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For the T2 sums, simple integration is not reasonable. 
A good approximation for Si, the inner sum, i.e. the sum 
of Ufrom j = 1 to k*/2, where U = [k + (q(k - j)j]1/2]a/z((k 
- j ) j ] -5/2,  was found empirically, for high k, to approach 
1.354/k. Substituting this value into eq 19 of the main 
paper, we get 

m 

k = 2  
4’(~,6/~) N C x k ( S i )  + 1.354Lmxk/k dk 

Whence, the remainder integral is 
R{4’(x,Y2)] = 1.354 Ei(-m In x )  

l m ( e - y / y )  dy 

where Ei(t) is the exponential integral 

Similarly 
m 

4’(~,3/~) N C k x k ( S i )  + 1.3541mxk dk 
k = 2  m 

Whence 
R{4’(~ ,3 /~)  = 1.354xm/(-ln x )  

and 
m 

@’(xf/J IZ! C k 2 x k ( S i )  + 1.354 kxk  dk 
k = 2  m 

Whence 
R{4’(x,yz)] = 1.354{xm(-ln x)){m + l/(-ln x ) ]  

For values of x near unity, with which the correction 
terms are used, -In x is closely equal to 1 - x ,  or l/Dc, the 
chain number-average molecular weight. Algorithm for 
computing the complementary error function is built into 
the PL/I  compiler used for the program; the exponential 
integrals were found by using the IMSL Fortran Mathe- 
matical Library, as function MMDEI. 

Appendix 11. Comparison of Numerical Errors in 
the Ratio of Ring-Catenane Isomers 

Examination of (1-7) and (1-9) allows computation of 
the number ratio of any size rings (n) to the isomeric (i + j = n) catenanes. This ratio is independent of x ,  u,  and 

b, i.e., invariant with respect to both the chain parameters 
and the degree of polymerization. The ratio is given by 
Caij/Ri+, = (C/B)[i  + j + q( i j )1 /2 ]3 /2 [ ( i  + j ) / i j l 3 i 2  (11) 

For the case i = j ,  this reduces to 

(12) 

and for the case where i = j = 1, i.e., the ratio of 1,l-ca- 
tenanes to dimer rings 

Ca11/R2 = (C/B)(2 + q)3/225/2 = 2.6 (13) 

Dependence of x ,  v, and b are absent from all three of 
these relations, all  quantities therein except the size of the 
isomers being numerical. The degree of reaction (repre- 
sented by x )  cancels out while i + j = n, for any group of 
catenane isomers, compared to isomeric rings. The chain 
parameters u and b cancel out for any group of rings and 
catenanes whatever, compared together, appearing in the 
same relation in both C and B. 

Requirements that there be no sensible steric hindrance, 
and that the polymer combinations follow Gaussian sta- 
tistics, however, remain. Any change from these conditions 
would cause different ratios for catenanes to rings. These 
relations hold for both the general and the chain-free 
systems, as they pertain only to the ring-catenane ratios. 

References and Notes 

c ~ ~ ~ / R ~ ~  = ( c / B ) ( ~  + q ) 3 / 2 2 5 / 2 / i  

(1) Jacobson, H. Macromolecules 1984,17, 705. Hereinafter re- 

(2) Jacobson, H.; Stockmayer, W. H. J. Chem. Phys. 1950, 18, 

(3) Frisch, H.; Wasserman, E. J. Am. Chem. SOC. 1961,83,3789. 
(4) Wang, J. C.; Davidson, N. J. Mol. Biol. 1966, 15, 111. 
(5) Yamakawa, H.; Stockmayer, W. H. J. Chem. Phys. 1972,57, 

2843. Hereinafter referred to as YS. 
(6) Hershey, A. D.; Burgi, E.; Ingraham, L. Proc. Natl. Acad. Sci. 

U.S.A. 1963,49, 748. 
(7) Sgaramella, V.; van der Sande, J. H.; Khorana, H. G. Proc. 

Natl. Acad. Sci. U.S.A. 1970,67, 1468. 
(8) Flory, P. Chem. Rev. 1946, 39, 137. 
(9) Truesdell, C. A. Ann. Math. 1945,46, 144. 

(10) Frank-Kamenetski, M. D.; Lukashin, A. V.; Vologodskii, A. V. 
Nature (London) 1975, 258, 398. Hereinafter referred to as 
FLV. 

(11) Wang, J. C.; Davidson, N. J. Mol. Biol. 1966, 19, 469. 
(12) Wang, J. C.; Schwartz, H. Biopolymers 1967, 5, 953. 
(13) Krasnow, M. A,; Stasiak, A.; Spengler, S. J.; Dean, F.; Koller, 

T.; Cozzarelli, N. R. Nature (London) 1983,304, 559. 

ferred to as 1 or paper 1. 

1600. Hereinafter referred to as JS. 

Induced Chain Rigidity, Splay Modulus, and Other Properties of 
Nematic Polymer Liquid Crystals 
Gert Jan Vroege* and The0 Odijk* 
Department of Polymer Technology, Faculty of Chemical Engineering and  Materials 
Science, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands. 
Received December 8, 1987; Revised Manuscript Received March 15, 1988 

ABSTRACT We present a numerical analysis of the induced chain rigidity or global persistence length, the 
order parameter, the splay modulus, and other properties of a polymer nematic. The macromolecules are 
viewed as long slender wormlike cylinders interacting via hard-core repulsions in the second virial approximation. 
We calculate the orientational distribution function from the nonlinear integrodifferential equation first 
formulated by Khokhlov and Semenov. A bifurcation analysis of this equation is also given. Exact expressions 
for the susceptibility and the global persistence length are derived in terms of the distribution function. Analytical 
estimates of thew quantities based on the usual methods we extremely poor approximations to thwe determined 
numerically. We also discuss the splay modulus which is directly related to the susceptibility and the global 
persistence length. 

I. Introduction 
The average dimension of an i so la ted  wormlike chain 

is a well-known function of the persistence length P which 
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in turn equals the chain bending constant divided by the 
It is not widely appreciated that this re- 

lation is not universally valid since it is statistical in nature. 
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For instance when a semiflexible chain is strongly con- 
strained to align more or less in one direction only, the 
usual persistence length P is no longer a relevant scale. 
Scaling and other types of analyses show that a new local 
scale emerges which may be called a deflection length X.3p4 
This determines the statistical properties of a strongly 
confined worm, e.g., its orientational free energy is pro- 
portional to the contour length divided by A. In addition, 
there is also a second scale, the global Persistence length 
g, which can be derived from X by scaling arguments (see 
section 11). As its name implies, it is g that is related to 
the average dimension of a confined chain. As we shall 
see, the global persistence length governs various important 
quantities of the polymer nematic like the splay modulus. 

The nematically induced global rigidity of a stiff chain 
has been the center of attention for some time."14 How- 
ever, most of the theory has been rudimentary with regard 
to the nature of the nematic field. Khokhlov and Seme- 
no$ did give a precise formulation of the global persistence 
length using a self-consistent field theory within the second 
virial approximation. Here, we note that there are in fact 
systems for which these approximations should work very 
well! Nevertheless, Khokhlov and Semenov's WKB cal- 
culation of g is erroneous because their equation is strongly 
nonlinear so that the WKB approximation is very poor. 

This paper has several aims. We first show that scaling 
arguments can be used to understand the connection be- 
tween the global persistence length g, the splay modulus 
K1, and the deflection length X (section 11). Next, in order 
to set up a precise theory of these quantities, we start by 
surveying the Khokhlov-Semenov integrodifferential 
equation (section 111). A bifurcation analysis of this is 
presented in section IV. We analyze the equation nu- 
merically (section V), study the properties of the nematic 
phase (section VI), and compare the numerical analysis 
with the leading order solution (the so-called Gaussian 
approximation). For the sake of completeness we calculate 
the values of the thermodynamic quantities a t  the iso- 
tropic-nematic transition (section VII). In section VI11 
we derive an exact formula for the global persistence length 
in terms of the orientational distribution function and 
calculate g numerically using the information of the pre- 
vious sections. Finally, we discuss the implications of our 
results in section IX. 

11. Qualitative Remarks 
As we pointed out above, the deflection length X is the 

scale of physical relevance in describing a strongly confined 
semiflexible chain. For a lyotropic nematic, X is derived 
by qualitatively analyzing the correlation function ( 02((s 
- t i ) )  for the angle e(ls - ti) between two unit vectors 
tangential to the contour of the test chain at distances s 
and t from one end. For small enough 1s - tl the orien- 
tational correlations should be in accord with the central 
limit theorem, Le., (02(1s - t l ) )  = 1s - tl/P valid for a chain 
in dilute solution.2 For larger distances the correlation 
function will eventually be restricted in view of the pre- 
vailing nematic order. Accordingly, we can identify a 
crossover distance 1s - tl = X such thatB4 
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i.e. 
x = P/a (11.2) 

where the nematic order is specified by a parameter a (a 
>> 1; for a precise definition in terms of the orientational 
distribution function, see eq VI.5). 

A typical configuration of a nematically confined chain 
is depicted in Figure 1. The nematic field exerted by the 

?' A 

Figure 1. Typical configuration of a very long semiflexible chain 
in the nematic field exerted by the surrounding polymer segments. 
There are two scales discernible: the deflection length X and $e 
global persistence length g. The orientational restriction is 0 = 
ci-ll2 and the director is denoted by n. 

surrounding chains deflects the test chain toward the di- 
rector, about once every deflection length A. However, if 
the chain is long enough there is a nonnegligible probability 
of the formation of hairpin bends, also shown in Figure 
1. Since we postulate that X is the sole relevant scale, the 
contour length of such a sharp bend must be of order X. 

The chain in Figure 1 is basically a one-dimensional 
random walk with fluctuating step length, the mean-square 
of its extension R being given by a relation like 

( R 2 )  = Lg (L >> g) (11.3) 

Here L is the contour length and the other factor must be 
the global persistence length g, since g is proportional to 
an average step length. Thus, the distance between hairpin 
bends is also about g, on Note that the U-turn 
bends or defects are actually distributed randomly along 
the chain contour. Hence, the statistical mechanical 
problem of calculating g boils down to an analysis of a 
one-dimensional gas of Lg-' defects of concentration Xg-' 
(fluctuations in the step length can be disregarded). 

The free energy of the defect gas in units of temperature 
T is simply 

One recognizes an ideal gas term and a bending energy per 
defect given by 

The inverse radius of curvature is (av/ds), where v is the 
tangential unit vector at contour points. Minimizing U d e f  
with respect to g yields 

g = h exp(P/h) = Pa-l exp(a) (11.6) 

If the chains interact via excluded-volume interactions, the 
parameter a = c213 where the dimensionless variable c is 
the number density p of persistence segments scaled by 
the excluded volume &/4)P2D (P = persistence length, D 
= chain diameter)3*4 (see section 111). Hence, we have 

g = Pc213 exp(c213) (11.7) 

Meyer15 has shown that the splay modulus for nematic 

K1 l2plkBT (11.8) 

if their length is 1 and their number density ph If L >> g 

rigid rods is simply 
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If their orientations are described by polar angles (8, 4) 
and (e’, 49 defined with respect to the director, then cos 
y = c o s 8 c o s 8 ’ + s i n ~ s i n ~ c o s ( ~ ’ - ~ ) .  dQ=dcos8d$  
implies an integration over the full solid angle. The di- 
mensionless concentration c signifies the number of per- 
sistence length segments present in a volume b, = (7r/ 
4 ) P D  (the isotropic excluded volume of two persistence 
length segments), i.e. 

T 

T 

T i 

Figure 2. Chain of Figure 1 under splay. The entropy of top 
(T) and bottom (B) hairpinlike bends is important. 

the solution of chains is effectively a solution of rods of 
length g because we want to count “end” defects (see 
Figure 2). In view of the identity lpl  = Ppp = gps we obtain 

K1 % gPppkBT 

or 
DKl/kBT = c / - ’ / ~  e ~ p ( c ~ / ~ )  (11.9) 

A precise theory of g and Kl is developed in sections VI11 
and IX. 

111. Khokhlov-Semenov Integrodifferential 
Equation 

Onsager’s theory16 on the formation of a nematic liquid 
crystal from a solution of long, slender molecules (length 
L,  diameter D, persistence length P) is severely restricted 
by the requirement that the molecules have to be consid- 
ered as completely rigid, thin rods (P >> L >> D).  This is 
hardly ever fulfilled in nature. Khokhlov and SemenoP 
formulated a theory for very long, semiflexible molecules 
(L  >> P >> D).  Their expression for the free energy (here 
formulated as the free energy per persistence length seg- 
ment, AFJ as a functional of the orientational distribution 
function f can be written as 

(111.1) 

where the dimensionless variables u, c, and p are defined 
below. 

Because, locally, the molecules can still be considered 
as almost fully rigid and rodlike, the second virial term 
c p w ,  which describes hard-core two-particle interactions 
(Le., excluded-volume interactions), is identical with On- 
sager’s, to a first approximation 

(111.2) 

By convention y is chosen in such a way that sin y 1 0. 
For very long chains f is the same for every infinitesimal 
chain section and 8 is the angle between it and the director. 
The distribution is normalized 

s f ( c o s  8) d 0  = 1 (111.3) 

The angle y is that between two infinitesimal segments. 

Mp/kBT = Cst 4- ~,,(f) i- C p ( f )  

p ( f )  = ‘1 1 sin y  COS B)f(cos 6’) dQ dQ’ 
77 

7 r L  
c -PD-p ,  4 P  (111.4) 

where p L  is the number density of the macromolecules. 
Because of the semiflexibility of the chains, the ex- 

pression17 for the orientational entropy per persistence 
length is quite different from Onsager’s for rods 

u (f) 5 - Jf/2(cos 8)Af1/2(cos 8) d 0  (111.5) 2 P 

with 

i.e., the 8-dependent part of the Laplacian defined on a 
unit sphere. This expression is based on the wormlike 
chain model so it also takes into account the orientational 
fluctuations of a chain with respect to the director. The 
terms comprised in the constant, cst, are irrelevant to the 
rest of this article; it is important to note, however, that 
a translational entropy term which appears in Onsager’s 
theory is negligible here because the persistence length 
segments are connected. 

To find the distribution function f(cos 8) we must 
minimize the free energy (111.1) with respect to arbitrary 
variations in f. This leads to an integrodifferential equa- 
tion 

--$-/-‘(cos 8)A$(cos 8) = E - -Jsin y $2(cos 8’) d0’ 1 8c 
2 ?r 

(111.7) 
where we plausibly define a “wave function” 4~17 

$(cos 8) fl/’(cos 8) (111.8) 

E is a Lagrange multiplier originating from the constraint 
eq 111.3. Although eq 111.7 apparently involves a two-di- 
mensional integration, it becomes an integrodifferential 
equation in one variable cos 8 ( = x )  

1 1 
- - A $ ( x )  2 = [E - 16cJ -1 S(X,Z’)$~(X’) dx’]$(x) (111.9) 

when we introduce the kernel S(x,x  9 defined by 

(111.10) 
1 2 1  

S ( x , x ?  3 -1 sin y d4’ 
27r 0 

and 
a a 

ax ax 
A = -(1 - x’)- 

from now on. 

IV. Bifurcation Analysis 
As can be easily verified, eq 111.9 has an isotropic solu- 

tion @ ( x )  = ( 4 ~ ) - / - ’ / ~  for all values of c. Now the question 
arises whether an anisotropic solution is also feasible for 
certain values of c. Mathematically, we are dealing with 
a nonlinear operator equation with a variable parameter 
c. Thus, we turn to bifurcation theory which may tell us 
the concentration c* at  which a necessarily anisotropic 
solution branches off from the isotropic one. Kayser and 
RavechP performed such an analysis on the integral 
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equation for rigid rods, which has a different kind of 
nonlinearity though. 

In our case we also need the Legendre expansion of the 
kernel S(x ,x  9 discussed in ref 18, obtained by making a 
Legendre expansion of sin y in terms of PZn(cos y) (n  = 
0, 1,2, ...), applying the addition theoreml9 and performing 
the 4'-integration in eq 111.10: 

(IV.1) 
m 

S(x,x 9 = C d,nP2n(x)P2n(x 9 
n=O 

with do = ~ 1 4 ,  d2 = -5~132, and 
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~ ( 4 n  + 1)(2n - 3)!!(2n - l)!! 
dzn = - n 1 2 (IV.2) 

22"f2n!(n + l)! 
Furthermore we should take into consideration that the 
Legendre polynomials are eigenfunctions of A 

AP,,(r) = -2n(2n + l)Pzn(x) (IV.3) 
Using these properties we show heuristically in Appendix 

A that there is bifurcation at a scaled concentration c* = 
6 (as has been pointed out before20). Near this point a t  
concentration 

c = 6 + u  (IV.4) 
we argue that the integrodifferential equation has the 
following solution 

obtained by combining eq A.9,10, and 15. Having thus 
ensured that the nematic state is feasible, we next turn to 
a numerical analysis of its properties. 

V. Numerical Procedure 
We now want to find a numerical solution of eq 111.9. 

We have found it expedient to expand $ ( x )  in Legendre 
polynomials 

Because of the inversion symmetry of the nematic liquid 
crystal we retain the even polynomials only. Substituting 
(V.l) in eq 111.9 and using eq IV.1-3 result in 
m 

Here Ik,J,m represents the following integral 

and is explicitly given by2' 
( k  + 1 - m ) ! ( k  - 1 + m)!(-k + 1 + m)! 

(k + 1 + m + l ) !  
X Ik,l,m = 

( k + ;+ m)! 2 [ ( + ;- m)!( - "2' m)!( -k '2" + -)!I 07.4) 

provided (k + 1 + m) is even and (k + 1 - m), ( k  - 1 + n), 
and (-k + 1 + m) are never negative. In all other cases Ik,lsn 
= 0. 

We now multiply (V.2) by P%(x) and integrate over x ,  
using (V.3) and the orthogonality of Legendre polynomi- 
als.lQv2l This yields 

i(2.i + 1) 

In this way the nonlinear integrodifferential equation 
(111.9) has been transformed into an infinite set of non- 
linear algebraic equations with as many unknown variables 
u2n. Because E is unknown as well, we need an extra 
relation which follows from the normalization (111.3) 

We now solve eq V.5,6 numerically by iteration, trun- 
cating the expansions at  P,. Equation V.6 is rearranged 
as 

Equation V.5 gives for j = 0 

where we have used the identity 
1 

I2k,2n,0 = ( 4 k 6 k n  

Finally, eq V.5 yields for 1 I j I q 

The label (i) indicates the number of iterations made thus 
far. 

For concentrations c S 6 the set of coefficients a$) 
obtained from eq V.10 may be taken as the new set 

(V.lla) a li+l) = a li') 
21 21 

However, for higher concentrations this scheme turns out 
to be unstable. This problem is circumvented by tem- 
pering the change in the coefficients as for instance in the 
following way 

We thus find a solution by choosing a set of starting values 
(1 I j I q)  and applying the above iteration scheme 

tih the coefficients have converged to within chosen 
bounds. We then ascertain that the use of coefficients 
beyond q has a negligible effect. 

Below a (scaled) concentration of 5.19 this iteration 
procedure yields only the isotropic solution, ~ (ao = 1, a2 - a4 = ... = 0). Between c = 5.19 and c = 6, however- 
depending on the choice of a%(O)-another solution is found, 
$+ (with all a2n > 0). Both the anisotropic and isotropic 
solutions are stable with respect to our iteration procedure, 
i.e., when one of the coefficients is altered slightly the 
original solution is regained after iterating. Above the 
bifurcation point this is no longer true for the isotropic 
solution: a small perturbation does not die away. A small 
perturbation like a2(0) = t, a i0 )  = as(O) = ... = 0 with e > 
0 iterates to the anisotropic solution, I)+. If E < 0 the 
iteration leads to a different kind of solution, $-, with 

- 
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Figure 3. Bifurcation diagram of the function N = N[$]  (1 
- versus the concentration c. Solid curves denote the 
numerical solutions, the dashed line comes from the bifurcation 
analysis whereas the dotted line is extrapolated. The lower solid 
curve represents the physically unrealizable state given by $-. 

coefficients of alternating sign > 0 and ~ 4 ~ + 2  < 0). 
Choosing a random set of coefficients always results in one 
of the two anisotropic solutions $+ and $- if c > 6. 

The combination of these results with those from the 
bifurcation analysis provides us with a clear picture of the 
stability diagram. For concentrations c = 6 + v (Ivi << 1) 
we expect a solution given by (IV.5). Our numerical so- 
lution $- does indeed have a2 = -0.3888 ... v if u is small 
enough and positive (coefficients higher than u2 are neg- 
ligible). For v < 0 the same kind of solution applies al- 
though it is unstable with respect to our iteration proce- 
dure. To illustrate the analysis graphically we plot a 
measure of the anisotropy of $ ( x ) ,  viz., N (1 - uo)1/2, 
against c in Figure 3. This figure is similar to Figure 1 
of ref 18 which deals with the distribution function for 
entirely stiff rods (note that N is never greater than unity 
whereas the unbounded norm Il(4n-f - 1)11 in L2 is used in 
ref 18). 

Finally we elaborate some examples of our numerical 
procedure, focusing on p to estimate the degree of con- 
vergence. First we consider c = 6, in which case (V.lla) 
can be used. Starting with u2(0) = 1, = ... = u2,(0) = 
0, we find that the relative change per step in p is 1 X lo4 
after 20 iteration steps. The relative difference between 
the present value of p and the fully converged one (see the 
next section) is also about 1 X lo4. After 28 steps the 
relative change has decreased to 1 X lov8 with a relative 
error of 5 X Thus for this concentration the proce- 
dure converges very fast. Taking all polynomials up to Pa 
into account gives the same values of the relevant prop- 
erties. For c = 20 the numerical scheme converges much 
more slowly, mainly because we are forced to use (V.11b). 
After 200 steps the relative change in p is 1 X lo4 and the 
relative error 2 X and 2 
X lo-', respectively, after 300 steps. Even here the dif- 
ference between an expansion up to the fortieth degree and 
one up to the twentieth appears only in the tenth decimal 
for p and u. We did not go beyond Pa in the expansion. 
This set an upper limit of about 50 for the concentration 

VI. Properties of the Nematic Phase 
Before we determine the properties of the nematic phase 

we first show to which anisotropic solution it corresponds. 
It is useful to focus on the order parameter 

These values are 1 X 

C. 

for the two solutions $+ and +- as a function of c (shown 
in Figure 4). The function $+ has a positive order pa- 
rameter and has maxima for x = f l  (e = 0 or a). By 

-0.5 ' 
Figure 4. Order parameters S of the two states $+ (+) and $- 
(-) versus the concentration c (on a logarithmic scale). 

0 5 IO 15 c 0 

Figure 5. Free energy A F  of the isotropic (i) and the two nematic 
states (+ and -) versus the concentration. 

contrast $- has a negative order parameter, its only max- 
imum being located at  x = 0 (0 = a/2) so the molecules 
are more or less perpendicular to the director (note that 
in the plane perpendicular to .the director the molecules 
are randomly oriented because we presuppose uniaxial 
symmetry). In order to assess the feasibility of $+ and $- 
we study the free energy n,V, + cp(f ) .  From (111.3, 5, 7, 
and 8) we derive 

(VI.2) a,(f) = E - 2cp(f) 

and from (111.2 and 10) and (IV.l) 
m 

The free energy ap(f) + cp(f) as a function of c is given in 
Figure 5. We see that the $- state has a slightly lower free 
energy than the isotropic one but never lower than that 
pertaining to the $+ state. The $- state is physically ir- 
relevant so we discard $- altogether (note that it could be 
of use in more complex systems, e.g., mixtures of chains 
and plates). 

Before giving the numerical values we recall some pre- 
vious analytical results. We use integrodifferential equa- 
tion (111.9) implicity by choosing a trial function with a 
variational parameter (or parameters), calculating up and 
p and minimizing the resulting expression for the free 
energy (III.1) with respect to the parameter(s). Khokhlov 
and Semenov" chose the Onsager trial function16 

(y cash (CY COS 6) 
f(.) = - 4a sinh (a) 

(VI.4) 

A simpler form of this trial f ~ n c t i o n , ~  the so-called 
Gaussian function, gives exact leading terms 

f(a) = LL 4a  exp[ a / 2  C 6 I T (VI.5) 
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Table I 
Numerical Values of the Order Parameter S, the 

Orientational Entropy up, and the Excluded-Volume 
Parameter p for Different Concentrations" 

t(1 - S) - 
( l  - %)I/ (up - Up,G)/ (P - PG)/  

c s up p (1 -SI, % up, % P ,  ?& 
6 0.5448 1.030 0.8104 27 -119 7.3 
8 0.6785 1.789 0.6996 15 -53 2.4 

10 0.7358 2.313 0.6410 10 -37 1.1 
12 0.7711 2.758 0.6003 '8.4 -30 0.64 
15 0.8062 3.356 0.5557 6.8 -24 0.36 
20 0.8424 4.253 0.5040 5.4 -18 0.18 
25 0.8654 5.069 0.4675 4.6 -15 0.10 
30 0.8815 5.829 0.4398 4.0 -13 0.07 
40 0.9029 7.230 0.3994 3.3 -10 0.03 
50 0.9167 8.517 0.3706 2.8 -9 -0.02 

(I Further, the relative difference between the numerical values 
and the Gaussian approximations, viz., 1 - SG - 3/a, - a/4, 
and p~ - 4 ~ - ' / ~ a - ' / ~  as a function of the concentration c - 
1/8T1/2a3/2. 

This is borne out by inspection of eq 111.9. To leading 
order the free energy is calculated by making an asymp- 
totic expansion of up and p for large a by using eq VI.5 

ap(a) - 4 4  (VI.6) 

p ( a )  - 4/(*a)'/2 (V1.7) 

Minimizing the resulting expression for AFp with respect 
to a leads to the relation - 4C2/3/*'/3 (VI.8) 

A similar asymptotic expression for the order parameter 
can be found from the definition eq VI.l 

(VI.9) 

In Table I we give up, p ,  and S for different values of c 
and the relative difference compared with the leading 
terms of the analytical theory (note that it is better to focus 
on 1 - S rather than S itself). We discern that up(a) is not 
as good an approximation to the respective numerical 
values as p ( a )  and S(a) although the error term decreases 
nicely with increasing concentration. The Gaussian ap- 
proximation of the excluded-volume term p works very well 
over the whole range of concentrations, though the error 
term changes sign at  c = 50. 

VII. Isotropic-Nematic Phase Transition 
To determine the isotropic-nematic phase transition we 

need to know the osmotic pressure (for a solution of vol- 
ume V consisting of N macromolecules and a solvent of 
chemical potential po) 

S(a)  - 1 - 3/a 

and the chemical potential 

(VII.2) 

At  the phase transition the isotropic phase with concen- 
tration ci, p = 1 and up = 0 coexists with an anisotropic 
phase with concentration c,, p = pa and up = 
same osmotic pressure and chemical potential. hs leads 
to the coexistence equations 

ci2 = c:p, (VII.3) 

(VII.4) 

Pa* at the 

2ci = up,, + 2C&, 

Table I1 

Transition 
uo 0.878 153 980 a12 4.61598 X 10" 

1.059 364 19 all 2.50342 X lo-' 
a4 1.9825233 X lo-' a16 1.3123 X lo4 

Legendre Coefficients 8 2 ,  of the Function at the I-N 

1.9036052 X 10-' 6.688 X lo-'' 
a8 1.337754 X 10" a20 3.33 x 10-11 
a10 8.142318 X lo4 

For the numerical calculation it is convenient to combine 
these two equations with eq VI.2, whence it follows that 

C, = E/2p,'f2 (VII.5) 

In order to analyze the phase transition numerically we 
pose an initial estimate of c,  and calculate the distribution 
function, E ,  and pa according to section V and eq VI.3. 
Then a revised estimate of c, is obtained by substituting 
E and pa into the right-hand side of eq VI1.5. We repeat 
this procedure until c ,  does not change any more, even- 
tually obtaining the following (scaled) quantities at the 
transition 
ci = 5.1236 C, = 5.5094 S 0.461 65 

kBT 

b* 
up,, = 0.717 61 pa = 0.864 84 II = 26.25- 

L 
P p = C S ~  + 10.25-k~T (VII.6) 

The expansion coefficients of the square root of the dis- 
tribution function in the anisotropic phase are given in 
Table 11 (cf. eq V.1). We also establish that the free energy 
of the anisotropic phase is 0.027k~T per persistence length 
lower than the corresponding isotropic of the same con- 
centration. 

Let us compare our numerical results with those4 ob- 
tained by using the Onsager trial function (VI.4) 

ci = 5.409 C, = 6.197 S = 0.610 
(VII.7) 

we see that eq VI.4 affords reasonable qualitative insight 
although it exaggerates the degree of anisotropy. The 
relative gap in concentration between the two phases as 
calculated numerically is much smaller than the one for 
entirely stiff rods (for the numerical versions of Onsager's 
theory see ref 21, 22) 

up,* = 1.376 pa = 0.762 

c, - ci c, - ci -1 = 0.274 (VII.8) = 0.075 
'i rod 

The same applies to the order parameter 

Sflax = 0.4617 Srd = 0.792 (VII.9) 

VIII. Global Persistence Length 
As argued in section I1 the conformation of a nematically 

confined worm is essentially a one-dimensional random 
walk in the z direction (parallel to the director). Hence, 
if the contour length L is much larger than the global 
persistence length g, the mean-square extension of a test 
chain defines g in the usual way 

( R Z 2 )  = 2Lg (VIII.1) 

We show below that this definition is consistent with the 
one valid for dilute solutions. It is generally recognized 
that the dimension of a polymer chain is connected with 
its susceptibility in analogy with other problems in sta- 
tistical mechanics relating moments to correlation func- 
tions. Khokhlov and Semen09 stated the following rela- 
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tion without proof (for the sake of completeness we derive 
it in Appendix B) 

(Rz2)o = LPXO (VIII.2) 

with 
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where the average is calculated for the nematic in an ex- 
ternal field of the dipole type parallel to the director, i.e., 
an external free energy per persistence segment Mext is 
added to eq 111.1 

COS 0 f(cos 0) dQ = -u(Pl) (VIII.4) - M e x t  = - u s  
kBT 

If a worm of length P were to be straightened out into a 
rod pointing in the z direction, its (dipole) energy would 
be iukBT,  depending on its orientation. 

In the remainder of this section, we focus on the di- 
mensionless susceptibility xo instead of g in view of eq 
VII1.3. Upon minimizing the total free energy consisting 
of the sum of eq 111.1 and VIII.4 we get a more complex 
form of the original integrodifferential equation 

1 - -$-‘(x)A$(x) 2 = E - 16~~:S(x , z3$~(* .1  dx’ + ux 

(VIII.5) 

To determine xo we must solve (VIII.5) for small u. 
Therefore we attempt a regular expansion in the small 
parameter u 

$ ( x )  = $ O ( X )  + u $ ~ ( x )  + 0 ( u 2 )  (VIII.6) 

where $o(x) is the solution of (VIII.5) for u = 0, which is 
symmetric in x .  Because the applied field ux is antisym- 
metric, the frst-order function ic,l(x) will be likewise. Using 
this property in expression (A.l), we see that 

E = Eo + 0 ( u 2 )  (VIII.7) 

Substituting these expansions in eq VIII.5 we find after 
retaining terms linear in u 

(VIII.8) 

I t  can be proved that a term originating from the integral 
vanishes as a consequence of the antisymmetry of rL1. 

We expect ~ ) ~ ( x )  to resemble $o(x) in some way, which 
motivates the substitution 

$oA$1 - $la$, = -2x$02 

$1(x) = h(x)ic,,(x) (VIII.9) 

in eq VIII.8. This gives a surprisingly simple differential 
equation for h’(x) - - 

(VIII.lO) 2x 
h”(x) + 2(ln q0)’ - 7 I 1 - x  

It can be solved by standard analysis so that 

(VIII.11) 

where we have used the boundary condition ic,,(O) = 0 and 
the fact that ${(&1) is finite. 

To linear order in u we have 

(PI) = 4rru1:~$0(x)$l(x) dx + O b 2 )  (VIII. 12) 

Applying the definition of the susceptibility in zero field 

Table 111 
Numerical Values of the Susceptibility xo as a Function of 

the Scaled Concentration CO 
C xo C xo 

5.5094 6.506 13 1.3484 X lo3 
6 11.99 15 3.948 X lo3 
7 29.51 18 1.791 X lo4 

9 1.2334 X lo2 25 4.299 X lo6 
8 62.28 20 4.642 x 104 

10 2.333 X lo2 35 2.28 x 107 
11 4.281 X lo2 ~ 50 3.9 x 109 
12 7.670 X lo2 

“The lowest value of c represents the nematic a t  the I-N tran- 
sition. 

(VIII.3) and using expression VIII.ll for & ( x )  we get an 
exact expression for xo in terms of $o(x) after interchanging 
the order of the integrations 

Note that xo = 2 /3  for the isotropic distribution, which is 
consistent with the usual expression for (R,2)o  (see eq 
VIII.2) * 

Let us survey several seemingly plausible approxima- 
tions to the susceptibility. The distribution is quite sharply 
peaked at 0 = 0 and 0 = T. Hence, we can replace the term 
S$f(x) dx in the integrand of eq VII1.13 by SAxf (x )  dx, 
a t  least if we focus on the leading behavior of xo only. 
Next, in view of the known asymptotic behavior off toward 
the Gaussian (4~1% exp(a(x - 1)) as x tends to unity, we 
attain an even more straightforward expression for the 
susceptibility, valid for higher scaled concentrations c25 

xo - ?~-~Ll-‘[(l - x2)f(x)]-’ dx (VIII.14) 

It is not so easy to simplify eq VIII.14 further because 
we need to know more than merely the asymptotic be- 
havior off. Indeed, it is evident that a large contribution 
to xo arises from the value off near x = 0. I t  turns out 
that a reliable estimate of xo can be given only if we know 
f accurately in an appreciable range of x extending from 
zero. This necessitates analyzing eq 111.9 globally which 
no one has succeeded in doing until now. A qualitative 
estimate can of course be obtained by the use of a trial 
function like eq VI.4. In that case, eq VIII.14 yields 

xo - exp(a) (a >> 1) (VIII.15) 

which should be compared with eq 11.6 (xo = 2g/P). It is 
also of interest to derive q1 within the same approximation 
& ( x )  - $o(x)[cy-2 exp(a) arctan (sinh ( a x ) ) ]  (VIII.16) 

Accordingly, $1 is essentially an antisymmetric version of 
q0 multiplied by a large factor, except near x = 0. 

The susceptibility is rigorously obtained by integrating 
eq VIII.13 numerically with the aid of the distribution 
derived in section V. The resulting xo values are collected 
in Table 111. We have checked these by another much 
more roundabout method because the numerical analysis 
of the markedly varying f is somewhat delicate. First, we 
solve eq VIII.5 by the usual Legendre expansion of ic, and 
the kernel, not forgetting to incorporate the odd polyno- 
mials in ic, which arise because the symmetry is broken by 
the external dipole field. The iteration procedure is 
analogous to the one discussed in section V. Finally, the 
susceptibility is calculated from eq VIII.3 by determining 
(P1) for minute values of u. In the long run, this extremely 
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Figure 6. Plot of In (c2I3xO) versus c213 obtained by a least-squares 
fit of c2/3 In versus k11c413 + k12~2/3  + k13 together with 
the numerical data. 

slowly converging scheme yields the same values for xo as 
before. 

Inspired by the qualitative expressions eq 11.6 and 
VIII.15 we have made least-squares fits of the numerical 
xo versus the concentration according to 

xo = C-2n/3 e ~ p ( k , , c ~ / ~  + kn2 + k,3~-2/3) n = 1, 2 
(V111.17) 

In order to accommodate all values of c, we have included 
a higher order term proportional to kn3. This term is 
present since we know f can be expanded as 

The deviation of eq VIII.17 from the numerical data of 
Table I11 never exceeds about 2% for both values of n 
except for c = 5.51. Nevertheless, the physically motivated 
derivation of eq 11.6 is a better starting point than that 
leading to eq VIII.15. For this reason and for the sake of 
definiteness we shall insist on setting n equal to unity in 
order to ease the comparison of qualitative theory with our 
numerical analysis. We emphasize that the numerical 
values of xo are described by some function e x p [ ~ ~ / ~ m ( c ) ]  
where m(c) is slowly varying and unknown, so that the 
approximation eq VIII.17 with n = 1 is merely convenient 
and probably not imperative. The quality of the fit is 
shown in Figure 6; the constants are kll = 1.824, k12 = 
0.705, and k13 = -10.18. Using the asymptotic relation a - 4a-1/3~2/3 we rewrite eq VIII.17 as follows31 

xo = 5.531~-1 exp(0.668~~ - 27.8a-’) (VIII.19) 

IX. Discussion 
The main analytical result of this paper is eq VIII.13, 

the susceptibility xo or equivalently the global persistence 
length g = 1/2Pxo (eq VIII.3) expressed in terms of the 
distribution function f(x) = f(cos 8) = rc/02(cos 8). It may 
come as a surprise that eq VIII.13 is valid not only for 
excluded-volume interactions ( p  given by eq 111.2) but for 
any interaction like 

p K c f )  = f fK(lsin rl)f(cos 8)f(cos 8’) dSl dSl’ (IX.1) 

where the kernel K is quite general although it must of 
course allow for the existence of a state of uniaxial sym- 
metry. In fact, if we minimize the total free energy of the 
system with p K ( f )  instead of p(f )  and in the presence of a 
slight dipolar field, we regain eq VIII.8 on using rc/ i= q0 + 
ulL1. Again, the cross term 

s_: s_: J 2 k l s i n  r(W,4)I) x 
rc/o(cos 8)$l(cos 8’) d(cos 8) d(cos 8’) d4  = 0 (IX.2) 

Figure 7. Splayed nematic chain and its representation by ef- 
fective rods. Chain sections pointing downward are deleted. 

since the integrand is antisymmetric under the transfor- 
mation (8,8’,4) - (a-8,8’,~+4). Realistic examples of K 
include those pertaining to electrostatic and van der Waals 
interactions. We hope to come back to this topic in future 
contributions. 

We have seen that the global persistence length is 
dominated by the behavior off or rc/2 near the equatorial 
region x = 0 or 8 = ll27r. This behavior is not well-known 
analytically so it is hard to deduce a reasonably accurate 
expression for xo or g. 

For a quantitative comparison of the computer results 
with analytical theory, we rewrite eq VIII.19 in terms of 
the global persistence length 

g = 2.77Pa-1 exp(0.688a - 27.8~~-’) (IX.3) 

Qualitatively speaking, this is in agreement with the scaling 
analysis of section I1 for a >> 1. However, it is stressed 
again that the a-l factor is not very meaningful. As we saw 
in the previous section the numerical data could have been 
rationalized just as easily by a different power law like a-2 
instead of a-l. Furthermore the bending energy of a 
hairpin may involve a term logarithmically dependent on 
a that would be neglected altogether in a scaling analysis. 
Of greater import is the predicted magnitude of xo and g. 
At the I-N transition the global persistence length equals 
3.25P, whereas eq 11.6 yields about l O O P  and eq VIII.15 
about 50P (we have employed the value of a = 6.5 given 
in ref 4). In practice the analytical estimates are useless. 
In fact, stiff polymers with contour lengths longer than 
about 1OP are very difficult to deal with experimentally 
so that our predictions differ markedly from previous 
theories. The hopelessness of determining xo by leading 
order approximations is in marked contrast with the 
success of calculating several other properties of the ne- 
matic state (see section VI). 

The qualitative relation between g and the splay mo- 
dulus K1 discussed in section I1 can be made precise. Let 
us recall Meyer’s result16 for K1 for a nematic solution of 
rods of length 1 and density p1 

Equation IX.4 is derived by assessing the inhomogeneity 
in the distribution of the top and bottom ends in a splayed 
nematic. When extending this expression to the case of 
semiflexible chains, we should bear in mind the following 
points. To an excellent approximation, a nematic chain 
is a random walk along the director (when a >> 1); its 
statistical segment length A is twice the global persistence 
length. It is well-known that the distribution of each step 
follows a Gaussian of zero mean and mean square equal 
to A2 = 4g2. Figure 7 shows that in calculating the splay 
modulus we are to account for steps going in one direction 
only. Steps in the reverse direction are in effect redundant 
when we need specify merely the top and bottom ends of 
the effective rods of varying lengths 1. It  is readily shown 
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that ( 1 )  = ( 2 / ~ ) ' / ~ g  via the Gaussian distribution. Ac- 
cordingly, we have 

K1 = 1 / (2 /~ ) ' /~g lp lk~T  
= f/s(2/*)1/2X$2ppkBT (L >> g) (IX.5) 

K1 = f/4L2Pfi~T (L << g) (IX.6) 

As usual the index pertaining to the number density im- 
plies that we count the number of respective "segments". 
We rewrite eq IX.5 and IX.6 with the help of the relation 
c = (7r/4)P2Dpp 

K1 = ( 2 ~ ~ ) - ' / ~ x o c ( k ~ T / D )  
= 0 . 2 5 7 ~ ~ 1 ~  exp(1 .824~~/~  - 10 .18~-~ /~ ) (k~T/D)  

(L >> g) (IX.7) 

K1 = ~-'(L/p)c(kgT/D) (L << g) (1x3) 

Equations IX.7 and IX.8 should be compared with the 
elastic moduli stemming from the excluded-volume ef- 

splay K I , ~ ~  = 3K2 

twist K2 C1l3(k~T/D) (L >> A) (IX.9) 

bend K3 =z C(kBT/D) (L >> A) 

The splay modulus arising from the nonuniform distri- 
butions of "top" and "bottom" hairpins clearly overwhelms 
that caused by the excluded-volume effect: K1 >> Kl,ex. 
In general K1 is also greater than K2. In practice, contour 
lengths are quite short (Le., L << g and L = O(P)) so that 
K 3  and K1 are often of the same order of magnitude. 

As is evident in the previous sections a fair part of our 
analysis is based on the work of Khokhlov and Seme- 
~ o v . ~ J ~ ~ ~ ~  They were the first to formulate eq VI11.5 and 
attempt its approximate solution. In their first method6 
they used a trial function akin to the usual ones showing 
that it led to an expression similar to eq 11.6 so this pro- 
cedure is closely related to the scaling analysis of section 
11. However, they rejected their first approach in favor 
of an analysiss inspired by Landau and Lifshitz's elegant 
treatment of quantum mechanical tunneling through a 
barrier.21 Unfortunately, this analogy breaks down for two 
reasons. Equation VIII.5 is strongly nonlinear so it is 
neither possible to employ a WKB approximation nor to 
consider an eigenfunction expansion of # in terms of a 
self-consistent field containing # itself. Comparison of our 
exact solution for the susceptibility (eq VIII.13) to their 
xo bears out the disastrous effect of using methods devised 
for linear equations on highly nonlinear ones. Grosberg 
and ZhestkovZ6 used the xo of Khokhlov and SemenovG to 
calculate K1 which explains why it is not in accord with 
eq IX.7. 

Many analyses like that of ref 13 are based on replacing 
the self-consistent field UBCf in eq B.2 by aP,(cos 0) with 
a a constant. This replacement is ad hoc for several rea- 
sons. First, the nematic potential is much too strong to 
be described by an expansion valid for very weak order 
(order parameter S 5 0.1). Second, the coupling of the 
environment to the test chain is utterly neglected. Fur- 
thermore, although the use of U,, = aP2(cos 8) leads to 
reasonably tractable equations,28 the complete self-con- 
sistent eq VIII.5 can be solved exactly! Admittedly, the 
theory presented here is of the mean-field type but it is 
pointed out below that the influence of director fluctua- 
tions is negligible. 

de GenneslO also presented an analysis for the global 
persistence length deriving 
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(IX. 10) 

This treatment was meant for a chain wriggling in a ne- 
matic "matrix", 1 and t h  being defined in terms of rather 
vaguely defined parameters B and Q (=Qo): 1 = (B/QO)ll2 
and th = 2(BQ0)1/2. However, de Gennes' configurational 
free energy (his eq 4) turns out to be equivalent to that 
valid for a very long chain with excluded-volume interac- 
tions (see eq VIII.19 of ref 4) provided we identify Qo and 
B as foflows: Qo - kBTa2/@, B - PkBT. Hence we have 
1 = 2h and t h  = akBT so that eq IX.10 scales as eq 11.6. 
This equivalence is another example of the variety of ways 
of analyzing confined semiflexible  chain^.^ Again, eq IX.10 
overestimates eq VIII.15 by more than an order of mag- 
nitude at  the very least, so this type of theory is of very 
little use in predicting the outcome of experiments. 

The appendix to ref 10 proves useful in elucidating the 
import of director fluctuations. They cause a renormali- 
zation of the original Qo (=a2kBT/4P in our case, with 
neglect of fluctuations) to an effective one given by QeR-' 
= Q0-l + Qc'. An analysis of the effect of a configuration 
of a test chain on the surrounding nematic shows that Q1 
= K/ln (qD)-' when the wavevector of the chain undula- 
tion is of magnitude q. The hybrid modulus K is some 
complicated function of K1, K2, K3 (eq IX.7-9). We may 
set q 

Q1/Qo PD-1a-3/2 exp(ma) (L>> g) splay 

Q1/Qo PD-1a-3/2(La/P) ( L  << g) splay 

Q1/Qo = twist 

g = 1 exP(%/kBT) 

A-l z a/P in our case, so that 

Q1/Qo = PD-l~u-l/~ bend (IX.11) 

if we consider each pure deformation separately. Our 
analysis holds in the second virial approximation, i.e., D/X 
<< a-lI2 or P /D >> a3I2. Accordingly Q1/Qo is much larger 
than unity so Qo need not be renormalized, thus justifying 
the neglect of fluctuations. 

We have not been able to find any experimental data 
with which we can compare our theory. In general the 
lyotropic polymers used are too short. There is an inter- 
esting useful Monte Carlo simulation of the global stiff- 
ening of a semiflexible chain as it enters the nematic 
phase.8 Khalatur et al. have determined the ratio of the 
respective mean-square extensions ( R2)  in the nematic and 
isotropic phases. From its value of 1.13 we can calculate 
g = 1.5P on employing the usual formula for ( R 2 )  as a 
function of the contour length (L = 1.34P)8 and persistence 
length. Because the contour length is still rather short, 
we cannot use c, (eq VII.6). Now it stands to reason that 
g and S are very well correlated. Thus we use Khalatur's 
estimate for the order parameter S = 0.37 f 0.05; from 
which we determine numerically c, = 5.26 f 0.06 and xo 
= 3.8 f 1 or g = (1.9 f 0.5)P. Hence, this Monte Carlo 
result agrees reasonably well with theory although the 
comparison must be viewed as tentative for now. 

Finally we discuss the experimental implications of our 
results. The numerical calculations of sections V and VI 
can be used for sufficiently stiff polymers (PID >> a3I2) 
that are long enough ( L  >> h) provided dispersion forces 
are very weak. The conditions for the validity of the 
quantities pertaining to the isotropic-nematic transition 
(section VII) are somewhat more stringent ( L  >> P). The 
Gaussian approximation works much better than expected. 
Accordingly, previous work on the m o d ~ l i , ~ ~ ? ~ ~  the pitch 
of cholester i~s ,~~ and the surface tension30 ought to have 
a reasonably wide range of validity. The calculation of 
these quantities for arbitrary contour lengths is in general 
very tedious even in the Gaussian approximation. The 
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# ( x )  = 1/(4?r)ll2 (A.4) 
From now on we follow the line of reasoning of ref 24 to 
determine the bifurcation point. Accordingly we look for 
nontrivial solutions + ( x )  and the corresponding concen- 
trations c* of the branching equation 

D1F(1/(4?r)1/2,c*)~ = 0 (A.5) 
where we introduce an appropriate Banach space and take 
the Frechet derivative &F(~/ (~T)’ /~ ,C)  of operator (A.2) 
with respect to + at  the “point” 1 / ( 4 ~ ) l / ~  in this Banach 
space.33 In this case 
D1F(1/(4?r)1/2,~)4(~) = 

I I I 
C c4 * a C 

Fi ure 8. Plot of the logarithm of the splay modulus K1 times 
c-f3 versus the concentration c when the chain contour L is 
appreciably longer than the global persistence length g at the I-N 
transition c,. Note that g = L at c = c** where c** denotes a 
crossover concentration. 

only useful result that has been attained is for the order 
parameter4 

(IX. 12) 
with a(L) implicitly given by 
d 2 [ 1  + (La/6P)(1 + y2 tanh (aLI5P))I = 

2~- l /~ (Lc /P )  (IX. 13) 
No experimental assessment of this expression has been 
published. Numerical work for all contour lengths is sorely 
needed especially of the variables a t  the phase transition. 

The dependence of the global persistence length g on 
the concentration is spectacular so it should be readily 
discernible under the right circumstances. Table I11 shows 
that g has a lower bound equal to 3.25P. If one wants to 
test the theory of induced rigidity, one should choose 
chains with a contour length larger than 3.25P and measure 
the splay modulus at and just above the isotropic-nematic 
transition. As the concentration increases, K1 should in- 
crease very rapidly until it saturates when g has reached 
the contour length (Figure 8). 

Acknowledgment. One of us (G.J.V.) thanks Profs. L. 
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cerning subtleties involving the bifurcation analysis. 
Appendix A 

We perform a bifurcation analysis of eq 111.9. First we 
must find an expression for the Lagrange multiplier E in 
terms of J / ( x ) .  We divide eq 111.9 by + ( x )  and integrate 
over x ,  using the normalization condition (111.3), the kernel 
expansion (IV.l), and the orthogonality properties of Le- 
gendre polynomials. In this way we obtain 

(A.1) 

s - 1 - 3/a(L) 

1 

-1 
E = 2c - y 4 1  +-l(x’)A+(x’) dx’ 

Defining the operator 

F(+,c) 1/A+(x) - )/,+(x)S1+-’(x?A+(z? -1 dx’+ 

2c+(x)[1 - 8 ~ 1 S ( x , x ’ ) ~ 2 ( x ?  -1 dx’] (A.2) 

we are posed with the problem of solving the operator 
equation 

F(+,c) = 0 (-4.3) 
The bifurcation analysis determines the concentration 

c* at  which a new solution branches off from the isotropic 
one 

(A.6) 
In view of the kernel expansion (IV.l) and the fact that 
the Legendre polynomials are eigenfunctions of A, we easily 
verify that the even polynomials, P2n(x), are nontrivial 
solutions of (A.5) at the respective concentrations 

n!(n + l)! 
c* = 22%(2n + 1) (A.7) (2n - 3)!!(2n - l)!! 

The normalized eigenfunction with the required symmetry 
for a nematic phase is (5/2)1/2P2(x), which has the simple 
eigenvalue 

c* = 6 (A.8) 
Equation A.5 is a necessary though not sufficient con- 

dition for branching. Nevertheless, a formal modificationB 
of section 3 of ref 24 does show that there is a bifurcation 
point a t  this concentration and justifies the use of Taylor 
expansions in a small parameter p around it 

c = 6 + pcl + O(p2) (A.lO) 
Reference 24 gives the following relation for c1 
(Dlo2F(1/(4a)1/2,6)((5/2)1/2P2,1),(5/2)1/2P2)~1 + 

(1 / 2!) ( Dl2F( 1 / (4~)’ /~ ,6)  ( (5/2)ll2P2,( 5/2)’l2P2), 
(5/2)1/2p2) = 0 (A.ll) 

which is in fact the term linear in p obtained by substi- 
tuting the expansions in eq A.3 and taking an inner 
product with (5/2)1/2P2(x) 

( +,(5/2)1/2P2 ) E x : + ( x )  (5/2)1/2P2(x) dx (A. 12) 

The second Frechet derivatives are given by 

D1D2F(1/(4?r)1/2,C*)(4,d) = --JlS(~,x’)4(x’) 8d 1 dx’ 
(A.13) 

7r 

and 
012F(1/(4?r)1/2,~*)(4,4) = 

?r1/21:4(x - ’)A& ’) dx’ - d 2 $ ( x )  l l A @ ( x  -1 ’) dx’ - 

(A.14) 
Using (A.11-14) we find 

c 1 =  --( 90 -) 2a  ll2 
7 5  (A.15) 

In principle it is possible to  determine the higher order 
terms in (A.9) and (A.lO) analogously. 



2858 Vroege and Odijk 

Appendix B 
We derive the Khokhlov-Semenov theorem used in 

section VIII, often referring to the formalism of section 
VI11 of the review by one of us4 and its references. We 
start with the partition function of a wormlike chain (with 
tangential unit end vectors fixed) written as a formal 
functional integration over all possible conformations 
Z(V,,V,,L) = 
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v(L)=vz 
exp [ - i P J L v 2 ( s )  ds - c(: ’$ ds + 

;ez.JLv(s) ds]Zl[v(s)] (B.l) 

where v(s) is the unit tangent vector of the chain at point 
s, the first term in the exponent is the bending energy, the 
second term represents the potential energy of the chain 
in the nematic field (which is a self-consistent field of 
excluded-volume type), and the third gives the potential 
energy as a result of the external dipolar field. The in- 
tegrand of (B.l) may be considered an unnormalized 
probability function for the conformations with fixed 
orientations of the end vectors v1 and v2. 

Equation B.l formally corresponds to the differential 
e q ~ a t i o n ~ J ~ 9 ~ ~  

1 Usef U 

2P kBT P -AvZ(vl,v,l) - --Z(vl,v,l) + -e,.vZ(vl,v,Z) (B.2) 

When we now follow section VI1I.d of ref 4 we find for the 
free energy per persistence length as a result of the external 
field 

hF,,,/kBT = -USCOB 0 f(cos 0) dQ = -u(P1) (B.3) 

Because we can write f(v) = f(cos 0) as4 

(Pl) in eq B.3 can be rewritten as 
(PI) = 

Substituting (B.l) into eq B.5 and combining the func- 
tional integrations with the integration over v give 

[ l d v l  S d v 2  Z(vl,v,,L)] 03.6) 

where the functional integration now takes place without 
restrictions. The susceptibility xo is readily derived from 
this expression for (PI) 

Wl) 

x0 = = 

which shows that 

as we set out to prove. 
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