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Abstract

The determination of geotechnical parameters from in-situ tests heavily relies on the use of empiri-
cal correlations relating field measurements to soil properties. A large number of these correlations
can be found across the literature, each of them yielding a different outcome for the parameter
value. This results in a high variability of the potential results, which is not necessarily properly
accounted for in the current geotechnical engineering practice. A new approach using graphs has
recently been proposed by van Berkom [1] to automatically generate multiple parameter values
based on a given set of correlations and equations.

The present thesis assesses the quality of the estimates obtained from this new graph system
and investigates how multiples outcomes can be combined into a unique result. The quality of the
parameter’s estimates is appraised both in terms of accuracy or uncertainty, and in terms of va-
lidity. The combination of results from multiple methods showed that it is possible to either build
confidence or distrust in the combined outcome depending of the consistency of the contributing
results. As a result, this framework enabled a quantitative description of the inter-correlations
variability.

The conceptual framework has been then applied to geotechnical parameters and CPT-based cor-
relations for coarse-grained soils. The range of applicability of the correlations (e.g. soil type,
state of consolidation) is a critical factor that actively influences the final outcome of the system.
This automatic system demonstrated its ability to produce parameter values relatively close to
the values obtained with the current practices. Further validation is required to assess the overall
performance of the system on a broader scale.

Keywords: parameter determination, graphs, combination of forecasts, model averaging, un-
certainty.

3



Contents

1 Introduction 11
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Aim, Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 A starting point: on the use of graphs for parameter determination 15
2.1 A graph to visualize relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 General aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Framework for parameter determination . . . . . . . . . . . . . . . . . . . . 16

2.2 Features of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Shortcomings and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Preliminaries 20
3.1 Pre-validation of the APD system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Methodology and dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Automated validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Parameter value boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 A deeper level of validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Method validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Dealing with circular connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Circular connections in geotechnical engineering . . . . . . . . . . . . . . . 28
3.3.2 Bijective connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Statistical framework 30
4.1 Uncertainty in geotechnical engineering . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Types of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Quantification of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Characterization of uncertainty in the APD system . . . . . . . . . . . . . . . . . . 32
4.2.1 FOSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Model averaging 46
5.1 Basics of Model Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Averaged value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Averaged variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Definition of weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Building confidence or distrust using model averaging . . . . . . . . . . . . . . . . 48
5.2.1 Desired benefits of model averaging . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Variance versus bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Application to geotechnical parameters . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Incorporating the Soil Behavior Type in model averaging . . . . . . . . . . . . . . 58

5.4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Characterization of the method weights . . . . . . . . . . . . . . . . . . . . 58
5.4.3 From method weights to path weights . . . . . . . . . . . . . . . . . . . . . 59

4



6 Application of automatic parameter determination with HSsmall model 61
6.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Description of the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.2 Second approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Conclusions and discussions 70
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Collection of correlations 73
A.1 Correlations used by the software CPeT-IT . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Extra correlations and methods for soil properties . . . . . . . . . . . . . . . . . . 74

A.2.1 Relative density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2.2 Friction angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2.3 Dilatancy angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2.4 State parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2.5 Young Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.6 1-D Constrained Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.2.7 Small-strain Shear modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2.8 Shear wave velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Characterization of the total uncertainty according to APD and Phoon & Kul-
hawy 82
B.1 Approach from Phoon and Kulhawy . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.2 Approach from APD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C Annexes to the chapter 6 84
C.1 External database for the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C.2 Graphs of the parameters for first approach . . . . . . . . . . . . . . . . . . . . . . 84
C.3 Results of the APD system for several layers . . . . . . . . . . . . . . . . . . . . . . 84
C.4 Graph generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5



List of Figures

1.1 Schematic representation of the automatic parameter determination . . . . . . . . 12

2.1 (a) A complex graph of the underground network in London. (b) A basic graph
representing the relation y = f(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Graphical representation of the network of geotechnical parameters. Source: [1] . . 16
2.3 Different representations of a multi-methods graph for a) two types of nodes, b) only

one type of nodes. Source: [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Basic graph generated from the external databases 2.1 and 2.2 . . . . . . . . . . . 18
2.5 Example of a circular connection with geotechnical correlations . . . . . . . . . . . 19

3.1 Sample of the basic results for the first 5 measurements . . . . . . . . . . . . . . . 21
3.2 Sample of the estimated parameters for the first 5 measurements . . . . . . . . . . 21
3.3 Graph of set of methods from the software CPeT-IT at depth 4.72m below ground

level. Method nodes are in light blue, parameter nodes are in ligth green. . . . . . 22
3.4 Typical stress-strain relationship for soil, the stiffness is directly related to the level

of strain and the state of consolidation. Source: [2] . . . . . . . . . . . . . . . . . . 27
3.5 Relationship between stiffness parameter for soils: Young Modulus E, shear modulus

G, bulk modulus B and constrained modulus M . It is unclear which equations
should be chosen. Source: [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 General illustration of the types of uncertainties in geotechnical engineering. source:
[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Simplified flowchart of the Monte-Carlo Simulation . . . . . . . . . . . . . . . . . . 32
4.3 Diagram of a multivariate method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Types of uncertainties covered by the parameter uncertainty and the method un-

certainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Regression trend line with the lower and upper 95% bounds. σ represents the

standard error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Basic graph for two methods and three parameters. a is the source parameter, b is

a intermediate parameter and c is the destination parameter. . . . . . . . . . . . . 36
4.7 Graph of the test case with the external databases defined in tables 4.2 and 4.3. . 37
4.8 Spider chart illustrating the sensitivity of the COV of the destination parameters

(in black) to the initial uncertainty of the source parameter (in blue). . . . . . . . 39
4.9 Normal probability distributions of the friction angle for all the paths. The black

dashed line represents the global mean, the grey dashed line represents the value
given by the software CPeT-IT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Normal probability distributions of the Young modulus for all the paths. The black
dashed line represents the global mean, the grey dashed line represents the value
given by the software CPeT-IT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 Normal probability distributions of the relative density for all the paths. The black
dashed line represents the global mean, the grey dashed line represents the value
given by the software CPeT-IT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.12 Normal probability distributions of the small strain shear stiffness G0 for all the
paths. The black dashed line represents the global mean, the grey dashed line
represents the value given by the software CPeT-IT. . . . . . . . . . . . . . . . . . 41

4.13 Normal probability distributions of the 1-D constrained modulus for all the paths.
The black dashed line represents the global mean, the grey dashed line represents
the value given by the software CPeT-IT. . . . . . . . . . . . . . . . . . . . . . . . 42

6



4.14 Histogram and kernel density estimation of the friction angle φ for 22 paths and
5 methods, with 2000 simulations. Left: all paths separated. Right: all paths
cumulated. The black dashed vertical line represents the reference value given by
the software CPeT-IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.15 Histogram and kernel density estimation of the relative density Dr for 5 paths and
5 methods, with 2000 simulations. Left: all paths separated. Right: all paths
cumulated. The black dashed vertical line represents the reference value given by
the software CPeT-IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.16 Histogram and kernel density estimation of the shear wave velocity Vs for 5 paths
and 5 methods, with 2000 simulations. Left: all paths separated. Right: all paths
cumulated. The black dashed vertical line represents the reference value given by
the software CPeT-IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.17 Histogram and kernel density estimation of the Young Modulus Es for 7 paths and
7 methods, with 2000 simulations. Left: all paths separated. Right: all paths
cumulated. The black dashed vertical line represents the reference value given by
the software CPeT-IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Case I: only one model is calculating the parameter x and its single standard de-
viation σx,I . Case II: the m models are contributing to the parameter x and an
averaged standard deviation σx,II is produced. . . . . . . . . . . . . . . . . . . . . 49

5.2 Qualitative representation of the three test cases. The contributing models are
described in table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Case A: contributing and combined distributions for four types of weights and three
averaging methods. The reference value is taken as the simple average. Consistency
ratio Rc = 28. The weighting scheme BMA and the averaging strategy Convolution
yields unsatisfying resutls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Case B: contributing and combined distributions for four types of weights and three
averaging methods. The reference value is taken as the simple average. Consistency
ratio Rc = 0.81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Case C: contributing and combined distributions for four types of weights and three
averaging methods. The reference value is taken as the simple average. Consistency
ratio Rc = 0.0260. The strategy Buckland gives unsatisfying results. . . . . . . . . 53

5.6 Averaged density distributions for 22 paths of the friction angle φ. The black dashed
line represents the value given by the software CPeT-IT, set here at 34 degrees.
Consistency ratio Rc = 0.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Averaged density distributions for 6 paths of the relative density Dr. The black
dashed line represents the value given by the software CPeT-IT, set here at 37%.
Consistency ratio Rc = 0.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.8 Averaged density distributions for 15 paths of the 1-D constrained modulus MCPT .
The black dashed line represents the value given by the software CPeT-IT, set here
at 46 920 kPa. Consistency ratio Rc = 0.72 . . . . . . . . . . . . . . . . . . . . . . 56

5.9 Averaged density distributions for 6 paths of the Elastic modulus Es. The black
dashed line represents the value given by the software CPeT-IT, set here at 23 460
kPa. Consistency ratio Rc = 1.49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10 Averaged density distributions for 14 paths of the small strain shear modulus G0.
The black dashed line represents the value given by the software CPeT-IT, set here
at 29 400 kPa. Consistency ratio Rc = 0.53 . . . . . . . . . . . . . . . . . . . . . . 57

5.11 Averaged density distributions for 6 paths of the shear velocity wave Vs. The black
dashed line represents the value given by the software CPeT-IT, set here at 132 m/s.
Consistency ratio Rc = 0.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.12 Example of the combination of two arrays of weights. . . . . . . . . . . . . . . . . . 58
5.13 Example of user-defined constant weights for a method. The method 1 is only valid

for coarse-grained soils with a Ic index below 2.6. Conversely, the method 2 is only
valid for fine-grained soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.14 Example of linearly interpolated weights for a method, based on the Ic index. The
method 1 is generally valid for coarse-grained soils, and the method 2 is generally
valid for fine-grained soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7



5.15 Comparison of linear and logarithmic interpolations for between 1 and a number
close to 0. The closer to 0, the sharper the transition. . . . . . . . . . . . . . . . . 60

6.1 Averaged distributions for the strength parameters φp (Rc = 0.31) and ψ (Rc =
0.30). The vertical red dotted line is the average value from W+B . . . . . . . . . 66

6.2 Averaged distributions for the reference stiffness parameters Eref50 (Rc = 0.23), Erefoed

(Rc = 0.24), Erefur (Rc = 0.36) and Gref0 (Rc = 1.44). The vertical red dotted lines
represent the lower, average and upper values from W+B. There is a rather strong
similarity between the averaged distribution from APD and the span from W+B. 67

6.3 Averaged distributions for the reference stiffness parameters Eref50 , Erefoed , Erefur and
Gref0 for the second approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Extract from the manual of the software CPeT-IT. This is the set of correlations
used by the software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2 Drained angle of friction as a function of state parameter for several sands. Source:
[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3 Peak friction angle as a function of the bearing capacity number. Source: [6]. . . 76
A.4 Secant Young modulus against the normalised cone resistance. Source [7]. . . . . 78
A.5 1D Constrained Modulus against the cone resistance qc. Source: [8]. . . . . . . . . 79
A.6 Shear wave velocity against sleeve friction of SCPTU observations. Source: [9]. . . 80
A.7 Shear wave velocity against cone resistance qt. Source: [10]. . . . . . . . . . . . . 81

C.1 External database of the methods for the HSsmall model (chapter (6). Part 1/2 . . 87
C.2 External database of the methods for the HSsmall model (chapter 6). Part 2/2 . . 88
C.3 Averaged distributions for the relative density Dr and the dilatancy angle ψ for the

first approach from chapter 6. The vertical red dotted line is the average value from
W+B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C.4 Averaged distributions for the shear wave velocity Vs and the peak friction angle φp
for the first approach from chapter 6. The vertical red dotted line is the average
value from W+B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C.5 Averaged distributions for the OCR and K0 ratio for the first approach from chapter
6. The vertical red dotted line is the average value from W+B. . . . . . . . . . . . 89

C.6 Averaged distributions for the elastic Young modulus Es in both normally and over-
consolidated states for the first approach from chapter 6. The vertical red dotted
line is the average value from W+B. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.7 Averaged distributions for the 1-D constrained modulus MCPT in both normally
and over-consolidated states for the first approach from chapter 6. The vertical red
dotted line is the average value from W+B. . . . . . . . . . . . . . . . . . . . . . . 90

C.8 Averaged distributions for the shear stress modulus G0 for the first approach from
chapter 6. Cluster from the right originates from the equations ?? and A.33, cluster
from the left originates from the equation A.32. . . . . . . . . . . . . . . . . . . . . 90

C.9 Averaged distributions for the failure ratio Rfail and the stiffness stress exponent
m for the first approach from chapter 6. The vertical red dotted line is the average
value from W+B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.10 Averaged distributions for the reference stiffness parameters Eref50 , Erefoed , E
ref
ur , Gref0

for the first approach from chapter 6. The vertical red dotted lines represent the
lowe, the upper and the average value from W+B. . . . . . . . . . . . . . . . . . . 91

C.11 Averaged distributions for the threshold γ0.7 for the first approach from chapter 6.
The vertical red dotted line is the average value from W+B. . . . . . . . . . . . . . 92

8



List of Tables

2.1 External method database for the graph 2.4 . . . . . . . . . . . . . . . . . . . . . 17
2.2 External parameter database for the graph 2.4 . . . . . . . . . . . . . . . . . . . . 17
2.3 Description of the Soil Behavior Types and their associated ranges for the index Ic.

Source: [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Comparison between APD and CPeT-IT values at the depth -4.72m (SBT = 5) . . 22
3.2 Comparison between APD and CPeT-IT values at the depth -6m (SBT = 6) . . . 22
3.3 Comparison between APD and CPeT-IT values for a sand layer between 4.58m and

9.58m below ground level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Comparison between APD and CPeT-IT values for the relative density Dr at the

depth 4.72m below ground level (sand). . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Comparison between APD and CPeT-IT values for the friction angle φ at the depth

4.72m below ground level (sand). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Comparison between APD and CPeT-IT values for the state parameter Ψ at the

depth 4.72m below ground level (sand). . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Dilatancy angle ψ at the depth 4.72m below ground level (sand), no value is provided

by the software CPeT-IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Comparison between APD and CPeT-IT values for the elastic modulus Es at the

depth 4.72m below ground level (sand) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 Comparison between APD and CPeT-IT values for the shear wave velocity Vs at

the depth 4.72m below ground level (sand) . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Comparison between APD and CPeT-IT values for the 1-D constrained modulus

MCPT at the depth 4.72m below ground level (sand) . . . . . . . . . . . . . . . . . 25
3.11 Comparison between APD and CPeT-IT values for the small-strain shear modulus

G0 at the depth 4.72m below ground level (sand) . . . . . . . . . . . . . . . . . . . 25
3.12 Mean value and coefficient of variation for all parameters . . . . . . . . . . . . . . 25

4.1 External database for the methods of the basic example. . . . . . . . . . . . . . . . 36
4.2 External database for the methods of the test case. . . . . . . . . . . . . . . . . . . 36
4.3 External database for the parameters of the test case. . . . . . . . . . . . . . . . . 37
4.4 Comparative table for the parameter e. σS is the total standard deviation computed

by the APD system, σh is the total standard deviation derived by hand calculations 38
4.5 External database for the source parameters of the geotechnical case. Parameters

are given at the depth z = 4.72m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Output values and standard deviation for the friction angle φ. 22 paths for 5 methods 39
4.7 Output values and standard deviation for the 1-D constrained Modulus MCPT . 15

paths for 4 methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 p-values for the normality test of the friction angle. . . . . . . . . . . . . . . . . . . 44

5.1 Description of the test cases A, B and C. A common reference value is taken as 100
for the three cases. The combined mean and standard deviation were calculated
according to the Propagation formula. . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Comparison between values from the software CPeT-IT and the averaged means for
different types of weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Description of the source parameters for the sandy layers of the case study. The
values presented here are averages and are considered representative of the whole
layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9



6.2 Description of the soilparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Description of the results from APD for the layer "2-Holoceen Zand". The param-

eter value and standard deviation σ result from the averaging scheme. Rc is the
consistency index as defined in 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Comparative table for the layer "2-Holoceen Zand" of the parameters values between
APD and Witteveen+Boss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5 Comparative table for the layer "2-Holoceen Zand" of the parameter values between
the first and second approaches of APD and Witteveen+Bos. . . . . . . . . . . . . 68

A.1 Statistical data of the correlation A.1. SOurce: [12] . . . . . . . . . . . . . . . . . 74

C.1 Comparison of model parameters and soil properties between values from Wit-
teveen+Bos (WB) and Automatic Parameter Determination (APD) . . . . . . . . 85

C.2 Comparison of model parameters and soil properties between values from Wit-
teveen+Bos (WB) and Automatic Parameter Determination (APD) for the first
and second approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10



Chapter 1

Introduction

1.1 Context

Motivation
When it comes to choosing a computer software to perform geotechnical calculations, engineers
tend to favor traditional geotechnical design methods over finite element numerical analysis. Yet,
the latter generally offers a more refined description of the true behavior of the ground with a
higher level of details. Numerical analysis relies on the need of a constitutive model that mathe-
matically characterizes the stress-strain relationship of soil. Over the last few decades, researchers
have developed a large number of these models integrating more features than the older and the less
sophisticated ones. For instance, the Mohr-Coulomb model which is arguably the most well-known
and accepted model in geomechanics can only provide a first order approximation. Recent models
are now able to properly characterize several effects from unloading-reloading, hardening-softening,
creep to name but a few of the soil features. It is good practice and sometimes necessary to make
use of these complex models because they describe more accurately the reality and eventually lead
to a better design.

As constitutive models are constantly evolving and becoming ever more complex, an increasing
number of model parameters is required to capture the intricate behavior of soils. This makes
the understanding of modern models and numerical analysis even more complicated. According
to Brinkgreve [13], this lack of knowledge in the mechanics of the models and the limited avail-
ability of soil data are among the main reasons geotechnical consultants dismiss numerical analysis.

Once one realizes the relevance of selecting the right constitutive model, one should also be aware
that determining the model parameters meticulously is of utmost importance. As the engineers
themselves determine parameters, the outcome of the numerical analysis highly relies on the under-
standing of the user and his skill to select parameter values. Moreover, several methods, correlations
and equations often lead to the same model parameter but not the same value. This results in
practice to a large variety of outcomes for a same given input data from site investigation and the
confidence in the numerical methods is subsequently altered. Ten different consultants are likely to
provide ten different answers for a same given case study and soil profile. An automatic method to
determine model parameters would serve as a valuable aid to the engineer to mitigate the human
factor and to efficiently and reliably perform numerical simulations. By doing so, uncertainty in
numerical analysis will hopefully decrease, as well as the reluctance in using these practices.

Towards an automated method for parameter determination
Against the backdrop of automatic selection of constitutive model parameter, van Berkom [1] has
developed a framework to estimate parameters from in-situ input data. This framework based on
graph theory collects and combines many correlations, either empirical or analytical, that are often
used by geotechnical experts or encountered in the scientific literature. Together, the correlations
form a network that links soil parameters, soils properties and model parameters. The idea is:
starting from input source parameters (e.g. CPT profile), it is possible to find numerous ways to
calculate a destination parameter via correlations and intermediate parameters as shown in figure
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1.1. In this basic representation each arrow can be seen as a pairwise correlation function relating
two parameters.

Figure 1.1: Schematic representation of the automatic parameter determination

The large number of existing formulas will inevitably lead to multiple answers. Therefore, we
expect with this framework to obtain several paths of calculations to spawn the same geotechnical
destination parameter starting from a common set of source parameters. The algorithm has proven
so far to be able to exhaustively find all the paths of a given graph, and to calculate the values for
all the parameters.

1.2 Aim, Scope and Objectives

Aim
The main purpose of this research is to provide reliable estimates of geotechnical constitutive pa-
rameters based on a general framework combining multiple models and expert elicitation. Such
a framework based on graphs has already been partly elaborated and implemented in Python by
van Berkom [1], but there is much work to be done to assess the overall quality of the derived
parameters. Quantitative evaluation of the parameter’s quality expressed in terms of accuracy and
range of validity will be the core concerns of this work.

Moreover, providing trustworthy estimates from multi-model inference might hopefully mitigate
human factor for parameter determination and build confidence in constitutive modelling for nu-
merical analysis. Transparency in the network and in the performed calculations is vital so that
the framework can be trusted and improved by the community. Flexibility of the framework would
also allow experts to interfere and include their own belief on parameter values and accuracy.

The main research question is formulated as follows:

How to combine results from multiple correlations and chains of correlations to estimate
geotechnical parameter values and how to assess the quality of these estimates ?

Scope
This graduation thesis is part of a much bigger and exciting project to create a workable open-
source tool for automatic parameter determination from in-situ tests. The goal of this thesis is to
show that such system could potentially provide reliable results, therefore boundaries are set to
focus on a few primary objectives.

• Only CPT-based correlations for coarse-grained soils will be used for this research. The set
of correlations that has already been gathered and compiled in [1] will be directly reused and
expanded.
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• Particular attention is paid to the transparency of the calculations in the network. Therefore,
black-box techniques like machine learning or neural network are discarded from this research.

• An external pre-processing step of CPT profiles will be assumed. This thesis will not deal
with an automatic processing of the soil profiles into different layers. In concrete terms, the
following parameters will be regarded as given input parameters, either for an averaged layer
or a single CPT measurement: the cone resistance qc, the sleeve resistance fs, the penetration
pore water pressure u2, the cone area ratio a, the atmospheric pressure pa = 100kPa, the
depth at which measurements are taken zref , the phreatic level, the specific weight of water
γw. This list might be subject to modifications if additional information is provided about
the soil properties.

• The object-oriented programming language Python has been selected to implement the au-
tomated system.

Objectives

The several objectives of this thesis are outlined as follows:

• Designing and implementing validation of parameters: The first step that needs to
be taken is the validation of the outcomes given by all the different paths. These outcomes
must be meaningful from a physical and geotechnical point of view. Unrealistic outcomes
should be discarded if they lie outside acceptable boundaries.

• Dealing with circular connections: The system cannot cope with loops in the graph
because of the recursive architecture of the of the system when determining parameter values.
The geotechnical meaning of these circular connections will be addressed in this research.

• Characterizing and propagating uncertainty: The concepts of uncertainty and accu-
racy need to be properly defined and quantified in order to assess the quality of a parameter’s
estimate. Each parameter carries an inherent variability which makes the true value of this
parameter uncertain; this aspect is particularly relevant to geotechnical parameters. Corre-
lations too are inaccurate for they are merely an approximation and can never fully describe
the reality of the physical system. Once the uncertainties are defined and calculated, they
need to be aggregated together and then propagated downstream into the network.

• Comparing Methods selection and Method averaging: Through a quality assessment
of the methods (i.e. correlations), it is possible to directly compare the methods with each
other and select the most accurate one. A different approach consists in using a weighted
average of all the model responses based on their individual performance. These two per-
spectives are valuable and provide different information to the user. They should be both
available to future users or at least be investigated and compared in this research.

• Validity of correlations: Pairwise correlations found in the literature are only valid for a
certain type of soil: the one tested and used to generate the database of the experiment. As
a result, these correlations should only be used to soil samples that are similar to the original
database. It is essential to consider only the relevant correlations for the tested sample and
to evaluate the inaccuracies accordingly.

• Validation of the framework: Once the estimate of the destination parameter and its
accuracy have been produced by the framework, the final outcome must be confronted with
actual experimental data and previous case studies. Such comparison will either legitimize
or disprove the ability of the framework to reliably determine parameters.

• Transparency of the framework The user should always have a clear understanding of
how calculations are conceptually performed in the network. The framework should remain
transparent and adjustable, and should not be seen as a black-box by the user. It should
also allow expert users to overwrite (intermediate) parameter values.
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1.3 Thesis outline
This report shows a logical progression towards the construction of a framework that combines
multiple correlations for the determination of model parameter values. As this thesis is part of
the continuation of a previous master thesis [1], chapter 2 introduces the Automatic Parameter
Determination system elaborated in this previous work and summarises its main features and
shortcomings. It acts as a starting point from which the rest of this study expands. Chapter 3
covers a few preliminary considerations that need to be addressed before assessing the quality of
the system: a pre-validation of the parameter values and circular connections will be tackled in this
chapter. The fourth chapter introduces the statistical framework implemented to the system. It
redefines the notion of accuracy and examines how it can be propagated throughout the network.
Chapter 5 builds on the previous chapter and explores how multiple results can be interpreted and
combined to one final value. This chapter explains how confidence or distrust can be built based
on such a combination. Finally, the sixth chapter applies the whole APD system to an actual case
study to determine the model parameters for the Hardening Soil small-strain model.
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Chapter 2

A starting point: on the use of
graphs for parameter determination

A new approach to parameter interpretation from in-situ tests has been proposed by van Berkom [1]
who developed an automated system that determines geotechnical parameters based on concepts
from graph theory. A proof of concept has been presented to show the feasibility of using graphs
to determine constitutive model parameters. This chapter summarizes some of the basic aspects
introduced and developed in [1] to facilitate the comprehension of the following chapters. It serves
as a starting point from which this study is expanding and enhancing. Discussion points and
recommendations mentioned in [1] are also highlighted here to link the objectives of this thesis
with previous works.

2.1 A graph to visualize relationships

2.1.1 General aspects

A graph is a mathematical representation of a network that connects different entities based on
their relationships. It is composed of two types of objects: the nodes that form the actual entities
of the graph, and the edges that portray the relationships between two nodes. Graphs turn out to
be very useful and efficient when modelling complex networks like a road network, but they are
also applicable to describe relations that are much more simple: the equation y = f(x) express
the relation between two nodes x and y linked by a single edge which is the function f (figure
2.1). This concept is particularly suitable for geotechnical engineering as there are correlations
and formulas galore in the literature to connect the many soil parameters. It also enables an easy
and transparent visualisation of these connections.

Figure 2.1: (a) A complex graph of the underground network in London. (b) A basic graph
representing the relation y = f(x)
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The focus is put here on a specific type of graph: the directed and weighted graph. These adjectives
mean that the relationships or the edges between the nodes are uni-directional and are assigned
with a weight that quantitatively characterizes the relation. The graph (a) from figure 2.1 is an
example of undirected graph as commuters can travel in any direction, the weights could be for
instance the travel time between two stations. The graph (b) is directed as indicated by the arrow,
the variable y is determined from x via the function f but the variable x cannot be calculated from
y if f is not bijective1. These two aspects of direction and weights will be defined and discussed
in this thesis.

2.1.2 Framework for parameter determination

As mentioned in introduction, the network connects the input in-situ test measurements to the
geotechnical parameters and the soil properties via a set of correlations. We use here the word
parameter as a generic term to characterize the nodes of the network, and the term method for the
correlations and formulas linking these parameters. A parameter can be split between one of these
three categories: a source parameter if it is an input data to the system, a destination parameter
if the parameter is the desired soil property to be estimated, and an intermediate parameter. The
figure 2.2 from [1] portrays the description of the framework.

Figure 2.2: Graphical representation of the network of geotechnical parameters. Source: [1]

The conceptual representation of the network in figure 2.2 falls short when more than one method
exist for an intermediate or a destination parameter. Such a situation makes the interpretation
and the visualisation of the graph difficult, as be can seen on the graph b) in figure 2.3. It becomes
then necessary to introduce two different types of nodes: the parameter node and the method
node. With this description, the edges of the graph only account for the relationship between the
input variables and the output variable of a method, and do not carry any additional information
(graph a) from figure 2.3).

Figure 2.3: Different representations of a multi-methods graph for a) two types of nodes, b) only
one type of nodes. Source: [1]

1invertible
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From a computational point of view, each type of nodes is defined a class: a Method class and
a Parameter class. The attributes of the classes reflect the properties and the metadata of the
nodes. As an example, the class Parameter has an attribute value which stores in an array all the
possible values taken by this node. Similarly, the class Method has an attribute formula which
consists of a parsed string of the formula of the method. A comprehensive list of all the attributes
is outlined in [1].

A path is defined as a succession of parameter and method nodes to derive one particular des-
tination parameter. It is clear that numerous paths leading to the same destination parameter can
coexist. Each path yields a single value that contributes to the array of all the possible values for
a given parameter node. The spread of these values is related to the variability of results caused
by the human factor: a first engineer would tend to choose one path while the second would pick
another one.

2.2 Features of the framework

Generating a graph
When running the automated framework, the first stage processed by the algorithm is the connec-
tion of the parameters and the generation of the graph. It links all the nodes, both parameter and
method, based on the correlations considered. The user must then provide to the system a set of
correlations and a set of parameters that will be appearing in the network. These sets are called
the external databases. Two types of external databases are distinguished:

• Parameter database which consists of a list of all the parameter nodes of the graph. Some
metadata about the parameters are also mentioned there: their unit, and their initial value
if applicable.

• Method database which consists of a list of all the method nodes of the graph. The literal
formula and its input and output parameters are mentioned there.

The external databases specified in tables 2.1 and 2.2 are generating the graph displayed in figure
2.4.

method formula input parameter output parameter
c_method_1 "a+b" a,b c
c_method_2 "b+d" b,d c

Table 2.1: External method database for the graph 2.4

symbol unit value
a "-" 1
b "-" 2
d "-" 3
c "-"

Table 2.2: External parameter database for the graph 2.4

Calculating parameter values
Once a graph is generated, the system is able to calculate the values of any parameter2 based on
the value of the source parameters given by the user, and based on the equations formulated in the
external database. The values of a parameter are then stored in a 1-D array whose length is equal to
the number of paths leading to that particular parameter. A verification step has been performed
by van Berkom in [1] for both a test case and a geotechnical case with actual correlations. The
automated framework successfully passed the verification test, ensuring that the outputs given by
the system were identical to hand calculations.

2provided there is a correlation for that parameter
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Figure 2.4: Basic graph generated from the external databases 2.1 and 2.2

Adaptability and transparency
The two aspects of adaptability and transparency were key during the development of the frame-
work in order to make it user-friendly and trustworthy. The system is indeed transparent since
it only uses the equations specified in the external database, and every intermediate calculation
can be manually checked. The user keeps track of the visited parameter and method nodes for
each path, and is able to review the attached correlations. The whole structure of the graph is
completely governed by the information provided in the external databases. This makes the sys-
tem highly adaptable as the user only needs to modify the external databases to generate another
graph, and does not need to step into the Python code.

2.3 Shortcomings and discussions
The features elaborated in the previous section certainly represent a substantial step forward to
the automatic determination of constitutive parameters. However, a number of discussion points
mentioned in [1] and shortcomings need to be addressed so that confidence can be built when using
this framework.

Interpretation of the outcomes
At this stage, the system solely computes parameter values and leaves their interpretation in the
user’s hands. Without any validation stage, some chains of correlations could potentially lead to
nonsensical, albeit mathematically correct, outlying values. A user could manually chose to discard
an outlier, but it would be valuable to integrate a validation procedure to the system in order to
make sure that the parameter values make sense from a geotechnical point of view. It is highlighted
in the recommendations of the thesis [1] that correlations are valid for a certain type of soil or for
an index Ic within a given range. The index Ic is a number combining the cone resistance and the
sleeve friction from a CPT to characterize the type of soil of a sample [14]. The table 2.3 outlines
the description of the Soil Behavior Types with their range of Ic index. This validity of correlations
based on the index Ic is addressed in the chapter 3 of this thesis.

Range of Ic index Soil Behavior Type Description
Ic < 1.31 7 Gravelly sand to dense sand

1.31 < Ic < 2.05 6 Sands: clean sand to silty sand
2.05 < Ic < 2.60 5 Gravelly sand to dense sand
2.60 < Ic < 2.95 4 Silt mixtures: clayey silt to silty clay
2.95 < Ic < 3.60 3 Clays: silty clay to clay

Ic > 3.60 2 Organic soils: peats

Table 2.3: Description of the Soil Behavior Types and their associated ranges for the index Ic.
Source: [11]

Furthermore, the values of a parameter should be all combined into a single weighted average that
will subsequently be used for design. A weighting scheme is already suggested in [1] based on
weights assigned by the user to the methods in the external database. Incorporation of the Soil
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Behavior Type Index in the weighted process is also advocated. The chapter 5 proposes a different
approach based on the parameter predictions.

Incorporating the parameter accuracy
The reference thesis [1] introduced an attribute accuracy to the Parameter class in order to account
for the uncertainty in the parameter values and conceptualize its propagation through the network.
However, the notion of accuracy remains quite vague and a rigorous statistical framework must be
implemented to define and propagate uncertainties.

Circular connections
Up to now, only acyclic graphs were considered. Circular connections occur when a loop is formed
in the network from the information given by the user in the external databases. Such connections
are currently not supported by the system which would crash owing to the recursive nature of the
code. According to [1], it is the responsibility of the user to prevent such references from occurring
by filling the external database appropriately. Unfortunately, this decision limits the adaptability
of the system as some reliable methods become purely inoperable. This thesis formulates a few
recommendations on how circular connections could be dealt with.

Figure 2.5: Example of a circular connection with geotechnical correlations

Conclusion
The conceptual graph-based framework initiated by van Berkom [1] will be referred as the Auto-
matic Parameter Determination system, or APD, throughout this whole thesis. The Python code
being semi-open source, it has been directly re-utilized and refactored here for the addition of new
features and the troubleshooting of potential bugs.
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Chapter 3

Preliminaries

A few preliminary steps must be undertaken before diving into the construction of a statistical
framework for the system. These concern the pre-validation of geotechnical parameter values, and
the consideration of circular connections.

3.1 Pre-validation of the APD system

A verification stage has already been performed in [1] which proved that the network can yield
correct outcomes from a purely mathematical point of view. The following step is to validate from
physical and geotechnical points of view the outcomes provided by the system. In other words,
the system must provide realistic parameters values. For instance, it would be unacceptable to
obtain a negative friction angle and use this value for further calculations. Although this example
might be a bit extreme, it is paramount that the system automatically detects and treats with
these outliers and anomalies.

3.1.1 Methodology and dataset

The validation process is performed by comparing parameter values obtained directly from the
system with parameter values collected from a recognised software for parameter determination.
Raw CPT profile data have been imported and analysed with the software CPeT-IT to provide
an estimation of several geotechnical parameters for every 2 cm, from 0.18m to 25.42m below
ground level. The software CPeT-IT uses a particular set of equations to derive the geotechnical
parameters from the basic input parameters which are the cone tip resistance, the friction sleeve,
and the pore water pressure.

3.1.1.1 Description of the dataset

The cone resistance qc, the sleeve resistance fs and the pore water pressure u are recorded for
every 2cm depth; they form for our study the input parameters for parameters determination.
The dataset includes two sets of parameters: the first is a set of basic intermediate results that
are necessary for the interpretation of the CPT profile. The second is a set of actual geotechnical
parameters that will be subsequently used for a numerical analysis: they are the destination
parameters that we are interested in.

Basic results The basic results mainly consist of a set of parameters which includes the nor-
malised cone resistance Qtn, the soil unit weigth γt, along with the Soil Behavior Type (SBT) and
its the associated SBT Index Ic. This procedure is done iteratively until convergence of Ic and the
stress exponent n (eq 3.1).

n = 0.381 · Ic + 0.05(σ
′

v/pa)− 0.15 (3.1)

For the sake of simplicity and because the system can not cope with loops and iterations at this
stage of development, we will assume as a given input all the parameters from the set of basic
results. An overview of these input parameters is shown in figure 3.1.
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Figure 3.1: Sample of the basic results for the first 5 measurements

It is also worth mentioning the following assumptions of this study: ground level is at 0m depth,
ground water level is at 0.5m depth, calculated friction angles are peak values and the critical state
friction angle φcv is taken as 32 degrees.

Estimated parameters The estimated parameters from the software CPeT-IT are shown in
figure 3.2. As we focus here only on coarse-grained soils, we are interested in the following param-
eters: the elastic Young Modulus Es (kPa), the relative density Dr (%), the state parameter Ψ,
the drained friction angle φp, the 1-D constrained modulus MCPT (kPa), the small strain shear
modulus G0 (kPa) and the shear wave velocity Vs (m/s). The in-situ stress ratio K0 is also of
interest, although it is automatically assigned to 0 by default by the software for coarse-grained
materials. The formulas used by the software are described in the appendix A.1.

Figure 3.2: Sample of the estimated parameters for the first 5 measurements

3.1.1.2 Methodology

The methodology for the validation step is described as follows:

• Case 1: The exact same set of equations (see appendix A.1) used by the software CPeT-IT
is entered in the external database of the network. Very similar values between the network
outcomes and the software’s estimates should be expected.

• Case 2: The set of equations is expanded with the additional correlations compiled in the
appendix A.2. Several paths are now available for each parameter, and the multiple outcomes
are compared with the reference value of the software.

3.1.2 Results
3.1.2.1 Case 1

The parameter values have been calculated at different depths to make sure that the results are
consistent for several measurements. The tables 3.1 and 3.2 compare the results provided by the
APD system with the reference values provided by the software CPeT-IT. The pairs of values
should be in theory identical as the same equations and correlations are used in both cases. In
practice, we notice a slight difference probably due to rounding errors that propagate through the
calculations.1 The graph can be vizualised in figure 3.3. The APD system is therefore able to
produce satisfying results for all parameters. A value for the K0 has been calculated by APD, even
if the software automatically defines it as 0 for coarse-grained soils.
A similar approach has been undertaken for a sandy layer where parameter values have been simply
averaged over the whole layer. The table 3.3 sums up the results for a sandy layer between 4.58m
and 9.58m below the surface. Once again the system yields pretty satisfying results, especially
for the relative density, the friction angle and the shear wave velocity. The difference in terms of
stiffness has been slightly amplified.

1Python calculations are done at computer‘s precision, so these errors probably originate from the software
CPeT-IT
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Category Es(kPa) G0(kPa) MCPT (kPa) Dr(%) Vs (m/s) φ(◦) Ψ K0

APD 23 632 29 619 48 030 37.38 134.56 34.05 -0.0427 0.470
CPeT-IT 23 460 29 400 46 920 37 132.38 34 -0.04 0

Table 3.1: Comparison between APD and CPeT-IT values at the depth -4.72m (SBT = 5)

Category Es(kPa) G0(kPa) MCPT (kPa) Dr(%) Vs (m/s) φ(◦) Ψ K0

APD 60 178 75 423 120 3545 66.24 212.25 39.8 -0.1629 0.470
CPeT-IT 59 970 75 160 119 940 67 198.28 40 -0.16 0

Table 3.2: Comparison between APD and CPeT-IT values at the depth -6m (SBT = 6)

Category Es(kPa) G0(kPa) MCPT (kPa) Dr(%) Vs (m/s) φ(◦) Ψ K0

APD 66 276 83 066 134 761 60.30 219.87 39.2 -0.1510 0.470
CPeT-IT 62 150 77 895 122 328 59.05 199.11 38.8 -0.1429 0

Table 3.3: Comparison between APD and CPeT-IT values for a sand layer between 4.58m and
9.58m below ground level.

Figure 3.3: Graph of set of methods from the software CPeT-IT at depth 4.72m below ground
level. Method nodes are in light blue, parameter nodes are in ligth green.

3.1.2.2 Case 2

In this second part, a more complex network is analysed by adding several methods for each pa-
rameter (see C). The goal is to observe the deviation of parameters values from the new paths with
the reference values given by CPeT-IT. The tables below ( from 3.4 to 3.11) gather the outcomes
given for all the parameters of interest. The reference value is the value given by the software
CPeT-IT. Each method for a given parameter can yield one or more values depending on whether
or not the method’s inputs already have multiple paths. An arbitrary depth of 4.72m below ground
level is chosen for this study, it corresponds to a sandy material.

The number of outcomes provided by a method is equal to the number of possible combinations of
its input parameters occurrences. For instance, the first method that determines the friction angle
φ (equation A.8) gives two different values because the input parameter of this method, which is
the state parameter Ψ, also has two different values.
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Parameter: Relative density Dr (%)
path method value reference value equation
1 1 37.4 37 A.2
2 2 47.2 37 A.3
3 3 41.6 37 A.4
4 4 28.7 37 A.5
5 5 43.1 37 A.6
6 6 33.4 37 A.7

Table 3.4: Comparison between APD and CPeT-IT values for the relative density Dr at the depth
4.72m below ground level (sand).

Parameter: Friction angle φ (◦)
path method value reference value equation
1 1 34.1 34 A.8
2 1 34.4 34 A.8
3 2 36.2 34 A.9
4 3 38.8 34 A.10
5 4 34.7 34 A.11
6 4 35.9 34 A.11
7 4 35.2 34 A.11
8 4 33.6 34 A.11
9 4 35.4 34 A.11
10 4 34.2 34 A.11
11 4 35.9 34 A.11
12 4 37.7 34 A.11
13 4 36.7 34 A.11
14 4 34.3 34 A.11
15 4 37.0 34 A.11
16 4 35.2 34 A.11
17 5 32.7 34 A.12
18 5 33.9 34 A.12
19 5 33.2 34 A.12
20 5 31.6 34 A.12
21 5 33.4 34 A.12
22 5 32.2 34 A.12

Table 3.5: Comparison between APD and CPeT-IT values for the friction angle φ at the depth
4.72m below ground level (sand).

Parameter: State parameter Ψ (-)
path method value reference value equation
1 1 -0.0428 -0.04 A.15
2 1 -0.0502 -0.04 A.15

Table 3.6: Comparison between APD and CPeT-IT values for the state parameter Ψ at the depth
4.72m below ground level (sand).
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Parameter: Dilatancy angle ψ (◦)
path method value equation
1 1 2.7 A.13
2 1 3.9 A.13
3 1 3.2 A.13
4 1 1.6 A.13
5 1 3.4 A.13
6 1 2.2 A.13
7 2 3.9 A.14
8 2 5.7 A.14
9 2 4.7 A.14
10 2 2.3 A.14
11 2 5.0 A.14
12 2 3.2 A.14

Table 3.7: Dilatancy angle ψ at the depth 4.72m below ground level (sand), no value is provided
by the software CPeT-IT

Parameter: Elastic modulus Es (kPa)
path method value reference value equation
1 1 23 632 23 460 A.18
2 2 16 316 23 460 A.19
3 3 17 589 23 460 A.20
4 4 13 001 23 460 A.21
5 5 34 422 23 460 A.22
6 6 23 399 23 460 A.23
7 7 9 468 23 460 A.24

Table 3.8: Comparison between APD and CPeT-IT values for the elastic modulus Es at the depth
4.72m below ground level (sand)

Parameter: shear wave velocity Vs (m/s)
path method value reference value equation
1 1 132.80 132.28 A.34
2 2 158.24 132.28 A.35
3 3 125.74 132.28 A.36
4 4 111.64 132.28 A.37
5 5 129.03 132.28 A.38
6 6 111.51 132.28 A.39

Table 3.9: Comparison between APD and CPeT-IT values for the shear wave velocity Vs at the
depth 4.72m below ground level (sand)
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Parameter: 1-D constrained modulus MCPT (kPa)
path method value reference value equation
1 1 47 265 46 920 A.25
2 2 12 271 46 920 A.28
3 3 22 068 46 920 A.29
4 4 16 255 46 920 A.30
5 4 13 731 46 920 A.30
6 4 15 112 46 920 A.30
7 4 18 892 46 920 A.30
8 4 14 728 46 920 A.30
9 4 17 409 46 920 A.30
10 5 53 124 46 920 A.31
11 5 40 370 46 920 A.31
12 5 47 183 46 920 A.31
13 5 67 839 46 920 A.31
14 5 45 247 46 920 A.31
15 5 59 391 46 920 A.31

Table 3.10: Comparison between APD and CPeT-IT values for the 1-D constrained modulusMCPT

at the depth 4.72m below ground level (sand)

Parameter: shear modulus G0 (kPa)
path method value reference value equation
1 1 29 619 29 400 A.32
2 2 42 045 29 400 A.32
3 2 26 523 29 400 A.32
4 2 20 932 29 400 A.32
5 2 27 887 29 400 A.32
6 2 20 882 29 400 A.32
7 3 34 113 29 400 A.33

Table 3.11: Comparison between APD and CPeT-IT values for the small-strain shear modulus G0

at the depth 4.72m below ground level (sand)

The results are overall rather satisfying since all the calculated values lie within acceptable bound-
aries with a similar order of magnitude compared to the reference values from the software. The
APD system has not produced a single sheer unrealistic outcome, which is very encouraging. As
expected, there is a noticeable variability of results for the different paths of a parameter. This
variability is expressed in the table 3.12 that shows the mean and the coefficient of variation for
each parameter. With the methods imported into the system, the system is able to determine
the friction angle and the state parameter with a rather high accuracy. Other parameters like the
elastic Young modulus (CoV = 39 %) and the constrained modulus (CoV = 57 %) show a higher
variability. The interpretation of the variability of results is certainly parameter-dependent and
should be performed by investigating the visited nodes of each path.

Category Es(kPa) G0(kPa) MCPT (kPa) Dr(%) Vs (m/s) φ(◦) Ψ ψ (◦)
Mean value 19 690 28 857 32 727 39 127 34.8 -0.0465 3.4
CoV 39 % 24 % 57 % 16 % 12 % 5 % 8 % 34 %

Table 3.12: Mean value and coefficient of variation for all parameters

1-D constrained modulus MCPT It is important to highlight that the reference value for the
1-D constrained modulus given by the software is actually an unloading-reloading modulus because
the in-situ condition of the soil is over-consolidated. The additional methods for the constrained
modulus are not necessarily valid for an over-consolidated state of stress, which explains why the
modulus calculated by the network show a high variability.
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Elastic Young modulus Es Similarly, the variability for the Young modulus is mainly ac-
counted for by the validity of its associated methods. From the graph A.4, it is easy to see that
the value of the elastic modulus directly depends on the state of consolidation, the age and the
cementation of the soil. For instance, the value from the seventh path (9468 kPa) stands out
and can be classified as an outlier and should be treated carefully. The section 3.2 provides some
hindsight on how to deal with such values.

Shear small-strain modulus G0 The second method for the parameter G0 also shows a rather
high variation from 21 MPa (path 6) to 42 MPa (path 2). This spread is mainly accounted for by
the high sensitivity of the method 2 with respect to its input variable Vs. The shear modulus is
indeed a quadratic function of the shear wave velocity, a small deviation of the input parameter
results in an amplified deviation of the output parameter.

Conclusion The variability of results is thus governed by two main factors. Firstly, the sensitiv-
ity of the methods visited by a path, which mainly explains the variability between paths of a same
method (e.g. G0). Secondly, the inadequacy of the methods with respect of the soil conditions.
Some correlations are indeed only valid for certain types of soil and conditions, and should not be
used for a soil that does not match with these conditions.

3.2 Automated validation

The previous section showed that the system was able to yield acceptable outcomes as a first
approximation for the given set of methods. To ensure flexibility of the system, it is essential
for this validation process to be somewhat automatic, should the user adopt a different set of
correlations. As a result, the term ’acceptable outcomes’ must be specified and translated into a
mathematical and computational framework.

3.2.1 Parameter value boundaries

The first type of validation is to check whether or not the parameter values lie within acceptable
boundaries. These boundaries are derived from the geotechnical meaning of the parameters: a
relative density cannot be greater than 100% for example. Because the system must remain flexible
and because each parameter has its own range of acceptable values, it is up to the user to provide
what the boundaries for each parameter are in the parameter external database . Therefore the
Python class Parameter as defined by van Berkom [1] is now supplemented with a new attribute
constraints which consists of a list of callable functions that allow for the validation of a computed
value. Such functions could be for example:

• lower_bound(bound): checks if a newly calculated value is greater than the the lower bound.

• upper_bound(bound): checks if a newly calculated value is lower than the the upper bound.

These basic checks are performed every time a new value is assigned to a parameter. If a newly
calculated value is not in compliance with these basic checks, then the value is simply removed
from the system so that further calculations do not use this improper value anymore. Alterna-
tively, a cut-off could be applied to the parameter value, should it exceeds the defined boundaries.
This approach might be more in line with the current geotechnical practice (see equation A.26 for
example), but this choice is left to the user.

The developers of the framework build and implement the basic callable functions for the val-
idation, but it is the responsibility of the users to make use of them properly. The user must
provide the expected lower and upper bounds for every parameter in the external database.

3.2.2 A deeper level of validation

The validation for parameter value boundaries is rather easy to perform and to implement, but
more complex types of validation could be imagined. The example of the stiffness modulus is a
case in point where this kind of relationship between stiffness moduli is expected:
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E50 < Es < Mnc
CPT < Eur < E0 < Moc

CPT (3.2)

where E50 is the secant stiffness at 50% of the ultimate deviatoric stress, Es is the static secant
modulus taken at 0.1% strain, Eur is the unloading/reloading stiffness, E0 the initial tangent
stiffness, Mnc

CPT and Moc
CPT the constrained modulus respectively in a normally consolidated state

and an over-consolidated state. This behavior of the soil is explained by the strain dependency
of stiffness (figure 3.4): as the shear strain increases during primary loading, the secant Young
modulus decreases.

Figure 3.4: Typical stress-strain relationship for soil, the stiffness is directly related to the level of
strain and the state of consolidation. Source: [2]

Because of the significant number of possible paths, it is very likely to find a combination of these
six parameters for which the inequality 3.2 does not hold. The treatment of such outcome is
still an open-question at this stage, but the user should always remain critical towards the values
calculated by the network. From a computational point of view, the attribute constraints could
contain a callable function that reflects the relation 3.2.

3.2.3 Method validity

It has been demonstrated that inadequate correlations sometimes cause an unacceptably large
variability. Correlations are usually valid for a limited range of soils and for particular conditions.
The range of applicability is most of the time clearly mentioned in the original publication of the
correlation, and must be incorporated into the framework.
In a similar manner to the parameter constraints, the class Method is also complemented by a new
attribute validity which consists of a list of callable functions. A non exhaustive inventory of these
functions is outlined below:

• SBT(argument): checks if the SBT of the method is consistent with the SBT of the soil
tested.

• Ic_min(argument): checks if the Ic index of the tested soil is greater than the lower bound
of the Ic index of the method.

• Ic_max(argument): checks if the Ic index of the tested soil is lower than the upper bound of
the Ic index of the method.

• consolidation(argument): checks if the state of stress of the soil (normally consolidated or
over-consolidated) is compatible with the method.
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These checks are performed before the graph is connected so that invalid correlations and methods
are removed from the system before any calculation is performed. This approach requires knowledge
of the SBT and the Ic index beforehand, but these basic specifications are often determined by the
CPT interpretation. The state of consolidation is initially left to the user‘s judgment but it can
be retroactively modified once the OCR has been computed by the system.

3.3 Dealing with circular connections
Circular connections are another point of interest. They occur when a method for a destination
parameter has the same parameter as an input parameter. Since the algorithm for parameter
determination is recursive, such circular connections create infinite loops and make the system
crash2. Two options are then possible: leave the responsibility to the user to avoid creating
circular connections when filling the external database, or improve the current algorithm so that
it can deal with loops in a systemic manner.

3.3.1 Circular connections in geotechnical engineering
Circular connections are widespread in geotechnical engineering due to the large number of existing
correlations. One very common way to deal with these loops is to assume a first initial value for
the problematic parameter and perform an iterative process until convergence of that parameter.
Iterative procedures are performed by Robertson [14] to compute the stress exponent and the
Soil Behavior Type Index, and by Sayed [15] to calculate the friction angle for clay using index
properties. The initial value should be either given by the user in the parameter external database
or could be calculated by a first iteration of the network with the loops being deactivated. Two
algorithms must be coded for that purpose:

• A first algorithm to browse and locate where the circular connections will occur.

• A second one to deal with the loops.

3.3.2 Bijective connections
A particular case is made for bijective connections, that is to say methods or equations that can
be reversed. A function f is reversible is there exists a function g = f−1 such as:

f(x) = y ⇐⇒ x = g(y) (3.3)

Most of the correlations and methods used in the network are mathematically reversible. This
means that the associated connections in the graph are undirected: both directions are valid. This
is not a desirable situation for parameter determination because the algorithm is designed for
directed acyclic graphs. Thus, a critical question is raised: which of the two directions must be
chosen? Two types of methods should be distinguished to answer this question:

• Methods defined as regression correlations: These equations were found while fitting a re-
gression function to a database. It seems wise and natural to choose the direction of the
method as it has been introduced by the author in the original paper.
For instance, Brinkgreve et al. (2010)[16] relates the peak friction angle with the relative
density such as:

φp = 28 + 12.5
Dr

100
(3.4)

This method can be reverted to determine the relative density from the peak friction angle:

Dr =
100

12.5
(φp − 28) DO NOT USE! (3.5)

It is highly recommended for the user to use the equation 3.4 instead of 3.5 because the
fitting coefficients (28 and 12.5 in this case) were obtained assuming that φp was the target
variable to fit the regression function.

2The maximum recursive depth is quickly reached
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• Methods based on the theory: The equations that are purely based on physics have no
intrinsic prior preferred direction. This is the case for many of the stiffness parameters (see
figure 3.5). The 12 equations are in principle all equally valid, but they are also redundant
and bijective.

Figure 3.5: Relationship between stiffness parameter for soils: Young Modulus E, shear modulus
G, bulk modulus B and constrained modulus M . It is unclear which equations should be chosen.
Source: [3]

A few propositions are outlined about how to tackle this situation. Without loss of generality,
consider the equation 3.3 between two (geotechnical) parameters x and y:

– In the case where y has only one method attached to calculate this parameter, it seems
reasonable to keep the method f and discard the method g. Otherwise y could no longer
be determined at all.

– Experienced geotechnical engineers could also know if a direction is preferred in practice,
and stick to their current practice by implementing only one of the two possibilities.

– Let us imagine that the parameters x and y can both be determined independently from
the methods f and g. If the quality of the estimates of x is much better than the quality
of y, then it becomes more beneficial to implement the method f over g: the quality of
y improves while the quality of x is unchanged.

This section only provides some food for thought about how circular connections could be dealt
with in theory, but these concepts have not been implemented into the APD system. Some bijective
functions have been implemented in this thesis, this is the case of the equation A.32 for example,
for which the shear stiffness is conventionally determined from the shear wave velocity.
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Chapter 4

Statistical framework

The graph-based network has proven itself valuable to provide deterministic estimates of the
geotechnical parameter values, however an equally central task is to measure the level of uncer-
tainty of these estimates. This concern is particularly relevant in geotechnical engineering because
soil parameters show a high inherent variability, and correlations are merely an approximation of
the true complex behavior of the ground. This chapter aims at setting up a statistical framework
to properly account for uncertainty in the Automatic Parameter Determination system.

4.1 Uncertainty in geotechnical engineering

4.1.1 Types of uncertainty

Since soil is a very complex and heterogeneous material, uncertainty and variability are part and
parcel of geotechnical engineering practices. Uncertainty stems from various origins, Phoon and
Kulhawy (1999) [4] [17] identified and distinguished three main types of uncertainty, as displayed
in figure 4.1: namely the inherent soil variability, the measurement errors, and the transformation
uncertainty.

The inherent soil variability is categorised as an aleatoric uncertainty since it results from nat-
ural geological mechanisms that are by definition erratic and unpredictable. Measurement errors
relate to the imperfect measure of a physical parameter because of a faulty or inaccurate equipment
or a biased measuring procedure for example. It is considered an epistemic uncertainty because the
error can always be reduced with better measurement techniques. Most geotechnical parameters
are not directly measurable with in-situ tests, therefore models are required to transform the mea-
sured parameter (the cone resistance for a CPT test) into a soil property or a soil parameter (the
friction angle, for example). The majority of these transformations are actually correlations that
try to fit a regression function through a cloud of data points. Therefore, these transformations
are merely approximations and introduce as well a degree of uncertainty. This uncertainty relates
with the discrepancy between the estimated response from the correlation, and the true unknown
response in the field. The transformation uncertainty is also an epistemic uncertainty because it
originates from a lack of our scientific knowledge. Moreover the underlying database of the cor-
relations are finite, which entails an additional statistical uncertainty that could be significant for
small databases.

4.1.2 Quantification of uncertainty

The agglomeration of these different types of uncertainty constitutes the total uncertainty of the
design parameter. The quantification of the parameter’s total uncertainty is not as straightforward
as the quantification of the parameter values. This study defines the uncertainty either in terms
of standard deviation σ, or in terms of coefficient of variation CoV , which is simply the standard
deviation normalized by the mean value µ.

CoVX =
σX
µX

(4.1)
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Figure 4.1: General illustration of the types of uncertainties in geotechnical engineering. source:
[4]

The coefficient of variation as defined in 4.1 is dimensionless and provides a quick idea of the degree
of uncertainty. A CoV around 10% is generally regarded as low in geotechnial engineering, while
a CoV of 30 % is considered high [18].

Since our approach to automatic determination of parameters is based on correlations, the task will
be to investigate how uncertainties propagate through the different transformation functions and
through the graph in general. Multiple approaches and philosophies are available in the literature
about the propagation of uncertainties for mathematical functions, and it is important to note
that these are very general and not necessarily specific to geotechnical engineering. A few of these
methods are applied here for our network of parameters and methods.

4.1.2.1 First Order Second Moment

This First Order Second Moment (FOSM) method relies on the linearization of the transformation
function using Taylor-series expansion. Phoon and Kulhawy (1999) [17] explain thoroughly how
this principle is applied to various geotechnical correlations. Starting with a design parameter
ξd determined from measurements ξm and a transformation function T (·), they define the total
uncertainty of a design parameter as:

σ2
tot(ξd) = (

∂T

∂w
)2σ2

w + (
∂T

∂e
)2σ2

e + (
∂T

∂ε
)2σ2

ε (4.2)

where w, e and ε are respectively the soil variability of ξm, the measurement error and the transfor-
mation uncertainty, σ2

w is the variance of the soil variability, σ2
e is the variance of the measurement

error, and σ2
ε is the variance of the transformation uncertainty.

It should be noted that the equation 4.2 assumes that the sources of uncertainty are all mutually
independent. This approach also assumes a pairwise relationship between the design parameter
ξd and the measured parameter ξm while in practice the transformation function T (·) may have
multiple variables as explained by van Berkom [1].

4.1.2.2 Monte-Carlo simulation

The Monte-Carlo Simulation (MCS) is a very popular technique used across several fields of engi-
neering to propagate and quantify uncertainty. MCS offers a fully stochastic framework in which
the input variables of a transformation function T (·) are no longer considered deterministic but
rather as random variables following a specified probability density distribution. Random samples
of the input variable are drawn and multiple realizations of the transformation function are com-
puted. The response of a system is evaluated for a large number of times, each realization giving a
different outcome. Statistical information like the mean and the variance are then directly derived
from the array of values of all the simulations.

Advantages MCS comes down to running the same transformation function over and over again
for a large number of times; its implementation is therefore straightforward and easy compared
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Figure 4.2: Simplified flowchart of the Monte-Carlo Simulation

to FOSM which requires the computation of the derivatives of the transformation function. As
its name indicates, FOSM only provides a first order approximation that is only exact for linear
functions. Monte-Carlo gives better estimate of the standard deviation when the non-linearity
of the transformation function T (·) increases. More importantly MCS not only provide the first
two moments of an output (the mean and the variance), but it also generates an histogram of
the responses from which a probability distribution can be approximated. Its simplicity and its
robustness make it a particularly powerful and attractive tool for engineers.

Limitations MCS requires to run a large number of realizations which can be computationally
expensive if this number becomes too large or if the transformation function T (·) takes too much
time to evaluate. Several methods have been proposed to remedy this problem: for instance the
Latin Hypercube Sampling (LHS) first introduced in [19] reduces the number of required iterations
for the MCS. It has been applied in a geotechnical context in [20] to determine the parameter
uncertainty of sixty models for the bearing capacity factor of the soil’s weight.

Howmany simulations should be performed? The precision of the estimated mean increases
with the number of simulations. Using confidence intervals for the mean and the Central Limit
Theorem, it can be proven that the required number n of MC iterations for a level of precision p
is [21]:

n =
( t1−α2 · σ

p

)2
(4.3)

where σ is the estimated empiric standard deviation of the population and t1−α2 is the Student
t-statistic for a risk α and for n− 1 degrees of freedom. Assuming that the number n will be quite
large, we usually have t1−α2 = 1.96 for a risk set at α = 5% when n tends to infinity. The empirical
variance σ2 is obtained by first running the MCS for a relatively small number of iterations.

4.2 Characterization of uncertainty in the APD system

4.2.1 FOSM
Without loss of generality, we assume here a method node m of the network that is related to
n input parameters x1, ..., xn and to the single output parameter y, as shown in figure 4.3. The
transformation function f(·) of the method m is defined:

y = f(x1, ..., xn) (4.4)

The goal is to derive the total uncertainty of the destination parameter y based on the information
we have about the method m and on our prior knowledge of the input parameters. As a result the
total variance of the parameter y is decomposed in two terms: the parameter uncertainty σ2

para(y)
which represents the propagated contribution of the uncertainty of the input parameters, and the
method uncertainty σ2

met(y) which represents the contribution of the transformation uncertainty.

σ2
tot(y) = σ2

para(y) + σ2
met(y) (4.5)
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Figure 4.3: Diagram of a multivariate method

Figure 4.4: Types of uncertainties covered by the parameter uncertainty and the method uncer-
tainty.

It is important to realise that the equation 4.5 is consistent with the formulation 4.2 from Phoon
and Kulhawy. A mathematical proof is elaborated in the appendix B.

4.2.1.1 Parameter uncertainty

Each input parameter xi is characterized with a mean value µ(xi) and a standard deviation σ(xi).
Applying the concept of linearization of the function f(·) using Taylor-series expansion, it is pos-
sible to quantify the propagation of the uncertainty of each individual variable. The parameter
uncertainty of y becomes:

σ2
para(y) =

n∑
i=1

(
∂f

∂xi
)2σ2(xi) (4.6)

The derivatives of f(·) are evaluated at the point µ = (µ(x1), ..., µ(xn)). It must be noted that
equation 4.6 holds only for uncorrelated variables. In case of correlated variables, the covariances
C(xi, xj) are introduced and the parameter uncertainty of y becomes:

σ2
para(y) =

n∑
i=1

(
∂f

∂xi
)2σ2(xi) + 2

n−1∑
i=1

n∑
j=i+1

(
∂f

∂xi

∂f

∂xj
)C(xi, xj) (4.7)

From a computational perspective, the derivation of the mathematical functions is required and is
made possible by the formula provided in the external database. The user inserts the correlations
in the database and the derivatives are automatically calculated. The definition of the standard
deviation σ(xi) for the input parameters depends on the type of parameter node:

• Source parameter: If a source parameter xi is an input variable of the method m, the
standard deviation σ(xi) is provided by the user in the external parameter database. This
standard deviation should cover both the inherent soil variability and the measurement errors
of the source parameter. The systematic bias of measurement errors are not covered here.
The value for σ(xi) must be carefully chosen to reflect the true uncertainty of the soil and
because this uncertainty will propagate through the whole graph. Practical experience and
literature review are paramount to determine the source parameter’s variability accurately.
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• Intermediate parameter: If a intermediate parameter xi is an input variable of the method
m, then the standard deviation σ(xi) of the input parameter xi is simply the total uncertainty
of this parameter calculated with the equation 4.5. This principle is similar to a chain rule.

4.2.1.2 Method uncertainty

Since the transformation models are often determined by fitting a regression trend line through
a cloud of data points, uncertainty arises. Unlike the parameter uncertainty, there is no clear
theoretical framework about how to derive the method uncertainty, which makes it more difficult
to define it objectively. A regression function is usually described by a trend line; the scatter of
points around the trend line being characterized by a zero-mean random variable with a standard
deviation σ (figure 4.5).

Figure 4.5: Regression trend line with the lower and upper 95% bounds. σ represents the standard
error

Phoon and Kulhawy (1999) [17] define the transformation uncertainty as the standard error σ of
the regressor, as it illustrates how big the uncertainty of the prediction is. A distinction is made in
the statistics literature between the standard error of the prediction and the standard error of the
fit, but this difference is usually not mentioned in the geotechnical literature. It is recommended
to model the standard error as the prediction standard error, for it accounts for both the
uncertainty of the mean trend and the data scatter. This method uncertainty is carefully provided
by the user in the method external database. Four possibilities are suggested as for determining
the right method uncertainty:

• The standard error σ is provided by the author of the correlation in the original publication,
along with the number of points of the dataset and the coefficient of correlation R2.

• A graphical estimation of the standard error is feasible if a graph with the trend line and
the scatter of data points is available. This estimation relies on the ”4σ” rule: the spread of
the 95 % confidence interval is approximately equal to 4σ (figure 4.5). The upper and lower
bounds can be drawn on the figure to estimate the standard error. Great care must be taken
about the scales of the graph (linear or logarithmic scales).

• If one has access to the original database of the correlation, the standard error could be
directly derived.

• In a worst-case scenario where no information is available about the goodness of the regression
fit and where the database is not accessible, an arbitrary value must be set for the standard
error σ, preferably based on the expert’s knowledge.
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Unfortunately, this means that the definition of the method uncertainty is not consistent depending
on what information is available in the literature about the transformation models. This might
be a conceptual problem when it comes to comparing the performance of each method. The ideal
situation would be making available the databases of all the methods in order to compute the
method uncertainty in a unique manner. This is a particularly time consuming task that falls
out of the scope of this research, therefore a combination of the four possibilities detailed above is
considered satisfying enough.

Statistical uncertainty The quality of a transformation model does not solely depends on the
standard error of the regressor, but also on the number of data points. For an equal standard
error, a method based on 1000 data points is arguably more reliable than method based on only 3
points. The definition of the method uncertainty must be slightly adapted to take this size effect
into consideration. A characterization of the method uncertainty is proposed by [22] in equation
4.8:

σmet = σ · k
uα

(4.8)

where σ is the standard error of the regressor as defined in the previous section, uα = 1.645 for a
level of confidence α = 5%. The definition of the factor k depends on which confidence interval is
considered. For the prediction interval of the whole population, the factor k is defined by:

k = tαn−1

√
1 +

1

n
(4.9)

where n is the number of data points, and tαn−1 is the Student t-statistic for a risk α and for a
degree of freedom set at n− 1. For the confidence interval of the mean trend, the k becomes:

k = tαn−1

√
1

n
(4.10)

The type of confidence interval considered is an engineering choice. In the rest of this study, the
prediction interval of the population has been selected. To summarize, the statistical uncertainty
encompasses several aspects: a level of confidence α typically taken at 5%, a t-Student correction
tαn−1, the number of data points and the choice of confidence interval.

Regression technique’s uncertainty Depending on which regression technique is used to fit a
trend line through a database, different correlation functions can be obtained. This adds another
uncertainty linked to the choice of the regression technique (Ordinary Least Squared, Total Least
Squared, ...). The type of regression is very rarely mentioned in the original publications, therefore
it is totally discarded in this study.

4.2.1.3 Implementation of the total uncertainty in Python

The Python system requires some adaptation to include this description of the statistical frame-
work. The main modifications concern the Parameter and the Method classes.

Parameter class: The attribute Accuracy, which had a vague and general definition, has been
refactored into the attribute sd 1, which corresponds to the total uncertainty of the parameter as
defined in equation 4.5. Hence, both the value and the standard deviation are calculated for every
path of the graph. The external parameter database must contain the total uncertainty of the
source parameters.

Method class: Two attributes have been added to the Method class: method_sd and para_sd.
The method standard deviation for each method is provided by the user in the method external
database according to the equation 4.8, while a dedicated Python function computes the parameter
deviation according to the equation 4.6 or 4.7. The attribute output_accuracy is now returning
the outcome of equation 4.5.

1sd stands for standard deviation
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4.2.1.4 A very basic example

This simple graph shown in figure 4.6 is meant to illustrate how uncertainty propagates through a
network using FOSM. The user needs to provide four initial values to the system: the mean value
of parameter a and its total uncertainty σtot(a), and the method uncertainty σmet(b) and σmet(c)
of the two methods m1 and m2. The total uncertainty of parameter b is calculated combining 4.5
and 4.6:

σ2
tot(b) = σ2

tot(a)(
∂m1

∂a
)2 + σ2

met(b) (4.11)

The total uncertainty of the destination parameter c is calculated similarly:

σ2
tot(c) = σ2

tot(b)(
∂m2

∂b
)2 + σ2

met(c) = [σ2
tot(a)(

∂m1

∂a
)2 + σ2

met(b)] · (
∂m2

∂b
)2 + σ2

met(c) (4.12)

Figure 4.6: Basic graph for two methods and three parameters. a is the source parameter, b is a
intermediate parameter and c is the destination parameter.

uid formula parameter_in parameter_out method_sd
b_method_1 a+ 1 a b 4
c_method_1 2b+ 2 b c 8

Table 4.1: External database for the methods of the basic example.

Starting from a parameter a with a value a = 10 and a standard deviation σ(a) = 3, we obtain
with hand calculations the following results for the parameters b and c:

σ2
tot(b) = σ2

tot(a)(
∂m1

∂a
)2 + σ2

met(b) = 32 · 1 + 42 = 25 (4.13)

σ2
tot(c) = σ2

tot(b)(
∂m2

∂b
)2 + σ2

met(c) = 52 · 4 + 82 = 164 (4.14)

4.2.1.5 Test case: a less basic graph

The FOSM approach is then applied to a slightly more complex imaginative graph in order to verify
that the standard deviations computed by the system are mathematically correct. The tables 4.2
and 4.3 summarize the external dataset of methods and parameters used to generate this test
graph.

uid formula parameter_in parameter_out method_sd
c_method_1 a+ b a, b c 1
c_method_2 a+ 2b a, b c 1
d_method_1 a+ c a, c d 1
d_method_2 a+ 2c a, c d 1
e_method_1 c+ d c, d e 1
e_method_2 b+ 2d b, d e 1

Table 4.2: External database for the methods of the test case.

The figure 4.7 displays the generated graph for the given external database along with the value and
the total standard deviation of every path. The table 4.4 compares the total standard deviations
of the parameter e with hand calculations. The values match almost perfectly, with minor differ-
ences likely due to rounding errors. This assessment confirms that the FOSM has been properly
implemented in the system.
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symbol value std_deviation
a 5 0.8
b 3 0.7
c - -
d - -
e - -

Table 4.3: External database for the parameters of the test case.

Figure 4.7: Graph of the test case with the external databases defined in tables 4.2 and 4.3.

4.2.1.6 Actual case: with geotechnical correlations

Now that FOSM has been proven to provide the right mathematical standard deviations, it is now
tested on a set of geotechnical correlations. The parameters and methods used for the validation
of parameter values in chapter 3 are used once again for the validation of the parameter devia-
tions. The annex A.2 describes all the imported methods for this case study and gathers valuable
statistical information: the standard deviation of the correlation σ, the number of data points and
the coefficient of correlation R.

The source parameters for automatic parameter determination based on CPT correlations are
the cone resistance qc, the sleeve friction fs, the measured pore pressure u, the depth z, the water
unit weight γw, the reference pressure pa taken as the atmospheric pressure, and the cone area
ratio a. All the correlations should ideally be established based from these input parameters, but
a separate module for CPT interpretation introduces other secondary source parameters: the SBT
Index Ic, the vertical total and effective stresses σv0 and σ

′

v0, the stress exponent n and finally the
normalised cone resistance Qtn. These secondary input parameters could be determined in theory
from the primary source parameters, but it would require an iterative process that is not supported
yet by the system. As a result, all the parameters mentioned above must be provided with a total
uncertainty in the external database. The table 4.5 summarizes the input of the system for a given
depth. The parameter a, γw, and pa are assumed deterministic, therefore their deviation is equal to
0. It is assumed that the coefficient of variation of the cone resistance qc and the sleeve friction fs
is set at 40%, which corresponds to the typical range of variation for these parameter [4]. It covers
both the inherent soil variability and the measurement errors of the CPT. The standard deviation
for the remaining parameters have been approximated by hand calculations, using a propagation
law of uncertainty. Finally, the parameters are supposed mutually independent for this case study:
their covariances are then reduced to 0.
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path value system σS hand calculation σh
e1 21 2.62679 2.62650
e2 24 2.89310 2.89286
e3 29 3.64554 3.64545
e4 35 4.37836 4.37832
e5 24 2.89310 2.89286
e6 27 3.13688 3.13686
e7 32 3.84187 3.84118
e8 38 4.54313 4.54311
e9 29 4.07062 4.06998
e10 35 4.73814 4.73811
e11 45 6.49076 6.48913
e12 57 8.10247 8.10243

Table 4.4: Comparative table for the parameter e. σS is the total standard deviation computed
by the APD system, σh is the total standard deviation derived by hand calculations

symbol unit value std_deviation CoV
depth m 4.72 0 0 %
a - 0.8 0 0 %
qc kPa 2520 1008 40 %
qt kPa 2530 1008 40 %
fs kPa 15 6 40 %
γw kPa 9.807 0 0 %
pa kPa 100 0 0 %
Ic - 2.05 0.21 10.2 %
n - 0.65 0.11 16.9 %
σv0 kPa 75.72 6 7.9 %
σ
′

v0 kPa 34.42 6 17.4 %
Qtn - 48.92 19.8 40.5 %

Table 4.5: External database for the source parameters of the geotechnical case. Parameters are
given at the depth z = 4.72m.

The results of the system for the friction angle as a destination parameter are detailed in table
4.6. The standard deviation is calculated for all the paths. The coefficient of variation indicates
the accuracy of each path.
For visualization purposes, the result of each path is now considered a normally distributed random
variable whose mean values and standard deviations are defined as in table 4.6. This assumption
needs to be verified to be used in the context of parameter determination for an actual civil engi-
neering project, but it allows to visualise nicely the outcomes of each path (figure 4.9).

In the case of the friction angle (figure 4.9), the variability of results is not very pronounced,
as the global mean is fairly close to the value given by the software CPeT-IT and the distributions
are all superposing each other. Other parameters like the 1-D constrained modulus MCPT are
displaying another behavior (figure A.5) with clusters of paths that perform totally differently, the
interpretation of such parameter is therefore made more difficult. A close inspection of the paths
for the constrained modulus reveals that the clustering effect is explained by the sensitivity of the
constrained modulus to the state of consolidation. Some methods are more suitable for a normally
consolidated soil (equations A.25 and A.31 ) and yields a low parameter value compared to the
methods adapted to an over-consolidated state (equations A.28 and A.30) The uncertainty of the
friction angle remains rather small with a coefficient of variation around 10%, but other parameters
like the relative density Dr shows a greater variability of results (figure 4.11) with potential values
that could be unrealistic: there is indeed a non-negligible probability for the relative density to
be negative. In that case one could consider using a different probability density function like a
log-normal distribution to avoid obtaining absurd values for the relative density.

The spider chart in figure 4.8 displays the average COV for several destination parameters based
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path method value std_deviation CoV
1 1 34.05 4.40 13%
2 1 24.41 3.29 10 %
3 2 36.18 3.87 11 %
4 3 38.81 3.48 9 %
5 4 34.67 2.13 6 %
6 4 35.89 2.70 8 %
7 4 35.20 2.48 7 %
8 4 33.59 2.30 7 %
9 4 35.39 1.96 5 %
10 4 34.18 1.96 6 %
11 4 35.92 2.96 8 %
12 4 37.73 3.86 10 %
13 4 36.70 3.50 10 %
14 4 34.31 3.21 9 %
15 4 36.98 2.70 7 %
16 4 35.19 2.69 7 %
17 5 32.67 3.89 12 %
18 5 33.89 4.23 12 %
19 5 33.20 4.08 12 %
20 5 31.59 3.98 12 %
21 5 33.39 3.79 11 %
22 5 32.18 3.79 11 %

Table 4.6: Output values and standard deviation for the friction angle φ. 22 paths for 5 methods

on an initial COV of 40 % for the initial parameters. This kind of chart illustrates how the uncer-
tainties propagate through the graph. Some parameters like the friction angle φp or the the shear
velocity Vs are rather insensitive to the initial uncertainty while the stiffness parameters are quite
sensitive.

Figure 4.8: Spider chart illustrating the sensitivity of the COV of the destination parameters (in
black) to the initial uncertainty of the source parameter (in blue).
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Figure 4.9: Normal probability distributions of the friction angle for all the paths. The black
dashed line represents the global mean, the grey dashed line represents the value given by the
software CPeT-IT.

Figure 4.10: Normal probability distributions of the Young modulus for all the paths. The black
dashed line represents the global mean, the grey dashed line represents the value given by the
software CPeT-IT.
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Figure 4.11: Normal probability distributions of the relative density for all the paths. The black
dashed line represents the global mean, the grey dashed line represents the value given by the
software CPeT-IT.

Figure 4.12: Normal probability distributions of the small strain shear stiffness G0 for all the paths.
The black dashed line represents the global mean, the grey dashed line represents the value given
by the software CPeT-IT.
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Figure 4.13: Normal probability distributions of the 1-D constrained modulus for all the paths.
The black dashed line represents the global mean, the grey dashed line represents the value given
by the software CPeT-IT.

path method value (kPa) std_deviation (kPa) CoV Consolidation state
1 1 47 265 23642 50% OC
2 2 12 271 7035 57 % NC
3 3 22 068 5430 25 % NC
4 4 16 255 8497 52 % NC
5 4 13 731 8057 58 % NC
6 4 15 112 8425 55 % NC
7 4 18 852 9920 52 % NC
8 4 14 728 7650 52 % NC
9 4 17 409 8776 50 % NC
10 4 53 124 31 142 59 % OC
11 4 40 370 28 717 70 % OC
12 4 47 183 30 776 65 % OC
13 4 67 839 41 803 62 % OC
14 4 45 247 25 198 56 % OC
15 4 59 391 32 942 55 % OC

Table 4.7: Output values and standard deviation for the 1-D constrained Modulus MCPT . 15
paths for 4 methods

Conclusion: The FOSM approach has been successfully implemented into the system which is
now able to provide both a mean value and a standard deviation of the parameter for every path.
Based on this information, the user has a better idea of the accuracy of each method and can
choose a single final parameter value accordingly. However it is unclear which type of distribution
is the most suitable, and this choice depends on the parameter considered.
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4.2.2 Monte-Carlo
Based on the principle explained in section 4.1.2.2, a Monte-Carlo simulation is implemented by
simply running the system N times. For each simulation, a random sample is drawn for every
source parameters based on the mean value and the standard deviation provided by the user. The
Monte-Carlo simulation is applied in this section to a graph of geotechnical parameters and meth-
ods. The same external databases as used in section 4.2.1.6 are imported in order to compare the
result from FOSM with the Monte-Carlo results. The mean values and standard deviations of the
input parameters are therefore described in the table 4.5. For this case study, 2000 simulations
were run for normally distributed and uncorrelated source parameters. This number of simulations
is high enough to give an appropriate level of precision according to the equation 4.3.

The results of the simulations for the determination of the friction angle are shown in figure
4.14, the histogram of the 2000 simulations and the kernel density estimation (KDE) being dis-
played for the 22 paths. The KDE is a probability density function that tries to smoothly fit a
given histogram [23]. The KDE are rather similar with the densities estimated using the FOSM
approach 4.9, as they are all more or less overlaying and centered around the reference value from
the software CPeT-IT. A statistical test has been performed for every path to verify if a normal
distribution fits the histogram of the Monte Carlo simulation. The p-values2 of this test were all
extremely small, which invalidates the normality hypothesis. It should be noted that the p-values
shrink to 0 as the number of simulations increases, this means that the assumption of normally
distributed variables is wrong.

Figure 4.14: Histogram and kernel density estimation of the friction angle φ for 22 paths and 5
methods, with 2000 simulations. Left: all paths separated. Right: all paths cumulated. The black
dashed vertical line represents the reference value given by the software CPeT-IT

The histograms of other geotechnical parameters are plotted below. They display some similarities
with the PDF estimated in the FOSM approach. In particular, the relative density Dr exhibits a
quite large variability (figure 4.15) as we already found out with FOSM (figure 4.11). A rectangular
distribution seems a more reasonable choice than a normal distribution for the relative density.

Conclusion: The Monte-Carlo simulation (MCS) enables the determination of the probability
density function of the parameters, which is an improvement compared to the semi-probabilistic
approach FOSM which only provides the first two moments. Although the MCS confirmed the
non-normality of the path’s densities, the kernel distribution estimations concur rather well with
the results of the FOSM approach. Both approaches provide valuable information about the spread
of the parameter values in order to make an educated choice for the final parameter value.

2if a p-value is below the threshold 0.05, the null hypothesis of a statistical test can be rejected
(https://en.wikipedia.org/wiki/P-value)
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path method p-value normality
1 1 4 · 10−3 No
2 1 4 · 10−17 No
3 2 3 · 10−8 No
4 3 1 · 10−21 No
5 4 1 · 10−67 No
6 4 3 · 10−20 No
7 4 1 · 10−24 No
8 4 1 · 10−19 No
9 5 · 10−18 No
10 4 4 · 10−19 No
11 4 7 · 10−36 No
12 4 1 · 10−7 No
13 4 1 · 10−28 No
14 4 2 · 10−15 No
15 4 2 · 10−31 No
16 4 2 · 10−12 No
17 5 1 · 10−55 No
18 5 1 · 10−12 No
19 5 1 · 10−15 No
20 5 6 · 10−7 No
21 5 4 · 10−14 No
22 5 5 · 10−17 No
all all 1 · 10−30 No

Table 4.8: p-values for the normality test of the friction angle.

Figure 4.15: Histogram and kernel density estimation of the relative density Dr for 5 paths and 5
methods, with 2000 simulations. Left: all paths separated. Right: all paths cumulated. The black
dashed vertical line represents the reference value given by the software CPeT-IT
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Figure 4.16: Histogram and kernel density estimation of the shear wave velocity Vs for 5 paths
and 5 methods, with 2000 simulations. Left: all paths separated. Right: all paths cumulated. The
black dashed vertical line represents the reference value given by the software CPeT-IT

Figure 4.17: Histogram and kernel density estimation of the Young Modulus Es for 7 paths and 7
methods, with 2000 simulations. Left: all paths separated. Right: all paths cumulated. The black
dashed vertical line represents the reference value given by the software CPeT-IT
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Chapter 5

Model averaging

The classical approach in geotechnical engineering to parameter determination often boils down to
choosing a single correlation that is considered the most appropriate and reliable for that parameter
given a certain soil type. In the graphs framework developed here, this is equivalent to choosing the
deterministic value from a single path. This strategy completely discards the information given by
the remaining paths, and is known as Model Selection in statistics. This approach might lead to an
underestimation of the parameter uncertainty because the uncertainty related to the choice of the
correlation is neglected. Conversely, Model Averaging takes into consideration all the correlations
specified and presumably provides a better representation of the estimate of a parameter value
both in terms of mean value and standard deviation, provided appropriate models are used. The
principle of model averaging is elaborated in this chapter and is applied to the graph framework
for parameter determination.

5.1 Basics of Model Averaging

Without loss of generality, we aim here at estimating the value of a parameter of interest θ, based on
a given set of m models (M1, ...,Mm). The true value θ∗ of the parameter of interest θ is unknown,
this is precisely the quantity we want to approximate. Each individual model Mi provides a single
estimator θ̂i along with his prediction variance Var(θ̂i). We define the prediction error of the
estimator θ̂i as its Mean Squared Error (MSE):

MSE(θ̂i) = bias(θ̂i)
2

+ Var(θ̂i) (5.1)

where bias(θ̂i) is the bias of the model Mi, that is to say the difference between the estimator θ̂i
and the true value.

5.1.1 Averaged value

The model averaged estimator θ̂ is the weighted average of the estimator of all contributing models:

θ̂ =

m∑
i=1

wiθ̂i (5.2)

with wi the weight attributed to the modelMi. The weights are naturally normalized so that their
sum is equal to one:

m∑
i=1

wi = 1 (5.3)

5.1.2 Averaged variance

The quality of the estimate θ̂ is quantified by its variance Var(θ̂). The estimation of the prediction
variance is not consensual as several formulations are suggested across the literature. Three aver-
aging strategies are being investigating in this research. They yield different outcomes depending
on their underlying assumptions and on the bias and variance of the contributing models.
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Convolution

This strategy only considers the prediction variances of the contributing models and the covariances
between the models [24] [25]. When averaging we obtain the following averaged variance:

V̂ar(θ̂) =

m∑
i=1

w2
iVar(θ̂i) +

m∑
i=1

∑
i 6=j

wiwjCov(θ̂i, θ̂j)

=

m∑
i=1

m∑
j=1

wiwjCov(θ̂i, θ̂j)

(5.4)

The equation 5.4 does not take into consideration the bias of each individual model, therefore it
must not be utilized when bias is expected from the contributing models, which is often the case
in geotechnical engineering. We note that a positive correlation between model predictions results
in an increase of the averaged variance, and a negative correlation results in a decrease of the
averaged variance. The simplified case of independent models is called Convolution [25] and is
summarised as:

V̂ar(θ̂) =

m∑
i=1

w2
iVar(θ̂i) (5.5)

Propagation

Unlike the previous method, Propagation allows the contributing models to be biased but assumes
that the averaged prediction θ̂ defined in equation 5.2 is an unbiased estimator of the true value.
This hypothesis is reasonable for bi-directional bias, that is to say a situation where the individual
predictions are spread equally around the true value. Conversely, a uni-directional bias situation
would occur when contributing models would consistently underestimate or overestimate the true
value. The averaged variance becomes then:

V̂ar(θ̂) =
( m∑
i=1

wi(θ̂i − θ̂)
)2

+

m∑
i=1

m∑
j=1

wiwjCov(θ̂i, θ̂j) (5.6)

It can be noticed that the second term of equation 5.6 is actually equal to the variance from
equation 5.4.

Buckland

This third method is a simplification of equation 5.6 and has been derived by Buckland [26]. It
assumes that models are all perfectly positively correlated and it still takes into account both the
bias and the variance of the contributing models:

V̂ar(θ̂) =

(
m∑
i=1

wi

√
Var(θ̂i) + (θ̂i − θ̂)2

)2

(5.7)

Because this formula assumes perfectly correlated models, it will provide a more conservative
variance compared to equations 5.4 and 5.6.

5.1.3 Definition of weights

The definition and the determination of weights naturally influence the outcome of the averaging
process. Several possibilities are available to define the weights.

Equal weights The most simple way to average values is to consider that the weights are all
equal. This approach, albeit crude, can provide reasonable results if the models are all equally
satisfying or if the user has no prior information on the quality of the contributing models. The
weights are therefore simply defined:

∀i ∈ J1,mK, wi =
1

m
(5.8)
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User-defined An expert user can use his own knowledge and expertise to define himself the
weights. This approach is obviously very subjective and situation-dependent. Therefore, a set of
weights assigned for a specific soil should not be taken as a universal rule for another soil. The
only requirement here is to normalize the sum of weights to the unity.

Bates-Granger inverse variance and inverse MSE This approach is inspired from Bates
and Granger who are the pioneers of model averaging and the combination of forecasts. In their
paper [27], they use the inverse of the prediction variance of the individual models as weights:

∀i ∈ J1,mK, wi =
1/Var(θ̂i)
m∑
j=1

1/Var(θ̂j)
(5.9)

However this approach relies on the assumption that the models are unbiased, which is not neces-
sarily the case. To deal with this shortcoming, a modification is advocated here by replacing the
prediction variance by the MSE defined in equation 5.1:

∀i ∈ J1,mK, wi =
1/MSEi
m∑
j=1

1/MSEj

(5.10)

Since the true value is unknown, a reference value is required to compute the MSE of the contribut-
ing models. As a first approximation, a simple average with equal weights is taken as reference
value. It should be noted that the Root Mean Squared Error (RMSE) can also be used instead of
the MSE in equation 5.10, which would lead to different weights.

Bayesian posterior weights (BMA) This approach is particularly valuable if a reference
value is considered or if an observation of the parameter of interest is provided subsequently (from
laboratory tests for example). Most [28] applies Bayesian Model Averaging using the simple mean
value as the reference value. The weights are then defined:

∀i ∈ J1,mK, wi =
Pr
(
θ̄|Mi

)
· Pr(Mi)∑m

j=1 Pr
(
θ̄|Mj

)
· Pr(Mj)

(5.11)

where Pr(Mi) are the prior probabilities (or prior weights) of the model Mi, and Pr
(
θ̄|Mi

)
is the

likelihood of observing the value θ̄ given the model Mi which is formulated as:

Pr
(
θ̄|Mi

)
=

1√
2π · V

exp

(
−1

2
(θ̂i − θ̄)V −1(θ̂i − θ̄)

)
(5.12)

The drawback of this method is that not only a reference value θ̄ is needed, but also an estimated
variance of this reference value V .

5.1.4 Conclusion
The weighted averaged value and variance result from a complex process including several com-
ponents: the prediction covariances and bias of the models, the weights, and the strategy used
to average the variance. This research will compare the influence of the choice of weights and
strategies in the context of a graph-based determination of geotechnical parameters.

5.2 Building confidence or distrust using model averaging

5.2.1 Desired benefits of model averaging
In the context of parameter determination, the graph generates several paths for each parameter.
These paths are regarded as the models in the vocabulary of model averaging. The network is
able to produce for each path a single estimator of the parameter, but also its prediction variance
(chapter 4). Model averaging is then applicable to the system and an averaged estimator and
variance can be computed for every parameter of the network.
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The goal of model averaging is to take into account the results of all the paths but also the spread
of these outcomes to come up with a more reliable averaged value and variance. This approach
aims at building confidence in the final parameter value in a situation where all the outcomes are
roughly similar. Conversely, if the contributing paths give inconsistent results, then some distrust
in the averaged value should be expected. The figure 5.1 illustrates this principle. In the first case,
a single method leads to the parameter x and a single standard deviation σx,I is calculated. The
second situation introduces several models1 from which an averaged standard deviation σx,II is
determined for the parameter x. We want model averaging to meet the following requirements:

• If the models m1, ...,mM all give somewhat similar results, we say that the models are
consistent or well aligned and the following inequality holds:

σx,II < σx,I (5.13)

This means that the averaged standard deviation is lower than the standard deviation of the
individual models. In other words, we have built confidence in the value of the parameter x
because all the models give more or less the same outcomes.

• If the models m1, ...,mM all give quite different results, we say that the models are inconsis-
tent or poorly aligned and the following inequality holds:

σx,II > σx,I (5.14)

In that case, the averaged standard deviation is greater than the standard deviation of the
individual models. In other words, there is distrust in the value provided for the parameter
x because the contributing models are not consistent.

Figure 5.1: Case I: only one model is calculating the parameter x and its single standard deviation
σx,I . Case II: themmodels are contributing to the parameter x and an averaged standard deviation
σx,II is produced.

These desired features for our model averaging framework are examined in two examples in the
following sections: one imaginary case study to illustrate the principle (section 5.2.2), and an actual
case with geotechnical parameters (section 5.3).

5.2.2 Variance versus bias
As described in equation 5.1,the prediction error of an estimator is decomposed into two terms: the
bias and the variance. These two components can be used to distinguish between the consistent and

1replace "model" by "path" in the context of graph-based parameter determination
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the inconsistent models. As suggested in figure 5.2, three conceptual test cases are then identified
depending on which term is dominant between the bias and the variance of the individual models.
A situation where the models are poorly aligned is described by a lower variance and a greater bias,
we can clearly see that the density distributions of the contributing models are all well separated.
As the variance increases, or the bias decreases, the density distributions start superposing each
other and the models become well aligned.

Figure 5.2: Qualitative representation of the three test cases. The contributing models are de-
scribed in table 5.1.

Model averaging is then applied to these three test cases in order to investigate the effects of the
choice of weights as well as the three formulas for the prediction of the variance. The three test
cases consist in 5 contributing models whose characteristics are detailed in table 5.1.

Cases Array of values Array of standard deviations Combined mean Combined sd
Case A [97, 82, 70, 88, 120] [4, 2, 2.5, 3.5, 3.5] 91 13
Case B [100.140, 101.2, 98.8, 99, 100.5] [0.5, 1, 1, 1.5, 0.75] 99.9 0.937
Case C [100.140, 100.2, 99.8, 99, 100.5] [4, 2, 2.5, 3.5, 3.5] 99.9 1.48

Table 5.1: Description of the test cases A, B and C. A common reference value is taken as 100
for the three cases. The combined mean and standard deviation were calculated according to the
Propagation formula.

Case A: poorly aligned models In this first case, the clear separation of the probability den-
sities indicates a poor alignment of the models. The figure 5.3 shows the result of the averaging
process for four different types of weights, and compares the averaged prediction variance. The
distributions obtained using the strategies Propagation and Buckland are very similar if not iden-
tical and provide a much wider distribution (that is to say a larger variance) than the contributing
models, which meets the requirement enacted in the previous section. The strategy Convolution is
not satisfactory as the averaged distribution is even more narrow than the models themselves. It
can be observed that the choice of weights has little influence on the mean value of the averaged
distributions, but it has a significant impact on its variance. The equal weights approach seems
to yield a very large averaged variance compared to the other methods. The weights obtained
by BMA give very unsatisfying results as it consistently overfits the closest distribution to the
reference value and fails to comply with the requirements.

Case B: intermediate stage The second intermediate case shows a clear decrease of the bias as
the distribution densities are superposing in figure 5.4. The averaged distributions for Convolution,
Propagation and Buckland can be distinguished. The strategy Convolution gives a very narrow
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Figure 5.3: Case A: contributing and combined distributions for four types of weights and three
averaging methods. The reference value is taken as the simple average. Consistency ratio Rc = 28.
The weighting scheme BMA and the averaging strategy Convolution yields unsatisfying resutls.

distribution that is probably overconfident as there is still a significant fraction of bias in the
contributing models. The method Buckland for case B is much less flat than for A but it still
provides an averaged variance that is lower than the variance of the individual models. It is
difficult to state if this distribution is simply conservative or over-pessimistic. The third approach
Propagation provides an averaged distribution that is realistically confident with a variance that
is slightly lower than the contributing models.

Case C: well aligned models This case depicts a situation where the models are all very
well aligned as the distributions superpose almost identically in figure 5.5. As the bias is very
low compared to the variance, the averaged distribution from Convolution and Propagation are
identical and provide a lower averaged variance compared to the contributing models, which meets
the requirement stated in the previous section. These two strategies help building confidence in
the determination of the parameter of interest. There is no benefit from using Buckland as it gives
a distribution very similar to the individual models.

The distinction between the cases A, B and C is at this stage purely qualitative and frankly subjec-
tive. The position and the width of the peaks were carefully chosen here to obtain three dissimilar
cases but it could be harder in practice to determine which situation applies. In an attempt to
quantitatively describe the alignment of models and reduce subjectivity when investigating the
bias-variance trade-off, we define here a consistency ratio Rc as the variance of the mean values of
the contributing models divided by the average of their variances:

Rc =

M∑
i=1

(θ̂i − θ̂)2

M
M∑
i=1

Var(θ̂i)

M

=

M∑
i=1

(θ̂i − θ̂)2

M∑
i=1

Var(θ̂i)

(5.15)

A consistency ratio Rc much greater than 1 implies that the spread of the means is greater than
the width of the distribution densities, and that the models are poorly-aligned. Conversely, a
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Figure 5.4: Case B: contributing and combined distributions for four types of weights and three
averaging methods. The reference value is taken as the simple average. Consistency ratio Rc = 0.81

consistency ratio much lower than 1 would indicate that the distributions superpose and that the
models are very well aligned. The intermediate stage is characterized by a consistency ratio around
1. Although this consistency ratio produces a scalar to quantitatively account for the alignment of
models, it is unclear how to evaluate the quality of consistency for values of Rc between 10−1 and
101. Similarly, a consistency ratio for the individual model Rc,i is defined as the ratio between the
bias and the variance of the model considered, with the bias considered as first approximation as
the squared distance between the model prediction θ̂i and the average θ̂. This could be a useful
unit of measure to detect outlier models with either a very strong bias or an usual variance.

Rc,i =
(θ̂i − θ̂)2

Var(θ̂i)
(5.16)

5.2.3 Conclusion
This comparison has shown that the behavior of the averaged distributions depends on which term
between the bias or the variance of the models is dominant. The averaged mean seemed rather
insensitive to the choice of weights but the averaged variance highly depends on it. The strategy
Propagation produced satisfying results for the three test cases as it was able to build confidence
when the models were consistent, and build distrust when the models were inconsistent.
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Figure 5.5: Case C: contributing and combined distributions for four types of weights and three
averaging methods. The reference value is taken as the simple average. Consistency ratio Rc =
0.0260. The strategy Buckland gives unsatisfying results.
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5.3 Application to geotechnical parameters
The principle of model averaging introduced in this chapter is then applied to a network of geotech-
nical parameters and correlations. As we have seen in the previous chapters, each parameter of the
graph is characterized with an array of values and an array of standard deviations, these arrays
are directly used to compute a final averaged value and variance. While applying model averaging
to the graph, one should bear in mind that the paths of the network are the actual ’models’ Mi

we have introduced in this chapter.

This section is reusing the results obtained in chapter 4 with the standard deviations of the paths
calculated from FOSM. An averaged distribution has been calculated for the three strategies (Con-
volution, Propagation and Buckland) and for four types of weights: equal weights, inverse MSE,
inverse RMSE, and Bayesian Model Averaging (BMA). An arbitrary reference value was assumed
for the test cases of the previous section but in practice this true reference value is unknown and
taken as the simple average as a first approximation.

The results are displayed in following figures 5.6 to 5.11 for several geotechnical parameters. It is
complicated to say whether or not the contributing paths are well aligned for the other geotechni-
cal parameters, except for the relative density (figure 5.7) which has a relatively low consistency
ratio Rc = 0.14. Indeed, the consistency ratio Rc lies between 0.2 and 0.8 for most parameters,
which makes it hard to clearly distinguish between a case C of well aligned models, and a case
B of intermediate models. The elastic Young modulus Es is the only parameter that has shown
a consistency ratio above 1 which is explained by the incorporation of methods that are valid for
a too wide range of soils. Except from this exception, the correlations used in the system are in
accordance in general.

The choice of weights seems to have little influence on the final averaged value, probably be-
cause the contributing paths are more or less equally satisfying and the resulting weights are not
sharply contrasting with the equal weights. Nonetheless, the averaged variance slightly depends
on the weights. Based on the figures 5.6 to 5.11, the density from equal weights seems to be a bit
more conservative with a flatter curve compared to inverse MSE and RMSE. The table 5.2 com-
pares the value initially provided by the software CPeT-IT, with the value obtained when applying
model averaging. This table basically highlights the difference between model selection to model
averaging.

The averaging strategy Convolution is once again not suitable as it consistently yields an over-
optimistic distribution, and should be therefore discarded. For all parameters except the 1-D con-
strained modulus (figure 5.8), Propagation builds confidence in the parameter value with a lower
averaged variance than the contributing paths. The approach Buckland remains conservative as
the new distribution is flatter than the individual paths, this originates from the assunmption that
the contributing models are all perfectly correlated. A special mention can be made for the 1-D
constrained modulus. As mentioned earlier, the presence of the two clusters is due to methods
applicable for either over-consolidated or normally consolidated soils. It makes then little sense to
try averaging the paths for this parameter as the in-situ soil condition is either one or the other.
In future works, the over-consolidated and normally consolidated constrained modulus must be
decoupled into two distinct parameters.

parameter paths Rc Software value Equal weights inverse MSE inverse RMSE
φ (◦) 22 0.28 34 34.82 34.85 34.84
Dr (%) 6 0.14 37 38.55 38.25 38.37
MCPT (kPa) 15 0.72 46 920 32 726 32 597 32 482
Es (kPa) 4 0.30 23 460 17 635 16 821 16 862
G0 (kPa) 14 0.53 29 400 33 261 33 269 33 375
Vs (m/s) 6 0.17 132 126 125 126

Table 5.2: Comparison between values from the software CPeT-IT and the averaged means for
different types of weights.
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Figure 5.6: Averaged density distributions for 22 paths of the friction angle φ. The black dashed
line represents the value given by the software CPeT-IT, set here at 34 degrees. Consistency ratio
Rc = 0.28

Figure 5.7: Averaged density distributions for 6 paths of the relative density Dr. The black dashed
line represents the value given by the software CPeT-IT, set here at 37%. Consistency ratio
Rc = 0.14
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Figure 5.8: Averaged density distributions for 15 paths of the 1-D constrained modulus MCPT .
The black dashed line represents the value given by the software CPeT-IT, set here at 46 920 kPa.
Consistency ratio Rc = 0.72

Figure 5.9: Averaged density distributions for 6 paths of the Elastic modulus Es. The black dashed
line represents the value given by the software CPeT-IT, set here at 23 460 kPa. Consistency ratio
Rc = 1.49
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Figure 5.10: Averaged density distributions for 14 paths of the small strain shear modulus G0.
The black dashed line represents the value given by the software CPeT-IT, set here at 29 400 kPa.
Consistency ratio Rc = 0.53

Figure 5.11: Averaged density distributions for 6 paths of the shear velocity wave Vs. The black
dashed line represents the value given by the software CPeT-IT, set here at 132 m/s. Consistency
ratio Rc = 0.17
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5.4 Incorporating the Soil Behavior Type in model averaging

5.4.1 Generalities

The principles of model averaging elaborated so far are remarkably general, in a sense that it can
be implemented for a wide range of applications. Indeed, the determination of weights and the
averaging strategies are purely based on theoretical and mathematical concepts. However, the type
of soil is a critical component in geotechnical engineering and it is paramount to incorporate this
aspect in the averaging process. It is clear that some correlations are more suitable for a certain
type of soils, and this aspect should be reflected in the weights. The expert knowledge about the
methods and correlations included in the network and their range of applicability can be incorpo-
rated into the system through user-defined weights. If a method is considered particularly reliable
for the soil considered, then the method should be assigned with a higher weight.

Three variants of this approach are proposed below:

• The user defines himself the weights based on his expertise and his familiarity of the corre-
lations, heedless of any of the mathematical considerations underlined in this chapter. The
only restraint is of course the normalization of the weights. This procedure leaves a lot of
room for subjectivity, as the final outcome can changed dramatically based on the selection
of weights, it is not recommended for those without a lot of experience with the applied
methods. However, the interpretation of results by the user may become easier and more
straight-forward and the process feels a little bit more transparent.

• An hybrid technique encompassing both user-defined and theoretically-defined weights could
be a reasonable compromise. A single array of weights is obtained from the combination
of these two arrays of weights. The figure 5.12 shows an example of how two arrays of
weights can be combined and normalized. Other combination techniques can be considered:
arithmetic mean, geometric mean, harmonic mean.

Figure 5.12: Example of the combination of two arrays of weights.

• Multiple averaging techniques require a reference value, as detailed previously. So far, the
simple average has been chosen as a reference value but it would be worthwhile to pick the
average determined with user-defined weights instead.

5.4.2 Characterization of the method weights

The customized method weights are incorporated into the system via the external database where
the user can define for each model what the weight should be. In that case a single value for
the weight is attributed to the method, preferably a number between 0 and 1. At this stage, the
weights are not necessarily normalized and represent the overall validity of the method as defined
by the user for a specific soil layer: the closer to 0, the less valid the method is, and conversely the
closer to 1, the more suitable the method is. It is recommenced to assign a weight equal to 1 for
analytical methods as they are assumed unconditionally correct, and a weight lower than 1 to the
methods based on empirical correlations.

So far, this characterization only describes constant piecewise weights for the methods, as shown
in figure 5.13. Additionally, weights can also be interpolated for any value of the Ic index provided
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Figure 5.13: Example of user-defined constant weights for a method. The method 1 is only valid
for coarse-grained soils with a Ic index below 2.6. Conversely, the method 2 is only valid for
fine-grained soils.

the weights are given by the user for two reference points (figure 5.14). Both linear and logarithmic
interpolations have been made available to enable an increase or decrease of the weights with the
Ic index. Linear interpolations allows for a smooth and gradual transition between two points,
whereas the transition in the logarithmic case can be much sharper. As it is not possible to
interpolate between 0 and 1 with a logarithmic function because log(0) is undefined, an arbitrary
number close to 0 must be chosen instead. As can be seen on figure 5.15, the closer to 0 this
number is, the sharper the transition between 1 and 0 becomes. This number can be seen as a
tuning factor for the user to control how the weights should vary with the Ic index. In other words,
this tuning factor controls the steepness of the transition. To summarize, there is plenty of room
for subjectivity on how the user can define and tweak the weights of the method, based on his own
knowledge and expertise.

Figure 5.14: Example of linearly interpolated weights for a method, based on the Ic index. The
method 1 is generally valid for coarse-grained soils, and the method 2 is generally valid for fine-
grained soils.

5.4.3 From method weights to path weights

The averaging framework detailed in this chapter assumes that the paths to a parameter are the
contributing models M1, ...,Mm. However, the user can only define the weights for the methods
and not for the paths directly. Moreover, the number of paths is much larger than the number
of methods. As a result, is it required to convert the user-defined method weights into the path
weights that are actually used in the averaging process.
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Figure 5.15: Comparison of linear and logarithmic interpolations for between 1 and a number close
to 0. The closer to 0, the sharper the transition.

A path can be summarized as a succession of visited methods, although its characterization is
made more difficult owing to the branching phenomenon. The final outcome of the path results
from all the intermediate calculations that occurred within the path. The validity of a path is
then a function of the validity of its underlying methods. The non-normalized weight of a path is
therefore defined as the product of the weights for all the visited nodes of the path:

wpath =
∏

method ∈ path

wmethod (5.17)

Once the weights are determined for all the paths of a parameters, they are then normalized and
the equation 5.2 can be used.

Conclusion Input into the system based on geotechnical considerations is made possible via
user-defined weights. The weighting scheme can include a dependency on either the SBT or the
Ic index, but the characterization of the weights can be quite subjective with many decisions left
to the user. This means that a set of weights will be highly dependent of the case considered and
the preferences of the user, and this set should not be copied-pasted from one project to another.
Calibration of the weights based on a large dataset could also be an option, but maybe at the
expense of a reduced transparency.
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Chapter 6

Application of automatic parameter
determination with HSsmall model

The Hardening Soil model is an advanced constitutive model often used in geotechnical engineering
for numerical analysis. The main advantages of this model is the stress dependency of the stiffness,
and the inclusion of both shear hardening and compaction hardening [29]. A modified version
of this model called Hardening Soil small strain (HSsmall) accounts for the strain dependency of
stiffness at a very low level of strain. The apparent complexity of this model compared to more
basic models like Mohr-Coulomb, requires to determine a larger number of model parameters from
soil investigations. In this chapter, the APD system is applied to a geotechnical project from
Witteveen-Bos using the HSsmall model. The aim is to compare the parameter values calculated
by the framework developed in this thesis, with values determined by geotechnical experts for an
actual case study.

6.1 Model parameters

A comprehensive list of parameters required for the HSsmall is detailed in the PLAXIS Material
Models Manual [29]. The present study focus mainly on the strength and stiffness parameters of
this model, namely: the peak friction angle angle φp, the dilatancy angle ψ, the reference secant
stiffness Eref50 , the tangent reference stiffness for primary oedometer loading Erefoed , the unloading-
reloading reference stiffness Erefur , the power of stress-level dependency of stiffness m, the reference
shear modulus at very small strains Gref0 , the threshold shear strain γ0.7, the failure ratio Rfail
and the stress ratio for normal consolidation Knc

0 . As cohesionless coarse-grained soils are only
considered in this study, the cohesion is assumed to be c = 0 kPa. The unloading-reloading Pois-
son’s ratio is supposed constant at νur = 0.2, and the reference stress is set at pref = 100 Pa. The
stress ratio for a normally consolidated state Knc

0 is by default defined according to Jaky‘s formula:
Knc

0 = 1− sinφcv = 0.470.

Various methods from the appendix A.2 have already been incorporated to the system in the
previous chapters to derive a few soil properties, some of which are already model parameters
for the HSsmall models: the peak friction angle and the dilatancy angle. The remaining model
parameters require to add new methods to the external database, these methods are detailed below:

K0 : The stress ratio K0 is related to the overconsolidated ratio OCR with the following relation
(Mayne 2007 [10]):

K0 = 0.192 ·
( qt
pref

)0.22
·
(pref
σ‘
v

)0.31
OCR0.27 (6.1)

OCR: The overconsolidation ratio is approximated using the following correlation (Mayne 2007
[10]):

OCR =
(0.192(qt/pref )0.22

Knc
0 (σ‘

v/pref )

) 1
sinφp−0.27 (6.2)
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Eref
50 : The secant reference stiffness can be calculated using the analytical formula:

Eref50 = E50

(c cosφp + pref sinφp
c cosφp − σ3 sinφp

)m
= E50

( pref
K0σ‘

v

)m
(6.3)

The secant Young modulus Es is often given for a level of strain of 0.1%, which is lower than the
level of strain for which the secant stiffness E50 is defined, in the range 0.2 % to 0.6 % [30]. This
means that E50 is likely to be lower than Es. However according to Lengkeek [30], sands are often
aged and slightly overconsolidated even if they are supposed normally consolidated, which leads
to an underestimation of the stiffness E50. In other words, the secant Young modulus Es defined
at 0.1 % strain for normally consolidated sands can replace the E50 stiffness in the equation 6.3
for the HSsmall model. A correlation by [30] has been proposed to estimate directly the reference
secant stiffness based on the relative density:

Eref50 =
60

100
Dr (6.4)

where Eref50 is expressed in MPa and Dr in %.

Eref
oed : The oedometer reference stiffness can be calculated using the analytical formula:

Erefoed = Eoed

(c cosφp + pref sinφp
c cosφp − σ3

Knc
0

sinφp

)m
= Eoed

(pref
σ‘
v

)m
(6.5)

where the oedometer stiffness Eoed can be assimilated to the 1-D constrained modulus MCPT in
the normally consolidated state [30] determined from CPT interpretation. As Erefoed is defined for
primary loading, it is important to realise that values for MCPT are only valid for the normally-
consolidated case. Additionally, the oedometer reference stiffness Erefoed can be estimated from the
reference secant stiffness Eref50 according to [29] and [30]:

Erefoed = Eref50 (6.6)

This formulla is generally valid for young deposit.

Eref
ur : The unloading-reloading reference stiffness can be calculated using the analytical formula:

Erefur = Eur

(c cosφp + pref sinφp
c cosφp − σ3 sinφp

)m
= Eur

( pref
K0σ‘

v

)m
(6.7)

The level of strain in unloading-reloading condition is often lower than 0.1 %, therefore Lengkeek
[30] advocated that the secant Young modulus Es in unloading-reloading conditions1 can serve as
a lower boundary for the unloading-reloading stiffness Eur. For many situations, the unloading-
reloadin reference stiffness can also be conveniently determined from the Eref50 stiffness [29]:

Erefur = 3Eref50 (6.8)

Gref
0 : The small strain shear reference stiffness can be calculated using the analytical formula:

Gref0 = G0

(c cosφp + pref sinφp
c cosφp − σ3 sinφp

)m
= G0

( pref
K0σ‘

v

)m
(6.9)

where G0 is the small strain shear stiffness as described and calculated by the equations ??, A.32
and A.33. An additional correlation from Brinkgreve et al [16] links the reference stiffness Gref0 in
MPa with the relative density:

Gref0 = 60 +
68

100
Dr (6.10)

where Gref0 is expressed in MPa and Dr in %.

1understand over-consolidated state
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m: The power for stress dependency of the stiffness is often take as a constant value equal to 0.5
for coarse-grained soils. Alternatively, a correlation with the relative density is provided by [16]:

m = 0.7− Dr

320
(6.11)

where Dr is expressed in %.

γ0.7 : The threshold shear strain γ0.7 can be approximated according to [29] as:

γ0.7 =
1

9G0
(σ‘
v(1 +K0) sin 2φp) (6.12)

A correlation from Brinkgreve et al [16] links the threshold γ0.7 with the relative density expressed
in %.

γ0.7 = (2− Dr

100
) · 10−4 (6.13)

Rf : The failure ratio is conventionally equal to 0.9, but a correlation with the relative density
expressed in % can be found in [16]:

Rf = 1− Dr

800
(6.14)

6.2 Description of the case study
The case study consists in the determination of the soil properties and the parameters for the
HSsmall model the based on two CPT performed in the region of Utrecht. The raw CPT data
includes the measurements of the cone resistance qc, the sleeve friction fs and the pore pressure
u2 for every two centimeters. A pre-processing stage has decomposed the soil profile into consis-
tent layers. Therefore the source parameters considered in this case study are: the average cone
resistance qc of the layer, the average friction ratio Rf , and the average effective and total stresses
σv and σ‘

v. The layers considered in this case study and the corresponding values for the source
parameters are described in the table 6.1. Layers made of fine-grained materials may lie between
the sandy layers and have not been studied here.

Layer depth2 qc(MPa) Rf (%) σv(kPa) σ‘
v (kPa) pore pressure (kPa)

1 Antropogeen Zand 0.9 8.99 0.79 18.62 18.62 0
2 Holoceen Zand 5.1 3.53 1.09 92.85 56.95 35.9
3 KR Zand_a 11.4 8.30 0.50 196.49 105.59 90.9
4 KR Zand_b 12.5 19.11 0.47 281.99 147.59 134.4
5 UR Zand 23.4 22.18 0.49 499.56 256.16 243.4
6 ST Zand 37.4 39.60 0.49 744.98 380.54 364.44

Table 6.1: Description of the source parameters for the sandy layers of the case study. The values
presented here are averages and are considered representative of the whole layer.

Based on these source parameters, basic soil properties and model parameters for HSsmall are de-
termined. Two different approaches are contemplated here: the first one analyses all the individual
paths for every parameter and proceed to the averaging operation once all the parameter values
are calculated. The second approach is a staged process where a first step calculates and averages
the intermediate parameters before proceeding to a second step to determine the destination pa-
rameters. The distinction between source, intermediate and destination parameters is detailed in
the table 6.2. The external database for the methods used in this case study is provided in the
appendix (tables C.1 and C.2).

The initial values for the source parameters are given in table 6.1. A coefficient of variation of 5%
has been arbitrary chosen for the four source parameters.

2average depth of the layer
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6.3 Results

6.3.1 First approach
For the first approach, all the paths to the intermediate and destination parameters are considered,
and the averaging process is performed once all the values are calculated. The averaging technique
Propagation has been chosen since we have seen it provides the most satisfying outcomes, and the
weights have been calculated according to the inverse RMSE of the path values in order to account
for both the bias and the variance of the contributing models. The probability densities of the
parameter‘s paths are assumed here normally distributed as a first approximation, even if this we
have seen that this assumption is incorrect. The global mean has been taken as a reference value.
The table 6.2 indicates the number of methods and the number of paths for every parameter.
The number of paths for the destination parameters may seem astonishingly high. There are for
example 3394 paths for the threshold γ0.7, 6 of which come from the equation 6.13, and 3388 of
which come from the equation 6.12. Indeed the equation 6.12 uses several input parameters which
already have many paths: G0 (7 paths), K0 (22 paths) and φp (22 paths), thus 22 · 22 · 7 = 3388.

The results obtained from the APD system for the layer "2- Holoceen Zand" are summarized
in the table 6.3. A consistency ratio below 1 is found for most of the parameters, except for the
shear wave velocity Vs for which the models are rather poorly aligned. This inconsistency of the
paths then propagates to the shear stiffnesses G0 and Gref0 , and the threshold γ0.7. Therefore,
distrust has been built for these parameters. Conversely, confidence has been built for the two
strength parameters φp and ψ, for which the averaged distribution is narrower than the contribut-
ing models (see figure 6.1). The remaining graphs for the other parameters are displayed in the
appendix C.3.

parameter qc [kPa] Rf [%] σV [kPa] σ‘
V [kPa] Dr [%] Vs [m/s] ψ [deg] Ψ [-]

value 3530 1.09 93 57 40 160 3.44 -0.55
σ 176 0.0545 4.65 2.85 6.3 23 0.92 0.024
Rc - - - - 0.32 1.47 0.3 0.005

parameter φp [deg] G0 [MPa] Es,NC [MPa] ES,OC [MPa] MNC [MPa] MOC [MPa] OCR [-] K0nc [-]
value 35 45.3 18.7 57.8 21.7 70 1.23 0.47
σ 1.2 10.2 2.1 10.7 3.1 9.5 0.09 0
Rc 0.31 1.56 0.24 0.58 0.18 0.27 0.0019 -

parameter K0 [-] m [-] R_Fail [-] E50ref [MPa] Eoedref [MPa] Eurref [MPa] G0ref [MPa] γ0.7 [-]
value 0.53 0.57 0.95 37.1 36.9 112.3 90.4 2.01E-04
σ 0.011 0.02 0.008 3.6 3.7 14.1 19.4 3.67E-05
Rc 0.0018 0.32 0.32 0.23 0.24 0.35 1.44 0.59

Table 6.3: Description of the results from APD for the layer "2-Holoceen Zand". The parameter
value and standard deviation σ result from the averaging scheme. Rc is the consistency index as
defined in 5.15

The comparison between the parameter values provided by APD and the values obtained from
Witteveen+Bos are detailed in the table 6.4 for the second layer "Holoceen Zand". Mean parameter
values calculated from APD are provided as well as upper and lower values, which correspond to
a deviation of 1.96 times the standard deviation from the average. There is a strong similarity
for the reference stiffness parameters Eref50 , Erefoed and Erefur between APD and WB, however the
small strain shear stiffness Gref0 tends to be underestimated by APD. The oedometer stiffness is
overestimated by APD for both the normally-consolidated and over-consolidated case, but this
apparent discrepancy does not transfer to the reference stiffness. Comparison of parameters values
for the other layers can be seen in table C.1. The quality of the estimates from APD depends of
the layer considered. The shallow layer "1 Antropogeen Zand" has a calculated OCR of 5, which
is not realistic because this layer is the most recent and has probably been remolded by human’s
activity. The OCR for shallow layer should be manually overwritten to 1.0 as Witteveen+Bos did.
This error in the OCR value has propagated to the other parameters K0 and the reference stiffness
parameters. The consistency of the whole parameter set has been checked by filling the parameter
values calculated by APD into a PLAXIS material set, which did not return any warning or error
message.
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parameter RD [%] M_NC [MPa] M_OC [MPa] OCR [-] K0 [-] phip [deg] psi [deg]
APD WB APD WB APD WB APD WB APD WB APD WB APD WB

lower 27.6 - 15.6 - 51 - 1.04 - 0.51 - 32.7 - 1.63 -
avg 40 37 21.7 14.1 70 48.7 1.23 1.00 0.53 0.47 35.0 36.5 3.44 4.00
upper 52.4 - 27.8 - 89 - 1.43 - 0.55 - 37.3 - 5.25 -

parameter E50ref [MPa] Eoedref [MPa] Eurref [MPa] G0ref [MPa] gamma0.7 [-] m [-] Rf [-]
APD WB APD WB APD WB APD WB APD WB APD WB APD WB

lower 29.9 29.4 29.4 21.5 84.6 80.5 52.3 81.12 1.29E-04 - 0.54 - 0.935 -
avg 37.1 36.8 36.9 30.6 112.3 114.3 90.4 115.1 2.01E-04 1.59E-04 0.57 0.50 0.95 0.9
upper 44.2 44.2 44.2 39.6 140.1 148.2 128.5 149.2 2.74E-04 - 0.61 - 0.965 -

Table 6.4: Comparative table for the layer "2-Holoceen Zand" of the parameters values between
APD and Witteveen+Boss.

Figure 6.1: Averaged distributions for the strength parameters φp (Rc = 0.31) and ψ (Rc = 0.30).
The vertical red dotted line is the average value from W+B
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Figure 6.2: Averaged distributions for the reference stiffness parameters Eref50 (Rc = 0.23), Erefoed

(Rc = 0.24), Erefur (Rc = 0.36) and Gref0 (Rc = 1.44). The vertical red dotted lines represent
the lower, average and upper values from W+B. There is a rather strong similarity between the
averaged distribution from APD and the span from W+B.
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6.3.2 Second approach

For the second approach, the intermediate parameters as defined in the table 6.2 were averaged be-
fore proceeding to the determination of the destination parameters. The results of the intermediate
parameters are thus identical to the first approach. The differences in the destination parameters
are highlighted in the table 6.5 where the parameter values from the first and second approaches are
displayed along with the parameter values from Witteveen+Bos for the second layer "2-Holoceen
Zand". The second approach returns reasonable results in the range of the expected values with
only minor discrepancies compared to the first approach, at least for this second layer. A larger
difference up to a factor 2 is sometimes noticeable in other layers (annexe C.3), but it is quite
difficult to draw general conclusions to characterize the variation between the two approaches.

parameter E50ref [MPa] Eoedref [MPa] Eurref [MPa] G0ref [MPa] γ0.7[−]

APD1 APD2 WB APD1 APD2 WB APD1 APD2 WB APD1 APD2 WB APD1 APD2 WB
lower 29.4 22.2 23.1 29.4 17.2 21.5 84.6 70.5 80.5 52.3 65.3 81.12 1.30E-04 1.29E-04 -
avg 37.1 32.6 31.5 36.9 28.3 30.6 112.4 101.3 114.3 90.4 88.9 115.1 2.02E-04 1.71E-04 1.59E-04
upper 44.2 43 40 44.2 39.3 39.6 140.2 132 148.2 128.5 112.4 149.2 2.74E-04 2.12E-04 -

Table 6.5: Comparative table for the layer "2-Holoceen Zand" of the parameter values between
the first and second approaches of APD and Witteveen+Bos.

One remarkable aspect about this staged procedure is the reduction of the number of paths for
the destination parameters. In the first approach, the number of paths of a destination parameter
depended on its depth in the graph, but also on the complexity of its associated methods and on
their number of input parameters. This led for example to a large number of paths for the reference
stiffness Erefur which had 2880 paths. The readability and the interpretation of the graph 6.2 was
then harder, and the system becomes overall less transparent. The staged approach improves the
readability of such graph (see figure 6.3) but it also significantly alters the averaging process of
the destination parameters. From the 930 paths of the reference small strain shear stiffness Gref0 ,
6 originated from the equation 6.10 while the remaining 924 originated from 6.9. This means that
n the case of equal weights, the method 6.10 accounts for less than 1% of the weights for the first
approach, but it now accounts for exactly 50 % of the weights for the second staged approach. This
phenomenon directly influences both the averaged value and standard deviation of the parameters,
and could potentially lead to absurd values in some cases.

Figure 6.3: Averaged distributions for the reference stiffness parameters Eref50 , Erefoed , Erefur and
Gref0 for the second approach.
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An argument can be made to limit the number of possible outcomes for consistency reasons for
certain parameters. In that case, intermediate averaging would be a reasonable and valuable
approach. The stress exponent m or the soil unit weight γs are cases in point. It as generally
agreed that the same exponent m should be used for the reference stiffness parameters. In that
case, it is preferable not to have too many values for the m exponent and to have a single fixed
value.

6.4 Conclusion
The APD system proved to be able to provide a consistent parameter set for the HSsmall model
with values that were in general in accordance with the parameters determined by Witteveen+Bos.
It is difficult at this stage to draw reliable general conclusion about the quality of APD’s outcomes
as it would sometimes overestimate a parameter value compared to W+B for a particular layer,
and underestimate that same parameter for another layer. Two approaches were compared to in-
vestigate the influence of an intermediate averaging procedure before assessing the final destination
parameters. It is recommended not to proceed to an intermediate averaging as the model averaging
framework for the determination of weights was not tailored to support such a procedure.
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Chapter 7

Conclusions and discussions

7.1 Conclusions
This thesis elaborated on the development of a system designed to determine geotechnical model
parameters based on in-situ tests and various correlations found in the literature. The plurality of
correlations, charts and rules-of-thumb contributes to the total uncertainty in the determination
of model parameters and may result in scepticism or distrust in the use of complex constitutive
models for numerical analysis. A first major milestone towards an automated system for parameter
determination has been reached by van Berkom [1] and has served as a basis on which the present
study has expanded and improved. The emphasis was put on CPT correlations for coarse-grained
soils, but the principles established in this thesis are quite general and could be easily applied to
other types of soil and in-situ tests. The goal of this thesis throughout the chapters was to answer
the main research question formulated in introduction: "How to combine results from multiple
correlations and chains of correlations to estimate geotechnical parameter values and how to assess
the quality of these estimates ?". To answer this question, several sub-objectives were defined and
are re-enacted below:

• Designing and implementing validation of parameters: Before setting-up any statis-
tical framework, it was critical to make sure that the values provided by the system made
sense from a geotechnical point of view. Chapter 3 presented a case study based on actual
CPT data to show that the system was able to produce reasonable outcomes. Absurd values
and outliers are now taken care of and removed thanks to an automatic validation of the
calculated values.

• Dealing with circular connections: A few ideas were developed in chapter 3 about how
circular connections could be be incorporated into the APD system. However the concepts
elaborated in this study were not implemented and have not been validated.

• Characterizing and propagating uncertainty: A statistical framework has been concep-
tually developed in chapter 4 and implemented to the system to account for the uncertainty
and its propagation into the graph. The uncertainty is now clearly expressed in terms of
standard deviation and includes both the uncertainty from the input parameters and the
uncertainty from the empirical transformation functions of the network. The propagation of
the uncertainty is made possible either by the FOSM approach or with Monte-Carlo simu-
lations. This framework has been verified on a imaginary test case and then validated for
geotechnical parameters.

• Comparing Methods selection and Method averaging: The concept of model averag-
ing has been described in chapter 5 to combine results from multiple paths into one averaged
distribution. This enabled the comparison between method selection where only a single path
is considered and method averaging where all the contributing paths are accounted for. The
behavior of the combined model depends heavily on the consistency or the alignment of the
contributing models: confidence in a parameter value is built when the paths are well aligned
and distrust is built when the paths are poorly aligned. In both cases, method averaging
always provides a more accurate description of the true variability for the model parameters,
provided the methods are appropriate for the soil type and the applicable conditions.
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• Validity of correlations: The of validity of the empirical correlations hinges on several
aspects: the Soil Behavior Type, the Ic index, the state or consolidation, and even sometimes
on the chemical composition of the soil. Inadequate correlations are deactivated in the system
in order to avoid obtaining outliers or values with little significance. Moreover, user-defined
weights with a linear or logarithmic interpolation of weights based on the Ic index enables
the inclusion of geotechnical knowledge about the validity of correlations.

• Validation of the system: The system has been applied to an actual civil engineering
project in chapter 6 and the parameter values calculated by APD were compared with the
values determined by the engineers from Witteveen+Bos. The system was able to produce a
satisfying and consistent parameter set with outcomes in the expected range, and had a rather
decent similarity with the values from Witteveen+Bos. The difference mainly depended on
the layer considered, therefore it is difficult to state if APD is more accurate and closer to
the truth than W+B or not.

• Transparency of the system: As the system became more complex with the addition
of new features for the uncertainty framework and model averaging, the verification of in-
termediate results has become more difficult but is still possible. This verification can even
become more tedious as the number of paths quickly rises to a thousand in some cases. When
determining an averaged distribution, it is highly recommended to look at the distributions
of all the contributing models to have a good feeling of how the system proceeded. Each
value calculated by the system is now also associated to its path containing all the visited
method nodes to obtain that value. This is an important step towards a better transparency
and an efficient verification of the results.

In practice, it is recommended to choose a model averaging strategy over the uni-method selection.
The averaging process should be preferably hybrid, taking into account both geotechnical and sta-
tistical inputs in the determination of weights. The averaging technique Propagation is advocated
here as it provides the most satisfying results, but the technique Buckland is also acceptable if
one chooses to be a bit more on the conservative side. It is not recommended at this stage of de-
velopment to proceed to an intermediate averaging of the parameters, but this approach is worth
investigations provided some modification in the averaging scheme. To conclude, the APD system
is a promising tool that successfully passed the first validation stage. Engineers are encouraged to
confront the outputs of the APD system with their current practice.

7.2 Discussions
This thesis constitutes another step forward towards an automatic procedure for the determination
of model parameters based on in-situ tests. However the system needs some maturity to be
legitimized as a valid and reliable tool. The following bullets points highlight a few facet of the
system that require additional investigations:

• As this study solely focused on coarse-grained soils, the whole framework needs to be applied
and validated for fine-grained soils too. The collection of methods must then be extended to
include various correlations valid for clayey soils. Mixed-soils like silts must be studied with
great care as correlations from both coarse and fine-grained materials could apply. We have
seen in this thesis that user-defined and interpolated weights based on the Ic index could be
a possibility when dealing with mixed soils. The main challenge here would be to calibrate
the weights of the methods appropriately. The calibration of the weights is still at this stage
an open question and could originate either from the experience of geotechnical experts, or
from machine learning algorithms.

• When building the statistical framework, it was supposed that the parameters were all mutu-
ally independent, but this hypothesis is not necessarily realistic as strong correlations may be
expected between parameters. This implies that the cross-correlation coefficients between all
the parameters, or the covariance matrix must be specified by the user. It would be valuable
in further studies to investigate the influence of the contribution of the cross-correlations
in the determination of the paths’ variance. The inclusion of the cross-correlation is rather
straightforward from a conceptual and software points of view, but the difficulty here lies in
the specifications of the covariance coefficients.
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• Quite similarly, the cross-correlation between the models has been neglected in the model
averaging framework. This affects the results of the averaged variance determined from
the strategy Propagation as its formula includes the covariance between each contributing
model. From a theoretical point of view, a negative covariance results in a decrease of the
averaged variance and a positive covariance results in an increase of the averaged variance.
The strategy Buckland can be regarded as an upper bound for the averaged variance since it
assumes perfectly correlated models, but this assumption might be too pessimistic in practice.
The determination of the cross-correlation between the models is not a straightforward task
but might be possible with the combination of a Monte-Carlo analysis and bootstrapping
techniques.

• The definition of the transformation uncertainty is not constant for all the methods as it
greatly depends on what information is provided by the author of a correlation. The total
uncertainty of certain paths might then be either under-estimated or over-estimated. More-
over, it was assumed that the standard error around the trend line was constant for all
parameter values, but it might not be the case. These issues could be easily solved if the
database from which a correlation has been estimated was made available. The uncertainty
of the transformation function could be then accurately measured.

• For simplification purposes, it was assumed throughout this thesis that the variables were
normally distributed. This assumption is acceptable for some cases, situations arose where
a non-negligible fraction of the density distribution was cover absurd (negative) values. The
Monte-Carlo analysis was able to provide empirical distributions with the determination of
the Kernal Density Estimation, but the KDE is a non parametric distribution that is difficult
to incorporate in the model averaging framework. Further research should be made about
which type of distribution is most suitable for each parameter.

• This study was based on CPT-based correlations. It would be interesting to validate the
system for other types of in-situ test: DMT, SPT or pressuremeter test. Ideally, two different
in-situ tests executed at the same location should yield very similar results. Different weights
may apply depending of the user’s judgment about the reliability and the quality of the in-situ
tests.

• For large networks, the graphs generated by the system become difficult to read and to
interpret. Assigning a value with its path is visually complex and is not an automated task.
It would be valuable to make the graph dynamic and user interactive in order to increase the
transparency and the usability of the framework.

• Finally, the case study for the validation of the HSsmall model parameters showed that the
results from APD varied notably depending on which layer was considered. In order to legit-
imize the benefits of APD, the system should be applied to a larger number of projects and
cases to clear global trends about the performance of the system. This thesis concluded that
APD was able to provide reasonable parameters values with supposedly a better description
of the parameter’s accuracy and quality, but this remains to be verified on a much larger
scale.

72



Appendix A

Collection of correlations

A.1 Correlations used by the software CPeT-IT

Figure A.1: Extract from the manual of the software CPeT-IT. This is the set of correlations used
by the software.
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A.2 Extra correlations and methods for soil properties

A.2.1 Relative density
1. Kulhawy & Mayne (1990) This formulation relates the relative density with the nor-

malised cone tip resistance Qtn = (qt/pa)/(σ‘
v0/pa)0.5. A correcting factor Qf accounts

for the compressibility and the stress state of the sample [12]. The table A.1 compiles the
statistical data of the relationship A.1 for different cases.

D2
r =

Qtn
Qf

(A.1)

Case Qf n r2 σ
NC-high comp. 280 59 0.796 0.14
NC-med comp. 292 145 0.885 0.10
NC-low com. 332 190 0.711 0.14
NC-average 305 404 0.776 0.13
low OCR (<3) 390 34 0.711 0.14
med OCR (3-8) 403 56 0.849 0.10
high OCR (>8) 443 50 0.859 0.12

Table A.1: Statistical data of the correlation A.1. SOurce: [12]

The software CPeT-IT uses the approximation from Robertson and Cabal [14], which is
actually the average value of Qf . The pooled variance of these datasets for D2

r is then
σ = 0.13.

Dr = 100 ·
√
Qtn
350

(%) (A.2)

2. Baldi et al (1986) The form of the equation is inspired by Schmertmann (1976). The
fitting coefficients are C0 = 15.7 and C2 = 2.41 for normally consolidated sands [14].

Dr = 100 · ( 1

C2
) ln

Qtn
C0

(%) (A.3)

No standard deviation is reported for this formula, an arbitrary value has been set at σ = 11%.

3. Lunne and Christoffersen (2003) The form of the equation is also inspired by Schmert-
mann (1976). The fitting coefficients are C0 = 61, C1 = 0.71 and C2 = 2.91 [8].

Dr = 100 · ( 1

C2
) ln

qc
C0(σ‘

v0)C1
(%) (A.4)

where qc and σ‘
v0 are both given in kPa. No standard deviation is reported for this formula,

an arbitrary value has been set at σ = 11%.

4. Jamiolkowski, Presti and Manassero (2001) The form of the equation is also inspired
by Schmertmann (1976). The fitting coefficients are C0 = 17.68, C1 = 0.50 and C2 = 3.10
[31].

Dr = 100 · ( 1

C2
) ln

qc/pa

C0(
σ‘
v0

pa
)C1

(%) (A.5)

The standard deviation for this correlation is σ = 10% for 180 data points and a correlation
coefficient R = 0.89 .

5. Lancellotta (1983) Applicable for normally consolidated, unaged and uncemented sands.

Dr = −98 + 66 log
qc√
σ‘
v0

(%) (A.6)

in which qc and σ‘
v0 are given in t/m2. The standard deviation for this correlation is σ = 6.6%

for 144 data points and a correlation coefficient R = 0.96 [32].
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6. Jamiolkowski (2001) For quartz and silica sands, the following relation inspired by Lan-
cellotta (1983) relates the relative density with the normalised cone tip resistance for several
state of compressibility:

Dr = 100 · [0.268 ln
Qtn/pa√
σ‘
v0/pa

− bx] (%) (A.7)

in which bx = 0.675 for sands with a medium compressibility, bx = 0.525 for highly com-
pressible sands, and bx = 0.825 for sands with a low compressibility. The standard deviation
for this relation is σ = 7.9% for 456 data points and a correlation coefficient R = 0.887 [31].

A.2.2 Friction angle
1. Jefferies & Been (2006) This is the reference equation used by the software CPeT-IT, it

relates the peak friction angle with the critical state friction angle and the state parameter
Ψ. This relation was found in [14] (Robertson and Cabal) but is based on publications by
Jefferies and Been [5] [33] [34].

φ‘ = φ‘cv − 48Ψ (A.8)

No standard deviation is reported for this formula, it has been estimated graphically to be
equal to σ = 2◦ for 154 data points, based on the figure A.2.

Figure A.2: Drained angle of friction as a function of state parameter for several sands. Source:
[5].

2. Kulhawy & Mayne (1990) This relation is valid for a clean, rounded quartz sand [14], for
both normally consolidated and overconsolidated states.

φ‘ = 17.6 + 11 logQtn (A.9)

The standard deviation for this correlation is σ = 2.8◦ for 633 data points, with a correlation
coefficient R = 0.640 [12].

3. Robertson & Campanella (1983) This relation is usually valid for moderately compress-
ible quartz sands according to [14] and [6].

φ‘ = arctan (
1

2.28
[log

qc
σ‘
v0

+ 0.29]) (A.10)

No standard deviation is reported for this formula, it has been estimated graphically to be
equal to σ = 2◦ for 48 data points, based on the figure A.3.

4. Peak friction angle and dilatancy angle The peak friction angle is the sum of the friction
angle at critical state and the dilatancy angle ψ.

φ‘ = φ‘cv + ψ (A.11)

75



Figure A.3: Peak friction angle as a function of the bearing capacity number. Source: [6].

This relation is considered theoretical, therefore the standard deviation of this relation is
reduced to 0.

5. Brinkgreve, Engin and Engin (2010) In drained conditions, the friction angle can be
estimated from the relative density [16]:

φ‘ = 28 + 12.5
Dr

100
(A.12)

No standard deviation is reported in the original publication, an arbitrary deviation σ = 3◦

is chosen.

A.2.3 Dilatancy angle
1. Brinkgreve, Engin and Engin (2010) In drained conditions, the dilatancy angle can be

estimated from the relative density [16]:

ψ = −2 + 12.5
Dr

100
(A.13)

No standard deviation is reported in the original publication, an arbitrary deviation σ = 1◦

is chosen.

2. Lee et al. (2008) This formula is inspired from Bolton 1986 ([35]) but here the mean
effective stress is replaced with 100qc

pa
[36]. R and Q are functions of the silt content and were

taken as 1 and 14 respectively. The m parameter is a dilatancy ratio varying between 3 for
triaxial conditions and 5 for plane-strain conditions. A value m=3 has been chosen.

ψ = m[Dr(Q− ln
100qc
pa

)−R] (A.14)

The standard deviation for this correlation is σ = 0.9◦ [36].

A.2.4 State parameter
1. Robertson (2010) The state parameter for a wide variety of sands can be estimated from

the equivalent normalized cone resistance [37]:

Ψ = 0.56− 0.33 logQtn,cs (A.15)
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whereQtn,cs is a corrected cone resistance taking into account the fine content, the mineralogy
and the plasticity. The correcting factor Kc is function of the Ic valiue.

Qtn,cs = KcQtn (A.16)

No standard deviation is reported in the original publication for the correlation A.15, an
arbitrary deviation σ = 0.04 is chosen.

2. Sadrekarimi (2016) The relation in inspired from Been et al (1987), thus Sadrekarimi [38]
proposed k=27.6 and m =11.4 as fitting coefficients. It can be noted that the coefficients k
and m depend on the slope of the critical state line.

Ψ = −
ln Qtn

k

m
(A.17)

The standard deviation for this correlation is σ = 0.03 for 42 data points [38]. The author
mentions that this precision for the state parameter is satisfying.

A.2.5 Young Modulus

1. Robertson (2009) This is the reference relation used by the software CPeT-IT. The Young
modulus is defined as the mobilized modulus at 0.1% strain [14]. The following relation is
valid for uncemented silica sands . The ratio Es/(qt − σv0) is sometimes referred as αE [39].

Es = (qt − σv0)0.015 · 100.55Ic+1.68 (A.18)

No standard deviation is reported in the original publication, however αE ranges between
3 and 12 for normally consolidated sands, and between 5 and 20 for overconsolidated sands
[39]. An arbitrary standard deviation for αE is then set at σ = 2.

2. Melnikov & Boldyrev (2016) A unified regression equation for both the Young Modulus
of sandy and clayey soils is given by [40]:

Es = 24.60− 6.005Ic − 0.5811I2c + qc(1.084− 1.511Ic + 1.090I2c ) (A.19)

with qc and Es both in MPa.

The standard deviation for this correlation is σ = 1.67 MPa with a correlation coefficient
R2 = 0.872.

3. Melnikov & Boldyrev (2016) From the same paper as the previous equation, a regression
equation specifically for sands is given [40]:

Es = 14.429 + 1.2454qc (A.20)

with qc and Es both in MPa.

The standard deviation for this correlation is σ = 2.53 MPa with a correlation coefficient
R2 = 0.817.

4. Massarsch (2015) The elastic modulus for cohesionless soils can be determined for various
compaction levels (governed by the a coefficient). A value a = 28 has been chosen for compact
sands [41].

Es = 74a(
qc
pa

)0.5 (A.21)

with Es in kPa

No standard deviation is reported in the original publication for the correlation A.15, an
arbitrary deviation σ = 4000 kPa is chosen.
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5. Baldi (1989) The secant Young modulus Es at a level if strain of 0.1% can be estimated
based on the chart figure A.4 for various states of consolidation. However, no correlation
is provided by the author, which makes it hard to incorporate the chart into the system.
Three equations have been graphically estimated for the three areas defined in the chart.
These correlations are quite rough and custom, and have not been validated. They have
been implemented into this work for the sake of comparison and should not be used in any
actual project.

The correlation for the over-consolidated sand is:

Es = qc(45− 11.9 log

(
qc
σ‘
v

)
) (Do not use!) (A.22)

The correlation for the aged normally-consolidated sand is:

Es = qc(30.17− 7.93 log

(
qc
σ‘
v

)
) (Do not use!) (A.23)

The correlation for the recent normally-consolidated sand is:

Es = qc(10.71− 2.64 log

(
qc
σ‘
v

)
) (Do not use!) (A.24)

Figure A.4: Secant Young modulus against the normalised cone resistance. Source [7].

A.2.6 1-D Constrained Modulus
1. Robertson (2009) This is the reference relation used by the software CPeT-IT. The 1-D

constrained modulus is defined as

M = αM · (qt − σv0) (A.25)

The value of αM usually lies in the range 2-14 [14], Robertson [39] proposes a correlation
based on Ic: αM = 0.03[100.55Ic+1.68] for coarse-grained soils. It should be noted that Robert-
son and Cabal (2015)[14] advocates a coefficient 0.0188 for αM but it has been overruled here
by the coefficient 0.03 instead based on the paper from Robertson 2009 [39]. The coefficient
αM must be cut-off for high values of the normalized cone resistance Qtn.
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For Ic > 2.2:

αM = Qtn when Qtn < 14

αM = 14 when Qtn > 14
(A.26)

For Ic < 2.2:
αM = 0.03[100.55Ic+1.68] (A.27)

However with this definition for αM , there is strange jump at the threshold Ic = 2.2. A
suggestion would be to apply a cut-off for αM that is valid for all the Ic values. No standard
deviation is reported in the original publication, an arbitrary standard deviation for αM is
then set at σ = 2.

2. Mayne (2001) Mayne proposes a constant value α = 5 [14], which is only valid for normally
consolidated sands.

M = 5 · (qt − σv0) (A.28)

No standard deviation is reported in the original publication, an arbitrary standard deviation
for αM is then set at σ = 2.

3. Lunne & Christoffersen (1983) Various correlations fro the constrained modulus are
collected in the paper [8]. Results from the NGI suggests that for normally consolidated
sands:

M = 2.17qc + 16.6 (A.29)

where qc is in MPa.

Figure A.5: 1D Constrained Modulus against the cone resistance qc. Source: [8].

No standard deviation is reported for this formula, it has been estimated graphically to be
equal to σ = 4.97 MPa for 40 data points, based on the figure A.5.

4. Robertson & Mayne (1990) A relationship between the ratio MCPT

qc
and the relative

density Dr has been studied for normally consolidated sands:

M = qc101.09−0.0075∗Dr (A.30)

where Dr is expressed in %. The standard deviation for the ratioM/qc correlation is σ = 1.38
for 118 data points, with a correlation coefficient R = 0.678 [12].

A similar expression for overconsolidated sands exists:

M = qc101.78−0.0122∗Dr (A.31)

The standard deviation for the ratio M/qc correlation is σ = 1.51 for 94 data points, with a
correlation coefficient R = 0.734 [12].
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A.2.7 Small-strain Shear modulus

1. Elastic theory The shear modulus can be directly determined from the shear wave velocity
Vs using the theory of elasticity:

G0 = ρV 2
s (A.32)

This relation is considered as theoretical, therefore the standard deviation of this relation is
reduced to 0.

2. Tanaka & Tanaka (1999) The net cone tip stress can be related to the small strain shear
modulus with the equation [9]:

G0 = 50pa(
qt − σv0
pa

)m (A.33)

with the approximation m = 0.6 for sandy soils.

No standard deviation is reported in the original publication, an arbitrary standard deviation
for αM is then set at σ = 5 MPa .

A.2.8 Shear wave velocity

1. Robertson Cabal (2014) This is the reference equation used by the software CPeT-IT
to compute the shear wave velocity [14]:

Vs =
√

(αVs(qt − σv)/pa) (A.34)

with αVs = 100.55Ic+1.68. No standard deviation is reported in the original publication, an
arbitrary standard deviation for αVs is set at σ = 60.

2. Mayne (2006) The shear wave velocity can be computed directly from the sleeve friction
fs in kPa for both sands and clays: [9]

Vs = 51.6 ln fs + 18.5 (A.35)

with fs in kPa and Vs in m/s.

Figure A.6: Shear wave velocity against sleeve friction of SCPTU observations. Source: [9].

No standard deviation is reported for this formula, it has been estimated graphically from
figure A.6 to be equal to σ = 35 m s−1 for 161 data points and a correlation coefficient
R2 = 0.823.
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Figure A.7: Shear wave velocity against cone resistance qt. Source: [10].

3. Baldi et al (1989) The following correlation is valid for uncemented unaged quartz sands
[10]:

Vs = 277(qt)
0.13(σ‘

v0)0.27 (A.36)

No standard deviation is reported for this formula, it has been estimated graphically from
figure A.6 to be equal to σ = 21 m s−1.

4. Hegazy and Mayne (1995) Three correlations are provided by Hegazy and Mayne [42] to
estimate the shear wave velocity for sandy material:

Vs = 13.18(qc)
0.192(σ‘

v0)0.179 (A.37)

with qt and σ‘
v0 both in kPa.

No standard deviation is reported on the original publication [42], an arbitrary value is
set to σ = 30 m s−1. However, the original publication provides the correlation coefficient
R2 = 0.684 for 133 data points.

Vs = 12.02(qt)
0.319(fs)

−0.0466 (A.38)

with qt and fs both in kPa.

No standard deviation is reported on the original publication [42], an arbitrary value is
set to σ = 40 m s−1. However, the original publication provides the correlation coefficient
R2 = 0.574 for 92 data points.

The following formula is more general and is also valid for clayey soils, it can also be found
in [43] and [10]:

Vs = [10.1 log(qt)− 11.4]1.67 · (100
fs
qt

)0.3 (A.39)

with qt and fs both in kPa.

No standard deviation is reported on the original publication [42], an arbitrary value is
set to σ = 30 m s−1. However, the original publication provides the correlation coefficient
R2 = 0.695 for 323 data points.

%
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Appendix B

Characterization of the total
uncertainty according to APD and
Phoon & Kulhawy

Chapter 4 introduced the characterization of the uncertainty in geotechnical practices according to
Phoon and Kulhawy [4] [17] who defined the total uncertainty of a design parameter ξd (equation
4.2). The definition of the uncertainty in the APD framework developed in this thesis (equation 4.5)
slightly differs from Phoon and Kulhawy but is actually congruous with their previous publications.
This appendix provides a mathematical proof that the two approaches are consistent, based on a
particular example. The two approaches are compared for the correlation:

φ‘ = 17.6 + 11 log
qc/pa√
(σ‘
v/pa)

(B.1)

This correlation has been chosen because it is explicitly studied by Phoon and Kulhawy in [17].

B.1 Approach from Phoon and Kulhawy

We reuse here the notations from the publications [4] and [17]. The friction angle φ is considered
to be the design parameter ξd, and the cone resistance qc is the measured parameter ξm. The
measured parameter is split into three component: the trend t, the inherent variability w and the
measurement error e:

qc = ξm = t+ w + e (B.2)

The design parameter is the result of a transformation function T (·) such as:

φ = ξd = T (qc, ε) = T (t+ w + e, ε) = 17.6 + 11 log
qc/pa√
(σ‘
v/pa)

+ ε (B.3)

where ε is the transformation error of the function T (·). Note that the function T (·) is considered
uni-variate here with respect of the geotechnical parameters qc, pa and σ‘

v.
The total uncertainty of the design parameter is defined according to the equation [6b] from [17]
as:

SD2
ξd

=
(∂T
∂w
|(t,0)

)2
SD2

w +
(∂T
∂e
|(t,0)

)2
SD2

e +
(∂T
∂ε
|(t,0)

)2
SD2

ε (B.4)

After evaluating the partial derivatives, it holds:

SD2
ξd

=
22.8

t2

(
SD2

w + SD2
e

)
+ SD2

ε (B.5)

where SD2
ε is the standard deviation of the transformation error, SD2

w the standard deviation of
the soil inherent variability, and SD2

e the standard deviation of the measurement error.
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B.2 Approach from APD

Uni-variate and independent case
The total uncertainty of the friction angle φ is composed of the parameter uncertainty σpara and
the method uncertainty σmet:

σ2
tot(φ) = σ2

para(φ) + σ2
met(φ) (B.6)

The parameter uncertainty is calculated using the formula:

σ2
para(φ) =

n∑
i=1

(
∂f

∂xi
)2σ2(xi) + 2

n−1∑
i=1

n∑
j=i+1

(
∂f

∂xi

∂f

∂xj
)C(xi, xj) (B.7)

In the case of a single variable qc, the total uncertainty for the friction angle becomes:

σ2
tot(φ) =

22.8

q2c
σ2(qc) + σ2

met (B.8)

The total uncertainty as defined in APD (eq B.8) is then quite similar to the formulation from
Phoon and Kulhawy (eq B.5). In practice, the value for the cone resistance qc in equation B.8 would
be equal to the trend t in equation B.5. The two approaches are identical if the input uncertainty
σ2(qc) encompasses the inherent variability SD2

w and the measurement error SD2
e . The standard

deviation of the transformation error SD2
ε is taken as the standard error of the regression function

[17], while a correcting factor is applied in the framework APD (equation 4.8).

Multivariate and independent case
In practice, the correlation B.1 is not consider uni-variate by the APD system, but is actually a
multivariate function with respect of the cone resistance qc, the reference pressure pa and the effec-
tive stress σ‘

v. These variables are still considered mutually independent such as their covariances
are all equal to 0. In this case, the total uncertainty of the friction angle becomes:

σ2
tot(φ) =

22.8

q2c
σ2(qc) +

22.8

2pa
σ2(pa) +

22.8

2σ‘
v

σ2(σ‘
v) + σ2

met (B.9)

In this case, the approaches from APD and Phoon & Kulhawy are slightly different, in a sense that
APD includes the variability of all the parameters present in the correlation B.1. Throughout this
thesis, the uncertainty has been calculated using the multivariate and independent approach from
APD.
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Appendix C

Annexes to the chapter 6

C.1 External database for the methods
The external methods database used for the validation of the HSsmall model in chapter 6 is detailed
in the two tables C.1 and C.2.

C.2 Graphs of the parameters for first approach
The averaged distributions and their contributing paths are displayed in the graphs below for all
the parameters. They are valid for the second layer "2- Holoceen Zand".

C.3 Results of the APD system for several layers
The tables C.1 and 6.4 gathers the results from APD and WB for all several layers.

C.4 Graph generated
The graph generated by the system for the HSsmall case study is displayed here.
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Figure C.3: Averaged distributions for the relative density Dr and the dilatancy angle ψ for the
first approach from chapter 6. The vertical red dotted line is the average value from W+B.

Figure C.4: Averaged distributions for the shear wave velocity Vs and the peak friction angle φp
for the first approach from chapter 6. The vertical red dotted line is the average value from W+B.

Figure C.5: Averaged distributions for the OCR and K0 ratio for the first approach from chapter
6. The vertical red dotted line is the average value from W+B.
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Figure C.6: Averaged distributions for the elastic Young modulus Es in both normally and over-
consolidated states for the first approach from chapter 6. The vertical red dotted line is the average
value from W+B.

Figure C.7: Averaged distributions for the 1-D constrained modulus MCPT in both normally and
over-consolidated states for the first approach from chapter 6. The vertical red dotted line is the
average value from W+B.

Figure C.8: Averaged distributions for the shear stress modulus G0 for the first approach from
chapter 6. Cluster from the right originates from the equations ?? and A.33, cluster from the left
originates from the equation A.32.
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Figure C.9: Averaged distributions for the failure ratio Rfail and the stiffness stress exponent m
for the first approach from chapter 6. The vertical red dotted line is the average value from W+B.

Figure C.10: Averaged distributions for the reference stiffness parameters Eref50 , Erefoed , E
ref
ur , Gref0

for the first approach from chapter 6. The vertical red dotted lines represent the lowe, the upper
and the average value from W+B.
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Figure C.11: Averaged distributions for the threshold γ0.7 for the first approach from chapter 6.
The vertical red dotted line is the average value from W+B.
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