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Within packet processing systems, lengthy memory accesses greatly reduce performance. To overcome this limitation, network
processors utilize many different techniques, for example, utilizing multilevel memory hierarchies, special hardware architectures,
and hardware threading. In this paper, we introduce a multilevel memory architecture for counting Bloom filters. Based on the
probabilities of incrementing of the counters in the counting Bloom filter, a multi-level cache architecture called the cached
counting Bloom filter (CCBF) is presented, where each cache level stores the items with the same counters. To test the CCBF
architecture, we implement a software packet classifier that utilizes basic tuple space search using a 3-level CCBF. The results
of mathematical analysis and implementation of the CCBF for packet classification show that the proposed cache architecture
decreases the number of memory accesses when compared to a standard Bloom filter. Based on the mathematical analysis of
CCBF, the number of accesses is decreased by at least 53%. The implementation results of the software packet classifier are at most
7.8% (3.5% in average) less than corresponding mathematical analysis results. This difference is due to some parameters in the
packet classification application such as number of tuples, distribution of rules through the tuples, and utilized hashing functions.

1. Introduction

Most network devices, for example, routers and firewalls,
need to process incoming packets (e.g., classification and
forwarding) at wire speeds. These devices mostly incorporate
special network processors that are comprised of a pro-
grammable processor core with several memory interfaces
and special coprocessors that are optimized for packet
processing. The performance of these network processors is
usually hampered by slow (main) memory accesses. Such
memory bottlenecks can be overcome by the following
mechanisms: hiding of memory latencies through parallel
processing and reducing the memory latencies by introduc-
ing a multi-level memory hierarchy incorporating special-
purpose caches [1]. A poorly designed cache memory can
critically affect the performance of network processor since
the number of memory accesses required for each lookup

can vary. Therefore, high-throughput applications require
search techniques with more predictable worst-case lookup
performance. An approach to achieve higher lookup perfor-
mance is to utilize the Bloom filter that is recently utilized in
embedded memories [2–4]. A Bloom filter is a simple space-
efficient randomized data structure to represent a set in order
to support membership queries [5]. There are numerous
networking problems where such a data structure is required.
In particular, when space is an issue, a Bloom filter may
be an excellent alternative to keep an explicit list. A Bloom
filter is frequently utilized in network processing (areas),
such as packet classification, packet inspection, forwarding,
p2p networks, and distributed web caching [5–7]. Therefore,
Bloom filters are useful to design high-performance memory
architecture in network processors and algorithmic solution
in the network processing applications.
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In this paper, we introduce a new multi-level cache
architecture called the cached counting Bloom filter (CCBF).
In the CCBF, the cache levels are defined based on the
value of the counters. In other words, the items with same
counter values are stored in the same level. Based on
the counting Bloom filter (CBF) analysis, we propose two
multi-level cache architectures (an l-level and a 3-level one)
and, subsequently, present the performance analysis. The
performance metric is the number of accesses to different
cache levels of the CCBF as compared to the standard Bloom
filter. In the 3-level cache, we further determine the size of
cache levels for optimal false positive probabilities. To test the
CCBF, we implemented a software packet classifier utilizing
a 3-level CCBF employing tuple spaces that are traditionally
utilized in packet classification. The mathematical analysis
and software implementation results show that the number
of accesses is decreased when a 3-level CCBF is utilized.
Based on the mathematical analysis, the number of accesses
is decreased by at least 53% in comparison to the standard
Bloom filter. The results of software implementation have
at most 7.8% (3.5% in average) difference to corresponding
results of mathematical analysis. This difference is due to the
following reasons: number of tuples, distribution of rules
inside the tuples, and utilized hashing functions. The main
contributions of this paper are the following:

(i) introducing of Bloom filter variant called cached
counting Bloom filter (CCBF)

(ii) mathematical analysis of the CCBF

(iii) the performance evaluation of the proposed CCBF
for packet classification.

The rest of paper is organized as follows. Section 2.2
presents related works. Section CCBF describes a cache
counting Bloom filter concept, architecture, and analysis.
The case study of packet classification is presented in
Section 3. Section 4 presents our analysis and software packet
classifier implementation results. In Section 5, we draw the
overall conclusions.

2. Related Works

In this section, we take a brief look at previous works
regarding the packet classification using Bloom filter and
memory organization in Bloom filters. In [8, 9], Srinivasan
et al. introduced the tuple space approach and the collection
of tuple search algorithms. A high level approach for multiple
field search employs tuple space. A tuple defines the number
of specified bits in each field of the rule. The tuple-based
algorithms utilize traditional hashing system. In [4], an
extended version of the Bloom filter was considered. The
authors presented a fast hash table architecture (FHT)
and lookup algorithm that converts a Bloom filter into a
counting Bloom filter and an associated hash bucket. The
FHT improves the performance over a standard hash table
by reducing the number of memory accesses needed for the
most time-consuming lookups. It only works in conjunction
with counting Bloom filters and needs to reconsider all of the
already inserted items for each item that consequently leads

to longer processing time. In [10], a hash architecture called
a multi-predicate Bloom-filtered hash table (MBHT) using
parallel Bloom filters is presented. It generates off-chip mem-
ory addresses in the base-2x number system, x ∈ {1, 2, . . .},
which removes the overhead of pointers. Using a larger base
of number system, an MBHT reduces on-chip memory size.
In [11], an approach to packet classification which combines
architectural and algorithmic techniques is presented. The
starting point is the well-known crossproduct algorithm
which is fast but has significant memory overhead due to
additional rules needed to represent the crossproducts. The
proposed approach modifies the crossproduct method to
reduce the memory requirement. Unnecessary accesses to
the off-chip memory are avoided by filtering them through
on-chip Bloom filters. In [7], a cache design based on the
standard Bloom filter was investigated and was extended to
support ageing (adding the ability to evict stale entries from
the cache), bound misclassification rates, and use multiple
binary predicates. It examined the exact relationship between
the size and dimension of the number of flows that can
be supported and the misclassification probability incurred.
Additionally, it presented extensions for gracefully ageing the
cache over time to minimize misclassification. In [12], we
introduce the concept of CCBF and proposed two architec-
tures for the counting Bloom filters and their mathematical
analysis. In this paper, we implement a CCBF in packet
classification using tuple space search with a class H3 of
universal hashing functions. Consequently, we compare the
software implementation and mathematical analysis results
of the CCBF to a standard Bloom filter. The experimental
results show that the utilization of the CCBF increases the
performance of counting Bloom filters.

2.1. Counting Bloom Filter. The standard Bloom filter works
fine when the members of the set do not change over time.
When they do, adding items requires little effort since it
only requires hashing the additional item and setting the
corresponding bit locations in the array. On the other hand,
removing an item conceptually requires unsetting the ones
in the array, but this could inadvertently lead to removing
a 1 that was the result of hashing another item that is
still member of the set. To overcome this problem, the
counting Bloom filter (CBF) was introduced [13]. In the
counting Bloom filter, each bit in the array is replaced
by a small counter. When inserting an item, each counter
indexed by the corresponding hash value is incremented;
therefore, a counter in this filter essentially represents the
number of items hashed to it. When an item is deleted, the
corresponding counters are decremented. In the following,
we utilize c(i) to denote the counter value associated with
each i’th counter. Considering a counting Bloom filter for
n items, with k hashing functions, and m counters, the
probability that the i′th counter is incremented j times is
given as a binomial random variable in the following:

p
(
c(i) = j

) =
⎛

⎝
nk

j

⎞

⎠
(

1
m

) j(
1− 1

m

)nk− j

. (1)
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Figure 1: The hash table architecture using cached counting Bloom
filters.
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Figure 2: False positive probability for different configurations.

When using n-bit counters, an n-bit counter will overflow if
and only if it reaches a value of 2n. The analysis performed
by Fan et al. [13] shows that a 4-bit counter is adequate for
most applications.

2.2. Cached Counting Bloom Filter Concept. A cache counting
Bloom filter (CCBF) is a counting Bloom filter with multi-
level hash table in which the items with the same counter
value are stored in the same memory (cache) level. If the
number of levels is l, the multi-level counting Bloom filter
is called l-level CCBF. We show that in practice, the 3-
level CCBF is more beneficial than l-level CCBF. In the
CCBF, two types of operations are defined. First type of
operations is related to the programming and querying of
the Bloom filter, and second type is insertion/deletion and
fetching of an item from multi-level CCBF based on the
counter values in the counting Bloom filter. This means
that in the programming of the Bloom filter, the items are

inserted in the related cache level of the CCBF. In querying
step, the counter values are checked, and the items from the
related cache level are loaded. The operations in cache levels
are similar to the operations in the traditional hash table
(insertion/deletion and fetching). An example of a Bloom
filter and corresponding CCBF is depicted in Figure 1.

Figure 1 depicts the CCBF. To generate the CCBF, each
item with its counter is inspected after the Bloom filter is
created. The item with maximum counter value is selected
to write on the cache level. In this case, item R1 is hashed
to addresses 1, 3, and 5. Address 3 has maximum value of
counters; therefore, R1 is stored in level 3. Item R2 is hashed
to addresses 1, 3, and 6 with the counter values 2, 3 and 2.
Therefore, item R2 is stored in address 3 in level 3. Similarly
R4 and R5 are stored in level 3 and level 2, respectively. From
Figure 1, it can be observed that items R1, R2, and R3 are
stored in a bucket in the third level, and item R4 is stored
in level 2 because of its counter value. In other words, only
2 accesses are required in total, one for the bucket in the
third level and the other for the bucket in the second level.
It should be noted that each address in the array of counters
points to one level. The addresses with the counter value
more than 2 points to level 3, the addresses with the counter
value 2 points to level 2, and the addresses with the value 1
points to level 1.

According to definition of a Bloom filter, the number of
hashing functions (k) with m counters and n items can be
expressed as follows [12]:

k = g
m

n
, (2)

where the value of g changes for different Bloom filter
configurations. Based on the Bloom filter definition, the
optimal value for g to have a minimum false positive rate is
g = ln(2) (see Figure 2).

After substituting (2) in (1), we obtain

p
(
c(i) = j

) =
⎛

⎝
gm

j

⎞

⎠
(

1
m

) j(
1− 1

m

)mg− j

. (3)

Using (3), we can compute the probability of increment-
ing the i’th counter for different values of g and m. Using (3),
the counter probability distribution for different counting
Bloom filter configurations is depicted in Figure 3.

From Figure 3, when g ≤ ln(2), the value of the counters
with nonzero probability changes between 0 and 3, and when
g > ln(2), the value of the counters with non-zero probability
is increased (for g = 2, the value of the counters changes
between 0 and 5). Therefore, we can utilize a multi-level
cache memory to store the items. We introduce the cached
counting Bloom filter as a Bloom filter with each counter
pointing to the level corresponding to its counter value and
each entry in level l containing buckets with size l. A bucket
is a set of items that can be transferred in one I/O operation.
Therefore, for a Bloom filter with optimal false probability,
we can utilize a multi-level caching memory to store the
items. The l-level cached counting Bloom filter architecture
is depicted in Figure 4.
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In this figure, C(il, l) represents the counter with the
value “l” pointing to location il within cache level “l”.
Therefore, the values of C1,1, . . . ,Ci1,1 are equal to 1, the
values of C1,l−1, . . . ,Cil−1,l−1 are equal to l − 1, and the values
of C1,l, . . . ,Ci,l are equal to l. The counters with value 0 do
not point to any bucket in the cache memory.

2.3. Counting Cached Bloom Filter Analysis. In this section,
we present the analysis of the cached counting Bloom filter.
The number of accesses to the memory depends on the
fact that the Bloom generates a “positive” or “negative”
result. For the negative case, no accesses to the memory are
needed since it is certain that they are not in the original
set. For the positive case, still it must be verified whether
the item in question is a member or not (false positive).
Consequently, we assume in the analysis that all tests are
on different elements which would result in the testing of n
elements (the same number of items in the original set). The
number of accesses in a standard Bloom filter is nk(1 + p f )
memory accesses, where n represents the number of items, k
represents the number of hashing functions, and p f is false
positive probability. The l-level cached counting Bloom filter
is depicted in Figure 4. From Figure 4, the number of accesses
in l-level CCBF is equal to summation of accesses in all levels
as follows:

number of accesses in l-level CCBF

= (N1 + · · · + Ni + · · · + Nl).
(4)

In this equation, Ni represents the number of accesses in level
i. Based on definition of the CCBF, the size of a bucket in
level i is equal to i. Therefore, in each access, i items can be
transferred. Consequently, the number of accesses depended
on the number of levels that means the utilization of multi-
level cached counting Bloom filter decreases the number of
accesses. The number of accesses in level i is equal to the
number of buckets in this level. To calculate the number of
buckets, the size of level i is divided by size of the bucket in
this level. From (1) and (4), the expected number of accesses
in CCBF is extended as follows:

number of accesses in l-level CCBF

= A

(

p
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)
+

p
(
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)
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(
with A = nk

(
1 + p f

))
.

(5)

In (5), p( j = l) shows the probability that a counter
incitements l times. A(p( j = l)/l) represents the number of
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Figure 3: The counter probability distribution for different config-
urations in counting Bloom filters.

expected accesses in level l for a counting Bloom filter with n
items and k hashing functions. We can rewrite (5) as follows:

number of accesses in l-level CCBF

= A
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(6)

If we assume that m/n = c and normalize to nk(1 + p f ), then
we can rewrite (6) as follows:

number of accesses in l-level CCBF

= e−k(1+p f )/c

⎛

⎜
⎝
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i=1

1
ii!

⎛

⎝
k
(

1 + p f

)

c

⎞

⎠

i⎞

⎟
⎠.

(7)

In practice, the number of levels is limited. The graph
depicted in Figure 3 shows that the counter values likely
are not larger than 3. Therefore, a 3-level CCBF is more
beneficial than l-level CCBF. We propose to limit the number
of levels to 3. More precisely, levels 1 and 2 (containing 1
and 2 buckets, resp.) store the elements for the counters
with values 1 and 2, respectively. Level 3 stores the elements
for counters with value 3 or larger. As the counters with
values larger than 3 require more storage, the elements are
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stored over multiple rows in the third level of the CCBF
(segmentation). The 3-level cache architecture is depicted in
Figure 5.

In Figure 5, the values of C1,1, . . . ,Ci1,1 are equal to 1,
the values of C1,2, . . . ,Ci2,2 are equal to 2, and the values of
C1,3, . . . ,Ci3,3 are equal to 3. Cother represents the counters
with values larger than three and, therefore, they point to a
storage within level 3 of the CCBF. Figure 5 highlights the
mentioned segmentation. In the following, we analyse the
effects of the items with counter values larger than three. The
number of accesses in a 3-level CCBF is equal to number of
accesses in the levels 1, 2, and 3. The number of accesses in
third level of cache can be computed as a summation of the
number of counters with value 3 and larger. Therefore, the
number of accesses in a 3-level CCBF is as follows:

number of accesses in 3-level CCBF
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Equation (8) is represented as follows:

number of accesses in 3-level CCBF
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After substitution of m/n with c and normalization to
nk(1 + p f ), the number of accesses in the 3-level CCBF is
written as follows:

number of accesses in 3-level CCBF

∼= e−k(1+p f )/c
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In the following, we evaluate the size of the different
cache levels in the CCBF architecture. In short, the size of
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Figure 5: The 3-level cached counting Bloom filter architecture.

each cache level in term of items is equal to the multiplication
of nk and the probability of each counter value in the CCBF.
The size of each cache level in l-level CCBF is expressed as
follows:

the size of level j within l-level CCBF

= nk j p(c(i) = (level number))

= nk j p
(
c(i) = j

)

= nk j

⎛

⎝
nk

j
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⎠
(
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m

) j(
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m

)nk− j
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(11)

In (11), j is level number. Using (4), we can rewrite (11)
as follows:

the size of level j in l-level CCBF ∼= nk je−k/c
(

1
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(
k

c

) j
)

,

(12)

where j is level number.
Using (12), the total size of the l-level CCBF cache after

normalization to nk (size of a standard Bloom filter) is

the total size of l-level CCBF = nk j
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3. Implementation of a Case Study

Traditionally, packet classification entailed the forwarding
of packets solely based on the destination address that is
specified in one of the many header fields within a packet.
Packet classification can be seen as the categorization of

incoming packets based on their headers according to specific
criteria that examine specific fields within a packet header.
The criteria are comprised of a set of rules that specify the
content of specific packet header fields to result in a match
[14, 15]. For testing purpose, we utilized different rule-
set databases and packet traces that have been used by the
Applied Research Laboratory in Washington University in St.
Louis. The specification of the rule-set databases and packet
traces is presented in Table 1.

Table 1 includes seven rule-set databases and packet
traces based on IPV4 protocol. The rule sets Fw1, Acl1, and
Ipc1 are extracted from real rule sets and others generated by
the Classbench benchmark.

A high-level approach for multiple field search employs
tuple spaces with a tuple representing information in each
field specified by the rules. Srinivasan et al. [8, 9] introduced
the tuple space approach and the collection of tuple search
algorithms.

A class of universal hashing functions is called H3 hash-
ing functions [16, 17]. Based on tuple space representation
for rule-set database and IP packets, the size of input key is 88
bits (32-bit source IP address, 32-bit destination IP address,
8-bit Range-ID, 8-bit Nesting-Level and 8-bit protocol bit).
The maximum size of tuple or address space is assumed 216

rules for 16-bit address. Therefore, Q88×16 denotes a set of
matrices to defineH3 hashing function for tuple space packet
classification algorithm [18].

4. Performance Evaluation and Results

In this section, we present the mathematical analysis and
implementation results of the CCBF architecture in packet
classification using tuple space search.

The implementation and mathematical analysis results
for Fw1-100, Fw1-1k, and Fw1-5k rule-set databases for a 3-
level CCBF are depicted in Figure 6.
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Table 1: Rule-set database and packet trace specification.

Fw1-100 Fw1-1k Fw1-5k Fw1-10k Fw1 Ipc1 Acl1

Rule-set database

Number of rules 92 971 4653 9311 266 1550 752

Number of tuples 26 42 52 57 36 179 44

Packet trace

Number of packets 920 8050 46700 93250 2830 17020 8140
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Figure 6: The number of accesses in CCBF normalized to the number of accesses in standard Bloom filter includes mathematical analysis
and software implementation. (a) The number of accesses in a 3-level CCBF for Fw1-100. (b) The number of accesses in a 3-level CCBF for
Fw1-1k. (c) The number of accesses in a 3-level CCBF for Fw5-1k.

In this figure, “Fw1-xx-Im” shows the graph of the
software implementation, and “Fw-xx-Pr” shows the graph
of mathematical analysis results that are calculated from
(10). The vertical axis shows the number of accesses that
are normalized to nk(1 + p f ) (n is the number of items
and k is number of hashing functions). The horizontal axis
includes two sequences that the first one shows number of
hashing functions and the second one specified by c = m/n

(m represents the size of address space in counter array
in CCBF, and n represents the number of items) shows
corresponding value of previous sequence. As an example
for k = 3, c = 4.3 generates minimum false positive
probability. These rule-set databases (Fw1-100, Fw1-1k, and
Fw1-5k) are synthetic that were generated by the Classbench
benchmark. From Figure 6, we can observe that the number
of accesses is decreased for different configurations. The
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Figure 7: The number of accesses in CCBF normalized to the number of accesses in standard Bloom filter includes mathematical analysis
and software implementation. (a) The number of accesses in a 3-level CCBF for Ipc1. (b) The number of accesses in a 3-level CCBF for Fw1.
(c) The average number of accesses in a 3-level CCBF for all of the utilized rule-set databases in Table 1.

software implementation and mathematical analysis results
for Fw1, Ipc1, and average of all rule-set databases are
depicted in Figure 7.

Figures 7(a) and 7(b) depict the number of accesses for
Fw1 and Ipc1 rule-set databases that were extracted from
real rule-set databases. Figure 7(c) depicts the average for all
utilized rule-set databases.

From Figures 6 and 7, we can observe that the mathe-
matical analysis results are verified by the software imple-
mentation results. Based on the mathematical analysis of
CCBF, the number of accesses is decreased by at least 53%.
The implementation results of the software packet classifier
are at most 7.8% (3.5% in average) less than corresponding
mathematical analysis results. This difference is due to the
following facts: number of tuples, distribution of rules inside
the tuples, and utilized hashing functions. In the packet
classification using tuple space, the number of tuples and
the number of rules in the tuples are variable for different

rule-set databases and different tuples in each rule-set
database. In most of the rule-set databases, one tuple includes
about half of the rules, and some tuples only have one or
several rules. In the mathematical analysis, the results were
obtained by investigating a CCBF with a big bit array and a
single set of items. The total size of cache levels for real rule-
set databases in a 3-level CCBF is depicted in Figure 8.

In this figure, “rule-set-im” shows the total size of cache
for different rule-set database that the results are extracted by
a software packet classifier and normalized to nk (number of
items multiply by number of hashing functions). Based on
the software implementation, the total cache size has some
fluctuations. This is due to internal gaps of the buckets in the
third level of the CCBF.

4.1. Discussion. The CCBF stores the incoming items (rules)
in the memory similar to a traditional replacement algorithm
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Figure 8: The total size of cache in CCBF normalized to the size of
memory in the standard Bloom filter.

that is called least frequently used algorithm (LFU) [19]. In
the CCBF, a bucket with larger counter has more reference;
therefore, it resides in a higher cache level with lower access
time, and the bucket with lower counter resides in a lower
cache level. The CCBF overheads in comparison to the
standard Bloom filter are managing different cache levels
and the segmentation of the large buckets. In the CCBF, the
bucket size of third level is set to 3 therefore, larger buckets
should be segmented in to different buckets and linked
together. It should be noted that the CCBF is different from
the hash table with block read support. This is because, in
the CCBF the block is read when the corresponding counter
has value larger than one otherwise there is no need to
block read. From Figure 8, we can observe some difference
in the CCBF size between the software implementation and
mathematical analysis results. This is because of internal gap
in the buckets in the implementation of CCBF. To overcome
this problem we utilize the following mechanisms:

(i) shared global overflow area

(ii) level overflow area.

A shared global overflow area is a memory space to store the
overflow items. When the incoming item cannot be stored on
its level, it is stored in the shared global overflow area. The
second mechanism is a level overflow area that is allocated as
an additional memory for each level. This solution is more
practical to implement. This is because the size of each level
is assumed larger than the size of the level in mathematical
analysis results.

5. Overall Conclusions

In this paper, we presented a new approach to embed a multi-
level cache memory in a counting Bloom filter (CCBF).
Using the counting Bloom filter property, the number of
accesses and sizes of the l-level and 3-level cache in the CCBF
architecture were investigated. To verify the mathematical
analysis results, we implemented a software packet classifier

in basic tuple space using an H3 class of universal hashing
functions. The results show that incorporating a multi-
level cache memory will improve the performance of Bloom
filter in comparison to a standard Bloom filter. Based on
the mathematical analysis results of CCBF architecture,
the number of accesses is decreased at least by 53%.
The implementation results are at most 7.8% more than
corresponding mathematical analysis results. We expect this
approach to be useful in the design of high-performance
memory architectures utilized in network processors and
related applications such as packet classification and web
caching.

References

[1] J. Mudigonda, H. M. Vin, and R. Yavatkar, “Overcoming the
memory wall in packet processing: hammers or ladders?” in
Proceedings of the Symposium on Architectures for Networking
and Communications Systems, (ANCS ’05), pp. 1–10, 2005.

[2] S. Kumar and P. Crowley, “Segmented hash: an efficient
hash table implementation for high performance networking
subsystems,” in Proceedings of the Symposium on Architectures
for Networking and Communications Systems, (ANCS ’05), pp.
91–103, 2005.

[3] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian,
“Leveraging bloom filters for smart search within NUCA
caches,” in Proceedings of the International Workshop on
Complexity-Effective Design, 2006.

[4] H. Song, J. Turner, S. Dharmapurikar, and J. Lockwood,
“Fast hash table lookup using extended bloom filter: An aid
to network processing,” in Proceedings of the International
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, vol. 35, no. 4, pp.
181–192, 2005.

[5] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood,
“Fast packet classification using bloom filters,” Tech. Rep. 27,
Department of Computer Science and Engineering, Washing-
ton University, St. Louis, Mo, USA, 2006.

[6] A. Broder and M. Mitzenmacher, ““Network applications of
bloom filters: a survey,” in Proceedings of the Annual Allerton
Conference on Communication, Control, and Computing, pp.
636–646, 2002.

[7] F. Chang, F. Wu-chang, and L. Kang, “Approximate caches for
packet classification,” in Proceedings of the 23th IEEE Interna-
tional Conference on Computer Communications (INFOCOM
’04), pp. 2196–2207, March 2004.

[8] V. Srinivasan, “A packet classification and filter management
system,” in Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
’01), pp. 1464–1473, April 2001.

[9] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification
using tuple space search,” in Proceedings of the International
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp. 135–146, 1999.

[10] H. Yu and R. Mahapatra, “A memory-efficient hashing by
multi-predicate bloom filters for packet classification,” in
Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM ’08), pp. 1795–1803, 2008.

[11] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast
packet classification using bloom filters,” in Proceedings of the
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS ’06), pp. 61–70, ACM, 2006.



10 Journal of Electrical and Computer Engineering

[12] M. Ahmadi and S. Wong, “A cache architecture for counting
bloom filters,” in Proceedings of the 15th IEEE International
Conference on Networks, (ICON ’07), pp. 218–223, November
2007.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[14] P. Gupta and N. McKeown, “Algorithms for packet classifica-
tion,” IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.

[15] T. V. Lakshman and D. Stiliadis, “High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (ACM/SIGCOM ’98), vol. 28, no. 4, pp. 203–214,
1998.

[16] J. L. Carter and M. N. Wegman., “Universal Classes of Hash
Functions,” in Proceedings of the 9th annual ACM Symposium
on Theory of Computing, pp. 106–112, ACM Press, 1977.

[17] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient
hardware hashing functions for high performance computers,”
IEEE Transactions on Computers, vol. 46, no. 12, pp. 1378–
1381, 1997.

[18] M. Ahmadi and S. Wong, “Hashing functions performance
in packet classification,” in Proceedings of the International
Conference on the Latest Advances in Networks (ICLAN ’07),
pp. 127–132, 2007.

[19] A. S. Tanenbaum and A. S. Woodhull, Operating systems:
Design and Implementation, Prentice-Hall, Upper Saddle
River, NJ, USA, 3rd edition, 2006.


