1IIIm
3: for i = 1 : N do
4: xxxi ← input measurement
5: yi ← output measurement
6: procedure RFERLS(xxxi, yi, PPP i−1, wwwi−1, ΩΩΩ, bbb)
7: aaai ← cos(ΩΩΩTxxxi + bbb)
8: γi ← (1 + aaaTi PPP i−1aaai)−1

9: gggi ← γiPPP i−1aaai
10: wwwi ← wwwi−1 + aaaTi wwwi−1gggi + yigggi
11: PPP i ← PPP i−1 − γ−1

i gggiggg
T
i

12: return PPP i, wwwi
13: end procedure
14: end for

Algorithm 6 RFE fitting using the IQR method
1: www0 ← 000m
2: PPP

1
2
0 ← λ−

1
2IIIm

3: for i = 1 : N do
4: xxxi ← input measurement
5: yi ← output measurement
6: procedure RFEIQR(xxxi, yi, PPP

1
2
i−1, wwwi−1, ΩΩΩ, bbb)

7: aaai ← cos(ΩΩΩTxxxi + bbb)

8:

[
γ
− 1

2
i 000Tm

gggiγ
− 1

2
i PPP

1
2
i

]
←

[
1 aaaTi PPP

1
2
i−1

000m PPP
1
2
i−1

]
ΘΘΘ

9: wwwi ← wwwi−1 + aaaTi wwwi−1gggi + yigggi

10: return PPP
1
2
i , wwwi

11: end procedure
12: end for

Algorithm 1 represents RFE fitting using the GD method. This implementation can be ob-
tained using all the discussed characteristic operations and no more. The GD implementation
is not expected to be the best performing implementation, neither when looking at the amount
of iterations nor when looking at the run time, however it is a good benchmark for the other
implementations.

Algorithm 2 represents RFE fitting using the NGD method. The difference between GD and
NGD is that instead of only propagating the weight vector wwwk, the NGD implementation also
propagates the momentum vector vvvk.

Algorithm 3 represents RFE fitting using the NFR method. The difference between GD and
NFR is that for the NFR implementation the search direction pppk is improved iteration-wise,
ensuring the more efficient convergence rate of conjugate gradient methods.

Algorithm 4 represents RFE fitting using the LFR method. The LFR implementation is
exactly the same as the NFR implementation, except for the step size selection. Where
for the NFR implementation the step size αi is chosen to be established every time a new

Master of Science Thesis J.H.T. Munnix



56 Implementation

measurement is available, the LFR implementation establishes the step size αk every iteration
in an optimal way.

Algorithm 5 represents RFE fitting using the RLS method. As listed in Table 7-1, this
implementation lacks all the characteristic operations that are used by the optimization-
based implementations. The update relations that are used in this case are the basic RLS
update relations (5-9, 5-10, 5-11, 5-12).

Algorithm 6 represents RFE fitting using the IQR method. Just like the RLS implemen-
tation, the IQR implementation lacks all the characteristic operations that are used by the
optimization-based implementations. The update relations that are used are the IQR update
relation (5-14) combined with the final RLS update relation (5-12), where the matrix rotation
is performed using so-called Givens rotations [14, 29].

7-1-3 Sequential Implementation

Most of the discussed operations can be performed straightforwardly by one of the basic linear
algebra subprograms (BLAS) in the CBLAS library. For instance the matrix update at line
10 of Algorithm 1 is a symmetric rank 1 matrix update and the vector update at line 11 is a
so-called “axpy” operation.

Not all operations can be performed that straightforwardly however. For instance the vector
update at line 10 of Algorithm 5 can only be performed using

wwwi ← wwwi−1 + (aaaTi wwwi−1 + yi)gggi, (7-5)

which is a combination of a dot product, a scalar addition and an “axpy” operation. In
all RFE fitting implementations there are more of these situations, however this example is
sufficient to describe how to deal with these situations.

Besides the operations that require a combination of BLAS and scalar operations, there are
also some operations that need to be programmed manually. In all RFE fitting implementa-
tions, there are two situations like this.

The first situation is the domain conversion at line 7 of Algorithm 5 and also present in all
other RFE fitting implementations. This operation contains a cosine computation, which is
not part of the CBLAS library. Hence the domain conversion needs to be performed using

δδδ ← ΩΩΩTxxxi + bbb, (7-6)
aj ← cos(δj) ∀ j ∈ {1, . . . ,m}, (7-7)

where the first part (7-6) can be performed using a combination of BLAS and the second part
(7-7) has to be performed using a for-loop. Here δδδ is a support vector.

The other situation in which manual programming is required, is the matrix rotation at line
8 of Algorithm 6. As discussed this is performed using so-called Givens rotations [14, 29] and
although there are BLAS to perform a Givens rotation, these rotations are performed on one
column at a time. Hence a for-loop is required to rotate the entire matrix.
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7-1-4 Parallel Implementation

For every command in the CBLAS library, there is a parallel equivalent in the CUBLAS
library [26]. Therefore it is rather straightforward to turn the sequential implementations
into parallel implementations. However the domain conversion needs to be dealt with in a
different fashion for parallel computing. The first part (7-6) can be performed using CUBLAS
straightforwardly, however for the second part (7-7) the for-loop needs to be replaced by a
kernel, performing the computation for each vector element at the same time.

It would be very beneficial if the Givens rotations at line 8 of Algorithm 6 could also be
parallelized. And although there are CUBLAS equivalents for the CBLAS commands that
perform Givens rotations, the for-loop that performs the Givens rotation column by column
cannot be dissolved, since the result of the first column computation is needed to compute the
second column, and so on. So despite the fact that PPP

1
2
i is lower-triangular, which diminishes

the computational cost of the Givens rotations, this part cannot be made much more effective
using parallel computing.

Another important aspect of parallel computing is the data communication. As discussed in
Section 4-2 parallel computing is the most effective when using coarse-grained parallelism.
Therefore all parallel RFE fitting implementations first initialize ΩΩΩ, bbb, www0, sss0 and ΦΦΦ0 (or
one of its inverse representations), then copy all data from CPU to GPU, then perform all
computations and afterwards only copy wwwk back, since that is the only interesting piece of
information. Naturally, every time a new measurement is available, xxxi needs to be copied
from CPU to GPU as well, but this inevitable data copy is the only communication that
occurs in between of the computations. Note that copying scalar values is of no significance
here so this is not taken into account.

7-2 Optimization

The optimization step can either be performed using first-order methods or using second-
order methods. The methods that are to be implemented are the first-order methods gradient
descent (GD), Nesterov’s accelerated gradient descent (NGD) and nonlinear Fletcher-Reeves
(NFR) and the second-order method Broyden-Fletcher-Goldfarb-Shanno (BFGS). Here as
well GD is only included as basis for the other methods.

7-2-1 Characteristic Operations

All optimization methods can be divided into several blocks of operations that are charac-
teristic for the optimization framework. These operations are present in all or most of the
optimization implementations. Most of the characteristic operations for the optimization
implementations are also present in the optimization-based RFE fitting implementations.

Master of Science Thesis J.H.T. Munnix



58 Implementation

Initial values

The initial value xxx0 is user-supplied for all optimization implementations. The NGD imple-
mentation also requires an initial value for the momentum vector, which is always chosen
to be vvv0 = xxx0. The BFGS implementation requires an initial value for the inverse Hessian
approximation, which is always chosen to be BBB0 = III0.

Inner loop

Note that the optimization implementations operate at the same level as the RFE fitting
implementations, which is within the outer loop which takes the measurements. Hence the
optimization implementations can be considered to be inner loops as well.

Backtracking

Within the discussed inner loop however, lies another nested loop, invoking a backtracking
procedure which determines a step size that satisfies the Wolfe conditions (6-6, 6-7) [6]. Where
the inner loop counts the iterations, this backtracking loop counts the backtracking iterations.
This holds for all optimization implementations, except for the NGD implementation.

Function evaluation

Since the Wolfe conditions are conditions that require function evaluations, the surrogate
function (6-2) has to be evaluated several times per iteration. Only for the NGD implemen-
tation this is not the case, since it does not involve the Wolfe conditions.

Gradient calculation

For all the optimization implementations, the gradient rrrk (3-12) needs to be computed. The
gradient value is used for establishing a search direction and for checking the convergence.

Step size selection

For the GD, NFR and BFGS implementations the step size is selected using backtracking. The
procedure starts with αk = 1 and than the step size is diminished until the Wolfe conditions
are satisfied. For the NGD implementation, the step size α is required to be the inverse of a
Lipschitz constant of the gradient (3-12), hence it represents the largest possible value of the
Hessian (3-13) [31, 33]. Since for the trigonometric part of the Hessian

diag(sin(ΩΩΩTxxxk + bbb)) ≤ IIIm

holds, where the ≤ operator is an element-wise operator, the largest possible value of the
Hessian is denoted by
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HHHmax = ΩΩΩ diag(wwwi)ΩΩΩT .

However, since computing this matrix-matrix product has computational complexity O(mn2),
the rather simpler computation

α = 1
10 ||Ω

ΩΩwwwi||−1
F (7-8)

is performed. Here the Frobenius norm is used to determine a scalar value from a matrix and
the factor 1

10 acts as a safety margin.

Search direction

All optimization implementations require a search direction pppk. The GD implementation uses
the negative gradient as search direction, the NGD implementation has no explicit declaration
of the search direction but also incorporates the gradient into its choice of trajectory, the
NFR implementation starts of with the negative gradient and gradually improves the search
direction each iteration and the BFGS implementation uses the product of the inverse Hessian
approximation and the negative gradient as search direction.

Trajectory

Moving along the trajectory can be performed by taking a step along the selected search direc-
tion with the selected step size. This holds for all optimization-based implementations, except
for the NGD implementation. The NGD implementation needs to determine a trajectory for
the momentum vector vvvk as well as for the input vector xxxk.

Convergence test

The inner loop that is present in all optimization implementations continues as long as the
RMS value of the gradient is larger than a certain predefined error margin ε. The RMS
value can be obtained by computing the two-norm and dividing it by the square root of the
dimension n, as in (6-27).

7-2-2 Mathematical Implementation

The optimization implementations are represented by Algorithms 7 to 10. Table 7-2 lists all
characteristic operations and at which lines they are incorporated.

Algorithm 7 represents optimization using the GD method. This implementation can be
obtained using all the discussed characteristic operations and no more. The GD implementa-
tion is not expected to be the best performing implementation, neither when looking at the
amount of iterations nor when looking at the run time, however it is a good benchmark for
the other implementations.
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Algorithm 7 Optimization using the GD method
1: procedure OPTIMGD(xxx0, www, ΩΩΩ, bbb, ε)
2: rrr0 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxx0 + bbb)
3: γ0 ← wwwT cos(ΩΩΩxxxk + bbb)
4: k ← 0
5: while ||rrrk||2 n−

1
2 > ε do

6: αk ← 1
7: pppk ← −rrrk
8: xxxk+1 ← xxxk + αkpppk
9: γk+1 ← wwwT cos(ΩΩΩxxxk+1 + bbb)

10: while γk+1 − γk − 1
2αkrrr

T
k pppk > ε do

11: αk ← 1
2αk

12: xxxk+1 ← xxxk + αkpppk
13: γk+1 ← wwwT cos(ΩΩΩxxxk+1 + bbb)
14: end while
15: rrrk+1 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxxk+1 + bbb)
16: k ← k + 1
17: end while
18: return xxxk
19: end procedure

Algorithm 8 Optimization using the NGD method
1: procedure OPTIMNGD(xxx0, www, ΩΩΩ, bbb, ε)
2: rrr0 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxx0 + bbb)
3: vvv0 ← xxx0
4: α← 1

10 ||ΩΩΩwww||
−1
F

5: τ0 ← 0
6: k ← 0
7: while ||rrrk||2 n−

1
2 > ε do

8: τk+1 ← 1
2 + 1

2
√

1 + 4τ2
k

9: γk ← τk+1(1− τk)−1

10: vvvk+1 ← xxxk − αrrrk
11: xxxk+1 ← (1− γk)vvvk+1 + γkvvvk
12: rrrk+1 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxxk+1 + bbb)
13: k ← k + 1
14: end while
15: return xxxk
16: end procedure

Algorithm 8 represents optimization using the NGD method. The difference between GD and
NGD is that instead of only propagating the input vector xxxk, the NGD implementation also
propagates the momentum vector vvvk.

Algorithm 9 represents optimization using the NFR method. The difference between GD and
NFR is that for the NFR implementation the search direction pppk is improved iteration-wise,
ensuring the more efficient convergence rate of conjugate gradient methods.

Algorithm 10 represents optimization using the BFGS method. The difference between GD
and BFGS is that BFGS is a second-order method and thus also propagates an approximation
for the inverse of the Hessian, BBBk. Moreover in the BFGS implementation the search direction
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is the product of the inverse Hessian approximation and the negative gradient. The inverse
Hessian approximation is propagated according to the BFGS update (6-24).

Algorithm 9 Optimization using the NFR method
1: procedure OPTIMNFR(xxx0, www, ΩΩΩ, bbb, ε)
2: rrr0 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxx0 + bbb)
3: γ0 ← wwwT cos(ΩΩΩxxxk + bbb)
4: ppp0 ← −rrr0
5: k ← 0
6: while ||rrrk||2 n−

1
2 > ε do

7: αk ← 1
8: xxxk+1 ← xxxk + αkpppk
9: γk+1 ← wwwT cos(ΩΩΩxxxk+1 + bbb)

10: while γk+1 − γk − 1
2αkrrr

T
k pppk > ε do

11: αk ← 1
2αk

12: xxxk+1 ← xxxk + αkpppk
13: γk+1 ← wwwT cos(ΩΩΩxxxk+1 + bbb)
14: end while
15: rrrk+1 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxxk+1 + bbb)
16: τk ← (rrrTk+1rrrk+1)(rrrTk rrrk)−1

17: pppk+1 ← −rrrk+1 + τkpppk
18: k ← k + 1
19: end while
20: return xxxk
21: end procedure

Algorithm 10 Optimization using the BFGS method
1: procedure OPTIMBFGS(xxx0, www, ΩΩΩ, bbb, ε)
2: rrr0 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxx0 + bbb)
3: γ0 ← wwwT cos(ΩΩΩxxxk + bbb)
4: BBB0 ← IIIn
5: k ← 0
6: while ||rrrk||2 n−

1
2 > ε do

7: αk ← 1
8: pppk ← −BBBkrrrk
9: xxxk+1 ← xxxk + αkpppk

10: γk+1 ← wwwT cos(ΩΩΩxxxk+1 + bbb)
11: while γk+1 − γk − 1

2αkrrr
T
k pppk > ε do

12: αk ← 1
2αk

13: xxxk+1 ← xxxk + αkpppk
14: γk+1 ← wwwT cos(ΩΩΩxxxk+1 + bbb)
15: end while
16: rrrk+1 ← −ΩΩΩdiag(www) sin(ΩΩΩTxxxk+1 + bbb)
17: θθθk ← xxxk+1 − xxxk
18: κκκk ← rrrk+1 − rrrk
19: BBBk+1 ← (IIIn + (κκκkθθθTk )(κκκTk θθθk)−1)TBBBk(IIIn + (κκκkθθθTk )(κκκTk θθθk)−1) + (θθθkθθθTk )(κκκTk θθθk)−1

20: k ← k + 1
21: end while
22: return xxxk
23: end procedure
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Characteristic operations GD NGD NFR BFGS
Initial values 3 4
Inner loop 5 - 17 7 - 14 6 - 19 6 - 21
Backtracking 10 - 14 10 - 14 11 - 15
Function evaluation 3, 9, 13 3, 9, 13 3, 10, 14
Gradient calculation 2, 15 2, 12 2, 15 2, 16
Step size selection 6, 11 4 7, 11 7, 12
Search direction 7 4, 17 8
Trajectory 8, 12 10, 11 8, 12 9, 13
Convergence test 5 7 6 6

Table 7-2: Characteristic operations for the optimization step. The numbers in this table refer
to line numbers in Algorithms 7 to 10, which represent the GD, NGD, NFR and BFGS implemen-
tations respectively.

7-2-3 Sequential Implementation

Similar to the RFE fitting implementations, most of the discussed operations can be performed
straightforwardly by one of the basic linear algebra subprograms (BLAS) in the CBLAS
library. For instance the vector update at line 8 of Algorithm 7 is a so-called “axpy” operation
and the search direction computation at line 8 of Algorithm 10 is a symmetric matrix-vector
multiplication.

Not all operations can be performed that straightforwardly however. For instance the BFGS
update at line 19 of Algorithm 10 can be performed using

BBBk+1 =
(
IIIn −

κκκkθθθ
T
k

θθθTkκκκk

)
BBBk

(
IIIn −

θθθkκκκ
T
k

θθθTkκκκk

)
+ κκκkκκκ

T
k

θθθTkκκκk

= BBBk −BBBk
θθθkκκκ

T
k

θθθTkκκκk
− κκκkθθθ

T
k

θθθTkκκκk
BBBk + κκκkθθθ

T
k

θθθTkκκκk
BBBk

θθθkκκκ
T
k

θθθTkκκκk
+ κκκkκκκ

T
k

θθθTkκκκk

= BBBk −
ccckκκκ

T
k

θθθTkκκκk
− κκκkccc

T
k

θθθTkκκκk
+ κκκkθθθ

T
k ccckκκκ

T
k

θθθTkκκκkθθθ
T
kκκκk

+ κκκkκκκ
T
k

θθθTkκκκk

= BBBk −
1

θθθTkκκκk
ccckκκκ

T
k −

1
θθθTkκκκk

κκκkccc
T
k + θθθTk ccck

θθθTkκκκkθθθ
T
kκκκk

κκκkκκκ
T
k + 1

θθθTkκκκk
κκκkκκκ

T
k (7-9)

= BBBk − γccckκκκTk − γκκκkcccTk + γτκκκkκκκ
T
k

= BBBk + γτ

(
−1
τ
ccckκκκ

T
k −

1
τ
κκκkccc

T
k + κκκkκκκ

T
k

)
= BBBk + γτ

(
κκκk −

1
τ
ccck

)(
κκκk −

1
τ
ccck

)T
− γ

τ
ccckccc

T
k ,

where the substitutions are denoted by
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ccck = BBBkθθθk, γ = 1
θθθTkκκκk

, τ = θkθkθk
Tccck

θθθTkκκκk
+ 1.

This way the BFGS update (6-24) is reduced to a combination of a symmetric matrix vector-
multiplication, an “axpy” operation, two symmetric rank 1 matrix updates, two dot products
and a few scalar operations. Another example is the vector update at line 17 of Algorithm 9.
This can only be performed using

pppk+1 = τk(−τ−1
k rrrk+1 + pppk), (7-10)

which is a combination of an “axpy” operation and a scalar-vector multiplication. In all
optimization implementations there are more of these situations, however these examples are
sufficient to describe how to deal with these situations.

Besides the operations that require a combination of BLAS and scalar operations, there are
also some operations that need to be programmed manually. In all optimization implemen-
tations, there are two situations like this.

The first situation is the gradient calculation at lines 2 and 15 of Algorithm 7 and also present
in all other optimization implementations. This operation contains a sine computation and
a diag() operator, which are not part of the CBLAS library. Hence the gradient calculation
needs to be performed using

δδδ ← ΩΩΩTxxxk + bbb, (7-11)
δj ← wj sin(δj) ∀ j ∈ {1, . . . ,m}, (7-12)

rrrk ← −ΩΩΩδδδ, (7-13)

where the first part (7-11) can be performed using a combination of BLAS, the second part
(7-12) has to be performed using a for-loop and the third part (7-13) can be performed using
a straightforward matrix-vector multiplication. Here δδδ is a support vector.

The other situation in which manual programming is required, is the function evaluation at
lines 8, 9 and 13 of Algorithm 7 and also present in all other optimization implementations
except for the NGD implementation. This operation contains a cosine computation, which is
not part of the CBLAS library. Hence the function evaluation needs to be performed using

δδδ ← ΩΩΩTxxxk + bbb, (7-14)
δj ← cos(δj) ∀ j ∈ {1, . . . ,m}, (7-15)

γk ← wwwTδδδ, (7-16)

where the first part (7-14) can be performed using a combination of BLAS, the second part
(7-15) has to be performed using a for-loop and the third part (7-16) can be performed using
a dot product. Here δδδ is a support vector.
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7-2-4 Parallel Implementation

For every command in the CBLAS library, there is a parallel equivalent in the CUBLAS library
[26]. Therefore it is rather straightforward to turn the sequential implementations into parallel
implementations. However the gradient computation and function evaluation need to be dealt
with in a different fashion for parallel computing. The first part (7-11) and third part (7-13)
of the gradient computation can be performed using CUBLAS straightforwardly, however for
the second part (7-12) of the gradient computation the for-loop needs to be replaced by a
kernel, performing the computation for each vector element at the same time. The same holds
for the function evaluation (7-14, 7-15, 7-16).

Another important aspect of parallel computing is the data communication. As discussed in
Section 4-2 parallel computing is the most effective when there is coarse-grained parallelism.
Therefore all parallel optimization implementations first initialize ΩΩΩ, bbb, www and xxx0, then copy
all data from CPU to GPU, then perform all computations and afterwards only copy xxxk back,
since that is the only interesting piece of information. No communication occurs in between
of the computations. Note that copying scalar values is of no significance here, so this is not
taken into account.

7-3 The DONE Algorithm

The DONE implementation is a combination of one of the RFE fitting implementations, one of
the optimization implementations and an implementation of the initialization and exploration
steps. Chapter 9 will reveal that the RLS implementation and the BFGS implementation
perform the best, therefore these methods are used in the final DONE implementation.

7-3-1 Characteristic Operations

Most of the characteristic operations have already been discussed in this chapter. The charac-
teristic operations for the DONE implementation that have not been discussed yet are listed
below.

Drawing random numbers

There are several situations in which random numbers are drawn. In the initialization step
the entries of ΩΩΩ and bbb are drawn from a normal and a uniform distribution respectively and
in the exploration steps the entries of ζζζi and ξξξi are drawn from a normal distribution.

Applying bounds

There are also several situations in which the bounds are applied in order to ensure that the
solution stays within the domain X . These situations are the exploration steps and during
the optimization step. In this last case the optimization trajectory may cross the bounds,
which should be prevented. The bounds can be applied using the min() and max() operators.
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Stopping conditions

A characteristic of the DONE algorithm is that it has a fixed run time per cycle. This is
ensured by running a fixed amount of iterations in the optimization step. So whether or
not the optimum is reached, after this fixed amount of iterations the optimization step is
terminated. Also the amount of backtracking iterations should be limited, to make sure
that the backtracking procedure will terminate even if due to a numerical error the Wolfe
conditions are never satisfied.

7-3-2 Mathematical Implementation

Algorithm 11 represents the final DONE implementation. Table 7-3 lists the characteristic
operations and at which lines they are incorporated.

Characteristic operations Algorithm 11 Appendix B
Initial values 2, 3 187 - 210
Outer loop 9 - 42 212 - 408
Taking measurements 10 215 - 217, 410 - 412
Domain conversion 11 54 - 69, 226 - 228
Update relations 13 - 15 230 - 247
Initial values 20 249 - 270
Inner loop 21 - 37 294 - 392
Backtracking 26 - 30 315 - 334
Function evaluation 19, 25, 29 71 - 91, 289, 290, 327, 328
Gradient calculation 18, 32 93 - 110, 281, 282, 349, 350
Step size selection 22, 27 300, 301, 319, 320
Search direction 23 297, 298
Trajectory 24, 28, 31 305 - 308, 322 - 325, 344 - 347
Convergence test 21 284 - 287, 294, 295, 352 - 355
Drawing random numbers 4, 5, 16, 38 181 - 185, 273, 274, 398, 399
Applying bounds 17, 31, 40 277, 278, 346, 347, 402, 403
Stopping conditions 30, 37 316, 317, 330, 331, 388, 389

Table 7-3: Characteristic operations for the DONE algorithm. The first block contains the
characteristic operations for RFE fitting, the second block contains the characteristic operations
for optimization and the third block contains the characteristic operations that are specific for
the DONE algorithm. The numbers in this table refer to line numbers in Algorithm 11 and to
line numbers in Appendix B. Characteristic operations that are not used are not listed here.

Note that in Algorithm 11 the final exploration step (during the last cycle) is not performed,
ensuring that the final value of xxxi that is returned is the actual found optimum.
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Algorithm 11 The DONE algorithm
1: procedure DONE(f , xxx0, xxxlb, xxxub, λ, σωωω, σζζζ , σξξξ)
2: www0 ← 000m . INITIALIZATION (2 - 7)
3: PPP 0 ← λ−1IIIm
4: ωωωj ∼ N

(
000n, σ2

ωωωIIIn
)
∀ j ∈ {1, . . . ,m}

5: bj ∼ U (0, 2π) ∀ j ∈ {1, . . . ,m}
6: ΩΩΩ← [ωωω1 . . . ωωωm]
7: bbb← [b1 . . . bm]T
8: k ← 0
9: for i = 1 : N do

10: yi ← f(xxxk) . MEASUREMENT (10 - 11)
11: aaai ← cos(ΩΩΩTxxxk + bbb)
12: γi ← (1 + aaaTi PPP i−1aaai)−1 . RFE FITTING (12 - 15)
13: gggi ← γiPPP i−1aaai
14: wwwi ← wwwi−1 + aaaTi wwwi−1gggi + yigggi
15: PPP i ← PPP i−1 − γ−1

i gggiggg
T
i

16: ζζζi ∼ N (000n, σ2
ζζζIIIn) . EXPLORATION (16 - 17)

17: xxxk ← min(max(xxxk + ζζζi,xxxlb),xxxub)
18: rrrk ← −ΩΩΩdiag(wwwi) sin(ΩΩΩTxxxk + bbb) . OPTIMIZATION(18 - 37)
19: γk ← wwwTi cos(ΩΩΩxxxk + bbb)
20: BBBk ← IIIn
21: while ||rrrk||2 n−

1
2 > ε do

22: αk ← 1
23: pppk ← −BBBkrrrk
24: xxxk+1 ← xxxk + αkpppk
25: γk+1 ← wwwTi cos(ΩΩΩxxxk+1 + bbb)
26: while γk+1 − γk − 1

2αkrrr
T
k pppk > ε do

27: αk ← 1
2αk

28: xxxk+1 ← xxxk + αkpppk
29: γk+1 ← wwwTi cos(ΩΩΩxxxk+1 + bbb)
30: end while
31: xxxk+1 ← min(max(xxxk+1,xxxlb),xxxub)
32: rrrk+1 ← −ΩΩΩdiag(wwwi) sin(ΩΩΩTxxxk+1 + bbb)
33: θθθk ← xxxk+1 − xxxk
34: κκκk ← rrrk+1 − rrrk
35: BBBk+1 ← (IIIn + (κκκkθθθTk )(κκκTk θθθk)−1)TBBBk(IIIn + (κκκkθθθTk )(κκκTk θθθk)−1) + (θθθkθθθTk )(κκκTk θθθk)−1

36: k ← k + 1
37: end while
38: if i < N then
39: ξξξi ∼ N (000n, σ2

ξξξIIIn) . EXPLORATION (39 - 40)
40: xxxk ← min(max(xxxk + ξξξi,xxxlb),xxxub)
41: end if
42: end for
43: return xxxk
44: end procedure
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7-3-3 Sequential Implementation

The sequential DONE implementation already exists and is tuned such that it has very
good performance properties. The difference between the existing sequential DONE imple-
mentation and the implementation as shown in Algorithm 11 is that the existing imple-
mentation consists of the IQR method combined with the LBFGS method. Furthermore
the existing implementation also makes use of the CBLAS library and a specific library for
drawing random numbers. A final difference is that the sequential implementation works
with double-precision floating-points whereas the parallel implementation works with single-
precision floating-points.

7-3-4 Parallel Implementation

The parallel implementation of the DONE algorithm can be constructed by combining the
parallel implementations of the RLS method and the BFGS method. Only the characteristic
operations in the third block in Table 7-3 need to be implemented from scratch.

For drawing random numbers, there is a dedicated library called CURAND [28]. This library
allows drawing large amounts of random numbers with the benefit of parallel computing. It
should be kept in mind though that the normal probability distribution engine can only draw
even amounts of random numbers [28]. For applying the bounds, for instance at line 31 of
Algorithm 11, a kernel needs to be constructed to perform

xj ← min(max(xj , xlbj), xubj) ∀ j ∈ {1, . . . , n} (7-17)

for each vector element at the same time.

Another important aspect of parallel computing is the data communication. As discussed in
Section 4-2 parallel computing is the most effective when there is coarse-grained parallelism.
Therefore the communication is kept at a minimum. The parallel DONE implementation
initializes ΩΩΩ, bbb, www0, and PPP 0 on the GPU, so the only communication between CPU and GPU
is copying xxxi back and forth in order to take measurements. Note that copying scalar values
is of no significance here so this is not taken into account.
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Chapter 8

Experiments

In order to determine which of the methods for the RFE fitting step and for the optimization
step perform best, several experiments are to be performed. This chapter describes these
experiments and also which criteria can be used to conclude something about the performance
of the selected methods. The experiments that are to be performed on the DONE algorithm
itself are discussed as well.

8-1 Dimensions

There are three dimensions of significance for the DONE algorithm. The first is the input
dimension n of the objective function, the second is the amount of Fourier features m and the
third is the amount of measurements N . Since N only determines how many cycles of the
algorithm are performed, no parallel benefit is to be obtained by increasing N . By increasing
n and m however, the suitability for parallelism can be improved. Since generally N > n and
m > n holds, the dimension which will reach the largest values is m, which is hence chosen
to be the independent parameter. In order to obtain results over a wide range of dimensions,
the values for m are chosen from

2j ∀ j ∈ {1, . . . , 15}

and in order for the experiments to be comparable, a direct relation must exist between m
and n, which is chosen to be

n = ceil
(
m

44

)
, (8-1)

where the ceil() operator rounds the result up to the nearest integer. This appears to be a
rather randomly chosen relation, however it ensures that N > n for a fixed value of N = 1000
and all chosen values for m. Table 8-1 lists all combinations of dimensions that are used in
the experiments.
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# 1 2 3 4 5 6 7 8
n 1 1 1 1 1 2 3 6
m 2 4 8 16 32 64 128 256
N 1000 1000 1000 1000 1000 1000 1000 1000

# 9 10 11 12 13 14 15
n 12 24 47 94 187 373 745
m 512 1024 2048 4096 8192 16384 32768
N 1000 1000 1000 1000 1000 1000 1000

Table 8-1: Dimensions for experiments

8-2 Criteria

The experiment results are to be judged based on several criteria. The most important
criterion is of course the run time. The ultimate goal is that the fastest parallel implementation
is faster than the fastest sequential implementation. However also the accuracy of the results is
an important criterion. A very fast implementation is of no use if it does not yield the correct
results. Furthermore some of the implementations require a certain amount of iterations and
a certain amount of backtracking iterations. These are also pieces of information that are of
importance. The important criteria for the experiments are:

• Obtained accuracy
• Run time
• Amount of (backtracking) iterations

The expectation for these criteria is that the accuracy and the amount of (backtracking)
iterations of the parallel implementations are similar to those of their sequential counterparts
and that the run time of the parallel and sequential implementations has a profile similar to
that in Figure 4-2. An important remark is that though the DONE algorithm is specifically
designed for noisy, expensive objective functions without derivatives, all functions that are
used for the experiments are smooth, low-cost and derivatives are available. However for
comparing the implementations this does not matter, as long as the derivatives are not used
of course. For the final experiment the sequential and parallel DONE implementations are to
be tested on a practical application which is noisy, expensive and derivative-free.

8-3 Experiments

For the RFE fitting step, the optimization step and the full DONE algorithm, several exper-
iments can be designed that test the acquired implementations for all dimensions listed in
Table 8-1 in order to say something about the criteria listed above.
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8-3-1 RFE Fitting

In order to test the implementations for the RFE fitting step, a surrogate function has to
be constructed for a certain known function. This function has to be easily scalable, whilst
maintaining its characteristics. The inverted Gaussian function G : Rn 7→ R, defined by

G(xxx) = −e−
1
n
xxxTxxx, (8-2)

is very suitable for this case. By dividing the exponent by n the function maintains its
characteristics within the domain X , even for very large values of n.

Similar to the DONE algorithm itself, the entries of ΩΩΩ and bbb are drawn from a normal and
a uniform probability distribution respectively. However the measurement points xxxi are also
drawn from a uniform probability distribution in this case, in such a way that they are all
located within X .

The obtained accuracy can be measured by computing the root-mean-square (RMS) value of
the output error, which is denoted by

ε =

√√√√ 1
N

N∑
i=1

(G(xxxi)− f̂(xxxi))2, (8-3)

where f̂ : Rn 7→ R is the constructed surrogate function and {xxxi ∈ X}i=1...N can either be the
set of measurement locations used to construct the surrogate function, which results in the
so-called training error, or a new set of measurement locations, which results in the so-called
testing error.

The run time can be measured in milliseconds using the command clock(). Also the amount
of iterations and the amount of backtracking iterations can simply be measured.

8-3-2 Optimization

In order to test the implementations for the optimization step, a pre-constructed RFE has to
be optimized. By drawing the entries of ΩΩΩ and www from a normal probability distribution and
the entries of bbb from a uniform probability distribution, the RFE denoted by

f̂(xxx) = wwwT cos(ΩΩΩTxxx+ bbb) (8-4)

can be constructed, which has many local optima at completely random locations. Since the
actual locations of these optima are unknown, it it not possible to measure the exact obtained
accuracy. However, since all experiments start from xxx0 = 000n, by computing the RMS value
of the argument of the found optimum, some information about the found optimum can be
acquired.

The run time can be measured in milliseconds using the command clock(). Also the amount
of iterations and the amount of backtracking iterations can simply be measured.
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8-3-3 The DONE Algorithm

The best performing methods for the RFE fitting step and the optimization step are to be
combined into an implementation that follows the procedure as described in Chapter 3. The
resulting implementation can be tested using the inverted Gaussian function (8-2) as well.
However, it may be useful to test it on a practical application as well, hence it is also to be
tested using one of the applications the DONE algorithm was originally developed for, OBFN
tuning [3].

Inverted Gaussian

When testing the parallel DONE implementation on an inverted Gaussian function, the ob-
tained accuracy can be measured by computing the RMS value of the argument of the found
optimum. Since the actual optimum is located at zero, this RMS value is a proper measure
of how accurate the found optimum is. The run time can be measured in milliseconds using
the command clock(). Since the DONE algorithm uses a fixed amount of iterations in the
optimization step, the amount of (backtracking) iterations is not of interest in this case. The
parameters that are used are listed in Table 8-2.
Besides global information about the run time it may also be interesting to find out which
parts of the parallel implementation take the most time. The implementation can be divided
into the following parts:

• Allocating and freeing memory
• Creating and destroying handles
• Memory transfer from host to device (H2D)
• Memory transfer from device to host (D2H)
• Initialization
• Taking measurements
• RFE fitting
• Optimization
• Exploration

Parameter Gaussian experiments OBFN experiment
Starting point xxx0 = 0.5 · 111n xxx0 = 0.5 · 111n
Lower bound xxxlb = −111n xxxlb = 000n
Upper bound xxxub = 111n xxxub = 111n
Regularization λ = 0.001 λ = 1
RFE frequency σωωω = 1 σωωω = 3
Pre-exploration σζζζ = 0.001 σζζζ = 0.002
Post-exploration σξξξ = 0.001 σξξξ = 0.002

Table 8-2: Parameters for experiments on the DONE implementation
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OBFN tuning

An optical beam forming network (OBFN) is used to process signals from different antenna
elements in such a way that their phases are aligned. Actuators on the OBFN can be used
to control the signal delays. If the desired delay is known, the problem of tuning the OBFN
can be considered to be an optimization problem [3]. The objective to be minimized is the
difference between the delay provided by the OBFN and the desired delay. This is useful
for applications such as aircraft-satellite communication. The goal is to improve the signal-
to-noise ratio of the incoming signal, which is converted from the electrical domain into the
optical domain and processed using optical ring resonators (ORRs). ORRs can provide a
tunable time delay to signals, but only over a small frequency band. Cascades of multiple
ORRs can provide a constant delay over larger bandwidths [3], and this is where the large-scale
aspect of OBFN tuning comes into play.

Contrary to the previously discussed experiments, the OBFN simulation is noisy, expensive
and derivative-free, hence this is a good benchmark for comparing the parallel DONE imple-
mentation to the sequential DONE implementation on a real-life practical application.

When testing the DONE implementations on the OBFN tuning application, the obtained
accuracy can be measured by running a computer simulation of OBFN tuning and taking the
output value, which is the mean-squared value of the difference between the delay provided
by the OBFN and the desired delay [3]. The run time can be measured in milliseconds using
the command clock(). Since the DONE algorithm uses a fixed amount of iterations in the
optimization step, the amount of (backtracking) iterations is not of interest in this case. What
may be interesting though, is visualising how the objective value diminishes while the amount
of measurements increases. The parameters that are used are listed in Table 8-2. For the
OBFN experiment a specific set of dimensions is used, dimensions which are representative
for a large-scale case of OBFN tuning, these dimensions are

n = 160, m = 12000, N = 50000,

which are larger than the dimensions used in [3].

Properties Set-up 1 Set-up 2
CUDA version 7.5 7.5
CUDA compiler NVCC, 64 bit NVCC, 64 bit
C compiler CL, 64 bit GCC, 64 bit
Precision Single Single
Operating system Microsoft R© Windows 7, 64 bit Microsoft R© Windows 10, 64 bit
CPU type Intel R© Xeon R© E5-1620 v3 Intel R© CoreTM i7-4510U
GPU type NVIDIA R© GeForce R© GTX 760 NVIDIA R© GeForce R© GTX 850M
GPU cores 1152 640
GPU memory 2048 MB 2048 MB

Table 8-3: Hardware used for experiments
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8-4 Software and Hardware

All experiments are to be performed ten times on set-up 1 in Table 8-3, after which for
all results a mean and a standard deviation can be computed. Set-up 2 is only used for
verification of the results in Appendix A. The reason for using set-up 1 is the fact that the
GPU in this set-up has a higher amount of cores and should hence be able to solve larger
problems.
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Chapter 9

Results

This chapter discusses the results of the experiments that are described in Chapter 8. These
results can be used to determine the best performing methods for the RFE fitting step and
for the optimization step. Moreover, after these best performing methods are combined into
a final parallel implementation of the DONE algorithm, the results show how well the parallel
implementation performs with respect to the existing sequential implementation.

Representation of results

Before the results can be analysed, the experiment data need to be preprocessed in order to
remove unreliable results. Appendix A-3 discusses the preprocessing steps that are applied.
Since all experiments are performed ten times, the figures in this chapter show the mean and
the standard deviation for the results. As long as the standard deviation does not drastically
surpass the mean, the results can be considered to be reliable.

9-1 RFE Fitting

Figures 9-1 to 9-6 show the experiment results for the RFE fitting step. As discussed in
Section 8-3-1 the goal of each experiment is to obtain a RFE that fits the inverted Gaussian
function (8-2). The outcomes of each experiment are the training error and testing error,
the run time and the amount of iterations. Since the RLS method and the IQR method
do not require any iterations, Figures 9-5d and 9-6d do not show any results. Some figures
show all data concentrated in a small area, which leads to large white spaces. The results
are presented in this way intentionally. To allow for easy comparison between results of
different implementations, the axes in all corresponding figures have the same scale. Standard
deviations that are out of scope are not plotted at all. Not all experiments are performed
for the full set of dimensions listed in Table 8-1. This is either due to the fact that for the
largest dimensions the run time becomes too large or due to the fact that for the 15th set of
dimensions the GPU memory is exceeded.
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Accuracy

Figures 9-1a and 9-1b to 9-6a and 9-6b reveal that, as expected and discussed in Section 8-2,
the training error and testing error results of the parallel implementations and those of the
sequential implementations are very similar. Only for the IQR method this is not completely
the case. Moreover, for all methods, the results have more or less the same profile. This is
not a constant profile though, naturally the choice of the dimensions n, m and N has a large
influence on how good the RFE fit turns out to be. Straightforwardly the used combinations
of dimensions, as listed in Table 8-1, do not all yield the same accuracy. Nevertheless, the
training error values are all below 1. It can be expected that the testing errors are larger
than the training errors, however this only appears to occur for dimensions m ≥ 1000. This
means that for these dimensions the function fit becomes less reliable, so in order to acquire
a better fit either N or m needs to be increased in these cases. However since all tested
methods yield a similar training and testing error profile, the experiment results are suitable
for further comparison.

Amount of iterations

Figures 9-1d to 9-6d show that also for the amount of iterations, as expected and discussed in
Section 8-2, the profiles of the parallel and sequential implementations are very similar. As
can be expected, the GD method requires the largest amount of iterations, the NGD and NFR
methods require more or less the same amount of iterations and the LFR method requires the
smallest amount of iterations. Remarkable is that the amount of iterations does not increase
drastically as the dimensions increase. One reason for this may be that the step size is chosen
as αi = 1

10 ||ΦΦΦi||−1
F , which ensures that it is adapted after each measurement, thus keeping

the amount of iterations at a minimum. Another reason may be that the parameter vector
is not reset to wwwk = 000m each cycle, which allows the optimization to already start from a
close-to-optimal point. A final reason may be that for the smallest dimensions m� N holds,
which means that aftermmeasurements the least-squares problem becomes over-defined, thus
yielding a very low iteration count for the remaining N −m measurements. Only for results
where m ≥ N this effect does no longer occur. Note that the shown amount of iterations
is the total amount of iterations, not the amount of iterations per new measurement. Even
though the amount of iterations does not increase as drastically as may be expected, the run
time may still increase rapidly since the complexity of a single iteration increases linearly (for
GD, NGD and NFR) or even quadratically (for LFR, RLS and IQR).

Run time

Figures 9-1c to 9-6c show the the run time results. For all methods, the results coincide with
the behaviour that can be expected for any parallel implementation, as shown in Figure 4-2.
For the GD, NGD and NFR methods, a crossover point seems to exist, however it is not yet
reached within the dimensions used for the experiments. For the LFR and RLS methods,
the crossover point is located around m ≈ 5000. For the IQR method, the crossover point
cannot be observed yet. The overall picture shows that the GD method is by far the slowest,
followed by NGD and NFR, which perform more or less the same, followed by LFR and finally
followed by RLS and IQR, where RLS appears to be performing best.
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(a) Training error (b) Testing error

(c) Run time (d) Amount of iterations

Figure 9-1: Experiment results for RFE fitting using the GD method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .

(a) Training error (b) Testing error

(c) Run time (d) Amount of iterations

Figure 9-2: Experiment results for RFE fitting using the NGD method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .
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(a) Training error (b) Testing error

(c) Run time (d) Amount of iterations

Figure 9-3: Experiment results for RFE fitting using the NFR method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .

(a) Training error (b) Testing error

(c) Run time (d) Amount of iterations

Figure 9-4: Experiment results for RFE fitting using the LFR method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .
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(a) Training error (b) Testing error

(c) Run time

(d) Amount of iterations

Figure 9-5: Experiment results for RFE fitting using the RLS method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .

(a) Training error (b) Testing error

(c) Run time

(d) Amount of iterations

Figure 9-6: Experiment results for RFE fitting using the IQR method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .
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Figure 9-7 shows the mean run times of all RFE fitting experiments. Figure 9-7a confirms the
expected ranking for the sequential implementations, where GD is by far the slowest, followed
by NGD and NFR, followed by LFR, and finally followed by RLS and IQR. The IQR method
is, be it by a small difference, faster than the RLS method, confirming the choice of IQR
in the existing DONE implementation. Figure 9-7b shows the same ranking for the parallel
implementations, with the exception that the RLS method is faster than the IQR method in
this case. Remarkable is that for both the sequential and the parallel case the LFR method
can compete very well with the RLS and IQR methods for dimensions m ≤ 100, only for
higher dimensions it becomes significantly slower.

(a) Run time (CPU) (b) Run time (GPU)

Figure 9-7: Mean run times for all RFE fitting experiments. The dimension on the horizontal
axis represents m, see Table 8-1 for its relation to n and N . No standard deviations are plotted
in this figure.

Choice of RFE fitting method

Based on the fact that the parallel RLS method has the fastest run time for all tested di-
mensions, the RLS method is chosen as the RFE fitting that is to be used in the parallel
DONE implementation. This does not mean though that it is not worth further investigating
parallelization of the IQR method.

9-2 Optimization

Figures 9-8 to 9-11 show the experiment results for the optimization step. As discussed in
Section 8-3-2 the goal of each experiment is to find a local optimum of a randomly established
RFE. The outcomes of each experiment are the found optimum (RMS value of the argument),
the run time, the amount of iterations and the amount of backtracking iterations. Since the
NGD method does not require any backtracking iterations, Figure 9-9d does not show any
results. Some figures show all data concentrated in a small area, which leads to large white
spaces. The results are presented in this way intentionally. To allow for easy comparison be-
tween results of different implementations, the axes in all corresponding figures have the same
scale. Standard deviations that are out of scope are not plotted at all. Not all experiments
are performed for the full set of dimensions listed in Table 8-1. This is due to the fact that
for the largest dimensions the run time becomes too large.
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Accuracy

As discussed in Section 8-3-2 it is not possible to measure the actual accuracy in this exper-
iment, since for the fully random RFE the locations of the optima are unknown. However
it is known that all experiments start from xxx0 = 000n, hence measuring the RMS value of the
argument of the found optimum gives an indication of how far the optimization method has
travelled. Hence, if all experiments yield a similar result, at least can be concluded that a
fair comparison can be made.

Figures 9-8a to 9-11a reveal a profile that is more or less the same for all methods except
for the NFR method. Moreover, as expected and discussed in Section 8-2, the profile of the
parallel implementations is very similar to that of the sequential implementations. Note that
the results for the NFR method are very strange. For dimensions larger than m ≈ 100,
no results can be obtained any more. A possible explanation for this may be that the NFR
framework may not operate in combination with the RFE framework very well. See Appendix
A-1 for more information about this. For the GD, NGD and BFGS methods the found
optimum increases slightly when the dimensions increase. Since the profile is very similar for
all experiments except for the NFR experiments, at least the results for the GD, NGD and
BFGS methods are suitable for further comparison.

Amount of iterations

Figures 9-8b to 9-11b reveal that the amounts of iterations do not increase very drastically for
increasing dimensions. This profile can, as expected and discussed in Section 8-2, be observed
for the parallel implementations as well as for the sequential implementations. As can be ex-
pected, the GD method requires the most iterations and the BFGS method requires the least
amount of iterations. The NGD method lies between these two methods and as discussed the
NFR method does not really fit in this comparison due to its bad performance. It may be
interesting to find out if the NGD method, which requires more iterations, may be able to
compete in run time with the BFGS method, since the primary computational complexity of
the NGD method increases linearly with increasing dimensions whereas the primary compu-
tational complexity of the BFGS method increases quadratically with increasing dimensions.

Amount of backtracking iterations

Figures 9-8d to 9-11d reveal a profile for the amounts of backtracking iterations which is very
similar to that of the amounts of iterations. Also in this case this profile can, as expected
and discussed in Section 8-2, be observed for the parallel implementations as well as for the
sequential implementations. Note that the total amounts of backtracking iterations are shown,
not the amount of backtracking iterations per iteration. Since the amounts of backtracking
iterations are mostly approximately ten times higher than the amounts of iterations, this
yields the conclusion that the amount of backtracking iterations remain below ten, which is
an acceptable amount.
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(a) Accuracy (b) Amount of iterations

(c) Run time (d) Amount of backtracking iterations

Figure 9-8: Experiment results for optimization using the GD method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .

(a) Accuracy (b) Amount of iterations

(c) Run time

(d) Amount of backtracking iterations

Figure 9-9: Experiment results for optimization using the NGD method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .

J.H.T. Munnix Master of Science Thesis



9-2 Optimization 83

(a) Accuracy (b) Amount of iterations

(c) Run time (d) Amount of backtracking iterations

Figure 9-10: Experiment results for optimization using the NFR method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent
the standard deviation. The dimension on the horizontal axis represents m, see Table 8-1 for its
relation to n and N .

(a) Accuracy (b) Amount of iterations

(c) Run time (d) Amount of backtracking iterations

Figure 9-11: Experiment results for optimization using the BFGS method. The solid lines
represent the mean of ten performed experiments for each set of dimensions, the dashed lines
represent the standard deviation. The dimension on the horizontal axis represents m, see Table
8-1 for its relation to n and N .

Master of Science Thesis J.H.T. Munnix



84 Results

Run time

Figures 9-8c to 9-11c show the run time results. For all methods, except NFR, the results
coincide with the behaviour that can be expected for any parallel implementation, as shown
in Figure 4-2. The crossover points where the sequential implementations become slower than
the parallel implementations are located at m ≈ 5000 for the GD method and at m ≈ 10000
for the NGD and BFGS methods. This indicates that the parallel GD implementation is
most effective with respect to the degree of parallelism. However both the sequential and the
parallel implementations of the GD method are slower than their respective NGD and BFGS
counterparts. Another remarkable result is that the parallel NGD implementation and the
parallel BFGS implementation perform more or less the same, so indeed the higher amount of
iterations of the NGD method is compensated by its lower computational complexity. Even
more remarkable is the fact that this is the case both for the sequential implementations
and the parallel implementations. Hence the good performance of the NGD method is not
a product of parallel programming but of very effective first-order optimization, which is of
course the purpose of the NGD method [31, 33, 34].

Figure 9-12 shows the mean run times of all optimization experiments. Figure 9-12a confirms
the discussed ranking for the sequential implementations, where GD is by far the slowest and
NGD and BFGS perform more or less the same. The NFR method clearly cannot be taken
into account here. Figure 9-12b shows the same ranking for the parallel implementations.
For the highest dimensions NGD appears to be performing even better than BFGS, however
since no results are available for higher dimensions, this cannot be confirmed.

(a) Run time (CPU) (b) Run time (GPU)

Figure 9-12: Mean run times for all optimization experiments. The dimension on the horizontal
axis represents m, see Table 8-1 for its relation to n and N . No standard deviations are plotted
in this figure.

Choice of optimization method

Since NGD and BFGS appear to have mostly the same performance with respect to the
experiment criteria, the choice for one of them should be based on other criteria. In this
case BFGS is chosen since this is a more established method for which more mathematical
foundations exist. Moreover, when comparing rudimentary parallel DONE implementations
using both the NGD and BFGS methods, the implementation containing the BFGS method
appears to perform better, as can be seen in Appendix A-2.
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9-3 The DONE Algorithm

As discussed in Section 8-3-3, the acquired parallel DONE implementation is to be tested
on an inverted Gaussian function, using the dimensions in Table 8-1, and on a practical
application called OBFN tuning, using dimensions that are suitable for this application.

9-3-1 Inverted Gaussian

Figure 9-13 shows the results of the first experiment involving the parallel DONE implemen-
tation. The goal of the experiment is to find the optimum of an inverted Gaussian function.
The outcomes of the experiment are the found optimum (RMS value of the argument) and
the run time.

Accuracy

Figure 9-13b shows the obtained accuracy for the inverse Gaussian experiments. Since in
this case the global optimum is known and located at xxx∗ = 000n, the found optimum is a
good measure for the accuracy. As can be seen for m ≤ 30 the sequential implementation
and the parallel implementation obtain more or less the same accuracy. Note that, as listed
in Table 8-2, the starting point is xxx0 = 0.5 · 111n, so for the lowest dimensions the obtained
accuracy is not so good. Of course this makes sense, since for these experiments a very
small amount of Fourier features is used. For m > 30 the sequential implementation starts
achieving better results than the parallel implementation. The parallel implementation even
diverges at a certain point, this does not agree with the expectation that the obtained profiles
should be similar, as discussed in Section 8-2. A possible explanation for this may be that the
parameters are fixed throughout all experiments, and these parameters may not be optimal
for all sets of dimensions used. However this is the case for both the parallel and the sequential
implementation. Hence it appears that the parallel DONE implementation needs to be tuned
separately from the sequential implementation.

Run time

Figure 9-13a shows the run time for the inverse Gaussian experiment. The profile is as can
be expected similar to the profile in Figure 4-2. The parallel implementation is much slower
for small dimensions, however for dimensions m > 1000 it starts outperforming the sequential
implementation.

Figures 9-13c and 9-13d show the run time for the different parts of the parallel DONE imple-
mentation. The left pie chart in Figure 9-13d represents the first of the experiments whereas
the right pie chart represents the last of the experiments. As can be seen the optimization
step requires by far the largest amount of run time. The only parts for which the run time
increases significantly when the dimensions increase are the initialization step, the optimiza-
tion step and the RFE fitting step. As discussed in Section 4-2, for small dimensions the
memory copies take up a significant part of the run time whereas for large dimensions they
do not. Remarkable is that copying data from device to host requires much more run time
than copying data from host to device.
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(a) Run time (b) Found optimum

(c) Specified run time
(d) Specified run time

Figure 9-13: Experiment results for Gaussian optimization using the DONE algorithm. The solid
lines represent the mean of ten performed experiments for each set of dimensions, the dashed
lines represent the standard deviation. The dimension on the horizontal axis represents m, see
Table 8-1 for its relation to n and N .

9-3-2 OBFN Tuning

The most informative experiment is of course the OBFN experiment, since this yields how
successful the parallel DONE implementation is on a practical application. Figure 9-14 shows
the experiment results. As discussed in Section 8-3-3 the goal of the experiment is to optimize
the outcome of a computer simulation of OBFN tuning. The outcomes of the experiment are
the reached objective function value and the run time. The parameters listed in Table 8-2
are used.

Accuracy

Figure 9-14c shows the obtained accuracy for each cycle of the DONE algorithm. Figure
9-14a shows the final obtained accuracy for the OBFN experiment. As can be seen, for this
specific experiment, the sequential DONE implementation reaches a higher accuracy than the
parallel DONE implementation. This may be explained by the fact that the parallel DONE
implementation works with single-precision floating-points whereas the sequential DONE im-
plementation works with double-precision floating-points. Moreover there are some differences
between the IQR and LBFGS methods used in the sequential implementation and the RLS
and BFGS methods used in the parallel implementation, which may also cause a difference
in accuracy. However, when looking at Figure 9-14c, which shows the reached objective val-
ues throughout running the DONE algorithm, the difference in accuracy is not that much,
considering that both implementations start off with an objective value of around f(xxx0) ≈ 60.
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Run time

Figure 9-14b shows the run time for the OBFN experiment. As can be seen, for this specific
experiment, the parallel DONE implementation is almost twice as fast as the sequential DONE
implementation.

(a) Accuracy (b) Run time (c) Progression

Figure 9-14: Experiment results for OBFN tuning using the DONE algorithm. The solid lines
represent the mean of ten performed experiments, the standard deviation is left out here because
it is orders of magnitude smaller than the mean values. Note that there are more measurements
than the amount of markers in Figure c.

Result Sequential Parallel
Objective value 3.50 3.85
Run time in seconds 7.87× 103 4.50× 103

Run time in hours 2:11 1:15

Table 9-1: Final experiment results

The numerical values of the final results shown in Figure 9-14 are listed in Table 9-1. From
these values can be concluded that for this specific experiment the final achieved speed-up
factor is

S = 4.50× 103

7.87× 103 = 1.75.
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Chapter 10

Discussion

With all results available, the sub-questions that are discussed in Chapter 1 can be answered.

1. In which scenario is the DONE algorithm used and in which scenario can a parallel
DONE implementation be useful?

Data-based online nonlinear extremum-seeker (DONE) is an algorithm that optimizes noisy
and expensive objective functions which do not provide derivatives and which may be non-
convex. It was developed for sensorless wavefront aberration correction in optical coherence
tomography (OCT) [2] and tuning of an optical beam forming network (OBFN) [3]. OBFN
tuning is a problem which may involve a large amount of parameters. In cases that the objec-
tive function has a large input dimension, a parallel implementation of the DONE algorithm
may yield an improvement in run time.

2. What are the core elements of the DONE algorithm?

The core elements of the DONE algorithm are:

• RFE fitting, which comes down to solving a regularized linear least-squares prob-
lem in a recursive fashion [14].
• Optimization of a nonlinear surrogate function, where the surrogate function is
established using RFE fitting [6].
• Exploration, which comes down to slightly perturbing the measurement locations
in order to attempt global optimization.

Apart from these core elements, the initialization step of the DONE algorithm is also suscep-
tible for parallel computing so, although it is not considered a core element, incorporating
this into the parallel DONE implementation may help achieving a speed-up with respect to
the sequential DONE implementation.
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3. How can the DONE algorithm be classified and which other algorithms belong to the
same classification?

The DONE algorithm can be classified as a model-based derivative-free optimization al-
gorithm, despite the contrasting term “data-based” in its name. Examples of comparable
methodology are NEWUOA [18] and Bayesian optimization [19]. NEWUOA and Bayesian
optimization have some features which may be useful for the DONE algorithm as well, how-
ever these features are not specifically useful for parallel computing, so they are left out of
the scope of this project.

4. What are the key concepts of parallel computing on a GPU using CUDA?

The power of a GPU lies in its large amount of cores, not in the individual capacity of the
cores. Since a CPU has much less, however more powerful cores, parallel computing is only
beneficial for large-scale computations. Also since communication between CPU and GPU
takes a lot of time, only large-scale problems and coarse-grained problems may yield a speed-
up since in these cases the amount of communication can be hidden behind the larger amount
of computation. In order to make use of all capacities of parallel computing, the libraries
CUBLAS and CURAND can be used to perform the core elements of the DONE algorithm.

5. What are the criteria that determine whether or not a numerical method is suitable
for parallel computing?

The parallel computing criteria are:

• Computational complexity
• Degree of parallelism
• Required memory storage

All criteria are applied to the primary elements, which are inherent to the discussed methods,
and the secondary elements, which are due to additional computations. The computational
complexity and the required memory storage are presented as a function of the input di-
mension n and the amount of Fourier features m. The degree of parallelism is considered a
qualitative criterion rather than a quantitative criterion.

6. What are the available numerical methods that can be used for these core elements
and how do they compare with respect to the established criteria?

For the RFE fitting step, recursive methods and optimization-based methods can be used.
The recursive least-squares (RLS), inverse QR (IQR), gradient descent (GD), Nesterov’s
accelerated gradient descent (NGD), nonlinear Fletcher-Reeves (NFR) and linear Fletcher-
Reeves (LFR) methods are selected for parallel implementation based on the established
criteria.
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For the optimization step, first-order and second-order methods can be used. The gradient de-
scent (GD), Nesterov’s accelerated gradient descent (NGD), nonlinear Fletcher-Reeves (NFR)
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods are selected for parallel implemen-
tation based on the established criteria.

The initialization and exploration steps can be parallelized straightforwardly.

7. What are the criteria that are important for comparison between sequential and parallel
implementations of the selected methods?

The experiment criteria are:

• Obtained accuracy
• Run time
• Amount of (backtracking) iterations

It is important to know what accuracy is obtained in order to be able to say something about
the run time. It makes no sense to continue with an implementation that is very fast but
obtains very inaccurate results. Not all implementations require iterations or backtracking
iterations, however for those implementations that do it is interesting to measure the amount
of (backtracking) iterations in order to verify whether they are fast or slow because they
require complex computations or because they require many iterations.

8. Which of the selected methods perform best according to the established criteria?

The best performing parallel implementation for the RFE fitting step is the RLS method,
closely followed by the IQR method. For the optimization step both the BFGS method and
the NGD method appear to be the best performing parallel implementation.

RLS and IQR both obtain the same accuracy, but RLS has a faster run time. Both methods
do not require any iterations. BFGS and NGD also obtain the same accuracy and although
NGD requires more iterations, their run times are more or less the same. It is an interesting
result that the first-order NGD method has the same run time as the second-order BFGS
method and it may be useful to further investigate the possibilities of implementing the
DONE algorithm using the NGD method.

9. How does the acquired parallel implementation of the DONE algorithm compare to
the existing sequential implementation?

For the OBFN experiment, the parallel DONE implementation obtains an accuracy which
is a minor bit worse than the accuracy obtained by the existing sequential implementation,
however when considering the starting values for the objective value this difference in the final
values is negligible. The parallel DONE implementation performs the OBFN experiment with
a speed-up factor of S = 1.75 with respect to the sequential DONE implementation.
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It should be kept in mind though, that the parallel implementation performs single-precision
computations whereas the sequential implementation performs double-precision computa-
tions, which may also be the reason that the sequential implementation takes more run time.
However, even if the sequential implementation would indeed be much faster if it also per-
formed single-precision computations, as discussed in Section 4-6 there is much more promise
for further improvement in GPU capacities than there is for further improvement in CPU
capacities. Hence, even if a parallel implementation does not immediately yield a speed-up,
this does not mean that parallelization should not be considered any further. So the obtained
parallel DONE implementation may become even more useful in the future.
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Conclusion

11-1 Research Question

After answering the sub-questions, the main research question can be answered as well.

What are the possibilities of parallelization of the DONE algorithm by means of
implementing it on a GPU using CUDA, with the focus on achieving a maximum
speed-up factor for large-scale problems, with respect to the existing sequential
implementation, while maintaining correct results?

The answer in short is that by implementing the DONE algorithm on a GPU using the
recursive least-squares (RLS) method to perform the RFE fitting step and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method to perform the optimization step, for optimization
of a large-scale OBFN simulation, a speed-up factor of 1.75 can be obtained with respect to
the sequential implementation, while remaining within reasonable bounds with respect to the
correctness of the results. There is however no proof that this is the best possible speed-up
factor. Several actions may be taken in order to possibly improve the results, as listed in the
recommendations for future work.

11-2 Conclusions

Some more detailed conclusions can be drawn from the results:

• All parallel implementations behave as can be expected when it comes to run time.
For small dimensions they are much slower than the sequential implementations,
however as the dimensions increase the sequential implementations become much
slower whereas the parallel implementations do not become much slower.
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• Linear least-squares methods that are based on optimization cannot compete with
dedicated linear least-squares methods with regard to run time, although the linear
Fletcher-Reeves (LFR) method comes rather close.
• The first-order method Nesterov’s accelerated gradient descent (NGD) does, for
this application, a great job at competing with the second-order method Broyden-
Fletcher-Goldfarb-Shanno (BFGS), not only in the parallel case but also in the
sequential case.
• The Gaussian experiment results prove that the parallel DONE implementation
can be faster than the sequential DONE implementation for large dimensions,
however these results do not yet show maintained correctness of results.
• In the specific case of the OBFN experiment the parallel DONE implementation
is definitely faster than the sequential implementation and in this case correctness
of results is maintained.

11-3 Evaluation

The first question that comes to mind when evaluating this project, is whether or not the
main research question has been answered. The main research question is too much of an
open question to say something about this, since it cannot be proven that a maximum speed-
up factor is achieved nor can it be proven that all possibilities have been explored. The most
important part however, has been answered. One of the possibilities for obtaining a parallel
implementation that is faster than the sequential implementation while maintaining correct
results has been discovered.

Another question one may ask, is whether or not it makes a difference that the parallel
DONE implementation works with single-precision variables whereas the sequential DONE
implementation works with double-precision variables. If the sequential DONE implementa-
tion would be working with single-precision variables as well, would it be just as fast as the
parallel DONE implementation? Of course this can only be determined by putting it to the
test, however the fact that all sequential implementations of the separate RFE fitting and
optimization methods work with single-precision as well and these sequential methods are all
outperformed by their parallel counterparts eventually, suggests that the difference between
single-precision and double-precision does not have that much influence on the run time.

A result that is very interesting is the specified run time in Figures 9-13c and 9-13d. It might
have been beneficial to have these results for all performed experiments. Unfortunately this
specified run time was only taken into account close to the end of the project.

An important thing for optimization methods is checking whether or not the found optimum
is a minimum and not a maximum or a saddle point. This can be done by checking the
positive-definiteness of the Hessian. This is not taken into account in all tested optimization
implementations. The nature of the DONE algorithm is such that this is not very important,
since every found point provides useful information, whether it is an actual optimum or not,
however for verification of the final obtained optimum it may be beneficial to implement a
Hessian check.
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Another minor flaw in the development of the implementations is the step size selection for
the optimization implementation of the NGD method. In the current implementation the
step size is based on the maximum gradient value and not the maximum Hessian value, as it
should be. Although the implementation works properly, it may be more efficient if the step
size is selected based on the maximum Hessian value. Of course it would be a bit too much
too actually perform a matrix-matrix multiplication in order to select a step size, but using
the covariance information of the probability distribution of the frequency matrix may allow
an improvement already.

Also the argumentation on which the choice of using the BFGS method instead of the NGD
method is not very strong. It makes sense to use the BFGS method since it is a more estab-
lished and theoretically faster method, however because the NGD method is so surprisingly
fast and because more improvement may be possible, NGD should not be ignored.

During the literature survey for this project, a lot of parallel implementations of other algo-
rithms were discovered. These implementations might have been a good example and also a
good inspiration for how to parallelize the DONE algorithm. However as the project moved
on, it turned more into an investigation into which methods best to use for a parallel DONE
implementation instead of how to apply parallelization possibilities at a more detailed level.
This is not necessarily a bad thing, the investigated matter in this master thesis is of much
importance for obtaining a speed-up, however the more detailed parallelization possibilities
should not be ignored and may be very useful for further parallelization.

A final improvement on the parallel DONE implementation, that is unfortunately not present
in the implementation that is used for the experiments, is efficient surrogate function eval-
uation. In Algorithm 11 and in Appendix B this is implemented as efficiently as possible,
however in the implementation used for the experiments the surrogate function is evaluated
three times per iteration of the optimization step while it is only necessary to do this eval-
uation twice per iteration. Since the surrogate function evaluation cannot be considered a
minor part of the code, this may mean that the final parallel DONE implementation is even
faster than presented in the results.

11-4 Future Work

As discussed in Section 11-3 this master thesis focusses on which numerical methods to choose
when trying to parallelize an algorithm. However there may be much more possibilities to
speed-up the DONE algorithm on a more detailed level of parallelism. For instance the use of
shared memory has not been explored yet, while using shared memory effectively may be able
to speed-up the algorithm even more. As discussed in Section 11-3 there is a quite extensive
amount of literature available describing how to implement certain numerical methods in
parallel. These pieces of literature may describe more possibilities to obtain a speed-up.

Another possibility to obtain more speed-up is to use streams in order to add more concur-
rency. Although the steps of the DONE algorithm are mostly interdependent, some of them
are not and thus they can be performed at the same time. This may yield some more speed-
up. Also with regard to memory copies more concurrency can be added using streams. Some
computations may already be started while data that is not yet needed is still being copied.
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Moreover when problems become even more large-scale than the ones presented in this master
thesis there may not be enough storage space on the GPU any more and concurrent memory
copies become inevitable in order to maintain the gained speed-up.

As discussed in Appendix A-1 the reason that the NFR method does not yield proper results
when optimizing the surrogate function (3-11) may be that it is not restarted at regular
intervals. It may be interesting to find out if the NFR method with occasional restarts may
perhaps behave just as well as the NGD method does.

Since the DONE algorithm performs a fixed amount of iterations per cycle, it is not really
necessary to do the convergence check where the optimization is terminated once the gradient
becomes sufficiently small. Omitting this part from the final parallel DONE implementation
may yield a little bit more speed-up.

It is remarkable that the IQR method is such a superior method for sequential computing but
that it performs worse when it comes to parallel computing. Maybe the way in which it is cur-
rently parallelized is not optimal. It may be useful to do further research into parallelization
possibilities for the IQR method.

Since the choice for the BFGS method over the NGD method does not have very solid argu-
mentation, it may be useful to do more research into if there could be a possibility for the
NGD method to outperform the BFGS method. Especially since the DONE algorithm only
performs a fixed amount of iterations, this may yield surprising results.

11-5 Final Note

As discussed more research can be performed to obtain the optimal parallel DONE implemen-
tation, however this master thesis has provided some proper tools to determine the derivative
of this quest, making it easier for future researchers to determine their search directions.
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Additional Results

A-1 Verification of the NFR Method

The results in Section 9-2 clearly show that the NFR method does not seem to work properly
on optimization of the surrogate function (3-11). An explanation for this may simply be that
the conjugate gradient framework does not work well with the RFE framework. It is however
also a known problem that establishing new search directions from previous directions (6-17)
may after a while result in a bad search direction due to numerical errors and since this bad
search direction is then again used to establish a new search direction this is a diverging
problem [6]. A way to solve this is to reset the search direction to the negative gradient every
once in a while [6].

In order to ensure that the bad results are not due to wrong implementation, the same NFR
implementation is used to optimize the quadratic test function

ft(xxx) = 1
2x
xxTxxx+ xxxTδδδ, (A-1)

where the used parameters are chosen to be

δδδ ∼ N (000n, IIIn), xxx0 ∼ N (000n, IIIn),

and the gradient is denoted by

∇xxxft(xxx) = xxx+ δδδ. (A-2)

Figure A-1 shows the results for this experiment. Due to time limitations, this experiment
has been performed on set-up 2 from Table 8-3. As in Chapter 9, standard deviations that
are below the lower boundary are not plotted. The same data preprocessing as in Appendix
A-3 is applied here.
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(a) Accuracy (b) Amount of iterations

(c) Run time (d) Amount of backtracking iterations

Figure A-1: Additional results for optimization using the NFR method. The solid lines represent
the mean of ten performed experiments for each set of dimensions, the dashed lines represent the
standard deviation. The horizontal axis represents the experiment number, see Table 8-1 for its
relation to n.

Before analysing the results it is important to note that the quadratic test function (A-1) is
a less complicated function than the surrogate function (3-11) and hence the backtracking
method is able to select very good step sizes. This explains the constant amounts of iterations
and backtracking iterations and the constant run time for all tested dimensions. The most
important result in this case is that the NFR implementation remains functional for all di-
mensions and that the accuracy does not decrease for increasing dimensions. This proves that
the NFR implementation behaves as can be expected and is hence not wrongly implemented.

A-2 Choice of Optimization Method

From the results in Section 9-2 it turns out that both in the sequential and in the parallel
case, the NGD method performs just as good as the BFGS method. This is a remarkable
result, since the NGD method is a first-order optimization method and the BFGS method is
a second-order optimization method. It does make sense however, since NGD is specifically
designed to approach quasi-Newton convergence [31, 32, 34]. In order to make the right choice,
both NGD and BFGS are implemented into a rudimentary parallel DONE implementation
and both implementations are tested for accuracy and run time on the Gaussian experiment
discussed in Section 8-3-3. Due to time limitations, these experiments have been performed
on set-up 2 from Table 8-3.

Figures A-2 and A-3 show the results of these tests. As can be seen with regard to run time
both implementations perform similarly, however with regard to accuracy the implementation
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containing the BFGS method performs better. Of course there may be another reason for
this than NGD being worse than BFGS, for instance after some more extensive tuning both
implementations may perform similarly with regard to accuracy as well. However since this
currently is the only thing to base a decision on, BFGS appears to be the better choice.

(a) Accuracy (b) Run time

Figure A-2: Additional results for a DONE implementation using the BFGS method. The solid
lines represent the mean of ten performed experiments for each set of dimensions, the dashed
lines represent the standard deviation. The dimension on the horizontal axis represents m, see
Table 8-1 for its relation to n and N .

(a) Accuracy (b) Run time

Figure A-3: Additional results for a DONE implementation using the NGD method. The solid
lines represent the mean of ten performed experiments for each set of dimensions, the dashed
lines represent the standard deviation. The dimension on the horizontal axis represents m, see
Table 8-1 for its relation to n and N .

A-3 Data Preprocessing

Before the experiment results can be inspected in Chapter 9, several preprocessing steps need
to be taken. Firstly it is important to realize that the lowest measurable run time value
is one millisecond, hence any run time result that is zero should be set to one millisecond.
This indicates that also for the standard deviation, a run time result below one millisecond
is meaningless, so standard deviations below one millisecond are set to one millisecond as
well. For all other criteria the lower limit is the smallest value that can be represented by
a single-precision floating-point, however quick analysis of the results reveals that this lower
limit is not reached. Subsequently there are several other reasons to declare an experiment
result unfit for further analysis:
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• A numerical error occurs which results in bad data.
• A practical error occurs, such as the GPU memory is full.
• The maximum amount of iterations is reached, hence no optimum is found.
• Divergence occurs, hence the results approach infinity.
• The found optimum is so far off that, though it may be a proper optimum, no fair
comparison can be made with other results.

If a result is declared unfit based on one of these reasons, it is replaced by the mean of all
other results in that experiment.

RFE fitting

In the LFR GPU results there is one case of divergence. Furthermore there are some cases
of a full GPU memory. Since only the LFR, RLS and IQR methods make it through the full
range of experiments, these are the only methods where this occurs. The dimensions listed
in Table 8-1 for the final experiment are too large, causing the matrix ΦΦΦi ∈ Rm×m (or one
of its inverse representations) to exceed the GPU memory, despite the fact that due to its
symmetry only 1

2(m2 +m) single-precision floating-points need to be stored.

Optimization

In the GD CPU results there are 25 cases where the maximum amount of iterations is reached,
which mostly occurs at the highest dimensions. All results for the final experiment reach the
maximum amount of iterations, which means that the final experiment is completely dismissed
in this case. Remarkably, in the GD GPU results there are only four cases where the maximum
amount of iterations is reached.

In the NGD CPU results there are two cases of divergence and one case of a bad optimum,
which all three occur at the lowest dimensions. Likewise, in the NGD GPU there is one case
of divergence, also at a low dimension.

In the NFR CPU results both divergence and reaching the maximum amount of iterations
occur, causing all results for the second half of the experiments to be unfit for further analysis.
In the results for the lower dimensions there are five cases of a bad optimum. Likewise,
the NFR GPU results yields four cases of a bad optimum, and for the second half of the
experiments no results can even be obtained.

In the BFGS CPU results there are two cases of numerical errors, one case of a bad optimum
and one case where the maximum amount of iterations is reached. Similarly, in the BFGS
GPU results there are two cases where the maximum amount of iterations is reached, one
case of a numerical error and one case of a bad optimum.

The DONE algorithm

The experiments on the DONE algorithm itself do not yield any bad results, both for the
inverted Gaussian experiments and the OBFN experiment.
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Appendix C

Convergence Rates

Definition of convergence rates

Linear convergence rates satisfy the condition

lim
k→∞

|f(xxxk+1)− f(xxx∗)|
|f(xxxk)− f(xxx∗)| = µ, (C-1)

where µ = 1 indicates sublinear convergence, 0 < µ < 1 indicates linear convergence and µ = 0
indicates superlinear convergence [6]. Quadratic convergence rates satisfy the condition

lim
k→∞

|f(xxxk+1)− f(xxx∗)|
|f(xxxk)− f(xxx∗)|2

= µ, (C-2)

where 0 < µ <∞ [6].

Sublinear convergence rates

The GD method is stated to have convergence rate O( 1
k ) [31, 32] and the NGD method is

stated to have convergence rate O( 1
k2 ) [31, 32, 34]. This indicates that the NGD method

converges faster, however both convergence rates are still sublinear, as demonstrated by

lim
k→∞

∣∣∣ 1
k+1

∣∣∣∣∣∣ 1k ∣∣∣ = lim
k→∞

k

k + 1 = lim
k→∞

−1
k + 1 + 1 = 1, (C-3)

lim
k→∞

∣∣∣ 1
(k+1)2

∣∣∣∣∣∣ 1
k2

∣∣∣ = lim
k→∞

k2

k2 + 2k + 1 = lim
k→∞

−2k − 1
k2 + 2k + 1 + 1 = 1, (C-4)

provided that k > 0.
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Linear convergence rates

An example of linear convergence is O(γk), where 0 < γ < 1, as demonstrated by

lim
k→∞

∣∣∣γk+1
∣∣∣

|γk|
= lim

k→∞
γk+1−k = γ, (C-5)

provided that k > 0.

Superlinear convergence rates

An example of superlinear convergence is O(γk2), where 0 < γ < 1, as demonstrated by

lim
k→∞

∣∣∣γ(k+1)2
∣∣∣∣∣γk2∣∣ = lim

k→∞

γk
2+2k+a

γk2 = lim
k→∞

γ2k+1 = 0, (C-6)

provided that k > 0.

Quadratic convergence rates

An example of quadratic convergence is O(γ2k), where 0 < γ < 1, as demonstrated by

lim
k→∞

∣∣∣γ2k+1
∣∣∣∣∣∣γ2k
∣∣∣2 = lim

k→∞

γ2k+1

γ2·2k = lim
k→∞

γ2k+1−2k+1 = 1, (C-7)

provided that k > 0.
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Appendix D

Interpretation of Nesterov’s Method

Nesterov’s accelerated gradient descent (NGD) method propagates not only the input vector
xxxk but also the momentum vector vvvk, which causes a different trajectory to be followed
than the gradient descent trajectory. This trajectory may appear less efficient, however since
momentum is taken into account as well this new trajectory may turn out to require less
iterations. Take for instance a two-dimensional surrogate function f̂i, which can be considered
as a curved surface embedded in a three-dimensional space. If a ball were to be dropped
somewhere on this surface, it would roll towards one of the minima in the surface. If this ball
is modelled as a point mass, the equation of motion becomes

Mẍxx = −Cẋxx−∇xxxf̂i(xxx), (D-1)

whereM is the mass, C is the friction coefficient, and the gradient ∇xxxf̂i(xxx) is considered to be
a force acting on the point mass. The equation of motion can be converted to the state-space
representation

ẋxx = M−1vvv, (D-2)
v̇vv = −CM−1vvv −∇xxxf̂i(xxx), (D-3)

where the momentum vector vvv comes into play. By discretizing the obtained state-space
representation using

ẋxx = xxxk+1 − xxxk
h

, (D-4)

v̇vv = vvvk+1 − vvvk
h

, (D-5)

where h is the sampling time, the final equations become
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114 Interpretation of Nesterov’s Method

xxxk+1 = xxxk + hM−1vvvk, (D-6)
vvvk+1 = (1− hCM−1)vvvk − h∇xxxf̂i(xxxk), (D-7)

which turn out to be very similar to the equations (6-12, 6-13) used by the NGD method.
Figures 6-4a and 6-4b show how the trajectory followed by the NGD method may appear less
efficient but reaches the optimum within less iterations than the GD method does.
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Glossary

List of Acronyms

BLAS basic linear algebra subprograms

BFGS Broyden-Fletcher-Goldfarb-Shanno

CG conjugate gradient

CPU central processing unit

CS coordinate search

CUDA compute unified device architecture

D2H device to host

DFP Davidon-Fletcher-Powell

DONE data-based online nonlinear extremum-seeker

FLOPS floating-point operations per second

GD gradient descent

GPU graphics processing unit

H2D host to device

IQR inverse QR

LBFGS limited memory Broyden-Fletcher-Goldfarb-Shanno

LFR linear Fletcher-Reeves

LM Levenberg-Marquardt

MIMD multiple instruction stream, multiple data stream

MISD multiple instruction stream, single data stream

Master of Science Thesis J.H.T. Munnix



120 Glossary

N Newton

NFR nonlinear Fletcher-Reeves

NGD Nesterov’s accelerated gradient descent

NMS Nelder-Mead simplex

OBFN optical beam forming network

OCT optical coherence tomography

ORR optical ring resonator

PCD Powell’s conjugate directions

RFE random Fourier expansion

RLS recursive least-squares

RMS root-mean-square

SIMD single instruction stream, multiple data stream

SISD single instruction stream, single data stream

List of Symbols

α Step size, latency
β Bandwidth
ε RMS error
η Parallel work fraction
γ Support parameter
f̂ Surrogate function
Ĵ Transformed least-squares cost function
∞ Infinity
λ Regularization parameter
R Set of real numbers
Z Set of integers
A RFE domain
N Normal probability distribution
O Order of magnitude
U Uniform probability distribution
X Input domain
µ Convergence rate factor
∇f̂ Gradient of the surrogate function
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∇2f̂ Hessian of the surrogate function
∇2J Hessian of the least-squares cost function
∇J Gradient of the least-squares cost function
ν Overhead factor
φ Line search function
000n Zero vector of size n
111n Unit vector of size n
δδδ Support vector
κκκ Input difference vector
ΩΩΩ Frequency matrix
ωωω Frequency vector
ΦΦΦ Least-squares solution matrix
ΘΘΘ Orthogonal rotation matrix
θθθ Gradient difference vector
ξξξ Exploration vector
ζζζ Exploration vector
AAA Measurement matrix
aaa Measurement vector, support vector
BBB Inverse Hessian approximation
bbb Phase vector, support vector
ccc Support vector
ggg Least-squares support vector
HHH Hessian
IIIn Identity matrix of size n by n
PPP Inverse least-squares solution matrix
ppp Search direction
PPP

1
2 Square root inverse least-squares solution matrix

rrr Gradient
sss Least-squares solution vector
VVV BFGS update matrix
vvv Momentum vector
www Weight vector
xxx Input vector
xxx∗ Optimal input vector
xxxlb Lower bound on the input vector
xxxub Upper bound on the input vector
yyy Objective function output vector
zzz Kernel vector
ψ Single-layered neural network
ρ Amount of parallel processors
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σ Standard deviation for normal probability distribution
τ Support parameter
ε Error margin
ϕ Activation function
ϑ Trust region model function
C Friction coefficient
c1 First Wolfe constant
c2 Second Wolfe constant
D Degree of parallelism
E Efficiency
f Objective function
ft Test function
G Inverse Gaussian function
h Sampling time
i Measurement/cycle counter
J Least-squares cost function
j Counter
k Iteration counter
M Point mass
m Amount of Fourier features
N Amount of measurements/cycles
n Input dimension
S Speed-up vector
t Computation time
tsend Communication time
u Amount of operations, amount of bits, amount of vectors
vsend Communication speed
y Objective function output

List of Operators

ceil() Rounds its argument up to the nearest integer
diag() Transforms a vector into a diagonal matrix
ker() Computes a basis for the kernel of a matrix
max() Returns the highest value of all of its arguments
min() Returns the lowest value of all of its arguments
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