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Preamble

In this project, we will show how Christiaan Huygens used continued fractions in the design of his planetarium.
We will introduce continued fractions and discuss some basic properties. Most of the knowledge about continued
fractions, is obtained from ‘Ergodic theory numbers’, written by K. Dajani and C. Kraaikamp, see [2]. By using
an algorithm devised by Alexander Ostrowski, we will find that in a certain sense, the approximation using
continued fractions is a best approximation possible. Furthermore, we will describe an algorithm which helps us
to construct a gear train, which leads us to even better approximations in comparison with the approximations
Huygens made. Most of the knowledge about the gear train, the Ostrowski algorithm and the proof on best
approximations can be found in a condensed way in ‘Continued fractions’, written by A.M. Rocket and P. Szüsz,
see [6]. The appendix contains the code from the algorithm which helps us to find values for the gear train.
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Introduction

Christiaan Huygens, known for his contributions in physics, astronomy and mathematics, designed in 1680 a
planetarium on behalf of l’Académie Royale des Sciences. A planetarium displays multiple planets and their
movement around the sun. Huygens was requested to design the planetarium by the minister of Finance in
France Jean-Baptiste Colbert, under the mandate of King Louis XIV. In the planetarium, the ratio between
two gears determine the orbital periods of two planets. Huygens used continued fractions to approximate such
ratios and made this approximation very precise.

These continued fractions have a long history, with their origin connected with Euclid’s algorithm. Later on,
several mathematicians showed that the approximation with continued fractions is very accurate. Alexander
Ostrowski, a mathematician from Russia, is one of the mathematicians who proved that the approximation by
convergents is a best approximation possible.

In six months, Huygens completed his design and minister Colbert gave him permission to construct the plane-
tarium. Huygens went to his clockmaker Johannes van Ceulen who finished the planetarium in less than a year.
Huygens tried to contact Colbert to inform him that the cost of this planetarium will be 620 pound: 520 for the
material and the work of van Ceulen and 100 pound for the design. In 1682 Huygens got a response of Callois,
the spokesman of Colbert, that the costs for the planetarium were acceptable. A few months later, Colbert died
and Francois Michel Le Tellier becomes first minister. In the following years, Huygens tried to convince the
new minister to let him continue his work for the academy, as he was first chairman to the French academy at
that time. However, Le Tellier decided to dismiss Huygens from the academy. For this reason, Huygens never
got the promised 620 pound and the relationship between the academy and Huygens ended badly; see also [1]
for more information.

The design of his planetarium is an interesting example of an application of continued fractions and deserves
proper attention. This project describes the way Christiaan Huygens designed the planetarium and eventually
shows in which way the approximations can be improved. But first, continued fractions are introduced and
the theorem of Ostrowski is presented to show that the approximation by convergents is a best approximation
possible in a certain, well-defined sense.
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1 Continued fractions

Huygens used continued fractions to approach numbers. The following example introduces this method.

Example 1. The rational number 19
15 = 1.26 can be written as:

19

15
= 1 +

1
15
4

= 1 +
1

3 +
1
4
3

= 1 +
1

3 +
1

1 + 1
3

(1.1)

In (1.1) the Divisor Algorithm of Euclid is applied to convert 19
15 ,

15
4 and 4

3 into mixed fractions. In order
to approximate the number 19

15 by rationals with smaller denominators, parts of the continued fraction are
truncated. For example, the following rational numbers could be approximations of 19

15 :

1 1 +
1

3
= 1.3 1 +

1

3 +
1

1

= 1.25 1 +
1

3 +
1

1 + 1
3

= 1.26

In Example 1 a finite continued fraction is obtained, while in the following example, an infinite continued
fraction is given.

Example 2. The irrational number 1√
2− 1

≈ 2.41421356 can be written as:

1√
2− 1

= 2 +
1

2 +
1

2 +
1

2 +
1

. . .

(1.2)

1.1 The Gauss map

In order to get a better understanding of continued fractions such as (1.1) and (1.2), the Gauss map will be
introduced. The Gauss map is also known as the continued fraction operator; see [2]. Define T : [0, 1)→ [0, 1)
such that

T (x) =

{
1
x −

⌊
1
x

⌋
x 6= 0,

0 x = 0,

in which bxc denotes the largest m ∈ Z such that m ≤ x. If x ∈ [0, 1) is a rational number then according
to the Divisor Algorithm of Euclid, there exists a n ∈ N such that Tn(x) = 0, where Tn(x) denotes the nth
iteration of the Gauss map. If x ∈ [0, 1) is an irrational number, T (x) is an irrational number and eventually
Tn(x) is irrational for all positive integers n. For x ∈ [0, 1), define the sequence (ai)i≥1 ∈ N such that

a1 =
⌊

1
x

⌋
, a2 =

⌊
1

T (x)

⌋
, a3 =

⌊
1

T (T (x))

⌋
=
⌊

1
T 2(x)

⌋
, and so on. As long as Tn(x) 6= 0 we find that

T (x) =
1

x
− a1 and x =

1

a1 + T (x)

Similary,

T 2(x) =
1

T (x)
− a2 and T (x) =

1

a2 + T 2(x)

and it follows that

x =
1

a1 +
1

a2 + T 2(x)
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After n ∈ N steps in this process, we find that

x =
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an + Tn(x)

(1.3)

In (1.3), one can easily see that this continued fraction will be finite if there exists an m ∈ N in which Tm(x) = 0.
The Gauss map can be used to find the continued fraction of any x ∈ R. This process is applied in Example
1, where the continued fraction of 19

15 is examined, in which a1 = 3, a2 = 1 and a3 = 3. In the first step of this
process, 1 is subtracted from 19

15 to make sure that x ∈ [0, 1).

x =
19

15
− 1 =

4

15

a1 =
⌊ 1

x

⌋
=
⌊15

4

⌋
= 3 T (x) =

1

x
−
⌊ 1

x

⌋
=

15

4
− 3 =

3

4

a2 =
⌊ 1

T (x)

⌋
=
⌊4

3

⌋
= 1 T 2(x) =

1

T (x)
−
⌊ 1

T (x)

⌋
=

4

3
− 1 =

1

3

a3 =
⌊ 1

T 2(x)

⌋
=
⌊3

1

⌋
= 3 T 3(x) =

1

T 2(x)
−
⌊ 1

T 2(x)

⌋
=

3

1
− 3 = 0

1.2 Definition and notation

In general, a continued fraction is a representation of a real number t of the form:

t = a0 +
b1

a1 +
b2

a2 +
b3

a3 +
b4

. . .

,

in which a0 ∈ Z such that t− a0 ∈ [0, 1), ai ∈ N and bi ∈ Z for i ≥ 1. In this project, the main focus lies on the
regular continued fractions, in which bi = 1 for all i.

Definition 1 (Regular continued fraction). The unique regular continued fraction of r ∈ R \Q is

r = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

where a0 ∈ Z such that r − a0 ∈ [0, 1) and ai ∈ N for i ≥ 1. The term r − a0 is also known as {r}. A shorter
notation for the unique regular continued fraction of r ∈ R \Q is

r = [a0; a1, a2, . . . ]

Note that for rational numbers there are two different continued fractions possible. Let x be a rational
number with the continued fraction [a0; a1, a2, . . . , ak]. If ak > 1 we also have the continued fraction x =
[a0; a1, a2, . . . , ak − 1, 1]. In addition, if ak = 1, we have x = [a0; a1, a2, . . . , ak−1 + 1]. Example 1 described in
which way continued fractions can be used for approximation of numbers. The first approximation is just the
number [a0], the second becomes [a0; a1], the third is [a0; a1, a2] and so on. These approximations are called
convergents.
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Definition 2 (Convergents of a continued fraction). The convergents Ak

Bk
of the continued fraction [a0; a1, a2, . . . ]

of the number x ∈ R are defined by:

[a0; a1, a2, . . . , ak] =
Ak

Bk
, where k ∈ N≥0

where Ak, Bk ∈ Z such that Bk ≥ 1 and gcd(Ak, Bk) = 1.

Obviously, there are only finitely many convergents whenever x ∈ Q.

1.3 Properties of continued fractions

Moving on now to consider some properties of continued fractions, together with their proofs.

Theorem 1 (Basic properties of continued fractions). Let [a0; a1, a2, . . . ] be the continued fraction of the number

x ∈ R with convergents Ak
Bk

for all k ∈ N≥0, where Bk > 0 and gcd(Ak, Bk) = 1. Let t = x − a0, then this

continued fraction has the following properties

1. Ak = Ak−2 + akAk−1
Bk = Bk−2 + akBk−1,
where k ≥ 1 and A−1 = 1, A0 = a0, B−1 = 0, B0 = 1.

2. Ak−1Bk −AkBk−1 = (−1)k.

3. t =
Ak + Ak−1T

k(t)

Bk + Bk−1T
k(t)

, where k ≥ 1.

Note that for x ∈ Q there are only finitely many k ≥ 1 such that 1, 2 and 3 hold.

Proof. Let k ∈ N≥0 and M =
(a b
c d

)
with a, b, c, d ∈ Z where ad − bc 6= 0. Define the Mobiüs transformation

M : R ∪ {∞} → R ∪ {∞} such that

M(x) =
ax + b

cx + d

Note that (AB)(x) = A(B(x)) for all matrices A and B with integer valued entries and determinant ±1. Let

E0 =
(

1 a0
0 1

)
and Ek =

(
0 1
1 ak

)
. This results in

det(Ek) = 0 · ak − 1 · 1 = −1 for k ≥ 1 and det(E0) = 1 · 1− 0 · a0 = 1 (1.4)

so Ek is an integer matrix of determinant −1 when k ≥ 1 and E0 is an integer matrix of determinant 1. Now
let pk, qk, rk, sk ∈ Z such that

E0E1 · · ·Ek−1Ek =
(pk qk
rk sk

)
(1.5)

Hence,

det(E0E1 · · ·Ek−1Ek) = det
(
pk qk
rk sk

)
and therefore we find that

det(E0)det(E1) · · · det(Ek−1)det(Ek) = pksk − rkqk

As a result of (1.4), we have that
(−1)k = pksk − rkqk (1.6)

In other words, gcd(pk, rk)=1 and gcd(qk, sk)=1. The calculations that follow show the relationship between
matrices, the Möbius transformation and continued fractions. Since

Ek(0) =
(0 1

1 ak

)
(0) =

0 · 0 + 1

1 · 0 + ak
=

1

ak
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we have that

Ek−1Ek(0) =
(

0 1
1 ak−1

)(
0 1
1 ak

)
(0) =

(
0 1
1 ak−1

)( 1

ak

)
=

0 ·
1

ak
+ 1

1 ·
1

ak
+ ak−1

=
1

ak−1 +
1

ak

So after finitely many steps

E1 · · ·Ek−1Ek(0) =
1

a1 +
1

a2 +
1

. . .
1

ak

and finally we have that

E0E1 · · ·Ek−1Ek(0) =
(1 a0

0 1

)


1

a1 +
1

a2 +
1

. . .
1

ak

 =

1 ·


1

a1 +
1

a2 +
1

. . .
1

ak

+ a0

0 ·


1

a1 +
1

a2 +
1

. . .
1

ak

+ 1

= a0 +
1

a1 +
1

a2 +
1

. . .
1

ak

By Definition 2 this finite continued fraction above equals Ak
Bk

. Consequently and due to (1.5), we have that

Ak

Bk
= E0E1 · · ·Ek−1Ek(0) =

(pk qk
rk sk

)
(0) =

pk · 0 + qk
rk · 0 + sk

=
qk
sk

(1.7)

As a result of (1.6), (1.7) and the fact that gcd(Ak, Bk)=1 and both sk > 0 and Bk > 0,

qk = Ak and sk = Bk (1.8)

Since E0E1 · · ·Ek−1Ek =
(
pk Ak

rk Bk

)
and E0E1 · · ·Ek−1 =

(
pk−1 Ak−1
rk−1 Bk−1

)
, we have that

(pk Ak

rk Bk

)
=
(pk−1 Ak−1
rk−1 Bk−1

)
Ek =

(pk−1 Ak−1
rk−1 Bk−1

)(0 1
1 ak

)
=
(Ak−1 pk−1 + ak ·Ak−1
Bk−1 rk−1 + ak ·Bk−1

)
(1.9)

The equation above results in the following values for pk and rk,

pk = Ak−1 and rk = Bk−1 (1.10)

According to (1.5), (1.8) and (1.10) we find that,

E0E1 · · ·Ek−1Ek =
(Ak−1 Ak

Bk−1 Bk

)
(1.11)

From these values and (1.9), we know that(
Ak−1 Ak−2 + ak ·Ak−1
Bk−1 Bk−2 + ak ·Bk−1

)
=
(
Ak−1 Ak

Bk−1 Bk

)
Consequently, the result (Part 1) follows:

Ak = Ak−2 + akAk−1 (1.12)

Bk = Bk−2 + akBk−1 (1.13)
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In addition, the result (Part 2) follows, according to (1.6), (1.8) and (1.10)

Ak−1Bk −AkBk−1 = (−1)k

It remains to prove Part 3 of the theorem. Let E∗k =
(0 1

1 ak + T k(t)

)
, where t = x − a0 and where T k(t)

denotes the kth iteration of the Gauss map, described in Section 1.1. Since

E∗k(0) =
(0 1

1 ak + T k(t)

)
(0) =

0 · 0 + 1

1 · 0 + ak + T k(t)
=

1

ak + T k(t)

we have that

Ek−1E
∗
k(0) =

(
0 1
1 ak−1

)(0 1
1 ak + T k(t)

)
(0) =

(
0 1
1 ak−1

)( 1

ak + T k(t)

)

=

0 ·
1

ak + T k(t)
+ 1

1 ·
1

ak + T k(t)
+ ak−1

=
1

ak−1 +
1

ak + T k(t)

So after finitely many steps

E0E1 · · ·Ek−1E
∗
k(0) = a0 +

1

a1 +
1

a2 +
1

. . .
1

ak + T k(t)

According to (1.3), we have that
E0E1 · · ·Ek−1E

∗
k(0) = x (1.14)

On the other hand, the term E0E1 · · ·Ek−1E
∗
k(0) can also be described in a different way. Because of (1.11),

we have that

E0E1 · · ·Ek−1E
∗
k(0) =

(
Ak−2 Ak−1
Bk−2 Bk−1

)(0 1
1 ak + T k(t)

)
(0)

and after matrix multiplication

E0E1 · · ·Ek−1E
∗
k(0) =

(
Ak−1 Ak−2 + akAk−1 + T k(t)Ak−1
Bk−1 Bk−2 + akBk−1 + T k(t)Bk−1

)
(0)

Next, (1.12) and (1.13) are applied

E0E1 · · ·Ek−1E
∗
k(0) =

(Ak−1 Ak + T k(t)Ak−1
Bk−1 Bk + T k(t)Bk−1

)
(0)

=
Ak−1 · 0 + Ak + T k(t)Ak−1

Ak−1 · 0 + Bk + T k(t)Bk−1

=
Ak + T k(t)Ak−1

Bk + T k(t)Bk−1
(1.15)

At last, as a result of (1.14) and (1.15), we have that

x =
Ak + T k(t)Ak−1

Bk + T k(t)Bk−1

so that the proof of Part 3 is complete.

1.4 Ostrowski’s algorithm

In 1921 Alexander Ostrowski wrote an article about problems in Diophantine approximation; see [4]. In this
article he describes an algorithm which uses a continued fraction expansion to create a representation of any
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positive integer. Ostrowski’s algorithm can be used to prove that the approximation by continued fractions
convergents, is a best approximation possible. In addition, it is important to define the statement ‘best approx-
imation’. We are interested in the distance from an irrational number t to a rational number A

B , so we would

like to find integers A and B such that
∣∣t− A

B

∣∣ < ∣∣t− p
q

∣∣, for all p
q ∈ Q where p

q 6=
A
B and 0 < q < B. However,

in this project we will focus on a different formulation of a best approximation.

Definition 3 (Best approximation). Let t ∈ R \ Q and A
B ∈ Q, where gcd(A,B) = 1. Then A

B is a best

approximation to t if and only if
∣∣Bt−A

∣∣ < ∣∣qt− p| for all p
q ∈ Q such that p

q 6=
A
B and 0 < q < B.

As a consequence of this definition we find that∣∣∣t− A
B

∣∣∣ = 1
B |Bt−A| < 1

B |qt− p| < 1
q |qt− p| =

∣∣∣t− p
q

∣∣∣
In order to understand the Ostrowski algorithm, this chapter starts off with an visual explanation which even-
tually leads to a representation of any natural number. The starting point is the continued fraction expansion
of some irrational number x = [a0; a1, a2, . . . ] with the convergents Ak

Bk
in which k ∈ N≥0. The goal in this

algorithm is to express any natural number m in a summation of Bks, multiplied by a non negative integer
ck+1. Theorem 1.1 gives that:

1 = B0 ≤ B1 < B2 < . . .

As a result of this, we have the following. For all m ∈ N there exists an index N1 ∈ N such that BN1
≤ m <

BN1+1. A few Bks and the number m are shown in the figure below.

0 B1 B2 B3 BN1
BN1+12BN1

3BN1

m

Figure 1: Position of natural number m with respect to the convergents of x

In the first step of the algorithm it is determined how many times BN1
fits in m and what the so-called rest-term

is, which is R1. In this example BN1
fits two times in m and the rest-term is the length of the red line, so

m =
[ m

BN1

]
·BN1 + R1

Recall that
[

m
BN1

]
denotes the largest c ∈ Z such that c ≤ m

BN1

. In addition, we define cN1+1 =
[

m
BN1

]
= 2.

Due to Theorem 1.1 we know that in the example above BN1+1 = 3BN1
+ BN1−1. Therefore, we find that the

difference between 3BN1 and BN1+1 is BN1−1 and we also know that aN1+1 = 3. In general we see that cNk+1 ≤
aNk+1, where cNk+1 = aNk+1 if and only if m ∈ [aNk+1BNk

, BNk+1). Since BNk+1 − aNk+1BNk
= BNk−1 we

find that if cNk+1 = aNk+1 then m < BNk−1 and consequently cNk
= 0.

Next, the same idea is applied to the rest-term R1, instead of m. There exists an index N2 ∈ N such that
BN2 ≤ R1 < BN2+1 and N2 < N1.

0 B0 B1 B2 B3 BN2
BN2+1

R1

The red line is the second rest-term, which we denote by R2. Again, the following calculation is needed to find
out how many times BN2

fits in R2 and what the second rest-term will be.

R1 =
[ R1

BN2

]
·BN2

+ R2

where 0 ≤ R2 < R1. In the example above BN2 only fits one time in R1, so define cN2+1 =
[

R1

BN2

]
= 1. This

process, which is very similar to Euclid’s Algorithm, continues until there is no rest-term left. This results in a

summation of
[

Ri

BNi+1

]
multiplied by Bi, where 0 ≤ BNi+1 ≤ BN1 for a non-negative integer i. In the following

theorem, this representation is described.
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Theorem 2 (Ostrowski representation of positive integers m). Let [a0; a1, a2, . . . ] be the continued fraction of

the irrational number t with convergents Ak
Bk

where k ∈ N≥0. For every m ∈ N, there exists an N ∈ N such that

BN ≤ m < BN+1. Then there exists an unique finite sequence
(
ck+1

)
k∈N≥0

such that:

m =

N∑
k=0

ck+1Bk (1.16)

where 
0 ≤ ck+1 ≤ ak+1, if k > 0

0 ≤ ck+1 < ak+1, if k = 0

ck = 0, if ck+1 = ak+1

(1.17)

Proof. Let m ∈ N. We know that t is an irrational number so the continued fraction of t is infinite, see also
Section 1.1 for more information. Therefore, t has an infinite number of convergents and there exists an N1

such that BN1 ≤ m < BN1+1, where N1 = N . In the process described above, the rest-term equals zero after
finitely many steps, because of the fact that Bk < Bk+1 for all k > 0. Consequently, we find that there exists a

finite sequence
(
ck+1

)
k∈N≥0

such that: m =
∑N

k=0 ck+1Bk, where cNk+1 =
[

Rk

BNk+1

]
if BNk+1

≤ Rk < BNk+1+1,

otherwise ck+1 = 0. The sequence
(
ck+1

)
k

is unique because it is obtained by the biggest number of times in
which BNk+1

fits in Rk. We also described in the process that ck+1 ≤ ak+1, but we find that c1 < a1 because
of the fact that

c1 = c1B0 < B1 = a1B0 + B−1 = a1

At last recall that if cNk+1 = aNk+1 then Rk < BNk−1, because of the fact that the difference between aNk+1BNk

and BN1+1 is BN1−1. Consequently, we know that cNk
= 0.

Example 3. In the Example 2, the continued fraction of the irrational number 1√
2− 1

= [2; 2] is discussed.

Some convergents of this continued fraction are

A0

B0
=

2

1
,
A1

B1
=

5

2
,
A2

B2
=

12

5
,
A3

B3
=

29

12
,
A4

B4
=

70

29
,
A5

B5
=

169

70
,
A6

B6
=

408

169
, . . .

Let m1 = 27. It is known that that 27 = 2 · 12 + 1 · 2 + 1 · 1. Translated into the terms of the theorem:

m1 =

N∑
k=0

ck+1Bk = 2 ·B3 + 1 ·B1 + 1 ·B0

Let m2 = 139. It is known that that 139 = 1 · 70 + 2 · 29 + 2 · 5 + 1 · 1. Translated into the terms of the theorem:

m2 =

N∑
k=0

ck+1Bk = 1 ·B5 + 2 ·B4 + 2 ·B2 + 1 ·B0

1.5 Error of the approximation

Before examining the precision of the approximation by convergents, it is important to take a look at the
quantity |Bt−A|, where t ∈ R \Q, A

B ∈ Q, B > 0 and gcd(A,B)=1.

Definition 4. Let [a0; a1, a2, . . . ] be the continued fraction expansion of t ∈ R \Q with convergents Ak
Bk

for all

k ∈ N≥0. Then
Dk = Bkt−Ak

In addition to the previous definition and Theorem 1.1, D−1 and D0 are defined by

D−1 = B−1t−A−1 = −1 and D0 = B0t−A0 = t− a0 = {t} (1.18)

The quantity Dk has a notable property which includes information about the sign of Dk.
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Lemma 1. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R\Q with convergents Ak
Bk

for all k ∈ N≥1. Then

Dk =
(−1)k

Bk[ak+1; ak+2, ak+3, . . . ] + Bk−1
(1.19)

Consequently, we find that Dk > 0 if and only if k is even.

Proof. According to Definition 4 and Theorem 1.3 we have that

Dk = Bkt−Ak

= Bk ·
Ak · [ak; ak+1, ak+2, . . . ] + Ak−1

Bk · [ak; ak+1, ak+2, . . . ] + Bk−1
−Ak

=
BkAk · [ak; ak+1, ak+2, . . . ] + BkAk−1

Bk · [ak; ak+1, ak+2, . . . ] + Bk−1
− AkBk · [ak; ak+1, ak+2, . . . ] + AkBk−1

Bk · [ak; ak+1, ak+2, . . . ] + Bk−1

=
BkAk · [ak; ak+1, ak+2, . . . ]−AkBk · [ak; ak+1, ak+2, . . . ] + BkAk−1 −AkBk−1

Bk · [ak; ak+1, ak+2, . . . ] + Bk−1

=
BkAk−1 −AkBk−1

Bk · [ak; ak+1, ak+2, . . . ] + Bk−1

=
(−1)k

Bk[ak+1; ak+2, ak+3, . . . ] + Bk−1

In the last step Theorem 1.2 is applied. Since the denominator is positive, we immediately find that Dk > 0 if
and only if k is even.

In addition to Lemma 1, we obtain the following Lemma.

Lemma 2. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R\Q with convergents Ak
Bk

for all k ∈ N≥1. Then

|Dk| > |Dk+1|

Proof. Note that

[ak; ak+1, ak+2, . . . ] = ak +
1

[ak+1; ak+2, ak+3, . . . ]
(1.20)

Next, we rewrite (1.19). Now,

|Dk| =
1

|Bk · [ak+1; ak+2, ak+3, . . . ] + Bk−1|

=
1∣∣∣∣∣Bk ·

(
ak+1 +

1

[ak+2; ak+3, ak+4, . . . ]

)
+ Bk−1

∣∣∣∣∣
(since (1.20))

=
1∣∣∣∣∣Bk+1 +

Bk

[ak+2; ak+3, ak+4, . . . ]

∣∣∣∣∣
(due to Theorem 1.1)

=
[ak+2; ak+3, ak+4,...]

|Bk+1 · [ak+2; ak+3, ak+4, . . . ] + Bk|
(since [ak+2; ak+3, ak+4,...] > 0)

= [ak+2; ak+3, ak+4,...] · |Dk+1| (due to Lemma 1)

> |Dk+1| (since [ak+2; ak+3, ak+4,...] > 1 for k ≥ 0)

Furthermore, another result is worth mentioning.

Lemma 3. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R\Q with convergents Ak
Bk

for all k ∈ N≥1. Then

Dn = anDn−1 + Dn−2 (1.21)

12



Notice that the sequence of the Dn satisfies for n ≥ 1 the same recursion relation as the An and Bn, with
different starting values for the recursion.

Proof. We have that

anDn−1 = an(Bn−1t−An−1)

= anBn−1t− anAn−1

= (Bn −Bn−2)t− (An −An−2) (due to Theorem 1.1)

= (Bnt−An)− (Bn−2t−An−2)

= Dn −Dn−2

Lemma 4 shows another property of Dk.

Lemma 4. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R\Q with convergents Ak
Bk

for all k ∈ N≥1. Then

|Dk| <
1

Bk
≤ 1

2

Proof.

|Dk| =
∣∣∣ (−1)k

Bk[ak+1; ak+2, ak+3, . . . ] + Bk−1

∣∣∣ (due to Lemma 1)

=
1

Bk[ak+1; ak+2, ak+3, . . . ] + Bk−1
(due to Theorem 1.1)

<
1

Bkak+1 + Bk−1
(since ak+1 < [ak+1; ak+2, ak+3, . . . ])

=
1

Bk+1
(due to Theorem 1.1)

≤ 1

2
(due to Theorem 1.1 we know that B2 = a2B1 + B0 ≥ 2)

At last, a property is shown, concerning the Ostrowski representation.

Lemma 5. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R \Q with convergents Ak
Bk

for all k ∈ N≥0. Let(
ck+1

)
k∈N≥0

be such that m =
∑N

k=0 ck+1Bk and such that (1.17) is satisfied. Then we have that

||mt|| =

∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣

Here ||x|| denotes the distance from x to the nearest integer.

Proof. In the first step of this proof
∑N

k=0 ck+1Ak is being subtracted from mt. Since
∑N

k=0 ck+1Ak is an integer,
this translation does not have an influence on the value of ||mt||, because the distance to the nearest integer
will not change. Now,

||mt|| =

∣∣∣∣∣
∣∣∣∣∣mt−

N∑
k=0

ck+1Ak

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1Bkt− ck+1Ak

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1(Bkt−Ak)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣
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2 Best approximation

Christiaan Huygens used continued fractions to approach the ratio of the orbital periods of the planets. Thus
far, this project has given an introduction to continued fractions and the Ostrowski representation. In this
section we will discuss if the approximation by convergents of a continued fraction is a best approximation
possible.

2.1 Lemma’s prior to a best approximation

This section describes two lemmas prior to the theorem about a best approximation.

Lemma 6. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R \ Q with convergents Ak
Bk

for all k ∈ N≥0
and let m be a positive integer. The Ostrowski representation of m is given by (1.16), where ck+1 = 0 for
0 ≤ k < n ≤ N and cn+1 > 0. Then

|(cn+1 − 1)Dn −Dn+1| <

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |cn+1Dn −Dn+1| (2.1)

Proof. Since cn+1 is the first non-zero term, we must have that cn+2 6= an+2, according to Theorem 2. Conse-
quently:

cn+2 < an+2 (2.2)

For this proof four possibilities for Dn and DN are examined:

1. Dn > 0 and DN > 0

2. Dn > 0 and DN < 0

3. Dn < 0 and DN > 0

4. Dn < 0 and DN < 0

1. Dn > 0 and DN > 0
Due to Lemma 1 and since we have that Dn > 0, the following holds

Dn+2m > 0 and Dn+2m+1 < 0 for all m ∈ N≥0

Consequently, since DN > 0 there exists an m ∈ N≥0 such that N = n + 2m. In the calculations that follow, it

will be argued that
∑N

k=0 ck+1Dk > 0. In the first step, some non-negative terms will be eliminated.

cn+1Dn + cn+2Dn+1 + cn+3Dn+2 + cn+4Dn+3 + cn+5Dn+4 + cn+6Dn+5 + · · ·+ cN+1DN

≥ cn+1Dn + cn+2Dn+1 + cn+4Dn+3 + cn+6Dn+5 + · · ·+ cNDN−1

≥ cn+1Dn + cn+2Dn+1 + an+4Dn+3 + an+6Dn+5 + · · ·+ aNDN−1 (due to Theorem 2)

≥ cn+1Dn + (an+2 − 1)Dn+1 + an+4Dn+3 + an+6Dn+5 + · · ·+ aNDN−1 (due to (2.2))

= cn+1Dn −Dn+1 + an+2Dn+1 + an+4Dn+3 + an+6Dn+5 + · · ·+ aNDN−1

= cn+1Dn −Dn+1 + (Dn+2 −Dn) + (Dn+4 −Dn+2) + (Dn+6 −Dn+4) + · · ·+ (DN −DN−2) (due to Lemma 3)

= cn+1Dn −Dn −Dn+1 + DN

> cn+1Dn −Dn −Dn+1 (since DN > 0)

= (cn+1 − 1)Dn −Dn+1 (since −Dn+1 > 0)

> 0

Note that this last step also holds when cn+1 = 1, since Dn+1 is negative. These calculations demonstrate that
in Case 1:

N∑
k=0

ck+1Dk > 0 (2.3)

and also that
N∑

k=0

ck+1Dk > (cn+1 − 1)Dn −Dn+1 (2.4)
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As a result of this∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ = |cn+1Dn + cn+2Dn+1 + · · ·+ cN+1DN | (since cn+1 is the first non-zero term)

= cn+1Dn + cn+2Dn+1 + · · ·+ cN+1DN (due to (2.3))

> (cn+1 − 1)Dn −Dn+1 (due to (2.4))

= |(cn+1 − 1)Dn −Dn+1| (since (cn+1 − 1)Dn −Dn+1 > 0)

In the following calculations it will be argued that
∣∣∣∑N

k=0 ck+1Dk

∣∣∣ < |cn+1Dn − Dn+1|. At the start of the

calculations, some non-positive terms will be removed and some non-negative terms enlarged.∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ = cn+1Dn + cn+2Dn+1 + cn+3Dn+2 + cn+4Dn+3 + cn+5Dn+4 + · · ·+ cN+1DN (due to (2.3))

≤ cn+1Dn + cn+3Dn+2 + cn+5Dn+4 + · · ·+ cN+1DN

≤ cn+1Dn + an+3Dn+2 + an+5Dn+4 + · · ·+ aN+1DN (due to Theorem 2)

= cn+1Dn + (Dn+3 −Dn+1) + (Dn+5 −Dn+3) + · · ·+ (DN+1 −DN−1) (due to Lemma 3)

= cn+1Dn −Dn+1 + DN+1

< cn+1Dn −Dn+1 (since DN+1 < 0)

= |cn+1Dn −Dn+1|

In summary, we have proven (2.1) for Dn > 0 and DN > 0.

2. Dn > 0 and DN < 0
Note that there exists an m ∈ N≥0 such that N = n + 2m + 1. The rest of this part of the proof is similar to
part 1, apart from the last term in the calculations.

3. Dn < 0 and DN > 0
Due to Lemma 1 and Dn < 0, the following holds

Dn+2m < 0 and Dn+2m+1 > 0 for all m ∈ N≥0

Consequently, we must have that there exists an m ∈ N≥0 such that N = n + 2m + 1. In the calculations that

follow, it will be argued that −
∑N

k=0 ck+1Dk > 0. Again, some non-negative terms will be eliminated. We have
that

− cn+1Dn − cn+2Dn+1 − cn+3Dn+2 − cn+4Dn+3 − cn+5Dn+4 − · · · − cN+1DN

≥ −cn+1Dn − cn+2Dn+1 − cn+4Dn+3 − · · · − cN+1DN

≥ −cn+1Dn − cn+2Dn+1 − an+4Dn+3 − · · · − aN+1DN (due to Theorem 2)

≥ −cn+1Dn − (an+2 − 1)Dn+1 − an+4Dn+3 − · · · − aN+1DN (due to (2.2))

= −cn+1Dn + Dn+1 − an+2Dn+1 − an+4Dn+3 − · · · − aN+1DN

= −cn+1Dn + Dn+1 + (−Dn+2 + Dn) + (−Dn+4 + Dn+2) + · · ·+ (−DN+1 + DN−1) (due to Lemma 3)

= −cn+1Dn + Dn + Dn+1 −DN+1

> −cn+1Dn + Dn + Dn+1 (since −DN+1 > 0)

= (1− cn+1)Dn + Dn+1

> 0 (since Dn+1 > 0 and Dn < 0)

These calculations yield:
N∑

k=0

−ck+1Dk > 0 (2.5)

and we also found that
N∑

k=0

−ck+1Dk > (1− cn+1)Dn + Dn+1 (2.6)
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Consequently, we find that∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=n

−ck+1Dk

∣∣∣∣∣ (since cn+1 is the first non-zero term)

= −cn+1Dn − cn+2Dn+1 − · · · − cN+1DN (due to (2.5))

> (1− cn+1)Dn + Dn+1 (due to (2.6))

= |(1− cn+1)Dn + Dn+1| (since Dn < 0 and Dn+1 > 0)

= |(cn+1 − 1)Dn −Dn+1|

In the following calculations it will be argued that
∣∣∣∑N

k=0−ck+1Dk

∣∣∣ < |cn+1Dn −Dn+1|. Again, at the start

of the calculations, some non-positive terms will be removed and some non-negative terms enlarged.∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ = −cn+1Dn − cn+2Dn+1 − cn+3Dn+2 − cn+4Dn+3 − cn+5Dn+4 − · · · − cN+1DN (due to (2.5))

≤ −cn+1Dn − cn+3Dn+2 − cn+5Dn+4 − · · · − cNDN−1

≤ −cn+1Dn − an+3Dn+2 − an+5Dn+4 − · · · − aNDN−1 (due to Theorem 2)

= −cn+1Dn + (−Dn+3 + Dn+1) + (−Dn+5 + Dn+3) + · · ·+ (−DN + DN−2) (due to Lemma 3)

= −cn+1Dn + Dn+1 −DN

< −cn+1Dn + Dn+1 (since −DN < 0)

= | − cn+1Dn + Dn+1|
= |cn+1Dn −Dn+1|

In summary, we have proven (2.1) for Dn < 0 and DN > 0.

4. Dn < 0 and DN < 0
Note that there exists an m ∈ N≥0 such that N = n + 2m. The rest of this part of the proof is similar to part
3, apart from the last term in the calculations.

Turning now to the last lemma previous to the theorem about the best approximation.

Lemma 7. Let [a0; a1, a2, . . . ] be the continued fraction of t ∈ R \ Q with convergents Ak
Bk

for all k ∈ N≥0
and let m be a positive integer. The Ostrowski representation of m is given by (1.16), where ck+1 = 0 for
0 ≤ k < n ≤ N and cn+1 > 0. Then

1. if c1 = c2 = 0 then ||mt|| =
∣∣∣∑N

k=0 ck+1Dk

∣∣∣
2. if c1 = 0 and c2 > 0 then

(a) if {t} < 1
2 then ||mt|| =

∣∣∣∑N
k=0 ck+1Dk

∣∣∣
(b) if {t} > 1

2 then

i. if c2 > 1 then ||mt|| > ||t||
ii. if c2 = 1 then ||mt|| > D2

3. if c1 > 0 then ||mt|| > |D1|

Proof.
Case 1, where c1 = c2 = 0

First, we will prove that
∣∣∑N

k=0 ck+1Dk

∣∣ < 1
2 and therefore it is necessary to discuss two different cases:
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(A) If Dn > 0, then Dn+1 < 0, according to Lemma 1:∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |cn+1Dn −Dn+1| (due to Lemma 6)

= cn+1Dn −Dn+1 (since Dn > 0, Dn+1 < 0)

≤ an+1Dn −Dn+1 (due to Theorem 2)

= |an+1Dn −Dn+1|
= | −Dn−1| (due to Lemma 3)

= |Dn−1|
< 1

2 (due to Lemma 4 and since c1 = c2 = 0 we have that n ≥ 2)

(B) If Dn < 0, then Dn+1 > 0, according to Lemma 1:

∣∣∣ N∑
k=0

ck+1Dk

∣∣∣ < |cn+1Dn −Dn+1| (due to Lemma 6)

= | − cn+1Dn + Dn+1|
= −cn+1Dn + Dn+1 (since Dn < 0, Dn+1 > 0)

≤ −an+1Dn + Dn+1 (due to Theorem 2)

= | − an+1Dn + Dn+1|
= |an+1Dn −Dn+1|
= | −Dn−1| (due to Lemma 3)

= |Dn−1|
< 1

2 (due to Lemma 4 and n ≥ 2)

Note that for all x ∈ R the following holds:

if |x| ≤ 1
2 , then ||x|| = |x| (2.7)

In addition we also have that:
if 1

2 < |x| < 1, then ||x|| = 1− |x| (2.8)

Due to (2.7) and Lemma 5 we have that ∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ = ||mt||

Case 2.a, where c1 = 0 and c2 > 0 and {t} < 1
2 .

In the same way like Case 1, in this case it is proven that
∣∣∑N

k=0 ck+1Dk

∣∣ < 1
2 . Since D1 < 0, we know that

D2 > 0, according to Lemma 1. Now,∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |c2D1 −D2| (due to Lemma 6)

= | − c2D1 + D2|
= −c2D1 + D2 (since D1 < 0 and D2 > 0)

≤ −a2D1 + D2 (due to Theorem 2)

= | − a2D1 + D2|
= |a2D1 −D2|
= | −D0| (due to Lemma 3)

= | − {t}| (by Definition 4)

= {t} < 1
2 (by the definition of {t})

In conclusion,
∣∣∣∑N

k=0 ck+1Dk

∣∣∣ < 1
2 . Since (2.7) and Lemma 5 we find that

∣∣∣∑N
k=0 ck+1Dk

∣∣∣ = ||mt||.
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Case 2.b.i, where c1 = 0 and c2 > 1 and {t} > 1
2 .

In this case we have that {t} > 1
2 , so 1

{t} < 2, which results in

a1 +
1

a2 +
1

a3 +
1

. . .

< 2

Consequently, we know that a1 = 1. Next, we will show that

1− {t} <

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < {t} (2.9)

Again due to Lemma 1 we have that D1 < 0 and D2 > 0. Now,∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > |(c2 − 1)D1 −D2| (due to Lemma 6)

= |D2 − (c2 − 1)D1|
= D2 − (c2 − 1)D1 (since c2 > 1 and D1 < 0 and D2 > 0)

> −(c2 − 1)D1 (since D2 > 0)

> −D1

= 1− a1{t} (due to Lemma 3 and by Definition 4)

= 1− {t} (since a1 = 1)

and furthermore we have that∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |c2D1 −D2| (due to Lemma 6)

= |D2 − c2D1|
= D2 − c2D1 (since D1 < 0 and D2 > 0)

≤ D2 − a2D1 (due to Theorem 2)

= D0 (due to Lemma 3)

= {t} (by Definition 4)

Note that since {t} > 1
2 we have that 1 − {t} < 1

2 . Next, we can observe two possibilities for
∣∣∑N

k=0 ck+1Dk

∣∣,
which are

∣∣∑N
k=0 ck+1Dk

∣∣ ≤ 1
2 or

∣∣∑N
k=0 ck+1Dk

∣∣ > 1
2 . If

∣∣∑N
k=0 ck+1Dk

∣∣ ≤ 1
2 we know from (2.7), (2.9) and

since 1− {t} < 1
2 that∣∣∣∣∣

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > 1− {t} = ||{t}|| = ||{t}+ a0|| = ||t||

On the other hand, if
∣∣∑N

k=0 ck+1Dk

∣∣ > 1
2 we know since (2.8) and (2.9) that∣∣∣∣∣

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ = 1−

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > 1− {t} = ||t||

From Lemma 5 we know that in both situations the following holds

||mt|| =

∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ > ||t||
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Case 2.b.ii, where c1 = 0 and c2 = 1 and {t} > 1
2 .

For the same reasons described in Case 2.b.i we know that a1 = 1. According to Lemma 1 we have that D1 < 0
and D2 > 0. Since c2 = 1 and due to Lemma 6 we find that

|D2| <

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |c2D1 −D2| = D2 −D1 (2.10)

Furthermore, due to Lemma 4 we find that

D2 −D1 = |D2|+ |D1| < 1
2 + 1

2 = 1 (2.11)

Next, we can differentiate two possibilities for
∣∣∑N

k=0 ck+1Dk

∣∣, which are
∣∣∑N

k=0 ck+1Dk

∣∣ ≤ 1
2 or

∣∣∑N
k=0 ck+1Dk

∣∣ >
1
2 . If

∣∣∑N
k=0 ck+1Dk

∣∣ ≤ 1
2 we find that since (2.7) and (2.10)∣∣∣∣∣

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > D2 (2.12)

On the other hand, if
∣∣∑N

k=0 ck+1Dk

∣∣ > 1
2 we know since (2.8), (2.10) and (2.11) that∣∣∣∣∣

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ = 1−

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > 1− (D2 −D1) (2.13)

It remains to be proven that 1 − D2 + D1 > D2, so that we obtain
∣∣∣∣∑N

k=0 ck+1Dk

∣∣∣∣ > D2. We know that
a1 = 1, so because of

a2 +
1

a3 +
1

. . .

< 2a2

we have that
1

{t}
= 1 +

1

a2 +
1

a3 +
1

. . .

> 1 +
1

2a2

implying that

{t} < 1

1 + 1
2a2

Therefore, we obtain

{t} < 2a2
2a2 + 1

⇐⇒ {t}(2a2 + 1) < 2a2

⇐⇒ 2{t}a2 + {t} < 2a2

⇐⇒ −{t}+ 2{t}a2 < −2{t}+ 2a2

⇐⇒ 1− {t}+ 2{t}a2 − 2a2 < 1− 2{t}
⇐⇒ (2a2 − 1)({t} − 1) < 1− 2{t}
⇐⇒ (2a2 − 1)D1 < 1− 2D0 (due to Definition 4, Lemma 3 and a1 = 1)

⇐⇒ 2a2D1 −D1 < 1− 2D0

⇐⇒ 2a2D1 + 2D0 < 1 + D1

⇐⇒ 2D2 < 1 + D1 (since Lemma 6)

⇐⇒ D2 < 1−D2 + D1

Owing to the calculations above, we know that 1−D2 +D1 > D2. Consequently, we see that in both situations∣∣∣∣∣∣∑N
k=0 ck+1Dk

∣∣∣∣∣∣ > D2. Due to Lemma 5, we find that ||mt|| > D2.
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Case 3, where c1 > 0
Note that since c1 ≥ 1, we know from Theorem 2 that a1 ≥ 2. Consequently, we find that

a1 +
1

a2 +
1

a3 +
1

. . .

> 2

Which results in {t} < 1
2 . Next, we will prove that

1− a1{t} <

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < 1− {t} (2.14)

Now,∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > |(c1 − 1)D0 −D1| (due to Lemma 6)

= (c1 − 1)D0 −D1 (since D0 > 0 and D1 < 0)

≥ −D1 (since D0 > 0)

= −a1D0 −D−1 (due to Lemma 3)

= 1− a1{t} (since (1.18))

Furthermore, we have that∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |c1D0 −D1| (due to Lemma 6)

= c1D0 −D1 (since D0 > 0 and D1 < 0)

≤ (a1 − 1)D0 −D1 (due to Theorem 2)

= a1D0 −D0 −D1

= −D−1 −D0 (due to Lemma 3)

= 1− {t} (since (1.18))

Next, we can observe two possibilities for
∣∣∑N

k=0 ck+1Dk

∣∣, which are
∣∣∑N

k=0 ck+1Dk

∣∣ ≤ 1
2 or

∣∣∑N
k=0 ck+1Dk

∣∣ >
1
2 . If

∣∣∑N
k=0 ck+1Dk

∣∣ ≤ 1
2 we know from (2.7) and (2.14) that∣∣∣∣∣

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > 1− a1{t} = −D1 (2.15)

On the other hand, if
∣∣∑N

k=0 ck+1Dk

∣∣ > 1
2 we know from (2.14)

−

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > {t} − 1

Therefore and due to (2.8) and 1− {t} < 1 we find that∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ = 1−

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ > {t} (2.16)

It remains to prove that {t} > 1− a1{t}. Since

a1 +
1

a2 +
1

a3 +
1

. . .

< a1 + 1

we know that {t} > 1
a1+1 . Obviously, we have that {t}a1 + {t} > 1. Therefore we obtain {t} > 1− a1{t} and

we find from (2.15), (2.16) and Lemma 5 that in both situations the following holds

||mt|| =

∣∣∣∣∣
∣∣∣∣∣

N∑
k=0

ck+1Dk

∣∣∣∣∣
∣∣∣∣∣ > 1− a1{t} = −D1 = |D1|
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2.2 Theorem on a best approximation

We have now enough tools to formulate and prove a theorem on a best approximation.

Theorem 3 (Best approximation). Let t ∈ R \ Q and A,B ∈ Z with gcd(A,B) = 1 and B > 0. Then A
B is a

best approximation to t if and only if it is a convergent of t.

Proof. Let the Ostrowski representation of B be given by (1.16). Define n ∈ N such that ck+1 = 0 for all
0 ≤ k < n ≤ N and cn+1 > 0. Note that N depends on B. In this proof we will check every case described in
Lemma 7. In other words, we will check every possibility for c1 and c2.

Case 1, where c1 = c2 = 0
Before we give the actual proof of the statement, we first will derive a handy inequality.

|Bt−A| > |BN t−AN | if A
B 6=

AN

BN
(2.17)

Notice that due to Lemma 7 Part 1, we find that

|Bt−A| = ||Bt|| =

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ (2.18)

Next, we observe four cases in which Lemma 2 and parts of the proof of Lemma 7 are applied.

(A) Dn > 0 and DN > 0∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ ≥ (cn+1 − 1)Dn −Dn+1 + DN > DN = |DN | = |BN t−AN |

(B) Dn > 0 and DN < 0∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ ≥ (cn+1 − 1)Dn −Dn+1 + DN+1 > −Dn+1 = |Dn+1| ≥ |DN | = |BN t−AN |

Notice that N 6= n because of the fact that Dn and DN have different sign. Consequently, we have that
N ≥ n + 1.

(C) Dn < 0 and DN > 0∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ ≥ (1− cn+1)Dn + Dn+1 −DN+1 > Dn+1 = |Dn+1| > |DN | = |BN t−AN |

Also in this case N ≥ n + 1 holds.

(D) Dn < 0 and DN < 0∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ ≥ (1− cn+1)Dn + Dn+1 −DN > −DN = |DN | = |BN t−AN |

We see that |BN t−AN | minimizes |Bt−A| in all possible cases. Note that according to Theorem 2, we know
that 0 < BN ≤ B.

Now, we prove the theorem for this case, in which c1 = c2 = 0. Assume that A
B is a best approximation. By

Definition 3 we know that |Bt − A| < |BN t − AN | for all A
B 6=

AN

BN
such that 0 < BN < B. Due to (2.17) we

know that |Bt−A| > |BN t−AN | for all A
B 6=

AN

BN
. Consequently, we find that A = AN and B = BN .

Assume that A
B is a convergent. Then there exists an m such that |Bt− A| = |Bmt− Am| = |Dm|. According

to Theorem 2 we know that BN ≤ Bm < BN+1. Consequently, we find that BN = Bm, so m = N . Due to
(2.17) and since we know from Theorem 2 that BN ≤ B, we conclude that AN

BN
is a best approximation.

Case 2a, where c1 = 0, c2 > 0 and {t} < 1
2

The proof of this case is similar to Case 1.
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Case 2bi, where c1 = 0, c2 > 1 and {t} > 1
2

Before we start with the proof, first we will show that |Bt − A| ≥ ||Bt||. Assume that |Bt − A| ≤ 1
2 , then

according to (2.7) we know that |Bt − A| = ||Bt||. Second, assume that |Bt − A| > 1
2 , then we find that

|Bt−A| > ||Bt||.

From Lemma 7 and {t} > 1
2 we know that a1 = 1. Note that due to Theorem 1 we know that B1 = a1B0+B−1 =

1. Furthermore we have that,

|Bt−A| ≥ ||Bt|| > 1− {t} = −D1 = |D1| = |B1t−A1| (2.19)

Assume that B = B0 = B1 = 1. Due to Lemma 4 we have that |D1| < 1
2 , so ||B1t|| = ||B1t − A1|| = |D1|.

Consequently, we obtain |B1t− A1| > |B1t− A1|. Therefore B > B1 and from (2.19) we find that |Bt − A| >
|B1t−A1|. By Definition 3 we know that A

B is not a best approximation in this case.

For the contrary assume that A
B is are convergent, then there exists an m ∈ N, such that |Bt−A| = |Bmt−Am| =

|Dm|. From (2.19), we know that |Dm| = |Bmt − Am| = |Bt − A| > ||Bt|| > |D1| and according to Lemma 2,
we find that |Dm| > |D1| for all k ∈ N≥1. Since B > B1 we find that A

B is not a convergent.

Case 2bii, where c1 = 0, c2 = 1 and {t} > 1
2

Note that in the proof of Lemma 7, it is found that a1 = 1 in this case. We observe three possibilities for N ,
which are N = 0, N = 1 and N > 1.

(A) N = 0
Because of the fact that c1 = 0, we know that B = c1B0 = 0, which is not possible.

(B) N = 1
Next, we assume that N = 1. Due to Theorem 1.1 and because of the fact that a1 = 1, we find that:

B = c1B0 + c2B1 = B1 and A = c1A0 + c2A1 = A1 (2.20)

So obviously, A
B is a convergent. For the contrary assume that A

B is a convergent. Because of the fact that

B = B1 = 1, there does not exist an q ∈ N where 0 < q < B. So we find that A
B is a best approximation.

(C) N > 1
At last, assume that N > 1. Since c1 = 0, c2 = 1 and B1 = a1B0 + B−1 = 1 we have that

B = c1B0 + c2B1 + c3B2 + · · ·+ cN+1BN = 1 + c3B2 + · · ·+ cN+1BN

Since N > 1, we find that there exists an z ∈ [2, 3 . . . , N ] such that cz+1Bz 6= 0. Consequently and due to
Theorem 1.1 we see that B > Bz ≥ B2. Due to Lemma 7 we know that

|Bt−A| ≥ ||Bt|| > D2 = |D2| (2.21)

Since B > B2 and |Bt− A| > |B2t− A2|, we know by Definition 3 that A
B is not a best approximation in

this case.
For the contrary, assume that A

B is a convergent, then there exists an m ∈ N, such that |Bt − A| =
|Bmt−Am| = |Dm|. From (2.21), we know that |Dm| = |Bt−A| > |D2|. According to Lemma 2, we find
that |Dm| > |Dk| for all k ∈ N≥2. We also know that in this case B > 1, so Bm 6= B1 = B0 = 1. So A

B is
not a convergent.

Case 3, where c1 > 0
Since c1 > 0, we know that a1 ≥ 2. First we proof this case for c1 = 1 and N = 0, afterwards we will proof this
case for c1 6= 1 or N 6= 0.

(A) c1 = 1 and N = 0
Since c1 = 1 and N = 0, we find that

B = c1B0 and A = c1A0 = A0 (2.22)

Obviously, we find that A
B is an convergent. Because of the fact that B = B0 = 1, there does not exist an

q ∈ N where 0 < q < B. So we find that A
B is a best approximation.

(B) N 6= 0
We assume that N 6= 0, then B > 1. Assume that A

B is a best approximation. Since N > 0 and since

B = c1B0 + c2B1 + · · ·+ cN+1BN
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we know that there exists an z ∈ [1, 2, . . . , N ] such that cz+1Bz 6= 0. Due to this and since c1 ≥ 1 we have
that

B = c1B0 + c2B1 + · · ·+ cN+1BN ≥ c1 + cz+1Bz > Bz

Due to Theorem 1.1 we know that Bz ≥ B1, so B > B1. From Lemma 7 we know that

|Bt−A| ≥ ||Bt|| > |D1| = |B1t−A1| (2.23)

Since B > B1 and |Bt− A| > |B1t− A1|, we know by Definition 3 that A
B is not a best approximation in

this case.

Conversely, assume that A
B is a convergent, then there exists an m ∈ N, such that |Bt−A| = |Bmt−Am| =

|Dm|. From (2.23), we know that |Dm| = |Bt−A| > |D1|. According to Lemma 2, we find that |Dm| > |Dk|
for all k ∈ N≥1. We also know that in this case B > 1, so Bm 6= B0. Therefore is A

B not a convergent.

3 Planetarium

Having discussed what continued fractions are and why the approximation by convergents yields best approxi-
mations, this section describes the planetarium of Christiaan Huygens in greater detail. This section is primary
based on the translation of Opuscula postuma; see [5], a detailed description of the planetarium, written by
Huygens himself. As mentioned before, a planetarium shows multiple planets and their movement around the
sun. In his design, Huygens made it possible to look into the past or future, where the planetarium shows
the position of planets relative to each other. Huygens was not the first man to design a planetarium, even
Archimedes, from the ancient Greece, designed a planetarium; see [3]. However, Huygens was the first math-
ematician who used continued fractions convergents to approach the ratio of the orbit of the planets. In 1682
Christiaan Huygens describes to his minister Colbert, that his planetarium is more precise than the planetarium
of Ole Christensen Rømer, an astronomer from Denmark:

Het mijne geeft de beweging van alle planeten veel juister weer dan dat van Rømer, omdat ik een betere manier
heb [met herhaalde breuken] om het aantal tanden van de raderen te vinden; see [1]

Figure 2: Front view planetarium Figure 3: Back view planetarium

Figures 2 and 3 show the planetarium, currently situated in Museum Boerhaave in Leiden. On the front view,
we see circles which represent the orbit of the planets around the sun, which are: Mercury, Venus, Earth, Mars,
Jupiter and Saturn. On these circles, small balls move, which represent the planets itself. Not only the planets
are visible on the planetarium, also moons from different planets rotate around their planet. Saturn shows five
moons, Jupiter four and Earth obviously one. Also, between the orbits of Saturn and Jupiter, there are two
lines on the bottom of the planetarium, in which the date is shown. The semicircle between the orbits of Jupiter
and Mars, nearby the middle of the planetarium, shows the exact time in hours and minutes. On the right side
of the planetarium there is an handle and if this handle is rotated ones to the right, one year has passed in the
planetarium. Is the handle rotated the other way around, the planets are positioned one year back. Eventually,
when the handle is removed from the planetarium, the planets rotate back into their position in the present.
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3.1 Mechanism

Before explaining the use of continued fractions convergents, first the mechanism of the planetarium is briefly
discussed. In order to rotate the planets around the sun, moving force is generated by a clock-mechanism,
invented by Huygens himself. In figure 4 this clock-mechanism is visible right above an horizontal shaft and
has a letter N on it. The horizontal shaft, which Huygens refers to as ‘ijzeren as’ (‘iron bar’), is connected with
six gears, as much as the number of planets in the planetarium. These gears have a specific number of teeth,
which will be of great importance in the section that follows. The cover of the planetarium is a copper plate
which consists concentric rings, which are shown in figure 5. The teeth of the gears on the horizontal shaft
mesh with the teeth of the concentric rings when the planetarium is closed. On the right side of the horizontal
shaft there is another gear, which is responsible for the movement of the planets, because it is connected to the
clock-mechanism. A screw-thread is also connected with this gear, which causes the planets to rotate one extra
time after 300 years as a slight correction to the leap day every four years.

Figure 4: Inside view planetarium Figure 5: Inside view planetarium

3.2 Approximation by convergents

As indicated before, the ratios between the teeth on the gears on the horizontal shaft and the concentric rings
appear to be important because they determine the orbital period of the planets in the planetarium. In the
ideal situation, the ratio between the number of teeth of the horizontal shaft and the concentric ring equals the
ratio between the orbital period of earth and any other planet.

First, Huygens approximated the orbital period of the planets by using the data derived by Johannes Kepler,
a German mathematician and astronomer. Afterwards, he calculated the ratio between this orbital periods
and the orbital period of the earth. Huygens approximated a year as 365 35

144 days. For example, the ratio
determined for Mercury is 25335

105190 . In other words, it takes Mercury 25335
105190 part of one year to finish one rotation

around the sun. So if Mercury completes 105190 rotations around the sun, the earth would have completed
25335. Consequently, Mercury should have 25335 teeth on the gear connected to the concentric rings and
105190 teeth on the gear connected to the horizontal shaft, to make sure the orbital period is precise. However,
it is impossible to make an planetarium with gears with this amount of teeth. It is clear that this ratio should
be approximated and Huygens did so with continued fraction convergents. Hence, Huygens’ problem was to
construct a planetarium in which the number of teeth is workable, but the approximation of orbital period is
still accurate. In the following example, the approximation of the orbital period of Mercury is further explained.
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Example 4 (Mercury). As mentioned before, the ratio which determines the number of teeth in the two gears
is 25335

105190 . The continued fraction is

25335

105190
=

1

4 +
1

6 +
1

1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

1 +
1

1 +
1

7 +
1

1 +
1

2

= [0; 4, 6, 1, 1, 2, 1, 1, 1, 1, 7, 1, 2]

with the following convergents

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Ak
Bk

0 1
4

6
25

7
29

13
54

33
137

46
191

79
328

125
519

204
847

1553
6448

1757
7295

25335
21038

Initially, Huygens wanted to use the fifth convergent 33
137 , so that the amount of teeth is workable and the

approximation accurate. In other words, the number of teeth on the gear connected to the horizontal shaft is 33
and the number of teeth on the gear connected to the concentric ring is 137. However, in section 4 we will see
that Huygens invented another way to use the 8th convergent, so that the approximation is even more precise.

Similar to the example described above, the remaining planets are approximated by convergents so that the
number of teeth is workable and the approximation precise. In some cases, the number of teeth is a multiple of
the convergent. The following table shows these results [6]

Planet Mercury Venus Earth Mars Jupiter Saturn

Ratio from
data

25335
105190

64725
105190 1 197836

105190
1247057
105190

3095277
105190

Convergent A5
B5

= 33
137

A5
B5

= 8
13 - A5

B5
= 79

42
A3
B3

= 83
7

A1
B1

= 59
2

Gear teeth 33 : 127 32 : 52 60 : 60 158 : 84 166 : 14 118 : 4

Table 1: Approximation of orbital periods and the number of teeth on the gears for each planet

3.3 Error of the approximation

Huygens stated in his description of the planetarium that his way of approximation is very accurate. In this
section the error of the approximation is determined. As explained earlier, Huygens obtained data concerning
the ratio between the orbital period of any planet and the orbital period of the earth. Then he chose an accurate,
workable convergent to approximate this ratio. The error of the approximation is, in this project, the difference
between the ratio Huygens obtained from this data and the ratio Huygens used as an approximation. In the
following example, the error of the approximation of the planet Mercury is determined.

Example 5 (Mercury). As explained earlier, it Mercury takes 25335
105190 part of a year to finish one rotation around

the sun. Huygens approximated this ratio with 33
137 . The approximation error is∣∣∣ 25335

105190
− 33

137

∣∣∣ ≈ 0.00002602173
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So in one rotation around the sun, Mercury is approximately 0.00002602173 ≈ 0.0026% behind because of the
approximation with the 5th convergent.

For every planet it is determined how many percent of a rotation the planet is behind because of the approxi-
mation by convergents. This is shown in the following table

Planet Mercury Venus Mars Jupiter Saturn

Error 0.0026% 0.0069% 0.020% 0.1862% 7.4418%

Table 2: Error of approximation

4 Improvements planetarium

4.1 Before construction

Before Johannes van Ceulen started building the planetarium, Huygens made some improvements. In his
opinion the error of the approximation should be smaller for the planets Mercury and Saturn. For Saturn he
recalculated the ratio for the orbital period, which will be 77708431

2640858 , see [5] for a detailed description of these
calculations.

77708431

2640858
= [29; 2, 2, 1, . . . ]

Huygens chose to use the 3th convergent, which is 206
7 and the error of approximation becomes∣∣∣77708431

2640858
− 206

7

∣∣∣ ≈ 0.003122956900

So the error of approximation of Saturn is reduced from 7.4418% to 0.3123%.

In addition, the error of approximation of Mercury was also improved. However, for the planet Mercury, Huygens
used another method. For Mercury he was forced to use the 5th convergent in order to restrain the number of
teeth on the gears, but Huygens found a way to use the 9th convergent 204

847 . He factorised the convergent into
the following

204

847
=

12 · 17

7 · 121
(4.1)

and used this result to design four gears for the planet Mercury, in stead of two. The gear connected to the
horizontal shaft has 121 teeth and is connected to a second, smaller gear, with 12 teeth. The gear connected
to the concentric rings has 17 teeth and is connected to a second, smaller gear, with 7 teeth. The new error of
approximation becomes

∣∣∣ 25335

105190
− 204

847

∣∣∣ ≈ 1.683578588 · 10−7

So the error of approximation of Mercury is reduced from 0.0026% to 1.6836 · 10−5%.

4.2 After the construction: more about gear trains

In the previous section, a method is discussed which Huygens applied on the approximation of the orbital
period of Mercury. Equation (4.1) shows that the 9th convergent of the continued fraction can be broken
into two fractions, such that the approximation of the ratio between the orbital periods is more precise. In
the planetarium, a gear train is constructed for this planet, with four gears. In this subsection, an algorithm
is described which results in four integers bigger than 20 and smaller than 120, which can be used in a new
‘improved’ planetarium. Rocket and Szüsz described this algorithm in ‘Continued fractions’, see [6] p.63. Note
that these numbers (20 and 120) appear to be useful in the construction of the planetarium, but the algorithm
also works with slightly different numbers, in the next subsection we will discuss this in greater detail.
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In the end we will see that the approximation of the ratio between the orbital periods is better, when this
method is used in comparison with the approximation in the original planetarium. As mentioned before, the
goal in this algorithm is to find integers 20 ≤ n1, n2, n3, n4 ≤ 120 such that∣∣∣r − n1 · n2

n3 · n4

∣∣∣ is minimized (4.2)

were r ∈ Q represents the ratio between the orbital period of any planet and the orbital period of the Earth
and gcd(n1 · n2, n3 · n4) = 1.

4.2.1 An algorithm for the gear train

In the first step of the algorithm, we create an ordered list L which contains all possible values of n ·m such
that 20 ≤ n,m ≤ 120. For all b ∈ L we construct an integer a, which will be important for the algorithm. Let(
Ak
Bk

)
k

be the convergents of r. The denominators of the ratios for the orbital period of any planet are smaller

than 120 · 120, see Table 1. Therefore we know that there exists an N ∈ N in which b < BN+1 and Theorem
2 can be applied to r ∈ Q. According to Theorem 2 we find that there exist an unique finite sequence

(
ck+1

)
k

such that

b =

N∑
k=0

ck+1Bk (4.3)

Next, we define A as

A =

N∑
k=0

ck+1Ak (4.4)

and a as

a =


A if bt−A ≥ 0 and bt−A ≤ 1

2 or bt−A < 0 and bt−A > − 1
2

A + 1 if bt−A ≥ 0 and bt−A > 1
2

A− 1 if bt−A < 0 and bt−A ≤ − 1
2

(4.5)

In the following subsection, we find that |bt− a| ≤ 1
2 and therefore we know that ||bt|| = |bt− a|. So in this way

a is the nearest integer to bt. The next step defines a′ ∈ L and depends on the value of a:

• if a ∈ L then a′ = a

• if a 6∈ L then

– if a > 120 · 120 then a′ = 120 · 120

– if a < 20 · 20 then a′ = 20 · 20

– if 20 · 20 < a < 120 · 120 then define alower as the greatest lower bound in L of a and define aupper as
the smallest upper bound in L of a, then

∗ if |br − alower| < |br − aupper| then a′ = alower

∗ if |br − aupper| < |br − alower| then a′ = aupper

Thus in this way we find a list of combinations of a′ and b for each b ∈ L. Afterwards, we create a list of the
values of |br − a′| and find the minimum of that list, so that we find the ‘best’ combination between a′ and b.
These a′ and b are the n1 · n2 and n3 · n4 we were trying to find, according to (4.2).

4.2.2 Theory behind the algorithm

The following theorem shows that |Br − A| < 1 and |br − a| ≤ 1
2 . Since bt is an irrational number and a

non-negative integer, we find that |bt− a| = ||bt||.
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Theorem 4. Let [a0; a1, a2, . . . ] be the continued fraction of the irrational number t with convergents Ak
Bk

for

all k ∈ N≥0, where Bk > 0 and gcd(Ak, Bk) = 1. Let b ∈ N and let the Ostrowski representation of b given by
(4.3). Let A ∈ N be given by (4.4) and define a ∈ N as in (4.5). Then

1. |bt−A| < 1

2. |bt− a| ≤ 1
2

Proof. From Definition 4 and Lemma 6 we know that

|bt−A| =

∣∣∣∣∣
N∑

k=0

ck+1Bk −
N∑

k=0

ck+1Ak

∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=0

ck+1Bk −Ak

∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=0

ck+1Dk

∣∣∣∣∣ < |cn+1Dn −Dn+1| (4.6)

In the first part of this proof two possibilities for n are examined, which are n = 1 and n ≥ 2. First, let n = 1.
From Lemma 1 we know that D1 < 0 and D2 > 0, so according to Lemma 3 and Theorem 2 it follows that

|c2D1 −D2| = | − c2D1 + D2| = −c2D1 + D2 ≤ −a2D1 + D2 = D0 = {t} < 1 (4.7)

Let n ≥ 2, then we have two different cases for Dn, which are Dn > 0 and Dn < 0. Let Dn > 0 then according
to Lemma 1 we have that Dn+1 < 0. By Lemma 3, Lemma 4 and Theorem 2 we find that

|cn+1Dn −Dn+1| = cn+1Dn −Dn+1 ≤ an+1Dn −Dn+1 = −Dn−1 = |Dn−1| ≤ 1
2 (4.8)

Let Dn < 0 then according to Lemma 1 we have that Dn+1 > 0. By the same reasons as (4.8), we have that

|cn+1Dn −Dn+1| = −cn+1Dn + Dn+1 ≤ −an+1Dn + Dn+1 = Dn−1 = |Dn−1| ≤ 1
2 (4.9)

As a result of (4.6), (4.8) and (4.9), we have that for all n ≥ 1

|bt−A| < 1 (4.10)

In order to prove Part 2 of the theorem, the different cases of the definition of a are examined. First, assume
that bt−A ≥ 0 and bt−A ≤ 1

2 . Since a = A we have that

|bt− a| = |bt−A| = bt−A ≤ 1
2

Second, we assume that bt−A < 0 and bt−A > − 1
2 . Since a = A we have that

|bt− a| = |bt−A| = −bt + a ≤ 1
2

In the second case of the definition of a we assume that bt − A ≥ 0 and bt − A > 1
2 . According to (4.10) and

bt−A ≥ 0, we know that bt−A < 1. So bt−A− 1 < 0, which results in

bt− (A + 1) < 0 (4.11)

Another property of this case is bt − A > 1
2 , which results in bt − (A + 1) > − 1

2 . So that −bt + (A + 1) < 1
2 .

Since (4.11) and a = A + 1, we find that |bt − a| < 1
2 . In the last case of the definition of a, we assume that

bt−A < 0 and bt−A ≤ − 1
2 . According to (4.10) and bt−A < 0, we know that −bt+A < 1 so that bt−A > −1.

Consequently, bt−A + 1 > 0, which results in

bt− (A− 1) > 0 (4.12)

Another property of this case is bt − A ≤ − 1
2 , which results in bt − (A − 1) ≤ 1

2 . Since (4.12) and a = A − 1,
we find that |bt− a| ≤ 1

2 . So for every case in the definition of a it is proven that |bt− a| ≤ 1
2 .

4.2.3 Results

The algorithm described above is applied to the ratios between the orbital periods of any planet and the
Earth, which is referred to as r in the algorithm. The algorithm is carried out by an program, which is shown
in the Appendix. In Table 3 the comparison is shown between the approximation by convergents and the
approximation after the algorithm is applied. Note that the ratios used in the gear train are slightly different
from the ratios shown in ‘Continued fractions’, see [6].
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Planet Mercury Venus Mars Jupiter Saturn

Ratio from data (r) 25335
105190

64725
105190

197836
105190

1247057
105190

3095277
105190

Ratio used in
planetarium

12 · 17
7 · 121

A5
B5

= 8
13

A5
B5

= 79
42

A3
B3

= 83
7

A3
B3

= 206
7

Ratio used in gear
train

37 · 53
69 · 118

38 · 107
56 · 118

34 · 77
12 · 116

85 · 106
8 · 95

107 · 110
4 · 100

Table 3: Comparison between approximation by convergents and after the algorithm is applied

As mentoined before, the error of the approximation is more precise when using the algorithm described in the
previous section. Table 4 shows the difference between the error of approximation by convergents like Huygens
used them and the approximation as a result of the gear train.

Planet Mercury Venus Mars Jupiter Saturn

Error planetarium 1.6836·10−5% 0.0069% 0.020% 0.1862% 0.3123%

Error gear train 2.3352·10−6% 3.7405·10−5% 1.0081·10−4% 1.7762·10−3% 5.8228·10−2%

Table 4: Error of approximation
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Appendix

import math

###########################continued f r a c t i o n###################
x=i n t ( input (” a=”))
y=i n t ( input (”b=”))

c f =[ ]
a=x
b=y
i f b>a :
c f . append (0)

whi l e a>b :
v=a−b
n=1
whi le v>b :
v=v−b
n=n+1
c f . append (n)
a=b
b=v

whi le b>a :
v=b−a
n=1
whi le v>a :
v=v−a
n=n+1
c f . append (n)
b=a
a=v

c f [−1]=n+1
pr in t (” Continued f r a c t i o n =”, c f )

#########################convergents#######################

denominators =[ ]
numerators =[ ]

numerators . append ( c f [ 0 ] )
numerators . append ( c f [ 1 ] ∗ c f [ 0 ]+1)
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A=numerators [ 1 ]
f o r i in range (1 , l en ( c f )−1):
A=c f [ i +1]∗numerators [ i ]+ numerators [ i −1]
numerators . append (A)
p r in t (” Numerators=”, numerators )

denominators . append (1 )
denominators . append ( c f [ 1 ] )

B=numerators [ 1 ]
f o r i in range (1 , l en ( c f )−1):
B=c f [ i +1]∗ denominators [ i ]+ denominators [ i −1]
denominators . append (B)
p r in t (” Denominators=”, denominators )

###################c r e a t i n g l i s t L##################
l=s e t ( )

f o r i in range ( 2 0 , 1 2 1 ) :
f o r j in range ( 2 0 , 1 2 1 ) :
n=i ∗ j
l . add (n)

L=sor t ed ( l )

############f o r every element in L c r e a t e o s t rowsk i r e p r e s e n t a t i o n##############
a l p h a l i s t =[ ]
a l p h a a c c e n t l i s t =[ ]
f o r i in L :
e r r o r l i s t =[ ]
O1=[ ]
O2=[ ]
s=i
f o r j in range (0 , l en ( denominators )−1):
i f s>denominators [ j ] or s==denominators [ j ] :

N=j
whi l e s >0:
n=0
whi le s>denominators [N] or s==denominators [N ] :
s=s−denominators [N]
n=n+1
O1 . append (n)
O2 . append (N)
j=−1
whi l e j<N−1 or j==N−1:
i f s>denominators [ j +1] or s==denominators [ j +1] :
j=j+1
e l s e :
N=j
O s t r o w s k i l i s t =[ ]
f o r k in range (0 , l en (O1)−1):
O s t r o w s k i l i s t . append (O1 [ k ] )
O s t r o w s k i l i s t . append (”∗B”+s t r (O2 [ k ])+ ”+”)
O s t r o w s k i l i s t . append ( s t r (O1[−1])+”∗B”+s t r (O2[ −1 ] ) )

################c r e a t e A##################################
A=0
f o r l in range (0 , l en (O1 ) ) :
A=A+O1[ l ]∗ numerators [O2 [ l ] ]
##################c r e a t e alpha####################
i f abs ( i ∗x/y−A)<0.5 or abs ( i ∗x/y−A)==0.5:
alpha=A
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e l i f b∗x/y−A>0.5 :
alpha=A+1
e l s e :
alpha=A−1
a l p h a l i s t . append ( alpha )

#####################c r e a t e alpha accent###############
i f alpha in L :
a lphaaccent=alpha
e l s e :
i f alpha >120∗120:
a lphaaccent =120∗120
e l i f alpha <20∗20:
a lphaaccent =20∗20
e l s e :
f o r q in range (0 , l en (L)−1):
i f L [ q]<alpha :
pass
e l s e :
a lphalower=L [ q−1]
f o r q in range (0 , l en (L)−1):
i f L [ q]<alpha :
pass
e l s e :
alphaupper=L [ q+1]
i f abs ( i ∗x/y−alphalower)<abs ( i ∗x/y−alphaupper ) :
a lphaaccent=alphalower
e l s e :
a lphaaccent=alphaupper
a l p h a a c c e n t l i s t . append ( a lphaaccent )

#######################f i n d best combination alpha ’ and b##################
e r r o r =[ ]

f o r i in range (0 , l en (L)−1):
e r r o r . append ( abs ( x/y−a l p h a a c c e n t l i s t [ i ] /L [ i ] ) )

f o r i in range (0 , l en ( e r r o r )−1):
i f e r r o r [ i ]==min ( e r r o r ) :
bes ta lpha=a l p h a a c c e n t l i s t [ i ]
bestb=L [ i ]
e l s e :
pass
p r i n t (” bes t alpha =”, bes ta lpha )
p r i n t (” bes t b=”, bestb )
p r i n t (” Error =”, min ( e r r o r ) )

#############f i n d n 1 , n 2 , n 3 , n 4####################
f o r i in range ( 2 0 , 1 1 9 ) :
i f bes ta lpha%i ==0:
f i r s t n=besta lpha / i
secondn=besta lpha / f i r s t n
e l s e :
pass

f o r i in range ( 2 0 , 1 1 9 ) :
i f bestb%i ==0:
th i rdn=bestb / i
fourthn=bestb / th i rdn
e l s e :
pass
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pr in t (” n1=”, f i r s t n )
p r i n t (” n2=”, secondn )
p r in t (” n3=”, th i rdn )
p r i n t (” n4=”, fourthn )
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