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A B S T R A C T

This paper aims to fundamentally assess the resilience of salt marsh-mudflat systems under sea level rise. We
applied an open-source schematized 2D area model (Delft3D) that couples intertidal flow, wave-action, sediment
transport, geomorphological development with a population dynamics approach including temporal and spatial
growth of vegetation and bio-accumulation. Wave-action maintains a high sediment concentration on the
mudflat while the tidal motion transports the sediments within the vegetated marsh areas during flood. The
marsh-mudflat system attained dynamic equilibrium within 120 years. Sediment deposition and bio-accumu-
lation within the marsh make the system initially resilient to sea level rise scenarios. However, after 50–60 years
the marsh system starts to drown with vegetated-levees being the last surviving features. Biomass accumulation
and sediment supply are critical determinants for the marsh drowning rate and survival. Our model methodology
can be applied to assess the resilience of vegetated coast lines and combined engineering solutions for long-term
sustainability.

1. Introduction

Traditionally, the approaches to coastal defence have utilized
structural measures to ensure a desired level of safety for the sur-
rounding areas. This concept has been instrumental for coastal man-
agement strategies around the world to ensure the protection of low-
lying regions against the imminent threat of inundation. However, not
only has this measure resulted in dire impacts on local ecology and
surrounding ecosystems (Airoldi et al., 2005), but it appears not so
sustainable in combating the scenarios with Sea Level Rise (SLR). In-
stead, innovative solutions could be implemented that comprise a
combination of both structural and non-structural measures. One such
non-structural measure builds on the ‘Building with Nature’ concept for
the reduction of risk due to inundation and proposes the use of vege-
tated foreshores (Borsje et al., 2011; Temmerman et al., 2013; Vuik

et al., 2016).
The growth of vegetation, serves several ecosystem services that are

pertinent toward flood management strategies. The establishment of
vegetation on the mudflat, initially in patches, results in the con-
centration of flows with a subsequent increase in bed shear stresses and
the initiation of channels (Balke et al., 2013; Hu et al., 2015; Schwarz
et al., 2011; Temmerman et al., 2003; Temmerman et al., 2010).
Channels are known to ensure the drainage, growth and expansion of
the intertidal vegetation (Attema, 2014; Mudd and Fagherazzi, 2016;
Stark et al., 2017). The expansion of the vegetation patches coupled
with the ability of the vegetation to capture and trap sediments have led
to the development of stable salt marsh-mudflat systems (Bendoni et al.,
2016; Fagherazzi et al., 2012; Kirwan et al., 2016; Maan et al., 2015;
Schepers et al., 2017). These stable systems reduce the magnitude of the
tidal currents, wave action and associated erosion patterns in bare
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mudflats (Bendoni et al., 2016; Tonelli et al., 2010). Moreover, these
vegetated systems are existing features which are instrumental for low-
lying countries that are experiencing the effects of SLR: higher spring
tides, larger waves, increased overtopping frequencies and the loss of
kilometres of foreshores, among others (Trenhaile, 2009).

However, according to Bouma et al. (2016), salt marsh systems are
prone to erosion and accretion (years), attributed to a decrease in se-
diment supply and increases in the magnitude of the wave action and
the frequency of extreme events (Allen, 2000; Cowell and Thom, 1995;
Mariotti and Fagherazzi, 2010; Schwimmer, 2001; Stark et al., 2017;
Vuik and Jonkman, 2016). Pressures may also extend to the competi-
tion stresses induced within and among plant species, and to human
interventions for protection and reclamation purposes. The erosion
process may result in a substantial loss of the intertidal vegetation
cover, leaving low-lying sections of the foreshore open to the full im-
pact of the waves and tidal surges (Temmerman et al., 2005;
Temmerman et al., 2010; Thampanya et al., 2006). The effects of these
triggers are made visible through the lateral dynamics of the marsh and
the rate at which the marsh heightens and may have lasting impacts on
the ecology of the system (Maan et al., 2015; Mudd et al., 2010; Nyman
et al., 2006).

Intertidal marsh-mudflat areas are under tremendous pressure from
SLR. By the year 2100, mean sea water level may realize increases
ranging from 0.6 m to 1.1m (IPCC, 2013; Schile et al., 2014; Stocker,
2014). Studies have shown that the system's sediment balance both
internally and externally, may enable it to adjust the bed level at a rate
that matches SLR (Winterwerp et al., 2013). However, if the system is
unable to timely adjust, this will trigger a landward retreat of the ve-
getation as they are displaced to available areas of a higher elevation.
Mudflats may drown under SLR scenarios providing less sediments to
adjacent salt marshes (Van der Wegen and Roelvink, 2008). Ad-
ditionally, when space is limited landward due to the construction of
dykes or seawalls, the vegetation is trapped between the prograding
high water line and the obstacles. This coastal squeeze results in the
vegetation being unable to survive extensive durations of inundation
(Bouma et al., 2016). Definite conclusions on the long-term resilience
(i.e. magnitude and extent) of salt marsh mudflat systems under SLR
scenarios are to date uncertain (Clough et al., 2016; Crosby et al., 2016;
Schile et al., 2014).

The feedbacks between the plant growth and the geomorphological
developments are known to trigger increases in the bed level due to the
accumulation of organic and mineral components at a rate that po-
tentially is able to match SLR (Kirwan and Megonigal, 2013; Turner
et al., 2004). However, this increase also depends on factors such as
land subsidence, sediment supply, vegetation productivity, storm fre-
quency and tectonic uplift. Spatial variability in the bed level, channel
network and vegetation cover play an important role as well. These
either reduce or increase the level of safety against submergence
(Bouma et al., 2016; Craft et al., 2009; Crosby et al., 2016; Stralberg
et al., 2011; Willemsen et al., 2016). With an accelerated increase in the
SLR rate, lower suspended sediment concentrations (as rivers are fre-
quently dammed and groynes reduce alongshore transport upstream)
and reductions in the plant productivity, it remains uncertain if the
marsh adaptation will be able to keep up with SLR projections (Morris
et al., 2002). As such, a better understanding of the processes which
govern the development towards a potential equilibrium state and its
adaptation under variations in the model parameters is beneficial
(Bouma et al., 2016).

Salt marsh ecosystems have been explored extensively with ex-
perimental and analytical studies and through numerical models of
either a schematized or case specific nature. A range of models have
been utilized, which capture in some combination the feedbacks be-
tween the biomass contribution, plant growth, tidal dynamics and
morphology, to determine the effect of SLR on the bed elevation due to
variations in inundation, sediment supply and/or plant productivity
due to SLR (Dijkstra, 2008; Temmerman et al., 2007; Van der Wegen

et al., 2016; van Loon-Steensma, 2015; Ye, 2012; Zhou et al., 2016).
The general conclusions of these studies highlight the importance of the
rate of SLR to marsh adaptation. The salt marsh degenerates under high
rates of SLR but maintains a stable profile under low or mean SLR rates
(Kirwan and Mudd, 2012). Most recently, the patterns in carbon se-
questration and accretion data were analysed globally against increases
in SLR to compare the actual resilience against modelled quantifications
(Nyman et al., 2006). Measured accretion rates over the last century
and more so in the last two decades were shown to be lower than the
predicted or modelled values which are needed to sufficiently keep pace
with SLR (Craft et al., 2009; Crosby et al., 2016). This was concluded
for both the conservative RCP 2.6 and the extreme RCP 8.5 climate
change scenarios with projected reductions in the marsh cover in excess
of 90% for the latter (Craft et al., 2009; Crosby et al., 2016; Morris
et al., 2002). However, given more recent estimates for SLR (Horton
et al., 2014; Sweet et al., 2017), the RCP 8.5 SLR scenarios may also be
seen as conservative.

Therefore, this analysis intends to test the above mentioned beha-
viour using a schematized process-based numerical modelling ap-
proach. The numerical model was developed and validated quantita-
tively against existing theory, data and laboratory studies. The value of
the current study compared to earlier studies is threefold. Firstly, we
considered an integrated marsh-mudflat system including the sediment
exchange between the mudflat and marsh. Secondly, we explicitly
considered wave action as the main driver for sediment re-suspension
with the associated tidal sediment dynamics. Finally, we followed a 2D
area approach accounting for the spatial dynamics of the marsh-mud-
flat. Although the focus of this study is on a process understanding of
the behaviour of the salt marsh-mudflat system, the schematized model
setup was inspired by the conditions found in the Dutch South-Western
Delta.

2. Methods

2.1. Bio-geomorphological model methods

Our schematized process-based, numerical modelling approach
couples tidal hydrodynamics, wave action, sediment transport and
morphodynamics (Delft3D); with vegetation growth and bio-accumu-
lation (via a MATLAB code). Both the Delft3D software and the
MATLAB tools utilized in this study are open source (https://oss.
deltares.nl/web/delft3d).

2.1.1. Morphodynamic model approach
The Delft3D-FLOW model solves the unsteady shallow water equa-

tions in two dimensions (depth-averaged) since preliminary sensitivity
runs showed that a 3D approach leads to similar results (Van der Wegen
and Roelvink, 2008; Willemsen et al., 2016). Similar to Van der Wegen
et al. (2016), sediment erosion and deposition rates are calculated using
the Krone-Partheniades formulation for fine (muddy) sediments. Sedi-
ment transports are calculated based on the advection-diffusion equa-
tion for the long term geomorphological development (decades). The
bed level is updated every time step based on spatial gradients in se-
diment transport. The application of a morphological factor (100) en-
hanced the bed level development compared to hydrodynamic time-
scales (Roelvink, 2006). Theoretically, the use of the morphological
time factor, which accelerates the bed level variations, can be easily
applied to the growth, diffusion and decay processes but is limited for
the establishment. However, within our model the bio-geomorpholo-
gical time scale is significantly larger than the hydrodynamic time
scales and therefore any changes wouldn't significantly impact the hy-
drodynamics (Attema, 2014; Roelvink, 2011).

The 10m grid resolution and domain applied were determined by
the visibility extent of the desired features within the salt marsh-mud-
flat system, such as the establishment and growth of the vegetation and,
the expected channel dimensions (Attema, 2014; Lokhorst, 2016;
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Oorschot et al., 2016). Cliff dynamics, at the marsh edge, are not within
the scope of this study. Comparisons with a 5m grid resolution showed
minimal variation in the geo-morphological developments along the
platform and interface. Application of a cut-cell approach to cover cliff
dynamics in our methodology may be the subject of future research.

Wave action was represented by the roller model extension of
Delft3D (Hydraulics, 2002) as it is less computationally intensive than
other, more sophisticated wave models like SWAN. The roller model
predicts short wave groups propagating over a bed including wave
dissipation by breaking and bed friction. Although the flow is impacted
by vegetation friction, the presence of vegetation does not affect the
roller model bed friction in the current model formulation.

2.1.2. Dynamic vegetation model approach
The vegetation growth module applies the population dynamics

approach described by Attema (2014), Schwarz et al. (2014) and
Temmerman et al. (2005). However, the coupling techniques and the
representation of the vegetation across timescales were adapted for the
trachytope extension of Delft3D-FLOW capturing both marsh and
mudflat. The net growth of the vegetation is represented by the fol-
lowing relation:

Equation (1): Net Vegetation Growth (Monden, 2010; Schwarz
et al., 2014; Temmerman et al., 2007)

= + + + − +dP dP dP dP dP dP dP( )est growth diffx diffy inund flow (1)

Where:dP represents the derivative of the total stem density of the salt
marsh w.r.t time (year), [stems/m2].dPx represents the derivative of the
stem density of the salt marsh w.r.t time, [stems/m2] where x= the
establishment (est), growth, diffusion, inundation (inund.) and shear
stress (flow).

Kindly see Appendix D for additional details. The bio-geomorpho-
logical model was developed to represent the influence of one vegeta-
tion type during the analysis for the Spartina anglica species. After every
vegetation time-step the marsh model records the change across the
grid domain of the height, vegetation density, drag coefficient, bed
roughness and the relative coverage of the vegetation in each grid cell.

2.1.3. Offline coupling approach
The trachytope extension of Delft3D defines the location of the

vegetation across the domain. After every morphodynamic time step,
the output of Delft3D (bed level, shear stresses, water level and flow
velocities) is converted to input parameters for the growth model (in-
undation and shear stresses). Subsequently, after every vegetation time
step the adjusted roughness and flow resistance parameters are then
compiled in the trachytope input files (Deltares, 2014). The roughness
exerted by the vegetation on the flow is determined using the Baptist
et al. (2007) relation, where the higher the value the smoother the
surface and the smaller the drag force. Afterward, the Delft3D-FLOW
model is then restarted with the new spatial layout of the vegetation
and the bed level (Fig. 1).

The seasonal and daily variations in the water level, which impact
the spatial and temporal establishment of the vegetation, also constrain
the acceptable hydrodynamic and morphodynamic time steps. On the
other hand, calculating bed level changes and vegetation growth every
hydrodynamic time step (1min) would lead to excessive computation
time. Therefore, using a MF of 100, a single hydrodynamic tide re-
presented three months of morphological development. We coupled the
vegetation growth model to Delft3D coupled every three months (each
single tide) which roughly covered the seasonal dynamics of vegetation
growth. This loop continued until an equilibrium bathymetry and ve-
getation density were attained.

2.2. Model setup

2.2.1. Overview of typical salt marshes in the South Western Delta
2.2.1.1. Domain schematization. The locations that inspired the current

study are located in the Dutch South-Western Delta, more specifically
the Hellegat Salt Marsh, The Sint Annaland salt marsh and the Land of
Saeftinghe salt marsh (Fig. 2). The marshes, all of which were formed
naturally and have open environments subject to both waves and tides,
were selected randomly to represent the variability of the marshes in
the South Western Delta. This variability extended to the size, layout of
marsh to mudflat, channel patterns and velocities. Though these three
sites were highlighted, results were also compared to marshes along the
Western Scheldt where studies with similar approaches were available
(Temmerman et al., 2005; Temmerman et al., 2013; van Loon-
Steensma, 2015; Winterwerp et al., 2013).

The three case study locations were chosen to determine both the
boundary and domain conditions. They provided descriptions for the
dimensions of the domain; however the bathymetry and boundary
conditions were chosen to be representative of the Hellegat Salt Marsh.
With regards to the quantitative validation of the model results, the
data available at the time of this study were detailed towards to the
Hellegat Salt Marsh. The dimensions for the length and width of model
were chosen so as to ensure a balance between the computational time
and an apt representation of the interactions between the salt marsh
and mudflat. The model domain would first represent a slice of the
typical system, with the smallest possible length of 500m which would
not impede the formation of channels. With the exception of the Land of
Saeftinghe salt marshes, the typical width was below 1500m. Therefore
the marsh platform for allowable growth was extended 1500m with a
mudflat at the seaward edge extending a further 1000m (Fig. 3).

2.2.1.2. Physical setting. The Hellegat salt marsh is situated along a
meandering channel and is subject to both the tidal dynamics (semi

Fig. 1. Detailed explanation of the coupling approach for model setup.
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diurnal tidal regime and a mean tidal range of 3.9 m) and wave action
(Vuik et al., 2016). This channel has suffered extensive erosion and is
currently reinforced with dykes to protect the hinterland areas. During
spring tides, the mean tidal range increases and varies from 4.49m to
5.93m. Over the last century, the mean water level has risen by
approximately 3 mm at the mouth of the Western Scheldt and 15mm in
the inner section of the estuary (Temmerman et al., 2005). There is a
clear reduction in the magnitude of the waves which propagate from
the North Sea and dissipate their energy over the smaller depths.
During extreme storm events, the wave heights recorded in the Western

Scheldt estuary have maximum values ranging from 2m to 3m (Li
et al., 2014; Sistermans and Nieuwenhuis, 2004). However, average
wave heights near the marsh are about 0.7 m and slowly decrease as the
waves propagate over the vegetated marsh which has a maximum depth
of 1.9 m above the marsh surface (Vuik et al., 2016).

The sediment compositions of the estuary consist of fine sediments
with sizes ranging from 24 μm to 56 μm in the channels, mudflats and
deeper parts of the shoals, while along the vegetated salt marsh sections
the size is approximately 88 μm. However, despite the classification as a
cohesive sediment area, it should be noted that there is a bit of fine sand

Fig. 2. Three typical salt marsh-mudflat systems within the Dutch South Western Delta used for schematized model setup (Google Earth): (a) Overview of the relative
locations of the three marshes; (1) The Sint Annaland Salt Marsh; (2) The Hellegat Salt Marsh; (3) The Land of Saeftinghe. Where W=width of the salt marsh,
distance perpendicular to the dyke line and L= the length of the salt marsh, distance parallel to the dyke line.

Fig. 3. Evolution of the spatial density of the salt marsh vegetation at different points in time: (a) Initial bed level, and after (b) 20 years, (c) 50 years, (d) 120 years.
Colour bar showing the variations in bed elevation and plant height (1m). (For better interpretation of this figure, the reader is referred to the Web version of this
article.)
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in the system which results in maximum sizes of 119 μm in the densely
vegetated areas (Rahman, 2015). The coarser sediments were not
considered due to the intended schematization of a developing marsh.
The Hellegat salt marsh has geomorphological development char-
acteristic of an old, high marsh with a relatively flat platform, 1:40
slope, dissected by a developed network of channels or tidal creeks
(Temmerman et al., 2004). The average marsh elevation is
1.1 m + NAP (Dutch ordinance level, which is close to local mean sea
level) (Bouma et al., 2016). Spartina anglica dominates the marsh ve-
getation with an average number of stems/m2 of 1200 and an average
stem thickness of 3mm (Vuik et al., 2016). Beyond the edge of the salt
marsh platform, there exists a bare tidal mudflat which eventually
deepens as the centre of the channel approaches. It is important to note
that at the time of the research, information regarding the soil sediment
composition and the effects of wind waves were not available.

2.2.2. Detailed schematization & model parameters
The model setup describes a 2DH section of a salt marsh-mudflat

system, 2500 m cross –shore by 500 m longshore with grid cells of a
10 m grid resolution. The grid cell size is apt as channel widths within
the Western Scheldt are often of a magnitude of 10 m. The bed increases
from -5 m at the seaward boundary (only open boundary) to 1 m at the
edge of the initial mudflat platform over a cross shore distance of
1500 m. The platform then further extends another 1000 m to the
landward boundary. Along the platform random perturbations of
+1 cm were added to the bed level to stimulate pattern development. A
uniform Chézy roughness value of 65m1

2/s was used to represent a
smooth bed of cohesive sediment without vegetation. The model was
forced with a harmonic water level boundary at the seaward edge
having a single 12 h period tide of 2m. The length of the tidal cycle
extended 21 h with a hydrodynamic spin up time of 540min, and a 12 h
period including geomorphological development. A constant wave cli-
mate was imposed consisting of waves with 0.5 m significant wave
height (Vuik et al., 2016; Vuik et al., 2016), a 2 s peak period and en-
tering the domain perpendicularly.

A uniform suspended sediment concentration (SSC) of 0.025 kg/m3

was defined at the seaward boundary with a Thatcher-Harleman time
lag of 120min. This time lag describes the period of gradual SSC change
at the seaward boundary at the turning of the tide and prevents sudden
variations in the suspended sediment concentrations and associated
numerical instabilities. The model assumes zero gradients alongshore.
Areas with a shear stresses in excess of a critical shear stress of 0.5N/m2

will be eroded. Deposition occurs at a rate of the product of the fall
velocity (w=0.5mm/s) and the SSC. For further detail, see Appendix
A for a compilation of the model parameters.

Within the context of this research, equilibrium will depend on both
the vegetation density and the geomorphological developments. For the
geomorphology aspect, equilibrium may refer to a profile which has a
dynamic nature over longer timescales but remains static or stable
vertically or horizontally over shorter timescales. The lateral retreat or

expansion of the leading edge of the marsh is characteristic of the shift
horizontally, while the vertical movement refers to the increase or
decrease of the bed elevation. Salt marshes attain an equilibrium den-
sity after 20–30 years during favourable site specific conditions
(Attema, 2014; Schwarz et al., 2014), with the geomorphological de-
velopment attaining equilibrium on a decadal scale. Therefore, the
model extended for 120 years of vegetation growth (see Table 1 for
parameters) to capture a profile in equilibrium.

The SLR was imposed with both a linear and exponential increase.
To achieve this the mean sea level (MSL) was raised at the end of each
year by a value prescribed by a linear or exponential function for the
IPCC RCP 8.5 climate scenario. The IPCC was chosen over the National
Oceanic and Atmospheric Administration (NOAA) due to its global
applicability and coverage. After an equilibrium mudflat profile was
generated over the 120 years, the SLR scenarios were imposed over 100
years. The MSL increases by 1.137m under the high approximation and
0.6 m and 0.8m for the low and mean approximations respectively. The
contribution of the biomass (above and below ground) is examined via
sensitivity runs where the range varies from a conservative contribution
of 1mm/year to 3mm/year (Craft et al., 2009; Crosby et al., 2016;
Morris et al., 2002; Temmerman et al., 2013; van Maanen et al., 2015).
Scenarios also included variations in the wave height, SSC, sediment
properties and yearly accretion balances within the marsh (6mm/year
and 9mm/year) (Crosby et al., 2016).

3. Bio-geomorphological development and model validation

3.1. Development to equilibrium

During the initial years the geomorphological development of the
salt marsh-mudflat system was found to lead the salt marsh growth, as
plant establishment is limited by inundation and erosion stresses
(Fig. 3). Initially, the vegetation establishes in patches on the platform,
resulting in the formation of channels due to flow concentrations
around these patches. As the channels incise the platform further, de-
position of sediment along the banks of the channels form characteristic
levees (See Appendix B: Video 2 for the animation of the Salt Marsh-
Mudflat base model: Supplemental Materials). When the vegetation
reached its maximum stem density after 35–40 years, the channel
patterns are stabilized by the vegetation and they form the main drai-
nage area for the intertidal vegetated zone. Geomorphological devel-
opment is then limited to the heightening of the marsh with a slow
progradation of the marsh edge (Appendix B). The channel flow is
asymmetric with a short, high velocity flood period and a long low
velocity ebb period. The magnitude of the velocities within the vege-
tation were notably lower than the channels but maintained the char-
acteristic surges during flood and ebb.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.envsoft.2018.08.004.

Even after 120 years, the marsh edge continues to prograde due to
the supply of sediments from the seaward boundary. Shear stresses near

Table 1
Properties for the model set-up for salt marshes (Hu et al., 2009; Temmerman et al., 2007).

Parameters Values (S.A) Unit Reference/Source

Seed, Chance of Establishment, Seed 0.01 [yr −1] Temmerman et al. (2007)
Initial Plant Density, P0 200 [stems m−2] Attema (2014)
Intrinsic Growth Rate, r 1 [yr −1] Temmerman et al. (2007)
Max. Carrying Capacity for the plant density, K 1200 [stems m−2] Attema (2014)
Plant Diffusion Coefficient, D 0.2 [m−2 yr−1] Temmerman et al. (2007)
Plant Erosion Coefficient due to Bed Shear Stress, Cτ 30 [stems m−2 per Nm−2] Temmerman et al. (2007)

D3D Output interval: 10min
Critical Bed Shear Stress for Plant Erosion, τcr 0.26 [Nm−2] Temmerman et al. (2007)
Plant Erosion Coefficient due to Inundation Stress, Cinund 3000 [stems m−2 per m] Temmerman et al. (2007)
Critical Inundation Height at High Tide, Hcrp 1.4 [m] Temmerman et al. (2007)

Where: S.A: Spartina anglica.
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the marsh edge and in the incising channels continue to exceed the
critical shear stress for erosion, 0.5 N/m2 (Fig. 4 and Fig. 5). The main
reason for this being the dissipation of the wave energy. For a similar,
yet 1D, study Van der Wegen et al. (2017) showed that geomorpholo-
gical equilibrium is eventually reached by an evolving mudflat despite
the fact that the critical erosion shear stress is continuously exceeded
during the tide. Although, wave action leads to high shear stresses and
related high sediment concentrations, the tide residual sediment
transport becomes negligible so that there is no net geo-morphody-
namic development. Net sediment deposition occurs mainly behind the
marsh edge and around the channels in levee formation deposits (Fig. 6
and Appendix C). After the 120 years the marsh profile shows minimal
variation. Equilibrium is not reached in the strict sense since the marsh
edge continues to prograde at a slow rate. Nevertheless, the system was
considered to be stable to allow further sensitivity and SLR scenario
analysis. (See video animation in Appendix B).

3.2. Impact of vegetation & waves on the morphology

Without vegetation, the channel (braiding) patterns are replaced by
straight channels which incise the platform further while allowing for
the distribution of the sediment across the mudflat (Figs. 5 and 6). The
channels are able to incise the platform further because of the low
roughness in the absence of the vegetation. The level of the platform,

despite being narrower than the vegetated case, becomes higher as
sediments are easily transported landward. When the waves are ex-
cluded, the vegetated platform is wider as the reduced re-suspension
supports the progradation. However, the transport of the suspended
sediment into the marsh, toward the landward sections, is significantly
lowered. Waves lead to higher matured marshlands. The presence of the
vegetation increased the flow velocities within the channel while re-
sulting in a significant decline of the velocities on the shoals.

Larger height differences between the muddy marsh and the mud-
flat enhanced the erosion rate, steepening the transition, especially in
the presence of waves (Figs. 6 and 7(a)). This observation is similar to
that of Bouma et al. (2016) and Bouma et al. (2005). Fig. 7(d) shows
that the magnitude of the wave forcing will contribute towards the
development of steep transitions at the marsh edge.

3.3. Sensitivity analysis: process understanding

Here, we have summarized the results for high-impact parameters
which affect vegetation density and bed level (Figs. 7 and 8). The
findings provide possibilities for realistic adaptations in restoration and
protection measures. NB: For this system, marsh platforms below 0.7m
above the mean water level did not support the establishment of the
vegetation.

Fig. 5. Comparison of the Initial Bathymetry and the Bed Level (a) initial profile, (b) without vegetation, (c) vegetation + waves + tides, (d) Without waves after
120 years. (For better interpretation of this figure, the reader is referred to the Web version of this article.)
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3.3.1. Wave height
From the analysis of the base model, waves have been identified as

the main driver for the lateral retreat (Appendix B, Figs. 5 and 6) of the
marsh platform. Waves suspend sediments from the mudflat and these
sediments are transported landward during flood. Sediments deposited
landward are subject to limited shear stresses, due to the trapping ca-
pacity of the marsh, so that ebb currents transport less sediment sea-
ward during ebb. This resulted in the heightening of the platform level
as sediments filled the accommodation space. Therefore, the variation
in the wave height provides an understanding of the system behaviour
under varying wave climates. Overall, Fig. 7 (d) shows that larger
waves produce steeper marsh edge transitions with a retreating edge.
Conversely, lower waves allow for larger sections of high marsh lands
on which mature and stable plant species reside. Compared to purely
tidal environments, waves are seen to create higher platform levels.
When the wave height is lowered, the geomorphological developments
resemble that of a purely tidal environment. In alternative wave cli-
mates, this can be used as a tool in promoting growth within restoration
strategies. Fig. 8 (d) also reveals that an increase of the wave height
lowers the vegetation coverage, where the doubling of the wave height
results in an approximate reduction of 1×106 stems/year.

3.3.2. Roughness, tidal amplitude and platform bed level
A higher roughness (lower Chézy value) leads to a concentration of

flows generating narrower and deeper channels which prograde into
the marsh area further. Additionally, a higher roughness enhances the
erosion of the mudflat and platform due to enhanced sediment sus-
pension resulting in a retreating marsh edge and heightened platform
(Fig. 7 (i)). Within the morphological model, the constant Chézy value
affects flow and sediment transport (bare areas only), and wave at-
tenuation. The roughness generated by the vegetation affects only the
flow and sediment transport in marsh areas.

As the tidal amplitude is lowered with a constant platform height,
the degree to which the platform is flooded reduces. Therefore, the
mudflat is eroded because the waves dissipate all of their energy on the
mudflat. At the marsh edge, continual wave dissipation results in the

deepening of the mudflat level and the formation of steep transitions.
When the tidal amplitude equals or exceeds the magnitude of the marsh
level, the wave dissipation is limited within the area of the mean water
high level and gentler transitions are formed at the marsh edge.

Regarding the evolution of the stem growth, lower tidal amplitudes
and by extension lower inundation stresses allow for higher stem den-
sities within the domain (Fig. 8). The platform level variations show a
greater affinity for the distribution of sediment along the transition area
and mudflat whereas the variations in the amplitude allow for sediment
to be deposited along both the marsh platform and also at the transition
area (See Appendix C: Figure C2).

3.3.3. Sediment characteristics
With the combination of both waves and tides the typical range for

the shear stress lies between 0.3 and 0.5 N/m2. This range is in line with
validated model studies including wave action and tidal forces (Borsje
et al., 2011; Cheon and Suh, 2016; MacVean and Lacy, 2014; Townend
et al., 2011; Van der Wegen et al., 2016). Results (Fig. 7(c)) reveal that
lower critical shear stress values lead to an eroding mudflat and a
landward transport of sediments building up the marsh platform.
Therefore, restoration efforts which, in practice, simulate sufficient
stirring of the sediment offshore will allow for increased deposition
within the marsh. Lower fall velocities lead to a similar behaviour
(Fig. 7(h)). However, though the marsh is elevated, the width is re-
duced due to the lateral retreat of the platform. The stem density is
reduced with lower critical shear stress and fall velocity values
(Fig. 8(c)). The runs with a lower critical shear stress produce straight-
lined channel patterns with increased mortality rates. However, gen-
erally the modelled channel formation patterns and channel and marsh
velocities are overestimated compared to the values found in literature
(Kirwan and Megonigal, 2013; Maan et al., 2015; Temmerman et al.,
2007; Temmerman et al., 2010). This may be attributed to the use of the
roller model to represent the wave energy, where due to the lack of
diffraction considered along the one directional plane of movement, the
shear stresses are often in excess of 0.5N/m2 especially during the flood
tide. The marsh platform seems not heavily affected by the boundary

Fig. 6. Evolution of the (a) width averaged bed level and (b) growth of the stems for variations of physical processes, (c) spatial distribution of the bed level for the
base run and (d) bed level along specific cross section.
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sediment concentrations (Fig. 7(e)), but the mudflat is higher for a
larger SSC at the boundary. During flood the SSC levels are lower than
the SSC imposed at the boundary (25mg/l). In ebb flow, higher SSC are
observed in the channels along the mudflat with minimal values in the
channels within the salt marsh. As such, sediments are deposited
readily along the mudflat where fall velocities are optimum. Higher SSC
values result in a filling of the accommodation space allowing for the
progradation of the marsh (Fig. 9).

3.3.4. Plant growth characteristics and biomass
Most morphological variation was seen in the critical inundation

height runs (Fig. 7 (g)), followed by the plant height. The less resilient
the plant species is to inundation, the lower the stem density. The lower
vegetation coverage, then allows for greater deposition along the marsh
as higher sediment loads are transported to the marsh (Fig. 7).

As the height of the vegetation increases, the lower the flow velo-
cities and the magnitude of channel incisions in the marsh platform.
This adds to the protection offered by the vegetation to the marsh-
mudflat edge during ebb flow as the reduced velocities will result in
smaller magnitudes of erosion due to flow. With lower plant heights,
there is increased erosion of the marsh edge as the transition steepens.

Once the maximum stem density coverage is reached, this results in
a more pronounced formation of channels within the marsh platform.
Channels in the marsh area become narrower limiting the transport of
sediment into the marsh. Relative increases in the marsh platform are
notably lower. With the decrease in elevation at the marsh edge, there

is an overall regression of the marsh edge with continued dynamics at
the boundary after 120 years. Model results show not only the heigh-
tening of the marsh platform but the gradual progradation of the marsh
edge are observed as the accommodation space is filled for larger bio-
accumulation rates (Fig. 7 (f)).

The validation of the plant growth and decay characteristics were
carried out quantitatively based on comparisons with Attema (2014)
and Monden (2010).

3.4. SLR scenarios

In all three SLR scenarios the landward low-lying areas drown,
leaving zones of elevated vegetated land masses disconnected from the
shore (Figs. 10 and 11) (See Appendix B: Video 1 for the animation of
the Salt Marsh-Mudflat base model: Supplemental Materials). The
landward sections of the marsh are relatively low due to the levee
formation closer to the marsh edge. The profiles reveal that under the
SLR scenarios the bed level increases, but at a rate that is insufficient to
match the rate of SLR as shown by the stem density plots in Figs. 10 and
11. As such, there is a loss of the intertidal wetland over time, initially
quite gradual, but then increases after 50 years of SLR for the model
without biomass contributions (Fig. 10 (b)). This translates to a land-
ward shift of the salt marshes to survive, where space is available. The
SLR results in increased water depths which allow waves to propagate
further into the salt marsh. The larger tidal prism increases the flow
velocities thereby enhancing seaward erosion and landward deposition.

Fig. 9. Variation of the stem density and the bed level for a gradual increase in the sediment concentration from (a) 0.015 kg/m3, (b) 0.025 kg/m3, (c) 0.05 kg/m3

and (d) 0.1 kg/m3. (For better interpretation of this figure, the reader is referred to the Web version of this article.)

Fig. 10. (a) Evolution of the width averaged bed level under SLR without biomass, Comparison of (b) the width averaged bed levels for biomass variations and the (c)
stem density for the scenarios with biomass and yearly accretion rate under the high approximation for SLR. The green section of the width averaged profile
highlights the location of the vegetation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Sediment is being transported from the mudflat unto the marsh which
heightens, but drowns due to insufficient volumes. Under the ex-
ponential increase in the sea level, there is a threshold below which the
salt marshes can survive and this extends some 40–50 years for all
scenarios (Fig. 10 (b)). However, beyond this period, the high water
level begins to drown areas that once formed the upper intertidal areas.
The vegetation mortality now switches to one dominated by inundation
stresses. Overall the salt marsh system, without interventions, will not
survive the long term impacts of SLR.

A comparison was carried out between the exponential and linear
increases in the mean water level. The exponential scenario did reflect
an extended period for which the salt marshes were able to increase the
bed level at a rate that exceeded the SLR but the linear scenario only
extended approximately 10 years of SLR. However, after 100 years of
SLR, the vegetation cover for both systems was the same. It should be
noted that this model was developed for sediment rich systems and not
sediment poor systems such as in the East of the USA.

4. Discussion

Our schematized 2D depth averaged model satisfactorily describes
the interaction between the waves, tides, sediment transport, morpho-
dynamics in Delft3D-FLOW, and the bio-accumulation and plant growth
dynamics of the Spartina anglica in MATLAB. The research aimed to
increase the process understanding of the salt marsh system and also
allow for applications toward resilience measures under SLR. Inspired
by the Dutch south western Delta, the bio-geomorphological model
reproduced a realistic salt marsh-mudflat system in near equilibrium
after a century while reaching a maximum stem density after 40 years.
The interaction between the mudflat and marsh area provides key de-
tails on the triggers for the geomorphological developments within the
marsh-mudflat system. Wave action was found to be the primary trigger
for the sediment supply towards the salt marsh with the formation of
steep marsh edge transitions. As the waves enter the domain, most of
the energy is lost through wave breaking and dissipation along the
mudflat. Sediment is continuously stirred and transported to the marsh
area. Sediment deposits in the marsh in levee-type patterns close to the
channel edges and platform edge. Once the vegetation establishes and
grows on the platform, the roughness increases favouring more de-
position on the platform. More landward areas face less deposition.

As the elevation of the marsh platform increases, the wave energy
becomes concentrated around the mean water level. This results in a
dynamic oscillatory flow pattern which erodes the sediment and
transports it along the edge of the marsh. This observation is similar to
that of Bouma et al. (2016) and Bouma et al. (2005), who suggested
that larger height differences between the muddy marsh and the
mudflat enhance the erosion rate especially in the presence of waves.
This sediment is later transported landward following the channels. As
the wave height increases, there is greater transport of sediment to-
wards the platform with steeper transitions between the marsh and the
mudflat. Steeper transitions are as a result of the larger magnitude of
the oscillatory wave forces. This may be critical for restoration strate-
gies which attempt to promote growth in alternative wave climates.
Additionally, when compared with a tidally dominant system, coastal
areas exposed to waves have higher marsh platforms.

A system's resilience to SLR will depend on its ability to increase the
bed level at a rate that exceeds the SLR. This rate is dependent on the
inundation depth at high tide, the external sediment supply and the
organic deposition potential. We found that the salt marsh-mudflat
system drowns under all imposed SLR scenarios to varying degrees with
variations in the sediment supply and biomass. However, the bio-ac-
cumulation rate is the most critical parameter affecting the resilience
under SLR. High bio-accumulation rates even lead to marsh survival
including the heightening and gradual progradation of the marsh
(Fig. 12). Results show that the bio-accumulation rate has a greater
impact on bed level increases under SLR, once the vegetation density isFi
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maintained. Biomass rates (1–3mm/yr) contribute substantially to-
wards the overall bed level increases when compared to the sediment
supply (Fig. 13). However, in Hellegat salt marsh the biomass pro-
duction is not sufficient to ensure survival under SLR. Production rates
in excess of 3mm/yr are unrealistic as the marsh has an existing

belowground biomass capacity of 1.4–4.7 kg/m2 (Rahman, 2015). As
such, this must be supplemented by increases in the external sediment
supply to achieve higher yearly accretion rates. Systems with an ac-
cretion balance exceeding 5mm/yr were found resilient while the
marsh platform expands for values up to 9mm/yr. Moreover, high

Fig. 12. Comparison of the remaining plant density of the salt marsh under the 1.137m increase in the mean water level for SLR with biomass scenarios (a) no
biomass, (b) the 1mm/yr, (c) 2mm/yr, (d) 3mm/yr, and with yearly accretion rates of (e) 6 mm/yr, (f) 9mm/yr after 100 years of sea level rise.(For better
interpretation of the figure, the reader is referred to the Web version of this article.)

Fig. 13. Relative Contributions of the biomass and sedi-
ment (mud) to the increases in the overall bed elevation
given by the ratio over 220 years inclusive of 100 years
SLR. Where Δ(z)bio and Δ(z)sediment represents the
change in the elevation of the bed level attributed to the
biomass and mud respectively. Lower rates show a greater
dependence on the natural sediment supply.
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accretion balances that consider the sediment budget: external (rivers,
offshore & artificial supply) and internal (biomass storage and pro-
duction), are more effective in reducing vulnerability under SLR. Our
modelling approach allows for a closer analysis of the spatial dynamics
of drowning (Thorne et al., 2014). Especially, the levee type patterns
evolving close to the channel and marsh edges that have a significant
impact on the response of the system under SLR. These levee areas are
the last to drown under SLR scenarios.

Overall, the inclusion of the wave dynamics proved critical for the
geo-morphological developments of the marsh-mudflat system and
improved quantifications for resilience to SLR. Further works should
however explore the dynamics of the sediment budget for specific lo-
cations.

5. Conclusion

Our bio-geomorphological modelling approach was able to re-
produce a mudflat-marsh system in equilibrium after 120 years. The
process-based methodology allowed for a thorough sensitivity analysis
of the model parameter space including hydrodynamic forcing, sedi-
ment characteristics and vegetation dynamics with the belowground
biomass accumulation. Our findings were quantitatively validated pri-
marily against the findings of relevant modelling studies. The model
produced realistic channel formations with characteristic flood and ebb
hydrodynamics. Wave action was shown to be a key process as it sus-
pends sediments on the mudflat and transports them to the marsh
platform during flood. This resulted in the heightening of the marsh
platform and the formation of steep marsh-mudflat transitions. Higher
wave heights produce narrower and more elevated marshlands. Our
area model showed the evolution of levee type deposition patterns
along the channels. The critical shear stress, settling velocity, critical
plant inundation height and tidal variations are key model parameters
in the bio-geomorphological development.

Imposing 100 years of SLR scenarios on the equilibrium profile al-
lowed us to analyse key factors impacting the resilience of the marsh-
mudflat system to SLR. Despite the net import of sediments and biomass
productivity of the system all SLR scenarios eventually led to the partial
or complete drowning of the marsh-mudflat system. The channel net-
works expanded landward and incised the marsh platform. The vege-
tated levee-type patterns were the last features to survive. Exponential
increases in SLR showed extended periods in which the salt marshes
were able to increase the bed level at a rate that exceeded the SLR but
the linear scenarios did not. Imposing higher accretion rates may allow
the salt marsh survive SLR scenarios. Another key to marsh survival
under SLR will stem from increasing the overall sediment supply al-
lowing for higher yearly accumulation rates.

Model approaches with ecological components enhance the process
understanding and reinforce innovative solutions in the restoration and
protection of these valued intertidal vegetation species. Future research
may utilize process-based approaches to evaluate engineering solutions
for protection and restoration strategies and study the dynamics of
other vegetation types like mangroves with applications to case specific
areas.

Software and/or data availability

We applied a process based numerical modelling approach which
coupled offline Delft 3D-FLOW and MATLAB. Both the Delft3D software
and MATLAB tools used in this study are open source and freely
available online: https://oss.deltares.nl/web/delft3d. The Delft3D Suite
was developed by Deltares with the main office located at
Rotterdamseweg 185, 2629 HD, Delft, The Netherlands. Contact can be
made through the contact form (https://oss.deltares.nl/web/delft3d/
contact) or via the sales department with the following email and
contact number: sales@deltaressystems.nl, +31 (0)88 335 8188. The
Delft3D flow (FLOW), morphology (MOR) and waves (WAVE) modules

were first made available in 2011 and is written using Fortran and C/
C++ language rules (Lesser, 2009).

The running of the model requires the use of MATLAB versions 2013
or higher. This software can be attained through purchase, student
version or trial online: https://nl.mathworks.com/products/matlab.
html. Contact can be made to MathWorks, the developer, through its
representative in the Netherlands (Dr. Holtroplaan 5B, Phone: +31-40-
2156700) or via the corporate headquarters. The sources of all datasets
and parameter values used for the model developed have been provided
in the Methods section and in Appendix A of the paper. Additionally,
the typical input files for the setup of the base model along with the
plant growth script have been provided in the Supplemental Materials.
With regards to the hardware required, a standard PC with minimum
8GB RAM.
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