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ABSTRACT 

 

This study addresses the challenges posed by climatic 

changes and biodiversity loss to ecosystem stability, by 

quantifying gross primary production (GPP) changes. An 

improved earth observation product is obtained by integrating 

in-situ and remote sensing data via data-driven models. 

Employing a user-centered strategy, our methodology builds 

on users’ engagement, ensuring both the identification of user 

needs and practical product demonstrations. With GEOSS as 

central and integrated stakeholder, we strive for a broad 

interoperability and accessibility of generated outcomes. The 

project outcomes include a curated dataset with FAIR 

metadata, openly available code, and reports for 

reproducibility, contributing to the broader Earth Intelligence 

supply chain. 

 

Index Terms— Gross Primary Production, Ecosystems, 

Earth Observation, Earth Intelligence, GEOSS 

 

1. INTRODUCTION 

 

Changes in climatic conditions and loss of biodiversity pose 

significant challenges to the stability of ecosystem biomass 

production, ultimately affecting its role as carbon sing and the 

ecosystem services it provides [1, 2]. The accurate 

quantification of gross primary production (GPP), defined as 

the total carbon fixed by the ecosystems through vegetation 

photosynthesis, and its dynamic spatiotemporal changes is an 

important prerequisite for ecosystem function assessment and 

carbon balance research [3].  

The request for an improved remote sensing -- in-situ 

nexus has been repeatedly raised as Group of Earth 

Observation (GEO) Work Programme priority. This 

emphasis reflects the recognition that a more robust 

integration of remote sensing technologies and ground-based 

observations is essential for advancing our understanding of 

Earth's complex systems. This study aims at integrating in-

situ measurements with Sentinel-2 data, enhancing our 

capacity to discern changes and trends in GPP production at 

a European scale. Fostering the provision of Earth 

Intelligence [4], collaboration with the end-users guides the 

co-design of these products, ensuring the EO chain is fully 

exploited for the creation of actionable knowledge.  

 

2. MATERIAL AND METHODS 

 

The approach for the derivation of GPP builds upon our 

previous research [5] on spatio-temporal upscaling of flux 

tower GPP measurements using open access Copernicus 

Sentinel-2 data. The high, 10-60 m spatial resolution of the 

Sentinel-2 multi-spectral instrument (MSI) promises to 

enhance the estimation of GPP at a local scale [6, 7].  

The methodology suggested for the derivation of GPP 

beyond the flux footprint is depicted in Figure 1. The 

approach involves evaluating various satellite radiometric 

indices, particularly NDVI, EVI, EV2, CLr, MNDVI, 

MNDWI, LSWI, and NDII. To account for physiological 

changes in photosynthesis driven by meteorological 

conditions which cannot be discerned solely from satellite 

reflectance values, the methodology integrates time series of 

environmental variables drivers (EVs) of GPP as predictors. 

Those include vapour pressure deficit, air temperature, 

rainfall, relative humidity, global radiation, and precipitation. 

Forward feature selection generates models based on 

predictor combinations to find the most relevant predictors 

for GPP. This provides information on the vegetation indexes 

(VIs), spectral bands, and environmental variables most 

relevant for predicting gross primary prediction [8].  

In situ 30-minute measurements of net ecosystem 

exchanges (NEE) and auxiliary data, including the EVs listed 

above, are collected from the Integrated Carbon Observation 

System (ICOS) portal, and the FLUX Network (FLUXNET) 

portal, both open repositories. In some cases, additional 

environmental variables data sources are provided by eLTER. 

The temporal coverage of the dataset is site-dependent, and 

minimum of eight months. The preliminary selected sites for 

the analysis are Torgnon (grassland, Italy), Hyytiälä 

(evergreen needleleaf forests, Finland), Tereno Harz/Central 

Lowland (deciduous forest, Germany), Doñana National Park 

(grassland, Spain), and the Wüstebach catchment (deciduous 
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forest, Germany). Those sites are selected to encompass 

different types of ecosystems, at different latitudes.  

The workflow adopts and compares the linear 

formulation suggested by [9] and used by [6] for the 

combination of VIs and EVs, and state-of-the-art machine 

learning-based models. In this study, the models used are 

gradient-boosted decision trees (GBDT), and long short-term 

memory (LSTM) neural networks. At first, data collected for 

the three sites of Torgnon, Hyytiälä, and Tereno Harz are 

used to train and test the GBDT and LSTM models. Initially, 

both GBDT and LSTM were applied independently to each 

one of the three sites. Following this step, a preliminary 

training phase was conducted, encompassing three different 

sites. In the latter phase, both models underwent three 

training cycles, with each cycle integrating an additional site. 

GPP is derived at different European long-term observation 

(eLTER) sites. The workflow produces high resolution maps 

with 5-day temporal resolution (same resolution as Sentinel-

2 data in cloud-free conditions). In places with high cloud 

coverage monthly maps are calculated with monthly mean 

composite maps. 

 

2.1. AGAME co-design and validation 

 

Harnessing the potential of EO data to offer considerable 

benefits to a broad spectrum of socio-economic stakeholders 

is a complex task [9]. Especially in the context of “big data”, 

where new data sources emerge continuously, transforming 

raw data into valuable and usable information represents a 

recurring challenge.  

The approach we follow in the AGAME project (funded 

by ESA) builds on an end-user centered approach, ensuring 

the generation and demonstration of the added value of EO 

based products stepping into actionable knowledge. We are 

engaging with different groups of users, each playing a 

critical role within the GEO community [10]. Our user 

engagement strategy is structured into two distinct phases: a) 

co-define/co-design phase, focusing on mapping users’ needs 

and requirements to identify added value products beneficial 

to the users, and b) user validation phase, allowing for 

practical demonstrations and real-time feedback on the 

developed products. 

This structured approach ensures not only the 

dissemination of information about our product, but also the 

active consultation and involvement of all user groups 

through a dedicated engagement process.  

 

3. PRELIMINARY RESULTS 

 

When applying the linear formulations to different ecosystem 

types, different combinations of EV and VI were discovered 

to exhibit stronger correlations with GPP. For instance, when 

applied to the wetlands of the Protected Area of Doñana 

National Park, the workflow resulted in a regression model 

driven by the Red-edge Index (CLr), affirming the sensitivity 

of the red-edge to canopy biomass, chlorophyll content, and 

photosynthesis activity [5, 11-13]. However, when the 

workflow was applied to the deciduous forest of the 

Wüstebach catchment, Germany, and the Hyytiälä evergreen 

forests, Finland, it revealed a higher correlation between 

Enhanced Vegetation Index (EVI) and GPP. This finding 

aligns with previous studies conducted in high-biomass 

vegetated areas, such as dense grass or forest ecosystems [14, 

15]. 

When the GBDT and LSTM models were applied 

independently to each site, the results indicated the best 

performance at the Torgnon site, with Mean Squared Error 

(MSE) values of 0.757 and 0.928 for the GBDT and LSTM 

models, respectively. This site had the longest data span of 2 

years. The Hyytiälä site, with a data span of 1.5 years, 

followed closely with MSE values of 1.474 and 1.709 for the 

Figure 1: Schematization of the methodology for the derivation of Gross Primary Production (GPP). Abbreviations: VI: 

Vegetation Index, NEE: Net Ecosystem Exchange, EV: Environmental Variable, EO: Earth Observation. 
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GBDT and LSTM models, respectively. The Tereno Harz site 

in Germany, which had a shorter data span of 11 months, 

demonstrated lower performance with MSE values of 10.338 

and 3.463 for the GBDT and LSTM models, respectively. 

These preliminary results suggest that a minimum data span 

of 1.5 years is required for optimal performance of both the 

GBDT and LSTM models. 

These preliminary results demonstrate the significance 

of incorporating various VIs, however, still further 

investigation is needed and research in AGAME is aimed at 

improving the model formulation for a better representation 

of different ecosystem types. Particularly, more sites are 

planned to be included in the training cycle of GBDT and 

LSTM to improve the performance of the algorithms and 

have more robust models that account for the differences in 

ecosystems. 

 

4. CONCLUSIONS 

 

We propose a method for bridging the gap between data 

acquired from satellites and real-time, in-situ measurements, 

to enhance the accuracy and reliability of environmental 

monitoring. The paper presents a high-resolution product of 

GPP. These outputs, enhancing our understanding of the 

ecosystem’s capability to fulfill its ecosystem role, may serve 

as a cornerstone for evidence-based decision-making and 

sustainable resource management. The model 

implementation in the different areas helps us to construct 

robust solutions for all the different user communities.  

We facilitate the supply of Earth Intelligence by 

engaging with users and completing the EO value-chain to 

generate actionable knowledge and enable the connections 

with the data. The project outcome extends beyond a mere 

data product. It includes a curated dataset and Findable, 

Accessible, Interoperable, Re-useable (FAIR) metadata, 

along with openly available code and reports for 

reproducibility. To ensure the generated products are easily 

accessible to a wide range of stakeholders and researchers, 

results are disseminated via the Global Earth Observation 

System of Systems (GEOSS) portal 

(https://www.geoportal.org/). The GEOSS platform 

architecture is realized as a system of systems that collects 

data from diverse sources and shares independent and open 

EO information and processing services. Integration of the 

data products within the GEOSS data infrastructure ensures 

the findability and interoperability of the results [16]. 

 

4. REFERENCES 

 
[1] M. Fernández‐Martínez et al., "The role of climate, foliar 

stoichiometry and plant diversity on ecosystem carbon balance," 

Global Change Biology, vol. 26, no. 12, pp. 7067-7078, 2020, doi: 

https://doi.org/10.1111/gcb.15385. 

 

[2] S. Piao et al., "Characteristics, drivers and feedbacks of global 

greening," Nature Reviews Earth & Environment, vol. 1, no. 1, pp. 

14-27, 2020/01/01 2020, doi: 10.1038/s43017-019-0001-x. 

 

[3] M. Reichstein et al., "Climate extremes and the carbon cycle," 

Nature, vol. 500, no. 7462, pp. 287-295, 2013/08/01 2013, doi: 

10.1038/nature12350. 

 

[4] GEO, "GEO Post 2025 strategy: Earth Intelligence for all " 2023. 

[Online]. Available: 

https://earthobservations.org/storage/app/media/documents/Key-

Documents/GEO%20Post%202025%20Strategy%20Full%20Docu

ment.pdf. 

 

[5] A. Spinosa, M. A. Fuentes-Monjaraz, and G. El Serafy, 

"Assessing the Use of Sentinel-2 Data for Spatio-Temporal 

Upscaling of Flux Tower Gross Primary Productivity 

Measurements," Remote Sensing, vol. 15, no. 3, p. 562, 2023, doi: 

https://doi.org/10.3390/rs15030562. 

 

[6] Z. Cai et al., "Modelling Daily Gross Primary Productivity with 

Sentinel-2 Data in the Nordic Region–Comparison with Data from 

MODIS," Remote Sensing, vol. 13, no. 3, p. 469, 2021, doi: 

https://doi.org/10.3390/rs13030469. 

 

[7] N. Pettorelli et al., "Satellite remote sensing of ecosystem 

functions: opportunities, challenges and way forward," Remote 

Sensing in Ecology and Conservation, vol. 4, no. 2, pp. 71-93, 2018, 

doi: https://doi.org/10.1002/rse2.59. 

 

[8] D. E. Pabon-Moreno, M. Migliavacca, M. Reichstein, and M. D. 

Mahecha, "On the Potential of Sentinel-2 for Estimating Gross 

Primary Production," IEEE Transactions on Geoscience and 

Remote Sensing, vol. 60, pp. 1-12, 2022, doi: 

10.1109/TGRS.2022.3152272. 

 

[9]  R. Barbier, S. B. Yahia, P. Le Masson, and B. Weil, "Expanding 

usages of Earth Observation data: a co-design approach to grow an 

ecosystem of efficient service designers," in 2021 IEEE 

International Geoscience and Remote Sensing Symposium IGARSS, 

2021: IEEE, pp. 296-299, doi: 

10.1109/IGARSS47720.2021.9553914.  

 

[10] GEO, "GEO Strategic Plan 2016-2025: Implementing 

GEOSS," 2021. [Online]. Available: 

https://earthobservations.org/resources#key. 

 

[11] G. A. Blackburn and J. Pitman, "Biophysical controls on the 

directional spectral reflectance properties of bracken (Pteridium 

aquilinum) canopies: results of a field experiment," International 

Journal of Remote Sensing, vol. 20, no. 11, pp. 2265-2282, 1999, 

doi: https://doi.org/10.1080/014311699212245. 

 

[12] O. Mutanga, A. K. Skidmore, and S. Van Wieren, 

"Discriminating tropical grass (Cenchrus ciliaris) canopies grown 

under different nitrogen treatments using spectroradiometry," ISPRS 

Journal of Photogrammetry and Remote Sensing, vol. 57, no. 4, pp. 

263-272, 2003, doi: https://doi.org/10.1016/S0924-2716(02)00158-

2. 

 

[13] P. S. Thenkabail, R. B. Smith, and E. De Pauw, "Hyperspectral 

vegetation indices and their relationships with agricultural crop 

characteristics," Remote sensing of Environment, vol. 71, no. 2, pp. 

158-182, 2000, doi: https://doi.org/10.1016/S0034-4257(99)00067-

X. 

4546

Authorized licensed use limited to: TU Delft Library. Downloaded on December 11,2024 at 10:25:32 UTC from IEEE Xplore.  Restrictions apply. 



 

[14] P. Olofsson et al., "Towards operational remote sensing of 

forest carbon balance across Northern Europe," Biogeosciences, vol. 

5, no. 3, pp. 817-832, 2008, doi: https://doi.org/10.5194/bg-5-817-

2008. 

 

[15] C. Xu, Y. Li, J. Hu, X. Yang, S. Sheng, and M. Liu, "Evaluating 

the difference between the normalized difference vegetation index 

and net primary productivity as the indicators of vegetation vigor 

assessment at landscape scale," Environmental monitoring and 

assessment, vol. 184, pp. 1275-1286, 2012, doi: 

https://doi.org/10.1007/s10661-011-2039-1. 

 

[16] R. Roncella et al., "Publishing NextGEOSS data on the 

GEOSS Platform," Big Earth Data, vol. 7, no. 2, pp. 413-427, 

2023/04/03 2023, doi: 10.1080/20964471.2022.2135234. 

 

4547

Authorized licensed use limited to: TU Delft Library. Downloaded on December 11,2024 at 10:25:32 UTC from IEEE Xplore.  Restrictions apply. 


