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Abstract
Asymmetric hydrogenation is a field of major interest for the pharmaceutical industry. Using these catalyzed
reactions instead of traditional stoichiometric reactions can reduce waste, energy and can open up possibilities
to new intermediates, products and synthesis pathways. Finding an optimal catalyst to produce a selected
enantiomer remains a struggle however, requiring large time and resource investments. Determining ligand
performance can be done experimentally using HTE campaigns, supplemented with predictive methods, either
mechanism-based or mechanism-agnostic. Recent advancements in the mechanism-agnostic predictive methods
include a large range of studies using Machine Learning approaches, relying mostly on using molecular descrip-
tors to represent the catalyst structure to the models. More recently, with the rise of NLP models, string-based
structural identifiers are used to train a Language Model to predict catalyst performance. In a recent study used
an LSTM model was trained and used to predict the enantiomeric excess of a range of ligands for an asymmetric
hydrogenation reaction. This work is based on the workflow used by them, and validates the performance of
this model as showed in their paper. Furthermore, this model was applied and tuned to predict the enatiomeric
excess of a range of ligands, based on a dataset from the ISE research group.
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1. Introduction
With the global overuse of natural resources and overproduction of waste, endangering the future of our planet,
numerous attempts are made to improve the resource efficiency in industries [1]. A well-known example is the
oil refining industry, where continuous improvement in process conditions among others have increased the effi-
ciency of the overall process. Table 1.1 shows a comparison of this industry with other large chemical industry
sectors. This shows that the oil-refining industry is indeed relatively resource-effective, especially compared to
the pharmaceutical industry.

Industry sector Tonnage
[ton]

E Factor
[kg waste/kg product]

Oil refining 106 − 108 < 0.1
Bulk chemicals 106 − 108 < 1 − 5
Fine chemicals 106 − 108 5 to > 50
Pharmaceuticals 106 − 108 25 to > 100

Table 1.1: E Factors in the chemical industry [2].

Part of this difference can be attributed to the smaller scale and batch-production nature of this industry sector.
A larger scope of different products in smaller quantities are produced. However, a major difference between the
processes in these sectors is the absence or scarcity of (optimized) catalysts [1]. While most reactions in the oil
refining industry are catalyzed by relatively highly optimized and well-studied catalysts, for the pharmaceutical
industry this is not the case. One reason for this is the aforementioned smaller-scale production, decreasing the
feasibility of a thorough search for an optimal catalyst[3].

This shows that discovering and developing catalyst for the pharmaceutical industry can increase the resource-
efficiency and sustainability of this industry sector. Using a catalyst can not only reduce the use of energy
and resources but ultimately reduce waste production, by increasing selectivity and lowering activation energy.
Especially increasing the selectivity towards the desired product is of interest for the pharmaceutical industry.
Since catalysts can not only improve chemeoselectivity, but also also diastereoselectivity and enantioselectivity
(Figure 1.1), the unwanted production of by-products from the reaction in stoichiometric balance can be largely
reduced [4].

Figure 1.1: Examples of selectivity for chemical conversions [5]. (a) Chemoselectivity, (b) Regioselectivity, (c)
Diastereoselectivity, (d) Enantioselectivity

These properties are of high interest for the pharmaceutical industry, as often only one enantiomer is of in-
terest for application. Especially for hydrogenation reactions, where in the pharmaceutical industry only one
enantiomer is of interest. Hydrogenation reactions play a large role in the pharmaceutical industry [6]. While
there are methods to separate the produced enantiomers based on their chirality, asymmetric hydrogenation,
using a chiral ligand, can produce enantiopure compounds [7]. Asymmetric hydrogenation thus not only yields
higher selectivity, but with that also reduces the downstream process complexity [5]. Asymmetric hydrogena-
tion focuses on homogeneous catalysts, since while biocatalysts are known to have enantioselective properties,
and although the field of biocatalysis has been rapidly evolving, quite a lot of challenges still complicate the
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CHAPTER 1. INTRODUCTION 2

application [1][8].

So, with this great potential, the challenge is to optimize the search for an optimal catalyst, to improve the
development of catalyst for use in the pharmaceutical industry [9]. Traditional catalyst research is mainly
focused on experimental research around catalysts that are known to have good catalytic properties, further
guided by chemical intuition of the researcher. Efforts have been made to improve the research process, with use
and development of high-throughput experiments (HTE) have improved the speed and cost at which research
is performed[10].

The workflow of HTE campaigns can be further improved by using computational tools and methods. Mechanism-
based predictive methods aim to predict suitable catalyst candidates using quantum chemical calculations of key
transition state intermediates. These methods rely on understanding and knowledge of the reaction mechanism.

Predictive methods that do not require deep knowledge of the mechanism rely use data-based approaches.
These methods aim to predict candidate catalysts by finding a relation between the structure of the catalyst
and performance indicating. The use of data-based approaches has two major advantages over mechanism-based
methods [11]:

1. Catalyst design is accessible to more researchers, since for the mechanism does not need to be deeply
understood to use the tools available.

2. Predictive models can be easier transferred between catalytic systems.

Because of these advantages, this work focuses on data-based approaches, also called Quantitative Structure-
Property Relationship (QSPR). In these methods, the candidate-catalyst structure is generally digitally repre-
sented by structural descriptors, and form a dataset together with experimental data on performance indicators.
This dataset can then be used to find correlations, and make a model to predict those indicators on other
candidate-catalysts. This model is often based on a regression model or a Machine Learning (ML) model, since
the relationships are often non-linear.

More recently, with the development of Natural Language Processing (NLP) models, the need to calculate
the descriptors is removed, as this opens up opportunities to use textual identifiers, as SMILES or InChI, to
represent the structures digitally. NLP models are neural networks, which are able to ’understand’ semantics
and relationships between words in a language, and make predictions based on that. These models are applied
to tasks as translating, summarizing, and classifying text.

When NLP models are used in QSPR approaches, the language to learn are chemical textual identifiers, as
SMILES or InChI. After training the model, it can be used to predict candidate catalysts by classification
or predicting the performance of the catalyst. In recent years, a number of studies have used NLP models,
although with a range of different approaches.

Jablonka et al. showed the performance of a Large Language Model, GPT-3, which was trained on English
text, in relating molecular structures to properties [12]. With examining a range of different target tasks, as
classification, regression and inverse design, they show the large potential and ability of an LLM to use learned
logic on new datasets, both in fine-tuning and in-context learning. This is supported by other studies, men-
tioning the ’inherent chemical knowledge’ of LLM’s [13]. The prediction tasks were performed of a range of
different datasets, including prediction and classification of transition wavelengths of photoswitches, HOMO-
LUMO gaps and solubility. Furthermore, performance of yield prediction of Pd-catalysed Buchwald-Hartig C-N
crosscoupling [14] and Pd-catalysed Suziki-Miyaura C-C cross-couplings [15] was shown.

Yoshikai et al. showed the potential of Transformer models in predicting molecular properties from molec-
ular descriptors and SMILES data [16]. One of their main findings was that Transformer models in particular
can have difficulties with predicting properties of chiral molecules. The performance of the model was explored
with a range of datasets, often used as benchmark datasets for ML models, such as BBBP [17]), FreeSolv [18]
and Lipophilicity [19].

Li and Fourches in 2020 and later Singh and Sunoj in 2022 thoroughly examined performance of LSTM models
in a broad range of scenarios [20],[21]. While Li and Fourches showed the potential of this model with a few
different datasets, focusing on the effect of data augmentation, Singh and Sunoj showed the potential of using
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relatively small datasets, again using data augmentation. Most notably, Singh and Sunoj reported good per-
formance for a model trained to predict the enantiomeric excess of a range of ligands for hydrogenation reactions.

The promising results of Singh and Sunoj, their overlap in application on asymmetric hydrogenation and the
use of a relatively small dataset and model inspired me to look deeper into application of NLP models on
asymmetric hydrogenation, following the workflow of Singh and Sunoj. Since their workflow was developed by
Li and Fourches [20], both studies will be mentioned frequently. In this work, I aim to answer the following
question: How does the existing workflow to a fine-tuned language model, developed by Li and
Fourches, perform on a new, unseen dataset for enantioselective hydrogenation? This question will
be answered by looking deeper into the following subquestions:

1. To what extent can the results of the study of Singh and Sunoj, using this workflow, be recreated?

2. To what extent are the results of the study of Singh and Sunoj reproducible using a new version of FastAI?

3. How do the datasets of Singh and Sunoj compare to the dataset used in this study?

4. How can the existing workflow be applied to the dataset used in this study?

5. How can this workflow be further optimized to achieve better performance for the language model for the
dataset used in this study?



2. Theory
2.1 Homogeneous Catalysis
As mentioned, the study of homogeneous catalysis has great potential, because of the relatively high selectivity
of the catalysts. This is true, especially compared to heterogeneous catalysis. This section aims to take a
deeper look into homogeneous catalysis, asymmetric hydrogenation in particular, and explain the concept of
enantiomeric excess.

As mentioned, homogeneous catalysis is, among other advantages, generally more selective [22]. While acids and
enzymes are classified as homogeneous catalysts, the most prominent group is the transition metal catalysts.
These catalysts consists of a transition metal, surrounded by one or more ligands. While the catalytic properties
of these complexes originate from the available oxidation states of the transition metal center, the ligands play a
large role in determining the catalytic activity [5]. There is a wide range of ligands available, classified as mono-
and polydentate ligands. These chelating ligands offer additional stability compared to monodentate ligands.

For asymmetric hydrogenation, Knowles and Horner introduced Rhodium-based catalysts [23][24]. The catalysts
used for asymmetric hydrogenation consists of asymmetric, chiral ligands, which result in good enantiomeric
excess and a 100% theoretical yield [25][26]. Enantiomeric excess is a metric to determine the extent in which
an asymmetric hydrogenation reaction produces enantiopure products. It is calculated as

|ee| = |FR − FS | (2.1)

Where FR is the mole fraction of R isomer and FS is the mole fraction of S isomer, so that FR + FS = 1. Other
ways of expressing enantiomeric excess include the true value of Equation 2.1, that is, ee, not the absolute value,
and expressing the enatiomeric excess in percentages, denoted %ee.

2.2 Natural Language Processing
2.2.1 Language Models
Language models consist generally of 3 major parts, the embedding layer, the encoder, and the decoder. These,
together with a tokenizer and a dataloader are the core of the NLP workflow. This section explain the functions
each part has, and discusses the relevant options and choices that can influence the result.

Tokenizer

For the input to be used in the model, the SMILES data has to be converted to numerical values. This is
done in a few steps, starting with splitting the input data into into smaller, repeatedly occurring, parts, called
tokens. Tokenization can be done on character-level, but also larger parts of the input can be used, to increase
the amount of information provided per token, making it easier for the model to learn [27].

For textual data, these options are character-level, word-level or subword-level tokenization. Using character-
level tokenization will result in a small vocabulary (unique tokens in data), but losing relationships and semantics
[28]. However, word-level tokenization, although increasing the information provided with each token results in
a very large vocabulary, increasing the computational and memory requirements. The best of both worlds is
found in subword tokenization, using Byte Pair Encoding (BPE) to create a vocabulary of the most frequent
occurring subwords [27].

CC(=O)Oc1ccccc1C(=O)O

Tokenization

C C ( = O ) O c 1 c c c c c 1 C ( = O ) O

Atom-level

CC(=O)O c1ccccc1 C(=O)O

SPE

Figure 2.1: Example of tokenization, showing the difference between atom-level and SPE tokenization [20].
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Li and Fourches researched the effect of using SMILES Pair Encoding (SPE) on SMILES data. An example is
shown in Figure 2.1. It was found that the performance of a model can be increased significantly when using
SPE instead of character-level (or atom-level) tokenization [29]. When using atom-level tokenization, common
practice is to include a set of ’special characters’ which should not be tokenized on atom-level [20]. These often
include ’Cl’, which should not be tokenized to ’C l’, as well as chiral information as [C@@H] and [C@H].

Dataloader

A dataloader is an essential component that handles most of the processing of data for a NLP model. It performs
several tasks to efficiently process the data, and use the data efficiently during training. A dataloader preforms
tasks as normalization, where the data is padded to use in Tensors, shuffling the data during learning to avoid
overfitting, and allow for parallel loading of data.

Depending on the tools used, a dataloader can also apply efficient tokenization and numericalization. Since
an NLP model is a computational model, text has to be transformed to numerical data to use in the model.
This is done by converting each token, as provided by the tokenizer, to an vocabulary index.

Embedding layer

The numericalized data has to be processed further before it can be processed by the NLP model. While the
input data is now long arrays of numerical data, NLP models work better with high-dimensional vectors of a
fixed size. This can be done by one-hot encoding, where each token is represented by a vector with the length
of the vocabulary. For larger datasets, which require larger vocabularies, these one-hot encoded vectors, which
are sparse by definition, are transformed to more dense vectors. These vectors, either dense or sparse, are the
embedding vectors [30].

During the training of the model, the embeddings are updated by backpropagation to minimize the loss function.
With this process the embedding layer learns to capture properties of the data better[30].

EncoderEmbedding Decoder

Figure 2.2: Schematic diagram of a general RNN architecture.

Encoder

The function of the encoder layers is to grasp relationships between tokens, generating a contextualized embed-
ding to pass to a decoder. This process provides a sense of context and dependency between the tokens, giving
a better understanding of the meaning of the token. The output of the encoder is again embedded vectors, but
containing contextual information [31].

Decoder

Since the output of the encoder is a dense vector containing contextual information for each token, this can be
used to generate predictions. These predictions are dependent on the target task, and can vary from sequences,
like text in a translator, to integers, like classes in a classifier, to floats, like values in a regressor. The decoder
can consist of multiple layers, and can be, depending on the architecture, linear, for example in an LSTM
architecture, or more sophisticated, for instance, with attention layers in a Transformer architecture.
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2.2.2 Architectures
For NLP models a few different architectures are available. In this section, the Recurrent Neural Network and
Transformer architecture will be further investigated.

Recurrent Neural Network

Recurrent Neural Network is a neural network architecture that is designed for processing sequential data. This
architecture consists of layers of neurons that process the data. Since this architecture is recurrent, the output
of the layers is not only dependent on the current input, but also on previous inputs. This makes the model
capable of capturing temporal dynamics. Aspects of previous inputs are stored in a short-term memory, or
hidden state [32].

Some downsides of this architecture are the risk of over- and underfitting of the model, due to extremely
high or low error rate gradients. Furthermore, while the architecture is designed for processing text, it does this
sequentially, making it less fit for training on databases with large sets of data, such as articles [33].

Long Short-Term Memory

To address those issues, LSTM architecture was designed. This Long Short-Term Memory encoder is more
capable of capturing relations between and pattern in tokens further away from each other. This overcomes
the problems with underfitting due to very low error rate gradients [32]. In the LSTM architecture, LSTM
cells are added to the hidden layer, capturing information from previous inputs. However, LSTM architecture
still has some of the disadvantages of the general RRN architecture, as the sequential aspect of data processing
remains, with the increased memory and computational requirements for long training data. Furthermore, long
sequences with long-distance dependencies between tokens are still difficult for the model to grasp [34].

Transformer

This was addressed by the development of the Transformer architecture, which uses the concept of ’attention’
and parallel processing of data to relate input tokens to each other, regardless of the distance between those
tokens. The Transformer architecture adds an attention layer to the encoder, as well as the decoder. A multi-
head attention layer can employ attention to several important parts of the input. Since niput data is processed
in parallel, the Transformer architecture is more capable of processing long input sequences, while doing this
also more resource-efficient [33].
However, due to the recurrent nature of LSTM models, and the larger number of parameters of Transformer
models, on smaller datasets LSTM models achieve higher performance. This advantage is further expanded
by the fact that the memory requirement of LSTM models scales linearly with sequence length, compared to
quadratically for Transformer models [35].

2.2.3 Training
To actually apply a NLP model on data and a target task, the model has to be trained. There are various
approaches to arrive at a model ready for inference, however, only the Transfer Learning approach with ULMFiT
is described.

Transfer Learning

Training a NLP model is computationally expensive, and requires a large dataset, a search for the best archi-
tecture and tuning architecture parameters to arrive at the optimal model for the target task. With the use of
transfer learning, the amount of data required can be reduced significantly, reducing the computational costs
as well. In transfer learning, the model is trained on a large dataset. This enables the decoder to learn to
contextualize the data, updating the weights of the decoder layers. This training, pretraining, is done on a
’source task’, like predicting the next word in a sequence [36].

When applying transfer learning, the weights of the decoder are transferred, while applying a new ’head’
or encoder. This enables the model to be trained on a much smaller, although closely related, dataset, where
especially the encoder is trained to the target task [37].
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Figure 2.3: Overview of the three stages in transfer learning approach. Left: General-domain LM pretraining.
The model has to be trained from scratch since all weights are randomly initialized. Middle: Target task LM
fine-tuning. All weights from the pre-trained LM are transferred. Right: Target task classifier fine-tuning. The
embedded and encoder weights are transferred, while the decoder is initialized and need to be trained from
scratch.

Transfer learning for NLP models, especially focused on classification, is often done using the Universal Language
Model Fine-Tuning (UMLFiT) approach. The workflow of this approach consists in general of three phases [37],
and is visualized in Figure 2.3:

1. General domain LM pre-training An extensive dataset, representative of the language used for the
target task, is used to train the NLP model. This allows the NLP model to capture general features of
the language. Due to the large dataset and since the model has to be trained from scratch, this step is
the most expensive. However, due to the transfer learning approach, this has only to be done once. This
step is shown in Figure 2.3, the left part.

2. Target task LM fine-tuning The NLP model is then trained on the target data, using sophisticated
training schedules. This ’fine-tuning’ benefits from the pre-training, and is aimed at grasping the features
specific to the target data. The use of pre-trained weights and sophisticated training schedules allows to
fine-tune on a much smaller dataset, with less risk of overfitting. This step is shown in Figure 2.3, the
middle part.

3. Target task classifier fine-tuning Finally, to train the NLP model on the target task, the encoder is
replaced. This means that in fine-tuning only the encoder weights are randomly initiated, and trained
from scratch. Again, sophisticated training schedules ensure the encoder is trained rigorously enough,
while ensuring more careful learning on the decoder layers. This step is shown in Figure 2.3, the right
part.

Fine-tune schedules

As mentioned, in Target task classification fine-tuning, different layers should be trained with different levels of
aggression. However, the same is true for Target task LM fine-tuning, as features are captured over multiple
layers [38]. There is a broad range of fine-tuning options available, some of them will be discussed here.

Since not all layers should be tuned to the same extent, ’discriminative fine-tuning’ was proposed [37]. This
method splits parameters of the model, so that to each layer a different learning rate can be applied. In general,
the learning rate of the last layer should be higher than the lower layers. Furthermore, it is proposed to let
learning rates vary during training [37]. This approach aims to obtain a quick convergence in a general direction,
with a higher learning rate, after which the parameters are refined using a gradually decreasing learning rate.
This yields a triangular learning rate over time, hence the name ’slanted triangular learning rates’. Last, to
avoid catastrophic forgetting by tuning all layers at once, ’gradual unfreezing’ training schedule was proposed
[37]. In this schedule, all layers are ’frozen’, except the last. After fine-tuning, the last frozen layer is unfrozen,
and fine-tuned. This is repeated, until all layers are tuned.
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Performance metrics

To indicate the performance of the model, a few different metrics can be used. First there is the result of the
loss function for both the training sample and the validation sample. Both give an indication of how well the
model captures the training data and performs on the validation data respectively. The difference between those
two performance indicators provide a indication of whether overfitting occurs. A high validation loss, with a
low training loss shows the model is capable of performing the target task for the training data well, but fails
to generalize this to the validation data, which is a sign of overfitting. Other parameters used for regression
target task can be Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R2. For a Language
Model learner, this is often accuracy and perplexity, denoting the ratio of correct predictions and a measure of
the correctness of a sequence of words respectively.

Hyperparameters

Efficiency and performance are two important metrics of an NLP model. These can be optimized by tuning of
hyperparameters. Hyperparameters of an NLP model are architecture-related, like number of hidden layers, size
of hidden layers, but also training-related, like learning rate and number of training epochs. The optimal set of
hyperparameters change with dataset and target task. Table 2.1 shows an overview of selected hyperparameters
and their influence on performance or efficiency.

Training hyperparameters
Learning rate Speed, stability
Batch size Speed, efficiency
Number of Epochs Prevents under- and overfitting
Dropout rate Prevent overfitting
Momentums Speed, stability
Weigth decay Prevent overfitting, stability

Architecture hyperparameters
Number of hidden layers Performance, efficiency, prevent underfitting
Size of hidden layers Prevent under- and overfitting, efficiency
Activation functions Performance, stability
Optimizer Speed, stability
Sequence length Performance, efficiency, stability, prevent overfitting
Embedding size Performance, efficiency

Table 2.1: Overview of key hyperparameters and their effect. Adapted from [39]

2.3 A transfer learning protocol for chemical catalysis using a recur-
rent neural network adapted from natural language processing
[21]

As mentioned, Li and Fourches [20], and later Singh and Sunoj [21] explored the possibilities of the LSTM
model. Li and Fourches showed the effect of data augmentation. They furthermore benchmarked the data with
existing studies on well-known datasets. Using the workflow from Li and Fourches, Singh and Sunoj showed
the influence of LM fine-tuning on target task and also benchmarking the performance with existing models.
They furthermore use the data augmentation workflow, developed by Li and Fourches, to show that this allows
training with relatively small datasets.

2.3.1 Datasets
In the study of Singh and Sunoj, three datasets were used, all containing enantiomeric excess and yield of
catalytic reactions. Figure 2.4 gives an overview of the datasets used, and was provided in the published paper.
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Figure 2.4: An overview of the reactions and datasets chosen, as provided by [21]

The first dataset consists of a range of Buchwald-Hartig reactions (Reaction 1). With varying catalysts, acryl
halides, bases and additives, this datasets contains 4132 datapoints. This reaction is widely applied in the phar-
maceutical industry. The second dataset contains a range of enantioselective N,S-acetal formation reactions
(Reaction 2). This dataset consists of 1027 datapoints, a combination of catalysts, imines and thiols used, with
for each combination their enantiomeric excess. The last dataset is a range of 368 asymmetric hydrogenation
reactions (Reaction 3). These datapoints contain enantiomeric excess values for a combination of catalysts,
substrates and solvents.

Furthermore, a dataset of 1 million SMILES strings was used to pre-train a language model.

2.3.2 Architecture
The model used in the study of Singh and Sunoj is an AWD-LSTM model, Non-monotonically Triggered Average
Stochastic Gradient Descent-LSTM model, employing additional regulerization and optimization techniques on
top of the LSTM model as explained in Section 2.2.2. Looking at Figure 2.2, the different sizes of the layers
can be specified. For the regressor, the size of these layers are shown in Figure 2.5.

Figure 2.5: Architecture of AWD-LSTM model used in the study of Singh and Sunoj. Adapted from [21]

2.3.3 ULMFiT
These datasets are used in ULMFit training approach. For each dataset, three approached were used. One with
the true ULMFiT approach, using the pre-trained model, fine-tuning the Language Model on the target data,
then fine-tuning the model on the target task (TL-m2). Furthermore, to investigate the effect of fine-tuning
the LM, a study was performed without fine-tuning of the LM (TL-m1). Last, to show the effect of transfer
learning, a study was done without using pre-trained weights (TL-m0). The results of this comparison show
little to no effect in using transfer learning (comparison of TL-m0 and TL-m1) for Reaction 1, with a large
dataset. However, for reaction 2 and 3, there was a noticeable improvement in performance, giving a decrease
in RMSE of 11.83 to 8.88 and 10.67 to 8.56 respectively.
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Figure 2.6: Comparison of performance of direct (TL-m0) and transfer learning methods (TL-m1 and TL-m2),
as provided by [21]

Using LM fine-tuning showed interestingly enough a decrease in model performance. Although it is small, it is
consistent for all three reaction datasets. Figure 2.6 shows an overview of the performance found.

The most important take-aways from this study are

• Transfer learning has a positive effect on performance for relatively small datasets

• Fine-tuning the LM on target data is not always beneficial for performance

• Gradual unfreezing while fine-tuning is not always the best approach to reach optimal performance.

In the end, the workflow used in this study provides a useful starting point for our study. Be informed that this
workflow was not developed in this study, but in a previous study by Li and Fourches [20].



3. Methodology
This section will explain the workflow and research steps of this project, with references back to relevant
sections in the Theory chapter. This section is divided in three subsection, where first the data preparation
and processing is described, followed by a description of the approach to fine-tune the NLP model, and finally
explains how the performance of this model was examined.

3.1 Computational tools
Since this project has a heavy focus on computational tools, this section will explain which tools were used.

3.1.1 Environments
Google Colab

For a large part, Jupyter Notebook on Google Colab was used as an environment to perform the experiments.
FastAI is installed by default, as well as a large number of other useful Python packages. Furthermore, to a
certain extent, free runtime on Tesla T4 GPU’s [40] is available, making this an easy and accessible way to
perform experiments.

Snellius

To speedup experiments further, Dutch national supercomputer Snellius is used [41], making use of the GPU
partition with Tesla A100 GPU’s [42].

DelftBlue

Additional computation time was obtained on the computational cluster from TU Delft, DelftBlue, to make use
of the Tesla V100 and Tesla A100 GPU’s [43].

3.1.2 Python package FastAI
This work uses the Python package FastAI to set up the experiments. It consists of a few API layers, built on top
of Pytorch. This makes the package easy to use, with the high-level API, while still allowing for modifications if
required with the lower-level API. The functionalities are all well-documented, and explained in courses. Figure
3.1 shows the general structure of this package.

Figure 3.1: Functionality of FastAI layered in API-levels [44]

The functionalities used are a combination of the high-level and mid-level API, to allow for optimization of the
workflow and model performance.

11
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3.2 Data Processing
The data was prepared from the data from a previous study of the TuDelft ISE research group [9]. The data
to be used was extracted from this dataset, formatting this in a .csv file, with 12 columns. The columns, and
variation in content are shown in 3.1. The ligand indicators (ligand, ligand_int), ligand represented in isomeric
SMILES (ligand_smiles), the substrate indicator (substrate), solvent indicator(solvent) and enantiomeric excess
values, non-absolute and absolute respectively (ee, ee_abs) and conversion value (conversion), were provided in
the dataset mentioned. To this, the ligand class (ligand_class) and ligand family name (ligand_family) were
added, as well as substrate SMILES and solvent SMILES, obtained from the PubChem database [45].

Column name Number of unique entries
ligand 192
ligand_int 192
ligand_smiles 192
ligand_class 8
ligand_family 75
substrate 4
substrate_smiles 4
solvent 2
solvent_smiles 2
ee continuous [-1, 1]
ee_abs continuous [0, 1]
conversion continuous [0, 1]

Table 3.1: Overview of the prepared dataset

Furthermore, as mentioned, the data was split in a train-valid-test split with ratio 0.8/0.1/0.2. However, since
the data contains datapoints with different substrates and solvents for the same ligand, this can cause overlap
in training and valid/test data. The training data is then very similar to the validation and test data, which
can skew the performance of the model unfairly positive. To overcome this, the data was first split by ligand,
and then this split was used to split the rest of the data. This keeps certain ligands unseen for the model in
training.

3.2.1 Data augmentation
As mentioned in Section 2.3, data augmentation seems a useful tool to improve the performance of the model.
This method is often used in vision learning, where data is often rather scare. This method extends the dataset
with data very similar to the original, but with added noise. This provides the model with a large amount of
data, very similar, but still different. To prevent overfitting, but still improve the performance of the model, the
right amount of noise should be selected. In NLP this method is often much less easy to apply, as this requires
paraphrasing, random deletion or using synonyms. However, when using SMILES, this becomes much easier, as
one structure can be represented by multiple SMILES strings. Together with adding noise to the target data,
this can extend the dataset rather easily.
To implement this, the Chem package from the Python package RDKit is used. A SMILES string is converted
to a molecule-instance from the mol-class. This molecule-instance is then renumbered, and converted back to
SMILES. This gives a new SMILES string, representing the same molecular structure.

3.2.2 Tokenization and numericalization
As explained in section 2.2.3, textual data needs to be formatted in a way this model can understand. First, since
the performance of the reaction is not only influenced by the ligand, but also the substrate and the solvent,
these structures should form the input together. This is done by concatenating the SMILES data together,
separated by periods. See for example Figure 3.2.
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Figure 3.2: Overview of the process of concatenating, tokenization and numericalization of SMILES data, with
a structural representation of the selected SMILES of ligand, substrate and solvent

As mentioned in Section2.2.1, the data has to be numericalized. Since a transfer learning protocol was used,
the data should be embedded in a similar manner, which means the tokenization and numericalization should
be done too with the same tokenizer and a similar vocabulary. The tokenizer used was adapted from the work
of Li and Fourches [29].

3.3 Implementation with FastAI
As mentioned, after setting up the tokenizer, the next step is to fine-tune a language model on the target
task. This is an essential part of the ULMFiT approach, as this adapts the pretrained and randomly initialized
weights for the new vocabulary entries in the embedding layer to the differences between the dataset used for
pretraining and the target data.

3.4 Model performance
To reach optimal model performance, the training hyperparameters can be tuned. The training hyperparam-
eters are mentioned and explained in section 2.2.3. Since this is a large set, and the optimal setting for one
hyperparameter can influence the optimal setting for another, this is done in order of magnitude of influence
on the performance, as found by Liao et al. [39]. Furthermore, in the search for the optimal hyperparameter,
some rules of thumb were used [39], such as, keep the batch size a power of 2, increasing momentums works
best with decreasing learning rates. Furthermore, the performance was not only measured by calculating the
RMSE, MAE and R2-score of the test set, but also by monitoring the train and valid loss, and the difference
between those, to keep the amount of overfitting as low as possible.

3.5 Analysis
3.5.1 Principal Component Analysis
To visually compare the similarity of the ligands in the dataset of Singh and Sunoj to the ligands in the ISE
dataset, a Principal Component Analysis is used. This statistical method reduced the dimensionality of a large
dataset to a number of principal components. These components are vectors through the dimensions of the
data. The best principal components are the ones that explain the variance of the dataset best. For PCA, often
the first two that explain the largest amount of variance are chosen, from which a 2D scatterplot is created. The
principal components in this case are calculated from structural descriptors, calculated from SMILES strings of
the ligands, using the Mordred Python package.
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3.5.2 Receiver Operating Characteristic curve
To show the extent to which a classification model performs, a ROC curve can be used. This curve shows the
performance of the model at all classification thresholds, by calculating a False Positive Rate (FPR) and a True
Positive Rate (TPR) for each threshold. These rates are calculated with

FPRi = FPi

FPi + TNi
(3.1)

TPRi = TPi

TPi + TNi
(3.2)

Where FP is the number of False Positives, TN is the number of True negatives and TP is the number of
True Positives for every threshold value i. In this study this is applied to the results of a regression model,
to determine the optimal classification threshold. For every threshold, the experimental values are divided in
Positives and Negatives, then using the predicted values, the values of FP, TN, TP and False Negatives (FN)
are determined.

The TPR is then plotted against the FPR, using the corresponding threshold values. A model that performs
poorly in classification will have a curve close to the TPR=FPR diagonal, while a model that performs well,
will show TPR values close to 1. This can be quantified by calculating the area under the curve, which yields a
performance metric that is referred to as AUC-ROC, Area Under Curve of Receiver Operating Characteristic.



4. Results and discussion
4.1 Transfer learning on data of Singh and Sunoj
As explained in Section 1, the work of Singh and Sunoj [21] is the basis for this work. The first step towards
application of Language models to our own data is to reproduce their findings. This will confirm the validity of
using their workflow as a basis, give a good understanding of the structure of the workflow, and makes it easier
to use their workflow on our own data.
Singh and Sunoj used Jupyter Notebooks with Google Colab, which are provided in a Github repository [46].
Here, the pretrained weights, the vocabulary for the pretrained model, and the data used for fine-tuning is also
provided.
As mentioned, the experiment of Singh and Sunoj was done in Google Colab. In reproducing this, a few hurdles
had to be taken:

• Singh and Sunoj performed their experiment with a deprecated version of the Python package FastAI v1
[44].

• This version relies on a deprecated functionality in an older version of the Python package Numpy
(≤1.21.6)

• A few errors in the code provided.

Since the API of FastAI v1 is not compatible with the API of FastAI v2, FastAI v1 had to be used to reproduce
the experiments. This was installed, together with Numpy version 1.21.6, from which a deprecated array func-
tionality was used. Furthermore, some incomplete code was completed, and some errors were fixed. Performing
a single experiment, with seed [1234] yielded an RMSE value of 11.3. As mentioned in 2.3, Singh and Sunoj
found an average RMSE of 8.38 over 30 experiments with different train-valid-test splits, with RMSE values
ranging from 5.9 to 11.6.
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Figure 4.1: Comparison of prediction of ee values: (a) as reported by Singh and Sunoj [21], and (b) as found in
our study, using the data Singh and Sunoj provided

Figure 4.1 show a comparison of the performance of the model as reported, and the performance of the model
as found. In this comparison, two things have to be noticed. First, the dataset is quite skewed, with a large
number of datapoints towards the higher end of the [0, 100] interval for enantiomeric excess. Secondly, in the
case of Singh and Sunoj, the model was able to predict the low enantiomeric excess quite well, despite the low
number of datapoints in that region. In our case, there is a large outlier with an experimental ee of 21, which the
model predicted quite high. Excluding this datapoint gives an RMSE of 7.5, which is in line with the findings
of Singh and Sunoj.

These values were found without initially fine-tuning the encoder weights on the target data. Singh and Sunoj
showed that this does not have an effect, or even acts negatively in terms of performance of the model. This was
confirmed in an experiment, raising the RMSE to 8.5. While adverse effects are difficult to explain, similarity
in the SMILES characters used for pre-training and target data can explain that no effect is visible.

An attempt was made to convert the notebook to Python script, to be able to run on supercomputer Snellius or
DelftBlue cluster. This was however not directly possible, as FastAI v1 requires Numpy ≤1.21.6, which requires
Python ≤3.10, which is not readily available on Snellius and DelftBlue. Using the documentation and courses

15
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of FastAI [47], the code was rewritten to use the API of FastAI v2, with a thorough look into the functionalities,
to achieve similar model performance.

Major differences between the API’s are mainly found in constructing the dataloaders. Furthermore, a change
in the way padding is applied to batches requires the use of a higher API level in FastAI v2. Last, it is reported
that FastAI v2 uses a newer version of the python package Torch, changing the way weights are saved in check-
point files. Most importantly, a deep dive into the LSTM model used in both FastAI versions makes clear that
the model architecture hyperparameters are kept the same between the versions. These correspond with the
hyperparameters mentioned in Section 2.3.

This was extensively tested and explored, but the same performance could not be achieved. The performance
of the model rewritten with FastAI version 2 gave a RMSE of 14.6, compared to an RMSE of 8.38 reported
with Singh and Sunoj[21] and an RMSE of 11.3 found with FastAI v1.

For completeness, the workflow with LM-fine-tuning on the target data was also tested in FastAI v2. While it
is expected that there is no improvement in performance, a change in the way the model is saved and loaded
may change this behaviour. It was found, similarly to the findings reported, that no performance improvement
was noticable (RMSE of 14.8).

4.2 Similarity of datasets
To investigate the applicability of the model of Sunoj on our own data, the similarity was investigated. First,
a Principle Component Analysis was performed, to compare the ligands in both datasets.

Figure 4.2: Principal Component Analysis to compare the chemical space of the ligands used in the study of
Singh and Sunoj and in the data used in this work

Figure 4.2 shows the PCA-plot, with a reasonable good total explained variance of about 21%. In this plot,
the clusters cannot be identified by ligand class (P, PP, PN, ...) or ligand family (BINAP, JosiPhos, ...). It is
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however noticeable that the ligands of Singh and Sunoj form a much smaller cluster than the ligands in our
data, pointing to a smaller spread in ligands used.
It is important to notice that the principal components are calculated from a large range of structural descriptors,
calculated with the Python package Mordred. When inspecting the results of this descriptor calculation step,
it was noticed that ferrocene-ligands gave an empty entry. Upon further investigation, it became clear that the
structure of the ferrocene ligand results in SMILES data, where some carbon atoms have a valence of 5.

Figure 4.3: 2D and 3D structure of Ferrocene, showing the zero-order coordination bonds between the carbon
atoms in the aromatic rings and the iron metal center. From [48]

Figure 4.3 shows the structure of ferrocene, showing the coordination bonds between the aromatic rings and
the iron metal center. With this knowledge, and the fact that around 30% of the ligands in our dataset are
ferrocenes, it can be assumed that the differences between the datasets is even larger than the PCA shows.

Figure 4.4: Comparison of distributions of |ee|% values in the dataset of Singh and Sunoj and our data

Investigations into the distribution of ee values in both datasets show other large differences. Figure 4.4 show
a comparison of the distribution of both datasets. It is visible that the distribution of the ee% values of the
dataset of Singh and Sunoj is quite skewed towards 100%, while the datapoints in our dataset is quite evenly
distributed.

4.3 Transfer learning with own data
This analysis shows a sufficiently large difference between the datasets where the model Singh and Sunoj fine-
tuned cannot be effectively used on our data. However, the pre-trained model can still be used, and fine-tuned
to our own data and target task, using the MolPMoFiT approach [20], as explained in Section 2.2.3. This
was done, as explained in Section 3. The differences in datasets required a small change in vocabulary. This
will presumably have an impact on the performance, and will be checked by comparing the performance of the
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model with and without LM fine-tuning on target data.

Fine-tuning the model using the training hyperparameters as used by Singh and Sunoj [21], resulted in a
relatively bad performance, as well as fine-tuning the model after fine-tuning the LM on the target data. Com-
parison of the results is shown in Figure 4.5, where fine-tuning only the regressor on the target task resulted
in a RMSE of 0.303, and fine-tuning both the LM and the regressor on the target data resulted in a RMSE of
0.325.
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Figure 4.5: Comparison of prediction of ee values using the hyperparameters as given in Section 3: (a) fine-
tuning of only regressor on target task, and (b) fine-tuning of LM and regressor on target task

4.4 Hyperparameter optimization
To increase the performance of the model, a search for the optimal combination of hyperparameters was initiated.
These parameters are, in order of investigation, batch size, dropout rate, number of epochs, learning rate,
momentums and weight decay. The effect of these hyperparameters on the model performance was shown and
explained in section 2.2.3. These hyperparameters can be optimized both for LM fine-tuning on the target data,
and the regressor fine-tuning on the target task.
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4.4.1 LM fine-tuning
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Figure 4.6: Overview of results of the fine-tuned hyperparameters for LM fine-tuning on target data. Some
datapoints are labeled with ’Set #’, the actual values are found in Appendix 5.1.

Figure 4.6 shows an overview of the performance of the Language Model learner, for a range of values for each
hyperparameter that was analyzed. In each graph, the lowest point for validation loss is selected as optimal
setting for the hyperparameter. The optimal selection of hyperparameters selected from this, for this case, is
shown in Table 4.1. Note that the learning rate for the first cycle differs from the one shown in Figure 4.6c,
since this is calculated for the learning rate in cycle 2 as:

Learning rate cycle 1 = Batch size/48 ∗ 10 ∗ Learning rate cycle 2 (4.1)

Furthermore, it should be noticed that the dropout multiplier hyperparameter is not the dropout rate itself,
but a multiplier of this value. Since the LSTM layers all have their own dropout rate by definition, this
hyperparameter multiplies these dropout rates.
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Hyperparameter Value
Learner hyperparameters

Dropout multiplier 1.6
Batch size 64

LM training cycle 1
Only embeddings

Number of epochs 3
Learning rate 0.133
Momentums (0.8, 0.7, 0.8)
Weight decay 0.01

LM training cycle 2
All layers

Number of epochs 6
Learning rate 0.01
Momentums (0.8, 0.7, 0.8)
Weight decay 0.01

Table 4.1: Overview of tuned hyperparameters, and their optimal value found, for LM fine-tuning on target
data.

4.4.2 Regressor fine-tuning
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Figure 4.7: Overview of losses, as result of the fine-tuned hyperparameters for regressor fine-tuning on target
task.Some datapoints are labeled with ’Set #’, the actual values are found in Appendix 5.1.
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Figure 4.8: Overview of RMSE, as result of the fine-tuned hyperparameters for regressor fine-tuning on target
task. Some datapoints are labeled with ’Set #’, the actual values are found in Appendix 5.1.

Figures 4.7 and 4.8 shows an overview of the hyperparameters optimized, together with the performance metric,
in this case RMSE. From this overview, it becomes clear that the optimal set of hyperparameters is as given in
Table 4.2
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Hyperparameter Value
Learner hyperparameters

Dropout multiplier 0.7
Batch size 64

Training cycle 1
Only regressor

Number of epochs 5
Learning rate 0.1
Momentums (0.8, 0.7, 0.8)
Weight decay 0.01

Training cycle 2
Regressor and last encoder layer

Number of epochs 6
Learning rate 0.001
Momentums (0.8, 0.7, 0.8)
Weight decay 0.01

Training cycle 3
Regressor and last two encoder layers

Number of epochs 6
Learning rate 0.0001
Momentums (0.9, 0.8, 0.9)
Weight decay 0.01

Training cycle 4
Regressor and all encoder layers

Number of epochs 6
Learning rate 0.0001
Momentums (0.9, 0.8, 0.9)
Weight decay 0.01

Table 4.2: Overview of tuned hyperparameters, and their optimal value found, for fine-tuning of regressor on
target task

Using these optimized hyperparameters, the performance is measured on the test set, resulting in a RMSE of
0.296. The results are shown in Figure 4.9, where it is visible that the model predicts most of the ee values
between 0.3 and 0.7, while the true ee values are evenly distributed between 0 and 1. Furthermore, while there
is quite a large number of good performing samples falsely predicted with a low ee value, only a few samples
are wrongly predicted with a high ee value.
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Figure 4.9: Prediction result on test set using optimized model

To investigate whether the selection of substrates, solvents and ligand family has an effect on the performance,
these were investigated more closely. Figure 4.10a shows an overview of the performance of the model with the
results separated per substrate, Figure 4.10b shows the performance of the model with the results separated per
solvent. It is difficult to find a pattern in this, however, in the case of substrate 5, it is visible that the data is
distributed towards the lower end of the range, which is reflected strongly in the predicted values. Furthermore,
while not significantly different, it seems that the small difference in distribution between the two solvents is
represented in the predicted ee value distribution.
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Figure 4.10: Analysis of predicted |ee| values, (a) by substrate, (b) by solvent

As mentioned in Section 2.2.2, one known limitation of RNN models is its difficulty to capture relations in
long sequences. While there are no hard limits provided, sequences of 200 or more tokens are considered long
for these kind of models [49]. In an attempt to show the influence of the sequence length on the accuracy of
the prediction, these are plotted together in Figure 4.11. Unfortunately, aside from a few exceptions, no clear
relation exists between sequence length and accuracy of prediction.

Figure 4.11: Analysis of effect of sequence length of performance of the model

These results show that the model is not accurately predicting ee values, and especially failing to predict values
in the ee ranges below 0.3 and above 0.7. Since most values are close to average, and the goal of employing such
a model is to accurately predict catalyst candidates, classifying the predicted |ee| values can show the usefulness
of the model.
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Figure 4.12: ROC curve of using model predictions on |ee| in classification

Using ROC curve analysis, explained in Section 3, is was analyzed to what extent the model predictions can be
used with classification, to provide catalyst candidates. The ROC curve is shown in Figure 4.12, which gives
an optimal threshold of 0.53. Using this threshold, a confusion matrix can be created, shown in Figure 4.13

Figure 4.13: Confusion matrix of classification of model with threshold |ee| = 0.53

This allows to compare the performance of the model to experts in the field. After obtaining results of a
classification with a selection of 28 datapoints, for each expert a confusion matrix can be created. Furthermore,
the same procedure was used with a random chemist. The results of this comparison is shown in Figure 4.14,
showing that the performance of the model created is comparable to experts in the field, especially indicating
that a majority of the ligands result in a low ee.
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(a) Expert 1 (b) Expert 2 (c) Expert 3

(d) Expert 4 (e) Random chemist (f) NLP model

Figure 4.14: Overview of the results of expert classification of a selection of 28 datapoints. The actual results
per expert are provided in Appendix 5.1.



5. Conclusion
Using the workflow used by Singh and Sunoj, an attempt was made to recreate a language model, and reproduce
the results of their work using this model and the data provided. While the performance of the created model
(RMSE = 9.9) could not match the reported performance (RMSE = 8.38), but almost reached the reported
performance range (RMSE = 8.38 +/- 1.40). Since only one train-valid-test split was used in an experiment, no
solid conclusions can be made about whether the data and information provided in the paper and supplementary
information is not enough to reproduce the experiment.

Using the same workflow as a basis, the API of FastAI version 2 was used to reconstruct the model, using
the data provided in the mentioned study. To use the same model, hyperparameters and a similar workflow,
it was necessary to use a higher level of API, making it less straightforward in application than using FastAI
version 1, in this context. The reported performance of the model could not be reproduced, as well as the
experiment using FastAI version 1. The performance found using FastAI version 2 was with an RMSE of 14.6.
This shows that it is not directly possible to transfer workflows or models from FastAI version 1 to version 2.
Since no hyperparameter optimization was performed, it is not possible to conclude that the same performance
could not be reached in FastAI version 2.

A Principal Component Analysis was performed on the datasets of ligands for assymetric hydrogenation used in
the study of Singh and Sunoj and the ligands in a dataset for asymmetric hydrogenation from the ISE research
group, TU Delft. While this analysis showed some similarity, it highlighted the larger spread in the ISE dataset.
This analysis could not be performed for 30% of the dataset, due to notation of zero-order coordination bonds
in SMILES.

The workflow developed by Li and Fourches, applied by Singh and Sunoj, and transferred to FastAI v2 in
this study, was applied to the ISE dataset mentioned. Due to the notation issues mentioned above, data aug-
mentation could not be used. With the workflow applied, a RMSE of 0.303 was achieved for |ee| values in the
range [0, 1]. This performance is notably worse from the performance the model showed on the dataset of Singh
and Sunoj, this can be attributed to the larger spread in ligands, and the inability to use the data augmentation
from the existing workflow.

The training hyperparameters in this workflow were optimized for performance on the ISE dataset. Both
the hyperparameters of LM fine-tuning on the target data and regressor fine-tuning on the target task are opti-
mized separately. The resulting model is analyzed for regression performance, which was poor, with a RMSE of
0.296. Furthermore, using ROC analysis, the performance of classification was examined. Considering the goal
of suggesting ligand candidates for asymmetric hydrogenation, this model can reduce the amount of experiments
required by around 73% , while classifying around 1 in 2 of good catalyst as bad candidates.

In short, the existing workflow could not directly be applied to a new, unseen dataset for enantioselective
hydrogenation. Adjusting and optimizing the workflow yielded a model for predicting |ee| of asymmetric hy-
drogenation ligands, performing rather poor in regression, and decent in classification.

5.1 Recommendations
To improve performance of the model used, some changes to the workflow can be made. First of all, one of the
issues that was run into during the application of the existing workflow to the new dataset was the inability to
use the data augmentation routine. This keeps the number of datapoints low, and can be a major contribution
to the rather large regression error. To confirm this, increase in the train-valid ratio should show increase in
performance. Data augmentation can then only be used if the representation of the ferrocene ligands in SMILES
is changed.

Also, as Li and Fourches reported [29], using SMILES Pair Encoding (SPE) instead of atom-wise tokeniza-
tion as tokenizer can improve performance as well. The same researchers show in other work that training the
model as classifier can provide higher accuracy results as well [20].

Furthermore, using a transformer architecture instead of an AWD-LSTM can improve performance. Trans-
former models process a sequence at once, assigning attention weights to determine the most important parts of
the sequence. This overcomes mostly the difficulty with processing longer sequences that RRN models show [33].

Last, Jablonka et al. showed good performance on prediction of molecular properties, using large language

27
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models, with a transformer architecture, but, trained on a selection of scientific sources. These models were
fine-tuned on the language of the target data. Using this approach, although the models are larger and more
computationally expensive to train, a potentially higher performance can be achieved.
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Appendix 1

Hyperparameter name Value1 train_loss val_loss
Batch size 32 0.189725 0.305471
Batch size 64 0.286071 0.288813
Batch size 128 0.468063 0.364342
Dropout multiplier 0.1 0.075425 0.381592
Dropout multiplier 0.3 0.085225 0.355239
Dropout multiplier 0.5 0.090293 0.347536
Dropout multiplier 0.7 0.098216 0.356452
Dropout multiplier 1 0.114524 0.317155
Dropout multiplier 1.2 0.14076 0.317203
Dropout multiplier 1.4 0.155558 0.30558
Dropout multiplier 1.6 0.17371 0.291784
Dropout multiplier 1.8 0.205731 0.297644
Learning rate 0.1 3.342852 2.603955
Learning rate 0.01 0.286071 0.288813
Learning rate 0.001 0.922876 0.583896
Learning rate 0.0001 2.167748 1.945783
Number of Epochs 2,4 0.430719 0.323842
Number of Epochs 2,5 0.358953 0.299027
Number of Epochs 2,6 0.298263 0.29506
Number of Epochs 2,7 0.258811 0.299512
Number of Epochs 3,5 0.357743 0.299983
Number of Epochs 3,6 0.299372 0.284442
Number of Epochs 3,7 0.251257 0.286306
Number of Epochs 3,8 0.245333 0.28693
Number of Epochs 3,9 0.213236 0.292478
Number of Epochs 4,5 0.350666 0.302734
Number of Epochs 4,6 0.294535 0.295255
Number of Epochs 4,7 0.25502 0.289546
Number of Epochs 4,8 0.211498 0.294283
Number of Epochs 5,5 0.349945 0.292332
Number of Epochs 5,6 0.291911 0.284634
Number of Epochs 5,7 0.252113 0.28757
Number of Epochs 5,8 0.212612 0.295824
Momentums (0.7, 0.6, 0.7),(0.8, 0.7, 0.8) 0.296109 0.288631
Momentums (0.8, 0.7, 0.8),(0.8, 0.7, 0.8) 0.299372 0.284442
Momentums (0.8, 0.7, 0.8),(0.9, 0.8, 0.9) 0.30017 0.295092
Weight decay 0.5 0.301616 0.286904
Weight decay 0.1 0.287541 0.28486
Weight decay 0.01 0.299372 0.284442
Weight decay 0.001 0.298746 0.289389

Table 1: Overview of results of hyperparameter optimization of Language Learner. 1 When formatted as list,
the values are corresponding to the respective learning cycle
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Appendix 3

Ligand Substrate Sovent Expert 1 Expert 2 Expert 3 Expert 4 Random Chemist
L3 SM1 Methanol Yes No No No No
L22 SM1 Methanol No Yes Yes Yes Yes
L38 SM1 Methanol Yes Yes Yes Yes No
L72 SM1 Methanol Yes No No No Yes
L114 SM1 Methanol Yes No Yes No Yes
L15 SM1 1,2-Dichloroethane Yes No No No Yes
L48 SM1 1,2-Dichloroethane Yes Yes No Yes Yes
L192 SM1 1,2-Dichloroethane No Yes No No Yes
L19 SM2 Methanol No Yes Yes Yes Yes
L92 SM2 Methanol No Yes No No No
L125 SM2 Methanol No Yes No No No
L151 SM2 Methanol No Yes No No No
L183 SM2 Methanol No No Yes No Yes
L21 SM2 1,2-Dichloroethane No Yes Yes Yes No
L137 SM2 1,2-Dichloroethane No Yes No Yes Yes
L183 SM2 1,2-Dichloroethane No No No No Yes
L22 SM3 Methanol No Yes Yes Yes No
L48 SM3 Methanol Yes Yes No Yes Yes
L108 SM3 Methanol No No No No Yes
L125 SM3 Methanol Yes Yes No No Yes
L38 SM3 1,2-Dichloroethane Yes Yes Yes Yes no
L92 SM3 1,2-Dichloroethane Yes Yes No No No
L115 SM3 1,2-Dichloroethane Yes No Yes No No
L143 SM3 1,2-Dichloroethane No No No No No
L108 SM5 Methanol No No No No Yes
L114 SM5 Methanol No No Yes No No
L122 SM5 Methanol No Yes No No Yes
L143 SM5 Methanol No No No No no
L192 SM5 Methanol No Yes No Yes no

Table 3: Results of expert classification of enantionselectivity of selected ligands
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