
Supervisors: Prof. C. Della Santina, Department of Cognitive Robotics, TU Delft
Dr. J. Ding, Department of Cognitive Robotics, TU Delft

Terrain Adaptive
Quadrupedal Jumping
for Rigid and Articulated

Soft Robots
using Example Guided
Reinforcement Learning

Master Thesis

For the degree of Master of Science in Robotics at
Delft University of Technology

Georgios Apostolides

Student Number: 5377498

Supervisors: Prof. Cosimo Della Santina
Dr. Jiatao Ding

Thesis Committee: Prof. Cosimo Della Santina
Prof. Jens Kober
Dr. Jiatao Ding

Submission Date: August 5th 2024

Department of Cognitive Robotics,
Faculty of Mechanical Engineering,

Delft University of Technology

i

Acknowledgements

I would like to express my heartfelt gratitude to my supervisors, Dr. Cosimo Della Santina and Dr.
Jiatao Ding. Their guidance, insightful feedback, and patience have been invaluable throughout this
journey. Their expertise not only helped me shape the direction of my thesis but also inspired me to
think more critically and creatively.

I am also deeply thankful to my friends who have been a constant source of support and laughter.
Whether it was listening to my endless musings about my thesis over countless cups of coffee or offer-
ing words of encouragement, your presence made this journey much more enjoyable.

Lastly, I owe a special debt of gratitude to my beloved family and girlfriend. Your unwavering belief
in me, along with your emotional support, has been a cornerstone throughout this process. Your confi-
dence in my abilities has kept me motivated and focused, and for that, I am truly grateful.

Georgios Apostolides
Delft, August 5th, 2024

1

Terrain Adaptive Quadrupedal Jumping
for Rigid and Articulated Soft Robots

using Example Guided Reinforcement Learning
Georgios Apostolides

Abstract—The challenge of navigating uneven terrain is a
critical obstacle in the advancement of robotic locomotion.
Traditional quadrupedal locomotion methods, such as walking,
are often insufficient for dynamic and complex environments.
Agile skills like jumping are necessary and must be adaptable
over uneven terrain. This study addresses this issue by developing
a policy for executing jumps over uneven terrain using a single
demonstration. Initially, the system learns to imitate a forward
jump based on a single demonstration from a SLIP trajectory
planner. It then generalises its jumping abilities to various
distances in both forward and lateral directions. The study
compares the performance of systems with and without parallel
elasticity, demonstrating the energetic benefits of using elastic
actuation for quadrupedal jumping. Results show that the system
with parallel elastic actuation is 15.20% more energy-efficient
and experiences a 15.79% reduction in peak power compared to
the system without parallel elasticity. A policy trained using the
proposed methodology successfully performs jumps of variable
distances over uneven terrain with height perturbations of +/-4
cm using only proprioceptive information.

I. INTRODUCTION

Robotics have started to make their way in our daily life and
while doing so, they have the opportunity not only to improve
our daily living but also to address challenges that seemed
impossible before. Challenges such as search and rescue, space
exploration, and environmental monitoring are only a few of
such examples. All of the aforementioned applications require
robotic platforms which are capable of navigating in difficult
terrains. The problem of agile locomotion over highly uneven
terrains is investigated in this work.

In nature, animals display remarkable agility, robustness,
and efficiency in traversing unstructured environments, inspir-
ing the creation of quadrupedal robots. These robots offer cer-
tain advantages over aerial robots, such as direct environment
interactions and larger payload capacity. Furthermore, their
discrete contact points with the ground make them superior
to wheeled robots in navigating uneven terrains. Despite their
potential, controlling legged robots in such settings remains a
significant challenge. Animals owe much of their robustness
and efficiency to elastic biological elements like tendons,
which provide energetic advantages [1], [2]. This led engineers
to investigate the use of elastic actuation in quadrupeds. While
elastic actuation can offer significant gains in performance and
efficiency, it can also make system’s control more complex.

Various works have investigated locomotion over unstruc-
tured terrain using quadrupeds [3], [4]. However, the problem
of performing locomotion in difficult environments is far from

being solved. A lot of the relevant work has been restricted
into stable quadrupedal walking over uneven terrain. However,
in the wild, a robot may not be capable of traversing particular
parts of the terrain using a simple walking or trotting motion.
In the animal kingdom, quadrupedal animals such as goats
possess various dynamic skills such as jumping, limping, and
climbing. Jumping is a motion that can be performed or
adapted over uneven terrain, however, how to achieve this,
is still an open question.

Model Based approaches are methods which rely on the
use of a mathematical model to represent the dynamics and
kinematics of the quadruped. These models can either be a
full order model [5] or a reduced order model [6], [7]. Such
strategies have often been extremely useful in achieving stable
and efficient locomotion over flat terrain [5] or even agile skills
such as jumping [6] on flat terrain. However, when it comes
to the unpredictability of uneven terrains, these methods tend
to struggle. Controllers designed using model base approaches
often find it difficult to adapt their movement to the variability
of an uneven terrain. Furthermore, this type of methods can
be computationally demanding for high order systems such
as quadrupeds. Thus, often resulting in using a simplified
version of the system dynamics [6], [7] which can be limiting.
Even if a full order dynamical model is the choice, it is
often difficult to be used in a real-time manner to avoid the
unforeseen circumstances that can arise from an uneven terrain
environment. To conclude, although model based approaches
can form the basis of achieving simplified motions, they
often struggle in providing the level of timeliness, agility and
adaptability that is required to solve the problem of uneven
terrain jumping.

In recent years, there has been a notable shift towards
learning-based control methods, with Reinforcement Learning
(RL) gaining particular prominence. RL has been proven
effective in solving not only the problem of quadrupedal
locomotion over flat terrain [8] but also in locomotion over
uneven terrain [3]. In particular, a considerable amount of
work has used RL in conjunction with a reference trajectory
to enable quadruped robots to master dynamic motions such
as jumps and back-flips [9], [10], [11]. This highlights the
potential of RL in empowering quadruped robots not only to
learn intricate and dynamic manoeuvres such as jumping, but
also to dynamically adapt their behaviour in the face of uneven
environments. Consequently, learning-based approaches, par-
ticularly RL, emerge as a promising way to solve the difficult
problem of quadrupedal jumping from uneven terrains.

2

Demo Generation
using SLIP Model

1) Imitation 2) Landing Distance
Generalisation

3) Uneven Terrain
Jumping

SLIP

Agent

4) Domain
Randomisation

Preliminary Stage Jumping Learning Stage

Task Complexity

Fig. 1: Visualises a breakdown of the methodology to be followed in order to achieve uneven terrain jumping.

Depending exclusively on RL methods for addressing com-
plex tasks like jumping, gives rise to considerable challenges.
A significant hurdle emerges in the necessity for a well-
designed and often elaborate reward function, requiring ex-
tensive trial and error to be tuned, especially as the number of
parameters in the reward function increases [12], [13]. How-
ever, the introduction of a single demonstration in the form of a
reference to the RL framework has demonstrated the potential
to simplify the reward function, as evidenced by previous liter-
ature [9], [14]. Despite this improvement, methods relying on a
single demonstration may encounter challenges in generalising
beyond the demonstrated motion. Notably, existing studies that
employ a single demonstration often confine their learning
scope only to the demonstrated motion [8], [11]. Conversely,
approaches incorporating multiple demonstrations [9], [15]
aim to enhance generalization capabilities. However, the task
of obtaining multiple demonstrations for complex tasks such
as quadrupedal jumping may not always be feasible. Balancing
the trade-off between the simplicity of reward function design
and the ability to generalise effectively remains a challenge
in the context of RL-based solutions for complex tasks like
jumping.

We embrace the challenge of teaching a quadrupedal
robot dynamic jumping motions like those demonstrated by
quadrupedal mammals. We are particularly interested in sce-
narios where a quadruped robot performs jumps from and
onto uneven surfaces, using a single demonstration throughout
the entire learning process. Inspired by the use of curriculum
learning, we address this challenge by dividing the learning
process into four stages of increasing task complexity. After
generating the reference trajectory, the agent’s first task is to
learn how to imitate the reference trajectory. Once the agent
knows how to perform a jump of constant distance, we focus
on generalising the landing distance and direction of the jump.
In the third stage, the goal is to extend the agent’s jumping
capabilities into jumping from and onto uneven terrain. Finally,
the learnt controller undergoes domain randomisation to ensure
its robustness to the uncertainties of both the system and
the environment. The primary contributions of the proposed
approach include:

• Single Demonstration Learning: The proposed ap-
proach enables a quadruped robot to learn a jumping
controller from a single demonstration, minimising the
number of demonstrations required and simplifying the
reward signal design.

• Example Generalisation: The learnt controller facilitates
generalisation from a single example, encompassing var-
ious jumping distances and directions without the need
of re-generating a reference trajectory.

• Uneven Terrain Jumping: Achieving the execution of
jumps from and onto uneven terrains using a single
demonstration.

• Jumping using Parallel Elastically Actuation: A com-
prehensive comparison between a rigid and an articu-
lated soft quadruped in the task of jumping. Jumping
over flat terrain with an elastically actuated quadruped
demonstrates significant gains up to 15.20% in energy
efficiency while jumping on average higher and with
higher precision.

II. RELATED WORK

A. Model Based Control Methods for Quadrupeds

Traditionally, model-based control approaches were the
preferable control method for legged robots. Almost all model-
based approaches can be decoupled into a planning and a
tracking module. The planning module is used to generate
a trajectory, while the tracking module is used to track the
generated trajectory.

For the generation of a jumping trajectory several ap-
proaches have been proposed which often rely on Trajectory
Optimisation (TO) [16], [17]. Some works have experimented
in solving a trajectory using Mixed Integer Optimisation which
incorporates the contact state into the optimisation problem in
order to find an optimal trajectory [18], [19]. Although these
approaches in a convex setting guarantee an optimal solution,
they are usually computationally cumbersome and cannot be
solved on the onboard computer. To alleviate this problem

3

some other approaches had relied on generating a plan using
predetermined contact schedules to aid in the convergence of
optimisation [6], [17], [20]. However this usually limits the
jump to a particular type, for example to a forward direction
jump [16], [6].

For the tracking of the planned trajectory simplified con-
trollers are often used. The traditional approach is to use
a PD controller to track the planned trajectory [19], [6].
Other works have recently proposed the utilisation of a Model
Predictive Control (MPC) for tracking the CoM trajectory and
a PD controller for joint feedback [17]. In [21] the authors
propose an Iterative Learning Control approach which adapts
the gains of the controller to make it robust to uneven terrain
perturbations during runtime. However, this approach still
relies on the generation of a pre-planned trajectory using TO
which is done offline and can take a considerable amount of
time to be generated online.

To conclude, Model-Based approaches have been proposed
for performing quadrupedal jumping. The approaches pro-
posed often rely on a planned trajectory which is often
generated offline due to its computational complexity and a
simplified controller is used to track the trajectory. The planned
trajectories are often generated for a specific distance and are
not capable of being re-used for jumps of different distances.
Very little work has focused on making these controllers robust
to uneven terrain with the exception of [21] and [17] which
demonstrate limited capability of performing agile motions in
an uneven terrain scenario.

B. Learning Based Control Methods for Quadrupeds

Learning based control methods have recently received
increased attention in the domain of quadruped robots. Here
we explore the different works which are directly related to
our methodology or that perform dynamic motions such as
jumping.

A lot of the works utilise Imitation Learning as a method-
ology to teach a particular motion. However, these approaches
usually limit themselves into learning the trajectory specified
by the reference motion. In [8] and [11] the authors utilise an
Example-Guided RL (ERL) methodology that utilises animal
demonstrations to guide the learning process. The locomotion
skills learnt in [8] are not generalised for example to different
directions. Another work utilises animal videos and Deep RL
to learn dynamic motions such as back-flips and walking how-
ever those motions are also as specified by the demonstration
[11].

In contrast, other literature tries to generalise the motion
learned through ERL. In [14] the authors investigate the use
of a reference trajectory to learn a policy that performs agile
tasks for animation characters. The characters are taught how
to perform back-flips and how to walk but also tasks such as
throwing a ball to a particular target. In the task of throwing a
ball to a target, the trained policy is conditioned on the target
location. Thus the agent is allowed to modify its trajectory
given a particular target. Similarly in [10] the authors teach
a biped robot how to jump using a single demonstration.
However, they don’t confine themselves to just imitating the

demonstration, similar to our approach, they use policy goal
conditioning to perform jumps of different distances and
directions. A different approach is followed by Fuchioka et.
al., where instead of using a single demonstration to teach
different agile tasks, multiple demonstrations are utilised [9].
A demo trajectory is generated via trajectory optimisation and
the trained policy is ensured to be generic enough so that
the demonstrations can be tracked. However, this implies at
first the need for multiple demonstrations, and the necessity
of generating a reference every time a motion is to be altered,
which may not be feasible in real time.

Other lines of work, focus on reducing the number of
demonstrations as much as possible. Atanassov et. al. suggest a
methodology that aids in obtaining a jumping policy without
any demonstrations through the use of curriculum learning
[13]. The utilisation of curriculum learning has been proven to
be beneficial when no demonstrations are available. However,
not utilising any demonstration, further complicates the design
and tuning of the reward function. Similarly in [22], the
authors propose a methodology that utilises rough partial
demonstrations along with a Generative Network trained via
RL to obtain dynamic jumping motions. A two-stage learning
strategy is proposed in [12] which combines evolutionary
strategies and DRL to alleviate the need for a pre-defined
reference trajectory.

As for the task of performing agile jumping motions from
and onto uneven surfaces there has not been considerable
work. The primary work which focused on uneven terrain
jumping is [15], which focuses on starting the robot from an
uneven terrain and lands onto a flat surface. The proposed
method relies on trajectory optimisation and utilises DRL as a
feedback controller to correct the feed forward control actions
of TO. The downside of the proposed approach is that a new
trajectory must be optimised for by a TO module every time a
different jumping distance is desired, which can be quite slow
or infeasible in real time. In contrast, our proposed approach
does not require the re-generation of a demonstration trajectory
and relies only on a single demonstration. This allows for
querying the controller for jumps of different distances in real
time. Finally, [10] showcased jumping onto obstacles however
the robot still jumps and lands from and onto a flat surface.

III. FRAMEWORK OVERVIEW

As visualised in Fig. 1 the process of teaching an agent how
to perform jumps over uneven terrain starts from a preliminary
phase where we generate a demonstration trajectory followed
by a learning phase of 4 individual stages, each with increased
task complexity. The first phase of generating a reference
trajectory is done by solving a numerical optimization problem
for a specific jumping distance. An advantage of the discussed
methodology is that we only use a single demo. Hence,
although we utilise numerical optimisation for the demo gen-
eration, other data sources which are more scarce can also be
used, such as animal demos. Once the trajectory is generated,
the next step focuses on imitating the jumping motion using an
Example-guided Reinforcement Learning (ERL) setup which
will be elaborated in Sec. IV-B. As soon as the agent is capable

4

of imitating the jump, the process proceeds to generalise the
jump into different jumping distances by conditioning the
policy onto a given jumping goal, more details are given in
Sec. IV-C. Finally, the process introduces an uneven surface
where the robot attempts to jump different distances across a
platform of uneven heights more details will be given in Sec.
IV-D. At this stage the robot is capable of jumping different
distances from and onto an uneven terrain, the final stage
involves randomizing different parameters of the robot itself
and the environment to make the jumping more realistic, this
is done through Domain Randomisation for which details are
given in Sec. IV-E.

Policy Joint Angle
Deviations (δq)

from
the reference

trajectory

Inputs
o∈R20×(37+12)

Actions
α∈R12

History of the last 20 (state,
action) pairs:

αi = π(oi)

Desired Jumping Distance

Imitation Stage: Constant and same as demonstration.
Generalisation Stage: Sampled uniformly between a range.

State Observations
User Defined

Applied Actions

Joint Angles
Joint Velocities

Linear Velocities
Angular Velocities
Base Orientation
Remaining Time

Last Action

Desired x Distance
Desired y Distance

Fig. 2: Depicts the observation and action spaces of the policy.

On a high level, the policy trained, takes as input a historical
sequence of observations and actions, and outputs a residual
action relative to the reference trajectory. As depicted in Fig.
2, the observation history vector consists of: joint angles, joint
velocities, Cartesian base velocities, angular velocities and the
orientation in quaternion form. In addition, the policy receives
as input a variable which ranges from 1 to 0 representing
the remaining time before the episode finishes and a tuple
of the desired jumping distance in the XY plane. Finally,
the last filtered action applied by the agent is also given as
input. During the imitation stage, the desired jumping distance
is kept constant to the demo’s jumping distance. During the
generalisation stage, it is sampled uniformly from a specified
range at the episode start. The history length is 20 time-steps.
The outputted 12-dimensional action (ai) is filtered by a low
pass filter. The filtered action is then converted into a residual
joint angle (δqi) by linearly scaling the filtered action using
the max and mean reference joint angles. Finally, the desired
joint angle at time-step i, (qdes

i) , is given by:

qdes
i = δqi + qref

i. (1)

The above process is visualised in Fig. 3. The desired joint
angle is tracked using a low level PD controller which tracks

the desired joint angles at a frequency of a 1kHz while the
desired joint angle is updated by the policy every 50Hz.

The agent utilised is a quadrupedal robot, specifically the
Unitree GO1 robot is used to perform all the experiments.
The simulations are run in a PyBullet simulation environment,
which is operated at rate of 1 kHz. In addition, this work
experiments with introducing elastic actuation in parallel to
the motors of the quadruped robot. Parallel Elastic Actuation
(PEA) has been suggested to offer advantages especially in the
realm of dynamic motions. The springs introduced in parallel
with the actuator, can be used as an elastic energy storage
unit. The elastic elements act in a unidirectional fashion and
thus the springs are compressed only when the robot squats
down. The idea is that before performing the jumping motion
the quadruped robot can squat down to compress the springs
and later release the additional energy stored in the springs to
jump more efficiently. In addition, during the landing phase
the robot can potentially benefit from the springs which can
be used to absorb the impact from the ground. Both systems
with and without springs will be tested in the subsequent
methodology. The spring constants used for each joint have
been determined through trial and error and are the following:
KHip = 0, KThigh = 16, KCalf = 10.

IV. METHODOLOGY

In this section we discuss the methodology proposed for
learning dynamic jumping motion. In Sec. IV-A an introduc-
tion to the notation used for formulating the RL problem
is presented as well as the formulation of the optimisation
problem for generating the reference trajectory. Details on
the imitation stage are given in Sec. IV-B while information
for the generalisation stage are given in Sec. IV-C. Finally,
information regarding the uneven terrain training and the
domain randomisation stage are given in Sec. IV-D and Sec.
IV-E respectively. The details of each learning stage are also
summarised in Appendix B Table VI.

A. Preliminaries

Reinforcement Learning Basics: The problem of learning
dynamic jumping motions in this work is formulated as a
Reinforcement Learning (RL) problem. The agent starts by
observing its state in the environment si ∈ O and takes an
action ai ∈ A, which results in the transition of the agent to
a new state si+1. The agent observes the new state si+1 ∈ O
and uses it to take the next action ai+1. The goal in RL is to
learn a policy π (ai|si) where given the state of the agent, the
policy outputs the action the agent should take. To assess the
quality of the actions taken by the agent, a reward function
Ri is used, the better the actions taken by the agent the higher
the reward value.

An analogy can be easily drawn between the above expla-
nation of the RL paradigm and the problem of quadrupedal
jumping. The agent can be represented by the robot, while the
state can be observed from the onboard sensors. The action
that causes the robot to interact with the environment can be
seen as the torque exerted by the robot.

5

SLIP
Planer

+

qref max

qref mean

PD Motor
Torque

State Estimation

Low Level control
1kHz

Mapping
Low Pass

Filter

action

α ⟹ δq -

High Level Control / Policy
50 Hz

Preliminary Stage

Learning Stage

XDes
Mass
keq qref

qdes

q mea

dq mea

error

History Buffer
αfiltered

Network Input
State Observation

Policy

Fig. 3: Summarises the way at which the output of numerical optimisation is used by the policy trained using RL, as well as
the process which a predicted action undergoes before being converted into a torque that is sent to the robot motors.

Specifically in our problem of quadrupedal jumping the pol-
icy is parameterised by a neural network which can be defined
by a set of parameters θπ . In addition, the network receives
as input a history tuple (hi) consisting of the last 20 state
observations (si), actions (ai) and desired landing distance
(ˆpland). Thus the policy can be mathematically expressed as:

π(ai|hi) := ANN(hi;θπ). (2)

The objective in RL is to determine the parameters of the
neural network which maximise the expected return (GN):

π∗(ai|hi;θπ) = argmax
θπ

E [GN |θπ] , (3)

where the return is the cumulative sum of discounted rewards
over time GN =

∑N
i=0 γ

kr(si,ai) and γ ∈ [0, 1] is the
discount factor which determines the importance of the instan-
taneous reward ri(si,ai). A common approach for solving a
problem in continuous action space such as the one above is
policy gradient methods [23]. This family of methods utilise
gradient descent to optimise the above objective function.
Proximal Policy Optimisation (PPO) is utilised to train all the
policies in this work due to its robustness to hyperparameter
selection and its simplicity [23]. Details regarding the RL
algorithm hyper-parameters can be found in Appendix B.

Reference Generation: As highlighted earlier, references
from different sources can be used to teach the agent how
to jump. However, here we use numerical optimisation due
to its availability from prior work and showing the poten-
tial to perform jumps using a model based controller [21],
[24]. Additionally, optimisation based examples allow for a
comprehensive description of the agent’s state. In this section
the method in which the jumping reference is generated is
explained. The jumping reference is used primarily in the im-
itation learning stage to guide the agent in learning the initial

jumping trajectory. The trajectory is generated by solving a
numerical optimisation problem.

Generating a reference for a system using numerical opti-
misation requires a dynamical model to describe the motion of
the quadruped. The entire jumping motion can be decomposed
into two phases: the stance phase, where the robot legs touch
the ground, and the flight phase, where the robot is in the
air. The Spring-Loaded Inverted Pendulum (SLIP) was used
to describe the aforementioned motion due to its simplicity
but also due to its common use for dynamic motions such
as running and jumping. The SLIP model consists of a mass
attached to a mass-less spring. During the stance phase a
spring loaded mass is used to model the dynamics, while
during the flight phase the dynamics of a projectile motion
are used. Normally, this is enough to model the dynamics of
a passive dynamical system that jumps. However, the above
model does not incorporate the contribution of an actuator on
the system dynamics. To model the force of the actuators,
a virtual force is applied on the point mass. The virtual
force is proportional to the additional acceleration provided
by the actuators to the point mass that is denoted by (u).
The idea of adding a force to the SLIP model had also
been previously proposed [7]. However, here the force is
intentionally decomposed from the spring force of the SLIP
model to be used as an optimisation variable for trajectory
generation.

The formulation of the optimisation problem relies on the
assumption that there is a fixed number of steps for the stance
phase (Ns) and a fixed number of steps for the flight phase
(Nf). However, the time step (δt) of stance and flight phase is
given as an optimisation variable to provide some flexibility.
To ensure that the problem still remains tractable an initial
guess of the δt = [δtstance, δtflight]

T and its bounded within a
range (eq. 4g) to ensure a trajectory that can be tracked. The
optimisation problem is formulated as:

6

min
p,δt,u

Jlift + Jflight + Jstance Cost Function (4a)

s.t. p(0) = p0 Initial Conditions (4b)
ṗ(0) = v0 (4c)
p(N) = pf Terminal Conditions (4d)
ṗ(N) = 0 (4e)
pz(Ns − 1) = pztake off Take Off Condition (4f)
δtmin ≤ δt ≤ δtmax Time Step Constrain (4g)
∀i ∈ [0, 1, . . . , Ns +Nf]

pi+1 = Taylor(pi, ṗi, p̈i, δt) Dynamics (4h)
∀i < Ns : Stance Phase
pi ∈ conv [pfeet] Support Polygon (4i)

p̈i =
Fs(pi)

m
+ u+ g Stance Dynamics (4j)

m−1(Fs)
z + uz ≥ 0 Gravity Constraint (4k)

∀i ≥ Ns : Flight Phase
p̈i = g, Flight Dynamics (4l)

where g = [0,−9.81]T is the gravitational acceleration vector
and pi = [pxi , p

z
i]

T represents the position of the system in the
Cartesian XZ plane at time step i. A detailed description and
explanation behind the imposed constraints, cost functions as
well as the used parameters can be found in Appendix A.

Following the generation of the two dimensional reference
trajectory, a low pass filter is used to be smoothed. The
reference is interpolated to the frequency of the RL policy
which was decided to be 50Hz. Additionally, using the gener-
ated CoM trajectory a desired joint angle reference trajectory
is generated by solving the inverse kinematics (IK) of the
quadruped robot. Furthermore, the trajectory is extended to
include a landing phase where the joint angles are kept to
the humming pose and the Cartesian position is kept to be
the same. During the entire trajectory the orientation and the
lateral position are both kept to be zero.

The solver used for solving the optimisation problem is
the Ipopt solver from the CasADi package. The solution
takes approximately from 0.8 to 1s to be generated for a
desired distance of 0.4m. The entire process of solving the
optimisation problem, smoothing, but also generating the
desired joint angles using IK takes around, 10s. Although the
reference generation is done only once and offline during the
proposed methodology it’s worth mentioning that it may take
a considerable amount of time depending on the desirable
jumping distance to generate the entire reference trajectory
and thus would be difficult to generate the reference trajectory
online.

B. Imitation Learning Stage
In this stage the aim is to teach the agent how to perform

a stable jumping motion of a fixed length. For this reason
the desired landing distance which is passed as an input
to the policy is kept fixed to the landing distance of the
demonstration.

Learning a jumping motion, even from a reference trajec-
tory, can be challenging, as the states mid-air are difficult to
be explored by the agent adequately. As pointed out in [14]
starting from a fixed initial state can be challenging when
learning dynamic movements. However, in imitation learning,
changing the initial state can be a strong prior in enabling the
agent to explore states that lead to high reward. Thus similarly
to [14] we utilise Reference State Initialisation (RSI) where
the agent begins the episode from a randomly sampled state
along the desired reference trajectory. This is done every 5th
episode in order to collect also experiences where the agent
starts from the initial state. To account for changes in the
reward value when the agent starts from a different initial
state we normalise the reward by the number of maximum
possible actions that can be taken within the episode length.
Hence assuming that in cases where the agent starts from the
nth time-step we assume that for the n−1 previous states the
agent has imitated perfectly the trajectory.

During the Imitation stage the reward is described by the
following reward function:

R =
N∑
i=0

rim
i + rland − psmooth − pland + rsurvival. (5)

The above reward includes an imitation reward (rim) and a
survival reward (rsurvival) given to the agent after reaching the
last step of the episode. In addition, a reward is given for
landing close to the desired landing position (rland), at the end
of the episode. Finally, penalties are also added for smoothing
the agent’s motion (psmooth) but also ensuring stability after
landing (pland).

The imitation reward (rim) encourages the agent to stay
close to the demonstration’s trajectory and its calculated at
each time-step as follows:

rim
i = wqf(kq, q̂i, qi)+wpf(kp, p̂i,pi)+wof(ko, ôi,oi) (6)

, where the exponential kernel function is represented by:
f(k, x̂i,xi) = exp(−k ∥x̂i − xi∥2). Here, x̂ represents the
demonstration state while x represents the state of the agent.
An imitation reward is given for the base position pi, the joint
position qi and the agents orientation oi. For the joint angles
and the base position the L2 norm is used to compute the error
between the demonstration and the agent’s state while for the
orientation the angle of rotation between the two quaternions
is used. A weighted sum is used to give the total imitation
reward at each time-step.

In addition to the imitation reward a landing reward (rland)
is given to reward the agent for landing close to the desired
landing position which is kept constant for the stage of
imitation as the desired distance of the reference trajectory.
The landing position reward is given at the end of the episode
and is only provided if the episode has not been terminated.
The reward is computed using the following expression:

rland = wland exp(−kland ∥pland − ˆpland∥2), (7)

where the desired landing position coming from the demo is
denoted by (ˆpland) whereas the landing position of the agent
is denoted as (pland). To judge whether the robot is in a

7

flight phase the agent must be in a state where non of the
legs are touching the ground and the CoM height is above
the maximum stance height. The agent is considered to have
landed if it was in a flight phase and any of the legs touches
the ground. Once this change in phase from flight phase to
stance phase occurs the base position is recorded as the landed
position.

To ensure a smooth jumping trajectory a penalty is imposed
which penalises the norm of joint velocities (q̇) and joint
accelerations (q̈):

psmooth = wpen
ddq

N∑
i=i air

∥q̈i∥1 + wpen
dq

N∑
i=i air

∥q̇i∥1 . (8)

In addition, to make sure the agent lands stably, a penalty
is applied on the XY velocity (vxy) of the base once the
robot has landed. Mathematically, the landing penalty can be
expressed as:

pland = wpen
vel

N∑
i=i land

∥vxy
i∥1 . (9)

Provided that the agent has reached the final step of the
episode and an early termination has not been triggered, then
the agent will receive a positive reward which rewards its
survival during the episode. In contrast, if an early termination
is triggered, the agent receives a negative reward to penalise
its behavior. Hence, the following equation can be used to
express the above scenarios:

rsurvival =

{
−0.1 i termination < N

+0.1 i termination = N.
(10)

During the imitation stage, an episode is terminated early if
there is an illegal contact with the ground or if the robot has
fallen over. A contact is judged as illegal, if any other part of
the robot apart from its feet are in contact with the ground.
The agent is said to has fallen, if the position vector of the
base in the z-direction has an angle bigger than 30 degrees
from the global z-direction vector. Additionally, the episode
is terminated early during the imitation stage if the agent has
a feet contact state which does not match the contact state of
the demonstration for more than 120ms.

C. Landing Distance Generalisation Stage

For the generalization stage the aim is to teach the robot how
to jump different distances using the baseline acquired during
the Imitation Stage. At this stage the agent is already capable
of jumping a fixed distance. Thus, in this stage the agent
always starts from its initial position and there is no need for
RSI. To teach the agent to perform jumps of varying distances,
the target landing distance (ˆpland) is provided as an input to the
policy during training and is varied during the generalisation
stage. The forward desired jumping distance is uniformly
sampled using the following distribution ˆpland

x ∼ U (0.0, 1.0)
m while the lateral desired distance is also sampled uniformly
using ˆpland

y ∼ U (−0.3, 0.3) m.
The reward function proposed during the imitation stage is

modified to allow jumps of different distances. In particular

the imitation reward (eq. 6) is modified by setting the weight
for tracking the base position to zero (wp), thus only the joint
angles and orientation imitation is rewarded. The penalties for
landing velocity and smoothing as well as the survival reward
are kept (eq. 8 - 10). Similar to the imitation stage, a reward is
given for landing close to the desired landing position (eq. 7).
Except now the desired landing position, (p̂land) is identical
to the varying input of the neural network. In this way the
policy can learn to associate a desired jumping distance with
the corresponding input.

An additional reward is given for matching the desired base
velocity in the xy direction. The desired velocity of the base is
approximated using the desired landing displacement and the
jump duration: v̂xy = ∆ ˆpland/T . Once the robot has landed
the desired velocity tracked is set to be 0 m/s. The desired
velocity is tracked using an exponential kernel:

rveli = wvf(kv, v̂xy,vxy). (11)

The conditions during which an episode is terminated
are different in the Generalisation phase of training. When
jumping longer distances the robot would spend more time on
the air compared to the demonstration given. For this reason,
in contrast to the imitation stage, the episode is no longer
terminated if the agents contact state does not match that
of the demo. Instead the agent is left to determine through
trial and error the optimal contact sequence provided the
landing distance matches the desired one. The episode is
still terminated if the local z-direction of the base has an
angle bigger than 30 degrees from the global z-direction.
Furthermore, an additional termination is introduced where
the episode terminates if the landing error is bigger than a
threshold. The termination threshold is linearly varied based on
the desired landing position, thus the condition for termination
can be expressed as:

|p̂land − pland| > α | ˆpland|+ β, (12)

where α is a hyperparameter of how much the allowable limits
grow as the desired jumping distance increases and β deter-
mines a constant termination limit when the desired jumping
distance is 0m. Intuitively the above expression enforces jumps
which are shorter in jumping distance to be more precise as
the landing error should be smaller, while jumps with bigger
desired distance are given a higher allowance for landing error.

A detailed description of the reward hyper-parameters for
the generalisation stage can be found in Appendix B at Table
IV

D. Uneven Terrain Stage

In this part, we focus on the methodology used to teach
the agent how to execute jumps across uneven terrain, along
with insights of how the uneven terrain is generated. This
stage builds upon the policies trained during the generalization
phase, where the robot has already gained proficiency in
executing jumps of various distances on flat terrain.

The uneven terrain setup comprises boxes of varying
heights, presenting a challenge to the robot’s stability. Height

8

(a)

(b)

(c)

Fig. 4: Depicts a time-lapse of a jump where the robot is prompted to jump: (a) 40 cm and (b) 75 cm over flat ground. Finally,
(c) shows a jump of 75 cm over uneven terrain.

perturbations are strategically applied between the robot’s
front and rear legs during the initial state to prevent lateral
falls. However, the robot can still experience perturbations
between its left and right side legs during landing. At the
beginning of each episode, the robot is settled onto these
varied-height boxes by solving inverse kinematics (IK). Solv-
ing IK allows to determine the joint angles that conform
with the terrain’s topology at the initial state. Similarly to the
generalization stage, the robot is prompted to jump different
distances, both in the forward and lateral direction.

The terrain is instantiated using boxes with a height of
15cm. At the beginning of each episode a height perturbation is
sampled from a uniform distribution U(−ϵ,+ϵ) m and is added
to the constant boxes height to emulate an uneven terrain.
Furthermore, during training, there is a 20% probability that no
height perturbations are sampled and thus the terrain remains
flat. This is done to avoid over-fitting the policy to jumps
from uneven terrain. In addition we experiment with different
maximum height perturbation boundaries (ϵ). We investigate
how increasing the unevenness of the terrain affects the trained
controller and if the controller trained on uneven terrain can
still perform over flat ground.

The reward which was optimised for flat ground is also
used to optimise for uneven terrain. This includes all the
weights and length scales of the reward function as well
as the termination limit parameters (α and β) that were
specified in the previous stage. The reinforcement learning
hyper-parameters are also kept constant.

E. Domain Randomisation Stage
An effective strategy for bridging the simulation to reality

gap is Domain Randomisation (DR), as shown in other works
[25], [12], [13]. The central idea behind DR is to vary
parameters within both the environment and the robotic system
itself, ensuring that the learned policy remains robust against
uncertainties experienced in a real-world setting.

Several parameters are randomised to make the model of the
agent more realistic. These include randomisation of the mass
of the agent and its distribution across the robot. Furthermore,
the center of mass of the robot is perturbed by attaching
an offset mass on the robot’s base at different locations.
The motor strength as well as a frictional torque are used
to make the motor model more realistic. Randomising the
initial state of the agent contributes to a more robust jumping
policy in response to offsets from the initial joint configuration.
Contact dynamics are also diversified by randomly sampling
friction coefficients for the feet and ground, along with their
corresponding restitution coefficients. Finally, for the system
which utilises elastic actuation, the spring parameters are
randomised. This includes the spring stiffness, the spring
damping, as well as the springs rest angles. Randomisation
of the spring parameters is utilised to make the policy robust
to a spectrum of spring parameters and thus account for
inaccuracies in the parameters of the springs. More details on
the specific ranges used can be found in Appendix C, Table
V. By systematically varying the aforementioned parameters,
the policy should become robust enough to effectively handle
environments that closely resemble reality.

V. RESULTS AND DISCUSSION

A. Imitation Stage

Tracking Performance: In the stage of imitation the pri-
mary concern was to make the robot imitate as closely as
possible the reference generated from TO, thus allowing the
robot to perform a jump of fixed distance. As illustrated in
Fig. 7, both the robot with stiff and elastic actuation closely
follow the CoM trajectory planned. During the landing phase
of the trajectory, we observe some oscillations in the CoM
position due to the impact. The robot deviates from the SLIP
reference (Fig. 6) thus after landing it tries to recover back
to its humming pose. As a result, while the robot tries to

9

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
15

10

5

0

5

10

15
SLIP ref
PEA
no PEA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
15

10

5

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
15

10

5

0

5

10

15

Ro
ll

Pi
tc

h
Ya

w

Base Orientation vs Time

Time (s)

Ba
se

 O
rie

nt
at

io
n

(d
eg

)
(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2

1

0

1

2

3
SLIP ref
PEA
no PEA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2

1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2

1

0

1

2

3

Ro
ll

Pi
tc

h
Ya

w

Base Angular Velocities vs Time

Time (s)

An
gu

la
r V

el
oc

ity
 (r

ad
/s

)

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.2

0.0

0.2

0.4

0.6

0.8

1.0
SLIP ref
PEA
no PEA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2

1

0

1

2

X-
Co

or
di

na
te

Y-
Co

or
di

na
te

Z-
Co

or
di

na
te

Base Linear Velocities vs Time

Time (s)

Lin
ea

r V
el

oc
iti

es
 (m

/s
)

Fig. 5: (a) Base orientation, (b) angular velocity and (c) linear velocity trajectories of the quadruped while performing a jump
during the imitation stage both with and without PEA.

0.0 0.5 1.0 1.5
0.4

0.2

0.0

0.2

0.4
Joint Angles vs Time

0.0 0.5 1.0 1.5
10

5

0

5

10
Joint Velocities vs Time

0.0 0.5 1.0 1.5
20

10

0

10

20
Joint Torques vs Time

0.0 0.5 1.0 1.5

0.5

1.0

1.5

Jo
in

t A
ng

le
s (

ra
d)

0.0 0.5 1.0 1.5
10
5
0
5

10
15

Jo
in

t V
el

oc
iti

es
 (r

ad
/s

)

0.0 0.5 1.0 1.5
20

10

0

10

20

Jo
in

t T
or

qu
es

 (N
m

)

0.0 0.5 1.0 1.5
Time (s)

2.5

2.0

1.5

1.0

0.0 0.5 1.0 1.5
Time (s)

20

10

0

10

20

SLIP ref no PEA PEA

0.0 0.5 1.0 1.5
Time (s)

15

5

5

15

25

Hi
p

Th
ig

h
Ca

lf

Fig. 6: Joint angles, velocities and torques of a single leg while performing a jump during the imitation stage both with and
without PEA.

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

SLIP ref
PEA
no PEA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.10

0.05

0.00

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.3

0.4

0.5

X-
Co

or
di

na
te

Y-
Co

or
di

na
te

Z-
Co

or
di

na
te

Base Position vs Time

Time (s)

Po
sit

io
n

(m
)

Fig. 7: Base position trajectories during the imitation stage.
A video of the robot performing the jump during imitation
can be found for the system without PEA [here] and for the
system with PEA [here].

return to the humming pose, it causes slight oscillation to the
forward linear velocity as visualised in Fig. 5c. The reference
trajectory specifies that all Euler angles should be kept at
zero, as visualised in Fig. 5a and 5b the Euler angles are
all kept within +/- 5 deg and the robot base experiences
small angular velocities. Another interesting observation from
the Joint torques in Fig. 6 is that the stiff actuation system
experiences its peak torque values while pushing the robot
from the ground around 0.2 s, while the PEA system does not
demand such large amounts of torques during the stance phase.
This implies that the actuators of the robot work together
during the stance face and the elastic energy is used during
the lift off phase to make the robot jump.

Peak Height & Desired Landing Distance: Both policies
for the robot with and without springs were trained by optimis-
ing the same reward function and by having the same hyper-
parameters. This allows us to compare the performance of the
PEA system and the one without. An interesting observation

observation from Fig. 7 is that the robot with PEA has
peak height marginally higher than the robot without PEA.
However, neither of the two reaches the peak height of the
reference trajectory. In addition, the robot with PEA seems to
be jumping closer to the desired jumping distance compared
to the non-elastically actuated system.

Peak Power & Total Energy: Lower peak power is often
associated with better energy efficiency and extended battery
life. Hence, it can be an important characteristic used to dif-
ferentiate between two trajectories followed by a system. The
instantaneous absolute mechanical power can be computed
using the product of joint velocities and the joint torques for
each of the two systems. This can be used to compute the
peak power of each trajectory. The mean power computed
from 30 jump trajectories along with 95% confidence intervals
is visualised in Fig. 8. Interestingly, the peak power occurs
for both systems during the landing impact. In addition, it is
evident from the plot that the system with springs experiences
less power during stance phase showing that the actuators work
together with the springs. The utilization of PEA results in a
27.64% decrease in mean peak power. Using a 95% confidence
interval, we can estimate that PEA improves peak power by
11.38% in the worst-case scenario and up to 30.09% in the
best-case scenario.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0

100

200

300

400

500

600

Po
we

r (
W

)

Power vs Time
PEA
No PEA

Fig. 8: Comparison of power over time for the system with
stiff and elastic actuation. The plot shows the instantaneous
power averaged over 30 jumps for each system, with the upper
and lower bounds indicating the 95% confidence intervals for
power variability.

Integrating the power over time allows the computation of
the energy for each system. The robot with elastic actuation
uses a mean total energy of 71.4 J while the system with stiff
actuation uses 106.4 J. Consequently, PEA usage leads to a
32.74% improvement of the mean total energy. Utilising a 95%
confidence interval, the mean total energy can be decreased
from 30.69% to 34.73% for the best and worst-case scenarios,
respectively, when using elastic actuation.

https://youtu.be/JcBGUf1flAI
https://www.youtube.com/watch?v=SVZ-BhY0nus

11

Fig. 9: Illustrates a landing error comparison between the stiff and elastically actuated system for jumps in the xy plane.

B. Generalisation Stage

The aim at this part was to use the policy learned through
imitation as a starting point and enable the agent to achieve
jumps of different distances. In the following section the
policies both for the system with parallel elasticity and without
are assessed in terms of landing distance, peak height, energy
efficiency and peak power. A video of the system without PEA
performing forward jumps of various distances can be found
in [here] while for the system with PEA can be found [here].
Videos of diagonal and lateral jumps for the system without
PEA can be watched [here] while for the system with elastic
actuation can be viewed [here].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Desired Distance Magnitude (m)

0.00

0.05

0.10

0.15

0.20

M
ea

n
La

nd
in

g
Er

ro
r (

m
)

Mean Landing Error vs Desired Distance Magnitude

Region A
Imitation region
Region B
No PEA
PEA

Fig. 10: Depicts the distributions of mean landing error against
desired distance magnitude for the two systems.

Tracking Performance: As depicted in Figure 9, both
systems are capable at this stage to perform jumps in the
forward but also in the lateral direction after given only a
single demonstration which demonstrated how to perform a
forward jump. As the desired distances in the x and y direc-

tions increase, there is a corresponding rise in landing error
for both systems. Notably, jumps approaching the maximum
desired distance of 1m exhibit a mean landing error of 12cm.

The jumps demonstrated in Fig. 9 where discretised into
bins with an interval of 5 cm and the average landing error
was computed for each system. The distributions of both
systems for the mean landing error against the desired landing
distance magnitude are depicted in Fig. 10. As expected Fig.
9 shows the mean landing error does increase with the rise of
desired distance magnitude. Another interesting observation
is that the mean landing error remains almost identical for
both systems in the imitation region shown in grey at Fig. 10.
In region A, the system with PEA seems to have marginally
lower mean landing error. In contrast, in region B the system
with PEA has a marginally higher mean landing error. This
leads us to speculate that the elastic actuation system tends to
become more susceptible to instability during longer jumps,
contributing to increased landing errors.

Peak Height: In this section we discuss the difference
of peak height between the policy with and without springs
during the generalisation stage. As illustrated in the map at
Fig. 11 the system with elastic actuation seems to perform
jumps with higher peak height compared to the system without
parallel elastic actuation. The system with PEA during the 10
000 jumps performed has an overall mean peak height of 52
cm while the system with stiff actuation has a peak height of
57 cm. Thus, the system with PEA jumps on average 8.77%
higher than the one without.

The desired distance magnitude of the jumps performed
by each system was discretised into bins of 5cm to evaluate
whether there is difference between the peak height variation
of the two systems. The peak height averaged over a range of
5 cm of desired magnitude is plotted for each system in Fig.
12. The aforementioned figure illustrates that the system with
stiff actuation decreases its peak height for larger distances. In
contrast, the robot with parallel elasticity seems to maintain its
peak height constant irrespective of the increase in the desired
distance magnitude.

https://www.youtube.com/watch?v=xL2Kt_xT9NI
https://www.youtube.com/watch?v=yoomIZAzy0o
https://www.youtube.com/watch?v=yVZtT0h6HN0
https://www.youtube.com/watch?v=h0mUxCKsiS8

12

Fig. 11: Depicts the peak height variation between the stiff and elastically actuated system for jumps in the xy plane.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Desired Distance Magnitude (m)

0.50

0.52

0.54

0.56

0.58

M
ea

n
Pe

ak
 H

ei
gh

t (
m

)

Mean Peak Height vs Desired Distance Magnitude

No PEA
PEA

Fig. 12: Visualises the variation of peak height over desired
distance magnitude for both systems. Shaded region visualises
the upper and lower bound with a confidence interval of 95%.

Peak Power & Total Energy: Both systems where assessed
in terms of their peak power and their total energy as a way
of assessing the energy efficiency of the jumps performed.

The total energy expended for a jump against the desired
jumping distance in x and y is visualised in Fig. 14 for the
two systems. The figures demonstrate that for the system with
PEA the expenditure of energy is less for medium to low
jumps desired distance jumps. In comparison, it seems like
the system without parallel elasticity consumes more energy
compared to the system with elastic actuation. In addition, the
energy map demonstrates that energy peaks for the robot with
stiff actuation occur not only for large jumping distances but
also for jumps which are performed in the lateral direction and
upward direction. In contrast, the system with PEA seems to
be more efficient for medium to short range jumps.

To clearly visualise the difference of energy between the
two systems the total energy is plot against the desired distance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Desired Distance Magnitude (m)

110

120

130

140

150
M

ea
n

To
ta

l E
ne

rg
y

(J)

Mean Total Energy vs Desired Distance Magnitude

No PEA
PEA

Fig. 13: Illustrates how total energy varies against the desired
distance magnitude for the systems with and without springs.

magnitude (see Figure 13). The average energy for performing
a jump within the demonstrated range is 117.0 J with stiff
actuation and 138.6 J with PEA which corresponds to an
improvement of 15.2% in energy efficiency. The jumps are
discretised into bins of 5 cm of desired distance magnitude
and the average total energy of the jumps is computed. The
figure illustrates that the energy for the system without parallel
elasticity is higher than the system with PEA. Additionally two
peaks in energy are observed for the system with stiff actuation
at 0 m and 1m desired distance magnitude. In contrast, for the
system with PEA an increase in total energy is observed with
an increase in desired distance magnitude.

An important consideration is the peak power experienced
by each of the system while performing a jump. Figure 15
visualises the peak power against desired jumping distance for
each of the systems. The peak power appears to increase as the
desired jumping distance increases. It seems that the system
with PEA appears to consistently experience lower peak power
for jumps less than 0.5m. In contrast the system with stiff

13

Fig. 14: Demonstrates the total energy consumed by the stiff and elastically actuated system while performing different jumps.

Fig. 15: Visualises the peak power experienced by the stiff and elastically actuated robot for different jumps.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Desired Distance Magnitude (m)

400

600

800

1000

1200

M
ea

n
Pe

ak
 P

ow
er

 (W
)

Mean Peak Power vs Desired Distance Magnitude
No PEA
PEA

Fig. 16: Displays how mean peak power varies with the desired
distance magnitude for the systems with and without PEA.

actuation tends to have higher peak power in that region
especially in forward jumps. For all the jumps the system

with PEA experiences a mean peak power of 702.1 W. In
comparison, the system without PEA experiences a mean peak
power of 833.8 W which corresponds to a 15.79% increase in
peak power.

To better understand how peak power varies with the desired
distance, the peak power is plot against the desired distance
magnitude (Fig. 16). This figure indeed verified that for jumps
less than 0.5m the PEA system experiences less peak power.
For jumps between 0.6 - 0.75m the PEA and stiff system both
experience approximately equal peak power. For larger jumps
the mean peak power for the system with PEA decreases where
as the stiff system still experiences higher peak powers.

C. Uneven Terrain & Domain Randomisation Stage

In this section we discuss the results from the stage of
uneven terrain. A video of the system without PEA jumping
over uneven terrain can be found [here], whereas for the
system with PEA can be found [here]. This part of training
utilises the policy trained from the generalisation stage. By
fine-tuning the policy capable of performing jumps of different
distances on flat ground the system is now able to perform

https://www.youtube.com/watch?v=QXVYzvBHUW0
https://youtu.be/YmfbaIMmdX8

14

(a) (b)

Fig. 17: Visualises the performance of three policies a flat ground policy, a policy trained over +/-2cm uneven terrain and a
+/-4cm uneven terrain policy in terms of (a) success rate and (b) landing error.

(a) (b)

Fig. 18: Demonstrates a comparison in terms of (a) success rate and (b) landing error between the policies before and after
domain randomisation. Four interesting policies were considered, the systems with and without PEA with their respective cases
over flat and uneven terrain.

jumps over uneven ground. During training the agent is
exposed into performing jumps over a variety of environments.
The difficulty of the environments is dictated by the maximum
magnitude of height perturbations (ϵ) added to the terrain.
As visualised in Fig. 17, three policies are compared to each
other: a) the flat terrain policy, and two uneven terrain policies
trained with (b) ϵ = 2cm and (c) ϵ = 4cm. All three policies
are evaluated after training on all three environment setups
and their performance is assessed in terms of success rate
and landing error. As visualised in Fig. 17a, the success rate
decreases for all three policies as the difficulty of the terrain
increases. In contrast, as shown in Fig. 17b, as the difficulty
of the terrain increases the landing error also increases. This
implies that as the environment becomes more difficult the
jumps become less precise and the probability of failure

increases. By exposing a policy over uneven terrain during
its training stage, is observed that the landing error decreases
while the success rate remains comparable to the policy trained
over flat ground. Furthermore, is observed that the policy
trained on perturbations of +/- 4cm outperforms the rest of the
policies in terms of precision across all evaluated environments
and not just in the environment which was trained for. In
order to bridge the gap between simulation and reality, as
explained in Sec. IV-E, several parameters were randomised.
A video showcasing the system without PEA jumping during
the domain randomization stage can be found [here].To infer
how the non-randomised policy differs from the randomised
policy the two are compared in terms of success rate and
landing error. Domain randomisation was performed on the
policies with the most challenging uneven terrain environment

https://www.youtube.com/watch?v=ktWeivTa3qE

15

(ϵ = +/− 4cm) as well as the policy with and without PEA
over flat ground. A comparison between the baseline policies
and their randomised versions is depicted in Fig. 18. All results
were obtained by evaluating all 8 policies in a randomised
environment. From the aforementioned plot, we can conclude
that the randomised policies generally have higher success
rate and lower landing error than the non-randomised ones.
However, there is one exception: the policy with PEA over
uneven terrain does not exhibit an increase in success rate after
randomization. This policy also exhibits the lowest success
rate and the highest landing error, and it uniquely shows an
increase in landing error after randomization. Conversely, the
policy with the lowest landing error is the randomised flat
terrain policy without PEA after randomization. The policy
with the highest variation in landing error is the uneven terrain
policy without springs before randomization.

From these observations, we can deduce that jumping with
PEA over uneven terrain is more difficult compared to jumping
with the rigid robot. This is understandable because the motors
of the system need to overcome the stiffness of the springs
to adapt to the unevenness of the terrain, which can be
more challenging. Further investigation into the optimal spring
parameters and rest angles is essential for better understanding
how to enhance the performance of a system with PEA over
uneven terrain.

VI. CONCLUSION

To conclude, the proposed methodology started by gen-
erating a trajectory using a 2D-SLIP dynamical model. The
reference trajectory is used to train a controller which imitates
the jumping trajectory and thus allows the robot to perform a
jump of constant distance. Then we proceeded by generalising
the landing distance that the agent jumps by conditioning
the trained policy to a desired landing distance. Lastly the
capabilities of the controller were extended over uneven ter-
rain by exposing the controller trained on flat ground to an
environment of uneven terrain during the training process.

In order to assess whether is beneficial to use elastic
actuation during a jump, a comparison was made between the
system with PEA and without it. During imitation the system
with PEA experiences 27.64% less peak power compared to
the system without. In addition, the system with PEA utilises
on average 32.74% less energy per jump. In the phase of
generalisation the system with springs has 15.20% lower mean
energy and observes 15.79% less peak power compared to its
stiff counterpart. In terms of peak height the system with PEA
jumps on average 8.79% higher than the stiff system. Finally,
the mean landing error with PEA decreases by 11.11%. The
above leads us to conclude that the system which utilises
elastic actuation in a parallel arrangement is more precise and
more energetically efficient when compared with the system
with stiff actuation.

Some interesting conclusions can also be drawn from inves-
tigating jumps over uneven terrain. The difficulty of the terrain
was associated with the magnitude of the height perturbations
added to a flat terrain. As the difficulty of the terrain increases
the success rate of the trained controller. In contrast, as the

difficulty of the terrain increases the landing error increases.
Furthermore, it is shown that policies which are trained on
terrains with larger magnitude of height perturbation have
lower landing error while keeping their success rate compa-
rable to that of the baseline policy. Finally, in order to make
the jumps of the agent more realistic several parameters were
randomised. As commented earlier, domain randomisation
seems to increase the success rate of the non-randomised
policy and decrease its landing error. It seems that the policy
with PEA finds it more difficult to jump over uneven terrain
compared to the policy without springs. Further investigation
is required into the parameters of the PEA to enhance its
performance over uneven terrain.

While the aforementioned methodology has yielded to a
controller that enabled us to perform jumps of various dis-
tances both over flat and uneven terrain using just a single
demonstration it also comes with certain shortcomings as well
as potential for improvement. One of the limitations of the
proposed controller structure is that it only uses propriocep-
tive information. The use of information from exteroceptive
sensors, such as a height map of the jumping terrain in the
vicinity of the robot, can be used to greatly improve the
performance over uneven terrain. The use of height map data
would allow performing anticipatory motions during landing
that help the robot stabilise it self more easily. Furthermore,
can a curriculum be used which combines the training of
all 4 learning stages? This would avoid the incremental fine-
tuning of the policy and make the process simpler. Another
direction that could potentially be explored is how much
the model chosen for imitation affects the training speed as
well as the performance of the controller. Would a trajectory
generated using the full dynamical model of the system lead
to better performance and faster imitation? Furthermore, it
is evident that the energetic efficiency of the system with
springs compared to the stiff system was better. However,
when going from the imitation stage to the generalisation
a decrease in the energetic benefit provided is observed.
Can the use of multiple demonstrations in the generalisation
stage be used to enhance the energetic efficiency even more?
Addressing the aforementioned questions could enhance the
design of controllers, enabling them to navigate even the most
complex terrain with greater success, while also improving the
efficiency of the methodology and the energetic performance
of the controller itself.

REFERENCES

[1] T. J. Dawson and C. R. Taylor, “Energetic Cost of Locomotion in
Kangaroos,” Nature, vol. 246, no. 5431, pp. 313–314, Nov. 1973,
number: 5431 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/246313a0

[2] S. Shield, N. Muramatsu, Z. Da Silva, and A. Patel, “Chasing
the cheetah: how field biomechanics has evolved to keep up with
the fastest land animal,” Journal of Experimental Biology, vol.
226, no. Suppl 1, p. jeb245122, Apr. 2023. [Online]. Available:
https://doi.org/10.1242/jeb.245122

[3] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, p. eabc5986, Oct. 2020. [Online]. Available:
https://www.science.org/doi/10.1126/scirobotics.abc5986

[4] P. Fankhauser and M. Hutter, “ANYmal: A Unique Quadruped Robot
Conquering Harsh Environments,” Research Features, vol. 126, pp. 54–
57, 2018.

https://www.nature.com/articles/246313a0
https://doi.org/10.1242/jeb.245122
https://www.science.org/doi/10.1126/scirobotics.abc5986

16

[5] C. Dario Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo,
and M. Hutter, “Dynamic locomotion and whole-body control for
quadrupedal robots,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 3359–
3365, iSSN: 2153-0866. [Online]. Available: https://ieeexplore.ieee.org/
document/8206174

[6] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and S. Kim,
“Optimized Jumping on the MIT Cheetah 3 Robot,” in 2019
International Conference on Robotics and Automation (ICRA),
May 2019, pp. 7448–7454, iSSN: 2577-087X. [Online]. Available:
https://ieeexplore.ieee.org/document/8794449

[7] M. Ernst, H. Geyer, and R. Blickhan, “Spring-Legged Locomotion On
Uneven Ground: A Control Approach To Keep The Running Speed
Constant,” in Mobile Robotics. Istanbul, Turkey: World Scientific, Aug.
2009, pp. 639–644.

[8] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning Agile Robotic Locomotion Skills by Imitating Animals,” Jul.
2020, arXiv:2004.00784 [cs].

[9] Y. Fuchioka, Z. Xie, and M. van de Panne, “OPT-Mimic: Imitation
of Optimized Trajectories for Dynamic Quadruped Behaviors,” Nov.
2022, arXiv:2210.01247 [cs]. [Online]. Available: http://arxiv.org/abs/
2210.01247

[10] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning,” May 2023, arXiv:2302.09450 [cs, eess]. [Online]. Available:
http://arxiv.org/abs/2302.09450

[11] Q. Yao, J. Wang, S. Yang, C. Wang, H. Zhang, Q. Zhang, and D. Wang,
“Imitation and Adaptation Based on Consistency: A Quadruped Robot
Imitates Animals from Videos Using Deep Reinforcement Learning,”
arXiv, Tech. Rep. arXiv:2203.05973, Mar. 2022, arXiv:2203.05973 [cs]
type: article. [Online]. Available: http://arxiv.org/abs/2203.05973

[12] F. Vezzi, J. Ding, A. Raffin, J. Kober, and C. Della Santina, “Two-Stage
Learning of Highly Dynamic Motions with Rigid and Articulated Soft
Quadrupeds,” Sep. 2023, arXiv:2309.09682 [cs]. [Online]. Available:
http://arxiv.org/abs/2309.09682

[13] V. Atanassov, J. Ding, J. Kober, I. Havoutis, and C. Della Santina,
“Curriculum-Based Reinforcement Learning for Quadrupedal Jumping:
A Reference-free Design,” Jan. 2024, arXiv:2401.16337 [cs]. [Online].
Available: http://arxiv.org/abs/2401.16337

[14] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “DeepMimic:
example-guided deep reinforcement learning of physics-based character
skills,” ACM Transactions on Graphics, vol. 37, no. 4, pp. 1–14,
Aug. 2018. [Online]. Available: https://dl.acm.org/doi/10.1145/3197517.
3201311

[15] G. Bellegarda and Q. Nguyen, Robust Quadruped Jumping via Deep
Reinforcement Learning, Nov. 2020.

[16] C. Nguyen and Q. Nguyen, Contact-timing and Trajectory Optimization
for 3D Jumping on Quadruped Robots, Oct. 2021.

[17] C. Nguyen, L. Bao, and Q. Nguyen, “Continuous Jumping for
Legged Robots on Stepping Stones via Trajectory Optimization and
Model Predictive Control,” Sep. 2022, arXiv:2204.01147 [cs]. [Online].
Available: http://arxiv.org/abs/2204.01147

[18] A. K. Valenzuela, “Mixed-integer convex optimization for planning
aggressive motions of legged robots over rough terrain,” Thesis,
Massachusetts Institute of Technology, 2016, accepted: 2016-07-
01T18:23:33Z. [Online]. Available: https://dspace.mit.edu/handle/1721.
1/103432

[19] Y. Ding, C. Li, and H.-W. Park, “Kinodynamic Motion Planning for
Multi-Legged Robot Jumping via Mixed-Integer Convex Program,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct. 2020, pp. 3998–4005, iSSN: 2153-0866. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9341572

[20] Z. Song, L. Yue, G. Sun, Y. Ling, H. Wei, L. Gui, and Y.-
H. Liu, “An Optimal Motion Planning Framework for Quadruped
Jumping,” Jul. 2022, arXiv:2207.12002 [cs, eess]. [Online]. Available:
http://arxiv.org/abs/2207.12002

[21] J. Ding, V. Atanassov, E. Panichi, J. Kober, and C. D. Santina,
“Robust Quadrupedal Jumping with Impact-Aware Landing: Exploiting
Parallel Elasticity,” IEEE Transactions on Robotics, pp. 1–20, 2024,
conference Name: IEEE Transactions on Robotics. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10552408

[22] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and
G. Martius, “Learning Agile Skills via Adversarial Imitation of Rough
Partial Demonstrations,” Nov. 2022, arXiv:2206.11693 [cs]. [Online].
Available: http://arxiv.org/abs/2206.11693

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal Policy Optimization Algorithms,” Aug. 2017, arXiv:1707.06347
[cs]. [Online]. Available: http://arxiv.org/abs/1707.06347

[24] J. Ding, P. Posthoorn, V. Atanassov, F. Boekel, J. Kober, and
C. D. Santina, “Quadrupedal Locomotion With Parallel Compliance:
E-Go Design, Modeling, and Control,” IEEE/ASME Transactions on
Mechatronics, pp. 1–10, 2024. [Online]. Available: https://ieeexplore.
ieee.org/document/10550040/

[25] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-Real: Learning Agile Locomotion For
Quadruped Robots,” Jun. 2018.

APPENDIX A
REFERENCE GENERATION

Equations from 4b to 4e are used to constrain the initial
and final states of the generated trajectory. Additionally, an
equality constraint (eq. 4f), is used to ensure that the height
position before take off is close to the maximum height of the
robot. For the propagation of the state forward in time a 2nd

order Taylor Series is used to estimate the next state given the
current one. The 2nd order Taylor series is defined as:

pi+1 = Taylor(pi, ṗi, p̈i, δt) = 0.5p̈i δt
2 + ṗi δt+ pi.

(13)
The rest of the constraints are used conditionally depending

on which phase of the trajectory is being evaluated. During the
stance phase the center of mass (CoM) position is kept within
the support polygon of the feet (eq. 4i). This is a commonly
used stability criterion in legged robots to ensure that the robot
remains stable during a stance pose. However, it also comes
with the inherent assumption that the feet position remains
fixed during the stance phase. The dynamics that dictate the
stance phase for a spring loaded mass system are given in eq.
4j. Furthermore, during stance phase the acceleration of the
CoM in the z direction is constrained to be less than or at
most equal to the gravitational acceleration. This gives rise to
the constraint in eq. 4k as the robot is unable to pull it self
from the ground and thus cannot attain a vertical acceleration
greater than the gravitational acceleration. In contrast to the
stance phase, during the flight phase is assumed that the CoM
position cannot be influenced by the control input and thus
the system is autonomous during that phase. Hence, the only
force acting on the system during the flight phase is assumed
to be gravity (eq. 4l).

The cost to be minimised during optimisation can be de-
composed into three individual terms. A cost during stance
phase (Jstance) is used to penalise large control inputs while it
also imposes a penalty on the jerk of the position to ensure
a smooth stance trajectory. During the take off phase there is
a negative cost (Jtake off) which rewards the vertical velocity
and thus prompts the robot to jump. Finally, during the flight
phase a cost (Jflight) prompts the solution to be more realistic
by keeping the vertical position of the system close to that
of take off. This also makes the optimisation problem more
tractable. The explicit definitions for the individual costs of
the cost functions in eq. 4a are given by:

Jstance =

Ns∑
i=1

wu ∥u(i)∥2 + wjerk ∥
...
p (i)∥2 (14a)

Jtake off = −wtake off ṗ
z(Ns − 1) (14b)

https://ieeexplore.ieee.org/document/8206174
https://ieeexplore.ieee.org/document/8206174
https://ieeexplore.ieee.org/document/8794449
http://arxiv.org/abs/2210.01247
http://arxiv.org/abs/2210.01247
http://arxiv.org/abs/2302.09450
http://arxiv.org/abs/2203.05973
http://arxiv.org/abs/2309.09682
http://arxiv.org/abs/2401.16337
https://dl.acm.org/doi/10.1145/3197517.3201311
https://dl.acm.org/doi/10.1145/3197517.3201311
http://arxiv.org/abs/2204.01147
https://dspace.mit.edu/handle/1721.1/103432
https://dspace.mit.edu/handle/1721.1/103432
https://ieeexplore.ieee.org/abstract/document/9341572
http://arxiv.org/abs/2207.12002
https://ieeexplore.ieee.org/abstract/document/10552408
http://arxiv.org/abs/2206.11693
http://arxiv.org/abs/1707.06347
https://ieeexplore.ieee.org/document/10550040/
https://ieeexplore.ieee.org/document/10550040/

17

Jflight =

Ns+Nf∑
i=Ns

wflight(p
z(i)− pztake off). (14c)

The parameters used for generating the reference trajectory
are stated in Table I.

Table I: Trajectory Planner Parameters

Planner Parameter Value

Input Weight (wu) 0.3

Jerk Weight (wjerk) 0.001

Flight Weight (wflight) 3000

Take Off Weight (wtake off) 200

Stance Phase Steps (Ns) 20

Stance Phase Steps (Nf) 20

Take of Height (pztake off) 0.42

Equivalent Spring Stiffness (keq) 2000

Initial Position (p0 = [x0, z0]
T) [0.0, 0.32]T

Final Position (pf =
[
xf , zf

]T
) [0.40, 0.32]T

Initial Velocity (v0 =
[
vx0 , v

z
0

]T
) [0.0, 0.0]T

APPENDIX B
REINFORCEMENT LEARNING ALGORITHM

This section outlines the hyper-parameters and parameters
used for the reinforcement learning environment. The noise
added to the observations of the controller are shown in Table
II. The hyper-parameters used for the PPO algorithm are
visualised in Table III. Finally the reward hyper-parameters for
the system with PEA and without PEA for both the imitation
and generalisation stage are shown in Table IV. The training
details for every learning stage are shown in Table VI.

Table II: Noise of Policy Observations

Observation Noise Magnitude Units

Joint Angles per Leg [2.0, 2.0, 2.0] deg

Joint Velocity [1.25, 1.25, 1.25] rad/s

Linear Velocity [0.4 0.10 0.4] m/s

Angular Velocity 0.09 rad/s

Orientation 1.8 deg

Remaining Time 0.00 s

Desired Jumping Distance [0.0, 0.0] m

APPENDIX C
DOMAIN RANDOMISATION DETAILS

This section outlines the randomisation hyper-parameters
used to randomise the policy for the flat ground and uneven
terrain. The values used for the randomisation of the policies
are illustrated in Table. V.

Table III: Proximal Policy Optimisation (PPO) Parameters

RL Algorithm Parameters Value

Total Time-steps 10× 106

Linearly Decreasing Starting Learning Rate 1× 10−4

Batch Size 4096

Mini Batch Size 128

General Advantage Estimator (GAE) Lambda 0.95

Discount Factor (γ) 0.99

Number of Epochs 10

Clip Range 0.2

Maximum Gradient Norm 0.5

Value Function Coefficient 0.5

Table IV: Reward Parameters

Imitation Stage

System Setup With PEA Without PEA

Parameter Name Parameter Value

Joint Position Weight (wq) 0.30 0.30

Joint Position Length Scale (kq) 5.00 5.00

Base Position Weight (wp) 0.35 0.35

Base Position Length Scale (kp) 500 500

Base Orientation Weight (wo) 0.35 0.35

Base Orientation Length Scale(ko) 50 50

Penalty Weight Landing Velocity (w
pen
v) 2.5× 10−3 2.5× 10−3

Penalty Weight Joint Velocity (w
pen
dq) 5.0× 10−5 5.0× 10−5

Penalty Weight Joint Acceleration (w
pen
ddq) 2.1× 10−6 2.1× 10−6

Generalisation Stage

System Setup Without PEA With PEA

Parameter Name Parameter Value

Joint Position Weight (wq) 0.15 0.20

Joint Position Length Scale (kq) 5.00 5.00

Base Position Weight (wp) 0.00 0.00

Base Position Length Scale (kp) 500 500

Base Orientation Weight (wo) 0.45 0.50

Base Orientation Length Scale(ko) 50 50

Goal Position Weight (wgoal) 0.20 0.20

Goal Position Length Scale(kgoal) 20 20

Penalty Weight Landing Velocity (w
pen
v) 1.5× 10−2 1.5× 10−2

Penalty Weight Joint Velocity (w
pen
dq) 5.0× 10−5 5.0× 10−5

Penalty Weight Joint Acceleration (w
pen
ddq) 2.1× 10−6 2.1× 10−6

Termination Limits Growth (α) 0.10 0.10

Termination Limits Constant (β) 0.05 0.05

Linear Base Velocity Weight (wv) 0.30 0.20

Linear Base Velocity Length Scale (kv) 5.00 5.00

18

Table V: Domain Randomisation Table

Randomised Variable Noise Magnitude Units

Leg Mass Error Range U [−30%, 30%] n/a

Offset Mass U [0.0, 2.0] kg

Base Mass Error Range Accordingly n/a

Offset Mass Position - x U [−0.1, 0.1] m

Offset Mass Position - y U [−0.05, 0.05] m

Offset Mass Position - z U [−0.05, 0.05] m

Initial State N (µ = 0.0, σ = 1.7) deg

Joint Friction U [0.0, 0.04] Nm

Motor Strength U [0.8, 1.2] n/a

Ground Friction Coeff. N (µ = 0.8, σ = 0.1) n/a

Feet Friction Coeff. N (µ = 0.8, σ = 0.1) n/a

Ground Restitution Coeff. U [0.0, 0.2] n/a

Feet Restitution Coeff. U [0.4, 0.6] n/a

Springs Stiffness Error Range U [−20%, 20%] n/a

Springs Damping Error Range U [−20%, 20%] n/a

Springs Rest Angle Error Range U [−20%, 20%] n/a

Table VI: Training Details of each learning stage

Imitation

Reward

• Reward tracking of reference for: position, orienta-

tion, desired jumping distance and joint angles.

• Reward survival of episode.

• Penalise XY base velocity once landed.

• Penalise joint velocity and acceleration once on air.

• For Details see Table IV.

Observations

History of last 20 states of:

• Joint Angles

• Joint Velocities

• Linear Velocities

• Angular Velocities

• Base Orientation

• Episode Remaining Time

• Desired Jumping Distance

• Last Action

Desired Distance Kept fixed to the demonstration desired distance.

Environment Flat Terrain

Landing Distance Generalisation

Reward

Starting from Imitation Reward:

• Removed tracking of Position.

• Added tracking of Desired velocity.

• Added adaptive landing termination.

• See Table IV for details.

Observations Same as Imitation stage.

Desired Distance
Uniformly sampled at the episode start.

X-Desired Distance: 0.0 to 1.0 m

Y-Desired Distance: -0.3 to 0.3 m

Environment Flat Terrain

Uneven Terrain Jumping

Reward Same as Landing Distance Generalisation Stage.

Observations Same as Imitation stage.

Desired Distance Same as Landing Distance Generalisation Stage.

Environment

Uneven Terrain.

• Terrain is randomly sampled at the episode start.

• There is a 20% probability of sampling flat terrain.

• Maximum terrain perturbation boundaries defined by ϵ.

Domain Randomization

Reward Same as Landing Distance Generalisation Reward.

Observations Same as Imitation stage.

Desired Distance Same as Landing Distance Generalisation Stage.

Environment Flat or Uneven Terrain depending on trained policy.

	1e217939-e0f2-47ed-a860-5fd60baead71.pdf
	Introduction
	Related Work
	Model Based Control Methods for Quadrupeds
	Learning Based Control Methods for Quadrupeds

	Framework Overview
	Methodology
	Preliminaries
	Imitation Learning Stage
	Landing Distance Generalisation Stage
	Uneven Terrain Stage
	Domain Randomisation Stage

	Results and Discussion
	Imitation Stage
	Generalisation Stage
	Uneven Terrain & Domain Randomisation Stage

	Conclusion
	References
	Appendix A: Reference Generation
	Appendix B: Reinforcement Learning Algorithm
	Appendix C: Domain Randomisation Details

