
 
 

Delft University of Technology

Bayesian data integration for quantifying the contribution of diverse measurements to
parameter estimates

Thijssen, Bram; Dijkstra, Tjeerd M.H.; Heskes, Tom; Wessels, Lodewyk

DOI
10.1093/bioinformatics/btx666
Publication date
2017
Document Version
Final published version
Published in
Bioinformatics

Citation (APA)
Thijssen, B., Dijkstra, T. M. H., Heskes, T., & Wessels, L. (2017). Bayesian data integration for quantifying
the contribution of diverse measurements to parameter estimates. Bioinformatics.
https://doi.org/10.1093/bioinformatics/btx666

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1093/bioinformatics/btx666
https://doi.org/10.1093/bioinformatics/btx666


Systems biology

Bayesian data integration for quantifying the

contribution of diverse measurements to

parameter estimates

Bram Thijssen1, Tjeerd M. H. Dijkstra2,3, Tom Heskes4 and

Lodewyk F. A. Wessels1,5,*

1Computational Cancer Biology, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX,

Amsterdam, The Netherlands, 2Department of Protein Evolution, Max Planck Institute for Developmental Biology,
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Abstract

Motivation: Computational models in biology are frequently underdetermined, due to limits in our

capacity to measure biological systems. In particular, mechanistic models often contain parameters

whose values are not constrained by a single type of measurement. It may be possible to achieve better

model determination by combining the information contained in different types of measurements.

Bayesian statistics provides a convenient framework for this, allowing a quantification of the reduction

in uncertainty with each additional measurement type. We wished to explore whether such integration

is feasible and whether it can allow computational models to be more accurately determined.

Results: We created an ordinary differential equation model of cell cycle regulation in budding yeast

and integrated data from 13 different studies covering different experimental techniques. We found

that for some parameters, a single type of measurement, relative time course mRNA expression, is

sufficient to constrain them. Other parameters, however, were only constrained when two types of

measurements were combined, namely relative time course and absolute transcript concentration.

Comparing the estimates to measurements from three additional, independent studies, we found that

the degradation and transcription rates indeed matched the model predictions in order of magnitude.

The predicted translation rate was incorrect however, thus revealing a deficiency in the model. Since

this parameter was not constrained by any of the measurement types separately, it was only possible

to falsify the model when integrating multiple types of measurements. In conclusion, this study shows

that integrating multiple measurement types can allow models to be more accurately determined.

Availability and implementation: The models and files required for running the inference are

included in the Supplementary information.

Contact: l.wessels@nki.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational models in biology are frequently underdetermined

(Gutenkunst et al., 2007), which can limit their usefulness. This

underdetermination is a result of our limited capacity to measure

biological systems. A dynamic model of an intracellular regulatory

network, for example, might contain several proteins of interest that
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carry out important functions in the system. We would then ideally

like to know the concentrations of all these proteins in their various

states and complexes, inside the cell, over time. But such direct

measurements are currently not possible. Instead we are limited to

indirect measurements such as relative protein levels compared to a

control, reporter-based measurements, or averages over populations

of cells. A compounding difficulty is that the measurements are often

relatively noisy. It is thus challenging to accurately determine

the unknown parameters of computational models of biological

systems.

Intuitively, one would expect that multiple types of measure-

ments, obtained using different experimental techniques, provide

more information than a single type of measurement. The combined

information would then be more likely to constrain the parameters in

a computational model compared to using only a single measurement

type. However, this need not be the case; perhaps one particular

dataset, such as the most detailed measurements, already contains all

relevant information, making additional datasets irrelevant.

The quantification of how much information a dataset brings to

the parameter estimates can be achieved using Bayesian statistics

(Vyshemirsky and Girolami, 2008; Wilkinson, 2007). For all

unknowns in a model, a probability distribution is specified which

quantifies the uncertainty in the parameters. This probability distribu-

tion can then be updated based on each of the different datasets, using

Bayes’ theorem. This provides a convenient framework for the integra-

tion of multiple datasets, as it allows a detailed comparison of the

amount of information that can be extracted from each of the datasets.

Bayesian statistics has been applied to mechanistic computa-

tional models in biology in various settings and model types, includ-

ing regulatory network models based on ordinary differential

equations (ODEs) (Eydgahi et al., 2013; Hug et al., 2013; Toni and

Stumpf, 2010; Vyshemirsky and Girolami, 2008; Xu et al., 2010).

These applications have so far been limited to the use of a single

dataset consisting of one type of measurement. It is thus unclear

whether integration of multiple data types within the Bayesian for-

malism is feasible in practice and whether it is beneficial for achiev-

ing more accurate parameter estimates. The purpose of this study

was to test the feasibility of this type of data integration and to

explore whether multiple data types can indeed provide more accu-

rate parameter estimates.

We tested this approach using a model of a well-studied system,

cell cycle regulation in budding yeast. Figure 1 shows the concept of

data integration we used: various measurements are included as prior

information, subsequently two types of data are incorporated during

the inference, and finally the obtained parameter estimates are com-

pared to measurements of these rates from independent studies.

2 Approach and results

2.1 Constructing an initial model
We will use cell cycle regulation in budding yeast as test case, as this

system is well studied and there is a host of data available. A central

event in cell cycle regulation is the cyclic expression of the cyclin

proteins (Morgan, 2007). We wished to model the cyclic expression

pattern of four cyclins in particular: the G1-phase cyclin CLN3, the

G1/S-transition cyclin CLN2, the S-phase cyclin CLB5 and the

M-phase cyclin CLB2 (Fig. 2A).

Although many models have been constructed of this system, for

example (Chen et al., 2004; Tyson, 1991), we wished to obtain a

simple, sparse model that is sufficient for explaining the cyclic

expression of the cyclins. To this end we created a simple model that

might be able to do this. The structure of this initial model is shown

in Figure 2B and the reasoning behind it is as follows. Since the

expression of the cyclins oscillate at the transcriptional level, we

need to include the transcription factors that are responsible for reg-

ulating the transcription of the cyclins in the model. Thus, based on

the overview of the cell cycle provided by Morgan (2007), and espe-

cially Figure 3-34 therein, we included the three transcription factor

complexes SBF, Mcm-Fkh and Swi/Snf. Each of these complexes is

represented by one of their subunits: SBF is represented by the regu-

latory subunit SWI4, Mcm1-Fkh is represented by the coactivator

NDD1 and Swi/Snf is represented by the subunit SWI5. We chose

these subunits because they are regulatory factors and are transcrip-

tionally oscillating (Santos et al., 2015). As most data are available

at the mRNA level, we explicitly included the mRNA transcripts as

well as the proteins as species in the model. The dynamics are mod-

eled by including rates for transcription, translation and degradation

of both mRNA and protein. To keep the model manageable, we did

not explicitly include processes such as post-translational modifica-

tions, complex formation and intracellular localization. While these

processes are also clearly important for cell cycle regulation, the

goal is not to create a detailed model but rather a simple model that

is sufficient for explaining the cyclic expression of the cyclins. For

the same reason, the model contains fewer signaling events than the

more comprehensive model of Chen et al. (2004). The starting

model described here will likely require improvement, which we

consider below. Starting from a simple model allows us to find a
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Fig. 1. Outline of the approach of data integration using Bayesian statistics.

Several initial datasets are assimilated into a prior probability distribution for

all parameters in the model. Subsequently, multiple datasets are integrated

to update the prior and obtain a posterior probability distribution for all

parameters. Finally, this posterior probability distribution is compared to vali-

dation data
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Fig. 2. Cyclins and model overview. (A) The expression patterns of the four

cyclins included in the model. The measurements are from Spellman et al.

(2003). The approximate cell cycle phase is indicated at the bottom. (B) Initial

structure of the model in Systems Biology Graphical Notation
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balance between model complexity and data fit. The resulting model

can then be used for testing the integration of multiple datasets.

Another important modeling choice is that we specified the model

entirely in physical units of concentration (micromolars) and time

(seconds), rather than using dimensionless parameters and abundan-

ces. The physical units allow a comparison of the parameter estimates

to measurements from independent studies. The model is specified in

terms of ODEs, and the rate equations are based on mass action

kinetics with the addition of a non-linear term for modeling inhibitory

effects. The model is described in more detail in Section 3, and SBML

versions of all models are included in Supplementary File S1.

2.2 Constructing priors from several datasets
The Bayesian analysis required us to specify prior probabilities for

the unknown parameters in the model. For each of the parameters,

we specified priors based either on biochemical limits or on pub-

lished datasets providing information for a parameter. The prior

probability distributions and how they were established are

described in more detail in the Supplementary Methods. All datasets

used throughout this study are listed in Table 1.

2.3 Fitting time course mRNA measurement data
As we wished to obtain a model for the cyclic expression of the

cyclins, we first turned to measurements of mRNA gene expression

over time (Granovskaia et al., 2010; Pramila et al., 2006; Spellman

et al., 2003) and tested whether the model can fit these datasets.

A complication with these datasets is that the measurements

were taken under different growth conditions, with different

synchronization methods and with slightly different yeast strains,

resulting in different doubling times for the cells, ranging from

60 to 100 min. To make the datasets compatible, we used the

time-normalized data provided by Cyclebase (Santos et al., 2015),

and scaled the times back to an 80-min cell cycle, which is a typical

doubling time for yeast cells in rich yeast extract peptone dextrose

(YEPD) medium (Tyson et al., 1979).

We fitted the model to these three gene expression datasets

simultaneously. The measurements are all made on synchronized

cells relative to unsynchronized controls, and the likelihood function

was specified such that it reflects this. Specifically, the likelihood of

the observed values was centered on the log ratio of the modeled

transcript concentration divided by the average modeled concentra-

tion over time (see Section 3). We expected that the model would

not exactly match the measurement data, and so a t-distribution was

used as error model, such that occasional outlying measurements

with respect to the model are not penalized too heavily.

The posterior probabilities were calculated using Markov chain

Monte Carlo (MCMC) sampling. The relatively large number of

dimensions, with the prior in each dimension spanning many orders

of magnitude, makes this a challenging inference task. To be able to

run the inference in reasonable time, the Bayesian inference software

package BCM was used (Thijssen et al., 2016). The posterior proba-

bility distribution contained sub-optimal modes, we therefore used

parallel tempering (Geyer, 1991) to have a means of escaping these.

MCMC sampling relies on a proposal distribution; a distribution

from which new candidate parameter values are drawn. For the effi-

ciency of the sampler it is important that the proposal distribution

reflects the shape and scale of the (unknown) posterior distribution.

We therefore used automated blocking (Turek et al., 2017) and

adaptively scaled the proposal distributions (see Section 3). Traces

and autocorrelation plots for the convergence analysis of all models

are included in Supplementary File S2.

To test the goodness of fit, we first used graphical posterior predic-

tive checking. The posterior predictive distribution describes a new, pre-

dicted dataset given the fitted model. Overlaying this posterior

predictive distribution on the observed measurements provides a con-

venient way of identifying which data can and cannot be explained by

the model. Figure 3 (top row) shows the posterior predictive distribution

of the mean of the relative transcript levels in the fitted model overlaid

on the observed measurements. It is immediately clear that the model

cannot adequately explain the expression patterns of the four cyclins.

The model can only fit the first peak of CLN3 expression, but not the

subsequent oscillations or the activation of the other cyclins.

To further quantify the goodness of fit, coefficients of determina-

tion (R2) were calculated for the four cyclins (Fig. 3). We compared

these values to the R2 of a spline fit to the data. The spline fit gives a

reference R2 for the optimal fit that can be achieved. The median R2

for the model fits range from 0.07 to 0.19, whereas a spline fit gives

R2 values ranging from 0.46 to 0.72, again showing that the initial

model is insufficient to explain the expression patterns of the cyclins.

2.4 Iterative model refinement to create a well-fitting

model for the time course mRNA measurement data
As the simplest model could not adequately fit the transcription

data, it was necessary to expand the model with additional

Table 1. All datasets used in this study

Measurement Experimental technique Used as Reference

Protein concentration 2D-gel electrophoresis Prior Futcher et al., 1999

mRNA concentration Hybridization kinetics Prior Hereford and Rosbash, 1977

Cell size Electrical conductivity Conversion Tyson et al., 1979

Transcript elongation rate ChIP Prior Mason and Struhl, 2005

RNA polymerase footprint Nuclease digestion Prior Selby et al., 1997

Peptide elongation rate Radioactive labeling Prior Boehlke and Friesen, 1975; Waldron et al., 1974

Ribosome footprint Nuclease digestion Prior Wolin and Walter, 1988

mRNA time course (relative) Microarray Inference Granovskaia et al., 2010; Pramila et al., 2006; Spellman et al., 2003

mRNA concentration SAGE Inference Velculescu et al., 1997

mRNA concentration Microarray Inference Holstege et al., 1998

Protein concentration TAP tag; western blot Inference Ghaemmaghami et al., 2003

Protein concentration GFP tag; flow cytometry Inference Newman et al., 2006

Protein concentration 2D-HPLC; MS/MS Inference Lu et al., 2007

mRNA degradation rate Microarray Validation Wang et al., 2002

Transcription rate GRO; ChIP-chip Validation Pelechano et al., 2011

Translation rate Polysome profiling Validation Arava et al., 2003
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explanatory factors. We thus searched the literature to find impor-

tant mechanisms that were missing from the model. For each addi-

tion, we re-fitted the model to the data and compared the posterior

predictive distributions and R2 values for expression of the four

cyclins. Note that we could not use the marginal likelihood for

model selection here, because when we added additional species to

the model we also included the expression data for those new species

in the likelihood function. This affects the marginal likelihood; the

marginal likelihood of two differing sets of data cannot be compared

to each other.

The first addition to the model which we considered was the

transcription factor HCM1. There is a significant delay between the

transcriptional peak of SWI4 and NDD1, especially compared to

the peaks of CLN2 and CLB5, which occur more rapidly after the

expression of SWI4 (see Supplementary File S2 for the trajectories of

all species). The transcription factor HCM1 has been found to be an

important part of the transcriptional cell cycle regulation system

(Pramila et al., 2006), and the inclusion of this factor could intro-

duce the necessary delay in the model. As shown in Figure 3 (second

row), the addition of HCM1 indeed improved the fit of the model,

particularly for the induction of the expression of CLN2 and CLB5

after SWI4 expression. However, the model was still not able to

explain the oscillatory aspect of the expression of the four cyclins.

The lack of oscillatory behavior of the model suggested that a

feedback loop might be required. We therefore considered the addi-

tion of the inhibitory transcription factor YOX1 (Pramila et al.,

2002). This transcription factor provides a negative feedback loop

from SWI4 back to both SWI4 and CLN3. As shown in Figure 3

(third row), with this addition the model could indeed recapitulate

the oscillatory aspect of the expression pattern of the four cyclins.

As the magnitude of the oscillations in CLB2 was still greater in

the data than could be explained by the model, we considered the

addition of another regulatory mechanism, namely the degradation

of NDD1 by the anaphase promoting complex (Sajman et al.,

2015). This complex is normally active, unless it is inactivated by

CLN2 (Morgan, 2007). Thus, NDD1 would be actively degraded

until CLN2 signals the start of S-phase. As shown in Figure 3 (bot-

tom row), with the addition of this mechanism the model can indeed

better explain the expression pattern of the NDD1-target CLB2.

With these additions to the model, the expression patterns of the

four cyclins are adequately explained (R2>0.3 for all cyclins, and at

least 65% of the R2 achieved with a spline fit). Although further

additions can be considered, we wished to keep the model as small

as possible while achieving a reasonable fit. This was mainly done to

keep the computational requirements manageable—to generate

1000 posterior samples for the fourth extended model required

approximately 60 h. The structure of the resulting model is similar

to the Boolean network model of Orlando et al. (2008) in terms of

the transcriptional regulatory network.

2.5 Simultaneous fitting of time course and steady-state

measurement data
Now that the model is able to explain the relative time course meas-

urements adequately, we can start including additional datasets to

test whether the parameters of the model can be more tightly con-

strained with the integration of additional data. We turned to abso-

lute measurements of the mRNA (Holstege et al., 1998; Velculescu

et al., 1997) and protein (Ghaemmaghami et al., 2003; Lu et al.,

2007; Newman et al., 2006) concentrations of the species in the

model. These measurements were done at steady-state growth con-

ditions in non-synchronized cells. We incorporated this in the likeli-

hood by taking the time average of the modeled trajectories, and

setting this time average as the modeled value of the steady-state

data, where the time average was taken over two cell cycles.

CLN3 CLN2 CLB5 CLB2

Model 1

Model 2

Model 3

Model 4
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Fig. 3. Creating a model that can fit the time course mRNA data. On the left the model structure is indicated in Systems Biology Graphical Notation, with the simplest

model at the top. The changes with respect to the previous model are highlighted in red. On the right the mRNA time course measurement data of the cyclins is shown,

overlaid with the posterior predictive of the mean of the data. The thick red line indicates the median and the shaded red area indicates the 90% confidence interval.

Above each graph the median R2 is shown and the 90% confidence interval is given in brackets (Color version of this figure is available at Bioinformatics online.)
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The addition of absolute concentration data to relative time ser-

ies data may seem trivial, and it could potentially also be achieved

by transforming the kinetic parameters and concentrations accord-

ingly. However, keeping the model specified in physical dimensions

(micromolars and seconds) is natural, and more importantly, it

allows for a direct comparison of the kinetic rates with measure-

ments of these rates later on.

Figure 4 shows the posterior trajectories of the transcripts of one of

the cyclins, CLN3, after fitting the relative time course data alone, the

absolute steady-state data alone or all data together (trajectories for all

other species in the model are included in Supplementary File S2).

Several observations can be made. First, it is apparent that the absolute

concentrations can be quite high when only time course data is used.

When the steady-state data is included however, the concentrations are

constrained to be much lower. Second, when only steady-state data is

used, the model displays various behaviors including stable expression,

decay and oscillations (see the individual trajectories depicted in

grey)—each of these behaviors would be consistent with the given

average data over a period of two cell cycles. With all measurements

types included, the model displays the correct oscillations at concentra-

tions consistent with the steady-state data. Finally, the fit to the relative

time course data is not compromised by the inclusion of the absolute

steady-state data, and vice versa. The model is thus able to fit both

types of data at the same time, and no modifications need to be made

to the model structure to accommodate the steady-state data.

Figure 5A shows the 90% posterior confidence intervals for several

parameters in the model, for the relative time course data alone, the

absolute steady-state data alone or all data together (confidence inter-

vals and density plots for all parameters are included in Supplementary

Figs S1 and S2). For several parameters, each data type separately pro-

vides some information, but the inclusion of the two types of data

together provides significantly tighter confidence intervals, for example

for the translation rate. There are also parameters that can already be

inferred from the time course data alone; that is, for these parameters

the addition of the steady-state data does not reduce the confidence

intervals, such as the degradation rate of CLN3. In many cases, the

steady-state data by itself provides little information for constraining

the parameters, which is not surprising for a dynamic model. However,

the addition of the steady-state data to the time course data does reduce

the uncertainty compared to the time course data alone. Examples of

this are the degradation rate of SWI4 or the transcription rate of CLN2.

In general across all parameters, combining multiple types of

measurements reduces the uncertainty in parameter estimates (Fig.

5B). With all data types included, 45 out of 54 parameters have 90%

confidence intervals of less than half of the prior range, whereas the

steady-state data by itself constrains only 1 parameter to this extent

and the time course data 14 parameters. Comparing the added value

of the absolute protein and transcript concentrations, we note that it

is mainly the transcript concentrations that reduces the uncertainty

(columns 4 and 5 in Fig. 5B and see Supplementary Table S1 for the

values). Nevertheless, adding the protein concentration data to the

time course and transcript concentration data still further reduces the

uncertainty for several parameters.

2.6 Comparison of parameter estimates with rate

measurement data
To test whether the obtained parameter estimates are accurate, we

compared them to measurements from three additional, independent
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datasets. In particular, the mRNA degradation rate (Wang et al.,

2002), transcription rates (Pelechano et al., 2011) and translation

rates (Arava et al., 2003) have been measured for budding yeast.

Figure 6A shows the measured values of the parameters compared

to the posterior probability distributions of the parameter estimates.

For the mRNA degradation rate, the measurements are in close

agreement with the predicted rates (Fig. 6A, left panel). We assumed

a common rate parameter for all species, while the measurements

were done for each gene separately, and there is indeed some

variability between the measurements for the genes that were

included in the model. Nevertheless, the measured degradation rates

of all genes are within the same order of magnitude as the estimated

average degradation rate (the difference between the measurements

and the maximum a posteriori estimate on log10 scale is <0.5), so

the scale of the average mRNA degradation rate was predicted

accurately.

For the transcription rates, these rates in the model are split into

two parts: basal transcription and transcription factor induced tran-

scription. The rate measurements are population averages, and as

each cell would be in a different stage of the cell cycle, they will be

expressing different levels of the transcription factors. To be able to

compare the measurements of the transcription rates to the model’s

estimated rates, it is necessary to calculate the total, average tran-

scription rate. This was obtained by averaging the transcription rate

of each gene over time. This rate thus includes the effect of the time-

varying expression of the transcription factors. When only time

course data was used, the transcription rates were not constrained,

but they do have non-zero probability at the measured values.

However, when all data are included, the estimated transcription

rates closely match the measured values for most genes (Fig. 6A,

middle panels; seven of the eight measured values lies within the

90% confidence interval, and the remaining gene is at least within

the same order of magnitude). Thus, for the transcription rates, the

addition of the absolute concentrations to the relative dynamic data

constrained the parameter estimates to values close to or matching

the measurements of these rates.

The measured translation rates have been estimated from ribo-

some densities using polysome profiling, whereby a processing speed

of 10 amino acids/s was assumed (Arava et al., 2003). Note that the

authors mention that their estimates should be used with caution.

Nevertheless, assuming the estimates from Arava et al. are accurate,

then our model estimate using all inference data are two orders of

magnitude too high (Fig. 6A, right panel). The model estimate is

indeed quite high at around 1 protein/transcript/s. While this is feasi-

ble given the prior information, it would require that the transcripts

are always essentially fully packed with ribosomes.

To find the reason for this high translation rate estimate, we

investigated the trajectories of the transcription factors and their tar-

get genes. If we compare the mRNA expression trajectories for the

transcription factor SWI4 and its targets CLN2, HCM1 and YOX1

(see Fig. 6B), it makes sense that the model requires a high transla-

tion rate. The peaks in transcription of the target genes follow very

closely after the peak in transcription of the transcription factor,

especially in the first cell cycle. Given that this process of rapid

induction of transcription in the model has to occur through the

translation of the transcription factor, then there are two ways in

which the model might fit the data: either the translation rate must

be high, or the concentration of the transcript of the transcription

factor must be high. When using only the relative data, it is not pos-

sible to distinguish between these scenarios; indeed in this case the

translation rate is not constrained: the 90% confidence interval of

the translation rate spans almost three orders of magnitude (Fig. 5).

However, when including both relative and absolute data, the infer-

ence can make use of the information that the concentration of the

transcription factor is low. It can thus be inferred that the transla-

tion rate must be high, given this model.

It is known that other mechanisms are at play here as well, such

as the regulation of SWI4 and the SBF transcription factor complex

through phosphorylation by different cyclin/CDKs (Siegmund and

Nasmyth, 1996). Indeed it has been shown that induction of G1-

phase transcripts can occur in the absence of protein translation

(Marini and Reed, 1992). It is likely that a model with additional

layers of SWI4 regulation would be able to fit all data with lower

translation rates. Unfortunately we were not able to expand the

model with such additional effects, as the parameter inference for

these expanded models would involve a prohibitive amount of com-

putation time. Regardless, these results show that the model can be

identified as being incomplete by using the inference of parameters

from multiple datasets. This model deficiency could not be deduced

from any of the datasets alone.
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3 Materials and methods

3.1 Model equations
The computational model consists of two types of species: the

proteins and the mRNA transcripts. The rate equations for these

species are based on mass action kinetics, with the addition of a

non-linear term for modeling inhibitory effects. For transcripts, the

rate equation contains three terms: one for transcription, one for

inhibition of transcription and one for degradation. The transcrip-

tion rate is proportional to the concentration of the activating tran-

scription factor for that gene. This transcription can be inhibited by

an inhibitory transcription factor. Each transcript has exactly one

activating transcription factor and at most one inhibitory transcrip-

tion factor. For proteins, the rate equation also contains three terms:

one for translation, one for degradation and one for inhibition of

degradation. The translation rate is proportional to the concentra-

tion of the transcript for that protein, and the degradation rate is

proportional to the concentration of the protein itself. See the

Supplementary Methods for a more detailed description and the

equations.

3.2 Prior distributions
For all parameters, we used uniform priors on a log10 scale. A log

scale was chosen as we were interested in the orders of magnitude of

the parameters rather than their precise values. The limits of the uni-

form distributions were chosen based on various data points and

biochemical limits as described in the Supplementary Methods.

3.3 Likelihood
Firstly, the time average of the concentration of a transcript was

calculated by averaging over two full cell cycles. Then, for relative

time course data measured using synchronized cells relative to

unsynchronized cells, we modeled the relative value by dividing the

modeled concentration by the time average and taking the log. As

error model we used a t-distribution with three degrees of freedom,

as a means of robust inference (Gelman et al., 2014). This distribu-

tion was centered on the log ratio of the relative expression. For the

absolute concentration data, the time average value is log10 trans-

formed, and again a t-distribution is used as error model. As for the

prior, the likelihood is specified on a log scale as it is sufficient if the

model captures the right order of magnitude. See the Supplementary

Methods for the equations.

3.4 Model inference
The posterior probability distributions were calculated using

parallel-tempered MCMC (Geyer, 1991), using the Bayesian infer-

ence software package BCM (Thijssen et al., 2016). For the initial

model, we used 32 parallel chains with the temperatures of the

chains distributed quadratically. The burn-in period was set to 1.25

million samples followed by a sampling period of 5 million posterior

samples, which were subsampled at 1 in 2500. At each step, a ran-

dom choice was made between updating each chain with five

Metropolis–Hastings steps and swapping a random adjacent pair of

chains. The probability of selecting a swap step was set to 0.99. For

the proposal distribution in the Metropolis–Hastings steps, the

parameters were blocked automatically (Turek et al., 2017) and

we used a multivariate normal distribution for each block of param-

eters. The proposal covariance matrix for each block was set to

the empirical covariance of the preceding samples and adaptively

scaled to obtain an acceptance rate of 0.23 within each block.

These settings produced sufficiently uncorrelated posterior samples

(see Supplementary File S2 for traces and autocorrelation plots) and

were sufficient to achieve at least 100 round trips from prior to pos-

terior. The sampling period and subsampling was doubled for model

3 and quadrupled for model 4, such that the resulting posterior sam-

ples were still sufficiently uncorrelated and at least 100 round trips

from prior to posterior were achieved.

All files required for running the inference in BCM, including the

prior and likelihood specification, the models in SBML/CellDesigner

format, as well as a NetCDF archive containing the pre-processed

data, are included in Supplementary File S1.

3.5 Model checking
The model fit was investigated using the posterior predictive distri-

bution and coefficients of determination. The posterior predictive

distribution is the probability distribution of a new set of data, given

the model and the observed data. This distribution was approxi-

mated using the posterior Monte Carlo samples. The coefficients of

determination for the time course data were calculated relative to a

null model, which has a separate mean for each experiment. A refer-

ence R2 was calculated by fitting a cubic spline to the data with the

smoothing parameter selected through cross-validation. See the

Supplementary Methods for details and equations.

4 Discussion

Model determination is an important aspect of computational mod-

eling. Models in systems biology are frequently underdetermined,

and as a result it is often not possible to confirm or falsify a particu-

lar model. There is thus a need for methods to determine models

more accurately. With the increasing amount of data available

for many biological systems, the use of multiple datasets to constrain

the parameters from different angles is a promising avenue.

Bayesian statistics provides a coherent and convenient framework to

accomplish this. Here, we have shown that it is feasible to integrate

diverse datasets during the Bayesian inference of parameters of an

ODE-based model. The process as described here may be useful as a

general recipe for integrating diverse measurement types also in

other settings. More importantly, we have shown that this integra-

tion of diverse data types can provide tighter posterior estimates, at

least in obtaining the right order of magnitude, thus achieving more

accurate model determination. We noticed that even when a single

dataset, taken by itself, provides little information, it can still signifi-

cantly improve parameter estimates when used in conjunction with

other datasets.

There are several challenges when using this type of data integra-

tion based on model simulation and Bayesian statistics. The biggest

challenge is the scaling of the computational demands with respect

to the size of the model. This is due to two reasons. First, the simula-

tion of a computational model typically does not scale well with

model size (cubically in the case of direct, implicit ODE solvers).

Second, the parameter inference is increasingly challenging when the

number of parameters increases. Although in theory Monte Carlo

methods scale independently of the dimensionality, this requires that

the samples are concentrated in regions of high posterior probabil-

ity. The efficiency of generating a good set of samples critically

depends on the proposal distribution that is used. Given the complex

shape of the posterior probability distributions of biological compu-

tational models, in particular the presence of multiple modes and

ridges (Girolami, 2008; Hug et al., 2013), proposal distributions

typically become much less efficient with higher dimensionality.

Both of these computational challenges apply more generally to any
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approach using model simulation and global parameter inference.

Increases in computational capabilities, more efficient simulation meth-

ods and sampling or optimization methods tailored for the inference of

biological computational models may allow larger models in the future.

For budding yeast, and their cell cycle regulation in particular, many

more measurements have been performed, such as mRNA quantifica-

tion by qPCR (Miura et al., 2008) and RNA sequencing (Nagalakshmi

et al., 2008), protein-level time course data by mass spectrometry (Flory

et al., 2006) and GFP-tagged time lapse microscopy (Ball et al., 2011).

In principle, these data can be integrated with the same approach as

was done for the data in this study, and it would be interesting to

explore the contributions and concordance of these measurements. A

challenge for further integration of time course data is the synchroniza-

tion of the timing, which is not straightforward when using different

experimental setups. This synchronization can also directly affect kinetic

rates, for example the alignment of transcript and protein time course

data can directly influence the estimated translation rate.

To be able to compare the contribution of the different data-

types, it is necessary to quantify the uncertainty in the parameter

estimates, which was achieved here using Bayesian statistics. The

quantification of uncertainty has previously been achieved with dif-

ferent approaches as well (reviewed by Vanlier et al., 2013), includ-

ing using the profile likelihood (Raue et al., 2009) and through

bootstrapping (Brännmark et al., 2010). The incorporation of multi-

ple datasets in the likelihood function can in principle be translated

to these formalisms as well. A unique advantage of the Bayesian

approach is the ability to explicitly include data as prior informa-

tion, which we have utilized to incorporate various datasets. Profile

likelihoods may be computationally more efficient to calculate than

posterior probabilities, although the calculations still involve the

most challenging aspect, namely global optimization. The profile

likelihood is limited in that it provides uncertainty estimates for

each parameter separately rather than for all parameters jointly.

In conclusion, we have shown that diverse types of measure-

ments can be successfully integrated during the inference of parame-

ters of ODE systems using Bayesian statistics. This integration

provided more tightly constrained parameter estimates, thereby

achieving a more accurate model determination.
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