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A Nonlinear Projection Method Based on
Kohonen’s Topology Preserving Maps
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Abstract— A nonlinear projection method is presented to vi-
sualize high-dimensional data as a two-dimensional image. The
proposed method is based on the topology preserving map-
ping algorithm of Kohonen [13}-{16]. The topology preserving
mapping algorithm is used to train a two-dimensional network
structure. Then the interpoint distances in the feature space
between the units in the network are graphically displayed to
show the underlying structure of the data. Furthermore, we will
present and discuss a new method to quantify how well a topology
preserving mapping algorithm maps the high-dimensional input
data onto the network structure. This will be used to compare
our projection method with a well-known method of Sammon
[28). Experiments indicate that the performance of the Koho-
nen projection method is comparable or better than Sammon’s
method for the purpose of clustered data. Another
advantage of the method is that its time-complexity only depends
on the resolution of the output image, and not on the size of the
dataset. A disadvantage, however, is the large amount of CPU
time required.

1. INTRODUCTION

N important tool in exploratory data analysis is the pro-

A jection of high-dimensional data onto a low-dimensional
space to facilitate visual inspection of the data. This can
provide better insight into the data, since clustering tendencies
or a low intrinsic dimensionality in the data may become
apparent from the projection. To preserve the inherent structure
of the data as well as possible, the projection method should
map the data faithfully onto the lower dimensional space.
In general, this projection problem can be formulated as
mapping a set of n vectors from an N-dimensional space
onto an M-dimensional space, with M < N. Since the goal
here is exploratory data analysis, we will be concerned with
projections onto a two-dimensional plane (M = 2).

In this paper we will present a projection method that
is based on the topology preserving mapping algorithm of
Kohonen [13]1-[16]. In the proposed method, which will be
called the Kohonen projection method, the topology preserving
mapping algorithm is used to project high-dimensional data

Manuscript received June 29, 1992; revised January 15, 1993, and accepted
September 23, 1994. A short version of this paper has appeared in the
Proceedings of the 11th International Conference on Pattern Recognition, This
work was supported by the Dutch government as a part of the SPIN/FLAIR-
DIAC project, by the Foundation of Computer Science in the Netherlands
(SION), the Dutch Organization for Scientific Research (NWO), and by NSF
Grants CDA 8806599 and IRI 8901513.

M. A. Kraaijveld is with the Pattern Recognition Group, Department
of Applied Physics, Delft University of Technology, 2600 GA Delft, The
Netherlands. i

J. Mao and A. K. Jain are with the Department of Computer Science,
Michigan State University, East Lansing, MI 48824 USA.

IEEE Log Number 9409160.

onto a two-dimensional network structure. Then, with a new
display technique, we will show how the inherent structure
of the data can be visualized. Furthermore, a new method is
presented to quantify how well a topology preserving mapping

“algorithm maps the data onto the network structure. This

allows.a quantitative evaluation of the quality of the mapping
and thereby a comparison of topology preserving mapping
algorithms with other projection methods. First, however, we
will provide a short overview of some well-known projection
methods. .

In the literature on exploratory data analysis, several projec-
tion methods have been described. These projection methods
try to preserve one of several criterion functions in the
projection. Two important distinctions that can be made are
whether the class labels of the data (if available) are used
or not and whether the mapping is linear or nonlinear. This
results in four possible types of projection algorithms which
we will mention briefly here:

e Unsupervised and Linear: Among the linear projection
methods for data without class labels, the eigenvector
or Karhunen-Loeve projection [8] is probably the best
known. Another powerful linear projection method is
projection pursuit, developed by Friedman and Tukey [6].

e Unsupervised and Nonlinear: Sammon has presented a
widely used algorithm in which the mean squared differ-
ence between the interpattern distances of points in the
original space and in the projected space is minimized
[28]. This generally results in a highly nonlinear mapping
of the data. An approach that is somewhat related to
Sammon’s algorithm is multidimensional scaling [17]
and [18]. Here a dataset often containing ordinal data is
mapped onto a plane. A fundamentally different approach
was presented by Wang et al. [31]. Their method projects
the data onto the plane such that the minimum spanning
tree of the data is preserved.

e Supervised and Linear: Discriminant analysis is a well-
known procedure to project labeled data in a linear
fashion [4]. In discriminant analysis, the ratio of the
determinants of the between-class scatter matrix (Sp)
and the within-class scatter matrix (S,,) is maximized.
The solution is the space spanned by the eigenvectors
corresponding to the largest eigenvalues of the matrix
(821 - SB).

* Supervised and Nonlinear: An example of a nonlinear
algorithm to project labelled data is presented in [7]
and [8]. In this method, the coordinates of the points
in the projected space are a function of the distance to
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Fig. 1. The structure of a unit in a Kohonen network. Every unit computes

the Euclidean distance between the .V-dimensional input vector z and the
weight vector m.

the kth nearest neighbor of every point. In a number of
applications it was shown that this projection preserves
the underlying structure of the data. A second interesting
method is described in [21]. Here the pairwise log-
likelihood ratios of the points are used in the two-
dimensional display. An unsupervised variant of this
method was also presented.

The Kohonen projection method that is discussed in this
paper falls in the category of nonlinear projection methods. Al-
though the algorithm is basically unsupervised, many authors
have demonstrated and used the topology preserving properties
of the algorithm for problems in which the class labels are
known, e.g., see [13]-[16] and the references therein. In this
paper, however, we will assume that no information about the
pattern class labels is available, and we will study how the
Kohonen projection method compares to other unsupervised
nonlinear projection methods. Category information of the
data will only be used to evaluate the performance of the
method.

The remainder of this paper is organized as follows. Sections
II and III will present the Kohonen topology preserving
mapping algorithm and Sammon’s nonlinear projection al-
gorithm and its variants. The Kohonen projection method is
presented in Section IV together with the tools that are required
for its evaluation. In Section V, a number of experiments
will be presented which will be discussed in Section VI.
Finally, the conclusions of this study are presented in Section
VIL

II. THE KOHONEN TOPOLOGY
PRESERVING MAPPING ALGORITHM

The topology preserving mapping algorithm of Kohonen is
an iterative procedure for training a class of neural networks
[13]-[16]. The learning procedure is unsupervised or self orga-
nizing and is used to train a network of units or neurons that
are arranged in a low-dimensional structure (see Figs. 1-2).
In this paper, a two-dimensional structure for the network is
used, but in the literature the application of one and three-
dimensional structures has frequently been described (e.g., see
[15] and [26]).

The training of the network is initialized by assigning small
random values to the weight vectors m of the units in the
network. Each iteration in the learning process consists of
three steps: the presentation of a randomly chosen input vector
from the input space, the evaluation of the network, and an
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Fig. 2. A Kohonen network consisting of a two-dimensional array of units
is shown. Every unit has the architecture as depicted in Fig. 1. On every step
in the learning process, the unit ¢ with the smallest Euclidean distance to the
input-vector is determined. Then, all units within a certain neighborhood of
unit ¢ are updated according to the learning rule 2). The figure shows how the
size of this neighborhood shrinks as a function of time. Early in the learning
process, at t;. a very large number of the units is updated on every step,
whereas finally, at 3. only a small fraction is updated.

update of the weight vectors. In the following, the iteration
will be indexed by the time ¢. The weight vectors are updated
according to the following procedure [13]-[16].

After the presentation of a pattern, the Euclidean distance
between the input vector and the weight vector is computed for
all units in the network. The unit with the smallest distance
is marked as unit ¢

llz(t) = me(®)]| = min ([|z(t) — ms($)]]). (M

In the following step, all units within a certain spatial neigh-
borhood N, around unit c are updated according to (see Fig. 2)

mi(t) + a(t)[z(t) — mi(t)]

mi(t+1)= {mi(t) if i € Ne(t)

if i & N.(t).
(2)

The size of the neighborhood N, is a function of time ¢ and
shrinks monotonically. The parameter «(t) is the step size of
the adaptation of the weights and also shrinks monotonically
with time. The update rule is closely related to the k-means
clustering algorithm [20]. Like the k-means algorithm, it is
the best matching unit (i.e., cluster center) which is moved a
small step into the direction of the input vector. In the topology
preserving mapping algorithm, however, a whole set of units
are updated instead of a single unit. Since the units that are
updated at every step are neighboring units in the network,
there is a tendency that neighboring units in the network
represent neighboring locations in the feature space. In other
words, the topology of the data in the input space is preserved
during the mapping. Clearly, when the intrinsic dimensionality
of the data is higher than the dimensionality of the network,
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the network will not be able to fully represent the structure
of the data (see [15]). In that case, however, the network can
be considered to be a low-dimensional representation of the
data. It is this property of the algorithm that will be used in
the Kohonen projection method described in this paper.

A slightly alternative formulation of the learning rule, which
was used in our experiments, is the following [16]. Instead
of updating all units in the neighborheod N, identically, the
update of a unit is weighed by a function of the distance
to the best matching unit in the network. That is, when the
coordinates of a unit in the network are given by r and the
coordinates of the best matching unit by r., a unit is updated
according to

m;(t+ 1) = mz(t) + hm'(t)[.‘t(t) - mi(t)] 3)
where h.; is a Gaussian weighting function
ri — 1|2
hei(t) = ho(t) exp (—[—'T@—zl—l)- @

Here ho(t) and o(t) are chosen as suitably decreasing func-
tions of time. In [16] it is discussed that the algorithm
is relatively insensitive to the actual choice of these two
parameters and the way in which they are decreased during
the learning process. These findings are in accordance with
our experiments; which are described in Section V.

Successful applications of this algorithm in speech recog-
nition [14], robotics [26], AI [27]), and many others are
well known. For most of these applications, however, it is
not always clear whether the algorithm offers any advan-
tages over other competing methods. Rigorous theoretical
analyses concerning various properties of this algorithm can
be found in [24], [25], and {15]. These analyses study the
convergence properties and the stability of the algorithm for
some simple distributions of the data in the feature space.
An important issue that is not addressed in these analyses,
however, is the behavior of the algorithm when it is trained
with a small amount of data. This is an important issue that
is especially relevant in practical applications. A class of
variants of the algorithm was presented as “learning vector
quantization,” e.g., see [16]. These are essentially modifi-
cations of the algorithm to use it for supervised learning
problems.

III. NONIINEAR PROJECTION WITH SAMMON’S ALGORITHM

Sammon’s nonlinear projection algorithm [28] aims at mini-
mizing an error measure that is a function of the differences of
the interpoint distances in the original space and the interpoint
distances in the projected space. Experimental results in [1]
indicated that Sammon’s algorithm has a performance that
is superior over other algorithms. Therefore, we have chosen
to compare the Kohonen projection method with Sammon’s
algorithm, rather than some other method. Moreover, two of
the datasets that were used for the experiments in {1] are also
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Fig. 3. A Kohonen network of 100 by 100 units was trained with the IRIS
data (dataset 5 in Section V). When the class labels are assigned to the units
after training, this projection clearly shows that the data is clustered and
thereby demonstrates the topology preserving property of the algorithm.

used in the experiments that we describe in Section V, i.e., the
IRIS data (dataset 5) and the 80X data (dataset 4).

‘When the distance between two patterns ¢ and j is denoted
d}; in the original feature space, and d;; in the projected
space Sammon’s algorithm minimizes the following measure
of distortion of the projection

1 (df; — d)?
E= 4 - .
IR
i<J

This is an optimization problem that can be solved with a suit-
able optimization technique, as the gradient descent procedure
proposed by Sammon [28]. Since for every step in an iteration
of Sammon’s algorithm n (n — 1)/2 distances have to be
computed, the algorithm quickly becomes impractical for large
amounts of data. Therefore, numerous authors have proposed
methods to lower the time complexity of the algorithm, e.g.,
see [3], [23], [19], and [1]. Furthermore, a number of variants
of the algorithm have been published. Among. these are the use
of different metrics [32], [12], different optimization criteria
[29] or different optimization methods [12].

IV. THE KOHONEN PROJECTION METHOD

As discussed in Section II, the topology preserving mapping
algorithm can be used to project data onto the low-dimensional
network structure. An example is presented in Fig. 3. In this
figure the well-known IRIS data (dataset 5 in Section V)
is used to train a network. The figure shows the labelling
of the units in a large Kohonen network (100 x 100) after
the learning process. From the fact that the three classes
are well separated in the network plane, it can be decided
that the classes are clustered. It is important to note, how-
ever,  that the structure of the data can only be perceived
through this labeling of the units. Therefore, for problems for
which no class labels are available, this procedure will not
work.
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Fig. 4. Projection image of dataset 1-—10 dimensional separated normal
clusters.

The solution to the labeling problem that is presented in this
paper has two components. In the first place, a rather large
network is used. For the experiments reported in this paper, a
two-dimensional network of 100 by 100 units was used. The
second step of our solution is to display the network as an
image, whereby every unit corresponds to a pixel. The gray
value of each pixel is determined by the maximum distance in
the feature space of the corresponding unit to its four neighbors
(East, West, North, and South) in the network. The larger the
distance, the lighter the gray value is.

An example of this method is presented in Fig. 4. In this
case, two 10-dimensional Gaussian distributed clusters (dataset
1) were used to train the network. It is apparent from the
projection image that there are two dark regions, corresponding
to regions where the units are very close in the feature space,
and one bright line, which corresponds to the empty region
between the two clusters. In each dark region the units are
relatively close, so the distance in the feature space of a
unit to its four neighbors in the network is small. For all
units in the bright region, however, there is at least one
neighboring unit that is far(ther) away, so the corresponding
gray value is higher. Note that the network has only a two-
dimensional topology and is therefore not capable of fully
capturing the 10-dimensional nature of the individual clusters.
The image clearly shows, however, that the dataset consists
of two well-separated clusters. It is illustrative to compare
the result of Fig. 4 with that of Fig. 5. In the latter case the
dataset consists of uniformly distributed 10-dimensional data
(dataset 9). Since there are hardly any clustering tendencies
in this dataset, it is interesting to notice that there is no
apparent structure in the corresponding projection image.
From these results it can be concluded that the proposed
projection method works in principle. The questions that
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Fig. 5. Projection image of dataset 9—Uniform distributed 10 dim. data.

now remain to be answered are how can the quality of the
mapping be quantified and how to relate its performance
to the performance of other projection methods. Therefore,
the second contribution of this paper consists of such a
quantification method.

One of the problems that arises in the evaluation of the
Kohonen projection method is that there is no direct notion of
interpoint distances in the projection. This is different from all
other mapping methods where the data are projected directly
onto a lower dimensional space. In this projected space, the
distances are easily computed, which facilitates the direct
usage of an error measure like Sammon’s distortion measure
in (5). In our approach, distances are displayed indirectly by
the gray value, and the only distances that are displayed are the
distances between the four immediate neighbors. To be able to
evaluate the new projection method, it is necessary to define
a distance measure in the network plane. Therefore, we will
define a metric that is essentially based on a graph searching
technique; see Fig. 6. Its functionality and implementation
closely resembles that of the gray value weighted distance
transform as described by Verbeek and Verwer [30]. First,
however, we need some definitions.

Definition 1: The distance between two units (see Fig. 6);

¢ The distance d;; between two eight-connected neighbor-
ing units 7 and j in the network plane is defined as the
Euclidean distance d}; of the units in the feature space.
* The distance d;; between two nonneighboring units 7 and
j in the network plane is defined as the minimum of
the summed distances between neighboring units over all
possible eight-connected paths in the network plane from
unit ¢ to unit j.
An informal interpretation of these definitions is that the
distance between two points in the image is determined by
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1mportant to note that this informal interpretation is not exactly
equal to the formal definition. This is because the definitions
above are explicitly defined in the network plane and not in the
image. The differences are based on two related facts. In the
first place, the projection image only shows information about
the distance between a unit and its four neighbors, whereas the
estimate of the distance makes use of the distances to eight
neighbors. Clearly, this improves the estimates of the path
lengths. Second, the projection image effectively shows the
distance to only one neighbor for every unit (i.e., the farthest),
whereas our distance estimate makes use of the distance to
eight neighbors. For the projection image this is advantageous
since this increases the contrast in the projection image. The
estimation of the distances, however, clearly benefits from
taking more neighbors into account.

Now that we are able to compute the distance between two
units, we can define the distance between two patterns in the
network plane.

Definition 2: The distance between two patterns in the
network plane is defined as the distance between the two
corresponding closest units.

Now all the necessary toals are available to compare the
projection methods. Since for almost all datasets that were used
in the experiments the class labels were available, we have
chosen to use the following evaluation criteria (see also [1]):

e The Sammon error measure; see (5). This indicates how
well the interpattern distances have been preserved in the
projection.

¢ The difference of the performance of the nearest neigh-
bor classifier in the original and the projected space.
This measures how well “local” information has been
preserved in the projection.

e The difference of the performance of the mearest mean
classifier (also known as the minimum distance classifier)
in the original and the projected space. This indicates
how well “global” information has been preserved in the
projection.
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One might wonder whether it is computationally feasible
to compute distatices over all possible paths in the network
plane and to repeat this for all O(n®) interpoint distances.
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il tesults in mﬁﬁmbhmmnts with
respect 10 the CPU time, the experitnents indicated that the
complete evaluation procedure only took 10% of the time that
was spent in training the network. From that point of view,
the proposed evaluation methods are indeed computationally
feasible.

A final remark is that an alternative use of these evaluation
methods is to quantify how well a Kohonen network has been
able to map the data onto the network structure. For example,
variants of the algorithm can quantitatively be compared in
this way.

V.. EXPERIMENTS

To test the projection method with the criteria mentioned
above, a number of experiments were conducted. In this
section the datasets, the experimental procedures and the
results will be discussed.

A. Datasets

To test the performance of the projection method, a large
variety of datasets was used. Among these are four artificial
datasets and five datasets consisting of real data.

¢ Dataset 1: Artificial dataset consisting of two standard
normally distributed clusters of 500 patterns each, in a 10-
dimensional space. The means of the clusters are (-1, -1,
-1, --«, -1) and (+1, +1, +1, -- -, +1) and the covariance
matrix of both clusters is equal to the identity matrix.
The Bayes error for the two distributions is only 0.078%,
so the two clusters are very well separated in the feature
space.

e Dataset 2: Atrtificial dataset consisting of two elongated
clusters of 500 patterns each, in a nonlinear two-
dimensional subspace of the three-dimensional feature
space; see Fig. 7. This dataset was generated with the
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following pseudo code:

Class A :
theta = Pi x ( — 0.5 + random_unif());

x = 0.5 * cos(theta) + 0.025
* random_gauss( );

y = 0.5 * sin(theta) 4+ 0.025
* random_gauss( );

z = sin(2 * x) *x cos(2 x y) + 0.025
* random_gauss( );

Class B :
theta = Pi x (0.5 + random_unif()):

x = 0.25 4 0.5 x cos(theta) + 0.025
* random_gauss ( );

y = 0.5+ 0.5 x sin(theta) + 0.025
* random_gauss( );

z = sin(2* x) *x cos(2*y) + 0.025
* random_gauss( );

This dataset was used because it is (almost) intrinsically two
dimensional. It is, therefore, to be expected that it perfectly
maps to the two-dimensional structure of the network.

Dataset 3: Artificial dataset consisting of uniformly dis-
tributed data on the surfaces of two three-dimensional
spheres: a large sphere at (0, 0, 0) with radius one, and
a small sphere within the large sphere at (0, 0, 0.2)
with radius 0.1. This dataset was chosen because it is
particularly difficult for most clustering algorithms [9].
Dataset 4: Real dataset consisting of the well-known 80X
hand printed character data. It consists of 45 patterns in
an eight-dimensional feature space. The data consists of
three classes (the characters “8,” “0,” and “X”) and is
very sparsely distributed in the feature space [9].
Dataset 5: Real dataset consisting of the well-known IRIS
dataset [5]. It consists of 150 patterns in three classes in
a four-dimensional feature space.

Dataset 6: Real dataset extracted from the range image
of a polyhedral object; see Fig. 8. Of all the 13633
pixels in the range image, the z coordinate and the (three
component) surface normal vector was computed. In [9]
it was shown how range data can be segmented with the
help of a clustering algorithm in this feature space. Here
we use the Kohonen projection method to visualize the
clustering tendencies of the dataset.

Dataset 7: Real dataset extracted from a 256 x 256 image
with four textures synthesized by four different Gaussian
Markov random fields; see Fig. 9. The dataset contains 15
multi-resolution SAR (i.e., simultaneous autoregressive)
model features for every pixel [22]. The = and the y
coordinates of every pixel were included as two additional
features. The total number of patterns in the dataset was
4000.
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Fig. 7. Dataset 2: two elongated clusters in a nonlinear two-dimensional
subspace in the three-dimensional feature space.

¢ Dataset 8: Real dataset extracted from a composite 512
x 512 image with 16 textures from the Brodatz book [2];
see Fig. 10. The image was filtered with 20 Gabor filters,
giving 20 features for every pixel [10]. The z and the y
coordinate of every pixel were included as two additional
features. The total number of patterns in the dataset was
16 000.

e Dataset 9: Artificial dataset consisting of 1000 uniformly
distributed patterns in a 10-dimensional cube. This dataset
exhibits almost no clustering tendency and is, therefore,
expected to result in a projection image with hardly any
structure.

B. Experimental Procedures

The starting point for all the experiments was a Kohonen
network consisting of 100 by 100 units. The choice for this
size of the network was based on the available amount of
memory in the computers available to us. The network should
preferably be as large as possible, however, to provide the user
with the largest possible resolution in the projection image.
Every dataset was used to train 10 networks with the same
architecture but with different initial weights, so that statistics
about the performance of the network could be collected. The
simulations were based on a custom made program in C and
were performed on SUN Sparc II workstations.

The parameters of the Kohonen learning algorithm were
based on a few initial experiments with some of the datasets.
After the selection of the parameter values, the same values
were used for all the datasets and for all the experiments.
They were set to the following values. The initial value of the
parameter controlling the step size of the updates ho (0) was
0.05, see (3). After every update of the weights (i.e., after the
presentation of a pattern to the network), ho(t) was decreased
with a factor 0.9999, with a minimum value of 0.0001. The
width of the kernel weighing the update of the units, o (0),
was initially set to 66.666 and o(t) was also decreased by
a factor 0.9999, with a minimum of 1.0. In advance of the
training procedure, the order of the patterns in the datasets was
randomized, and then all the patterns were cyclically presented
to the network. The training of the network was terminated
after 100000 weight vector updates. After the training phase
of the network, the Sammon distortion and the error rates of the
nearest neighbor classifier and the nearest mean classifier were
computed with the leave-one-out method. The classifiers were
implemented by projecting the dataset or the class means onto
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the network structure. Special care was taken to deal with the
problem of multiple data points mapping onto the same unit.
In that case the unit was labeled with the majority class label
of the data points that were projested onto the unit. As the
distance measure allows the compuitation of the distances and
thereby also of neighboring relations, a new sample could then
easily be labelled by searching for, the nearest unit with a class
label. To limit the amount of CPU time required for datasets
larger than 1000 patterns, the estimates of the performance of
both classifiers were based on a randomly selected subset of
1000 patterns.

To compare the Kohonen projection method with an al-
ternative method, all experiments were repeated with Sam-
mon’s algorithm. Every dataset was also projected 10 times
with Sammon’s algorithm and statistics about the perfor-
mance were collected. Since the CPU and memory require-
ments of Sammon’s algorithm become prohibitive for large
amounts of data, the datasets that were larger than 1000
patterns were replaced by a subset consisting of 1000 ran-
domly selected patterns. The step size for the gradient descent
procedure in Sammon’s algorithm (i.e., the Magic Factor,
see [28]) was chosen as 0.3. After the projection; the per-
formance of the nearest neighbor classifier and the near-
est mean classifier were computed with the leave-one-out
method.

C. Results

The results of the experiments are summarized in Tables
I-III. Since the data in dataset 9 (the uniformly distributed
noise in a cube) was not labeled, the estimates. of the nearest
neighbor and nearest mean performance are omitted for this
dataset.

In Figs. 4, 5, and 11-17, the projection images of the
Kohonen projected data are shown. When the class labels of
the data are available, a particularly good display technique
can be derived by showing the labels in a color overlay on the
projection image. For comparison, the Sammon’s projection
of the IRIS data is shown in Fig. 18.

VI. DISCUSSION

From the projection images shown in Figs. 4, 5, and 11-17,
it can be seen that they indeed visualize the true structure of
the data. The best examples of this are found in Fig. 4 (dataset
1) and Fig. S (dataset 9), respectively, corresponding to a well-
clustered dataset and a dataset without any clustering tendency.
Fig. 4 is indeed very structured, whereas Fig. 5 shows very
little or no structure. Moreover, for datasets 2, 3, 5, 6, and
7 it is clear that there are indeed clustering tendencies in the
data. Some limitations of the method can be found in Figs. 13
and 17. In Fig. 13 the problem is caused by the very sparse
nature of the dataset. The image contains roughly as many
dark regions as there are pattérns in the dataset (i.e., 45). This
indicates that every pattern is considered to represent a cluster
by itself or, in other words, that there is no clustering tendency
detected in the data. This is in accordance, however, with the
results of other projection algorithms on this dataset (e.g., see
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[9]). A second potential problem is found in Fig. 17. Here, a
large number of clusters “struggle” for the limited available
space in the image. Probably, a better result could be obtained
by using a larger network.

From the quantitative results reported in Section V, it is
apparent from Table I that Sammon’s algorithm performs
significantly better in preserving the interpoint distances than
the Kohonen algorithm. This is not surprising, since the
Kohonen algorithm does not aim at minimizing Sammon’s
error measure. The exception is dataset 2, which represents
the best possible case for the Kohonen algorithm: the data
is clustered and has an intrinsic dimensionality that is equal.
to the dimensionality of the network structure. Another in-
teresting result is found for dataset 9, which corresponds to
the worst possible case for any projection algorithm. Here,
the data has no clustering tendency at all and has an intrinsic
dimensionality that is higher than the dimensionality of the
network structure. For the Kohonen projection method, this
indeed results in an extremely high distortion. For Sammon’s
algorithm, however, the structure of this data caused the
algorithm not to converge.

The results presented in Tables I and III show that the

-Kohonen projection method varies between slightly better to

significantly better than Sammon’s algorithm in preserving
the performance of the nearest neighbor classifier and the
nearest mean classifier. This implies that for applications in
which the projected data have to be classified afterwards,
the Kohonen algerithm is to be preferred over Sammon’s
algorithm. An example of such an application is the speech
recognition system as described by Kohonen [14]. Also, it
is apparent that the performance of the nearest neighbor
classifier is slightly better preserved than the performance of
the nearest mean classifier. This can be explained by the fact
that the topology preserving mapping algorithm is still based
on localized updates of the units.

A subtle difference between the two projection algorithms
is when they are used for the projection of points that are not
part of the original dataset. In the Kohonen projection method,
an unforeseen point is projected by searching for the closest

-unit in the network. Then, its projection can be visualized by

highlighting the corresponding pixel in the projection image.
When the number of units in the network is larger than the
size of the dataset, the Kohonen algorithm has the advantage
that the network interpolates between the points of the dataset.
This provides a good estimate of the projection of a new point,
where accuracy can be controlled by the size of the network.
For Sammon’s algorithm, the projection of an unforeseen
point can analogously be accomplished by searching for the
nearest neighbor of the new point in the dataset. Then, as
an estimate of the location of the new point in the projected
space, the projection of its nearest neighbor can be used.
When the size of the original dataset is small, the accuracy
of this procedure can potentially be increased by averaging
over some of the projected nearest neighbors. This involves
an additional procedure, however; that is not implicit in the
projection method. ’
Another issue that needs discussion is the speed of the
Kohonen projection method, since it might prevent its practical
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Fig. 8. Dataset 6: The range image of the polyhedral object. For all 13633
pixels in this image, the z-coordinate and the three component surface normal
vector were computed. These were used as four features for training a
Kohonen network.

Fig. 9. Dataset 7: An image containing four synthesized textures. The
textures were generated by four different Gaussian-Markov random fields.

application. As Sammon’s algorithm was in 1969, the Koho-
nen projection method is, in its current form, not very practical.
In the implementation that was used for the experiments,
every projection in Section V took up to tens of hours of
CPU time. Clearly, this is not fast enough for interactive use.
Since 90% of the CPU time was spent in training the network
with the Kohonen topology preserving mapping algorithm, the
projection method can be speeded up by using faster variants
of the Kohonen algorithm. The issue of investigating faster
variants of the Kohonen algorithm, however, was considered
not to be within the scope of this paper. With the regular
Kohonen algorithm in our implementation, we estimate that
the speed can possibly be improved by a factor 10 by using
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Fig. 10. Dataset 8: A 512 x 512 image containing 16 textures from the
Brodatz book [2].

Fig. 11.

Projection image of dataset 2——two elongated clusters in 3D space.

other parameters for the Kohonen algorithm (e.g., lowering the
number of iterations to 25000 or 50 000), and by optimizing
the simulator. Then, by using a computer that is 10 times faster,
the CPU-time could be brought back to tens of minutes instead
of tens of hours. Due to the parallel nature of the Kohonen
algorithm, another promising way to speed up the projection
is by using parallel computers or special purpose hardware.
This may bring the projection time back from minutes to
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Fig. 13 Prof

seconds. Another interesting difference between the algorithms
is that the CPU time for Sammon’s algorithm is proportional
to the square of the number of samples in the dataset, whereas
the Kohonen projection method is linear in the number of
units in the network. Therefore, by choosing the resolution of
the projection image one can directly influence the required
amount of CPU time.

A final remark is that, as can be seen in Fig. 6, the
approximation of distances by taking discrete steps in the

Fig. 12. Projection image of dataset 3—small sphére within large sphere:
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Fig. 15. Projection image of dataset 6—range image data.

network plane clearly results in an overestimate of the dis-
tance. This suggests that this discretization effect could be
corrected by multiplying the estimated distance with a correc-
tion factor slightly smaller than one. Although it is doubtful
that a universal constant exists which is optimal for all
network sizes and all probability distributions, some theo-
retical work could be done on determining the value of
this constant for certain probability distributions and network
sizes. Also, empirical research might indicate that a constant




KRAALIVELD er al.: NONLINEAR PROJECTION METHOD

Fig. 16. Projection image of dataset 7—4 textures data.

Fig. 17.

Projection image of dataset 8—16 textures data.

exists which improves the results in a number of realistic
applications.

VII. CONCLUSIONS

The nonlinear projection method that is presented in this
paper is based on three ideas, of which two ideas are contribu-
tions of this paper. In the first place, the well-known Kohonen
topology preserving mapping algorithm is used to project high-
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Fig. 18. The projection of the IRIS data (dataset 5) with Sammon’s algo-
rithm.

TABLE 1
THE AVERAGE SAMMON DISTORTION (IN %)
AND ITS STANDARD DEVIATION (IN BRACKETS)

Set | Description Sammon distortion
Kohonen projection Sammon's
projection
1 10 dim. separated normal clusters 34.6 (1.2) 6.0 {0.1)
2 2 clongated clusters in 3D space 0.51 (0.0) 2.7 (1.2)
3 small sphere within large sphere 29.9 (1.2) 7.5 (0.7)
4 80X data 49.3 (2.2) 5.3 (0.4)
S IRIS data 3.4 (0.4) 0.6 (0.1)
6 range image data 6.9 (0.8) 2.1 (1.0)
7 4 textures data 33.4 (6.0) 5.3 (0.1)
8 16 textures data 42.0 (6.9) 5.7 (0.1)
9 Uniform distributed 10 dim. data 95.4 (2.6) did not converge

dimensional data onto a two-dimensional network structure.
Secondly, the structure of the data is visualized by mapping the
network onto a two-dimensional image. In this image, the gray
value of every pixel (i.e., unit) is proportional to the distance
to the farthest neighbor in the network plane. Finally, a
technique based on the gray value weighted distance transform
[30] facilitates the definition of a metric in the network
plane and thereby enables a quantitative evaluation of the
algorithm. The experimental results indicate that the Kohonen
projection method has a performance that is comparable or
better than Sammon’s algorithm for the purpose of classi-
fying clustered data. For the purpose of preservation of the
interpoint distances, however, Sammon’s algorithm performs
better. Although the current implementation is very slow,
the algorithm can be speeded up significantly by mapping
the algorithm onto a parallel computer. Furthermore, the
time complexity of the proposed algorithm depends on the
resolution of the projection image, and not on the num-
ber of samples in the dataset. A final remark is that the
use of the metric in the network plane facilitates a quan-
titative evaluation of various topology preserving mapping
algorithms.
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TABLE II 114-128, 1982.
THE AVERAGE ERROR OF THE NEAREST NEIGHBOR [14] —, “The ‘neural’ phonetic typewriter,” Comput., vol 21, Pp. 11-22,
CLASSIFIER (IN %), ESTIMATED WITH THE LEAVE-ONE-OUT Mar. 1988.
METHOD AND ITS STANDARD DEVIATION (IN BRACKETS) [15] ————., Self Organization and Associative Memory, 3rd ed. Heidelberg,
a—— . Germany: Springer-Verlag, 1989,
Set | Description Classification Error [16] — 'l‘he self organizing map,” Proc. IEEE, vol. 78, no. 9, pp.
Using input | Kobonen Sammon's " 1464-1480, Sept. 1990.
m— e = = St (17] J. B. Keuskal, “Nenmetric multidimensional scaling: A numerical
2 clongated in 30 . S (6.0) 0.3 (0.4) method,” vol. 29, pp. 115-129, 1964.
(3 | small within | j ) 0.3 (0.2) [18] 1.'B. Kmk:l “Muitid:mpnmonal scaling ‘and other methods for dis-
4 fEQt dain 4 2.8 14:0) covering structure,” in Statistical Methods for Digital Computers, K.
o RIS 4 ALl 22 (L8 " Enslein, A, Ralston, and H. S. Wilf, Eds. New York: Wiley, 1977, pp.
4 _toxtures data 8l g% (0.4) 5.3 (0.2) 296-339.
16 textures datp B <6 (0.9)} 27.0 (2.5) [19] R.C.T. Lee, J. R.Slagle and H. Blum, “A triangulation method for the
sequential mapping of points. from N-space to two-space,” /EEE Trans.
Comput., vol. 27, pp, 288-292, Mar. 1977,
TABLE III [20] J. B.. MaoQueen, “Some methods for ck;uiﬁcmon and analysis of
" in Proc. §
THE AVERAGE ERROR OF THE NEAREST MEAN CLASSIFIER mulP t'! vm““y m1_2‘9‘7 roc. Sth Berkeley. Symp. Math. Star.
(IN %), ESTIMATED WITH THE LEAVE-ONE-OUT [21] 7. M. Mamsock and K. Pukunaga, “A iwo-dimensional display for
METHOD AND ITS STANDARD DEVIATION (IN BRACKETS) muluclm mumw data” Pattern Recognition in- Practice; E. S.
—_ e GellemamdLNKamlEds Amstcrdam.Nmth-Hoﬂmd, 1980, pp.
Set [ Description Classification Error 361*-36‘
Using input Kohonen Sammon's y
f ection P 22 1.C. Mao.and A. K. Jain, “Texture classification aadngmmlmion using
70 dim Oal_ 3.1 (3.5) %T Wtbiwm sirultaneous autoregresgive. models,” Pattern Recogni-
2 clon, P 33.3] 3.5 (0, 13.4 (1.2) fion, vol. 25, no: 2, pp. 173-188, 1992, :
(3 |small large 3 ETA £7.4 (L] 2306 (1.3) [23] C.BPyImt, Wingtheefﬁmencyomeon unnnlmearmapmng
-——ﬁ%ﬁ S L2l 180 ) by using clustering archetypes,” Electron. Lett., vol. 14, pp. 799-800,
a i ) Ts.2] 35.8 (1.7) | d1.a (3.6 1978, '
44 3] (0.8) 25 {0:2) [24] H. Ritter and K. Schulten, “On the stationary state of Kohonen's self-
16 textures _ 8.5 1.0)] 304 {0.9) organizing sensory mapping,” Biological Cybern., vol. 54, pp. 99-106,
1986.
[25] ——, “Convergence properties of Kohonen’s topology conserving
Physics, Delft University of Technology. Dr. R. P. W. Duin maps: Fluctpiations, stability and dimension selection,” Biological Cy-
" bern., vol. 69, pp. 59-71, 1989.
and Dr. A. M. Vossepoel, also of the Pattern Recognition (26] H . Ritter, T. M. Martinetz, and K. J. Schulien, “Topology conserving

Group, Department of Applied Physics, Delft University of
Technology, are gratefully acknowledged for some interesting
discussions on Sammon’s algorithm and gray value weighted
distance transforms.
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