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ABSTRACT:

We investigate how PCServe, a web service for disseminating massive point clouds, performs for read-only access (i.e. a visualiza-
tion application). PCServe is backed by a database model based on Space Filling Curves. By adding a virtual hierarchy of blocks
to the database, we can support different visualization applications for retrieval of point cloud data over the web without having to
store the data multiple times. This makes expressive access to point clouds over the web possible. We investigate the amount of
processing that is needed to create the database model and how well PCServe handles requests from the visualization application.
Some suggestions are provided how the current approach can be improved.

1. INTRODUCTION

Point clouds are rich representations of the real world, mea-
sured accurately, and stemming from different sources, like Li-
DAR, photogrammetry or bathymetric echo sounding techniques.
Due to their massive sizes, interactive visualization of point
cloud data remains a challenge. Point clouds are preprocessed
in specific data structures for web-based point cloud visualiza-
tion.

In recent years, a variety of protocols have been created for
point cloud retrieval, each serving different applications (e.g. 3D
Tiles by Cesium, Indexed 3D Scene Layers, I3S, by Esri, Cloud
Optimized Point Cloud, COPC, by Hobu, Inc., Potree by the
Potree developers). Different visualization clients (like Potree
and Cesium) expect different file formats (protocols). When
using a file based organisation and multiple clients that need to
be served, for each application a different file organisation is
necessary, requiring the point cloud to be stored multiple times
server side, which can be impractical given the volume of the
point cloud data. Hence, we propose PCServe, a web service for
retrieval of point clouds supporting different existing protocols
(Potree, 3D Tiles), to be able to serve point data to different in-
teractive visualization applications. PCServe relies on how we
organise point clouds inside a database system with the help of
a Space Filling Curve (SFC). Within the database system, we
have an efficient mechanism for determining arbitrary subsets
of the massive point clouds (based on nD-polytopes, i.e. we can
express generic nD query geometry and obtain the result using
the SFC based organisation).

In this paper we show that adding one additional value that en-
codes the level of detail per point allows us to adjust the den-
sity of the requested subset targetted at an application. We also
give an algorithm for how we can map these continous level
of detail values to a virtual discrete block based organisation
(octree). Moreover, we demonstrate using PCServe how a visu-
alisation application, like PoTree, can subsequently fetch point
cloud data over the web from our database organisation based
on SFCs. Figure 1 shows Potree with PCServe having delivered
the points from the database.

The remainder of this paper is organized as follows: Section 2

Figure 1. Points from the Actual Height model of the 
Netherlands (AHN3) data set colored by ‘intensity gradient’ 
visualized by Potree, retrieved from PCServe using Range 

requests

reviews related work on managing and disseminating point clouds
via web services. Section 3 gives details on our database organi-
sation, how we obtain the virtual block based structure and how
it will be used for PCServe, the nD-point cloud web service.
Section 4 reports on results we obtained with our implementa-
tion. In Section 5, a discussion follows on the obtained results.
Section 6 gives a conclusion and future work is given in Sec-
tion 7.

2. RELATED WORK

Butler (2019) gives an overview of web services for point cloud
data handling. In particular they investigate: Indexed 3D Scene
Layers (I3S), PotreeConverter, Greyhound, Entwine and 3D Tiles.
They discriminate a variety of requirements for these services,
of which spatial partitioning, and level of detail as well as at-
tribute filtering are important ones to be able to handle for mas-
sive point cloud data sets.

Cura et al. (2015) also organise point clouds in a database man-
agement system. Although their approach is fully based on us-
ing a database, and not a web service, they face similar chal-
lenges for organising the points. Their organisation is based on
grouping points spatially. Cura et al. (2016) achieve an implicit
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level of detail structure by storing the points per group in sorted
order.

Van Oosterom et al. (2015), Psomadaki et al. (2016) and Liu et
al. (2021) developed an approach to address nD window queries
on massive point clouds stored in a database management sys-
tem. Considering characteristics of spatial data and applica-
tions, the approach utilizes a Space Filling Curve (SFC) to en-
code each nD point into a one-dimensional key. Then, a B+-
tree organized table is built to store and index these keys. When
querying, the approach transforms the nD query window into a
set of non-overlapping one-dimensional SFC ranges for selec-
tion. In this transformation, an nD histogram is used to alleviate
problems originating from non-uniform data distribution. It is
this database organisation that we base our work on.

We note that the majority of approaches first group points into
groups of points (also termed patches or tiles), and then use
these groups directly for level of detail access. In this work we
aim to test how well the reverse works: First we add a mecha-
nism for level of detail on the individual point level (which is
independent from a spatial access method), and based on this
we make groups of points, making our approach in principle
more flexible (supporting different types of block based access
to the points).

3. BRINGING ND POINTS STORED IN A DATABASE
TO THE WEB

The main task of PCServe is to translate the web service pro-
tocol, which a client side visualization application expects for
point cloud data retrieval, to database queries and retrieve the
points. Once the points are retrieved from the database, the
points should be serialized in the correct encoding, which the
client is expecting in the response.

Next to dealing with the individual points and their attributes,
another important task is thus to make available a spatial access
method to access groups (blocks) of points with resolution guar-
antees. This makes interaction possible at both the overview as
well as the most detailed level.

In this section we first review (briefly) the database organisation
we use as basis for PCServe. Subsequently we explain how we
add a continuous Level of Importance (cLoI) value to each and
any point in the data set and finally we show the algorithm we
apply to make a virtual block based organisation available in
our database.

3.1 Database organisation

State-of-the-art database point cloud organisation is that blocks
of points are grouped and stored together (Cura et al., 2015).
The SFC based approach pioneered by van Oosterom et al.
(2015) stores individual point records inside a table. The SFC
key makes it possible to include multiple dimensions (also non-
spatial dimensions) in selection criteria. This allows users to
be expressive in querying the point clouds, specifying exactly
which points to retrieve.

Before using the data in the organization, we decide which di-
mensions we place inside the SFC key. This depends on the
application, but should involve these dimensions on which we
will query frequently. For this paper, we consider the position
and the level of detail dimensions of the points (but others, like
time, could also be used).

The SFC key can either encode the original values to the full
wanted resolution (no need to store the data as additional col-
umn), or can approximate the original values encoded in the
key, which requires that also the original values are stored (or
expressed and stored as delta values against the approximation
encoded in the SFC key).

We store the points in the database sorted based on the SFC key
values. Subsequently, we can efficiently express which points
we want to retrieve for a nD convex query geometry: The nD
query geometry is translated into 1D SFC ranges (by applying
the algorithm of Orenstein and Merrett, 1984). Moreover, this
query framework allows to make a trade off between accurate
approximation, where we need to spend more time preparing
the discretised version of the query geometry, or a faster, but
coarser approximation. As points are indexed by SFC key and
are stored on disk in the same order as the SFC traverses the hy-
percube, the database can perform this join between SFC keys
and SFC ranges efficiently. Liu et al. (2020) explains in more
detail the query mechanism and how a nD histogram helps gen-
erating 1D SFC ranges where in the nD hypercube there exists
data.

3.2 Obtaining the octree layout

3.2.1 Adding cLoI values for the individual point records
The points we store in the database do not have a level of detail
value associated once they are collected. Hence, we add per
point the cLoI attribute as floating point number.

Van Oosterom (2019) explains the reasoning behind the cLoI
values. In short, the cLoI values follow ‘level organisation
thinking’: Not so many points assigned to the most important
level, then (in 2D) four times more points on next level and so
on. We use a random generator to get to a cLoI value l for
individual points:

l =
1

n
log2(U(2n(L+1) − 1) + 1) (1)

Equation 1, shows that each point is assigned a floating point
importance value l, between 0 and largest level L, where n is
the dimensional nature of the data (n = 2 for surface scan,
n = 3 for volumetric data) and U is the value from the random
generator. It depends on the data set size what will be the largest
needed level L. The uniform distribution given by U is trans-
formed into the wanted distribution of l (with limited number
of points on overview level 0, and very many points on most
detailed level L).

As the cLoI value has a linear relationship with the density of
points, this permits us to request data at a required density, by
querying for those points with cLoI value between 0 and wanted
level. Note that we add the cLoI value per point, before we
encode the x, y, z and cLoI into the SFC key value.

3.2.2 Getting an octree out of the cLoI points Existing
protocols (in use in applications, like Potree and Cesium) re-
quire block based organisation, making information available
at the server side on which blocks of point data are available,
and how these are related to level of detail. Often these strate-
gies employ a 3D octree structure where nodes closer to the
root node contain the more important points, and with an addi-
tive scheme points residing in deeper levels of the tree are added
to the scene once needed, e.g. because a user moves closer to
the terrain. As such, an octree will not be a full tree, but can
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create table ndpc__points_with_sfckey_imp (

sfc_key bigint,

x double precision,

y double precision,

z double precision,

gps_time double precision,

importance double precision,

intensity integer,

return_number smallint,

number_of_returns smallint,

classification smallint,

scan_angle_rank smallint,

user_data smallint,

point_source_id smallint,

scan_direction_flag boolean,
edge_of_flight_line boolean

);

Figure 2. SQL create table statement for the points table. Note, 
that the SFC key we used is a partial resolution key, containing 
an approximation for the position and importance level of the 

points.

have empty nodes from a certain level on-wards (i.e subtrees 
will be empty). Therefore, we make a table with which nodes 
in the octree actually contain points by a pre-processing step. 
For this, we have implemented the following algorithm:

We first determine the 3D spatial extent around all points, i.e. the 
cubic Axis Aligned Bounding Box (AABB), for which we make 
the integer side lengths the next multiple of 2 (resulting splits 
will be integer coordinates again). Then we can start to con-
struct the octree as follows:

• The root node will contain the important points, i.e. those
points with their cLoI value between 0 and 1, for the whole
spatial extent. We translate the 4D extent that is spanned
by this node into a series of 1D SFC ranges, by means of
which we query the point table for how many points exist.
The SFC ranges generated for the node will be stored for
later use. The added cLoI value allows us to select the
important points.

• Once, we have obtained this count, and if it is non-zero,
then we split spatially the cubic AABB into 8 child nodes.
These child nodes will contain the spatially overlapping
points for which their cLoI value lie between 1 and 2.

• This splitting in 3D space and incrementing the cLoI level
and checking if a node is empty continues recursively, until
we reach the largest cLoI value available in the point cloud.

Throughtout this process, we store per node the materialized
path to the root (r, r0, r01, r017, . . . ) as node identifier, the point
count, the SFC ranges and the cubic AABB geometry of the
node (to be able to a. visualize easily the nodes their extent and
b. apply exact filter after retrieving coarse approximation based
on SFC key). After pre-processing we have per pointcloud data
set two tables in the database:

• points table, indexed by SFC key value, with all surveyed
attributes per point, and extra cLoI attribute (Figure 2).

• hierarchy table, containing per node an identifier and an ar-
ray of SFC ranges that represents the nD extent (Figure 3).
This array of SFC ranges permits us to retrieve per octree
node the corresponding points from the points table.

create table ndpc__hierarchy_ahn3_points_with_imp_sfc

(

oct_id character varying not null,

level integer,

node geometry(LineStringZM, 28992),

point_count bigint,

sfc_ranges bigint[]

);

Figure 3. Blocks table, storing nodes of the octree

PCServe

Web
Service

Potree

Points 
table

Octree 
table

Cesium

…

Figure 4. PCServe, the web service component, retrieves points 
from the database by joining the octree and points table based on 

the SFC keys (points) and SFC ranges (octree).

3.3 Using PCServe – Encoding the octree and points for
clients

Figure 4 illustrates the overall architecture of PCServe. Re-
trieving a block of points is performing a join between the SFC 
ranges from the hierarchy table for one block and the point ta-
ble (a similar query as we used while counting the number of 
points present in one of the octree nodes). Figure 5 shows that 
the SFC ranges are retrieved from the hierarchy table indexed 
by the identifier of the node, and are subsequently joined with 
the point table on the SFC key value. After retrieval of the point 
records from the database, PCServe takes care of serialization 
as demanded by the protocol of the point cloud visualization 
application.

Next, as the encoding of the points depends on the visualization 
application used, we survey the existing file formats in use by 
Potree, a web application that can visualize large point clouds. 
The rendering is implemented in Javascript, using WebGL and 
the popular three.js Javascript library. We show how the files are 
used in the request-response cycle for retrieving point clouds 
from a web server, forming a protocol on how the point cloud 
data should be retrieved. Next we describe how this protocol 
was translated in so-called routes of our PCServe web service. 
A route corresponds to a (Python) function, that is executed in 
the web service and generates a response, when the visualiza-
tion client is making a request.

3.3.1 Potree version 1.6 The data structure, which Potree 
version 1.6 is based on, makes use of separate .laz files (Amer-
ican Society for Photogrammetry and Remote Sensing, 2019) 
storing blocks of points. The blocks are clustered and indexed 
by a 3D octree (hierarchy), where this tree (its nodes, their ex-
tents and point counts) is stored and requested before and sepa-
rately from the points.

Hierarchy When Potree starts, it first r equests t he hierarchy 
file r.hrc. This is a binary file that contains the layout of 
the 3D octree hierarchy, starting at the root node of the oc-
tree. This hierarchy is stored as linearized version (breadth 
first traversal) of its n odes. Per node a  one byte value in-
dicates which nodes are and are not present as children. 
For each node also the point count is stored. For massive
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with j as (

select

sfc_key, x, y, z,

intensity, classification,

gps_time, importance

from

ndpc__points_with_sfckey_imp p,

-- join with

(select

unnest(sfc_ranges[1:1]) as low,

unnest(sfc_ranges[2:2]) as high,

level,

node

from

ndpc__hierarchy_ahn3_points_with_imp_sfc

where

oct_id = ’<oct_id>’

) r

where p.sfc_key between r.low and r.high

and p.x between st_xmin(r.node) and st_xmax(r.node)

and p.y between st_ymin(r.node) and st_ymax(r.node)

and p.z between st_zmin(r.node) and st_zmax(r.node)

and p.importance between r.level and r.level + 1

)

select

x, y, z,

intensity,

classification,

gps_time,

importance

from

j

order by

sfc_key

Figure 5. Querying points associated with one octree node. The
unnest function takes care of unpacking the SFC ranges stored
as array to two columns (named low and high). The first filter

(sfc key between low and high) uses the B-tree index to execute
the join, while the second filter filters the points exactly on space

and importance.

data sets the hierarchy file can get too large to be retrieved
at the start of the visualization application in a reasonable
amount of time. Therefore, the full octree can be split in
multiple subtrees (again .hrc files placed in a subfolder),
at fixed depth levels (e.g. every fifth level node will start a
new subtree).

For PCServe, we have defined a route that allows to re-
trieve the hierarchy information in the binary .hrc for-
mat, which Potree expects. When handling this route, the
application server connects to the database, and serializes
the hierachy table in the requested linearized binary form
for the octree. Sorting ascendingly the octree nodes by the
length of their identifier, and in case of ties, lexicographi-
cally gives us this order.

Points Points belonging to an octree node and their attributes
are stored as compressed .laz files. Inside the header of
the .laz file the cubic AABB of the block is stored.

We have defined a route that receives an identifier, queries
the database for the right block (and relevant SFC ranges)
and then performs the join between hierarchy table and
point table for the requested block.

After retrieval the points are serialized in the compressed
.laz file format.

3.3.2 Potree version 2.0 The newer version of the Potree
protocol expects to find 3 files on the server: 1. metadata.json,
2. hierarchy.bin, 3. octree.bin. The metadata file, con-
tains which attributes are present in the point cloud, what is its
spatial extent and what is the byte size of the subtree belonging
to the root node of the octree. This file is always requested first
when the Potree viewer starts.

Subsequently, when a client is requesting both the hierarchy and
octree files, not full files are retrieved by the Potree client, but
requests are made to retrieve parts of the two other files stored
at the server side. Note, that in the description we will focus on
retrieval of the blocks of points, but the same principles apply
to retrieving parts (subtrees) of the hierarchy file as well.

The file format for the hierarchy file is quite similar to ver-
sion 1.6, but for each node in addition an offset and a size value
are stored, so that the client can request the right parts of the file
that contain the points.

Hierarchy Fielding et al. (2014) define range requests around
which version 2.0 of the file format for Potree is modelled.
The client sends in the header field of a GET request the
so-called ‘Range’ header. The response subsequently con-
tains the part of the file that was indicated by the byte range
in that header.

Instead of having explicit numeric identifiers which corre-
spond to file names, the offset in bytes in the file where
a block starts and how many bytes a block occupies thus
becomes the mechanism to identify and retrieve a block
of points by. This mechanism is also used for subtree re-
trieval of the hierarchy file itself.

Points The new format allows the developer to choose from
multiple compression types (for which 2 variants have been
implemented at the time of writing: uncompressed and
Brotli compression). Points belonging to a block are stored
together, and are serialized as a stream of bytes inside the
octree.bin file (for retrieval, range requests are made to
this file as well).

In uncompressed form, attributes are stored interleaved: x,
y, z, intensity, . . . , user attributen and this repeats for all
point records. In compressed form (where the Brotli com-
pression is used), the point attributes are stored column-
wise: x,y,z, . . . , x,y,z, intensity, . . . , intensity, user attributen,
. . . , user attributen, and per block compression is applied.

Note that in compressed form instead of the real position
values, per point a Morton code is stored and all columns
are sorted along it (allowing the compression algorithm to
compress more efficiently).

In PCServe we have opted to support two request and response
types:

1. Partial request (when the ‘Range’ header is present) with a
response by means of the 206 response code allows down-
loading parts of either the hierarchy (hierarchy.bin) or the
points (octree.bin) file;

2. A request for the full dataset (when the ‘Range’ header is
absent). A response, by means of a 200 response code,
then allows the client to download the whole pointcloud
data set at once.
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Table 1. Size of AHN3 input files. As reference also the time to 
convert the .laz file to ASCII text representation (with some 

attributes per point) is given.

File C 69AZ1 C 69AZ2 Both
Point count 149 676 342 501 804 679 651 481 021
.las (MB) 4 191 14 051 18 242
.laz (MB) 743 2 476 3 219
To text (min) 9.9 32.9 –

Table 2. Preparing the database structure (table and index) with 
SFC and cLoI added per point.

phase input files
C 69AZ1 C 69AZ2 Both

(to 1 table)
Add SFC + cLoI and 13.2 44.7 58.8
Copy (min)

Index (min) 1.7 5.8 7.6
Cluster (min) 3.5 12.9 18.0
Analyze (min) 0.1 0.1 0.7
Total (min) 18.5 63.6 85.1
nD Histogram (min) – – 18.7

To make this first type of request / response cycle work with our
database backed solution:

1. We have determined for each block, given the linearized
version (breadth first traversal sort order) of the octree nodes,
the starting point in bytes for each point block. This off-
set value has been added as extra column to the hierar-
chy table, which stores the layout of the octree inside the
database.

2. We defined a route that from the HTTP request header re-
trieves the offset. This value then functions as unique key
of the blocks, and we can determine which block to request
from the database, after which we can join the points and
the hierarchy table.

4. RESULTS

We have implemented PCServe and installed it on our server, a
HP DL380p Gen8 server with 2× 8-core Intel Xeon processors,
E5-2690 at 2.9 GHz, 128 GB of main memory, a RedHat En-
terprise Linux 6 operating system. The attached disk storage is
a set of 7,200 rpm harddisks (in RAID6 configuration) making
available 41 TB of storage capacity. The database management
system used is PostgreSQL version 10.1.

We downloaded two files of LiDAR data of AHN3 (the Actual
Height data set of the Netherlands) in the .laz file format from
the national geo-portal. Table 1 shows characteristics of the
point cloud files.

Adding the SFC key and importance value for each point, con-
verting the .laz files to PostgreSQL COPY FROM statements
has been implemented with a program coded in the Rust pro-
gramming language. As Space Filling Curve we have used the
Hilbert curve. To determine the cLoI value, we determined be-
forehand some settings (to be able to express the largest avail-
able importance level), such as: total point count and how many
points we want to store at the overview level (which will be-
come the root block of the octree in our virtual block hierarchy).
We settled on a point count of 100 000.

Table 3. Resulting sizes of the database structure (table and 
index) with SFC key and cLoI attribute added per point.

Input files
C 69AZ1 C 69AZ2 Both

(to 1 table)
Table (MB) 15 138 50 750 65 888
B-tree index (MB) 3 362 11 271 14 633
Total (MB) 18 500 62 022 80 521

Table 4. Constructing the octree.

Timing SFC ranges generation Hilbert (min) 16.7
Timing queries first and second filter (min) 43.3
Unglued SFC ranges 10 869 967
Glued SFC ranges 2 748 063
Points first filter 2 080 181 654
Points exact (where clause applied) 651 442 607

Tables 2 and 3 show the time needed for the load, index and
cluster steps and the amount of disk space required by the in-
dividual records stored in PostgreSQL. Comparing against un-
compressed .las files the increase in size (individual records
together with added columns SFC key and cLoI and B-tree in-
dex) is a factor 4.4×, against compressed .laz a factor of 25×.

Deriving the nD histogram after loading the data into the database,
was made with a Python script using psycopg2 as connection
library to the PostgreSQL database system. This script queries
how many points exist for a subpart on the SFC, giving an indi-
cation for which parts of the hypercube traversed by the SFC are
filled with data. Histogram creation took 18.7 minutes. The his-
togram was serialized as Python dictionary to disk, consuming
95MB of space (but could have been stored as extra database
table as well).

Querying for the octree layout was also implemented as a Python
script, connecting to the same database. Table 4 gives some
statistics about this process. It shows that the time is divided
over: (a) mapping the 4D extent (3D octree geometry and cLoI
level) to 1D SFC ranges (16.7 mins) and (b) querying for the
point count per octree node (43.3 mins). Figure 6 gives an his-
togram of how many points are stored per octree node. Ta-
ble 5 shows that 13 501 octree nodes are present in the result-
ing octree. Ranges that are directly adjacent on the curve were
glued together (but were produced independently from the n-
ary tree traversal of the query procedure). As an approximate
SFC key has been used, the database retreives a factor 3 times
more points initially in the query, that need to be processed by
the where clause for exact checking.

We have implemented PCServe with Python and relevant li-

Table 5. Statistics on the octree layout, which we obtained

level oct count point count
0 1 30 119
1 7 116 422
2 24 450 523
3 74 1 909 593
4 226 7 631 203
5 745 30 542 745
6 2 615 122 157 155
7 9 809 488 604 847
total 13 501 651 442 607
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Figure 6. The histogram shows how many points are stored per 
octree node

Table 6. Averages for responses made by PCServe

xyz xyz+more
Query duration (ms) 329 (72.7%) 416 (69.6%)
Serialize duration (ms) 123 (27.3%) 181 (30.4%)
Total duration (ms) 452 598
Point count 44 555 38 981

braries. The most notable libraries being Flask1 (for handling
the web requests), psycopg2 for connecting to PostgreSQL and
laspy (for serialization as .laz file). Using the uWSGI2 server
(which is implemented in C and embeds the Python interpreter)
we can serve multiple requests of multiple users at the same
time.

For Potree v.2.0 uncompressed we have recorded during use
of the web service the amount of time it takes to retrieve data
for each octree node. We have made available two versions of
the end point, one in which only the position of the points is re-
turned and in the second version the position and some more at-
tributes are returned (intensity, classification, importance, GPS
time). We logged per request the amount of time that was
needed for querying the database, as well as serializing the re-
sultset into the binary format requested by Potree. Figure 7
shows the total time needed for retrieving each block. Table 6
shows average durations, split over time needed for query and
serialization. Note, that the two variants (xyz / xyz+more) were
used independently, thus showing slightly different average point
counts. Based on around 1.1 ·104 logged requests for both vari-
ants, we determine the following average times needed for pro-
ducing a block with points server side:

• xyz: on average 500ms is spent for retrieving 50 000 points

• xyz+more: on average 760ms for querying and serializing
50 000 points

5. DISCUSSION

The total amount of time spent on pre-processing the points was
2.75 hours, where all processing was run serially, which trans-
lates to a rate of 2.38 · 108 points per hour. Parts of this process

1 https://flask.palletsprojects.com
2 https://github.com/unbit/uwsgi

Figure 7. The scatter plot shows how much time is spent (in 
seconds) to answer a request, given the amount of points that are 
in the block. A clear trend can be observed between the amount 

of point data and the time needed to produce the response.

are straight forward to parallellize with multiple threads or pro-
cesses (e.g. obtaining the nD histogram, querying for the octree 
layout can be performed per subtree of the childs of the root 
node, or multiple input files could be simultaneously loaded to 
the database), but will require modifications to our code (and 
tuning needs to take place, to not get I/O contention).

Individual records storage is rather expensive, as many records 
are stored and how Postgres stores these records does also add 
quite some overhead (e.g. reserving space per record for trans-
action information). However, storage based on individual records 
is flexible, and it allows us to make use of different virtual hier-
archical / blocking strategies, preventing duplicate storage.

It is clear that although an octree is used, for the AHN3 surface 
scan, which is 2.5D in nature, the octree therefore behaves more 
like a quadtree: every next level 4 times more nodes than on 
previous level (comparing to 3D octree where this would be 
8 times more on every level). It also reveals that we missed 
some points (38 414 points) to place them in an octree node 
with our querying algorithm. This is due to the fact that even 
though a node at a certain importance level might be empty 
of points, child nodes with higher importance level might still 
contain points (but we already terminated the recursion due to 
the empty criterion).

The way points are distributed is based on their importance level 
and their geographic position. This results in blocks that are 
filled w ith o n a verage a round 4 8 2 50 p oints. H owever, also 
quite some nodes contain a very limited amount of points. This 
is not nice for retrieving them from the web service, as each 
request will carry some overhead due to the transmission over 
the network (delay). It may be better to associate these points 
with the parent node in the octree. We can accomplish this by 
a post processing step, where we find the underfull nodes and 
store their SFC ranges with their parents octree node. However, 
in the octree the level of the node then does not correspond 
exactly with the integer cLoI range of the points any more. An 
open question is whether we can also find t hese n odes when 
constructing the tree (we could count points for all higher levels 
for a node as well, but this might be expensive for levels closer 
to the root node).

The average access time of 500–760 ms (dependent on which
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with tbl as (
select

sfc_key,
row_number() over (order by sfc_key) as col

from
ndpc__points_table

order by
sfc_key

)
select min(sfc_key) from ndpc__points_table

union all
select sfc_key from tbl where col % 100000 = 0

union all
select max(sfc_key) from ndpc__points_table

Figure 8. Query for determing sfc key bounds, leading to blocks
with exactly 100 000 points (except last block which might be

underfull). The blocks may overlap each other slightly.

attributes are retrieved) per block of 50 000 points is not nec-
essarily remarkable, but allows for interactive use and the time
needed scales log-linearly with the number of points retrieved
for a block. In case faster responses are required, we could a.
store the blocks of points in the database (but this would be in-
troducing redundancy), b. we could investigate if the database
model could be based on blocks (as is current state-of-the art),
e.g. by storing the SFC keys in a blob, and index each block
by minimum and maximum SFC key in a block, or c. (the most
often used blocks) can be cached in memory at the web ser-
vice level, by means of a component, like MemCached (or even
combination of these).

The often used octree strategy divides the points in blocks that
are not overlapping for a specific level (distance) from the root
node. This makes it efficient to transmit the hierarchy, as the
extents of the blocks can be determined based on the materi-
alized path to the root and the global extents, and thus do not
have to be stored per node. If we would allow spatial overlap
in the blocks, we can produce data blocks that are guaranteed
to have n number of points (by following the SFC). Figure 8
shows how we can determine the block extents from the points
table with a straightforward SQL query. However, a hierarchy
organisation of the blocks will be necessary (e.g. Rtree on the
block extents to be able to determine fastly which blocks are
needed for overview) and this hierarchy will have to store per
block the extents, so the index will grow somewhat larger than
in the octree (where bounds are implictly represented). A huge
advantage will be that underfull nodes will not be present (as all
blocks will be maximally filled with points, allowing to balance
request overhead better than in the case with a varying number
of points per block).

From looking at the file formats of Potree, we found that the
differences between the uncompressed and compressed format
of Potree version 2.0 could offer interesting possibilities. A col-
umn wise organisation of the attributes could allow applications
in principle to request specific columns only. Together with
‘Range’ requests this is a powerful combination, as in the pro-
tocol multiple byte-ranges can be requested, thus allowing an
application to ask for certain columns and omit others (reduc-
ing request size by not asking for what one does not need). To
allow this to function, metadata needs to be added in the hierar-
chy to where a column starts (in case of compressed columns, in
uncompressed form this can be deduced from attribute size and
point count, which are both already stored in the metadata file).
However, if all columns are compressed together into a block
based organisation (as is currently done), the compression may

prevent this from working correctly.

6. CONCLUSION

In this paper we have introduced PCServe, our testbed for en-
abling nD-point cloud data access over the web. Our exper-
iments have shown that Potree is being able to consume the
points for rendering, with reasonable interactive request rate
from the database, in which we organise the nD point cloud
based on deep integration of space and level of detail into a
SFC key.

7. FUTURE WORK

For the future, we expect PCServe to be useful to be able to re-
trieve arbitrary subsets of large point clouds based on the same
database organisation. For spatial analyses, which require sub-
sets of points at different resolutions and with arbitrary query
geometry, thus not based on a spatial access method, like octree
(e.g. for 3D modelling with point cloud data, PCServe could
return the points present in a building footprint) could be well
supported, allowing applications to retrieve input over the web.

Moreover, for supporting visualization applications, we like to
further investigate:

• Supporting other visualization clients (their file format /
protocol) accessing PCServe over the web, like Cesium
and QGIS. As two different type of protocols are currently
supported (request / response of individual files and range
requests to one file), we hypothesize that multiple proto-
cols for different viewing applications can indeed be sup-
ported. This is on-going implementation work (supporting
3D Tiles and COPC, which both do not differ conceptu-
ally much from the two types of protocols we have used
for Potree). This then would allow to support multiple ap-
plications from the same data organisation (and it would
allow to see differences between protocols, e.g. compare
compression techniques and different grouping strategies).

• Use the continuous Level of Importance directly in the
viewer to gain a more smooth visualization. The octree
blocks are a useful mechanism for shipping the data, but a
rendering application could use the importance values per
individual point for deciding which point (not) to show
(close to observer very many points, far away less, with
smoother transition than with blocks alone).

• Caching of frequently used blocks. It should be possible to
cache relevant blocks (e.g. often used) either in memory,
in the database or on the file system.

• Compare PCServe against plain file storage, performance
for access time, as well as needed file sizes (determine tip-
ping point when PCServe (which has more ‘moving parts’,
e.g. database server, which needs to be installed) would be
more useful; e.g. if just one visualization application is to
be supported static file storage on a cloud storage platform
also has its use.

• Try non-octree based blocks (with slightly overlapping blocks
and different type of spatial index, e.g. K-d tree) and see
what advantages and disadvantages such an alternative block-
ing scheme brings.
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• Another idea we could study is to use full resolution SFC
keys all up to and including in the visualization client in
the transfer pipeline, and unpack the values only when the
data is put on the GPU (having a compact representation
for network transfer).

• Further study available compression techniques and their
relation with file organization of the points in blocks. We
should compare what is available (Laz, Draco, Lerpcc,
Brotli, Zstandard, . . . ), their trade off between compres-
sion ratio and resources needed for compression, avail-
ability of library for supporting compression technique,
and possibility for including or omitting attributes from a
block.

For organising the points in the database, the work on PCServe
has revealed we could work on:

• Reducing time needed for pre-processing, by exploiting
parallellism: Parallel load / creating octree instead of using
serial algorithm, exploiting multi-core CPU system prop-
erties. Related is scaling out to processing a nation wide
dataset. Maybe we need a cluster of database systems
(nodes), to serve such massive point clouds. A question
we should investigate then is how to partition the data over
the nodes.

• Maybe we should use a block based organisation as well in
the database by means of column store type table organi-
sation, (e.g. Citus provides such a storage type for tables in
Postgres, cf. Cubukcu et al., 2021). This could add com-
pression in the database transparently for the application
and thus solve the problems of the large amount of storage
size needed for individual records.

• Integrate other dimensions in the organisation, like time
and object identification (supporting visualization applica-
tions that involve temporal aspects, like change detection).

With PCServe we have focussed on visualization applications
with read-only access. However, using point clouds entails
more:

• For uploading and processing (organising) point clouds by
others into a repository of point cloud data, PCServe could
play a role (e.g. structuring the point cloud server-side –
carrying out the pre-process as in this paper). This will be
a long running processes. Alignment with the OGC API
Processes standard could allow asynchronous handling of
such tasks, allowing a user to check back on status of task,
and be notified once such a task is finished.

• Some applications may want to modify the point clouds,
e.g. store additional attributes per point, like adding a nor-
mal vector to the points (effectively changing the schema
of the points table) or even remove points. How to handle
these kind of modifications?

An open question remaining in this respects is: Could a unified
protocol be standardised, that is suitable for all (read/write/update)
scenario’s and is well supported by applications that are han-
dling point cloud data.
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