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Fusion of Gaze and Scene Information for Driving
Behaviour Recognition: A Graph-Neural-Network-

Based Framework
Yangtian Yi, Chao Lu , Boyang Wang, Long Cheng , Zirui Li , and Jianwei Gong , Member, IEEE

Abstract— Accurate recognition of driver behaviours is the
basis for a reliable driver assistance system. This paper proposes
a novel fusion framework for driver behaviour recognition that
utilises the traffic scene and driver gaze information. The pro-
posed framework is based on the graph neural network (GNN)
and contains three modules, namely, the gaze analysing (GA)
module, scene understanding (SU) module and the information
fusion (IF) module. The GA module is used to obtain gaze images
of drivers, and extract the gaze features from the images. The SU
module provides trajectory predictions for surrounding vehicles,
motorcycles, bicycles and other traffic participants. The GA and
SU modules are parallel and the outputs of both modules are sent
to the IF module that fuses the gaze and scene information using
the attention mechanism and recognises the driving behaviours
through a combined classifier. The proposed framework is
verified on a naturalistic driving dataset. The comparative
experiments with the state-of-the-art methods demonstrate that
the proposed framework has superior performance for driving
behaviour recognition in various situations.

Index Terms— Driving behaviours, graph neural network, gaze
information, scene information, data fusion.

I. INTRODUCTION

ACCORDING to the forecast of the International Data
Corporation (IDC), the global annual shipment of intel-

ligent vehicles equipped with advanced driving assistant sys-
tems (ADASs) will reach about 76.2 million by 2024. With
the rapid development of intelligent vehicles, the reliability of
ADASs, such as the brake assist system (BAS), lane keeping
system (LKS) and adaptive cruise control (ACC), has been
one important concern of drivers and other road users.
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Accurate recognition of driver behaviours is the basis for
a reliable ADAS. However, in urban areas, the recognition of
driver behaviours is not an easy task due to the complexity of
the traffic environment. The behaviours of drivers are affected
by various dynamic factors, such as surrounding vehicles,
bicycles and pedestrians, and static factors, such as road
geometry, traffic signs and facilities, making it a challenge
for intelligent vehicles to work reliably. Therefore, numerous
studies have been conducted to improve the recognition accu-
racy of driving behaviours in various scenes.

For instance, in car-following scenes, a consolidated fuzzy
clustering algorithm was proposed in [1] to classify different
car-following patterns. In a similar work found in [2], the
recognition results of driving patterns were based on vehicle
speed, acceleration, range and other factors. The braking
action in the car-following scene was regarded as a driving
behaviour in [3], which was recognized by a model combining
the Gaussian mixture model (GMM) and hidden Markov
model (HMM).

Except for the longitudinal behaviour of drivers, such as
breaking and accelerations, another group of studies focused
on the lateral behaviour of drivers in lane-changing or turning
scenes. The lane-changing behaviour of the ego vehicle was
recognized in some studies based on the driver operation data
and inertial measurement unit data. In [4], driving behaviour
was divided into lane-keeping and lane-changing, while in [5],
lane-changing behaviour is divided into 3 types: cautious,
normal and aggressive. LiDAR can be used to obtain the
position of surrounding vehicles in the scene. Using the
scene information from LiDAR, the lane-changing and turning
behaviour of surrounding vehicles can be recognised [6],
[7], [8]. When the realistic data was insufficient, the data
collected in driving simulator could be used to recognise
driving behaviours based on transfer learning [9], [10].

In the traffic scene, the longitudinal and lateral behaviours
of vehicles are not isolated from each other. Therefore,
some studies considered the two together. Overtaking is a
traffic scene combining longitudinal and lateral behaviours.
A combined learning framework based on the natural actor-
critic learning and general regression neural network was
developed in [11], to learn the driver-specific behaviour for
overtaking. However, in some studies, the classification of
driving behaviours was not clear enough. For instance, all
lateral behaviours were classified as turning in [12], and only
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acceleration and normal driving were considered in longitudi-
nal behaviour in [13].

Although the above-mentioned studies have improved the
accuracy and efficiency in the task of recognising driving
behaviours, they are mainly concerned about the impact of
scene information, such as the velocity of the ego vehicle
and the trajectories of surrounding traffic participants. The
gaze information was ignored by the above-mentioned studies.
The literature shows that gaze information is highly related
to human behaviours and in many situations, even guides
human actions [14]. Consequently, several studies have paid
attention to gaze information and tried to correlate this kind of
information with driving behaviour. In [15], the eye movement
and gaze information were captured by eye tracking glasses,
which are portable and do not affect the normal driving
of the drivers. Similarly, methods using camera images and
semantic segmentation images to predict gaze images of the
driver have been proposed in [16] and [17]. To explore the
relationship between gaze and driving behaviour, the gaze of
the driver at the traffic signal was analysed in [18], to predict
the behaviour of the driver 3-4 seconds before reaching the
intersection. Martin and Trivedi judged the attention area of
the driver by the camera arranged in the vehicle, and studied
lane-changing driver behaviour [19]. Further, they proposed a
machine-vision-based framework for predicting the behaviours
of drivers [20]. In addition to recognizing driving behaviour at
intersections, in [21], the driver gaze location was also used to
predict the braking behaviour and estimate the driver’s steering
angle in various urban traffic scenes.

However, the above-mentioned studies containing driver
gaze information did not consider scene information (dynamic
and static factors). Hence, there is a need for a framework
that can combine traffic scene and driver gaze information for
driving behaviour recognition. Therefore, this paper proposes
a framework based on a graph neural network (GNN) for
fusing traffic scene and driver gaze information to recognize
the driving behaviours in different situations. The proposed
framework contains a gaze analysing (GA) module, a scene
understanding (SU) module and an information fusion (IF)
module. The GA module extracts the gaze features of the
driver by processing the camera, optical flow and gaze images
in time series. The SU module, a GNN, is responsible for
capturing the trajectories of traffic participants as input and
comprehending the traffic scene. (In this paper, the GNN
is fed with trajectories of traffic participants, and outputs
the vectors containing scene features. This process is called
scene comprehending.) The IF module adopts the attention
mechanism to fuse gaze and scene features in the pro-
posed framework, to recognize up to 8 kinds of driving
behaviours.

The rest of this paper is arranged as follows. Section II
describes the GNN-based framework and defines the problem.
The methodology is presented in Section III. Experimental
settings and comparative results are presented in Section IV.
Finally, Section V concludes the paper and provides ideas for
future work.

II. DESCRIPTION OF THE GRAPH-NEURAL-NETWORK-
BASED FRAMEWORK

This section describes the proposed framework. Firstly, the
problem is defined and the inputs and outputs of the proposed
framework are determined. Then, three main modules of the
proposed framework are introduced.

A. Problem Definition

The proposed framework can recognise the behaviour of
drivers in urban traffic. Assuming that the images from an
onboard camera with the corresponding driver gaze images
and spatial coordinates of surrounding traffic participants are
available. At each time t , the input of the model is defined as:

Ft
= {It , St , Ot , Ct

} (1)

where It , St and Ot are the pixel matrices for the original
image collected from the on-board camera (camera image), the
processed image with gaze information (gaze image), and the
optical flow image at time t , respectively. Ct is an aggregation
of characteristics of surrounding traffic participants, Ct

=

{ft
1, ft

2, . . . , ft
i }. ft

i is the feature vector of the i th surrounding
traffic participant at time t , ft

i = {x t
i , yt

i , ci }, in which {x t
i , yt

i }

are the relative position of traffic participants and ego vehicle
in the vehicle body coordinate system. X and Y represent
lateral and longitudinal directions respectively, and ci is the
category label, ci ∈ {1, 2, 3}, where 1, 2 and 3 stand for
pedestrians, vehicles and riders, respectively. Since the number
of traffic participants around the ego vehicle changes with
time, the number of elements in Ct is time-varying. Taking
information [F1, F2, . . . , FTobs ] of time interval [1 : Tobs]

as input, the proposed framework can recognize 8 kinds of
driving behaviours during this period of time.

B. Framework Structure

There are three main modules in the proposed framework.
Two parallel modules are the GA and SU modules. The third
is the IF module. Fig.1 shows the overall structure of the
proposed framework. The matrix sequences of camera images
[I1, I2, . . . , ITobs ], optical flow images [O1, O2, . . . , OTobs ]

and gaze images [S1, S2, . . . , STobs ] of time interval [1:Tobs]

are sent to the GA module. The sequence of features
[C1, C2, . . . , CTobs ] of surrounding traffic participants is sent
to the SU module. Then, the IF module combines the outputs
of the GA and SU modules through the attention mechanism.
The output of the IF module is connected with a classifier
(such as MLP or SVM) to classify the driving behaviours into
8 categories (shown in Fig.5).

In an urban traffic environment, human drivers cannot
observe all the details of the environment at any time. The gaze
of the driver is always focused on the local area. For example,
when the driver is ready to overtake, he or she will pay
special attention to the traffic on the overtaking side; Another
example is that when the driver is following a vehicle, he or
she will look at the vehicle in front and adjust the velocity

Authorized licensed use limited to: TU Delft Library. Downloaded on August 29,2023 at 08:51:08 UTC from IEEE Xplore.  Restrictions apply. 



YI et al.: FUSION OF GAZE AND SCENE INFORMATION FOR DRIVING BEHAVIOUR RECOGNITION 8111

Fig. 1. The proposed framework.

according to the behaviour of the vehicle in front. Therefore,
the gaze information of the driver can reflect the driving
intention to a certain extent, which should be considered in the
recognition of driving behaviour. The gaze images in Fig. 1
are obtained by a gaze predicting method shown in Fig. 2,
which is simplified from [16]. The gaze predicting method
has two identical branches each containing an encoder-decoder
composed of convolutional neural networks (CNNs) in series.
One branch takes the camera images as input, and the other
takes the optical flow images as input. An optical flow image
can represent the instantaneous velocity of the pixel motion
of a moving object on the observation imaging plane. The
corresponding relationship between the previous frame and
the current frame is determined using the displacement of
pixels in the time domain, calculating the moving information
of objects between adjacent frames [22]. Optical flow images
have been applied in some image processing fields [23], [24].
The calculation method of optical flow image applied by this

work is described in Section III. The change of the size of
images during the data processing is shown in Fig 2. The
calculation results of two submodules are two matrices with
the size of 1 × 112 × 112. They are added and normalized to
obtain the final prediction result. The result of gaze predicting
is a probability map.

In the field of image processing, many models based on con-
volutional neural networks (CNN) including visual geometry
group (VGG), LeNet and AlexNet have achieved remarkable
results [25], [26], [27]. However, these models are composed
of 2D convolution layers and do not possess the ability to
process images in time series. The long short-term memory
(LSTM) has been widely applied in trajectory prediction and
behaviour recognition due to its good performance in sequence
data processing. Therefore, the advantages of VGG and LSTM
are combined in the GA module. The strong feature extraction
ability of the VGG is adopted to extract the features of
each frame in sequence input, and the LSTM deals with
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Fig. 2. The flowchart for gaze predicting.

the sequence data after feature extraction. The GA module
consists of three parallel submodules as shown in Fig. 1. Each
submodule consists of a VGG and an LSTM. Each image is
resized to 3 × 224 × 224. Through 5 convolution layers, the
image is processed into a vector of 1 × 25088. Then, the
vectors in a time series are sent to LSTM to obtain the output
result of the corresponding submodule.

Following [28], a GNN is built here to form the basis
of the SU module. As mentioned earlier, the number of
elements in Ct

= {ft
1, ft

2, . . . , ft
i } is not constant and depends

on the number of traffic participants around the ego vehicle.
Therefore, the SU module can be described as a GNN. The
effectiveness of GNN has been validated in several studies
on trajectory prediction and behaviour recognition [28], [29],
[30], [31]. The SU module has a hierarchical structure, which
is divided into an instance layer and a category layer.

In the instance layer, at any time t , each participant is
modelled as an instance node At

i with a feature defined as
ft
i = {x t

i , yt
i , ci }. The edge between At

i and its surrounding
nodes is called spatial edge (At

i , At
j ), which is bidirectional.

Considering (At
i , At

j ), it represents the influence of node At
j

on At
i in space and is characterized by ft

i j = (x t
i j , yt

i j , ct
i j ),

where x t
i j = x t

j − x t
i and yt

i j = yt
j − yt

i are the coordinates of
At

j relative to At
i in the X and Y direction, respectively, and ct

i j
is obtained by encoding the types of two nodes. Concerning
(At

j , At
i ), the feature is computed as ft

j i = (x t
j i , yt

j i , ct
j i ).

Depending on the spatial edge, the SU module can consider
not only the location of each traffic participant, but also the
spatial relationship between the participants. When the same
node Ai appears in two adjacent frames, a temporary edge
(At

i , At+1
i ) is defined between them. In contrast to spatial

edge, the temporary edge is unidirectional and represents the
transmission of information in the time stream. The feature of
the temporal edge (At

i , At+1
i ) is defined as ft

i i = (x t
i i , yt

i i , ct
i i ),

where x t
i i = x t+1

i − x t
i and yt

i i = yt+1
i − yt

i . ct
i i is the only

encoding for the traffic participants of its type.
To extract behaviour characteristics of traffic participants

with different types, a category layer is built containing several
super nodes C t

c(c ∈ {1, 2, 3}) for different categories of traffic

participants at each time step. The information of participants
of the same type is gathered to the super node through an
edge. The super node extracts the behaviour characteristics of
the same kind of traffic participants, and sends the information
back to the instance node through the edge to obtain the driver
behaviour recognition result BA.

In this paper, the attention mechanism is used to fuse the
output of the GA and SU modules [32]. The gaze images
represent the area that the driver pays special attention to.
The impact of traffic participants in this area on the driver’s
behaviour should be different from the impact of participants
outside this area. Therefore, different weights should be given
to the outputs of the hidden states by all nodes in the SU
module. The attention mechanism distributes the different
weights to different traffic participants, which represent the
impact of different traffic participants on the driving behaviour
of ego vehicles. After weighted summation, gaze and scene
information is fused.

III. METHODOLOGY

This section describes the methodology and the flow of data
in the proposed framework.

A. Gaze Analysing

According to the assumption of brightness constancy, small
motion and spatial coherence [22], the optical flow can be
calculated as:

∂ I
∂x

1x +
∂ I
∂y

1y +
∂ I
∂t

1t = 0 (2)

∂ I
∂x

Vx +
∂ I
∂y

Vy +
∂ I
∂t

= 0 (3)

where I is the grayscale image, x and y are pixel coordinates,
t represents the time index, Vx and Vy are the velocities
of the pixel (x, y) in the X and Y direction, respectively.
Depending on the optical flow image, the fast-moving targets
in the driver’s field of vision can be analysed, which are often
the objects of special concern to the driver. Fig. 3 shows
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Fig. 3. Calculated optical flow image (converted to RGB format).

Fig. 4. The hierarchical structure of the SU module.

the optical flow image converted to RGB format using the
proposed method.

Therefore, the GA module consists of three parallel modules
with matrices of camera images I, optical flow images O and
driver gaze images S as inputs:

Ri = V GG([I1, I2, . . . , ITobs ]) (4)

Ro = V GG([O1, O2, . . . , OTobs ]) (5)

Rs = V GG([S1, S2, . . . , STobs ]) (6)
Gi = L ST M(Ri ; Wi ) (7)
Go = L ST M(Ro; Wo) (8)
Gs = L ST M(Rs; Ws) (9)

where Wi , Wo and Ws are the weight matrices of LSTM cells.
The sizes of the camera and gaze images are pre-processed to
224 ∗ 224 and are sent into the GA module to obtain the
results. Gi , Go and Gs are the vectors that are output by the
LSTM. The output G of the GA module is the average vector
of Gi , Go and Gs .

B. Scene Understanding

The hierarchical structure of the SU module is shown in
Fig. 4. The two layers are called the instance layer and the
category layer.

1) Instance Layer: The instance layer learns the movement
of each traffic participant, including the spatial relationship
between the participants and the displacement of each traffic
participant over time. An LSTM L i is set for each instance
node Ai , which is used to collect the information from the edge
connected to it. For the spatial and temporal edges (At

i , At
j )

and (At
i , At+1

i ), LSTMs L i j and L i i are set, respectively.
At any time, feature vectors ft

i j and ft
i i are embedded, and

then fed into L i j and L i i :

et
i j = embed(ft

i j ; We
spa) (10)

et
i i = embed(ft

i i ; We
temp) (11)

ht
i j = L ST M(ht−1

i j , et
i j ; Wr

spa) (12)

ht
i i = L ST M(ht−1

i i , et
i i ; Wr

temp) (13)

where embed(·) is an embedding function that uses a linear
mapping layer to encode the input into a vector of a specific
length, ht

i j and ht
i i are the output vectors of L i j and L i i ,

respectively and are called hidden states of the corresponding
LSTM, We

spa and We
temp are the embedding weight matrices,

while Wr
spa and Wr

temp are the weight matrices of LSTM cells.
When there are multiple participants in traffic, a node

is connected to multiple spatial edges. The GNN assigns
weights to the output of each spatial edge using soft attention
mechanism, considering their spatial impact on the node:

w(ht
i j ) = so f tmax(λ · Dot (Wi i ht

i i , Wi j ht
i j )) (14)

where w(ht
i j ) is the weight corresponding to the spatial edge

output ht
i j , Wi i and Wi j are the embedding weight matrices,

Dot (·) is the dot product, and λ is the scaling factor suggested
by [32].

Ht
i is obtained by calculating the weighted average of ht

i j ,
which represents the spatial impact of the surrounding traffic
participants on the agent Ai at time t . Ht

i and ht
i i contains

all information of edges connected to the node Ai , which are
concatenated and fed into an embedding layer to obtain the
fixed length vector at

i . Meanwhile, the instance node feature
ft
i is also embedded as et

i :

et
i = embed(ft

i ; We
ins) (15)

at
i = embed(concat (ht

i i , Ht
i ); Wa

ins) (16)

where We
ins and Wa

ins are the embedding weight matrices.
et

i and at
i are input into the instance LSTM to obtain the

hidden state h1t
i , which is the first output of the instance node:

h1t
i = L ST M(h2t−1

i , concat (et
i , at

i ); Wr
ins) (17)

where Wr
ins are the weight matrices of the LSTM.

h2t−1
i is the final output of the instance node Ai at time

t − 1.
2) Category Layer: In the multi-participant urban traffic

environment, the number of traffic participants of the same
category is often more than one. Therefore, the proposed
model includes a category layer, in which the super node
collects the hidden states h1t

m and the cell states ct
m from the

same kind of instance LSTM, extracting the characteristics
of the same kind of traffic participants and feedback it to
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Fig. 5. Eight types of driving behaviours.

the instance node. The category layer enables the model to
learn the motion characteristics of different categories of traffic
participants and obtain a comprehensive understanding of the
traffic scene.

For the mth instance node, the hidden state h1t
m and the cell

state ct
m contain the historical trajectory information. There-

fore, the proposed approach uses a self-attention mechanism
to calculate the motion characteristics dt

m of the m th instance
node, and computes the average vector of dt

m as the features
of the super node C t

c [32]:

dt
m = h1t

m ⊗ so f tmax(ct
m) (18)

Ft
c =

1
n

n∑
m=1

dt
m (19)

where n is the number of instance nodes corresponding to the
super node C t

c. Ft
c contains motion characteristics of a category

of agents at time t and is included as a part of the input of
super node LSTM. There is also a temporal edge between the
same super nodes of two consecutive frames. Similar to the
instance layer, the temporal edge in the category layer takes
Ft

cc = Ft
c − Ft−1

c as input and outputs the hidden state ht
cc

containing time series information:

et
cc = embed(Ft

cc; We
st) (20)

ht
cc = L ST M(ht−1

cc , et
cc; Wr

st) (21)

where Wr
st and We

st are the embedding weight matrices of
LSTM cells.

As another part of the input, ht
cc is fed into the super node

LSTM together with Ft
c:

et
c = embed(Ft

c; We
sup) (22)

ht
c = L ST M(ht−1

c , concat (et
c, ht

cc); Wk
sup) (23)

As feedback information, ht
c is sent back to the instance

layer along the edge from the super node to the instance node.
The mth instance node corresponding to C t

c receives ht
c, and

then concatenates h1t
m with it. h1t

m and ht
c are input into an

embedding layer to obtain the final output h2t
m :

h2t
m = embed(concat (h1t

m, ht
c); Wr

s) (24)

where Wr
s are the embedding weight matrices. h2t

m collects
the trajectory information of the mth agent, the influence of
the surrounding agents on it, and its motion characteristics.

C. Information Fusion

In the proposed framework, gaze and scene information
generated by the GA and SU modules, respectively, is fused by
the IF module. The weights of hidden states h2t

m are obtained
by processing h2t

m and the features G by attention mechanism:

w(h2t
m) = so f tmax(Dot (h2t

m, G)) (25)

BA =

n∑
m=1

Dot (w(h2t
m), h2t

m) (26)

where n is the total number of nodes in the SU module.
BA is input into a classifier to obtain B, which is the result

of driver behaviour recognition.
The effect of the cross-entropy function has been verified in

the field of classification. Therefore, the cross-entropy function
is used as the loss function to evaluate the identification results:

loss = Cross Entropy(B, BT) (27)

where BT is the ground truth of driving behaviour. During
the training, after each sequencing sample was input into
the network, the error was calculated, and all the weight
parameters were updated by the back propagation algorithm.

IV. EXPERIMENTS AND VALIDATION

In this section, the proposed framework is verified in the
urban environment with heterogeneous traffic participants.
The BLVD dataset was used for validation. The BLVD is a
large-scale 5D semantics benchmark collected in Changshu,
Jiangsu province, China [33]. The proposed framework is
compared with the state-of-the-art approaches using the BLVD
dataset. The details of data pre-processing, implementation,
evaluation metrics, baseline methods and experimental results
are presented in the following subsections.

A. Dataset and Data Pre-Processing

The BLVD dataset was selected to verify the effectiveness
of the proposed method. The BLVD is a dataset containing
7 categories of driving scenarios with 654 calibrated videos,
and the sampling frequency is 10Hz. For each frame, the
categories (a total of three, pedestrian, rider and vehicle) and
the coordinates of surrounding traffic participants are labelled,
and each traffic participant is given a unique ID. At the same
time, the categories of driver behaviour of the ego vehicle are
also labelled. As shown in Fig. 5, driver behaviours are divided
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TABLE I
THE CORRESPONDING RELATIONSHIP BETWEEN

LABELS ANDDRIVER BEHAVIOURS

into 8 categories and labelled with numbers 1-8. It should be
noted here that each frame is labelled with one of the 8 driving
behaviours, so that a driving manoeuvre may consist of some
number of consecutive frames labelled the same. The labelling
of driving behaviours is done manually. In this paper, the labels
are used as the ground truth in training.

The proportion of samples of 8 behaviours in the BLVD
dataset is not balanced. The behaviour with the largest propor-
tion of quantity is uniformly straight driving, up to 43%. The
behaviour with the smallest proportion of quantity is changing
the lane to left, only 3%. In the process of training, if the
quantity of data for one category is much larger than other
categories, this category of data will remarkably dominate the
classification result and lead to the problem of imbalanced
data [34], [35], In this situation, the trained classification
model cannot classify the data from categories with few
training samples correctly. Therefore, in order to eliminate the
imbalance between different categories of data, the dataset was
randomly sampled to obtain a data-balanced training set and
eliminate the imbalance between different categories of data.
In the selected data, the number of tags in the eight categories
was roughly balanced, as shown in Table I. The dataset was
divided into training, verification and test sets according to the
ratio of 8:1:1.

B. Details of Implementation

In the experiment, the number of cells in the instance node
LSTM was set to 64, and the number of cells in other LSTMs
was set to 128. The number of cells in the embedding layer
was also set to 128. The learning rate was set to 0.001 and the
optimizer was Adam. The training equipment was a computer
equipped with an i7-10870H CPU and RTX2060 graphics
card.

C. Evaluation Metrics and Baselines

1) Evaluation Metrics: The recall rate and the accuracy
of recognition are used to evaluate the performance of the
proposed model:

accuracy =
mT

MT

recall =
T P

T P + F N
(28)

TABLE II
THE EFFECT OF GAZE PREDICTING MODULE

where mT is the number of samples that are correctly identified
during the test, MT is the total number of test set samples, T P
is the number of positive samples that are correctly identified,
F N is the number of positive samples that are incorrectly
identified as negative. In a multi-class class problem, when
calculating the recall rate of one category, that category will
be regarded as positive, and other categories will be regarded
as negative.

2) Baseline Methods: During the test, MT is the total
number of test set samples. The proposed method is compared
with the following methods:

1. Scene understanding (SU): It only contains the part of tra-
jectory information, without considering the gaze information
of driver.

2. Gaze analysing (GA): It only contains the gaze infor-
mation of driver, without considering the trajectory of the
surrounding traffic participants.

3. Spatial-Temporal fusion convolutional neural network
(STFCNN): It is a framework that has two streams called
spatial stream and temporal stream. The spatial stream is fed
with a single original image, and the temporal stream is fed
with optical flow images in series. The outputs of the two
streams are fused by concatenating [36].

4. Social LSTM(SL): It is a network composed of LSTM,
using “Social” pooling layers to handle the information of
neighbouring traffic participants [29].

D. Training and Validation

1) Effect of Gaze Predicting Method: The BLVD does
not contain gaze images of the driver. Therefore, the gaze
predicting method was used to generate the gaze images.
The selection of parameters referred to [16], and the gaze
predicting method was trained on Dr(eye)ve dataset [15]. The
Dr(eye)ve dataset contains 74 segments of videos, each of
which contains 7500 camera images and corresponding gaze
images (probability map). During the training, the input was a
sequence of 16 consecutive frames, and the prediction result
was the gaze image of the final frame. To prove that the
gaze predicting module was robust enough to be applied to
generate gaze images for BLVD, the module was verified on
the dataset collected using the eye tracking glasses. The eye
tracking dataset contained 165 segments of videos, each of
which exceeded 300 frames.

Two metrics were adopted to measure the prediction effect:
the Kullback-Leibler divergence (KLD) between the predicted
images and the gaze images collected by eye tracking glasses,
and the AUC-J [37] between the predicted images and ground
truth. Table II compares the performance of the gaze predicting
module on two datasets: Dr(eye)ve and the dataset collected
by us. It can be seen from Table II that the gaze predicting
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Fig. 6. Gaze predicting results on the images collected by eye tracking glasses.

TABLE III
RECALL RATE OF FOUR CLASSIFIERS IN 8 KINDS OF BEHAVIOURS RECOGNITION

Fig. 7. The verification results on GA, SU and the proposed framework.

module maintained a small error for the eye tracking dataset,
showing good robustness. Fig. 6 shows the results of gaze
predicting modules for some sample images from the eye
tracking dataset. Fig. 6 (a) shows the data acquisition equip-
ment, and (b) overlaps the camera images with corresponding
gaze images.

2) Parameters Adjustment and Classifier Selection: There
are some adjustable parameters in the network that affect the
performance of recognition. The parameters of VGG and GNN
were set according to [25] and [28]. In the LSTM layer of the
GA, the dropout value was set to 0.5 [38].

Experiments were conducted to compare four widely used
classifiers: MLP, SVM, Decision Tree and Random For-
est [39], [40], [41], [42], [43], [44], [45], [46]. The recognition
effects of the four classifiers are shown in Table III. It can be
seen from the table that the MLP achieves the highest recall
rate in recognition of 7 kinds of driving behaviours, while the

recall rate of the Decision Tree is the lowest. The Random For-
est overcomes the overfitting problem, which makes it perform
better than the Decision Tree. To observe the performance of
the framework under different observation sequence lengths
with the four classifiers, the length of the input sequences was
set as 16, 32 and 48 frames. The results are illustrated in Fig. 7.
The Figure graphically compares the recognition accuracy of
the different classifiers. The recognition accuracy of the MLP
is always higher than that of the SVM, Decision Tree and
Radom Forest. Therefore, the MLP is selected as the classifier
of the proposed framework.

3) Driving Behaviour Recognition Effect of Framework:
Fig. 8 visually shows the recognition effects of the proposed
framework under four scenes. The orange dots and lines
in the figure represent the historical trajectories of partici-
pants. The recognition result of Fig. 8 (a) is deceleration,
where the vehicles in the view slow down under the command

Authorized licensed use limited to: TU Delft Library. Downloaded on August 29,2023 at 08:51:08 UTC from IEEE Xplore.  Restrictions apply. 



YI et al.: FUSION OF GAZE AND SCENE INFORMATION FOR DRIVING BEHAVIOUR RECOGNITION 8117

Fig. 8. The recognition effect of the proposed framework of four scenarios.

of traffic lights and stop in front of the zebra crossing. The
driver stares at the vehicle in front of him or her, slows
down and keeps a certain distance from the vehicle in front.
Fig. 8 (b) shows the acceleration behaviour when the traffic
lights change from red to green. The driver still gazes at the
vehicle ahead. It is difficult to distinguish deceleration and
acceleration behaviours by just analysing the gaze information.
The difference between Figs. 8 (b) and (a) is the length of
historical trajectories of the vehicles ahead. Since the vehicles
in Fig. 8 (b) are in the acceleration phase and the vehicles in
Fig. 8 (a) tend to stop, the historical trajectories of the vehicles
in Fig. 8 (b) are longer than those in Fig. 8 (a), which becomes
the key for the proposed framework to distinguish the two
scenarios. In Fig. 8 (c), the driver is turning left. The gaze
map shows that the gaze of the driver falls on the van turning
at the same time as him or her on the left. This characteristic is
used by the proposed framework to successfully recognise the
turning behaviour of the driver. Fig. 8 (d) shows an overtaking
scenario, where the driver is changing the lane to the right.
The black vehicle in front is stopping on the road and flashing
taillights, indicating that it has failed. Therefore, the driver
of the ego vehicle ignores the static vehicle and focuses on
the motorcycle running on the right side in the process of
overtaking.

4) Comparative Experimental Results and Discussion:
Fig. 9 compares the increasing recognition accuracy of the five
methods in the training process. It can be seen from the figure
that the training effect of the proposed method is the best,
the curves of SU, GA and SL see a similar trend beneath the
proposed method, and the STFCNN is the worst, staying at the
level of 0.8 after 13 epochs. In the comparative experiment,
the sequence lengths were set as 4, 8, 16, 32 and 48. The
results are illustrated in Fig. 10. The recognition accuracy of

Fig. 9. The variation of recognition accuracy of five methods with epoch in
the training process.

driver behaviour in SU is lower than the proposed method
because the SU only considers the historical trajectories of
traffic participants around the ego vehicle and ignores the gaze
information of drivers. Although the GA considers the gaze
of the driver, it lacks the accurate location information of
the surrounding traffic participants, meaning an insufficient
understanding of the traffic scene. Therefore, the accuracy
of GA is also lower than the proposed method. When the
information of two branches is combined, a higher accuracy
is achieved than a single module.

Although compared to the method with scene information
only, with the help of gaze prediction, the proposed method
can achieve a superior performance, it does not mean that
the model will become more accurate as long as the driver’s
gaze information is included. In our experiments, parameters
of gaze predicting module have been adjusted to guarantee a
high performance with the KLD around 1.6 (as mentioned
in Section IV-D. 2)). With the increase of gaze prediction
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Fig. 10. Comparison of the proposed framework with and four other methods.

error, the behaviour prediction accuracy of the framework will
decrease. When the gaze prediction error increases to a certain
extent, for example, when the driver is looking to the left, but
the gaze prediction shows that the driver is looking to the right,
the effect of the fusion framework will be even worse than
that of using only the scene information. Thus, for using the
proposed framework, the accuracy of gaze predicting module
should be guaranteed first.

It can be seen from Fig. 10 that when the number of
observation frames is fixed, the accuracy of the proposed
method is improved by 6.51%∼11.11% and 3.78%∼9.10%
relative to the SU and GA, respectively. When the length of
the observation sequence increases, the identification accuracy
of all models decreases.

The structure of the STFCNN is similar to that of the
GA. However, the STFCNN has just two streams, without the
stream to process the gaze images. A lack of gaze information
makes it difficult to capture the intention of the driver. The
recognition accuracy of GA is 6.86%∼10.52% higher than
that of the STFCNN, which shows that the gaze image of the
driver can improve the recognition accuracy when only using
the image information for the recognition of behaviour. The
Social LSTM can just manage the information of trajectories.
Compared with the SU, the SL has the social pooling layer
to analyse spatial influence between the traffic participants,
which is analogous to the spatial edge of the SU. However,
the SL does not have a category layer. Hence, it is difficult
for the SL to learn the movement patterns of different types of
traffic participants. Therefore, the performance of SU is better
than SL.

It should be noted that the recognition accuracy does not
always increase with the increase in the length of the sequence.
When the observation length is 4, behaviour recognition
becomes extremely difficult because the input only contains
information of 0.4 seconds, resulting in recognition accuracy
of less than 0.5 for each model. As the observation length
increases from 4 to 16, the input sequence becomes longer, and
the information fed to the model becomes ampler. Therefore,
the recognition accuracy is improved accordingly. However,
as the length of observed sequence continues to increase, the
performance of models declines. The reason is that when the

observation length is too long, the behaviour of the driver in
the sequence may change, such as changing back and forth
between going straight and lane changing, which brings dis-
turbance to behaviour recognition. However, the performance
of the proposed method is still better than others.

V. CONCLUSION AND FUTURE WORK

In this paper, a framework for fusing the gaze and scene
information and recognizing the behaviour of drivers is pro-
posed. The proposed framework is composed of three main
modules, namely gaze analysing (GA), scene understanding
(SU) and information fusion (IF). The GA module extracts
the characteristics of the gaze images with VGG and LSTM.
The SU module processes the trajectories of traffic participants
with different types at the same time using a hierarchical graph
neural network. The IF module uses the attention mechanism
to assign different weights to the trajectories of surrounding
traffic participants according to the areas where the drivers pay
attention and realises the fusion of two types of information.
The proposed framework is evaluated using the BLVD dataset.
The performance of the proposed framework is compared
with the state-of-the-art approaches. The comparative analysis
demonstrates and validates the superior performance of the
proposed framework driving behaviour recognition.

At the current stage, the traffic scenes with only a small
amount of interactive traffic participants are considered. More
complex interactive behaviour between different traffic partic-
ipants will be involved in future work.
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