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ABSTRACT
The adaptive sliding mode control technique relaxes the assumption of known bound of the disturbance
in discrete-time systems. However, the existing technique of gain adaptation in discrete-time slidingmode
control has issues of gain overestimation and underestimation. Therefore, this paper proposes a technique
to adapt the switching gain such that the adaptive gain can tackle the uncertainty without any knowledge
of the bound of uncertainty while overcoming the over- and under-estimation problems of switching gain.
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1. Introduction

The sliding mode is well known robust control strategy which
has many advantages such as invariance to matched para-
metric uncertainties/disturbance, simpler design technique,
and system order-reduction (Alsmadi, Utkin, Haj-ahmed,
& Xu, 2018; Bandyopadhyay & Janardhanan, 2005; Behera
& Bandyopadhyay, 2016; Drakunov & Utkin, 1992; Dražen-
ović, 1969; Sharma & Janardhanan, 2017a; Utkin, 1977; Utkin
& Poznyak, 2013). The recent developments and application
of microcontrollers in the control circuitry has made the util-
isation of discrete-time system representation more justifi-
able for controller design than continuous-time representation
(Chakrabarty & Bandyopadhyay, 2016; Corradini, Cristofaro,
& Orlando, 2014; Huber et al., 2016; Lincoln & Veres, 2010;
Sharma & Janardhanan, 2017b; Yu, Wang, & Li, 2012). Fur-
thermore, the application of sliding mode technology to con-
trol discrete-time systems like inventory management, flow
control for connection-oriented communication networks, etc.
has encouraged the studies on discrete-time sliding mode
(DSM) (Bartoszewicz & Leéniewski, 2014, 2016; Sharma
& Janardhanan, 2019). In the DSM control, the control input
is calculated after a finite sampling interval and is held constant
during this interval. Due to the finite sampling frequency, the
system state trajectorymay notmove along but about the sliding
surface, thus exhibiting quasi-slidingmode (QSM) (Gao,Wang,
& Homaifa, 1995).

One of the methods of designing DSM is reaching law based
approach (Bartoszewicz, 1998; Bartoszewicz & Latosiński, 2016;
Chakrabarty & Bandyopadhyay, 2015; Du, Yu, Chen, & Li, 2016;
Galias & Yu, 2008; Gao et al., 1995; Janardhanan & Kari-
wala, 2008; Singh, Sharma, & Janardhanan, 2017). The first
idea was given by Gao et al. (1995) through defining the
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quasi-sliding mode and presenting a reaching law which
guarantees the existence of defined quasi-sliding mode. The
algorithm forces sliding function to reach the sliding sur-
face in finite-time and then cross it after every sample. Bar-
toszewicz (1998) redefined the quasi-sliding mode and stated
that the sliding function need not to cross sliding surface
after every sample but only to remain around the sliding sur-
face in a small band. Furthermore, various reaching laws have
been proposed which claim lesser band width (Bartoszewicz
& Latosiński, 2017, 2018; Du et al., 2016). However, these
algorithms require prior the knowledge of the bound on the
disturbance, which is not always plausible in practice (Bar-
toszewicz, 1998; Bartoszewicz & Latosiński, 2016, 2017, 2018;
Bartoszewicz & Leéniewski, 2016; Chakrabarty & Bandyopad-
hyay, 2015; Du et al., 2016; Gao et al., 1995).

The adaptive sliding mode is a suitable design mechanism
which aims to realise the benefits of a sliding mode design
without any prior knowledge of bounds of the disturbance
(Plestan, Shtessel, Brégeault, & Poznyak, 2010; Shtessel, Frid-
man, & Plestan, 2016). Among reaching law based DSM with
adaptive gain techniques, the most popular technique is pre-
sented by Monsees and Scherpen (2002). This technique is
well utilised in the recent literature (Vieira, Gastaldini, Azzolin,
& Grundling, 2012; Xu, 2013). However, the adaptive switch-
ing gain suffers from the over- and under-estimation prob-
lems (Monsees & Scherpen, 2002). While the over-estimated
switching gain produces unnecessary larger control input, the
under-estimated gain compromises with the controller accu-
racy due to the lower value of applied gain than the required
amount. Hence, it is imperative to design an adaptive DSM
which can tackle the over- and under-estimation problems of
switching gain.
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1.1 Contribution

The major objective of this paper is to design an adaptive DSM
controller which can

(i) handle the bounded uncertainties/perturbation without
any prior knowledge of the bound and

(ii) overcome the over- and under-estimation problems in esti-
mated gain.

The organisation of the paper is as follows. After introduc-
tion in Section 1, the preliminaries of discrete-time slidingmode
are given in Section 2. Features and drawbacks of the exist-
ing adaptive discrete-time sliding mode are also described in
this Section. The main results of this paper are presented in
Section 3. The simulation results and discussion in Section 4 are
followed by conclusion in Section 5.

2. Preliminaries: discrete-time slidingmode

Consider an uncertain discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k) + d̃(k), (1)

where x ∈ R
n is the state vector, u ∈ R is the control input

and A, B are matrices of appropriate dimensions. The dis-
turbance vector d̃(k) ∈ R

n represents the external disturbance
effect in the system and satisfies the matching condition. The
disturbance is unknown but assumed to be norm bounded. Let

s(k) = cx(k) (2)

be the sliding function designed so that the system dynamics
are stable when confined to the sliding surface s(k) = 0 (Utkin,
Guldner, & Shi, 2009). The effect of the disturbance vector d̃(k)
on the sliding function (2) is defined as

d(k) = cd̃(k). (3)

Since d̃ is assumed to be bounded, thus there exists a positive
constant d̄ such that

|d(k)| ≤ d̄. (4)

Gao et al. (1995) proposed a reaching law

s(k + 1) = (1 − φ)s(k) − ε sgn(s(k)) + d(k), (5)

where ε > 0 and 0 < φ < 1. If the gain is chosen such that

ε >
1 + φ

1 − φ
d̄, (6)

then the reaching law (5) guarantees the quasi-sliding mode in
a band

� = ε + d̄. (7)

It can be noticed that the DSM band depends upon the switch-
ing gain ε; thus, lesser switching gain results in lesser band
width, and consequently better accuracy. Nevertheless, one can-
not make ε = 0 as the sole purpose of ε is to tackle the dis-
turbance d. Furthermore, if one selects a fixed value of ε from

an estimated knowledge of d̄, then the DSM band � increases.
Consequently, better accuracy cannot be guaranteed. Thus, find-
ing the exact d̄ is difficult in practice and selection of high value
of d̄ may compel the controller to consume more control input
as switching gain must satisfy (6). Therefore, the challenge is to
design ε in a way such that it can negotiate the uncertainties
effectively and generate acceptable controller accuracy without
consuming high control input.

2.1 Discrete-time slidingmodewith adaptive switching
gain

To remove the requirement of any prior knowledge of uncer-
tainty bound, Monsees and Scherpen (2002) proposed DSM
with adaptive switching gain. Given the uncertain system (1)
and sliding function (2) with the reaching law

s(k + 1) = (1 − φ)s(k) − ε(k) sgn(s(k)) + d(k), (8)

where the switching gain is updated through the following
adaptive law (Monsees & Scherpen, 2002) for a fixed scalar
ξ > 0:

ε(k) = ε(k − 1) + ξ sgn (s(k)) sgn (s(k − 1)) . (9)

Observations: It can be noticed from the adaptive law (9) that
the switching gain ε (i) only decreases if the sliding variable
crosses the sliding surface and (ii) increases for all other cases.
Based on these two scenarios, the following observations can be
made:

(a) The switching gain does not decrease even if the sliding
function starts approaching toward the sliding surface; in
fact, it keeps on increasing. This creates an over-estimation
of switching gain and consequently produces unnecessary
larger control input (as ε was sufficient to force the sliding
function toward the sliding surface).

(b) If the sliding function is gradually increasing and becoming
unstable after crossing the sliding surface, the gain should
be increasing to stabilise the system. On the contrary in
this condition, the gain decreases following the adaptive
law (9). This problem is known as gain underestimation
and causes the poor performance, or the instability, of the
system.

(c) Furthermore, the rate of adaptation in (9) is constant.

Other than this, a time-varying gain is used in Salhi,
Kamoun, Essounbouli, and Hamzaoui (2016) as

ε(k) = γ0ε(k − 1) + γ 0(1 − γ0), (10)

where 0 < γ0 < 1 and 0 < γ 0 < 1 are termed as constant
parameters.

Observations: The gain (10) used in Salhi et al. (2016) is
an exponentially decreasing function of time (samples) and
does not depend on the evaluations of sliding function. Conse-
quently, the gain decreases even if the value of sliding function
increases, giving rise to the problem of gain under-estimation.
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2.2 Motivation

Considering the drawbacks of the existing algorithms, a new
update law is to be designed such that:

(i) The switching gain should start decreasing when the
sliding function is approaching the sliding surface and
vice-versa. Thus, this action will solve the problem of
overestimation.

(ii) The switching gain should depend upon the sliding func-
tion, rather than only on the sign of the sliding func-
tion. This action will generate sufficient magnitude of
the gain and the problem of gain underestimation will be
solved.

(iii) The rate of adaptation should not be constant but vary-
ing and depend upon the sliding function. If the sliding
function is far from the sliding surface, the rate of adap-
tation should be large and vice versa. This action will
reduce the problem of choosing the optimal value of rate
of adaptation.

Remark 2.1: It is important to note that the primary con-
tribution of this paper is to propose a new gain adaptation
law for discrete-time sliding mode that can alleviate the over-
and under-estimation problems of switching gain. Further-
more, to justify the efficacy of the proposed scheme, it is com-
pared with the existing adaptive discrete-time sliding mode
controllers developed by Monsees and Scherpen (2002) and
Salhi et al. (2016), both of which utilises the reaching law (8)
proposed by Gao et al. (1995). Therefore, to keep parity in
the comparison, the same reaching law is used in this paper
and the subsequent theoretical analysis are also carried out
accordingly. Nevertheless, there exist other various reaching
laws with non-adaptive gains in the literature (Bartoszewicz
& Latosiński, 2016, 2017, 2018; Du et al., 2016) with their
respective advantages and disadvantages. Additional adoption
of any of these reaching laws would demand a significant over-
haul of the theoretical analysis. Hence, to maintain the flow of
the paper more focused as well as parity in comparison, we have
solely used the reaching law of Gao et al. (1995) and verification
of the proposed gain adaptation law with other reaching laws is
kept as future work.

3. Main results

A new gain adaptation law for the reaching law (8) is proposed
as

ε(k) = max {0, εm(k)} , ∀ k ≥ 0, (11)

where

εm(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε(k − 1) + γ |s(k)| if |{s(k)| > |s(k − 1)|}
and {sgn[s(k)] = sgn[s(k − 1)]},

(1 − φ)|s(k)| if {|s(k)| > |s(k − 1)|}
and {sgn[s(k)] = −sgn[s(k − 1)]},

ε(k − 1) − β|s(k)| if |s(k)| ≤ |s(k − 1)|.
(12)

It can be noticed from the third law of (12) that εm(k) decreases
in this case; however, if εm(k) attempts to be negative then,

ε is kept at zero by virtue of the law (11). This ensures the
non-negativity of the gain ε. In other cases, ε(k) = εm(k). The
constant design parameters γ and β can be tuned according to
the required system performance; ε(0) denotes the initial value
of gain. It is important to study the boundedness of ε and has
been carried out in Theorem 3.1.

Theorem 3.1: Given the reaching law (8) and switching gain
adaptation law (12), there exists a ε∗ ∈ R

+ such that ε(k) ≤
ε∗∀ k ≥ 0.

Proof: According to the adaptation law (12), the switching gain
ε decreases for |s(k)| ≤ |s(k − 1)|. Hence, the verification for
the boundedness of ε for this scenario is not required. However,
ε increases if |s(k)| > |s(k − 1)|. Thus, to ensure boundedness
of ε, only the condition |s(k)| > |s(k − 1)| is studied in the
following cases:

Case (1): s(k), s(k − 1) > 0
In this case, as shown in Figure 1(a), the sliding function

is diverging away from the sliding surface. The value of the
switching gain at any instant can be written as

ε(k) = ε(ku − 1) + γ

k∑
i=ku

|s(i)|, (13)

Figure 1. Possible conditions of adaptive sliding mode. (a) Case-1. (b) Case-2. (c)
Case-3. (d) Case-4.
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where ku denotes the time when Case (1) commences. Since
ε(ku − 1) ≥ 0, (13) yields

ε(k) ≥ γ

k∑
i=ku

|s(i)|. (14)

On considering the maximum disturbance in the positive half
and the condition (14), the sliding function at sample (k + 1)
from (8) is obtained as

s(k + 1) ≤ (1 − φ)s(k) − γ

k∑
i=ku

|s(i)| + d̄. (15)

As d̄ is a constant and ε increases with every sample, there exists
a finite sample kuf such that

γ

kuf∑
i=ku

|s(i)| − d̄ > 0. (16)

Since 0 < (1 − φ) < 1 and s(kuf ) > 0 in Case (1), then substi-
tuting (16) in (15), one has the at k = kuf

s(kuf + 1) < (1 − φ)s(kuf ) < |s(kuf )|. (17)

If s(kuf + 1) ≥ 0, then (17) implies |s(k)| < |s(k − 1)| at k =
kuf + 1. In this situation, ε(k) decreases according to the third
law of (12). Otherwise, if s(kuf + 1) < 0, then there exist two
possibilities at k = kuf + 1:

(1) If |s(k)| ≤ |s(k − 1)|, then ε(k) decreases as mentioned
earlier.

(2) If |s(k)| > |s(k − 1)|, then s(k) < 0, s(k − 1) > 0, as shown
in Figure 1(b). The dynamics of s and boundedness for ε for
this situation is studied in Case (2).

Case (2): s(k − 1) > 0, s(k) < 0
In this case, the gain is updated through the second law

of (12) as

ε(k) = (1 − φ)|s(k)|. (18)

On using the gain value in the reaching law (8) and (18), the
sliding function is obtained to be

s(k + 1) = −(1 − φ)|s(k)| + (1 − φ)|s(k)| + d(k).

Since d(k) is bounded, the sliding function also remains
bounded as

|s(k + 1)| ≤ d̄.

In this case, ε only depends upon the instantaneous value of
sliding function. Thus, ε is also bounded for this case.

It is mentioned in the Case (1), that at a finite time k =
kuf + 1, either ε(k) decreases or the dynamics of s(k) follows
Case (2). Thereafter, it is shown that ε(k) remains bounded in
Case (2) by virtue of the adaptive law (12). Hence, on combin-
ing the results obtained from Case (1) and Case (2), it can be
inferred that ∃ε∗

u ∈ R
+ such that ε(k) ≤ ε∗

u for both the Cases
(1) and (2).

Case (3): s(k), s(k − 1) < 0
In this case, as shown in Figure 1(c), |s| increases with s being

in the negative plane. In this case, the gain is updated through
the first law of (12). The value of gain at sample k is

ε(k) = ε(kl − 1) + γ

k∑
i=kl

|s(i)|, (19)

where kl denotes the time when Case (3) starts. Since ε(kl −
1) ≥ 0, (19) yields

ε(k) ≥ γ

k∑
i=kl

|s(i)|. (20)

On considering theworst case of disturbance in the negative half
of plane and using (20), the sliding function at sample (k + 1)
is obtained from (8) as

s(k + 1) ≥ −(1 − φ)|s(k)| + γ

k∑
i=kl

|s(i)| − d̄. (21)

Since d̄ is constant and ε increases with every sample, there
exists a finite sample klf such that

γ

klf∑
i=kl

|s(i)| − d̄ > 0. (22)

Since 0 < (1 − φ) < 1, using (21)–(22), we have the following
at k = klf

s(klf + 1) > −(1 − φ)|s(klf )| > −|s(klf )|. (23)

The condition (23) implies that the sliding function stops
increasing in the negative direction of the sliding surface at k =
klf + 1. If s(klf + 1) ≤ 0 then the condition |s(k)| ≤ |s(k − 1)|
is satisfied, which prompts ε to decrease according to the third
law of (12). Otherwise, if s(klf + 1) > 0 then there exist two
possibilities at k = klf + 1:

(1) If |s(k)| ≤ |s(k − 1)|, then ε(k) decreases as mentioned
earlier.

(2) If |s(k)| > |s(k − 1)|, then we have s(k) < 0, s(k − 1) > 0
at k = klf + 1, as shown in Figure 1(d). The dynamics of
s(k) and boundedness for ε for this situation is studied
subsequently in Case (4).

Case (4): s(k − 1) < 0, s(k) > 0
In this case, the gain is updated through the second law

of (12). The value of gain in this case is

ε(k) = (1 − φ)|s(k)|.

Similar to the argument made in Case (2), s and consequently ε

remain bounded.
On combining Case (3) and Case (4), it can be inferred

that there exists an ε∗
l ∈ R

+ such that ε(k) ≤ ε∗
l for both these
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two cases. Observing the boundedness conditions of all the
individual possible cases, it can be inferred that

ε(k) ≤ ε∗ ∀ k ≥ 0 where ε∗ = max{ε∗
u , ε

∗
l }.

�

Theorem 3.2: The reaching law (8)with the gain adaptation law
(12) has a Globally Ultimately Bounded solution and the sliding
function is ultimately bounded in a band

|s(k)| ≤ ε∗ + d̄
φ

.

Proof: The ultimate boundedness of the sliding function can
be proved by the Lyapunov-like stability analysis. Consider a
Lyapunov candidate function

V(k) = α|s(k)|,

where α is a positive constant. The first difference of the Lya-
punov function can be obtained to be

�V(k) = V(k + 1) − V(k)

= α|s(k + 1)| − α|s(k)|. (24)

Let g(k) = −ε(k) sgn(s(k)) + d(k), then on using (8) in (24)
yields

�V(k) = α|(1 − φ)s(k) + g(k)| − α|s(k)|. (25)

Since 0 < (1 − φ) < 1, (25) leads to

�V(k) ≤ α(1 − φ)|s(k)| + α|g(k)| − α|s(k)|
≤ −αφ|s(k)| + α|g(k)|
≤ −φV(k) + α|g(k)|. (26)

Since

|g(k)| = | − ε(k) sgn(s(k)) + d(k)|,
with ε(k) ≤ ε∗ from Theorem (3.1), and the fact |d(k)| ≤ d̄, the
following relation holds:

|g(k)| ≤ ε∗ + d̄. (27)

Then, using (27), the following can be obtained from (26)

�V(k) ≤ −φV(k) + α(ε∗ + d̄).

Since 0 < φ < 1, the reaching law (8) has a Globally Ultimately
Bounded solution and simultaneously, the ultimate band of the
sliding function can be found to be

|s| ≤ ε∗ + d̄
φ

.

�

4. Simulation results and comparison

In this section, the performance of the proposed algorithm is
verified in comparison with the existing algorithms proposed
by Monsees and Scherpen (2002) and Salhi et al. (2016), using
two numerical examples. While the first example considers a
rectilinear plant comprising of mass–damper–spring system,
a CNC milling machine is considered as the second example.
These complex models are chosen to support the theoretical
findings.

4.1 Numerical simulation 1: Rectilinear plant

A rectilinear plant, as shown in Figure 2, is a electromechani-
cal mass–spring–damper system which represents many indus-
trial physical systems and can be represented by second order
discrete-time equation (1) with parameters A = [ 0 1−1 −0.1215

]
and b = [ 0

1
]
. The parameter c in (2) is chosen to be [1 2] and

initial condition x0 = [10 10]T. The other control parameters
are given in Table 1. A disturbance signal dx(k) = [0 0.5]T ×
(sin(k) + sin(k/3)) is added to the system to imitate more real-
istic situation. The numerical example is simulated for 25 sam-
ples. To compare the performance of the proposed adaptation
law, the same system is simulated using the adaptation law pre-
sented by Monsees and Scherpen (2002) with same the initial
parameters.

The simulation results are presented in Figure 3. Quanti-
tative measures of comparison, the absolute sum of switching
gain

∑
k |ε(k)| and absolute sum of control input

∑
k |u(k)| are

given in Table 2. As shown in Figure 3(a), the switching gain
of the proposed controller is far lesser than that of the pro-
posed by Monsees and Scherpen (2002). Furthermore, it can
be observed in Table 2 that the absolute sum of gain on using
Monsees and Scherpen (2002) and Salhi et al. (2016) are 30.4
and 19.2, respectively, while on using the proposed scheme it
is found to be 4.3. Hence, the absolute sum of gain on using
control algorithms of Monsees and Scherpen (2002) and Salhi
et al. (2016) aremore than 7 times and 4 times, respectively, than
the proposed law. As a result of the lesser value of the adaptive
gain, the control efforts in the proposed algorithm is about 28%
lesser than control efforts using Monsees and Scherpen (2002).
The control input is shown in Figure 3(b). Therefore, it can be
noticed that the proposed scheme resolves the problem of gain
overestimation.

Figure 2. Free body diagram of mass–spring system.

Table 1. Parameter values in simulation 1.

Sl.no Parameter Value

1 φ 0.5
2 β 1
3 ξ 0.1
4 γ 0.2
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Figure 3. Simulation results of rectilinear plant. (a) Switching gain. (b) Control
input. (c) Sliding function. (d) State x1.

Table 2. Comparison of performance in simulation 1.

Sl.no Control algorithm
∑

k |ε(k)| ∑
k |u(k)|

1 Existing adaptive law (Monsees
& Scherpen, 2002)

30.4 45.5

2 Existing adaptive law (Salhi et al., 2016) 19.2 38.7
3 Proposed adaptive law 4.3 33.6

Table 3. Parameter values in simulation 2.

Sl.no Parameter Value

1 φ 0.5
2 β 1
3 ξ 0.1
4 γ 0.2
5 γ0 0.8
6 γ 0 0.6

Figure 4. Simulation results of CNCmillingmachine. (a) Switchinggain. (b) Control
input. (c) Sliding function. (d) State x1.
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Table 4. Comparison of performance in simulation 2.

Sl.no Control algorithm
∑

k |ε(k)| ∑
k |u(k)|

1 Existing adaptive law (Monsees
& Scherpen, 2002)

52.9 1032.7

2 Existing adaptive law (Salhi et al., 2016) 61.0 1031.8
3 Proposed adaptive law 21.5 1009.8

The sliding function, depicted in Figure 3(c), gradually
reaches and then remains in the vicinity of the origin. Simi-
larly, the system state, as seen inFigure 3(d), using the proposed
algorithm remains in the vicinity of the origin.

Thus, the proposed adaptive sliding mode control algorithm
guarantees lesser control efforts and better robustness as com-
pared to the existing adaptive algorithm.

4.2 Numerical simulation 2: CNCmillingmachine

A model of CNC milling machine is provided by Eun, Kim,
Kim, and Cho (1999). In this model, CNC servopack andmotor
are considered as a single plant. For further details of mod-
elling and the value of physical parameters, the interested read-
ers may refer Eun et al. (1999). This model is represented by
second order discrete-time equation (1) with parameters A =[ 1 0.0006
0 0.3074

]
and B = [ 0.0004

0.6926
]
. The parameter c in (2) is chosen to

be [201 1] and initial condition x0 = [1 1]T. The other control
parameters are given in Table 3. A disturbance signal dx(k) =
[0 0.6926]T × (sin(k)) is added to the system to imitate more
realistic situation. The numerical example is simulated for 100
samples.

The comparative simulation results for the CNC milling
machine are presented in Figure 4. Similar to simulation 1,
quantitative measures of comparison, the absolute sum of
switching gain

∑
k |ε(k)| and absolute sum of control input∑

k |u(k)| are given in Table 4. As shown in Figure 4(a), on
using control algorithm of Salhi et al. (2016), the gain ε expo-
nentially decreases irrespective of the evaluation of the slid-
ing function. Therefore, it suffers from gain under-estimation.
Although, the control algorithm given in Monsees and Scher-
pen (2002) allows ε to increase several times, but it still has
high gain compared to the proposed adaptive law-based gain.
The proposed algorithm enables ε to overcome the gain over-
and under-estimation problems by following the evolutions of
the sliding function. The control input for all the algorithms are
shown in Figure 4(b). It can further be observed from Table 4
that the absolute sum of gain on using Monsees and Scher-
pen (2002) and Salhi et al. (2016) are 52.9 and 61.0, respectively.
On the other hand, on using the proposed scheme, the abso-
lute sum of gain is only 21.5. This observation also justifies the
superiority of the proposed control law. The control effort in the
proposed algorithm is also found to be lesser than that of Mon-
sees and Scherpen (2002) and Salhi et al. (2016), owing to its
lesser value of the adaptive gain.

5. Conclusion

An improved gain update law for adaptive discrete-time sliding
mode has been proposed in this paper. The new gain adaptation
law circumvents the problem of over- and under-estimation.

The theoretical and subsequent simulation results further sub-
stantiate the advantages of the proposed scheme in terms of
better robustness and lesser control efforts compared to the
existing methods.
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