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Abstract

High-impact vision research still rests on datasets whose labels arrive via opaque, rarely
documented pipelines. To understand how serious the problem is inside a large venue,
we audited 75 TPAMI papers (2009-2024) that rely or introduce datasets. Each dataset
was coded against a 27-item checklist adapted from Garbage in, Garbage out, spanning
annotator recruitment, training, compensation, overlap-resolution and more.

Across the corpus, 37% of the expected annotation metadata is missing; the rate
changes little between recent (2022-24) and older cohorts. The scarcest fields are
labeller-population rationale (76.6% absent), prescreening criteria (73.4%), total an-
notators (68.8%), compensation (67.2%) and training procedures (62.5%). Documen-
tation quality shows virtually no correlation with a paper’s citation impact, suggesting
community prestige does not buy transparency.

A handful of well—curated datasets achieve >75% completeness, proving that thorough
documentation is possible when incentives align. The median TPAMI benchmark still
ships with an unverifiable "ground truth", threatening the reproducibility and fairness
claims of downstream models.

We advocate that journals and conferences require a concise, checklist-based annotation
statement, mirroring existing ethics and reproducibility forms, to ensure future vision
systems are built (and evaluated) on transparent, trustworthy data foundations.

1 Introduction

1.1 Background and Motivation
Machine learning systems depend fundamentally on the quality of their data, used both to
train and evaluate the model’s performance. Often, the reference labels are noisy, biased, or
even unreliable, which can result in models that produce misleading predictions. As Geiger
et al. [35] observed, much of the machine learning research focuses on algorithmic develop-
ment once a "state-of-the-art" dataset is available, ignoring the possibility that the dataset
itself is not trustworthy. This carries serious implications—such as the continual masking
of biases—and undermines our ability to understand when and why automated systems fail
in real-world scenarios.

Despite the crucial role of human-generated annotations in constructing these datasets,
reporting practices around how these labels are collected—who produces them and what
quality-control measures are applied—are often virtually nonexistent [37]. In their system-
atic survey of applied ML papers, Geiger et al. [35] found that most publications offer almost
no information about their annotation protocols. This lack of transparency makes it nearly
impossible to determine whether a model’s claimed performance reflects real-world robust-
ness or merely overfits on biases embedded in the data collection process.

Several proposals have aimed to improve dataset documentation standards in machine learn-
ing. Notably, the "Datasheets for Datasets" framework [32] and "Data Statements for Natu-
ral Language Processing" [6] offer structured templates that encourage researchers to report
key aspects of dataset creation, including annotation methods, annotator demographics, and
quality control. However, uptake remains inconsistent, and many high-profile publications
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in leading venues continue to omit even basic information.

A central concept in assessing annotation quality is inter-rater reliability (IRR), which cap-
tures the degree of agreement between annotators beyond chance. Despite its importance,
IRR is rarely reported or discussed in detail in most machine learning papers. Without it,
the robustness of models trained on such data cannot be properly judged.

This study uses multiple statistical measures to evaluate associations between metadata
fields. For categorical variables (e.g., Yes, No, No information), we rely on Cramer’s V C,
which quantifies the strength of association between two nominal variables using the chi-
squared statistic. It ranges from 0 (no association) to 1 (perfect association), and does
not assume any ordering or distribution. For fields with ordinal or ranked values, such as
Likert-style responses or quality scores, we use Spearman’s ρ C, which measures mono-
tonic relationships based on rank-order correlation. When both variables are continuous and
normally distributed, we apply Pearson’s r C, which captures linear relationships between
them. These three metrics together allow for flexible and appropriate analysis across the
varied data types present in the annotation schema.

This persistent gap between the importance of "ground truth" and the absence of systematic
reporting standards motivated the current study. While previous work has surfaced these
problems across broad domains, little is known about how these issues manifest in top-tier
machine learning venues. This thesis seeks to fill that void.

1.2 Problem Statement
Research Question: How transparent are TPAMI’s machine learning researchers about
the data they use in applications?

The aim of this research is to systematically assess how clearly and consistently annotation
practices are reported in TPAMI publications that introduce or use datasets. In particular,
the study investigates the extent to which papers disclose details about how labels were
collected, who the annotators were, how they were selected and trained, whether they were
compensated, and how the reliability of their labeling was measured.

To address the research question, we formulated several subquestions. First, we ask to what
extent TPAMI papers provide metadata about annotator recruitment, training procedures,
and compensation schemes. Second, we examine whether inter-rater reliability (IRR) is re-
ported, and if so, whether authors specify the metric used to assess agreement. Third, we
investigate whether there is a relationship between a paper’s citation impact and the com-
pleteness of its annotation documentation. Fourth, we explore whether newer publications
show improvement in transparency compared to older ones. Finally, we assess whether some
types of datasets—such as those tied to public benchmarks or multi-institutional efforts—
tend to demonstrate better reporting practices.

To answer these questions, we conducted a structured audit of 75 TPAMI papers published
between 2009 and 2024. We examined 64 datasets mentioned in these papers and evalu-
ated them against a 27-item checklist adapted from Geiger et al.’s "Garbage In, Garbage
Out" framework. This audit quantifies the current state of annotation documentation and
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highlights where and how transparency falls short. By doing so, the study offers evidence-
based recommendations for improving the reliability and reproducibility of machine learn-
ing benchmarks through standardized, checklist-based reporting requirements. Addition-
ally, we analyze correlations between fields in the checklist to identify patterns in reporting
behavior—such as whether authors who report annotator compensation are also more likely
to describe recruitment or training procedures.

2 Methodology
To systematically assess how TPAMI publications report annotation workflows, our method-
ology is divided into three phases discussed below. Data collection was done in Google Sheets
and in this section and the following, by referring to "Tab X" we are talking about a specific
sheet in our database. The description of these sheets is as follows:

1. Article Selection (Tab 1): Selecting a representative sample of 75 articles across
three time periods using a Scopus query.

2. Dataset Compilation and Ranking (Tab 2): Identifying and ranking 214 unique
datasets used within those articles.

3. Annotation Metadata Extraction (Tab 3): Extracting structured metadata on
annotation practices from the selected papers.

These steps form a reproducible framework for evaluating the completeness and trans-
parency of dataset reporting in the machine learning literature. This division is inspired by
the Datasheets for Datasets framework by Gebru et al. [32], which advocates for lifecycle
transparency in dataset creation, labeling, and documentation.

2.1 Tab 1: Article Selection
We selected 75 TPAMI articles across three time periods, spanning the most recent 2, 5, and
15 years, with 25 papers drawn from each. Given the project’s 10-week timeframe, analyz-
ing a larger number of papers was deemed impractical. This temporal division allows us to
evaluate both historical and recent reporting practices. The year 2024 marked the endpoint
of data extraction, as 2025 publications were not yet fully indexed for some venues. We
decided to sort the papers based on citation counts, as this should lead to analyzing the
most influential datasets.

We used Scopus, as recommended by our supervisor, to simplify venue disambiguation.
While several academic databases were available (e.g., Google Scholar, ArXiv), we selected
Scopus as it is query-based and easily reproducible. Furthermore, Scopus allows us to discard
the deduplication process for a specific time interval. On April 25, 2025, in order to extract
data, we executed the queries that can be found in the appendix B.
This query returned only papers from TPAMI. Unlike my colleagues who had to filter for
relevant venues, I only applied a publication year filter.

The results were exported to Google Sheets (hereafter, Tab 1 ). We filtered out:

• Survey papers or meta-studies that did not use datasets.

3



• Duplicate entries across the three time intervals.

In total, 16 survey papers and 5 duplicates were removed. The remaining 54 formed the
basis of my dataset analysis.

2.2 Tab 2: Dataset Compilation and Ranking
From the final set of 54 articles, we extracted all datasets mentioned and compiled them into
a new sheet, referred to as Tab 2. We identified 838 unique datasets across all publications
and recorded the following metadata for each one of them:

• Dataset name

• Digital Object Identifier (DOI)

• Corresponding publication URL

• Notes

Each dataset was then ranked using a citation-weighted usage metric across time periods:

Scored,t =
∑

p∈Pd,t

Citations(p) (1)

where:

• Scored,t is the usage score for dataset d during time period t.

• Pd,t is the set of papers in t using dataset d.

• Citations(p) is the number of citations for paper p.

The top 20 ranked datasets per period were compiled into a Dataset Leaderboard, which
guided the selection of datasets for annotation review. The citation-weighted ranking
method might favor older or more general-purpose datasets, and this potential skew must
be acknowledged.

2.3 Tab 3: Annotation Metadata Extraction
In the final phase, we reviewed all selected datasets to extract structured metadata about
annotation workflows. This information was documented in Tab 3, capturing three core
categories:

• Labellers: What was the amount of annotators? Was the IRR calculated? How many
labellers were there per item? Did the labellers receive any form of compensation?

• Items: What is the source of the annotated items? Was the amount of items decided
before the annotation process? Why is this population of items chosen?

• Annotation Schema: Is there a reason for using a particular annotation schema?
Was it decided beforehand?
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These attributes were heavily inspired by Geiger et al’s annotation schema for "Garbage in,
Garbage Out Revisited" [34]. On top of their work, we introduced more attributes. The
annotation schema was developed collaboratively with my colleagues and supervisor over a
three-week period. Each dataset was annotated only once by one of our team members. All
ambiguities were resolved through team discussions. The complete annotation schema we
used can be found in the appendix A.
Finally, the data was extracted from Tab 3 with the help of a script we wrote. This script
is built in Python and has Analyzer modules that help us interpret the data we collected.

2.4 Analysis
To complement the metadata extraction process, we performed a structured quantitative
analysis on the annotated fields from our 27-item checklist. This analysis comprised two
main components: quantifying missing information and investigating consistency patterns
across fields.

For the missing information quantification, each metadata field was assessed across
all datasets to determine the proportion of entries that lacked usable information. Values
were considered missing if they matched any of the following patterns: No information,
Unknown, Unsure, or nan. Entries explicitly marked as Not applicable were excluded from
both the numerator and denominator in our calculations, ensuring that only applicable cases
contributed to each field’s missingness rate. This approach allowed us to isolate the most
neglected aspects of dataset documentation, such as annotator recruitment, compensation,
and training procedures.

In the second part, the field-pair consistency analysis, we investigated whether trans-
parency in one aspect of the annotation pipeline predicted transparency in another. This
was done by computing pairwise associations between logically related fields— for instance,
whether reporting compensation correlated with reporting annotator training, or whether
datasets that mention inter-rater reliability (IRR) also specify the metric used. For each
pair, we calculated Cramer’s V to measure the strength of association between the two
categorical variables. These pairings were selected based on conceptual dependencies within
the annotation process and provide insight into patterns of co-reporting or co-omission.

Several metadata fields in the annotation schema involved open-ended or free-text responses,
which required normalization before statistical analysis. To ensure compatibility with cate-
gorical association metrics such as Cramer’s V, these responses were discretized into standard
categories. A custom mapping script was used to classify answers into Yes, No, or Not appli-
cable, based on keyword matching and pattern detection. For example, responses containing
phrases such as “no information,” “unknown,” “not reported,” or empty values (including
nan) were uniformly mapped to No. Similarly, explicit denials of relevance (e.g., “not appli-
cable,” “N/A”) were mapped to Not applicable and excluded from the correlation analysis.
This discretization ensured internal consistency while preserving the semantic intent of the
original answers.

All computations were carried out using a custom Python script. The script included mod-
ular Analyzer components for generating summary statistics, computing correlation coeffi-
cients, and visualizing reporting patterns. This analysis framework enabled both fine-grained
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and aggregate evaluation of annotation transparency across the TPAMI dataset corpus.

3 Findings

Figure 1: Citation distribution of TPAMI Papers

In this section we will be ex-
plaining the quantitative results
from this study. We will keep
the explanations ordered, start-
ing from broad observations to-
wards more fine-grained ones.
The analysis will be performed,
based on the relevance of the
analyzed data, either on unique
datasets (52 in total) or based
on the time periods we extracted
data from, which contain 64
datasets (52 unique ones and over-
lap).

Figure 1 plots citation counts for
the 52 dataset papers in Table 2.1. The smallest count is 302 and the largest is 62,201.
On average, each paper has about 7,635 citations, with half of them below 3,295. The
variation is high—a standard deviation of roughly 11,843—because a few top datasets pull
the numbers upward. In fact, only 15 papers exceed twice the median (6,590 citations), yet
those 15 account for over 60 percent of the total citations. Meanwhile, roughly 60 percent of
the datasets cluster in the 800-8,000 range, forming a solid middle band beneath the handful
of ’blockbuster’ benchmarks.

3.1 Missing Information

Figure 2: Missing Information per Period

Overall, 37.03% of the extracted
fields were marked missing ("No
Information"). When broken
down by time period, the propor-
tion of missing data is relatively
similar—30.5% in the 2-year co-
hort, 40.6% in the 5-year cohort,
and 39.6% in the 15-year cohort.
It can be observed that in the last
2 years, the missing field rate is
10 percentage points lower. Ad-
ditionally, missingness shows no
meaningful relationship with cita-
tion impact: the Pearson1 corre-
lation coefficient is -0.1179, and
the Spearman2 rank correlation is

1https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
2https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
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-0.0632.

Across all 64 datasets, fields like Labeller Population Rationale (76.56% missing), Prescreen-
ing (73.44%), Total Labellers (68.75%), Compensation (67.19%), Training (62.50%), and
Label Threshold (62.50%) are missing in well over three-fifths of cases. In other words,
even though 86.54% of datasets report having human labels, almost none explain how those
humans were selected, trained, compensated, or how reliability was measured. Only a small
handful of datasets document a comprehensive annotation pipeline. This leads to two large
problems. First, without transparency around how labels were produced and validated,
it is difficult to interpret reported model performance, especially on models where subtle
semantic distinctions or fine-grained categories are involved. Second, this barrier to repro-
ducibility means that even if future researchers suspect a problem (e.g. bias in the labels),
they would lack the baseline information needed to replicate or correct it. Until dataset cre-
ators adopt best practices for documenting annotator selection, instruction protocols, and
reliability measures, the field will continue to rely on benchmarks whose foundational labels
remain largely unverifiable.

3.2 Correlated Reporting Patterns
In this subsection, we explore whether, once a researcher documents one aspect of their an-
notation process, they tend to document the related aspects as well. This analysis explores
whether transparency in one area of annotation documentation is predictive of transparency
in others. Below we summarize the head-to-head findings for each pair of fields.

Overlap Synthesis vs Synthesis Description
Overlap synthesis refers to solving disagreements between multiple annotators for one item.
When authors report any form of overlap synthesis (qualitative, quantitative, or other),
they always describe the synthesis method (100% of cases). Conversely, if they omit overlap
synthesis entirely, the synthesis description is also never provided. This perfect alignment
(Cramer’s V = 1.0) shows these two fields act as a single documentation unit.

Human Labels vs Original Labels
Among the 52 datasets with human-label information, 94.6% of fully human-labeled datasets
declare their labels as "original" (collected by the dataset creators), while machine-labeled
datasets (and those with missing human-label data) always default to "external" or "no
information." The strong association (Cramer’s V = 0.70) indicates that the decision to in-
volve human annotators tightly predicts whether labels are primary (original) or secondary
(external).
form Compensation vs Annotator Training
Of projects reporting monetary compensation, 55.6% also document that annotators re-
ceived some formal training. In contrast, when compensation details are missing, 71.4%
also omit training information. This moderate correlation (Cramer’s V = 0.45) suggests
that paying annotators is associated with the likelihood—but does not guarantee—that
training procedures are described.

IRR vs Metric
Whenever inter-rater reliability (IRR) is reported, authors always specify the exact metric
used (e.g., Cohen’s K), and when IRR is omitted or marked not applicable, the metric field
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is likewise blank. With a strong link (Cramer’s V = 0.81), these two fields form an all-or-
nothing pair for measuring annotation consistency.

Human Labels vs Total Labellers
Even among datasets fully labeled by humans, 67.9 % fail to specify how many annota-
tors took part. Machine-labeled or undocumented human-label cases always coincide with
"not applicable" or missing labeller counts. The strong association (Cramer’s V = 0.72)
highlights a common gap: authors note that humans labeled the data but frequently skip
reporting the total number of annotators involved.

Looking at the missing information for these specific fields:

• Labeller Population Rationale is missing in 76.56% of papers, and Prescreening
in 73.44%.

• Total Labellers is unreported in 68.75%, Compensation in 67.19%, and Training
in 62.50%.

• Even when IRR is mentioned, the specific Metric is absent 56.25% of the time.

• Mid-level fields such as Overlap Synthesis and Synthesis Type are skipped in
43.75% of papers.

• By contrast, only the most basic metadata (e.g. Item Population, Item Source, Out-
come, Human Labels, OG Labels) achieve near-complete coverage (<5% missing).

These widespread omissions are serious violations of reproducibility rather than simply over-
sights. Any downstream evaluation, whether it be model correctness, bias assessment, or
generalization claims, depends on an unexamined and ultimately unknown ground truth if
three quarters of authors refuse to disclose the identities of their annotators, their training
and compensation, or the methods used to measure consistency. TPAMI benchmarks will
continue to spread ambiguity under the pretense of scientific advancement unless dataset
creators treat annotation metadata with the same level of rigor as they do algorithmic
descriptions and performance measures.

4 Discussion
Despite the overall gaps in annotation reporting, there is cause for optimism: a small but
applaudable number of datasets used in TPAMI papers demonstrate that detailed docu-
mentation is achievable. In particular, datasets like ImageNet-Real [8], Cityscapes [18],
SUN RGB-D [88], BSDS300 [74], and MPII [2]—each tied to formal benchmarks or multi-
institutional efforts—consistently publish thorough annotation protocols, label-tool code,
and inter-rater reliability procedures. Their authors put in the effort of having clear guide-
lines (e.g. how to handle occluded joints in MPII or ambiguous boundaries in BSDS300),
making it straightforward for users to understand exactly how labels were produced.

These positive examples share three critical traits: alignment with public evaluation servers
or challenges, strong institutional support (which often mandates transparency), and exten-
sive supplementary material. Together, these factors ensure that every step of the labeling
pipeline—from annotator selection and training to quality checks and compensation—is
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clearly explained. As a result, these datasets achieved at least 75% completeness on our
annotation-field checklist, in stark contrast to the broader collection where most fields re-
main blank.

However, it’s important to recognize that even the best-reported papers prioritize bench-
mark performance over full transparency. While they excel at defining tasks, leaderboard
metrics, and evaluation protocols, the underlying motivation remains to foster reproducible
model comparisons rather than to provide a complete "datasheet" of every annotation de-
cision. In other words, although some dataset papers do a good job on paper, what they
have in common is a focus on benchmarks more than on transparency itself.

Building on the positive examples highlighted above, it is clear that detailed annotation
reporting—while achievable—is still far from the norm. This gap underscores a critical
truth: transparency in machine learning is not optional, but foundational. With-
out clear, consistent documentation of how data is labeled, we cannot reliably assess model
performance, detect hidden biases or even reproduce experiments in new settings. In other
words, the trust we place in "state-of-the-art" systems is only as strong as the transparency
of their ground-truth foundations.

Transparent reporting of annotation practices begins with the very fundamentals of who
created the labels and how reliable their judgments were. For example, knowing the total
number of labellers is crucial. A small team may introduce biases, while a large, diverse pool
promotes robustness. Striking that balance is impossible to gauge if 68.75% of papers simply
omit this count. Likewise, reporting inter-rater reliability (IRR) scores without specifying
the metric leaves readers unable to contextualize consistency: over half of the dataset papers
report an IRR figure but not the metric used, basically stripping the statistic of meaning.

Equally important is documenting how many annotators labeled each item and the pro-
cedures for resolving disagreements. Multiple annotations per example foster confidence
in the label, but the method of synthesizing overlap—be it majority vote or probabilistic
aggregation—can systematically shift the dataset’s character. Nearly 43.75% of papers fail
to describe their overlap synthesis approach, preventing any meaningful reproduction or bias
analysis.

Beyond these quantitative checks, transparency demands clarity on who those annotators
were and how they worked. Details such as how the labellers were chosen, prescreening
procedures, nature of training and instructions and even the compensation scheme directly
influence label quality and ethical considerations. Yet 76.56% of papers do not justify their
choice of annotators, 73.44% omit prescreening details, 62.5% ignore training protocols and
67.19% leave compensation unreported. This critical context, if absent, hides potential
sources of systematic error and unfair labor practices.

The source and selection of items annotated are equally pivotal. Without knowing whether
examples were drawn from public benchmarks, private collections or from the internet, one
cannot asses dataset representativeness or generalization.

The lack of transparency around dataset annotation is not just a technical limitation—it
raises important ethical and scientific concerns. When human annotation processes are
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undocumented or poorly described, the underlying assumptions and labor behind machine
learning benchmarks are hidden from scrutiny. This invisibility can obscure issues of bias,
unfair labor practices, or methodological shortcuts that ultimately affect the fairness, relia-
bility, and reproducibility of deployed models. Particularly in high-stakes domains such as
medical imaging or surveillance, the absence of rigorous annotation protocols undermines
public trust and can amplify harm to vulnerable populations.

In order to address these shortcomings, the machine learning community must standardize a
reporting framework. By integrating a checklist of reporting on these fields into conference
and journal submission requirements we can ensure consistent transparency across venues.
Such a framework will not only improve reproducibility and comparability, but also foster
accountability: researchers will know that every aspect of their annotation pipeline will
be scrutinized and understood by reviewers and readers alike. Only through widespread
adoption of a standardized reporting practice can we truly build machine learning systems
whose performance and fairness rest on a solid, ethical foundation.

5 Responsible Research
In order to ensure the research made is reproducible, the dataset3 and codebase 4 used to
analyze the results is made public. For the data collection exact queries and date they were
ran on are available in the appendix B.

One challenge that’s difficult to fully control is the fact that citation counts can change
over time. This might lead to small differences compared to when the data was originally
gathered. Still, this shouldn’t affect the overall results, since the most cited papers typically
stay at the top regardless of slight changes.

The full methodology is explained in Section 2, where each step is described in enough detail
to help others follow the same process. The annotation schema that was used to categorize
the data is also included in Appendix A.

Large language models were used throughout the project to help with both paraphrasing
and coding. GPT-4 was used to reword sections of text to make them clearer, while Claude
3.7 Sonnet was used to write parts of the analysis framework. Every piece of output, whether
text or code, was carefully reviewed and often rewritten to make sure it was accurate and
reliable.

6 Conclusions and Future Work
According to this audit, more than 37.03% of important annotation fields in TPAMI publi-
cations are still missing documentation. It is concerning that too many basic questions—like
the overall number of labellers—go unanswered, indicating a widespread lack of precision in
reporting.

3https://docs.google.com/spreadsheets/d/16MkuS-upEQxkAj-poZO5ggPqmu_UIDbwi7HWS3-21HE/edit?
usp=sharing

4https://github.com/Gargant0373/DatasetAnalysis
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Specifically, the bulk of papers lack fields like Labeller Population Rationale (76.56% miss-
ing), Prescreening Procedures (73.44%), and Total Number of Labellers (68.75%). Even tech-
niques for guaranteeing label quality—Training (62.50% absent) and IRR Metric (56.25%)—
are commonly left out, which erodes trust in the reliability of "ground truth."

That said, a minority of datasets demonstrate exemplary documentation, proving that com-
prehensive annotation metadata is achievable. These outliers illustrate best practices and
can serve as templates for the wider community.

The Datasheets for Datasets framework [32], which recommends a comprehensive question-
naire encompassing annotator demographics, training processes, compensation schemes and
inter-rater reliability measurements, is something I strongly endorse in order to close this
transparency gap. For language data in particular, Data Statements [6] outlines a structured
way to document collection circumstances, speaker demographics, and ethical considerations,
thereby extending transparency all the way back to raw data acquisition. No important field
would go unreported if such formal patterns were adopted, ideally enforced by journals and
conferences.

Future work should expand this critique to other flagship venues (e.g. CVPR, ICCV) and
continually update our dataset of documentation assessments. Moreover, routine community
audits and public checklists could track progress and incentivize full disclosure. Ultimately,
true machine learning excellence demands not only high performance metrics but also trans-
parent, reproducible data foundations.
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A Annotation Schema
The following schema was used to systematically extract and code annotation-related meta-
data from the selected TPAMI publications. Each attribute was categorized using stan-
dardized dropdown options, including Yes, No, No information, Unsure, and Not applicable,
unless otherwise noted. This schema ensured consistent and reproducible assessments of
dataset documentation quality.
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OG Labels Whether labels were created by the authors or taken from an external source.
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Prescreening Whether annotators were preselected based on general skills, platform per-
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Overlap Whether multiple annotators labeled the same item.
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tive methods.
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IRR (Inter-Rater Reliability) Whether inter-rater agreement was reported.

IRR Metric Type of metric used if IRR was reported (e.g., Cohen’s Kappa, F1 score).
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Item Population Description of the items being annotated.

Item Population Rationale Reasoning for selecting that item population.

Item Source Where the items originated from.
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B Scopus Query
Queries were ran on April 25th, 2025.

15 Year Period Queries

SRCTITLE ( ieee AND transactions
AND on AND pattern
AND analysis AND machine
AND intelligence )

AND PUBYEAR > 2009 AND PUBYEAR < 2025

5 Year Period Query

SRCTITLE ( ieee AND transactions
AND on AND pattern

AND analysis AND machine
AND intelligence )

AND PUBYEAR > 2019 AND PUBYEAR < 2025

2 Year Period Query

SRCTITLE ( ieee AND transactions
AND on AND pattern
AND analysis AND machine
AND intelligence )

AND PUBYEAR > 2022 AND PUBYEAR < 2025

C Statistical Tools
Cramer’s V

V =

√
χ2

n · (k − 1)
(2)

where χ2 is the chi-square statistic, n is the total number of observations, and k = min(r, c)
is the smaller number of rows or columns in the contingency table.

Pearson’s r

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3)
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where xi and yi are the individual values of the two variables, x̄ and ȳ are their respective
means, and n is the number of paired observations.

Spearman’s ρ

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(4)

where di is the difference between the ranks of corresponding values xi and yi, and n is the
number of observations.

D Datasets Analyzed
These are the datasets that were used to perform the final analysis.

• ADE20K [115]

• BAIR [26]

• BigEarthNet-S2 [92]

• BSDS300 [75]

• BSDS500 [5]

• Caltech101 [62]

• CamVid [10]

• CelebA-HQ [57]

• CityPersons [111]

• Cityscapes [19]

• CIFAR-10 [59]

• CIFAR-100 [59]

• CUB-200-2011
Birds [96]

• Dark Channel [43]

• FGVCAircraft [72]

• FMoW-S2 [17]

• Foot Keypoint [12]

• Got-10k [49]

• HMDB51 [60]

• ICDAR2015-
Challenge-4 [56]

• ImageNet [23]

• ImageNet 2012 [84]

• ImageNet-1k [84]

• ImageNet-Real [9]

• INRIA Person [21]

• iNaturalist [95]

• KITTI [33]

• LIP [36]

• MegaDepth [64]

• MIT Indoor Scenes [80]

• MNIST [61]

• MPII [3]

• MSRC 21 [87]

• NYUDv2 [?]

• Online Object Track-
ing [100]

• Oxford Flowers
102 [79]

• Pascal Context [78]

• Pascal VOC 2007 [28]

• Pascal VOC 2010 [28]

• Pascal VOC 2012 [53]

• PETS 2009 [29]

• Places [113]

• RedWeb [102]

• RoadScene [119]

• SIFT Flow [68]

• Soda-A [15]

• Soda-D [15]

• Stanford 40 Ac-
tions [107]

• StanfordCars [58]

• Sun RGB-D [89]

• Tiny ImageNet [93]

• UCF101 [91]

• WiderFace [105]
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E TPAMI Papers Analyzed

Paper title Cited by
Transfer Learning in Deep Reinforcement Learning: A Survey [117] 309
UniFormer: Unifying Convolution and Self-Attention for Visual Recogni-
tion [63]

238

Towards Large-Scale Small Object Detection: Survey and Benchmarks [16] 293
KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding
in 2D and 3D [66]

218

SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-
Level Feature Denoising and Rotation Loss Smoothing [106]

216

Human Action Recognition From Various Data Modalities: A Review [81] 355
A Survey on Vision Transformer [40] 2135
Image Super-Resolution via Iterative Refinement [85] 831
Learning Enriched Features for Fast Image Restoration and Enhancement [110] 254
ResMLP: Feedforward Networks for Image Classification with Data-Efficient
Training [94]

302

Deep Long-Tailed Learning: A Survey [112] 275
A Comprehensive Survey of Continual Learning: Theory, Method and Appli-
cation [98]

212

Domain Generalization: A Survey [116] 480
Real-Time Scene Text Detection with Differentiable Binarization and Adaptive
Scale Fusion [66]

268

Constructing Stronger and Faster Baselines for Skeleton-Based Action Recog-
nition [90]

267

Beyond Self-Attention: External Attention Using Two Linear Layers for Visual
Tasks [38]

314

SpectralGPT: Spectral Remote Sensing Foundation Model [46] 353
Explainability in Graph Neural Networks: A Taxonomic Survey [109] 278
Diffusion Models in Vision: A Survey [20] 717
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learn-
ing [99]

287

Multimodal Learning With Transformers: A Survey [104] 361
CCNet: Criss-Cross Attention for Semantic Segmentation [51] 257
Salient Object Detection via Integrity Learning [118] 242
Class-Incremental Learning: Survey and Performance Evaluation on Image
Classification [76]

319

Contextual Transformer Networks for Visual Recognition [63] 406
Image Segmentation Using Deep Learning: A Survey [77] 2641
Cascade R-CNN: High quality object detection and instance segmentation [11] 1100
Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical
Navigable Small World Graphs [73]

784

Self-Supervised Visual Feature Learning with Deep Neural Networks: A Sur-
vey [54]

1102

Meta-Learning in Neural Networks: A Survey [47] 1079
U2Fusion: A Unified Unsupervised Image Fusion Network [103] 1233
Focal Loss for Dense Object Detection [67] 4877
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Got-10k: A large high-diversity benchmark for generic object tracking in the
wild [50]

1080

Event-Based Vision: A Survey [30] 1238
Deep High-Resolution Representation Learning for Visual Recognition [97] 2899
Deep Learning for 3D Point Clouds: A Survey [39] 1341
Res2Net: A New Multi-Scale Backbone Architecture [31] 2319
Deep Learning for Person Re-Identification: A Survey and Outlook [108] 1317
Mask R-CNN [41] 2628
ProtTrans: Toward Understanding the Language of Life Through Self-
Supervised Learning [27]

809

Deep Learning for Image Super-Resolution: A Survey [97] 1097
NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Under-
standing [70]

1109

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot
Cross-Dataset Transfer [82]

825

Squeeze-and-Excitation Networks [48] 4886
A Continual Learning Survey: Defying Forgetting in Classification Tasks [22] 1039
Tensor Robust Principal Component Analysis with a New Tensor Nuclear
Norm [71]

750

OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity
Fields [13]

2666

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recogni-
tion [44]

9854

Fully Convolutional Networks for Semantic Segmentation [86] 8132
High-speed tracking with kernelized correlation filters [45] 5702
Image Super-Resolution Using Deep Convolutional Networks [25] 8040
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs [14]

16385

Contour detection and hierarchical image segmentation [4] 4698
Object tracking benchmark [101] 3295
Representation learning: A review and new perspectives [7] 9997
SLIC superpixels compared to state-of-the-art superpixel methods [1] 8295
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks [83]

26841

Pedestrian detection: An evaluation of the state of the art [24] 2793
Learning without Forgetting [65] 2803
3D Convolutional neural networks for human action recognition [52] 5290
Single image haze removal using dark channel prior [42] 6443
Tracking-learning-detection [55] 3262
Robust recovery of subspace structures by low-rank representation [69] 3187
Places: A 10 Million Image Database for Scene Recognition [114] 2656

Table 1: TPAMI Papers and Their Citation Counts (Scopus)

25


	Introduction
	Background and Motivation
	Problem Statement

	Methodology
	Tab 1: Article Selection
	Tab 2: Dataset Compilation and Ranking
	Tab 3: Annotation Metadata Extraction
	Analysis

	Findings
	Missing Information
	Correlated Reporting Patterns

	Discussion
	Responsible Research
	Conclusions and Future Work
	Annotation Schema
	Scopus Query
	Statistical Tools
	Datasets Analyzed
	TPAMI Papers Analyzed

