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ABSTRACT: InP and InZnP colloidal quantum dots (QDs) are
promising materials for application in light-emitting devices, transistors,
photovoltaics, and photocatalytic cells. In addition to possessing an
appropriate bandgap, high absorption coefficient, and high bulk carrier
mobilities, the intrinsic toxicity of InP and InZnP is much lower than for
competing QDs that contain Cd or Pb−providing a potentially safer
commercial product. However, compared to other colloidal QDs, InP
QDs remain sparsely used in devices and their electronic transport
properties are largely unexplored. Here, we use time-resolved microwave
conductivity measurements to study charge transport in films of InP and
InZnP colloidal quantum dots capped with a variety of short ligands. We
find that transport in InP QDs is dominated by trapping effects, which
are mitigated in InZnP QDs. We improve charge carrier mobilities with
a range of ligand-exchange treatments and for the best treatments reach
mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality
of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%,
respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.

KEYWORDS: indium phosphide, nanocrystals, quantum dots, photovoltaic, time-resolved microwave conductivity, ligand-exchange

InP and InZnP colloidal quantum dots (QDs) are promising
materials as phosphors for lighting and displays, and have

been researched for such applications in an effort to replace
toxic Cd in CdSe QD displays.1,2 However, they could also be
interesting for LEDs and solar cells given the high absorption
coefficient, proper bandgap, and efficient transport properties
of bulk InP.3 There are some papers on InP QD LEDs4,5 but
characterization of charge transport and recombination
dynamics within the emissive InP QD films is cursory, limiting
the understanding of efficiency loss mechanisms in these
devices. There have been a handful of reports using InP QDs
in photoconductors6 and in transistors7 with few additional
reports specifically targeting ligand exchange for improving the
transport properties in QD films.8,9 There are some reports of
colloidal InP QDs being used in dye-sensitized solar cells but
research into solid-state solar cells is lacking.10−12

For QDs, transport of charge carriers depends strongly the
capping ligands that separate the QDs and other surface
properties like traps and band positions.13,14 Understanding
and controlling charge transport through these films is critical
for optimal performance of devices.15−17 A high mobility is
desired for transistors to have optimal operation as it affects
the switching speed and on/off ratios. In prototypical
transistors, InP QD films show electron mobilities ranging
from 1 × 10−4 cm2/(V s) (with In2Se4

2− ligands annealed at
250 °C) to 0.09 cm2/(V s) (with Sn2S6

2− ligands QDs

annealed at 350 °C).7 These mobilities are orders of
magnitude lower than similar CdSe QD transistors.
To better understand the charge carrier dynamics in InP and

InZnP QD films, we use time-resolved microwave conductivity
(TRMC) to measure the mobility and lifetime of photo-
generated charge carriers. TRMC is a contactless spectroscopic
technique that can determine the yield of charge carrier
generation, φ, multiplied by the sum of electron and hole
mobility, (μe + μh), and the average carrier lifetime, τ. With the
assumptions that the yield φ of photogenerated carriers is near
unity, as is commonly found in QD films at room
temperature,18,19 and that within a period of the microwave
field the charges probe a volume of material that is
representative of the whole system,20,21 a lower limit on the
diffusion length, LD, can be calculated. This method is very
useful to quickly study materials for solar cells while avoiding
troublesome contact optimization.18,22−25

Here we make conductive films of InP and InZnP QDs. It
has been shown that the addition of Zn to the InP QD
synthesis increases the photoluminescence quantum yield (PL
QY).26 There is some discussion in the literature about the
atomistic role of the Zn and whether it is on the surface27 as
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Zn-carboxylate, in the lattice,28 or some combination of both.29

We assess whether it also affects the charge transfer properties
of QD films.

■ RESULTS AND DISCUSSION
We prepare QD films with a range of surface treatment and
show that the TRMC-derived mobility depends strongly on
the ligand moiety and Zn content. For the best surface
treatments (using (NH4)2S or Na2S) we reach mobilities of
∼0.04 cm2/(V s) with an average carrier lifetime of up to 60
ns. Comparing the carrier mobility from TRMC measurements
of InP QDs to other QD materials indicates that it is lower
than sintered Cd-chalcogenide QDs and necked (or epitaxially
connected) PbSe QDs (∼0.1−1 cm2/(V s))23,30,31 but is on
par with (or higher than) unsintered Cd-chalcogenides and
PbS QDs (∼10−3−10−2 cm2/(V s)).19,23,32 We find clear
evidence of trap filling in the fluence dependence of the
photoconductivity for InP QDs, while this is absent for InZnP
QDs. The latter QDs show a clear increase of the mobility with
QD size, as expected in a simple random tunneling picture,
whereas the mobility in InP QD films shows limited size
dependence, perhaps because it is obscured by high trap
densities. The lifetime-mobility product obtained with our best
treatments is good enough (per ref 33) to produce efficient
solar cells. To demonstrate the device-grade quality of these
In(Zn)P QD films, we fabricated In(Zn)P solar cells with
power conversion efficiencies (PCE) around 1%.

Films of ligand-exchanged InP QDs with or without Zn
(hereafter termed In(Zn)P) were fabricated by dipcoating or
dropcasting as discussed in the Experimental Methods. Figure
1A shows a TEM micrograph of the starting InP QDs used to
determine the QD size along with a sizing curve from Xie et
al.34 (see the Supporting Information for more details). Using
these 3.6 nm diameter QDs, the ligands were exchanged from
palmitate to ethanedithiol (EDT), Na2S, or (NH4)2S. We note
that the last method is a solution-phase ligand exchange; while
all other exchanges were performed on QD films.
The absorption spectra of the resulting InP films are shown

in Figure 1B and indicate that the QDs retain their quantum
confinement, though the first exciton peak shows a red-shift
and broadening after the ligand exchange and film-making
procedure.35

TRMC measurements of the QDs capped with the various
ligands (palmitate, ethanedithiol (EDT), Na2S, and (NH4)2S)
are shown in Figure 1C. The yield-mobility product, Φ(t)∑μ,
is plotted versus the absorbed photon fluence for each of the
ligands listed. The highest mobility value at lower fluence in
the different films spans 2.5 orders of magnitude as the
electronic coupling between QDs increases going from
palmitate-capped QDs to (NH4)2S-treated QDs.36 (NH4)2S-
treated QDs have a maximum carrier mobility of 0.035 cm2/(V
s) and a half-life of roughly 30 ns as shown in the TRMC
transients in Figure 1D.

Figure 1. (A) TEM image of the PA-capped QDs. (B) Absorption spectra of InP films capped with the ligands noted. EDT = ethanedithiol, PA =
palmitate. (C) Fluence-dependence of the sum of the TRMC yield-mobility product for the various QDs capped with the ligands indicated. The
leftmost arrows indicate increased trap-filling with increased fluence before the onset of higher-order recombination which again lowers the yield-
mobility product (rightmost arrows). (D) Time dependence of the TRMC signal for ammonium sulfide-capped QDs with a half-life of ∼30 ns.
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A point of note is that Φ(t)∑μ initially increases with
increasing fluence for Na2S and (NH4)2S ligand treatments,
reaching a maximum around 1014 absorbed photons per cm2

after which it decreases. If every absorbed photon contributes
free carriers with the same mobility, a constant Φ(t)∑μ is
expected.37,38 The decrease at high fluence is typical for QD
films and is attributed higher order decay processes, i.e., Auger
recombination.39

The increase of Φ(t)∑μ with increasing fluence is not
typically observed in films of Pb- or Cd-chalcogenide QDs,
although it has been observed by Savenije et al.40 for TiO2

nanoparticles and has been attributed to filling of deep traps.
Related, Marino et al.41 have shown that for CdSe nano-
platelets the PL, surface defects (deep traps), and TRMC
mobility are correlated. Such deep traps quickly capture charge
carriers within the 3 ns time resolution of the TRMC
experiment and hence lower the maximum Φ(t)∑μ value
that is measured.42 If the lifetime of trapped charges is ≫3 ns
then upon increasing photon fluence traps get filled and the
effect of the traps on the photoconductivity per absorbed
photon starts to decrease. As shown below, the trap filling
effect shows up, to varying extent, for all InP QD sizes and
typically saturates around 1 × 1014 absorbed photons per cm2.
Combined with a typical film thickness of ∼100 nm this
corresponds to a very high estimated trap density of 1 × 1019

cm−3.

Similar trends are noted for InZnP QDs with their results
summarized in Figure 2. The absorption spectra of the films of
ligand exchanged QDs are given in Figure 2A. Here we can see
all ligands show a red-shifted absorption onset but interestingly
there is no trend in the magnitude of the shift with ligand
moiety. A TEM micrograph of the as-synthesized InZnP QDs
is shown in Figure 2B and has a similar faceted/trigonal shape
as the InP QDs. Figure 2C plots the yield-mobility product as a
function of absorbed photon fluence for films of InZnP QDs
capped with palmitate ligands (PA) and treated with ethylene
diamine (EDA), ethane dithiol (EDT), sodium sulfide (Na2S),
and ammonium sulfide ([NH4]2S). The yield-mobility product
monotonically decreases with increasing fluence due to higher
order recombination events (as discussed above). The time-
resolved TRMC signal for the (NH4)2S-treated InZnP QDs is
shown in Figure 2D. At the lowest fluence the half-life time is
∼60 ns, roughly double the lifetime of the InP QDs under
similar conditions.
Comparing the carrier mobility in InP vs InZnP for a given

ligand indicates a factor of 3 lower mobility for InZnP-
(NH4)2S QDs compared to the InP-(NH4)2S QDs. Fur-
thermore, for InZnP QDs the mobility does not depend on the
cation for the S2− treatments. With EDT-capping the mobility
is the same for both QD types within the error−estimated to
be ∼20% (see the Supporting Information). Additionally, it is
noted that ethylene diamine (EDA) treatment of InZnP QDs
yields very similar mobility to the PA-capped QDs indicating

Figure 2. (A) Absorption spectra of InZnP films capped with the ligands noted. (B) TEM image of the PA-capped QDs. (C) Fluence-dependence
of the sum of the TRMC yield-mobility product for the various QDs capped with the ligands indicated. EDA = ethylenediamine. (D) Time
dependence of the TRMC signal for ammonium sulfide-capped QDs with a half-life of 25−60 ns depending on the fluence with lower-fluence
having a higher lifetime.
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these ligand treatments are ineffective at electronically coupling
the QDs contrary to the work done on PbSe and CdSe QDs
where the mobility improved by orders of magnitude.31,32,43,44

This is possibly due to the inability of EDA to replace the PA
ligands, in line with a slower film build-up than the Na2S or
EDT treatment and the complete absence of build-up for InP
QDs further indicating the surface chemistry is different for
InP and InZnP. This observation gives some indication that Zn
could be on the surface as Zn(PA)2 which is potentially more
easily removed with EDA than In(PA)3.

27

Another interesting observation is that for InZnP QDs
Φ(t)∑μ becomes constant at low fluence without any
indication of trap filling even for the S2− treatments. This
suggests that the presence of Zn leads to passivation of the
traps that are responsible for the decrease in the photo-
conductivity in pure InP QDs. This is in line with the higher
PL QY of InZnP QDs compared to InP QDs observed in
literature and shown in the Supporting Information.28

Furthermore, varying the Zn/In ratio in the synthesis from 0
to 1 in steps of 0.25 shows lower mobility with increasing Zn
but no evidence of trapping in the TRMC signal if Zn is added
(see Supporting Information). It seems intuitive that the traps

that are responsible for the decrease in photoconductivity at
low fluence and PL could be the same and could be located at
the surface. A proper identification of those traps is, however,
not permitted by the current experiments.
Next, we explore the size dependence of the QDs using the

(NH4)2S solution-phase ligand treatment which gives the
highest Φ(t)∑μ. Figure 3 shows the absorption spectra of InP
(panel A) and InZnP (panel C) QDs with various sizes both in
solution (dotted lines) and after film formation (solid lines)
both with S2− ligands (exchanged using (NH4)2S) as well as
the TRMC results. There are clear spectral shifts to longer
wavelengths after film formation, qualitatively indicating
increased electronic coupling between the QDs, with a larger
red-shift for smaller QDs.
As discussed above, for InP QDs the yield-mobility product

in Figure 3B increases with increasing fluence due to trap
filling, with a maximum at a fluence of around 1014 absorbed
photons/cm2 then decreases with further increase in fluence
due to Auger recombination. The maximum value of Φ(t)∑μ
is plotted in Figure 4 (red circles). As is evident from that
figure, there is no clear size dependence of the mobility in

Figure 3. (A) Absorption spectra of different sizes of InP QDs capped with (NH4)2S both in films (solid lines) and solution (dotted lines), offset
for clarity. There are pronounced redshifts from solution to film indicating increased coupling/relaxation of quantum confinement. (B) Fluence-
dependence of the TRMC yield-mobility product for InP QDs capped with the ligands indicated and surprisingly showing little variation as a
function of size in the peak mobility, with lower mobility at lower fluence indicating a high trap density. (C) Absorption spectra of different sizes of
InZnP QDs capped with (NH4)2S in films (solid lines) and solution (dotted lines) and offset for clarity. (D) Fluence-dependence of the TRMC
yield-mobility product for InZnP QDs showing a clear trend as a function of size with the largest QDs having the highest mobility. Lines are fits to
the data as discussed in the text.
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these InP QD films. Potentially the stronger effect of trap
filling obscures size dependence.
Figure 3D shows the fluence dependence of Φ(t)∑μ for

various InZnP QD sizes. Here there is no indication of trap
filling and (following refs45,46) the data is well-described by the
following expression:

∑Φ μ =
+ +=

A
BI F CI F1t 0

0 A 0 A (1)

This allows us to more reliably extract the low fluence mobility
value, A. The resulting size dependent mobility values are
plotted as the blue solid square in Figure 4. For InZnP a clear
size dependence of the mobility is observed with larger QDs
resulting in higher mobilities.
To understand this size dependent mobility we consider a

simple model of charge carriers hopping randomly between
nanocrystals with a hopping rate that is independent of QD
size (admittedly a strong assumption). In this case, the
diffusion of the charge carries will result in a distance L
traveled with time t that is =L Dt6 with D the diffusion
coefficient. For a single hop in time, τhop, this can be written as

τΔ = D6 hop where Δ now represents the center-to-center

distance between two QDs. Using the Einstein−Smoluchowski
relation this can be expressed as

μ
τ

= Δ e
kT6

2

hop (2)

where e is the fundamental charge and kT is the thermal
energy. Because Δ = 2R + d, where R is the QD radius and d is
the interparticle spacing, the mobility is expected to increase
with R if the hopping time τhop is constant. The size dependent
mobility is fitted with eq 2 with the result shown as the solid
lines in Figure 4. Note that for InP QDs, the fit does not
describe the data and makes it clear that there is no size
dependence that can be modeled with a simple hopping
description. For the InZnP QDs the fit matches the data
reasonably well and we extract a hopping time of 35 ps.
The mobility and lifetime measured for these systems are

comparable to those of PbS QDs47 that are used to make quite
efficient solar cells. This suggests that it could also be possible
to use these In(Zn)P QD films to produce solar cells, with the
added benefit of a reduced toxicity. To test if this is indeed the
case, we fabricated proof-of-concept solar cells with the largest
size of both InP and InZnP QDs following identical film-
formation procedures used for TRMC measurements. The
device structure is shown in Figure 5 and consists of ITO-
coated glass with 40 nm of ZnO as the n-type (or electron
accepting) material and MoOx/Ag as the hole contact layers.48

Resulting JV curves and solar cell parameters are also shown in
Figure 5. For InZnP QDs we achieved an appreciable efficiency
of 1.2% while for InP QD solar cells an efficiency of 0.65% was
obtained. Differences in the thickness of the cells cause the
short circuit current (Jsc) to be higher for the InP QD cells as it
is ∼180 nm thick compared to ∼125 nm for the InZnP QD
device, measured using profilometry. We speculate that the
larger VOC of the InZnP QD cells is due to increased quasi
Fermi level splitting between the QDs and the ZnO that is a
result of the different trap densities. We stress that these solar
cells are clearly not optimized and use, for instance, QDs that
are too small to have an optimal bandgap. Further optimization
could realistically improve device performance and could
represent a path forward to Cd- and Pb-free QD solar cells. On
a side note, there are safety concerns about the use of
tris(trimethylsilyl)phosphine (P-TMS) as it is pyrophoric; we
therefore want to point out efforts toward removing this hazard
by using amino phosphine-based precursors for InP QDs in
commercial applications.1,49−53 We also foresee these QDs as
potentially useful inks that could then be sintered into bulk
thin films, similar to CdTe QDs.54−56 A more detailed study of
the differences in device performance when incorporating Zn
into the InP QDs is underway.

Figure 4. Mobility as a function of QD diameter for InP and InZnP
showing a size-independent mobility for InP and increasing mobility
for increasing QD size for InZnP. The lines are fits using eq 2 (see
text).

Figure 5. Current density−voltage (JV) curves for 3.2 nm InP QDs (red) and 2.8 nm InZnP QDs (blue) and the accompanying performance
parameters for champion cells with the structure shown in the illustration with an active area of 0.055 cm2.
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■ CONCLUSION
To summarize, charge carrier mobilities and lifetimes for InP
and InZnP QDs on par with PbS QDs have been achieved
using an (NH4)2S solution-phase ligand-exchange procedure.
There are strong indications of charge carrier traps and trap
filling on a ∼10 ns time scale in InP QDs that appear to be
removed with the inclusion of Zn in the QD synthesis. We
observe an increase in mobility with increasing QD size for
InZnP, a trend that is obscured by trapping in InP QDs.
Utilizing the results, we show proof-of-principle InP and InZnP
QD solar cells, achieving PCEs of 0.65 and 1.2%, respectively.

■ EXPERIMENTAL METHODS
All chemicals were purchased from Sigma-Aldrich at the highest
purity available and used without further modification excluding those
described below.
QD Synthesis. InP and InZnP QDs were synthesized using stock

solutions of indium palmitate (In(PA)3), zinc palmitate (Zn(PA)2),
and P-TMS. A nitrogen-filled glovebox and standard Schlenk line
techniques were followed to keep all reactions air-free. For In(PA)3,
10 mmol of anhydrous indium acetate was added to 40 mmol of
palmitic acid in a round-bottom flask. The solution was heated to 140
°C for 6 h. The In(PA)3 was precipitated with acetone, filtered and
washed again with acetone before being dried under vacuum
overnight. The resulting dry powder was then treated with another
40 mmol of palmitic acid (to ensure complete removal of acetate) and
washed following the same procedure and stored in a glovebox.
For Zn(PA)2, 2 mmol of sodium palmitate (NaPA) was dissolved

in 25 mL methanol in an ultrasonic water bath. 0.18835 g of zinc
acetate dissolved in 15 mL methanol was added dropwise with
vigorous stirring. A white precipitate of zinc palmitate immediately
formed. After 1 h of stirring, the white precipitate was isolated by
vacuum filtration, washed three times with methanol, and dried under
a vacuum overnight before being stored in a glovebox.
From these stock solutions, 106 mg of In(PA)3 (0.12 mmol) and

69 mg Zn(PA)2 (0.12 mmol) for InZnP QDs were mixed together
with 7 mL of 1-octadecene (ODE) in a three-neck flask, degassed
under vacuum for 30 min at 100 °C, and flushed with nitrogen on a
Schlenk line. The reaction mixture was heated to 300 °C under
nitrogen flow and 17 μL of P-TMS (0.06 mmol) in 1 mL of ODE was
rapidly injected. The temperature was lowered to 270 °C and held
here for 5 min. After this time, the particles were grown with
additional precursors to the desired size. For the growth solution, 441
mg indium palmitate (0.5 mmol) and, additionally for InZnP QDs,
288 mg of zinc palmitate (0.5 mmol) were dissolved in 5 mL of ODE.
Separately, 73 μL of P-TMS (0.25 mmol) was dissolved in 3 mL of
ODE and loaded into a syringe. 1.67 mL of the In (and Zn) growth
solution was injected into the solution, after which the P-TMS growth
solution was added over 3 h at a rate of 1 mL/hour using a syringe
pump. Every hour, another 1.67 mL of the In (and Zn) growth
solution was added. When the desired size was reached, the QDs were
cooled to 50 °C and 8 mL of toluene was added. The QDs were
washed three times under inert atmosphere via precipitation with
methyl acetate, centrifuged at 3800 rpm (1800 rcf), and dispersed in
toluene. After the final wash, the QDs were dispersed in hexane for
dip coating.
Ligand Exchange and Film Formation. The native palmitate

ligands will result in an electrically insulating film and, therefore, need
to be replaced by shorter or more conductive ones for device
applications. Ligand exchange and film formation were carried out by
layer-by-layer deposition using a mechanical dipcoater (Nima DC
Multi 5.3) in a nitrogen-filled glovebox. The quartz substrate was
dipped into In(Zn)P quantum dots dispersed in 2.5 mL of hexane for
5 s. Subsequently, it was dipped into a 0.1 M solution in methanol for
120 s (for Na2S and EDA) or 30 s (EDT), and rinsed in acetonitrile
for 20 s. The dipping speed was 100 mm/min, except when the
substrate was raised from the sodium sulfide (Na2S) ligand solution, it
moved at 200 mm/min, and when lowered into the acetonitrile

solution it moved at 500 mm/min. These faster rates are required for
the rinsing process, as acetonitrile can only wash off excess Na2S
before the methanol evaporates. The ammonium sulfide ([NH4]2S)
ligand exchange was carried out by phase transfer from hexane to
formamide by adding 100 μL of 0.1 M (NH4)2S in formamide to
bottom 1.5 mL of formamide and stirring vigorously until complete
phase exchange from the top hexane phase occurred.57,58 The solution
was rinsed 3 times with hexane, precipitated with acetonitrile and
centrifugation at 1800 rcf, and redispersed in N,N-dimethylformamide
(DMF). Films of QDs exchanged with (NH4)2S were dropcast from
DMF onto quartz substrates on a hot plate at 50 °C. Ligand exchange
with metal halides was also attempted but did not result in high-
quality QD films (see the Supporting Information).

Time-Resolved Microwave Conductivity (TRMC). TRMC
measures the photoconductivity of a sample using microwaves after
charge carriers are generated with a laser pulse. To briefly describe the
setup, we placed a film of nanocrystals in a microwave waveguide and
illuminated them with a pulsed nanosecond laser that has a tunable
wavelength in order to excite carriers in the films with different
energies. Simultaneously, microwaves are incident on the sample.
Whenever free charge carriers are created, they absorb microwaves
and we measure a change in the microwave power. Using

= − ΔΔ K G t( )P
P

we can find the change in photoconductance
(ΔG) as a function of time. ΔG is then related to the yield (Φ) and
the sum of the electron and hole mobility (μ) by ΔG(t) =
eβI0FaΦ(t)∑μ where e is the electronic charge, β is a ratio of the
dimensions of the waveguide, and I0Fa is the absorbed laser fluence of
the sample. The yield is the fraction of free charges produced per
photon absorbed. Assuming unity yield, the yield-mobility products
shown here represent a lower bound to the mobility and could be
higher if exciton dissociation is not complete. Using the equations
above we can then calculate how the yield-mobility product changes
with the various materials and treatments.38,59

UV−Vis Absorption. Absorption measurements were performed
on either a PerkinElmer Lambda 40 or Lambda 1050 (equipped with
an integrating sphere for film measurements).

Transmission Electron Microscopy (TEM). TEM was per-
formed with a JEOL-JEM 3200 FSC microscope operating at 300 kV.
The sizes of the nanocrystals were determined using the first exciton
absorption peak in conjunction with a sizing curve as discussed in the
Supporting Information (see Supporting Note 1) and verified to be
within 10% deviation for the largest sizes with the TEM micrographs
shown.

Profilometry, film thicknesses are found by scratching the film to
make a step and measuring the step-height using a Dektak
profilometer.

Device Fabrication. ZnO sol−gel was made by adding 8 mL of 2-
methoxyethanol (MEA) (anhydrous) and subsequently 0.2 mL
monoethanolamine (EA) (anhydrous) to 800 mg zinc acetate
dihydrate in a 10 mL of vial and stirred overnight following modified
literature procedures.22,60,61 The ZnO was spin coated onto ITO-
coated glass substrates (MTI Corp, 7−10 Ohms/sq, 180 nm thick) in
the fume hood. 70 μL of ZnO was pipetted into the center of the
substrate completely filling it. After spinning at 3000 rpm for 45 s, the
substrate was annealed on the hot plate in air for 5 min at 260 °C.
InP-(NH4)2S and InZnP-(NH4)2S were deposited by drop-casting
from DMF as described in the film formation section above. Thermal
evaporation through a shadow mask of 10 nm of MoO3 and 200 nm
of Ag with active areas of 0.055, 0.087, and 0.11 cm2 completes the
devices in a similar architecture reported for PbS QD solar cells.48

Device performance was measured using an OAI TriSol class AAA
solar simulator and Keithley 2604 source-measure unit in both the
forward and reverse sweeps and show minimal hysteresis.
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