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Preface

This thesis presents the results from all the conducted research of the past year. With this
work I will conclude my time at the faculty of Aerospace Engineering at the Delft University
of Technology, where I started my journey as a young aspiring student to become an engineer
ready for the challenges of the future.

The basis for this thesis came during my internship at Temasek Laboratories at the National
University of Singapore (NUS), where I did research in obstacle avoidance based on visual
cues. The internship inspired me to focus on computer vision for autonomous navigation and
seek a thesis topic in the field. With the help of dr. Guido de Croon I found the opportunity
to conduct a part of the research work at Temasek Laboratories at NUS for several months.
This led the graduation project to touch a wide range of topics in the field of autonomous
navigation and computer vision, creating a large academic context for the main contribution
of this thesis; the scientific article about Sparse Sensing based Depth Reconstruction.

I would like to thank all the people who helped me while working on this thesis and for making
my internships at Temasek Laboratories possible. Firstly I want to thank my supervisor dr.
Guido de Croon for his guidance and expertise which allowed me to gain new insights and focus
my attention on the topics that mattered when needed. I would like to thank dr. Gao Zhi
for his guidance and the countless discussions regarding numerous scientific and engineering
challenges during my time in Singapore. Furthermore I would like to thank dr. Lin Feng,
dr. Teo Swee Huat Rodney and dr Guido de Croon for their help in realizing my internship
at Temasek Laboratories. Also I would like to thank Gerald van Dalen for proofreading this
work. Lastly I would like to thank all my friends, colleagues and family for their support
throughout the duration of this project.

With the finish line in sight I come to understand what this journey has brought me and I
feel strengthened in my commitment to society and by helping to translate knowledge into
technological innovations.

Tobias A. Heil
June 30, 2017

Delft, The Netherlands
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Chapter 1

Introduction

Recent advances in research have brought the capabilities of Micro Air Vehicles (MAVs) to a
level at which versatile autonomous flight is within reach. These advances made the platform
gain attention from governments and industry for various applications like exploration and
reconnaissance, surveillance and delivery, and commercial applications like aerial photography.

With this increased interest also the demand on the MAVs capabilities are increased. Most
current commercial MAVs are designed for outdoor flight where they use GPS way-point
navigation and obstacle avoidance is of lesser importance as they mostly operate at a sparse
obstacle altitude.

Future MAVs will be expected to show a great sense of situational awareness, such as the
ability to identify no-fly-zones around airports and government facilities and allow for safe
flight in highly cluttered and spatially constrained environments.

The latter has proven to be challenging and is still topic of research, with applications in
exploration and search missions in earthquake affected villages. The goal of this thesis is
to develop and implement a novel method to efficiently identify feasible vehicle-size depen-
dent algorithm that is capable of identifying spatially permitting funnels in highly cluttered
environments. The thesis objective is formulated as follows:

Design a novel vision-based algorithm capable of identifying free-space trajectories
in highly cluttered environments.

1-1 Research Context and Problem Statement

Current methods in the field of autonomous flight for MAVs require off-line computations due
to computationally demanding algorithms, or are restricted in free flight in highly cluttered
environments.

Vision-based approaches are currently most suited due to the weight, power and computa-
tional constrains of the platform, these restrict the perception sensors to be optical sensors.

Enhanced Sparse Depth Reconstruction Using Edge and Temporal Information T.A. Heil



2 Introduction

The most recent computer vision approaches shows promising results as rapid advances are
being made for various applications.

Methods with the ability to identify spatially constrained but feasible flight trajectories in
real-time, with the potential for full on-board implementation have not been developed. They
will allow for free exploration missions in environments which are currently inaccessible to
MAVs.

The purpose of this Thesis is to contribute to the low-level vision-based obstacle avoidance
methods developed at MAVLab1 at the Delft University of Technology. Throughout the
report it is assumed that solutions are intended to make use of a small in-house build stereo-
camera board, which provides sparse disparity map using selective block matching. In order
to increase the exploration capabilities, a novel and computationally efficient vision-based
method has to be developed.

1-2 Research Questions

In order to proceed in a structured way, the following research questions are formulated.
Based on the state-of-the-art methods presented in the next chapter, an approach will be
proposed which shall form the basis for the development of a novel algorithm for feasible
flight in highly cluttered environments.

• Which recent methods for real-time trajectory planning may be used without prior
knowledge of the environment?

• Can superpixels segmentation be applied at real-time, for implementation on the
MAVLab stereoboard?

• Can superpixel segmentation be used to expand a sparse configuration space?

• Which sensing method shows the most promising performance?

• What methods have been developed to represent the environments for trajectory plan-
ning?

• What type of representation method is most suitable for memory and computationally
constrained platforms?

• Can the real-time trajectory planning be combined with efficient representation?

1-3 Thesis Layout

This thesis consists of four parts, the first part contains the scientific article and also forms
the main part of this thesis. It introduces the key methods and their position within the
relevant research, the results and the corresponding conclusions and recommendations.

1http://mavlab.tudelft.nl/

T.A. Heil Enhanced Sparse Depth Reconstruction Using Edge and Temporal Information



1-3 Thesis Layout 3

Part II consists of a broad literature study done at the start of this graduation project.
It covers various topics relevant for vision-based autonomous navigation including; sensing,
representation, obstacle-detection and path-planning. It’s findings are the basis for the pre-
liminary research in the subsequent part.

In part III the feasibility of several methods are tested in the context of implementing them
on a computationally restricted Micro air Vehicle equipped with a stereo-camera system. The
part concludes with a newly proposed research focus and research question. Further research
into this direction is beyond the scope of this thesis.

Finally part IV provides the preliminary research that lead to the methods introduced in the
scientific article and the in-depth background of the underlying research.
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Abstract—The reconstruction of dense depth maps is of great
value to resource-constrained Mirco Air Vehicles (MAVs), in
the pursuit of achieving autonomous flight with a high situa-
tional awareness. Most MAVs implement sensing methods which
provide a sparse depth map, limiting their capabilities signif-
icantly. This article introduces two novel methods to enhance
existing depth reconstruction algorithms in terms of geometric
reconstruction, depth approximation and computational time.
The first contribution is the introduction of a novel method
that includes edge information from the image-domain into the
depth-regularization problem. This to enhance the retrieval of
the complete scene geometry. The second contribution is a novel
scheme which includes temporal information in the reconstruc-
tion approach, allowing extremely sparse depth scenes to be
reconstructed. By estimating the geometric transformation with
optical flow, previous depth reconstructions can be used as initial
solutions for the current depth-regularization problem. Empirical
results show a consistent reduction reconstruction error, while
at the same time reducing the computational time. Qualitative
estimation shows significant improvement in the retrieval of scene
geometry.

I. INTRODUCTION

Recent advances in research have brought the capabilities

of Micro Air Vehicles (MAVs) to a level at which versatile

autonomous flight is within reach [1]. These advances made

the MAVs gain attention from governments and industry

for various applications like exploration and reconnaissance,

surveillance, weather observation, and commercial applica-

tions like aerial photography and delivery [2], [3]. With

this increased interest also the requirements on the MAVs

capabilities are raised to new levels. Most commercial MAVs

are designed for outdoor flight where they use GPS way-point

navigation in sparse obstacle environments [4], [5]. Future

MAVs will be expected to show a great sense of situational

awareness, such as the ability to identify restricted airspace

and allow for safe flight in highly cluttered and GPS-denied

environments. The latter has proven to be challenging and

is topic of extensive research [6]. The most widely used

sensors for depth estimation are active depth sensors like small

LIDAR [7] or passive sensors like stereo [8] and monocular

cameras [9], [10]. Because light weight MAVs are highly

constrained in terms of weight, power and computational

budgets, most of these vehicles are equipped with light sensors

which only provide sparse information about the environment.

This sparseness in sensing has large consequences in the

(a) RGB image (b) Stereo samples (c) L1τ
Ψ

reconstruction

(d) Ground Truth (e) Random samples (f) L1τ
Ψ

reconstruction

Fig. 1. Demonstration of the enhanced sparse depth reconstruction. Using the
stereo-edges from the image (1a) we obtain sparse depth samples (1b). Based
on these samples we reconstruct the dense depth map (1c). Also with 0.1%
randomly distributed sparse samples (1e) we are able to recover the scene to
great detail (1f).

ability of an MAV to autonomously navigate an unknown

environment. Recently, in an effort to enable light weight

MAVs to autonomously navigate using sparse sensing, Ma

et al. [11] focused on reconstructing the dense depth map

from the sparse measurements. They found that by assuming

operation in highly structured environments, the geometric

regularity and sparseness of edges can be leveraged for the

reconstruction of the dense depth map. Building upon earlier

work in the field of compressive sensing [12], they formulated

theoretical conditions for which, using highly sparse input, a

dense depth map can be reconstructed.

This article builds further on previous work of Ma et al. [11],

[13] who presented a novel technique to reconstruct a dense

depth map solely on depth measurements. To enhance the

performance even more and extend the performance envelope

in terms of sparseness, we explore the possibility of exploiting

temporal and additional visual information (see Figure 1).

The goal of this article is to enhance and test a novel method

to increase the situational awareness in terms of geometrical

information recovery while using sparse depth sensing. State-

of-the-art autonomous MAVs still require a significant number

of data-points for obstacle avoidance or to recover geometric

correct depth maps. We aim to reduce this considerably. Light

weight range sensors [14] and miniaturised camera sensors



[15], [16], [17] that are used today would be, in combination

with our technique, capable of operating in more environments

opening the door to new applications and missions.

This article introduces three main contributions. The first

contribution is the introduction of edge information from the

image-domain to enhance the retrieval of the complete scene

geometry with extremely sparse input data. The combination

of visual and depth information will be investigated for various

visual inputs. The second contribution is a novel scheme which

includes temporal information in depth reconstruction for a

sequence of image frames. The scheme aims at stimulating

outlier resistance, better geometry recovery with extremely

sparse input data and improving the computational time sig-

nificantly. The last contribution is an extensive experimental

evaluation of the performance of both approaches, using real

world data.

The article is structured as follows, Section II provides

an overview of related research in the field of resource-

constrained MAV navigation, visual depth estimation, sparse

sensing and compressive sensing. Section III describes the

framework developed by Ma et al. [11], [13] which will be

used throughout this article. In Section IV our approach is

outlined, where in Section IV-A the visual- information and

in Section IV-B the temporal-information enhanced approach

are outlined. Section V and VI describe the experimental set-

up and results, followed by the discussion and conclusions in

Sections VII and VIII.

II. RELATED RESEARCH

This article, which combines visual information with sparse

depth reconstruction, is related to several research topics. The

closely related literature is briefly described in this section.

A. Resource-Constrained MAV Navigation

Due to the minimization of sensing electronics the possi-

bilities for MAVs have been expanding rapidly, stimulating

new research to be conducted in the field. One innovative

approach uses bio-inspired robotics, where the design of the

platform is based on nature’s creations. Ma et al. [15] designed

the Robobee: a 80-milligram flapping wing robot based on

the morphology of flies. It is capable of stable hovering

and basic controlled flight manoeuvres. Keennon et al. [16]

developed the Nano Hummingbird: a 19-gram ornithopter

with hovering and forward flight capabilities, together with

a live video-downlink to a ground station. Similarly Dunkley

et al. [18] demonstrated a 25-gram nano-quadrotor capable

of stable hovering and providing a live video-downlink. The

DelFly Explorer [17] was the first ornithopter able to perform

onboard vision processing and achieving autonomous flight in

unknown environments. McGuire et al. [19] further advanced

the capabilities and achieved full autonomous flight on a

40-gram nano-quadrotor which performed depth and velocity

estimation at 20 Hz.

B. Visual Information-based Depth Estimation

Learning approaches have been used for depth estimation

[20], [21]. Bipin et al. [22] were able to generate a dense

depth map for local navigation, using a supervised learning

approach relating the direct video stream to depth. Likewise,

Lamers et al. [23] used a supervised self-learning approach

to relate object appearance with corresponding distances, and

achieved successful implementation on a 19-gram MAV. More

recently Facil et al. [24] recognised that monocular depth

estimation approaches complement the weakness of stereo-

vision based approaches, thus they proposed fusing monocular

CNN-based depth estimation with stereo depth estimation.

With it enhanced the sparse stereo depth map with visual

information in the form of its CNN-based depth estimator.

C. Sparse to Dense Depth Map

Obtaining a dense depth map from sparse measurements

greatly improves the situational awareness of autonomous

MAVs and is therefore of great value. To gain such a dense

map several approaches have been taken. Geiger et al. [25]

introduced an effective method where an energy function that

combines a likelihood estimator for feature correspondence

with a linear disparity estimator, is minimized. The latter

is modelled as a linear function which interpolates robust

disparities using a triangulation computed on these robustly

matched points. Alvarez et al. [1] use Parallel Tracking and

Mapping for pose estimation [26], [27] and follow a multi-

view stereo approach based on energy minimization. To gain

the dense depth map they regularize the inverse depth map

by minimizing the cost volume which contains a term that

penalizes deviation from a spatially smooth inverse depth

map. This approach has also been successfully applied to

3D laser point-clouds containing large gaps from removed

objects [28], by using a Total Variation regularization with

a new Kernel Conditional Density Estimation term which

stimulates regularity when reconstructing surfaces. Piniés et

al. [29] reconstruct a dense map from noisy range data through

energy minimization with adaptive regularisers for which

Bayesian optimisation is used to learn the needed parameters.

A collective shortcoming of these approaches is the way they

estimate depth in textureless regions, where most rely on

interpolation. A more sophisticated and natural approach that

includes additional visual information is expected to outper-

form conventional approaches in these textureless regions.

D. Compressive Sensing

The basis for our approach is found in compressive sensing

literature [30], [31], [32]. Foucart et al. [12] proved with the

synthesis model that a dataset can be completely recovered

from a sparse subset, even for fewer samples than required

by the Shannon-Nyquist sampling theorem, given the samples

are sparse in the right domain. Recent work uses the analysis

model [33], [34], which can extract a sparse subset, for a given

dense dataset. Because required sparsity can be stimulated

by adopting a l1-minimization scheme and the reconstruction

result can be improved with randomized samples, compressive

sensing with the analysis model has proven successful in sev-

eral applications. These include total variation minimization

[35], 3D reconstruction [36] and regularization [37]. Using the



analysis model Ma et al. [11] set the theoretical conditions

for which a dense depth map can be reconstructed based

on a highly sparse depth map. By assuming operation in

highly structured environments, the geometric regularity and

sparseness of edges can be leveraged for the reconstruction of

the dense depth map. Subsequently Ma et al. [13] implement

the scheme in combination with a ad-hoc solver [38] reducing

the computational time significantly. By only leveraging the

sparseness of edges Ma et al. take the first step to include

additional information in the depth reconstruction. In section

IV we propose a reformulation and extension of the approach,

to include extensive visual and temporal information.

III. SPARSE DEPTH MAP RECONSTRUCTION

This paper builds further on previous work by Ma et al.

[11], [13], who took a novel approach to reconstruct a dense

depth map solely on depth measurements and a regularity

assumption. In this section the framework will be explained.

A. Definitions and Notations

Similar notations as in the paper of Ma et al. [11], [13] will

be used. For matrices an upper case letter will be used, e.g.

A,D. For scalars and vectors lower case letters e.g. z, y are

used. Subsets are represented with calligraphic font, e.g. M.

The subset M of vector z ∈ R
n is denoted as zM. Indicating

a subset M of a matrix D is done as DM, which represents

the rows in subset M in matrix D. The following norms are

widely used, (ℓ∞-norm): ‖z‖∞ = maxi=1,...,n|zi|, (ℓ0-norm):

‖z‖0 = |supp (z) |, and the (ℓ1-norm): ‖z‖1 =
∑

i=1,...,n |zi|.
It is important to recognise that the ℓ0-norm corresponds to the

number of none-zero elements in z. The depth reconstruction

is based on the use of the cosparsity model Dz where the

analysis operator D produces a sparse vector i,e. given z ∈ R
n

and D ∈ R
p×n we will have ‖Dz‖0 ≪ p [33], [34].

B. Problem Formulation

The theoretical basis of the reconstruction builds upon

earlier work in the field of compressive sensing, where it was

proven that a dataset z can be completely recovered from a

sparse subset y given y ∈ z [12]. The conventional model in

the field is the synthesis model. It assumes that the dataset z

is sparse given z = Dα where the vector α is sparse in the

domain of the matrix D. In more recent work a slight different

representation in the form of the cosparsity model is proposed,

where the vector z becomes sparse after multiplying it with a

given matrix D, i.e.Dz, where z is the dataset andD is a given

matrix [33], [34]. Ma et al. [11] found out that the ℓ0-norm of

the 2nd order difference of the depth map can be used as an

objective function to enforce the regularity assumption in the

environment. By relaxing and reformulating the problem to a

ℓ1-norm problem, it becomes convex and fits the cosparsity

model, allowing for a full reconstruction. In the remainder of

this section the framework [11] is explained in detail, after

which key-points are highlighted where we will depart from

the original approach and introduce novel adaptations.

In order to reconstruct the dense depth map, it is as-

sumed that sparse depth information is provided by sensing

equipment. Lets define y as the measurement vector, η as

measurement noise, z⋄ ∈ R
n the depth map, and A the

selection matrix. Then the measurements in y are found with

y = Az⋄ + η with A = IM, where IM is the identity matrix

with only ones on the rows from subset M. From this it can

be clearly seen that Az = zM.

The assumption of operating in a structured environment

means that the depth map shows a lot of regularity, i.e. the

changes of the slope are mostly zero throughout the depth map.

Such a change in slope for a measurement point is formulated

as δ2zi
δxi

2 = δzi
δxi

− δzi−1

δxi−1
which can be described as

zi+1−zi
xi+1−xi

−
zi−zi−1

xi−xi−1
. As this regularization is done in image-space we can

assume xi−xi−1 = 1, resulting in the second order derivative

of zi expressed as zi+1 − 2zi − zi−1.

It can be seen that the corner set C consists of indices

for which zi+1 − 2zi − zi−1 6= 0. Keep in mind that with

few corners in the environment Dz⋄ will be sparse. Defining

matrix D as a 2nd-order difference operator (Equation 1) gives

us the important equation ‖Dz⋄‖0 = |C|.

D
.
=











1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
... 0

. . .
. . .

. . . 0
0 · · · 0 1 −2 1











∈ R
(n−2)×n (1)

Now by leveraging the regularity in the environment, the full

depth profile z⋄ can be reconstructed by solving the following

optimization problem:

min
z

‖Dz‖0 subject to Az = y (2)

This noiseless optimization problem will force the depth

profile to be consistent with the sparse measurements y, and

minimises the number of corners, recall that ‖Dz⋄‖0 = |C|.
In order to allow for measurement noise and reformulate the

problem into a linear programming problem the following

relaxation is applied:

min
z

‖Dz‖1 subject to ‖Az − y‖∞ ≤ ε (3)

Note that for this ℓ1-minimization problem it is assumed

that the noise is bounded ‖η‖∞ ≤ ε. This is important for

determining the tolerance for a specific application.

The optimization problems expressed in Equations 2 and 3

follow the cosparsity models [34], and allow us to reconstruct

2-dimensional depth maps, for the three dimensional case a

we need to introduce a second 2nd-order difference operator.

For 3-dimensional depth reconstruction of Z⋄ ∈ R
r×c a

operator, DH , will be assigned to to the horizontal differ-

ences, and a difference operator, DV , will be assigned to the

vertical differences. The layout of the operators is identical

as expressed in Equation 1, but with the appropriate sizes.

Given depth map Z⋄ ∈ R
r×c, we get DV ∈ R

(r−2)×r

and DH ∈ R
(c−2)×c. The corners are now encoded with



DV Z
⋄ ∈ R

(r−2)×c and Z⋄DT
H ∈ R

r×(c−2), Thus the ℓ1-

minimization now becomes:

min
Z

‖vec(DV Z)‖1 + ‖vec(ZDT
H)‖1 (4)

subject to Zi,j = yi,j where yi,j is the sparse measure-

ment map, Z the reconstructed depth map and vec(M) is the

column wise vectorization of matrix M .

The next step is to reformulate the optimization in Equation

4 to correspond to the 2-dimensional case, the result is as

follows:

min
z

‖∆z‖1 subject to Az = y (5)

where we define n = r × c, and z = vec(Z) ∈ R
n and the

measurements are stored in y ∈ R
m. The new matrix ∆ is

called the Regularization matrix, which is defined as follows:

∆ =

[

Ic ⊗DV

DH ⊗ Ir

]

(6)

where Ic is the identity matrix of size c, and ⊗ is the Kronecker

product. The case where noise is present in the measurement,

it is assumed the noise is bounded according to ‖η‖∞ ≤ ε.

This case is shown below:

min
z

‖∆z‖1 subject to ‖Az − y‖∞ ≤ ε (7)

The problem as formulated in Equation 7 is referred to L1ε∆
in Ma et al. [13]. In the remainder of this paper only noisy

3-D cases will be considered thus the epsilon (ǫ) and delta

(∆) subscripts will be dropped from the formulation. The new

referencing is as shown in L1.

min
z

‖∆z‖1 subject to ‖Az − y‖∞ ≤ ε (L1)

In order to solve the L1 optimization problem, Ma et al.

[11] first used a off-the-shelf solver cvx/MOSEK [39] which

proves to be impractical due to it’s slow performance. In [13]

they proposed the use NESTA, a variant of the more efficient

first-order method developed by Becker et al. [38], which is

based on earlier work by Nesterov for nonsmooth optimization

[40], [41]. The method aims to solve

min
z
fµ (z) subject to z ∈ Q (8)

where fµ (z) is the smooth approximation of the nonsmooth

function f (z) and Q the corresponding set for which f (z)
is convex. Ma et al. [13] uses the problem formulation as

shown in Equation 7, thus resulting in f (z) = ‖∆z‖1 and

Q = {z : ‖Az − y‖∞ ≤ ε}. To formulate it more concisely

in terms of the ℓ∞-ball

f (z) = max
u:‖u‖∞≤1

〈u,Dz〉

Nesterov [40] proposes a method to approximate a non-smooth

objective function by a function with Lipschitz-continuous

gradient, applying this approach fµ (z) will be defined as

fµ (z) = max
u:‖u‖∞≤1

〈u,Dz〉 − µ
‖u‖22
2

(9)

where the gradient of fµ (z) is Lipschitz-continues with con-

stant Lµ. By minimizing fµ (z) with an improved gradient

method, Nesterov [40] achieved an optimal rate of convergence

of O
(

1
k2

)

The implementation of Nesterov’s optimization

technique as described above is formulated in Algorithm 2

from Ma et al. [13]. In the next section adaptations will be

applied to the algorithm in order to include visual and temporal

information.

IV. ENHANCED RECONSTRUCTION APPROACH

This section explains the two main extensions proposed

in this article. The first extension includes visual informa-

tion, the original approach is solely based on sparse depth

information leaving the information rich image-space out of

scope. The second extension includes temporal information

from previous frames, in an effort to stabilize the recovered

geometry for extremely sparse input and significantly reducing

the computational time, making the method suitable for real-

time applications.

A. Edge-Information Enhanced Method

By including visual information in the depth reconstruction

process will stimulate the recovery of the scene’s geometry

to a large extent. While Ma et al. [13] were only able to

recover geometry based on information contained in the sparse

depth values, we propose a method that extracts geometric

information from image-space. The justification for this is that

most biological systems use stereo or multi-vision to estimate

distances from itself to the surroundings. These distances

are estimated by neural networks that relate the visual input

from multiple perspectives, it is therefore evident that (visual)

distance estimation is only possible at distinguishable locations

in image-space. The space of unobservable colour or intensity

change is expected, and therefore assumed to be a interpolated

region of it’s observable boundary locations. As a consequence

of this assumption the corner set C must a subset of observable

set O, i.e. C ∈ Z⋄
O, where Z⋄

O is the observable subset O of

Z⋄.

To encourage the corner set to coincide with observable

locations in image-space an adaptation is proposed to the

problem formulation L1. The objective function ‖∆z‖1 will be

adjusted by discounting the cost at observable locations with

discount function ψ. The choice for discount function ψ is

non-trivial due to largely unquantifiable relationship between

observability and depth changes. For now ψ is chosen to be

based on scaled image gradient. A successful and computa-

tionally attractive approach of identifying observable locations

is applying a simplified Sobel filter onto the colour-intensity

image [42] resulting in the gradient image. We propose the

calculation of two directional gradient images δxI and δyI as

shown below

δxI = I ∗ Gx, where Gx = [1, 0,−1]

δyI = I ∗ Gy, where Gy = [1, 0,−1]
T

where I is the normalized colour-intensity image, δxI and δyI

are the gradient images in horizontal and vertical direction.



(a) Vertical gradient map δyI (b) Horizontal gradient map δxI

Fig. 2. Visualization of the Edge enhanced method using gridded sparse data.
In Figure (2a) the vertical,- and in Figure (2b) the horizontal gradient map
are shown. For both figures the sparse depth values are superpositioned in
red. Its clear that a lot of information added about the scene’s geometry.

Gx and Gy are the simplified Sobel filters in horizontal and

vertical direction. Examples of the gradient maps are shown in

Figure 2. To illustrate how they complement the sparse depth

values gridded data points are added in red.

Combining the vectorized gradient images yields the image

gradient vector IG which is defined as follows

IG =

[

vec (δxI)
vec (δyI)

]

(10)

Subsequently the discount function ψ is defined as follows

ψ = (1− IG)
ζ

(11)

where ζ is the scaling power which predominantly relates the

likelihood of depth changes to observability in image-space,

the value of ζ is empirically determined by minimizing the

average euclidean error for a select dataset.

In order to incorporate the discount function ψ in the

framework of Ma et al. [13] we will diagonalize the discount

function according to

Ψ = diag (ψ) (12)

where Ψ is a diagonal matrix with the discount function ψ on

its diagonal. Recall the problem formulation L1

min
z

‖∆z‖1 subject to ‖Az − y‖∞ ≤ ε (L1)

We propose the following alteration to include the visual

information in the depth reconstruction.

min
z

‖Ψ(∆z)‖1 subject to ‖Az − y‖∞ ≤ ε (L1Ψ)

This new formulation encourages the corner set C to coincide

with gradients in image-space, which follows the intuitive

thought that depth discontinuities in the depth map occur at

edges in the image.

The corresponding Nesterov approximation function with

Lipschitz-continuous gradient is as follows

fµ (z) = max
u:‖u‖∞≤1

〈u,Ψ(Dz)〉 − µ
‖u‖22
2

(13)

(a) SURF features [43] frame 1 (b) SURF features [43] frame 2

(c) Feature Tracking from frame 1 to frame 2

(d) Geometric Transformation

Fig. 3. Visualization of the Temporal-Information Enhanced method. Figures
(3a - 3b) show the feature detection step, followed by the feature tracking in
Figure (3c). An illustration of the geometric transformation used to warp the
previous depth map is show in Figure (3d)

B. Temporal-Information Enhanced Method

In this section the use of temporal information from pre-

vious frames is proposed to stabilize the recovered geometry

based on extremely sparse input, and significantly reduce the

computational time. This approach differs from the method

proposed by Ma et al. [13] on three main points. Firstly, Ma

et al. use multi-frame reconstruction where they project the

measurements from a select number of previous frames onto

the current sparse depth map. We propose to include the re-

covery of previous scene into the reconstruction of the current

scene. Secondly, Ma et al. depend on sensor measurements

to determine the relative position and pose for the projection

of the sparse measurements onto the current sparse depth

map. We propose the use of a geometric transformation of

the previous dense depth reconstruction based on the current

optical flow. Lastly where Ma et al. use a linearly interpolated

depth map as a hot-start for the optimization problem L1,

we use the expected dense map as initial solution for the

optimization problem L1Ψ enabling large improvements in

terms of computational time.

To determine the optical flow we propose Speeded-Up

Robust Features (SURF) tracking over for instance more

recent feature descriptors like FAST features [43], due to the

relative robust and well performing SURF features in low



resolution images. When The SURF detector fails to match

a sufficient number of points, we automatically switch to

Harris feature tracking [44] which is less robust but is able to

detect significantly more features. The approach is visualized

in Figure 3 where Figures (3a - 3b) show the feature detection

step and Figure (3c) the tracking step.

Tracking the features from the previous to current frame

results into a sparse gradient field which is used to estimate

the geometric transformation (see Figure 3d). Outliers are

excluded using the M-estimator Sample Consensus (MSAC)

algorithm, a variant of the Random Sample Consensum

(RANSAC) algorithm [45], [46]. Lastly the initial solution to

the L1Ψ problem at time n, z
(0)
n is determined by warping the

previous dense reconstruction zKn−1 using the estimated geo-

metric transformation, where K is the last Nesterov iteration.

To indicate the use of temporal information we shall use the

upper case τ , e.g. for the problem formulation with edge-, and

temporal-information we use L1τ
Ψ.

V. EXPERIMENTAL SET-UP

In this section the experimental set-up is presented. The

performance of the approach will be verified using real data,

presenting us with empirical evidence. In order to compare

the performance of the approach by Ma et al. [13] (in this

paper referred to as L1), with the new problem formulation

L1Ψ, both approaches will be tested on a 3.50GHz Intel

i7-processor, using the ZED dataset from [13]. Furthermore

to test the applicability of the method to visual navigation

based MAVs, the performance is tested using a MAVLab1

stereo-vision dataset. The accuracy of the dense depth map

reconstruction is quantified using two different measures,

firstly with the average euclidean distance error in centimetres,
1
n
‖z∗−z⋄‖1, where z∗ is the reconstruction and z⋄ the ground

truth.

The second measure is based on the Scale-Invariant Error

proposed by Eigen et al. [47] as defined

D (y, y∗) =
1

2n

n
∑

i=1

(logyi − logy∗i + α (y, y∗))
2

where α (y, y∗) = 1
n

∑

ij (logy∗i − logyi). In order to cope

with possible negative values, the magnitude is taken of the

individual logarithms. The choice for the second error measure

is based on the the desire to have a better quantifier for the

recovery of the geometry of the scene.

(a) Example image (b) Example image

Fig. 4. Examples of ZED (4a) and MAVLab (4b) datasets

1TUDelft, Micro Air Vehicle Laboratory

The ZED dataset consists of 641 frames for which the depth

ground truth and RGB images are downscaled to a resolution

of 128× 96, resulting in 12, 288 depth values per frame to be

reconstructed (Figure (4a)).

The MAVLab dataset consists of 2875 stereo-pairs taken in

22 separate takes (Figure (4b)). The image-pairs are 128 ×
96, the same as the downscaled ZED dataset. To estimate the

sparse depth map, the block-matching scheme from [42] is

used. Because there is no ground truth data for this set, only

a qualitative evaluation is possible.

For the ZED dataset several sampling methods are proposed.

The first method is to uniformly sample from the ground truth.

This is done for varying sample sizes, ranging from 0.1% to

40%. Secondly the Canny edge detection method [48] is used

on the gray-scale images where it finds edges by looking for

local maxima of the image gradient. The Canny method is

relatively robust against noise and is able to detect many edges.

On these edge locations we will use the corresponding depth

values as sparse input samples. Thirdly sampling in a regular-

spaced grid is applied. This case is interesting as it corresponds

to sampling from for instance laser-ranging sensors. The last

sampling method is based on the block-matching approach

described in [42], where at peaks in the image gradient block-

matching between the image-pairs is applied. Because for the

ZED dataset no stereo images are present, sampling is done at

gradient locations that pass a certain threshold [42].

For the MAVLab dataset only the last sampling strategy is

applied where the block-matching scheme is applied to esti-

mate the corresponding depth values, in contrast to sampling

them from the ground truth as done in the ZED dataset.

VI. RESULTS

In this section the expected improvements are verified

with experiments on real data from the ZED, and MAVLab

dataset. The results from the experiments show significant

improvements in terms of average error and scale-invariant

error for all simulations, while improvements in terms of

computational time are made for specific settings. Furthermore

quantitative evidence is provided to prove the largely increased

ability to recover scene geometry. The section is structured as

follows, first in Section VI-A the performance using uniform

random sampling is presented. Followed by regular-grid sam-

pling in Section VI-B. Finally the performance using RGB-

edge sampling and stereo sampling are presented in Section

VI-C and VI-D respectively. Finally a qualitative performance

evaluation is done in Section VI-E for the MAVLab dataset.

A. Uniform random sampling

In this section the performance of the methods are pre-

sented using the random sampling approach where samples are

randomly drawn from a ground truth depth map. Firstly the

influence of the addition of temporal-information is examined

by comparing the L1 method (as mentioned in Section III-B,

referred to by Ma et al. as L1ǫ∆ [13]) to the temporal enhanced

L1τ method, and by comparing L1Ψ to L1τΨ. Secondly the

influence of the addition of edge-information is examined by



(a) RGB image (b) L1 (c) L1τ

(d) random samples (e) L1Ψ (f) L1τ
Ψ

Fig. 5. Comparison of depth reconstructions using 1% random samples of
different approaches. It is clear that the addition of edge information (5e - 5f)
enhances the geometric recovery substantially.

comparing L1 with L1Ψ, and L1τ with L1τ
Ψ. In order to

represent the results, the bootstrap averages of the 641 images

in the ZED dataset will be calculated with the Bias corrected

and accelerated method [49]. The results are summarized in

Figure 6. With the left column the performance of L1 (red)

and L1τ (blue) and in the right column L1Ψ (red) and L1τ
Ψ

(blue).

In Figure (6a) it is shown that introduction of temporal

information does not significantly change the estimated aver-

age euclidean error for sampling percentages above 0.5%. L1

and L1τ remain almost identical regardless of the sparseness

of the samples. An exception is observed for the extreme

sparse situation with only 0.1% samples. In this extreme sparse

situation the combination of edge-information and temporal

information, (Figure (6b)), shows that the introduction of

temporal information reduces the estimated average euclidean

error with 33% (see Table I).

The quantitative difference is clearly shown in Figure 5. The

introduction of edge-information causes the reconstruction to

recover the geometry of the corridor walls and floor to great

detail. The influence of the temporal information is also visible

in the improvement of Figure (5f) over Figure (5e).

When looking at the corresponding computational time in

Figures (6c) and (6d) it is clear that for extremely sparse

sample inputs the computational time increases with the intro-

duction of temporal information, while for all other sparseness

percentages the computational time improves by including

temporal information. Comparing (6c) and (6d) shows that

including the edge-information increases the computational

time significantly, even up to 3 times, (see Table II). This is

explained by the extra computational step in equation L1Ψ in

the cost function, and the fact that the L1 and L1τ approaches

both do not recover any geometry while L1Ψ and L1τ
Ψ do in

great extent, (see Figure 7).

The effectiveness of the edge-information in terms of ge-

ometry recovery in extreme sparseness can also be seen in the

Scale-invariant error in Figures (6e) and (6f). With a sampling

percentage of 0.1% the scale-invariant error reduces with 14%
from L1 to L1Ψ or even 63% from L1 to L1τ

Ψ, see Table III.
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Fig. 6. Uniform random sampling. A comparison between, L1, L1Ψ in red
and L1τ , L1τ

Ψ
in blue, for mean Euclidean Error (6a-6b), mean Computational

Time (6c-6d) and mean Scale-Invariant Error (6e-6f)

TABLE I
BOOTSTRAPPED MEAN EUCLIDEAN ERRORS USING UNIFORM RANDOM

SAMPLING [cm]

Sampling Percentages [%]

0.1 0.5 1 2 3 4 5 10

Interp 145.74 57.73 40.05 27.62 22.04 18.77 16.56 10.87

L1 149.62 57.86 39.86 27.45 21.98 18.81 16.60 11.12

L1Ψ 139.94 49.75 33.33 21.98 17.22 14.61 12.68 8.20

L1τ 137.66 56.92 39.21 27.23 21.95 18.86 16.54 11.03

L1τΨ 93.45 44.79 31.48 21.90 17.29 14.92 13.31 8.58

TABLE II
BOOTSTRAPPED MEAN COMPUTATIONAL TIME USING UNIFORM RANDOM

SAMPLING [ms]

Sampling Percentages [%]

0.1 0.5 1 2 3 4 5 10

Interp 11.56 13.04 14.43 17.07 19.39 21.20 24.09 24.11

L1 3488.43 1839.35 1225.93 750.28 576.12 502.10 463.61 338.88

L1Ψ 7735.67 3790.60 2741.47 1909.87 1523.79 1362.21 1402.17 952.37

L1τ 4269.24 1609.61 1167.24 708.22 549.04 474.75 440.85 322.24

L1τΨ 6568.39 3033.14 2603.55 1801.64 1552.03 1330.00 1304.95 876.82

B. Regular grid sampling

In this section the performance of the methods are presented

using regular spaced samples. Similar to the previous section,

firstly the influence of the addition of temporal-information

is examined by comparing L1 to the temporal enhanced

L1τ method, and by comparing L1Ψ to L1τΨ. Secondly the



(a) RGB image (b) L1 (c) L1τ

(d) random samples (e) L1Ψ (f) L1τ
Ψ

Fig. 7. Comparison of depth reconstructions using 0.1% random samples
of different approaches. It is clear that the addition of temporal and edge
information (7e - 7f), enhances the geometric recovery substantially.

TABLE III
BOOTSTRAPPED MEAN SCALE-INVARIANT ERROR USING UNIFORM

RANDOM SAMPLING

Sampling Percentages [%]

0.1 0.5 1 2 3 4 5 10

L1 517.11 104.24 57.22 35.41 26.90 23.65 20.95 16.03

L1Ψ 444.14 66.95 39.59 28.97 23.24 20.95 19.22 15.79

L1τ 455.61 100.68 57.18 35.23 27.85 23.52 20.96 15.85

L1τΨ 188.50 57.52 40.06 28.64 24.07 22.99 21.02 16.82

influence of the addition of edge-information is examined by

comparing L1 with L1Ψ, and L1τ with L1τ
Ψ. The results are

summarized in Figure 9.

A quick look at Figure (9a) and Figure (9b) shows that

the estimated average euclidean error is hardly affected by

any of the approaches. This is confirmed when examining the

bootstrapped averages in Table IV. The reconstruction error is

similar to uniform sampling scenario in the previous section.

A quantitative assessment can be made by examining Figure

8. In contrast to the similar error values, the geometric

recovery of the L1 and L1τ is significantly higher for regularly

spaced samples relative to uniform samples. Due to the evenly

spread samples these methods do not disadvantage over the

edge-information enhanced counterparts. A major difference

that is present is the more crisp edges in the reconstruction

for the edge-information enhanced methods L1Ψ and L1τ
Ψ.

When looking at the corresponding computational time in

Figure (9c) and (9d) it becomes clear that in correspondence

with the uniform sampling scenario, for all sparseness percent-

ages the computational time improves by including temporal

TABLE IV
BOOTSTRAPPED MEAN EUCLIDEAN ERRORS USING REGULAR-GRID

SAMPLING [cm]

Sampling Percentages [%]

0.1 0.5 1 2 3 4 5 10

Interp 113.99 39.64 26.60 19.18 12.80 12.80 10.08 7.10

L1 122.27 43.03 29.69 21.58 14.43 14.43 11.33 7.90

L1Ψ 119.44 39.46 26.21 19.16 12.84 12.84 10.41 7.21

L1τ 123.19 43.03 29.70 21.60 14.45 14.45 11.34 7.91

L1τΨ 120.72 41.77 29.36 21.78 14.85 14.85 11.80 8.11

(a) RGB image (b) L1 (c) L1τ

(d) regular-grid samples (e) L1Ψ (f) L1τ
Ψ

Fig. 8. Comparison of depth reconstructions using 1% regular-grid samples
of different approaches. It is clear that the addition of edge information (8e -
8f) enhances the geometric recovery substantially.
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Fig. 9. Regular grid sampling. A comparison between, L1, L1Ψ in red and
L1τ , L1τ

Ψ
in blue, for mean Euclidean Error (9a-9b), mean Computational

Time (9c-9d) and mean Scale-Invariant Error (9e-9f)

information. This correspondence also holds for the increas-

ing effect on the computational time when including edge-

information, due to the extra calculations made in equation

L1Ψ. This can be confirmed by comparing (9c) to (9d). The

computational times are shown in Table V.

The effectiveness of the edge-information in terms of ge-

ometry recovery can not be seen in the scale-invariant error in



TABLE V
BOOTSTRAPPED MEAN COMPUTATIONAL TIME USING REGULAR-GRID

SAMPLING [ms]

Sampling Percentages [%]

0.1 0.5 1 2 3 4 5 10

Interp 12.51 14.63 15.37 19.07 21.81 21.82 23.62 27.40

L1 2794.63 1112.78 571.69 486.72 282.66 286.98 339.36 322.55

L1Ψ 8869.99 3817.68 2723.77 1973.24 1476.62 1514.21 1644.04 1144.66

L1τ 2347.40 840.69 443.85 405.95 254.90 255.17 255.10 237.28

L1τΨ 5759.93 2467.57 2178.69 1741.52 1335.98 1347.87 1179.49 858.02

TABLE VI
BOOTSTRAPPED MEAN SCALE-INVARIANT ERROR USING REGULAR-GRID

SAMPLING

Sampling Percentages [%]

0.1 0.5 1 2 3 4 5 10

L1 488.96 56.32 33.28 27.60 17.63 17.63 15.74 13.41

L1Ψ 494.49 56.44 33.02 27.65 19.04 19.04 18.08 15.35

L1τ 496.59 56.28 33.40 27.49 17.65 17.65 15.76 13.42

L1τΨ 450.42 53.43 36.95 30.00 22.64 22.64 20.19 16.65

Figures (9e) and (9f). The scale-invariant errors shown in Table

VI are largely unaffected by the different approaches. This

corresponds to the qualitative assessment based on Figure 8,

where the outcome in Figures (8b, 8c, 8e, 8f) looks relatively

similar in terms of geometry.

C. RGB-Edge sampling

In this section the performance of the methods are presented

using rgb-edge samples. The samples are calculated using a

search for local maxima of the image gradient, combining

strong and weak edges.

Similar to the previous section, firstly the influence of the

addition of temporal-information is examined by comparing

L1 to the temporal enhanced L1τ method, and by comparing

L1Ψ to L1τΨ. Secondly the influence of the addition of edge-

information is examined by comparing L1 with L1Ψ, and L1τ

with L1τ
Ψ. The results are summarized in Figure 11.

This sampling method differs significantly from the previous

two in terms of the possibility of large areas in the depth map

where no samples are taken. Figure 10 shows the results of

the different approaches and in Figure (10d) the RGB-edge

based samples are indicated.

From Figure 10 it is clear that the L1 (10b) and L1τ (10c)

create large errors in the reconstruction, as shown by the large

dark blue areas. The edge-information enhanced method L1Ψ

already shows a large improvement regarding these large dark

blue regions, and the L1τ
Ψ approach shows an even better

result. To support this Figure 11a shows significantly higher

average errors relative to the edge-enhanced approaches shown

in Figure 11b.

In contrast to the two previous sampling methods, the RGB-

edge method seems to have an increase in euclidean error

when including the temporal information. This contradicts the

qualitative assessment based on Figure 10. From Table VII we

can deduct an euclidean error increase of 15% for including

temporal information to L1, and a 34% increase for L1τ
Ψ

compared to L1Ψ. The same phenomenon can be seen for

the scale-invariant error in Figure 11e and Figure 11f, and the

corresponding bootstrapped averages in Table VIII.

TABLE VII
BOOTSTRAPPED MEAN EUCLIDEAN ERRORS USING RGB-EDGE

SAMPLING [cm]

Euclidean Error [cm] Standard Error [cm]

Interp 61.73 3.83

L1 126.25 5.28

L1Ψ 67.64 3.88

L1τ 170.73 5.60

L1τΨ 77.44 2.50

TABLE VIII
BOOTSTRAPPED MEAN SCALE-INVARIANT ERROR USING RGB-EDGE

SAMPLING

Scale-Invariant Error Standard Error

L1 736.97 24.78

L1Ψ 346.29 19.29

L1τ 1051.36 26.03

L1τΨ 549.12 20.27

From Figure 11c it is shown that the computational time

is significantly reduced when introducing the temporal infor-

mation. From Table IX we can deduct a decrease of 38% for

the L1 approach. For the L1Ψ approach we find a decrease

of 10%. Remarkable is that the computational time is also

decreased with 3% when introducing the edge-information to

the L1 approach. It was expected that the computational time

would increase with the introduction of extra calculations.

TABLE IX
BOOTSTRAPPED MEAN COMPUTATIONAL TIME USING RGB-EDGE

SAMPLING [ms]

Computational time [ms] Standard Error [ms]

Interp 26.99 0.14

L1 4393.89 153.98

L1Ψ 4240.29 145.19

L1τ 2715.91 100.57

L1τΨ 3812.35 130.73

(a) RGB image (b) L1 (c) L1τ

(d) rgb-edges samples (e) L1Ψ (f) L1τ
Ψ

Fig. 10. Comparison of depth reconstructions using rgb-edges samples of
different approaches. It is clear that the addition of edge information (10e -
10f) enhances the geometric recovery substantially.
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Fig. 11. RGB-edge sampling. A comparison between, L1, L1Ψ in red and
L1τ , L1τ

Ψ
in blue, for mean Euclidean Error (11a-11b), mean Computational

Time (11c-11d) and mean Scale-Invariant Error (11e-11f)

D. Stereo Sampling

In this section the performance of the methods are presented

using stereo samples. Similar to the previous section, firstly the

influence of the addition of temporal-information is examined

by comparing L1 to the temporal enhanced L1τ method, and

by comparing L1Ψ to L1τΨ. Secondly the influence of the

addition of edge-information is examined by comparing L1

with L1Ψ, and L1τ with L1τ
Ψ. The results are summarized in

Figure 13.

The stereo sampling method is chosen to test the validity

of the edge,- and temporal-information enhanced approach

for reconstructing a dense depth map for complex navigation

tasks. The samples are taken at high horizontal gradient

locations in the gray-scale image, in correspondence with [17].

An example of the samples is presented in Figure (12d).

Comparing these samples with the rgb-edge samples from

Figure (10d) it is clear that the stereo sampling approach

results in fewer and less continuous lines of samples.

A qualitative assessment of the dense reconstructions is

made based the reconstructions in Figure 12. Similar to

the rgb-edge based reconstructions discussed in the previous

section, the L1 and L1τ approaches show a phenomenon of

dark blue regions in areas where no samples are present,

(a) RGB image (b) L1 (c) L1τ

(d) stereo samples (e) L1Ψ (f) L1τ
Ψ

Fig. 12. Comparison of depth reconstructions using 1% stereo samples of
different approaches. It is clear that the addition of edge information (12e -
12f) enhances the geometric recovery substantially.

making the approaches unsuitable for robot navigation. When

edge-information is added the phenomenon disappears and a

proper recovery of the scene geometry is achieved. Both L1Ψ

and L1τ
Ψ reconstruct the depth map successfully to a great

extent. This improvement is confirmed by Figure 13, where

in the top row the estimated average error in Figure (13a) is

lower than Figure (13b) where edge-information is included.

The estimated average errors are given in Table X. These

values give a second validation, indicating a reduced error

when including edge-information.

TABLE X
BOOTSTRAPPED MEAN EUCLIDEAN ERRORS USING STEREO SAMPLING

[cm]

Euclidean Error [cm] Standard Error [cm]

Interp 129.03 7.18

L1 153.43 5.95

L1Ψ 132.96 7.36

L1τ 161.80 5.27

L1τΨ 95.97 4.64

Another observation from Table X is the significant reduc-

tion in average error when including temporal information to

the edge-information enhanced approach L1Ψ, while including

temporal information to the standard L1 approach caused by

a small increase in error.

The same is observed for the scale-invariant error; the

introduction of edge-information reduces the error for both the

L1 and L1τ , while the introduction of temporal information

only causes a reduction of the error for the L1Ψ approach. The

addition of temporal information to L1 causes an increase in

error.

TABLE XI
BOOTSTRAPPED MEAN SCALE-INVARIANT ERROR USING STEREO

SAMPLING

Scale-Invariant Error Standard Error

L1 852.05 25.10

L1Ψ 650.79 23.79

L1τ 998.97 23.63

L1τΨ 461.63 16.85
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Fig. 13. Stereo sampling. A comparison between, L1, L1Ψ in red and L1τ ,
L1τ

Ψ
in blue, for mean Euclidean Error (13a-13b), mean Computational Time

(13c-13d) and mean Scale-Invariant Error (13e-13f)

Figure (13c) and Figure (13d) show the computational time.

From (13c) it is clear that L1τ outperforms the standard L1

approach, and that both L1Ψ and L1τ
Ψ have a slightly higher

computational time relative to L1. From Table XII we can

deduct that L1τ is 22% faster than L1, and that L1τ
Ψ is 4%

faster than L1Ψ.

TABLE XII
BOOTSTRAPPED MEAN COMPUTATIONAL TIME USING STEREO SAMPLING

[ms]

Computational time [ms] Standard Error [ms]

Interp 28.42 0.23

L1 5027.37 158.32

L1Ψ 5938.69 181.78

L1τ 3940.60 124.02

L1τΨ 5707.52 192.76

E. MAVLab dataset

In this section a qualitative evaluation is done of the

performance of the approaches on the MAVLab dataset. A

first remark is the image quality difference to the ZED dataset.

Where the ZED dataset consists of downscaled high-resolution

RGB images, the MAVLab dataset consists of stereo-pair

images obtained with a extremely light and small stereo-

camera system resulting. Because for the MAVLab dataset

(a) Image frame (b) L1 (c) L1τ

(d) stereo samples (e) L1Ψ (f) L1τ
Ψ

Fig. 14. Comparison of depth reconstructions using stereo samples of different
approaches. It is clear that the addition of edge information (14e - 14f)
enhances the geometric recovery substantially.

(a) Image frame (b) L1 (c) L1τ

(d) stereo samples (e) L1Ψ (f) L1τ
Ψ

Fig. 15. Comparison of depth reconstructions using stereo samples of different
approaches. The addition of edge information (15e - 15f) enhances the
geometric recovery marginally.

(a) Image frame (b) L1 (c) L1τ

(d) stereo samples (e) L1Ψ (f) L1τ
Ψ

Fig. 16. Comparison of depth reconstructions using stereo samples of different
approaches. It is clear that the addition of edge information (16e - 16f)
enhances the geometric recovery substantially.

no ground truth depth maps are available, no quantitative

assessment is made.

In Figure 14 the first result of the MAVLab dataset is shown.

The frame has multiple prior fames to allow the temporal

approach to take effect. It is clear that both L1 and L1τ

are unable to reconstruct a reliable depth map nor recover



the scene’s geometry properly. The large dark blue regions

indicate a strong sensitivity to outliers which falsely propagate

into larger areas. Both edge-information enhanced methods

L1Ψ and L1τ
Ψ do not show this sensitivity and are able to

reasonably reconstruct the scene’s depth map, noting a large

difference on the left side of the images. L1τ
Ψ seems to be

better equipped to reconstruct the distant region in the left

side, relative to L1Ψ which falsely estimates this region to

have a closer proximity.

In Figure 15 two objects are positioned at a relative large

distance from the camera. In contrast to Figure 14, this frame

seems to have no large outliers in the sparse sample set causing

all four reconstructions to perform relatively similar in regard

to depth approximation. In terms of geometric recovery the

L1Ψ and L1τ
Ψ produce the slightly more crisp maps, where in

Figure (15f) the second pole is distinguishable, making L1τ
Ψ

the better performing approach.

In Figure 16 there is one large textureless screen positioned

on the left side in the scene. All four approaches are able to

reconstruct the screen reasonably but again both L1 and L1τ

seem to be largely influenced by outliers in the sample set.

L1Ψ in this scene also suffers from a large outlier in the bottom

left corner, indicating that including edge-information does

provide sufficient robustness against outliers. In terms of re-

covery of the scene’s geometry, both L1Ψ and L1τ
Ψ outperform

the other two methods, recovering a depth map which clearly

distinguishes the screen, walls and floor from each other. The

combination of edge,- and temporal-information proves to be

the most successful, showing more robustness against outliers

and recovering the scene’s geometry to a larger extend, see

Figure (16f).

VII. DISCUSSION

In this paper two novel methods were introduced to

enhance an existing depth reconstruction approach [13] in

terms of geometric reconstruction, depth approximation and

computational time. In the previous section the approaches

were tested on the ZED dataset and subject to a extensive

comparison between the approaches. This section will discuss

the results and the implications they might have. First the

uniform and regular-grid sampling approaches are discussed

followed by the machine-vision methods; RGB-edge,- and

stereo-sampling.

In Section VI-A we found that L1Ψ and L1τ
Ψ have consistent

lower estimated euclidean errors relative to L1 and L1τ . Given

the randomness in the sampling method, some small regions of

the scene might not contain a sample causing both L1 and L1τ

to treat those regions as regular surfaces between all surround-

ing samples. A consequence will be that discontinuities in the

depth map (which are assumed to coincide with edges in the

RGB image) will not be recovered. For L1Ψ and L1τ
Ψ, which

both include edge-information in the reconstruction process,

the depth discontinuities in these regions are to a certain extent

recovered, causing a better resemblance to the ground truth.

The scale-invariant error, which is more sensitive to geometric

similarity, confirms that the addition of edge-information has

great effect on the ability to recover the scene’s geometry.

When using regular-gridded samples (see Section VI-B) there

are no regions without any depth-information. Therefore the

addition of edge-information has very little effect on the

average euclidean error. All reconstruction approaches shown

in Figure 8 are able to reasonable recover the scene’s geometry,

with the only difference the more crisp result of L1Ψ and L1τ
Ψ

relative to L1 and L1τ . The addition of temporal-information

only reduces the average euclidean,- and scale-invariant-error

for extreme sparse input samples. This can be explained as the

sparseness of some regions is virtually reduced by including

depth-information from the previous frame in the form of a

hot-start of the optimization problem with the previous warped

depth-reconstruction.

In terms of computational time it is clear from the results

in Section VI-A and Section VI-B that the addition of

edge-information causes a large increase. This can partially

be explained by the addition of the discount function ψ

term in equation L1Ψ, see Section IV. Another possible

aspect that can contribute to the computational time is

the more complex behaviour of the optimization problem

given the discount function ψ is not regularly spread over

the depth map. When temporal-information is included the

computational time reduces significantly regardless of the

sampling method. The additional optical flow calculations

which are used to warp the previous depth reconstruction

require additional computational time but are insignificant

relative to the advantage of using a high-quality hot-start for

the optimization problem.

Most MAV do not carry range sensors due to weight

limitations, and therefore rely on optical depth sensing. The

RGB-edge,- and stereo-sampling methods are conventional

approaches for visual depth estimation for robots and aerial

vehicles.

In Section VI-C the performance of the RGB-edge-sampling

is presented. In Figure 10 the depth reconstructions of the four

approaches show that L1 and L1τ are incapable of providing

usable results; the presence of large dark blue regions indicate

an extreme close proximity to the camera, and will therefore

cause navigation algorithms to take false evasion manoeuvres.

The results in Table VII confirm the bad performance of

L1 and L1τ as the average euclidean error is almost double

relative to L1Psi and L1τ
Psi. In terms of geometry recovery

both edge-information approaches outperform their counter-

parts. This is shown in Figure 10 and confirmed by the scale-

invariant errors in Table VIII. In contrast to the previous

two sampling methods, the addition of temporal-information

increases the average euclidean,- and scale-invariant-error. The

estimated average euclidean errors in Table VII suggest a

worsening effect of the introduction of temporal information.

The reconstructions shown in Figure 10 show that for both

with and without edge-information the reconstruction seems

better in terms of dark blue regions and geometric recovery.

Similarly to the random,- and gridded-sampling methods,



the introduction of temporal-information reduces the

computational time significantly. Even when the edge-

information is included the computational time is reduced,

suggesting that the computational benefit of the hot-start

compensates the additional calculations and more complex

optimisation domain due to the added edge-information.

To explore the possibility of implementing the approach

to an actual platform like the TUDelft Delfly [17], the

performance using stereo-samples is crucial. Figure 12 in

Section VI-D shows high quality reconstructions for both L1Ψ

and L1τ
Ψ in contrast to L1 and L1τ , proving that the edge-

information approach is highly effective in terms of depth

reconstruction and geometry recovery. Both the estimated

average euclidean error and scale-invariant error confirm this

finding. Adding temporal-information only has a positive ef-

fect in combination with the edge-information approach, solely

introducing temporal information causes a slight increase in

average euclidean,- and scale-invariant-error. This suggests

that using the naive linear interpolation approximation a better

reconstruction in terms of euclidean error is possible, than

when using the warped previous reconstruction.

The computational time however, reduces significantly

when using temporal information relative to the standard

approach which uses the naive interpolated approximation.

Similar to the case with RGB-samples, the computational

time is reduced even when the edge-information is included,

suggesting that the computational benefit of the hot-start

compensates the additional calculations and more complex

optimisation domain due to the added edge-information.

The results of the different approaches using the MAVLab

data is shown in Section VI-E. It is clear that the original

approach of Ma et al. [13] is not able to produce reliable

and acurate results that can be used for MAV navigation,

see Figure (14b, 15b and 16b). The introduction of temporal-

information improves the robustness slightly, but proves to be

of most value in terms of reducing the computational time,

as found in the results of the ZED dataset. Including edge-

information proves to improve the depth map reconstruction

considerably. The results of L1τ
Ψ seem so qualitatively sound,

showing geometric coincidence between the depth map and

the image, with further development implementation on a real-

world platform seems feasible.

VIII. CONCLUSION AND RECOMMENDATIONS

In this paper we introduced two novel approaches to en-

hance an existing depth reconstruction algorithm in terms of

geometric reconstruction, depth approximation and computa-

tional time. We have briefly summarized the basis approach

and subsequently described a new and lean approach to include

edge information from the image-domain into the depth-

regularization problem in an effort to enhance the retrieval

of the complete scene geometry. Results prove the effective-

ness of the approach, broadening the operational envelope to

extreme sparse inputs.

The introduction of a novel scheme which included temporal

information was made possible by estimating the geometric

transformation with optical flow, and subsequently warping the

previous depth reconstructions to be used as initial solutions

for the current depth-regularization problem. This contribution

proved to reduce the computational time considerably in com-

bination with adding robustness against disappearing samples

due to vehicle movement.

Experimental results show that the introduced L1τ
Ψ method,

which combines both edge- and temporal-information is ca-

pable of reconstructing a dense depth map with a high degree

of geometric recovery, based on highly sparse and noisy

stereo-samples. Because the method works well with stereo-

samples from the ZED and MAVLab datasets, the method in

combination with the MAVLab stereo-board seems feasible.

The stereo-board has already been used with edge detection

algorithms but has not been used to construct a high quality

dense depth map [42], [50]. With a faster C++ implementation

of the method and when calculations are performed on a

ground station, MAV navigation can be feasible based on the

results.

Future work should focus on a few points. Several alter-

ations can reduce the computational time significantly, namely

a C++ implementation of the method will enable real-time

testing on a UAV platform taking a step towards achieving au-

tonomous flight with high situational awareness. Additionally

improvements can be made with the development of a custom-

made solver, reducing the number of cost-function evaluations.

Tuning a gradient threshold to increase the sparseness of the

discount function, the computational time can be decreased

substantially. Furthermore research into different forms of the

discount function ψ is expected to present improvements. The

choice of ψ greatly influences the reconstruction capabilities

for specific stereo-sampling algorithms. For these algorithms

the stereo-edge locations are likely to coincidence with the by

ψ discounted locations in the depth map, the influence of the

only depth input is therefore reduced. A detailed study into

the precise influence of the discount function could present a

function that outperforms the one used in this article. Lastly

the development of a hybrid approach which combines the

warped previous depth-map with a naive linear interpolated

depth-map of the current frame could increase the robustness

of the temporal-approach and the combined approach L1τ
Ψ

REFERENCES

[1] H. Alvarez, L. M. Paz, J. Sturm, and D. Cremers, “Collision avoidance
for quadrotors with a monocular camera,” in Experimental Robotics.
Springer, 2016, pp. 195–209.

[2] R. Brockers, Y. Kuwata, S. Weiss, and L. Matthies, “Micro air vehicle
autonomous obstacle avoidance from stereo-vision,” in SPIE Defense+

Security. International Society for Optics and Photonics, 2014, pp.
90 840O–90 840O.

[3] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unknown indoor
environments,” International Journal of Micro Air Vehicles, vol. 1, no. 4,
pp. 217–228, 2009.

[4] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor
fusion for robust autonomous flight in indoor and outdoor environments
with a rotorcraft mav,” in Robotics and Automation (ICRA), 2014 IEEE

International Conference on. IEEE, 2014, pp. 4974–4981.



[5] A. J. Barry and R. Tedrake, “Pushbroom stereo for high-speed navigation
in cluttered environments,” in Robotics and Automation (ICRA), 2015

IEEE International Conference on. IEEE, 2015, pp. 3046–3052.

[6] D. Dey, K. S. Shankar, S. Zeng, R. Mehta, M. T. Agcayazi, C. Eriksen,
S. Daftry, M. Hebert, and J. A. Bagnell, “Vision and learning for
deliberative monocular cluttered flight,” in Field and Service Robotics.
Springer, 2016, pp. 391–409.

[7] S. Shen, N. Michael, and V. Kumar, “3d indoor exploration with a
computationally constrained mav,” in Robotics: Science and Systems,
2011.

[8] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen,
and M. Pollefeys, “Vision-based autonomous mapping and exploration
using a quadrotor mav,” in Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on. IEEE, 2012, pp. 4557–4564.

[9] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a
monocular camera,” in Proceedings of the IEEE international conference

on computer vision, 2013, pp. 1449–1456.

[10] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in Robotics and Automation (ICRA), 2014

IEEE International Conference on. IEEE, 2014, pp. 15–22.

[11] F. Ma, L. Carlone, U. Ayaz, and S. Karaman, “Sparse sensing for
resource-constrained depth reconstruction,” in Intelligent Robots and

Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 96–103.

[12] S. Foucart and H. Rauhut, A mathematical introduction to compressive
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TABLE XIII
BOOTSTRAPPED MEAN EUCLIDEAN ERRORS USING UNIFORM RANDOM

SAMPLING [cm]

Sampling Percentages [%]

0.1 SE 0.5 SE 1 SE 2 SE 3 SE 4 SE 5 SE 10 SE

Interp 145.66 3.06 57.75 0.93 40.05 0.64 27.63 0.46 22.04 0.38 18.77 0.33 16.56 0.29 10.87 0.20

L1 149.69 3.18 57.86 1.01 39.83 0.70 27.45 0.49 21.98 0.39 18.80 0.34 16.60 0.30 11.12 0.20

L1Ψ 139.83 2.90 49.68 0.89 33.34 0.69 21.99 0.49 17.21 0.40 14.61 0.36 12.67 0.33 8.20 0.24

L1τ 137.55 2.33 56.92 1.00 39.23 0.69 27.22 0.48 21.96 0.39 18.86 0.34 16.54 0.29 11.04 0.20

L1τΨ 93.44 1.76 44.81 0.85 31.48 0.68 21.92 0.51 17.31 0.42 14.95 0.38 13.29 0.40 8.58 0.26

TABLE XIV
BOOTSTRAPPED MEAN COMPUTATIONAL TIME USING UNIFORM RANDOM

SAMPLING [ms]

Sampling Percentages [%]

0.1 SE 0.5 SE 1 SE 2 SE 3 SE 4 SE 5 SE 10 SE

Interp 11.56 0.04 13.04 0.05 14.43 0.06 17.07 0.07 19.39 0.09 21.20 0.08 24.08 0.12 24.11 0.10

L1 3493.07 54.75 1839.97 29.95 1226.01 13.95 750.05 7.46 576.10 4.91 502.04 4.05 463.54 3.66 338.80 2.27

L1Ψ 7745.08 108.45 3789.75 67.84 2739.04 54.28 1912.00 44.85 1522.89 36.74 1361.50 32.62 1401.38 33.95 951.73 18.24

L1τ 4266.91 70.08 1611.17 24.70 1167.53 13.52 708.24 7.47 549.33 5.29 474.57 3.92 440.98 3.52 322.30 2.08

L1τΨ 6573.64 96.87 3033.99 60.67 2603.99 61.67 1801.56 44.27 1552.70 37.95 1328.84 31.38 1306.99 34.12 876.87 16.55

TABLE XV
BOOTSTRAPPED MEAN SCALE-INVARIANT ERROR USING UNIFORM

RANDOM SAMPLING

Sampling Percentages [%]

0.1 SE 0.5 SE 1 SE 2 SE 3 SE 4 SE 5 SE 10 SE

L1 517.75 16.40 104.19 3.98 57.13 2.40 35.35 1.82 26.87 1.58 23.61 1.56 20.95 1.52 15.96 1.46

L1Ψ 443.12 16.19 66.92 2.71 39.53 1.86 28.97 1.84 23.26 1.66 20.86 1.64 19.18 1.60 15.74 1.53

L1τ 455.60 13.27 100.52 4.01 57.27 2.51 35.12 1.81 27.71 1.69 23.50 1.57 20.93 1.54 15.85 1.49

L1τΨ 188.92 8.42 57.48 2.63 40.17 2.20 28.69 1.75 24.12 1.66 23.03 1.74 21.12 1.68 16.82 1.52

TABLE XVI
BOOTSTRAPPED MEAN EUCLIDEAN ERRORS USING REGULAR-GRID

SAMPLING [cm]

Sampling Percentages [%]

0.1 SE 0.5 SE 1 SE 2 SE 3 SE 4 SE 5 SE 10 SE

Interp 113.96 1.75 39.68 0.72 26.63 0.49 19.21 0.39 12.81 0.25 12.81 0.25 10.09 0.19 7.11 0.13

L1 122.22 1.97 43.01 0.80 29.67 0.53 21.57 0.42 14.42 0.27 14.42 0.27 11.33 0.21 7.90 0.15

L1Ψ 119.46 1.87 39.41 0.79 26.19 0.54 19.14 0.43 12.82 0.32 12.82 0.32 10.41 0.27 7.20 0.19

L1τ 123.38 1.98 43.02 0.78 29.69 0.53 21.57 0.42 14.44 0.27 14.44 0.27 11.33 0.21 7.91 0.14

L1τΨ 120.78 1.95 41.82 0.84 29.38 0.62 21.77 0.48 14.87 0.37 14.87 0.37 11.82 0.32 8.13 0.22

TABLE XVII
BOOTSTRAPPED MEAN COMPUTATIONAL TIME USING REGULAR-GRID

SAMPLING [ms]

Sampling Percentages [%]

0.1 SE 0.5 SE 1 SE 2 SE 3 SE 4 SE 5 SE 10 SE

Interp 12.51 0.04 14.63 0.04 15.37 0.05 19.07 0.06 21.81 0.07 21.82 0.07 23.61 0.09 27.41 0.09

L1 2794.27 39.46 1113.15 6.56 571.73 1.96 486.69 5.39 282.79 3.37 286.92 3.45 339.46 4.10 322.51 2.54

L1Ψ 8865.62 117.57 3816.11 78.83 2726.02 59.35 1971.32 50.54 1476.91 46.12 1515.43 46.97 1641.72 55.14 1145.45 32.01

L1τ 2346.65 45.29 840.85 7.52 443.88 1.98 406.16 4.03 254.90 2.33 255.20 2.31 255.11 2.26 237.24 1.52

L1τΨ 5759.70 94.67 2468.33 60.74 2179.35 58.04 1742.54 50.67 1335.34 37.77 1347.67 38.17 1181.51 31.39 858.10 20.72

TABLE XVIII
BOOTSTRAPPED MEAN SCALE-INVARIANT ERROR USING REGULAR-GRID

SAMPLING

Sampling Percentages [%]

0.1 SE 0.5 SE 1 SE 2 SE 3 SE 4 SE 5 SE 10 SE

L1 488.64 11.82 56.38 2.35 33.35 1.68 27.62 1.71 17.65 1.47 17.65 1.47 15.77 1.44 13.41 1.41

L1Ψ 493.79 12.19 56.51 2.79 33.06 2.05 27.73 1.90 19.05 1.60 19.05 1.60 18.10 1.58 15.44 1.52

L1τ 497.04 12.00 56.13 2.38 33.26 1.68 27.48 1.73 17.61 1.50 17.61 1.50 15.70 1.45 13.35 1.43

L1τΨ 449.83 11.99 53.52 2.58 36.96 1.96 30.05 1.74 22.61 1.60 22.61 1.60 20.18 1.54 16.60 1.47
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Chapter 2

Literature Review

2-1 Introduction

This review will provide a concise introduction into the latest advances in autonomous ob-
stacle avoidance and navigation methods. It briefly touches various recent findings with a
special focus on optimal trajectory generation and obstacle representations. In an attempt to
achieve autonomous flight in unknown cluttered environments several approaches have shown
promising results. Various planners like Rapidly exploring Random Tree (RRT), Stable-
Sparse-RRT (SST), Batch Informed Trees (BIT)*, RRT* and Fast Marching Tree (FMT)
allow for rapid exploration of high dimensional configuration space in which system states
and world obstacles are represented. Using advances in trajectory smoothing or analytical Op-
timal Boundary Value Problem (OBVP) points in high-dimensional configuration space can
be connected. However to achieve full autonomous flight with on-line sensing, representation
and control requires a computationally more efficient approach.

Efficient Image Space representations of expanded-inverse-disparity maps have been imple-
mented on-line and can be combined with computationally efficient avoidance methods.
Achieving further optimization of Image Space representation provides for an opportunity
to tackle a major shortcoming of current obstacle avoidance approaches; autonomous flight in
highly cluttered and spatially constrained environments. This review will expose the need for
a novel method to efficiently identify feasible vehicle-size-based trajectory generation allowing
for flight in spatially constrained environments.

In the following sections the focus will be applications for indoor where a, broadly used, GPS
signal is not available and navigation has to be performed using alternative sensors and more
advanced methods. As all sensing and processing has to be done on-board, the available
payload capacity and power budget of the drone form major constraints on the options of
various sensors and for the complexity of the algorithms that can be deployed.

Besides the limiting suitable types of sensors due to weight, size and power constraints, indoor
flight impose heavy requirements on the performance of the sensors in terms of the information
they provide about the environment in which the drone operates. As obstacles are expected to
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be in close proximity to the drone and are highly cluttered at times, the situational awareness
of the drone has to be high. In terms of sensing this imposes requirements on the horizontal
and vertical field of view in order to perceive obstacles around the drone.

Vision-based sensors are highly suitable as they provide the necessary field of view in com-
bination with dense information about the environmental. The research in optical sensors
for consumer electronics have led to the development of high quality sensors of extremely
low weight and power consumption. As optical sensors promise the best potential relative to
other sensors, vision-based approaches to obstacle avoidance and navigation will be addressed
in this review.

In order to provide a clear context for the vision-based obstacle avoidance approach, the scope
of this review is slightly enlarged to include local trajectory planning and motion planning
next to the in depth analysis of the latest achievements in visual obstacle detection and
avoidance.

The problem of autonomous flight of MAVs can roughly be split in a global and a local lo-
cal path planning. Where Sunberg et. al. focussed on global path planning in the form
of collision avoidance policies in civic airspace (Sunberg, Kochenderfer, & Pavone, 2016),
Nieuwenhuisen et. al. focussed on a layered navigation approach in a partially known en-
vironment combining global mission planning with local trajectory generation for obstacle
avoidance (Nieuwenhuisen & Behnke, 2016). The problem of obstacle avoidance in cluttered
unknown environments however does not allow for global path planning as most of the envi-
ronment will be occluded, and no prior knowledge of the environment is assumed. The focus
will therefore be on efficient obstacle detection and representation to be implemented on a
light weight MAV.

In section 2-2 sampling-based motion planning algorithms are introduced. This type planners
has successfully been implemented for robotics and MAVs and the latest are discussed in
detail in Section 2-2-1. In the next Section (2-2-2) the latest work of Allen et. al. is presented
where online kinodynamic motion planning is achieved by using a novel machine-learning-
based framework in combination with a non-linear feedback controller, achieving successful
real-time obstacle avoidance (R. Allen & Pavone, 2016).

In Section 2-3 recent work is presented in which a efficient configuration space expansion is
introduced accelerating feasible trajectory checking and planning (Brockers, Kuwata, Weiss,
& Matthies, 2014). Followed by Section 2-3-4 in which Brockers et. al. extend their previous
work by introducing a novel egocylindrical image space representation allowing for direct
obstacle free trajectory searches in image space (Brockers, Fragoso, & Matthies, 2016).

Lastly in chapter 3 a complement to the sparse disparity map is investigated in the form
of two segmentation methods. A more direct method of obstacle avoidance is to use image
space based detection and avoidance. Chapter 3 introduces segmentation as a method to
extract information from an image and allowing for effective processing of image regions.
Two influential approaches are described, first in Section 3-1 the Simple Linear Interactive
Clustering (SLIC) approach is described (Achanta et al., 2010). Achanta et. al. achieve
real-time high quality real-time segmentation using a novel new approach. Second in Section
3-2 the approach of Van den Bergh, Boix, Roig and van Gool is presented. They recently
developed a more complex and flexible clustering approach called Superpixels Extracted via
Energy-Driven Sampling (SEEDS), achieving faster segmentation than SLIC while retaining
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the quality and even providing better edge detection (Van den Bergh, Boix, Roig, & Van
Gool, 2015).

2-2 Sampling-based Motion Planning for MAV Applications

A of the challenges within the research field of the autonomous MAV navigation is real-time
collision free motion planning. The modification of a collision free trajectory to a dynamically
feasible one is not always easy, as most MAV and robotic systems are controlled by the time
derivatives of their configuration (Choset, 2005). In order to take into account the constraints
of the configuration derivatives in motion planning Donald et. al. introduced a method called
kinodynamic motion planning, where he used the systems configuration directly to guarantee
dynamically feasible trajectories(Donald, Xavier, Canny, & Reif, 1993).

2-2-1 Sampling-based Kinodynamic Planning

One class of methods to solve kinodynamic planning are sampling-based methods (Karaman
& Frazzoli, 2011; Hsu, Kindel, Latombe, & Rock, 2002; Kavraki, Vestka, Latombe, & Over-
mars, 1996; LaValle & Kuffner, 2001). This class of methods is characterized by sampling
a large amount of states and subsequently try to connect a select set of samples, to form a
feasible trajectory. They have proven to be able to find feasible solutions in high-dimensional
configuration space (LaValle & Kuffner, 2001; Hsu et al., 2002). The early developments
used a probabilistic approach to sample the configuration for feasible trajectories, an early
method was introduced by Kavraki et. al., the probabilistic roadmap method (Kavraki et al.,
1996). Later developments were based on early work of LaValle (LaValle & Kuffner, 2001)
who proposed RRTs to find ways to connect two different states in configuration space with
each other. These methods are based on the probabilistic completeness of the methods to find
a solution, i.e. the probability that the method finds a solution given the number of branches
goes to infinity, converges to 1 (Kuffner & LaValle, 2000; Ladd & Kavraki, 2004).

A major leap in the development of sampling-based methods was done by Karaman and
Frazzoli, they proved that incremental methods like RRT will surely not converge to the
optimum-cost path (Karaman & Frazzoli, 2011). The same paper contributed with the intro-
duction of Rapidly exploring Random Graph (RRG) which does converges to the optimum
path. They introduce a tree version of RRG called RRT* which transfers the asymptotic
optimal property of RRG to the tree structured methodology of RRT (Karaman & Frazzoli,
2011).

A contribution by Li is made with the development of the SST method which achieves asymp-
totic optimality for kinodynamic planning (Li, Littlefield, & Bekris, 2016), it based on an
adaptation of sampling-based planner RRT (LaValle & Kuffner, 2001) called RRT-BestNear
(Urmson & Simmons, 2003). Li accomplishes guaranteed better time performance with SST
compared to RRT, where SST is able to converge to the optimal path over time faster.

Other adaptations of the RRT method have been developed by Gammell et. al., with their
Informed RRT* and BIT (Gammell, Srinivasa, & Barfoot, 2014, 2015). These adaptations
show a higher capability in finding feasible trajectories in narrow spaces in configuration space.
The latest development showing a significant improvement in finding trajectories in narrow
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spaces is developed by Choudhury et. al. called Regionally Accelerated Batch Informed
Trees (RABIT) (Choudhury, Gammell, Barfoot, Srinivasa, & Scherer, 2016). One of the
latest sampling methods which has already been implemented of MAV trajectory generation
is the FMT (Janson, Schmerling, Clark, & Pavone, 2015). This method will be discussed in
detail in Section 2-2-2.

2-2-2 Real-Time Kinodynamic Planning with Obstacle Avoidance

Kinodynamic motion planning is computationally expensive as all system dynamics are taken
into account for the trajectory planning (LaValle, 2011). Because of this real-time implemen-
tations of kinodynamic motion planning have not been achieved until recently. In this section
first a background of kinodynamic motion planning is given, followed by the latest approach
of Allen and Pavone.

Development of Real-Time Kinodynamic Motion Planning

Based on the work of Mellinger (Mellinger & Kumar, 2011), major progress has been made
in the field of obstacle avoidance. Mellinger proved that using a minimum snap trajectory
a smooth dynamically feasible solution to the planning is found. Richter et. al. used this
to generate feasible, polynomial, minimum-snap trajectories connecting waypoints directly
in configuration space (Richter, Bry, & Roy, 2016, 2013). Richter used the dynamically
flat dynamics of the quadrotor, meaning the systems inputs and states can en be expressed
explicitly by it’s output and it’s derivatives (Mellinger & Kumar, 2011), to calculate the
analytical inputs required for a feedforward controller for given generated trajectory (Richter
et al., 2016).

Richter used the RRT* (Karaman & Frazzoli, 2011) algorithm for the waypoint planning. This
was done off-line with prior knowledge of the obstacles in the environment. Also normal path-
planning was implemented as Richter did not take into account the differential constraints
of the quadrotor and thus did not do kinodynamic planning. Instead Richter developed a
technique to automatically calculate the time per polynomial segment, hence limiting the
velocities and actuator inputs (Richter et al., 2016).

Real-time motion planning has been accomplished in (Cowling, Yakimenko, Whidborne, &
Cooke, 2007, 2010), and (Bouktir, Haddad, & Chettibi, 2008). Both accomplished this by
predefining a limited amount of obstacles. This limits the number of types of obstacles for
which the method will work properly, and thus safe flight in an unknown environment is not
guaranteed.

Successful real-time kinodynamic motion planning was done by Frazzoli et. al. (Frazzoli,
Dahleh, & Feron, 2002). Frazzoli used RRT (LaValle & Kuffner, 2001) and connecting the
waypoints using a few select motion primitives from an available set of 25 primitives. Motion
primitives are vehicle manoeuvres for which the input signals are predefined, for instance;
turn 30 degrees. The method allowed for the path planner to find trajectories through an
environment with sparse obstacles at real-time speed i.e. milliseconds. But because of the
use of motion primitives the motion planner is unable to achieve completeness, i.e. the ability
of reach the entire configuration space. The same holds for chess pieces, they each have
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predefined motion primitives causing for instance a bishop not to be able to land on a different
colour tile as the colour it started on. The inability of the planner to achieve completeness
has large consequences, the motion planner may encounter difficulties in specific obstacle
configurations making it impossible to guarantee the real-time computability of a feasible
collision free trajectory (Frazzoli et al., 2002; R. Allen & Pavone, 2016).

Successes without prior knowledge of the environment have been made by Webb and van
den Berg, with the introduction of the kinodynamic version of RRT (LaValle & Kuffner,
2001) called RRT* (Webb & Berg, 2013). Webb et. al. made kinodynamic motion planning
possible without the requirement of prior information about the environment, but at a large
computational cost. Because of this Webb et. al. were unable to run real-time simulations.

Allen et. al. recently demonstrated a real-time kinodynamic motion planning and tra-
jectory control able to navigate without prior knowledge of the environment (R. Allen &
Pavone, 2016). By using the real-time, machine-learning-based, kinodynamic framework from
(R. Allen & Pavone, 2015), the minimum snap trajectory from (Mellinger & Kumar, 2011)
and the nonlinear feedforward/feedback controller from (Lee, Leok, & Mcclamroch, 2013).
The online computation times of this method were several times faster than other state of the
art algorithms. The improvement was achieved by reducing the number of online OBVPs to
be solved to a constant number. This reduction to constant number of OBVP is made pos-
sible by the use of machine-learning based estimates of reachability sets (R. Allen & Pavone,
2015). Using the Support Vector Machine (SVM) the target states are classified to be within
or outside the reachability set, i.e. the estimated cost is within or over a certain threshold,
(see Section 2-2-2).

In the following sections the real-time approach of Allen et. al. (R. Allen & Pavone, 2016) is
described in detail.

Real-Time Kinodynamic Framework

Sampling-based motion planning algorithms are able to efficiently search even high-
dimensional configuration spaces where states can be constrained by obstacles or differentially
constrained by the abilities of the system (Lavalle, 2006). The sampling-based motion plan-
ning algorithms connect several short trajectories and does not solve a single computationally
expensive optimization problem. Instead multiple OBVP are solved instead of one complex
global optimization problem.

Although there are planners which do not require solving OBVPs like RRT (LaValle &
Kuffner, 2001), but it has the downside that it does not guarantee optimality like algorithms
like RRT*, Probabilistic RoadMap (PRM)* and FMT* (Karaman & Frazzoli, 2011; Janson et
al., 2015) and is sensitive to drift. The recently proposed planner, described in Section 2-2-1
called SST, proposed by Li et. al., does provide optimality guarantees without the need to
solve OBVPs. It uses forward propagated system dynamics, but also at large computational
costs making a real-time implementation impossible (Li et al., 2016). Allen et. al. therefore
choose to pursuit a strategy to limit the number of OBVPs to be solved.

After the planners sampled proper states, the OBVP solutions are checked for constraint
violations, i.e. obstacle collisions, and form a tree when connected. A major challange for
real-time execution is the number of OBVP to be solved, without additional information about
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the systems reachability set the number of OBVPs is of O
(
N2

s

)
where N2

s is the number of
states (I. M. Ross & Fahroo, 2006).

Figure 2-1: The real-time framework for kinodynamic planning and control of the quadrotor,
from Allen et. al. (R. Allen & Pavone, 2016)

The framework proposed in (R. Allen & Pavone, 2015) uses off-line and on-line computations
to achieve successful flight. This framework is visualized in Figure 2-1, extended with the
path smoothing step (R. Allen & Pavone, 2016).

In the off-line phase the following approach is used: First the function Sample builds a
set of states V by taking a Ns number of randomly selected samples from configuration
space without any obstacles. The second function SampleData draws Npair samples randomly
from V with replacement and where Npair ≤ Ns (Ns − 1) and stores them in sets A and B.
Matching these Npair states in A and B gives Npair

2 pairs for which the OBVPs are solved
and saved in table Cost using the solve function SolveOBVP. The function SolveOBVP will be
discussed in section 2-2-2. The look-up table Cost is used to train a SVM, NearSVM, to provide
computationally efficient approximation of the reachable sets (i.e.neighbourhoods) for input
states. The training and detailed workings of NearSVM are discussed in section 2-2-2. The
reachable set is bounded by a cost threshold (i.e. neighbourhood radius) and is set manually.

In the on-line phase the following approach is used: At initialisation the algorithm is provided
with the current state xinit and the goal region χgoal which is updated on-line based upon the
drone’s environment. Next a set of Ngoal samples are selected from the goal region χgoal and
put in the set Xgoal. Using the SVM the neighbourhoods of the outgoing state xinit and the
incoming state χgoal are approximated rapidly, the results are stored in Ninit and Ngoal (See
section 2-2-2). Now a limited amount of OBVPs can be solved from xinit and from χgoal to
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their closest neighbour states present in V .

Allen then uses the kinodynamic Fast Marching Tree (kino-FMT) sampling-based planner to
compute the optimal path through pre-sampled states V (see Section 2-2-2). The kino-FMT
algorithm introduced by Janson is asymptotically optimal and more efficient compared to
other sampling-based methods (Janson et al., 2015; Schmerling, Janson, & Pavone, 2015).

The last on-line step is to smooth path, to obtain a minimum-snap, dynamically feasible
trajectory. This is elaborated in section 2-2-2.

Analytical Solution to Optimal Boundary Value Problems

The quadrotor’s non-linear dynamics are approximated by a double integrator system which
allows for the calculation of the analytical solution to the minimum-time optimal control
problem (Webb & Berg, 2013). The function SolveOBVP is used to calculate the analytical
solution of the OBVPs between the way-point in the trajectory by using the method of Webb
et. al. and Schmerling et. al. (Webb & Berg, 2013; Schmerling et al., 2015).

Machine Learning of Neighbourhoods

At initialisation of the system the current state and the goal state are connected with the
pre-sampled states V which are in their neighbourhood. By doing so the number of OBVP
to be solved is reduced. Allen uses the definition of the forward and backward reachable sets.
The forward reachable set, i.e. neighbourhood, is the set of all states xb for which the cost J
to reach there from xa, is less than the user defined threshold Jth. The backward reachable
set is the set of all states xa that are able to reach state xb with a cost J that is less than the
threshold cost Jth.

Figure 2-2: Ilustrative image of a 2 dimensional cost-limited reachable set, from Allen et. al.
(R. E. Allen et al., 2014)

In order to determine the computationally complex reachability sets in a real-time an approx-
imation step is necessary (Stipanović, Hwang, & Tomlin, 2004). Allen et. al. use machine
learning strategy from Allen, Clark, Starek and Pavone (R. E. Allen et al., 2014) to get an
approximation of the reachability set. Allen et. al. train a support vector machine NearSVM
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off-line with data stored in Cost, such that a quick approximation can be given at real-time.
For the training Allen uses the method from Bishop to train the support vector machine
(Bishop, 2006).

Kinodynamic Fast Marching Tree

At the heart of the motion planner Allen uses the kinodynamic version of the Fast Marching
Tree, FMT* which is based on FMT (Janson et al., 2015), and adapted by Schmerling to
efficiently calculate the optimal trajectory connecting the states in V from xinit to χgoal

(Schmerling et al., 2015). In the next paragraph the kino-FMT implementation as used by
Allen is given in Algorithm 1, and visualised in Figure 2-4.

Figure 2-3: The tree development from the FMT* algorithm in a 2 dimensional cost-to-arrive
space, from Janson et. al. (Janson et al., 2015)

The algorithm uses the set of pre-sampled states V , and assigns them to three subsets,
Vunvisited, Vopen and Vclosed. The set Vunvisited contains all pre-sampled states which are not
part of the tree. The set Vopen contains the frontier of the tree, the states which are part of
the tree and are active to form potential new connections. The set Vclosed contains all the
pre-sampled states which are part of the tree.

(Line 1 - 4) Initially the current state of the MAV is stored in Vopen, Vclosed is empty and
all other pre-sampled states are stored in Vunvisited. (Line 6 ) First the algorithm selects the
state in Vopen with the lowest cost-to-arrive, and stores this in the pivot variable z. (Line 7)
Determine the forward-reachable set of z, called Nfwd

z , from the pre-sampled states, using a
threshold Jth. This step uses the machine learning-based approximator NearSVM to speed-up
the process, allowing for real-time operations. (Line 8) Calculate the discrete set Xnear of
the intersection of Nfwd

z and Vunvisited. (Line 9) Iterate over all states x ∈Xnear. (Line 10)
For each x the the backward reachable set N bwd

x is approximated using NearSVM. (Line 11)
Calculate the discrete set Ynear of the intersection of N bwd

x and Vopen. (Line 12) Calculate
from the set Ynear the minimum cost-to-arrive node ymin which forms the optimal connection
to the tree. (Line 13 - 16) Check for collisions between the optimal section from x to ymin.
When this section is free of collisions, this section is added to the tree. And the state x is
added to the tree frontier, and removed from the set of unconnected states. (Line 19) Finally
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at the end of the loop over Xnear, the pivot state z is removed from the frontier set Vopen

Finally the algorithm terminates when the pivot state z arrives in the goal region χgoal.

Algorithm 1: Kino-FMT implementation by (R. Allen & Pavone, 2016))
1 Store the pre-sampled configuration space in set V
2 Assign set V to Vunvisited

3 Assign current state to Vopen

4 Initialize z with the current state
5 while z ∋ χgoal do
6 z ← arg miny∈Vopen {Cost (y, T )}
7 Nfwd

z ← NearSVM (z, V, Jth)
8 Xnear ← Intersect

(
Nfwd

z , Vunvisited

)
9 for all x ∈Xnear do

10 N bwd
x ← NearSVM (Vunvisited, x, Jth)

11 Ynear ← Intersect
(
N bwd

x , Vopen

)
12 ymin ← arg miny∈Ynear {Cost (y, T ) + Cost (x̄y)}
13 if No collisions between x and ymin then
14 Vclosed ← Vclosed ∪ {x, ymin}
15 Vopen ← Vopen ∪ {x}
16 Vunvisited ← Vunvisited \ {x}
17 end
18 end
19 Vopen ← Vopen \ {z}
20 end

Trajectory Correction by Trajectory Smoothing

To correct for the simplifying the system dynamics as a double integrator and to further
smooth the output trajectory. Allen et. al. use earlier work of Mellinger and work of
Richter et. al. who formulated a high-order polynomial spline through the trajectory samples
(Mellinger & Kumar, 2011; Richter et al., 2016). Richter reformulate the polynomial fitting
problem where integral of the squared snap is minimised, (i.e. 4th position derivative). The
polynomials are constrained at the trajectory way-points (i.e. states), for position and time
but the derivatives are kept as optimization parameters. In order to guarantee numerical
stability the optimization is performed over these derivatives at the way-points (Richter et
al., 2016, 2013). After obtaining the derivatives, the polynomial coefficients can be calculated
easily for each spline (see Eq. 14 from (R. Allen & Pavone, 2016)).

After the splines have been determined another collision check is performed, as the smoothing
process will have altered the obstacle free straight line between y to x. If a collision is detected
in a particular polynomial, the smoothing process of the trajectory is then redone with a new
midway way-point in the segment where a collision occurred.
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(a) Steps 1 to 3, pivot position
z is selected from Vopen and it’s
reachability set is determined using
the machine learning-based SVM
NearSVM. Image from Janson et. al.
(Janson et al., 2015).

(b) Steps 4 to 5, for each x, the
backwards reachable set Nbwd

x is
approximated and the intersection
(Ynear) of Nbwd

x and Vopen is deter-
mined. Image from Janson et. al.
(Janson et al., 2015).

(c) Steps 6 and 7, the minimum
cost-to-arrive node ymin from Ynear

is checked for collisions, and added
to the tree Vclosed when safe. Image
from Janson et. al. (Janson et al.,
2015).

(d) Step 8, after visiting all x in
Xnear all the successfully connected
states are added to the tree and a
new iteration starts. Image from
Janson et. al. (Janson et al., 2015).

Figure 2-4: kino-FMT implementation as used by (R. Allen & Pavone, 2016), from (Janson et
al., 2015)
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Control Input Calculation

The splines that follow from Section 2-2-2 are continues up to the 4th derivative. Mellinger et.
al. provided the proof that the system representation from (Lee et al., 2013) is differentially
flat and thus using the systems outputs the states and control inputs can be calculated
(Mellinger & Kumar, 2011). The differential flatness proves that the smoothed trajectory is
dynamically feasible and therefore the double-integrator approximation imposes no trouble.
Using the control inputs and predicted states, Allen et. al. use the feedback/feedfoward
controller from Lee et. al. (Lee et al., 2013), using the control input for feedforward control
and a Proportional Derivative (PD) controller for the tracking of the system states.

2-3 Image Space-based Obstacle Avoidance

Autonomous flight for MAVs can be broken down into three main technical challenges, low
weight and energy efficient on-board sensing, computationally efficient data representation
and motion planning. This latter has been discussed in Section 2-2, so this section will focus
on sensing and representation.

2-3-1 Optical Sensors for MAVs

Because MAVs are heavily constrained for size, weight and power consumption of the payload,
only a few types of sensors are attractive for on-board sensing. Active optical sensors like
Light Detection and Ranging (LIDAR) and structured light have been successfully used but
performance is insufficient as LIDAR is only 1 dimensional and structured light is not reliable
in outdoor environments (Shen, Michael, & Kumar, 2011; Bachrach et al., 2012). Normal
optical cameras on the other hand provide dense reliable information in both indoor and
outdoor environments. Camera modules are small, low weight, and have a very limited power
consumption, this makes them as a on-board sensing device very attractive.

Optical flow has successfully been used in reactive controllers allowing for high speed obstacle
avoidance but may fail in highly cluttered environments (Conroy, Gremillion, Ranganathan, &
Humbert, 2009; Zingg, Scaramuzza, Weiss, & Siegwart, 2010; Chao, Gu, & Napolitano, 2014;
Keshavan, Gremillion, Alvarez-Escobar, & Humbert, 2015). However they do not provide
any information while the system is at rest and have trouble with obstacles near the focus of
expansion (Conroy et al., 2009). To see depth while at rest or near the focus of expansion a
stereo-camera set-up is often used (Fraundorfer et al., 2012).

Hrabar et. al. combined the effectiveness of optical flow with stereo-vision to improve percep-
tion at rest and around the focus of expansion (Hrabar, Sukhatme, Corke, Usher, & Roberts,
2005). This approach of combining multiple methods or sensors has been done successfully
and allows for compensation of specific sensor failure cases(Shen, Mulgaonkar, Michael, &
Kumar, 2013; Kendoul, 2012; Hausman, Weiss, Brockers, Matthies, & Sukhatme, 2016; Shen,
Mulgaonkar, Michael, & Kumar, 2014; Droeschel et al., 2015; Nuske et al., 2015).

Monocular depth perception can use algorithms to get appearance cues from the scenery
(S. Ross et al., 2013a; Hecke, De Croon, Maaten, Hennes, & Izzo, 2016; Tijmons, De Croon,
Remes, De Wagter, & Mulder, 2016; Dey et al., 2016) or compute a depth map using motion
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stereo (Engel, Sturm, & Cremers, 2013; Forster, Pizzoli, & Scaramuzza, 2014; Schops, Enge,
& Cremers, 2014; Alvarez, Paz, Sturm, & Cremers, 2016). Although there is a lot of research
in motion stereo, using a depth map calculated directly with stereo vision is less sensitive to
errors and is able to provide a depth map without having to move (Goldberg & Matthies,
2011; Shen et al., 2013; Barry & Tedrake, 2014; Schmid, Lutz, Tomic, Mair, & Hirschmüller,
2014)

2-3-2 On-line Representation for MAVs

A full 3D representation of the environment is computationally heavy and requires large
memory. Therefore many different approaches have been developed. For reactive control
navigation, two dimensional image space is widely used (Beyeler, Zufferey, & Floreano, 2009;
Conroy et al., 2009; S. Ross et al., 2013b). Also volumetric, three dimensional cartesian voxel
structures as shown in Figure 2-5 have been used for world representation (Hornung, Wurm,
Bennewitz, Stachniss, & Burgard, 2013; Shen et al., 2011; Bachrach et al., 2012; Fraundorfer
et al., 2012). And two dimensional polar data representation has been used, which benefit
from being body-frame based and corresponds to the sensory data input (Bakolas & Tsiotras,
2008; Yu & Beard, 2013).

Figure 2-5: On the left, volumetric voxel representation. Occupied or partially occupied space is
subsampled. And in the middle the efficient OctoMap data tree (Hornung et al., 2013). On the
right, voxel representation of obstacles. (Fraundorfer et al., 2012)

An effective and memory efficient representation is image space and polar representation as
they require little transformations from the raw sensory input from the camera (Brockers et
al., 2014). This type of representation also allows for efficient fusion with inverse-range repre-
sentation for systems using stereo-vision (Bajracharya, Howard, Matthies, Tang, & Turmon,
2009).
The representation approach of Brockers et. al. using polar representation in image-space,
allows for collision checking in two dimensional image-space. Which had been done earlier
by Otte et. al. who proved this reduced the computational load (Brockers et al., 2014; Otte,
Richardson, Mulligan, & Grudic, 2009).
By using the computationally efficient image space for obstacle avoidance, Brockers et. al.
realised on-board autonomous flight in cluttered environments. Using stereo-vision disparity
maps for depth estimation and inverse range, polar-perspective representation for computa-
tionally efficient avoidance was achieved. In order to fly through the environment, they use a
closed-loop RRT (LaValle & Kuffner, 2001) that simulates the systems dynamics to generate
the control inputs. This closed-loop RRT planning is performed in 3D space, for maximum
freedom in movement. While the collision checking is performed in a 2D Configuration Space
(C-space), allowing for a real-time on-board implementation.
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2-3-3 Image Space-based Obstacle Avoidance Framework

As described in the previous section, Because of the computational complexity of 3D space
representation, Brockers et al. used an inverse-depth image-based representation based on the
disparity map from a stereo-camera. By doing so an efficient method for trajectory planning
and collision checking is possible.

The general outline of the approach is visualized in Figure 2-6 and is as follows. Using a frontal
stereo-camera images are taken and used to calculate in a real-time manner a disparity map.
Using a polar representation, for each disparity value the corresponding distance is calculated
and then expanded with a predefined radius. This expansion is called a C-space expansion
and creates a 2.5 dimensional C-space. Depth information is represented in 2D image-space.
This C-space expansion allows them to treat the MAV as a point mass system as the systems
size has been used for the expansion radius. The inverse-depth representation for obstacle
detection works well for nearby objects whereas distant objects will be of little influence. The
combination of polar representation and the 2.5 dimensional image space only a very limited
amount of memory is required and efficient 2 dimensional searches can be performed for
collision checking of the proposed trajectories. The collision checking approach is described
in Section 2-3-3, and the motion planning and control is described in Section 2-3-3.

Figure 2-6: System architecture from Brockers et. al (Brockers et al., 2014)

Image Space Expansion

The expansion, visualized in Figure 2-7, is performed as follows. Each point p (u, v, d) in the
2.5D disparity map is projected into 3D world space P (xw, yw, zw) using a polar representa-
tion. For the expansion a sphere radius based on the MAV’s confining sphere is used. Instead
of projecting the confining sphere onto image space, the smallest square covering the sphere
is projected onto image space, see Figure 2-8. This square is assigned the lowest disparity
value from the disparity map, covered by this square.

A real step in computational efficiency is made by pre-calculating the expansions for pixel-
disparity combinations off-line. The resulting tables are efficiently searched on-line, a note
has to be made that this does require relative large memory space for high resolution images
and a high disparity range.
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Figure 2-7: From left to right. The original left view image, stereo disparity map, C-space
expanded disparity map. From Brockers et. al (Brockers et al., 2014)

Figure 2-8: The configuration space explansion from Brockers et. al (Brockers et al., 2014)

Collision Checking in 2.5D Image Space

After obtaining the expanded image-space, collision cheing is performed. This procedure is
reduced to projecting linear 3D trajectories onto 2.5D C-space, and comparing disparity val-
ues. By still considering trajectories that are a given k distance behind an obstacle, occluded
trajectories that pass far behind obstacles become possible. When the disparity values of the
trajectory are within this k distance from an observed obstacle in C-space, it is classified as
a collision and the trajectory is infeasible.

Motion Planning and Closed-loop Control

The motion planner uses closed-loop RRT. The RRT algorithm is used to generate a tree of
reference trajectories, next a closed-loop controller is used to simulate the system output and
corresponding input commands to reduce the position error, see Figure 2-9. This approach al-
lows for non-linear or unstable systems to be controlled by using a properly designed feedback
controller. Also relative long dynamically feasible trajectories can be simulated.

The controller is designed such that safety invariance is guaranteed (Schouwenaars et al.,
2001), this is accomplished by limiting the vehicles velocity such that at any time the MAV is
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Figure 2-9: From left to right: . From Brockers et. al (Brockers et al., 2014)

able to reach a hovering state before it reaches the end of a validated trajectory segment it is
following. This is important as trajectories behind observed obstacles, of an assumed size k,
are assumed to be feasible and replanning might be necessary. The reference trajectory and
simulation output are generally close (Luders, Karaman, Frazzoli, & How, 2010), Brockers et
al. still re-simulate the trajectories and corresponding input signals using the current state
and new way-points, this to reduce possible drift.

2-3-4 Egocylinderical Image Space Representation

Building further on the image space expansion approach from Brockers et. al. (Brockers et
al., 2014), described in the previous sections, Brockers, Fragoso and Matthies introduce a
novel image space representation for MAV navigation (Brockers et al., 2016). They propose
to project the inverse range map onto a vehicle-centred cylinder (See Figure 2-10), called the
egocylinder (Brockers et al., 2016). The C-space expansion from (Brockers et al., 2014) is
subsequently applied directly on to this egocylindrical image space. The advantage of this
egocylinderical representation is that reactive motion planning algorithm can be used directly
on the egocylinder image. As the location of the obstacles in the image corresponds directly
to their position in world space relative to the vehicle. This allows for high velocity flight with
high situational awareness of the MAV and even efficient multi-sensor fusion as mentioned in
Section 2-3-1.

Egocylindrical Projection Framework

Brockers et. al use stereo-vision in combination with the block matching algorithm from
Hirschmuller et al. to obtain a disparity map (Hirschmüller, Innocent, & Garibaldi, 2002).
Next they project this disparity map on the egocylinder which is a vehicle-centred, inverse-
range cylindrical projection space. The straight forward method for projection is given in
Brockers et. al. (Brockers et al., 2016). In this projection procedure from 3D coordinates to
2.5D, only the horizontal component of disparity value is considered, neglecting the vertical
component. They choose a cylindrical representation over a spherical as in general MAVs move
in the horizontal plane and altitude changes are uncommon. The framework is visualized in
Figure 2-10.
The next step is to perform the C-space expansion, necessary to regard the MAV as a point
in 3 dimensional space for practical motion planning and obstacle avoidance. The C-space
expansion method from Brockers et al. (Brockers et al., 2014) is used, with the only difference
in the calculation for the disparity value, as described above.
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Figure 2-10: The projected disparity map on the egocylinder, in expanded image space. Brockers
et. al. (Brockers et al., 2016)

Motion Planning in Egocylindrical Image Space

In contrast to the motion planning method used in Brockers et al. (Brockers et al., 2014),
Brockers now implements a relative simple reactive method. A strong assumption on which
the method is based is; the MAV is able to instantly change the direction of flight instantly.
This allows the the velocity to be used as the planning horizon with the comparison between
the stopping distance estimates and the observed disparity values for collision checking. The
method assumes it has a general goal direction, and then using an image search on the
egocylinder a flight direction can be found which is the closest direction towards the goal
while avoiding collisions with obstacles. This is visualized in Figure 2-11.

Figure 2-11: The motion planning algorithm. Left: Selected flight direction close to the goal,
avoiding the object. Right: Top view of simulated flight. From Brockers et. al. (Brockers et al.,
2016).
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Chapter 3

Superpixel Segmentation for Object
and Region Detection

In contrast to Section 2-2 where avoidance strategies were based on prior knowledge of the
obstacles, this section will discuss approaches for detecting obstacles in real-time. This is
important as the stereo-board will provide a sparse disparity map and thus a complete view
of the environment is not available. Extending the information of the sparse disparity map
with segmented objects might provide enough information for trajectory planning. The idea
to use superpixels is to identify featureless regions as near obstacles or distant scenery.
A method to extract information from an image is to deploy image segmentation methods,
which can identify image regions with similar appearance, indicating potential obstacles. The
field has been researched extensively where various methods have been developed (Khan,
2013). A special interest goes to a segmentation approach called superpixels. Advances as
made by Levinshtein et. al. have shown that progression in computationally efficient high-
speed clustering is possible (Levinshtein et al., 2009).
One method of segmentation was introduced by Ren and Malik, called superpixels, where
they over-segmented the image by clustering similar pixels with taking into account the com-
pactness of each segment (Ren & Malik, 2003). Superpixel segmentation is an active topic
of research (Moore, Prince, Warrell, Mohammed, & Jones, 2008; Moore, Prince, & Warrell,
2010; Veksler, Boykov, & Mehrani, 2010; Zhang, Hartley, Mashford, & Burn, 2011). Of which
the latest work of Zhang et. al. is the fastest of this group with 2Hz. A large improvement in
terms of quality has been achieved by Liu et. al. who introduced a balancing term to enforce
compactness of the clusters, but still fail to achieve sufficient computational efficiency with a
image processing time of 2.5 seconds per frame (Liu, Tuzel, Ramalingam, & Chellappa, 2011).
Continuing in the field Wang et. al. used superpixels to address the challenging problem
of tracking in image space (Wang, Lu, Yang, & Yang, 2011). The optical sensors on the
volatile MAV platform perceive large scale, motion and shape deformations due to the move-
ments of the vehicle. The system also perceives many occlusions in the highly cluttered indoor
environments it can operate. Wang et. al. propose a superpixels based method to store struc-
tural information, creating a mid-level appearance cue able to distinguish the target from the
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background even when encountering large shape deformations and occlusions. Computational
efficiency still remains an issue for real-time implementation.

A faster method is proposed by Achanta et. al. which goes by the name SLIC, with the
use of SLIC real-time image segmentation is achieved (Achanta et al., 2010). A recent study
comparing SLIC superpixels with state-of-the-art segmentation methods shows that SLIC
outperforms most of the earlier developed approaches in terms of computational efficiency
(Achanta et al., 2012). A in depth discussion of SLIC is given in Section 3-1. Another recent
real-time performing superpixel method which is introduced by Van den Bergh called SEEDS
(Van den Bergh et al., 2015), is discussed in Section 3-2.

3-1 SLIC SuperPixel segmentation

For superpixels to be applicable in obstacle avoidance algorithms for MAVs the have to be
computationally efficient and produce reliable, in the sense of stable, high quality segmenta-
tions. Achanta et. al. introduce a novel clustering algorithm that uses five dimensions, L, a,
b CIELAB colour space and 2D image space to calculate compact and uniform superpixels
(Achanta et al., 2010). The segmentation is uniform in colour and each superpixel is compact,
as can be seen in Figure 3-1. Achanta et. al. proved using the Berkeley benchmark dataset
(Martin, Fowlkes, Tal, & Malik, 2001) that SLIC outperforms most earlier developed seg-
mentation methods in terms of the quality of the segmentation and computational efficiency
(Achanta et al., 2010), and distinguishes itself from other methods with its simplicity. In
the next section a more recent and complex superpixel segmentation approach is presented,
which outperforms the latest superpixel implementations.

Figure 3-1: Examples of image segmentation using SLIC, superpixel size are approximately 64,
256 and 1024 pixels. The compact superpixels show large colour uniformity. From Achanta et.
al (Achanta et al., 2010)
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3-1-1 SLIC distance measure

A novel distance measure ensures ensures a well balanced weighing of cluster compactness
and colour uniformity. Centers of the superpixels will be approximately be spaced with an
interval S of size S =

√
N/K. Where K is the number of superpixels and N is the total

amount of pixels. At initialization the algorithm assigns the K superpixel cluster centers Ck

with Ck = [lk, ak, bk, xk, yk]T , k = [1, K] and spaced with regular interval S. To minimise
the computational efforts it is assumed that for each pixel the associated cluster center it
belongs to is within a 2S distance. Achanta et. al. propose a normalised distance measure
Ds (Achanta et al., 2010), shown in Equation 3-1 and defined as follows:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 (yk − yi)2

Ds = dlab + m

S
dxy (3-1)

where Ds is the distance measure, the sum of the normalised euclidean image space distance
and the euclidean distance in colour space (Achanta et al., 2010). The euclidean image space
distance is scaled using parameter m to allow control on the compactness of the superpixels,
a high value for m ensures highly compact superpixels, whereas a low value of m ensures the
superpixels form high colour uniform clusters.

3-1-2 SLIC algorithm

The SLIC algorithm is interesting for MAV applications because of its computational efficiency
which is enabled by its lean and simple algorithm. This Section summarises the algorithm.
As described in Section 3-1-1, the cluster centers Ck are regularly spaced over image space,
covering the entire image. To ensure the cluster centres are not positioned on image edges
which would cause highly irregular superpixels. Each cluster center is relocated to the location
with the lowest gradient in a 3x3 area around the center. Achanta et. al. define the gradients
G are calculated as follows:

G (x, y) = ∥I (x + 1, y)− I (x− 1, y) ∥2 + ∥I (x, y + 1)− I (x, y − 1) ∥2 (3-2)

where I is the lab vector at position (x, y) and ∥.∥ is the L2 norm (Achanta et al., 2010).

After initialisation each pixel is assigned to the nearest cluster where the pixel is within the
2S search area of that cluster center. After all pixels are assigned to a cluster center, the
cluster centers are relocated to the center of the cluster and its lab values are recalculated as
the mean of the cluster. By iterating the center relocations and pixel assigning, convergence
is achieved within four to ten iterations (Achanta et al., 2010). The SLIC pseudo-code is
given in Algorithm 2.
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Algorithm 2: Simple Linear Iterative Clustering. (From Achanta et. al. (Achanta et al.,
2010))

1 Initialize cluster centers Ck = [lk, ak, bk, xk, yk]T by sampling with a regular step-size S.
2 Move cluster centers in a n × n neighbourhood, to the lowest gradient position.
3 repeat
4 for each cluster center Ck do
5 Assign the best matching pixels from a 2S × 2S search area around the cluster center

according to the distance measure (Eq. 3-1) to the cluster.
6 end
7 for do
8 Compute new cluster centers and residual error E { L1 distance between previous

centers and recomputed centers }
9 end

10 until E ≤ threshold;
11 Enforce connectivity

3-2 SEEDS Superpixel segmentation

A new superpixel over-segmentation approach called SEEDS is based on hill-climbing opti-
mization, i.e. gradually maximising a energy equation (Van den Bergh et al., 2015). Using an
initial gird of superpixels (see Figure 3-2), the boundaries are continuously modified to refine
each superpixel. A robust and efficient energy function is defined to enforce colour uniformity
within the superpixel and the colour histogram. In the latter this method differs significantly
from the simple clustering method proposed by Achanta et. al. (Achanta et al., 2010).
The boundary modifications performed in a hierarchical procedure using pyramid block-sizes,
refining the updates with decreasing block-sizes up to pixel level. This pyramid scheme proves
to be effective in reducing the computational effort of the segmentation.
By testing the algorithm van den Bergh et. al. show that SEEDS outperforms the state-
of-the-art superpixel segmentation methods on the Berkeley benchmark dataset in terms of
lowest computational effort (Van den Bergh et al., 2015).
SEEDS is developed from the interpretation of the definition of a high quality segmentation.
The ability to group pixels together with similar colour and form cluster boundaries along
object edges. To enforce this colour consistency an energy maximization problem is defined
using the colour distribution within superpixels and the shape of its boundaries.
The SEEDS method as described in (Van den Bergh et al., 2015) is build up as follows. At
initialisation all pixels are assigned to the superpixels Ak where all superpixels are restricted
to be disjoint (i.e. pixels belong to a single superpixel), and each superpixel forms a continuous
image region.
The set S is defined as all valid segmentations, S̄ is defined as the set of invalid segmentations,
and C is combined set of S and S̄. Defining s⋆ as the segmentation what maximises the energy
function:

s⋆ = arg max
s∈S

E (s) (3-3)
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Van den Berg proposes an energy function E (s) with two terms one based on the likelihood of
the colour similarity within the superpixels H (s) and one based on the shape of the superpixel
G (s). The colour similarity term H (s) is taken to be the colour density distribution of each
superpixel, with Ψ (cAk

) taken as the sum of squares, H(s) can be expressed as:

H (s) =
∑

k

Ψ (cAk
) =

∑
k

∑
Hj

(cAk
(j))2 (3-4)

where cAk
is taken to be the colour histogram H of the set Ak, and is calculated with:

cAk
(j) = 1

Z

∑
i∈Ak

δ (I (i) ∈ Hj) (3-5)

where Z is the total number of pixels part of set Ak, δ is the indicator function giving 1 if
pixel I(i) is part of bin j and 0 otherwise.

The boundary term G (s) is proven to be optional in terms of quality, due to the hierarchical
refining approach which enforce edge smoothness (Van den Bergh et al., 2015). Still in order
to provide control over the superpixel shape, van den Berg et. al. propose a similar term for
G(s):

G (s) =
∑

i

∑
k

(bNi (k))2 (3-6)

and

bNi (k) = 1
Z

∑
j∈Ni

δ (j ∈ Ak) (3-7)

where bNi is the histogram of the number of superpixels present in a N × N patch around
pixel i. Maximising G(s) will favour as little as possible different superpixels present in the
patches and therefore enforce smoothness at superpixel edges.

The computational efficiency of the SEEDS algorithm lays in the use of the histograms to asses
the colour similarity and its hierarchical refinement. The hill-climbing optimization algorithm
uses small local changes in order to optimize the global segmentation. When a proposed
change increases the energy function the change is applied, as it assists in maximising the
energy function. The algorithm starts with initializing large superpixels which can be divided
in smaller blocks of 2× 2, all the way to pixel level. An example is shown in Figure 3-2.

The algorithm starts by selecting a random block or pixel Al
k from all boundary blocks or

pixels and assign the pixel or block to a random neighbouring superpixel An, when this creates
a valid partitioning the energy function is evaluated to see if the change should be applied.
According to Proposition 1 from van den Berg et. al. (Van den Bergh et al., 2015), the
intersection between the two histograms is:

int (cAn , cAn) =
∑

j

min{cAa (j) , cAb
(j)}
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Figure 3-2: SEEDS initialization visualizing different block sizes. From (Van den Bergh et al.,
2015)

and can be used to determine if the energy function will increase for a given segmentation:

int (cAn , cAn) ≥ int
(
cA\Al

k
, cAl

k

)
⇐⇒ H (s) ≥ H (st) (3-8)

In order to validate Equation 3-8 two important assumptions are made. The first states; the
size of the changing block or pixel is significantly smaller than the size of the superpixel. The
second assumption states; the histogram of the change only consists of a single bin. Van den
Berg showed that these assumptions hold in 93% of the cases (Van den Bergh et al., 2015).

When a new portioning is based on Equation 3-8, the new histogram are efficiently updated,
at block level by subtracting cAl

k
from cAk

and adding to cAn , and at pixel level by subtracting
1 from bin j and adding to bin j of histograms cAk

and cAn respectively.

The refinement is terminated after a certain time tstop, given a valid segmentation is obtained
incredibly fast and the refinement process can be stopped directly after the last refinement
iteration which takes almost no time due to its limited operations.

Figure 3-3: SEEDS over-segmentation results showing high quality superpixels. From (Van den
Bergh et al., 2015)

In Figure 3-3 the over-segmented results of the SEEDS method is given. The ground truth is
visualized by colours and the superpixel boundaries are shown in white.

Just like the distance measure of SLIC, the energy equation used by van den Berg can be
adjusted to accommodate besides the colour uniformity and boundary smoothness, other
inputs e.g. depth information (Van den Bergh et al., 2015). Enforcing depth uniformity
within a superpixel by including depth information in the energy equation, it is expected
that obstacles will become more distinguished from the background. This makes the SEEDS
algorithm interesting for consideration in obstacle avoidance approaches.
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Chapter 4

Literature based Conclusions and
Recommendations

Major steps have been taken in an effort to achieve full autonomous flight of MAV in un-
known cluttered environments. Various sampling-based planners have been developed in the
last few years indicating an increasing interest in their applications. The combination of
machine learning in the form of support vector machines with the Fast-Marching-Tree, has
proven that sampling-based motion planners are able to search high-dimensional configura-
tion space in a real-time manner. This makes this approach interesting for full autonomous
flight for large Unmanned Aerial Vehicles (UAVs) if more computational optimization is pos-
sible. Because of the intention to develop a novel method which can be implemented on the
MAVLab stereoboard, the discussed motion planners are expected to be too computationally
demanding.
Alternatively, advances in Image Space representation in combination with on-line expansions
promise higher potential on computationally heavily constrained systems. Current methods
are able to identify obstacles to an extent that cluttered regions are avoided in total, limiting
exploration missions considerably. This exposes the need for an vehicle-size dependent algo-
rithm that is capable of identifying free-space trajectories in highly cluttered environments.
A proposed first step towards to such an algorithm will be the inversion of the configuration
space expansion approach presented in this review. By adapting the way an expansion is
used, a major improvement is made in terms of increasing the algorithms efficiency. In the
space behind a C-Space expansion, only disparity values higher than a certain value have to
be examined, as low disparity values will turn out to be fully occluded. Thus by reducing
the disparity range in image regions where an expansion has already been performed, a large
improvement in computational efficiency is expected.
Lastly the ability to identify obstacle volumes independent of disparity map generation will
allow for allocating computational budget to relevant image space regions. In these concen-
trated image regions more advanced disparity calculations can be done, as the potential flight
directions lie within these regions. In the next part the performance and feasibility are tested
of the previously discussed methods.
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Part III

Preliminary Problem Analysis
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Chapter 5

Feasibility and Performance Analysis

In Chapter 2 the latest achievements regarding real-time trajectory planning, object detection
and image space representation were presented. Based on this literature several simulations
are performed and presented in this chapter, with the goal to answer the research questions
presented in Section 1-2.

5-1 Efficient Disparity Calculation from Stereo-Image Pairs

As mentioned in section 1-1, the aim of this Thesis is to contribute to obstacle avoidance
methods while using the stereo-board, developed by MAVLab. The stereo-camera board al-
lows for on-board matching and disparity calculations. Tijmons et. al. found an efficient
method to calculate a sparse disparity map by compromising between quality and efficiency
(Tijmons, Croon, Remes, De Wagter, & Mulder, 2016). They calculate the horizontal dif-
ferential convolution over single lines, and where the gradient exceeds a certain threshold a
standard Sum of Absolute Differences (SAD) window matching is applied. In this preliminary
problem analysis, three stereo-image pairs will be used which are selected from a test sequence
performed in the flight arena of the TUDelft.

In Figure 5-1 edges features are shown in the left column, indicated in red. In the right
column the corresponding disparity map is shown, where warmer colours represent a higher
disparity value and thus a closer proximity to the camera.

In Figure 5-1a edges are found in nearly all image regions. The pole on the left side shows a
lot of texture and is therefore easy to detect. The featureless pole in the center of the image
is also easily detected as it has a large contrast to the background. The board on the right
side of the image is also well detected with spread features all over it. It has to be noted that
the dark background on the left side of the image, and the floor do not have many if any
features.

The corresponding disparity map is shown in Figure 5-1b. Warmer colours indicate a higher
disparity value and thus a closer proximity, pixels that do not have a disparity value are
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Matched Features

(a) Matched features
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(f) Disparity map

Figure 5-1: Matched features are shown in the left column. The corresponding disparity maps
are shown in the right column, warmer colours correspond to objects in closer proximity.

counted as having a disparity value of zero which corresponds to an infinite distance. In this
figure the pole on the left is clearly identifiable, but the pole in the center of the image is only
distinguishable by its edges, as the pole has a uniform texture and colour. On the board at
the right side of the map, it is seen from the colour change on the board that its left edge is
further away than its right side.

In Figure 5-1c edge features are found on the edges of the pole, which stands in the left side
of the image. Spread over the background on the right side of the image many feature are
found to due to the large texture differences. Because the pole is close to the camera it covers
a large area of the image, this separates its edges a lot leaving a large featureless region.

The corresponding disparity map is shown in Figure 5-1d. it is clear that in the entire right
side of the image no obstacles are found with a close proximity. All the blue coloured disparity
values correspond to a distance of at least four meters, which at this point is assumed to be a
safe distance away. The large featureless pole on the left side of the image is only identifiable
by the two red edges, indicating a dangerously close obstacle, i.e. less than one meter in this
case. A difficult situation presents itself in the featureless region between the pole edges, as
its unclear if this represents a textureless obstacle or a window into a textureless room.
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In Figure 5-1e edge features are found on the pole in the left side of the image, covering the
entire texture-rich obstacle. On the right side of the image the textureless pole is identified
by its edges. On the far left of the image no features are found creating uncertainty about
the proximity in this region. To the right of the left pole various features are found from the
texture-rich background.

The corresponding disparity map is shown in Figure 5-1f. It is clear that the pole on on the
left side of the image is at a close proximity to the MAV. The pole on the right faces the
same problem as the left pole in Figure 5-1d, a textureless region between the pole edges.
The textureless region in the top-center part of the image is a safe region to fly but is not
confirmed by disparity values due to the lack of found edges.

From the results shown in Figure 5-1 it can be concluded that research has to be done in
object detection, in an effort to find a solution for the featureless regions. If textureless regions
between pole edges can be identified as poles, all other textureless regions can be assumed to
be distance scenery and thus represents a safe flight direction.

In the scenario where a textureless region represents a window into a textureless room, avoid-
ing the region all together will limit the capabilities of the MAV to explore the environment.
Additional research will have to be done in distinguishing textureless objects from windows.

5-2 Image Segmentation for Object Detection

In this section the SLIC approach is applied to the same three scenes as presented in the
previous section. In an attempt to obtain more information from the image SLIC is applied.
The idea is that the superpixels will assist in distinguishing objects from distant scenery,
solving the problem described in Section 5-1. Three aspects will be investigated, firstly
computational costs, secondly the influence on the quality by using gray-scale images, lastly
the influence of increasing the number of superpixels.

5-2-1 SLIC Computational Costs

Firstly it is acknowledged that the literature presented in Chapter 2 suggest that the SEEDS
superpixel approach outperforms the SLIC approach. But still the SLIC approach will be used
to verify if superpixels in general could assist in distinguishing objects from distant scenery
in a real-time manner.

In order to test the computational cost of the SLIC method, a C/C++ implementation is used
as the intended platform, the MABLab stereo-board, also allows for C/C++ implementation.
For the test. A test image from the Berkeley benchmark dataset (Martin et al., 2001) is used
which is in correspondence with the work of Achanta et. al., see Figure 3-1. The image is
downscaled to a resolution of 128 × 96 to correspond to the stereo-board resolution. The
for comparison the computational time is expressed in computational frequency in Herz, the
results are shown in Table 5-1.

The number of intended superpixels is increased from 24 to 240 in the following steps:
{24, 48, 96, 192, 240} with 500 simulations for each setting. The standard deviation σ and
mean µ values for each set number of superpixels is presented in the table. With a only 24
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Table 5-1: Computational effort of SLIC0 segmentation method of an 128x96 image expressed in
[Hz], as function of the number of superpixels. Calculated with a 2.8 GHz Core 2 Duo processor.

Number of superpixels [-]
24 48 96 192 240

σ [Hz] 8.9785 7.3284 8.1293 7.3338 4.8457
µ [Hz] 219.5517 193.3839 171.9013 150.4714 141.9897

superpixels the algorithm is able to run at a frequency of 220 Hz. With an increasing amount
of superpixels the frequency decreases linearly to 142 Hz for 240 superpixels. The corre-
sponding standard deviations provides a basis to conclude that the SLIC algorithm is able
to run at real-time frequencies for all relevant number of segmentations and that the number
of segments is of limited influence on the computational effort. For this simulation a laptop
with a 2.8 GHz Core 2 Duo processor is used, this is a lot faster than the embedded processor
on the stereoboard, which runs on 168 MHz. Sub-sampling will be considered to decrease
the computational effort, but heavy concerns remain about the feasibility to implement any
superpixel segmentation method on the stereoboard.

5-2-2 SLIC Quality Decrease due to Gray-Scale Image

In this section the impact of using gray-scale images in combination with the SLIC algorithm
is investigated. The SLIC algorithm is developed to be used with the l,a,b values from the
CIELAB colour space, which contains a lot more information than just intensity values. Due
to bandwidth restrictions on the stereo-board, instead of colour images we are provided with
gray-scale images and thus the impact on the segmentation quality has to be investigated.
For this investigation the same test image as in the previous section is used. It originates
from the Berkeley benchmark dataset (Martin et al., 2001), see Figure 3-1 and Figure 5-3

The image is segmented using three different amounts of superpixels: {48, 96, 293}, first using
colour space and subsequently in gray-scale. The resulting segmentations are shown in Figure
5-2. To compare the results with the segmented image, Figure 5-3 shows the image on the
background.

The segmentations are visualized as follows, in green the colour-based SLIC is shown, in
magenta the gray-scale-based SLIC is shown. The superpixels edges that stay the same for
colour space and gray-scale are indicated in white.

In Figure 5-2a large difference are seen in the center of the image. This region contains little
texture causing the the colour based segmentation to be relatively steered more than the
intensity-based segmentation.

In Figure 5-2b large difference are seen only in the top left and a small region in the center
of the image. The same holds for this number of superpixels; the small amount of texture
in the center is causing the the colour based segmentation to be relatively steered more than
the intensity-based segmentation. In the top left of the image a recurrent texture caused the
two methods to deviate around a image spot.

Finally in Figure 5-2c differences can be seen in in the entire right region, outer top region
and on a small region in the left of the image. Due to the relative small size of the superpixels
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SLICO 48

(a)

SLICO 96

(b)

SLICO 192

(c)

Figure 5-2: Segmentation results, in green: colour based SLIC, in magenta: gray-scale based
SLIC superpixels.

the deviations are also small, with an exception in the relative small region in the left part
of the image. In this specific region it is suspected that at initialization the cluster center is
positioned on top of a edge. At initialization cluster centers are moved in a local region to
the lowest gradient location, this gradient has a colour component which is suspected to push
the superpixel cluster to a different position than when using intensity values.

SLICO 48

(a)

SLICO 96

(b)

SLICO 192

(c)

Figure 5-3: Reference image together with the segmentation results, in green: colour based
SLIC, in magenta: gray-scale based SLIC superpixels.

After examination it can be concluded that the quality of the segmentation decreases with the
use of gray-scale images instead of colour-space. The reduction of information in the images
causes the clusters to be less capable of detecting colour based edges. Furthermore it can be
concluded that with increasing number of superpixels the quality decrease from colour-space
to gray-scale-space is limited. Thus better quality segmentation is obtained with a larger
amount of superpixels.
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5-2-3 SLIC Number of Superpixels

In the previous two sections the computational effort of SLIC and the impact of gray-scale
based segmentation was investigated. It was found that the computational effort increases
marginally with the amount of superpixels. Furthermore it was found that the impact of
using gray-scale images on the segmentation quality decreases with an increasing amount
of superpixels. This raises the question; to which extent does increasing the number of
superpixels improve the quality of the segmentation in terms of object detection? This section
will investigate the influence of varying the amount of superpixels.
Figure 5-4, Figure 5-5 and Figure 5-6 show the SLIC segmentations with an increasing number
of superpixels. From left to right the number of intended superpixels is increased from 24 to
240 in the following steps: {24, 48, 96, 192, 240}.
In Figure 5-4 it can be seen that when using 24 superpixels none of the obstacles is segmented
properly. The edges of the pole to the left are only detected in the center of the pole, and
the pole in the center of the image falls in a larger segment which covers a large part of
the background to. The edges of the board are also not found using this setting. In the
second image from the left shows the segmentation using 48 superpixels. The pole on the
left is detected properly, excluding its top quarter. The pole in the center is only in the
center properly segmented. The board on the right side is almost fully segmented along its
edges. In the center image, 96 superpixels were used for the segmentation. With this amount
the same observation is done regarding the pole on the left and the pole in the center. The
board to the right is segmented along most of its edges, similar as when using 48 superpixels.
The second image from the right shows the segmentation using 192 superpixels. Using this
number of superpixels all three obstacles are are segmented along their edges, indicating that
when combining certain superpixels a full obstacle can be identified. In the right image, 240
superpixels are used for the segmentation. again all three obstacles are segmented along their
edges, and even smaller regions on the background are segmented better. Major difference
between this segmentation and the previous discussed one is minimal in respect to the three
main obstacles present. For this scene it is concluded that the best detection is done using
192 superpixels.

Figure 5-4: SLIC0 segmentation with increasing number of superpixels, fltr 24, 48, 96, 192, 240

Figure 5-5: SLIC0 segmentation with increasing number of superpixels, fltr 24, 48, 96, 192, 240

In Figure 5-5 it can be seen in the left image that using 24 segments leads to under-
segmentation and the one obstacle is not detected properly. In the second image from the left,
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Figure 5-6: SLIC0 segmentation with increasing number of superpixels, fltr 24, 48, 96, 192, 240

48 superpixels are used. Again it can be seen quickly that the superpixels do not border the
right edge of the pole and thus the more superpixels is desired. In the center image 96 super-
pixels are used for the segmentation. Using this segmentation the entire obstacle is segmented
along its edges. Both right images showing the 192 and 240 superpixel segmentations, show
over-segmentation in terms of edge following of the obstacles. For this scene it is concluded
that the best detection is done using 96 superpixels.

In Figure 5-6 it can be seen in the left image that using 24 segments allows for the successful
identification of the left pole but not the right pole of smaller size. In the second image from
the left, 48 superpixels are used for the segmentation. In this case the edges of both poles are
not followed by superpixel boundaries in a satisfying way, indicating that the segmentation
using only 24 superpixels was only successful due to properly positioned cluster centers. In
the middle image both of the obstacles are identified as the edges are followed by superpixel
boundaries. Using 192 and 240 superpixels in this scene only leads to over-segmentation
without higher quality boundary following superpixels. For this scene it is concluded that the
best detection is done using 96 superpixels.

In order to determine the number of preferred superpixels an extra interest should go to the
spatial size a superpixel projects into the 3D world. It could be interesting to investigate if
superpixels are able to identify regions which indicate a safe flight trajectory. More about
this idea will be discussed in Section 5-4.

5-3 Configuration Space Expansion

In this section the configuration space expansion approach as presented in Section 2-3-3, is
applied to the space disparity maps obtained from the stereo-board. In the original paper
Brockers et. al. applied the C-Space expansion to a dense disparity map, allowing them to
consider the MAV as a point mass system and with the use of the egocylinderical representa-
tion allow for image search based obstacle avoiding trajectory planning.

In Figure 5-7 the scenes are shown in the left column, and the corresponding sparse disparity
map in the middle column. In the right column the expanded disparity map is shown on a
scale that corresponds to a proximity scale of infinity to 1 meter, where hot represents a close
proximity and cold represents a large distance.

While examining Figure 5-7c it immediately becomes clear that the disparity map contains
outlier values, representing wrong disparity values. This can be seen by the dark red expan-
sions in the top of the image. All other disparity values of the pole’s location are in the light
green region, representing a smaller disparity value than the outlier. The same can be found
in Figure 5-7f. In this figure a outlier is expanded in the bottom right corner, representing a
disparity value of around 4. In Figure 5-7i no outliers are found allowing for the conclusion
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Figure 5-7: In the left column the left camera view is shown. The corresponding disparity maps
are shown in the middle column, and the C-Space expansion is shown in the right column. Warmer
colours correspond to objects in closer proximity.

to be made that the presence of outliers produced by the sparse disparity map algorithm is
depended on the scene. In Section 5-3-1 the consequences of outliers are examined in more
detail.

Besides outliers, it can be seen after inspecting the expanded disparity maps in Figure 5-7 that
the configuration space expansion is an effective approach to indicate obstacles. In Figure
5-7c the left most pole is, when ignoring the outliers, labelled properly with disparity values.
Also the board in the right side of the image is filled with disparity values. The center pole
is identifiable by two expanded edges, this suggests that the configuration space expansion is
not solely capable of solving the uncertainty that come with the sparseness of the disparity
map. Additional depth information is required from this featureless zone, or avoiding it in
total would be an alternative.

In Figure 5-7f this suggestion is confirmed. The large and mostly textureless pole in on the left
side of the image is only able to provide disparity values at the edges. Even after expansion
there is a large region left which does not contain any depth information which could indicate
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if this area is an obstacle of potential funnel to fly through.

In Figure 5-7i the left pole is successfully expanded without outliers or regions without dispar-
ity information. The pole on the right which is also mostly textureless suggest that a region
without depth information will be created between the edges, once the MAV approaches the
pole.

From the three scenes it becomes clear that the configuration space expansion is a efficient
and very effective tool provide extra depth information. Objects which are rich in texture
will be completely filled with depth information, but objects with little to no texture will still
give problems when they are approached. In Section 5-4 the the results will be discussed in
more detail.

5-3-1 Outlier detection

In the previous section it was found that the sparse disparity algorithm (Tijmons, Croon,
Remes, De Wagter, & Mulder, 2016) can produce outliers in the sparse disparity map. This
cause faulty expansions, which becomes problematic for high disparity values which are ex-
panded over a large image region.

In order to obtain a better idea of the number of outliers and their values compared to the
other values, for each of the three scenes a histogram is constructed for the number of found
disparity values. The three histograms are presented in Figure 5-8.

(a) (b) (c)

Figure 5-8: Histograms of the disparities found in the three different scenes.

In Figure 5-8a the histogram of the disparity map of scene one is shown (see Figure 5-7a).
Form the histogram is becomes clear that the closest obstacle is represented by disparity
values between 4.3 and 5. Three outliers are detected at disparity values of 5.2, 6.7 and 8.8.

In Figure 5-8b the histogram of the disparity map of scene one is shown (see Figure 5-7d).
From the histogram is does not become very clear how many outliers are present as one
obstacle is found at disparity values between 6.5 and 8. The background is found at disparity
values of 1.4 and 2.2. The disparity values in between contain a outlier, but solely based on
this histogram these values could represent floor or ceiling features for instance.

In Figure 5-8c the histogram of the disparity map of scene one is shown (see Figure 5-7g).
From the histogram no outliers can be detected as multiple disparity values are found for each
bin. This observation corresponds to the Expanded sparse disparity map, shown in Figure
5-7i.
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The histograms provide a indication in the amount of false disparity values, caused by miss-
matches of the block-matching algorithm. In the next section these results are discussed in
more detail.

5-4 Preliminary Results and Discussion

In Section 5-1 it was found that the sparse disparity map contains large regions without depth
information. These regions can represent a distant scenery but also a textureless obstacle, and
without additional processing the distinction cannot be made. If objects can be identified with
a large degree of certainty, textureless regions can be assumed to be distant scenery allowing
for image-space based obstacle avoidance. Thus an effort has to be made in object detection
using, for instance, extracting texture information with the use of computational efficient
superpixels.

In Section 5-2-1 it was found that the SLIC method is able to run at real-time frequencies for
different numbers of superpixels. Because of the relative simplicity of the SLIC algorithm it
was chosen for implementation to verify if superpixel calculation methods could run real-time.
During simulations very high frequencies were achieved which provides a basis to conclude
that superpixel calculations could be implemented in an effort to extract texture information
from the images.

In Section 5-2-2 it was found that when a sufficient amount of superpixels were used, the
quality decrease due to the use of gray-scale instead of CIELAB colour space insignificant. In
Section 5-2-3 three different scenes, from the stereo-board, were segmented using the SLIC
algorithm to asses the ability to create superpixels that consist of uniform texture. By varying
the number of superpixels, it was found that obstacles can distinguished from distant scenery
by using at least 96 superpixels. In order to distinguish obstacles further away from the MAV
more superpixels are needed, using 192 superpixels provide satisfying results. As mentioned
in the Section 5-2-3 it could be of special interest to investigate is the size of the superpixels
can be used to identify funnels which indicate a safe flight trajectory. When the she size of the
MAVs bounding box is projected into image-space, its dimensions would depend on the depth
in image-space on which the bounding box is projected. Disparity values near a superpixel
which could be such a funnel can be taken as a reference for which depth the bounding box
should be projected. When such a bounding box is smaller than such superpixel, and the
superpixel is classified as distant scenery, this superpixel can be considered as a safe funnel
for flight.

In Section 5-3 the configuration space expansion of the sparse disparity map is examined.
The C-Space expansion clearly shows good performance in terms identifying highly textured
obstacles. But a sensitivity to textureless regions is also identified, indicating that C-Space
expansion alone does not solve the problem with identifying textureless obstacles. Also the
impact of outliers in the sparse disparity map is made visible, high disparity values are heavily
expanded covering large portions of the image with false information. Therefore in Section
5-3-1 the outliers in the sparse disparity map are examined using histograms. It can be
seen that not in all sceneries outliers are found in the same way. In the first two scenes
outliers could be identified as they represented lone bins in the histogram, largely separated
from the other filled bins. In the third scene however a wide spread of disparity values was
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found, making the detection of outliers in the histogram impossible. In order to cope with
the outliers, pre-filtering is could help but this would also compromise the total number of
disparity values that can be found. Using temporal information could help to identify outliers,
for instance estimating the probability of a disparity value based on disparity histograms of
previous frames. Detecting outliers with a very high disparity can be done by examining only
the highest disparity values. Setting a threshold on the gradient of the sorted top 5 to 10
percent of the values, will allow for the detection of large disparity values, for which only a
very limited amount if found. This approach relies on the assumption that an obstacle with
a close proximity will have many features, whereas large outliers will come in very limited
numbers.

5-5 Proposed Research Focus

In Chapter 2 a broad literature review was presented of the latest achievements regarding
real-time trajectory planning, object detection and image space representation. Subsequently
in Chapter 5 the performance of these methods was investigated. This section will focus the
research into a proposed approach based on these results.

As previously described the main purpose of this Thesis is to contribute to the low-level vision-
based obstacle avoidance methods developed at MAVLab. Throughout the Thesis work the
intention is to find solutions suitable to be implemented fully-on-board a MAV and preferably
on the in-house-build stereo-board of the MAVLab. This restricts us to the use of a efficiently
computed sparse disparity map.

In section 5-3 it was found that the sparse disparity map may contain outliers which are of
major impact on the depth perception when expanded in image-space. In order to develop a
novel algorithm capable of identifying free-space trajectories in highly cluttered environments,
a solution has to be found to prevent, cope or filter out these outliers.

In an effort to distinguish textureless objects from background scenery superpixels are con-
sidered as an additional source of information. In section 5-2 it was shown that SLIC is able
to create a superpixel segmentation that respects obstacle boundaries, at real-time. When
superpixels prove to provide essential information in order to distinguish textureless obstacles
from the background, the computationally more efficient but more complex SEEDS algorithm
will be implemented.

From Chapter 2 it was found that inverse-distance image-space is a computationally efficient
representation for obstacle avoidance methods. By using image-space expansion, the MAV
can be considered a point-mass-system and obstacle avoidance becomes a 2D search problem.
In section 5-3 look-up tables where used to perform this computationally efficient expansion
and the results were promising. The only drawback is its sensitivity to disparity outliers, and
textureless regions.

For future research the following is proposed; conduct further research in implementing image-
space expansion in combination with obstacle segmentation. And investigate the adaptation
of egocylindrical representation for efficient obstacle avoidance by means of 2D image searches.
In the next subsection a new research question is formulated together with six sub-questions,
to guide possible future research.
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5-5-1 Research Questions

In the previous section a proposed research focus is described. Based on this a new research
question is formulated together with several sub-questions, in an effort to reach the research
objective using the chosen approach. The proposed research question is:

How can image-space expansion be used to computationally efficient identify free-
space trajectories, regardless of the sparseness of the disparity map?

To structure the research with the aim of answering this question, several sub-questions are
formulated:

• Which method can be used to prevent, cope or filter out outliers found in the disparity
map?

• How to process low-texture regions in image-space, in order to classify it as free-space
or obstructed.

• Can superpixels be used to distinguish textureless obstacles from distant scenery?

• Can the SEEDS algorithm be used to provide superpixels of equal or of higher quality
compared to SLIC, at a fraction of the computational cost?

• How can the proximity of a detected obstacle be determined when various differing
disparity values are assigned to the same obstacle?

• Can egocylindrical image-space representation assist in developing a computationally
more efficient obstacle avoidance approach?
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Chapter 6

Preliminary Depth Reconstruction
Problem Analysis

Abstract

The reconstruction of dense depth maps is of great value to resource-constrained MAVs, in
the pursuit of achieving autonomous flight with a high situational awareness. Most MAVs im-
plement sensing methods which provide a sparse depth map, limiting their capabilities signif-
icantly. This preliminary analysis will assess the feasibility and performance of using a novel
depth reconstruction algorithm in combination with a computationally constrained stereo-
camera system. The stereo-camera is designed for flapping wing platforms which operate
indoors due to their sensitivity to turbulent air. The algorithm complements this indoor en-
vironment in terms that it leverage the regularity of indoor environment to reconstruct dense
depth maps. Performance of the method on synthetic data using randomly distributed,- and
edge-samples, shows that the method performs best with edge-samples. Before the method is
applied with the stereo-camera, a neighbourhood search based outlier removal approach is de-
veloped. The large improvement in robustness which this approach brought is overshadowed
by the even better performing weighted constraints and weighted recursive approaches which
are introduced in this part. The recursive weighted approach shows exceptional potential in
providing robust geometry reconstruction using temporal information.

6-1 Introduction

In this part the feasibility is studied of implementing a sparse sensing depth reconstruction
method by (Ma, Carlone, Ayaz, & Karaman, 2016) on a computationally constrained stereo-
camera system.

Lightweight MAVs are highly constrained in terms of weight, power and computational bud-
gets. Most of these vehicles are therefore equipped with sensors which only provide sparse
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information about the environment. In a recent publication by Ma, Carlone, Ayaz and Kara-
man (Ma et al., 2016), geometric information of the environment is leveraged for the recon-
struction of the full environment from a highly sparse depth map. By assuming operation in
man-made environments the assumption is made that the environment shows a high level of
regularity in terms of flat surfaces with few edges. Ma et. al. showed high quality robust depth
reconstruction results on synthetic datasets and real datasets in which the assumption of a
structured environment is violated. These results provide a basis for an investigation to the
feasibility of implementing this depth reconstruction method on a highly resource-constrained
stereo-camera system.

Because the sparse depth maps from the stereo-camera can contain outlier values, a com-
putationally efficient neighbourhood search approach is developed to identify outliers. By
pre-filtering the sparse depth map, the robustness of the entire reconstruction approach is
improved.

In contrast to the approach of Ma et. al. where no distinction is made between samples
with a high confidence and uncertain samples, in this report the use of weighted constraints
is proposed. By weighting the constraints based on a confidence measure the overall recon-
struction method becomes robust against outliers, without the need of a pre-filter, e.g. the
neighbourhood search method.

In an attempt to improve the robustness of the method and the overall quality of the recon-
structed geometries, the use of recursive samples is proposed. By sub-sampling a previous
reconstruction and merging these samples with a current sparse map it is expected that the
quality improves and becomes more tolerant to faulty samples.

In section 6-2 the reconstruction method of Ma et. al. is explained and how the method can
be implemented on a computer using MATLAB1 together with the CVX/MOSEK package
for specifying and solving convex programs (Grant & Boyd, 2014, 2008). In section 6-3 the
performance on synthetic data is tested first for two dimensional data and subsequently for
three dimensional data. In section 6-4 the results of the feasibility study are discussed and
phenomena are explained. Lastly in section 6-5 conclusions are made about the performance
of the method and the potential for implementation on a computationally constrained MAV
platform.

In Section 6-6 a computationally efficient neighbourhood search method is proposed, followed
by a image space mean filter in an attempt to remove outliers. In Section 6-7 the use of
weighted constraints is proposed to provide an alternative to using a pre-filter and still pro-
vide robustness against outliers. In Section 6-9 the weighted constraints approach is extended
with a method of adding samples of previous reconstruction to the current sparse map, before
reconstructing it. The necessary steps include estimating the pixel shift using optical flow,
sub-sampling the previous reconstruction and allocating the appropriate weights to the dif-
ferent samples. The results of this recursive depth reconstruction are given in Section 6-10.
The report is finalized with a discussion in Section 6-11 and the conclusion in Section 6-12.

1https://nl.mathworks.com/
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6-2 Sparse Sensing Depth Reconstruction

In effort to enable lightweight MAVs to autonomously navigate using sparse sensing, Ma et.
al. focused on reconstructing the dense depth map from the sparse input data. In a recent
publication, Ma et. al. they set the objective to formulate theoretical conditions for which
a dense depth map can be reconstructed based on a highly sparse depth map, and develop
the algorithms to verify their theories (Ma et al., 2016). By assuming operation in highly
structured environments, the geometric regularity and sparseness of edges can be leveraged
for the reconstruction of the dense depth map.

The theoretical basis of the reconstruction builds upon earlier work in the field of compressive
sensing, where it was proven that a dataset z can be completely recovered from a sparse subset
y given y ∈ z (Foucart & Rauhut, 2013). A convencial model in the field is the synthesis
model. It assumes that the dataset z is sparse given z = Dα where the vector α is sparse in
the domain of the matrix D. In more recent work a slight different representation in the form
of the cosparsity model is proposed, where the vector z becomes sparse after multiplying it
with a given matrix D, i.e. Dz, where z is the dataset and D is a given matrix (Nam, Davies,
Elad, & Gribonval, 2013; Kabanava & Rauhut, 2015). Ma et. al. found out that the ℓ0-norm
of the 2nd order difference of the depth map can be used as a objective function to enforce
the regularity assumption in the environment. By relaxing and reformulating the problem
to a ℓ1-norm problem, it becomes convex and fits the cosparsity model, allowing for a full
reconstruction. In the following sections the used notation and the algorithm is explained in
detail.

6-2-1 Notations

In this report the same notations are used as in the paper of Ma et. al. (Ma et al., 2016).
For matrices the upper case will be used, e.g. A, D, and for scalars and vectors lower case
letters e.g. z, y are used. Subsets are represented with calligraphic font, e.g. M. The subset
M of vector z ∈ Rn is denoted as zM. Indicating a subset M of a matrix D is done as
DM, which represents the rows in subset M in matrix D. The following norms are widely
used, (ℓ∞-norm): ∥z∥∞ = maxi=1,...,n|zi|, (ℓ0-norm): ∥z∥0 = |supp (z) |, and the (ℓ1-norm):
∥z∥1 =

∑
i=1,...,n |zi|. It is important to recognise that the ℓ0-norm corresponds to the number

of none-zero elements in z. The depth reconstruction is based on the use of the cosparsity
model Dz where the analysis operator D produces a sparse vector i,e. given z ∈ Rn and
D ∈ Rp×n we will have ∥Dz∥0 ≪ p.

In the next section the the algorithm is explained.

6-2-2 Depth Reconstruction

In order to reconstruct the dense depth map, it is assumed that sparse depth information is
measured by sensing equipment. Lets define y as the measurement vector, z⋄ ∈ Rn the depth
map, and A the selection matrix. Then the measurements in y are found with y = Az⋄+η with
A = IM, where IM is the identity matrix with ones on the rows from subset M. Therefore
it can clearly be seen that Az = zM.
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The assumption of operating in a structured environment means that the depth map shows
a lot of regularity, i.e. the changes of the slope are mostly zero throughout the depth map.
Such a change in slope for a measurement point is formulated as δzi

δxi
− δzi−1

δxi−1
which can be

described as zi+1−zi

xi+1−xi
− zi−zi−1

xi−xi−1
, where we can assume xi − xi−1 = 1, resulting in the second

order derivative of zi expressed as zi+1 − 2zi − zi−1.

It can be seen that the corner set C consists of indices for which zi+1 − 2zi − zi−1 ̸= 0. Keep
in mind that with few corners in the environment Dz⋄ will be sparse. Defining matrix D as a
2nd-order difference operator (see equation 6-1) gives us the important equation ∥Dz⋄∥0 = |C|.

D
.=


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
... 0 . . . . . . . . . 0
0 · · · 0 1 −2 1

 ∈ R(n−2)×n (6-1)

Now by levering the regularity in the environment, the full depth profile z⋄ can be recon-
structed by solving the following optimization problem:

min
z
∥Dz∥0 subject to Az = y (6-2)

This noiseless optimization problem will force the depth profile to be consistent with the
sparse measurements y, and minimises the number of corners, recall that ∥Dz⋄∥0 = |C|. In
order to allow for measurement noise and reformulate the problem into a linear programming
problem the following relaxation is applied:

min
z
∥Dz∥1 subject to ∥Az − y∥∞ ≤ ϵ (6-3)

Note that for this ℓ1-minimization problem it is assumed that the noise is bounded ∥η∥∞ ≤ ϵ.
This is important for determining the tolerance for a specific application.

The optimization problems expressed in Equations 6-2 and 6-3 allow us to reconstruct 2-
dimensional depth maps, for the three dimensional case a we need to introduce a second
2nd-order difference operator.

For 3-dimensional depth reconstruction of Z⋄ ∈ Rr×c a operator, DH , will be assigned to
to the horizontal differences, and a difference operator, DV , will be assigned to the vertical
differences. The layout of the operators is identical as expressed in Equation 6-1, but with the
appropriate sizes. Given depth map Z⋄ ∈ Rr×c, we get DV ∈ R(r−2)×r and DH ∈ R(c−2)×c.
The corners are now encoded with DV Z⋄ ∈ R(r−2)×c and Z⋄DT

H ∈ Rr×(c−2), Thus the ℓ1-
minimization now becomes:

min
Z

∥vec(DV Z)∥1 + ∥vec(ZDT
H)∥1 subject to Zi,j = yi,j (6-4)

where yi,j is the sparse measurement map, Z the reconstructed depth map and vec(M) is the
column wise vectorization of matrix M .
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The next step is to reformulate the optimization in Equation 6-4 to correspond to the 2-
dimensional case, the result is as follows:

min
z
∥∆z∥1 subject to Az = y (6-5)

where we define n = r× c, and z = vec(Z) ∈ Rn and the measurements are stored in y ∈ Rm.
The new matrix ∆ is called the Regularization matrix, which is defined as follows:

∆ =
[

Ic ⊗DV

DH ⊗ Ir

]
(6-6)

where Ic is the identity matrix of size c, and ⊗ is the Kronecker product. The case where noise
is present in the measurement, it is assumed the noise is bounded according to ∥η∥∞ ≤ ϵ.
This case is shown below:

min
z
∥∆z∥1 subject to ∥Az − y∥∞ ≤ ϵ (6-7)

In the next section it will be shown how the problems as formulated in Equations 6-2, 6-3,
6-5 and 6-7 can be implemented in MATLAB.

6-2-3 Matlab Implementation

In this section the practical implementation of the optimization problems as described in the
previous section, is given. As mentioned before to solve the convex optimization problems a
commercial MATLAB package called CVX/Mosek is used (Grant & Boyd, 2014, 2008).

The first step is to download the CVX/Mosek package2, and obtain a academic or com-
mercial licence to use the package. To install the package it is reccomanded to follow the
instructions which provided on the same website3. In short the following steps are performed,
first change the working directory to the folder where the CVX package is stored. Second
the command cvx setup will install the CVX package and integrate the solver in the cur-
rent MATLAB installation. Finally the licence file has to be installed using the command
cvx setup C://cvx license.dat. The three main steps are shown below.

1 cd C: \ p e r s o n a l \cvx
c v x s e t u p
c v x s e t u p C: \ c v x l i c e n s e . dat

After the package is installed successfully, it is time to look at the usage in terms of it’s
programming environment. An extensive user’s guide can be found online4 and is highly
recommended for any new user.

The 2nd-order difference operators DV and DH can be constructed in the following way:
2http://cvxr.com/cvx/doc/mosek.html
3http://cvxr.com/cvx/doc/install.html
4http://cvxr.com/cvx/doc/CVX.pdf
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% Def ine the dimension parameters
2 h = 9 6 ; % h e i g h t ;

w = 1 2 8 ; % width ;

% Construct 2D 2nd−o r d e r d i f f e r e n c e operator , Dv
Dv = z e r o s ( h−2,h ) ;

7 f o r i = 2 : h−2+1;
Dv( i −1, i −1: i +1) = [ 1 −2 1 ] ;

end

% Construct 2D 2nd−o r d e r d i f f e r e n c e operator , Dh
12 Dh = z e r o s (w−2,w) ;

f o r i = 2 :w−2+1;
Dh( i −1, i −1: i +1) = [ 1 −2 1 ] ;

end

The next step would be to generate the sparse measurement samples. In this case we generate
in line 2 the edge values present in the synthetic dataset y. The selection matrix A is calculated
in line 5, and the corresponding sparse measurement samples are selected from y in line 8.
% Set the samples to be the edge v a l u e s
samples 2D = [ 1 ; d i f f ( y , 2 , 1 ) ˜=0; 1 ] ;

% C a l c u l a t e the s e l e c t i o n matrix A
5 A samples = diag ( samples 2D ) ;

% C a l c u l a t e the sampled v a l u e s
y sampled = A samples ∗y ;

Next the CVX environment can be used to solve the linear optimization problem (a relaxed
version of Equation 6-2), which is shown below:

min
z
∥Dz∥1 subject to Az = y

In the code block below the CVX environment is started in line 2, the addition of quiet
suppresses the output of the internal optimization process. Line 3 initiates the variable X of
size n which is the 2-dimensional depth map. The cost function is shown in line 4, the one-
norm of Dz. Line 5 indicates that the constrains are provided to the CVX environment. Line
6 constrains the measurement samples to remain present in the depth map while regularity
in X is enforced in line 4.
% C a l c u l a t e the p r e d i c t i o n

2 c v x b e g i n q u i e t
v a r i a b l e X( n ) ;
minimize ( norm (D∗X, 1 ) ) ;
s u b j e c t to
A samples ∗X == y sampled ;

7 cvx end

In the next code block the depth map is reconstructed with noisy sparse measurement samples.
The optimization problem (Equation 6-3) is repeated below:

min
z
∥Dz∥1 subject to ∥Az − y∥∞ ≤ ϵ

The code used for this problem is identical as for the noiseless case shown above except for
line 6, where the infinity-norm is taken to be less or equal to the tolerance.
% C a l c u l a t e the p r e d i c t i o n
c v x b e g i n q u i e t

3 v a r i a b l e X2( n ) ;
minimize ( norm (D∗X2 , 1 ) ) ;
s u b j e c t to
norm ( A samples ∗X2 − y sampled noisy , i n f ) <= t o l ;
cvx end

T.A. Heil Enhanced Sparse Depth Reconstruction Using Edge and Temporal Information



6-3 Reconstruction Results 71

In the remainder of this section the implementation of the 3-dimensional reconstruction is
explained. First the Regularization Matrix has to be computed, this is done in the next
code block. The Regularization matrix is calculated in the following lines. First the identity
matrices are predefined in lines 2 and 3, subsequently the Kronecker products are appended
in line 4 in order to get the Regularization matrix.
% C a l c u l a t e R e g u l a r i z a t i o n Matrix
Iy = eye ( h ) ;

3 Ix = eye (w) ;
R e g u l a r i z a t i o n M a t r i x = [ s p a r s e ( kron ( Ix , Dv) ) ; s p a r s e ( kron (Dh, Iy ) ) ] ;

The noiseless 3-dimensional optimization problem (Equation 6-5) is repeated below.

min
z
∥∆z∥1 subject to Az = y

The MATLAB code shown in the following code block is similar to the previously discussed
code. Note that the depth map is now initiated by the variable X2D of size n2D = w × h
which is product of the width and height.

1 % C a l c u l a t e the p r e d i c t i o n
c v x b e g i n q u i e t
v a r i a b l e X3D(n3D) ;
minimize ( norm ( R e g u l a r i z a t i o n M a t r i x ∗X3D, 1 ) ) ;
s u b j e c t to

6 A samples ∗X3D == z sampled ;
cvx end

The noisy 3-dimensional optimization problem (Equation 6-7) is repeated below.

min
z
∥∆z∥1 subject to ∥Az − y∥∞ ≤ ϵ

The MATLAB code shown in the following code block is similar to the noiseless case shown
above. The only difference can be found in line 6 where the regularity of the depth map is
enforced by the infinity-norm being less or equal to a given tolerance value.
% C a l c u l a t e the p r e d i c t i o n
c v x b e g i n q u i e t

3 v a r i a b l e X3D2(n3D) ;
minimize ( norm ( R e g u l a r i z a t i o n M a t r i x ∗X3D2 , 1 ) ) ;
s u b j e c t to
norm ( A samples ∗X3D2 − z s a m p l e d n o i s y , I n f ) <= to l 3D ;
cvx end

In the next section the simulation results are given.

6-3 Reconstruction Results

In order to asses the performance of the reconstruction method four simulations are performed
using a synthetic dataset. The first simulation will be a 2-dimensional reconstruction without
any added noise. This will be solved using the optimization problem shown in Equation 6-2.
The second simulation will be a 2-dimensional reconstruction with added white noise, the
optimization problem will be formulated as shown in Equation 6-3. The third simulation will
be a 3-dimensional reconstruction without noise, formulated as Equation 6-5. And lastly a 3-
dimensional reconstruction with added white noise will be done using the problem formulation
as shown in Equation 6-7.
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6-3-1 Two Dimensional Depth Reconstruction

In this section the 2-dimensional depth reconstruction method is tested using a synthetic
dataset. The dataset is shown in red in Figure 6-1. It is clear that the data consists of six
constant slope segments, with indicated in black, seven edge values. Note that the beginning
and end of the dataset have been added to the set of edges. No noise is added to the sparse
measurement samples, the resulting solution of the optimization problem shown in Equation
6-2 is indicated with the blue line.
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Figure 6-1: 2-Dimensional depth map reconstruction. In red the synthetic ground truth, in black
the sparse measurement samples and finally in blue the perfect reconstruction.

From Figure 6-1 is can be seen that without any noise in the sampled measurements the
solution reconstructs the synthetic dataset perfectly.

With added white noise (σ = 1) to the measurement samples the reconstruction differs sig-
nificantly, which can be shown in Figure 6-2. In red the noiseless synthetic data is shown,
whereas in black the sparse samples are indicated which are subject to the added white noise.
The tolerance ϵ is taken to be 2.1226 which is chosen as the minimal valid tolerance through
the relation ∥η∥∞ = ϵ. As can be seen in the figure, the reconstruction, indicated in blue,
shows smaller absolute gradient values. This is because minimization of the cost function
tries to minimise the change in slope and thus naturally, when given a higher tolerance, will
produce a solution with smaller absolute gradient values.

A note has to be made about the samples at the start and end of the dataset. These were
added to ensure the first and second segment would not be a linear continuation of the second
and second last segment. In the case where there are no samples near the dataset edges, the
last segment will be extrapolated towards the dataset boundaries. In the next section this
can be observed as random sampling will be shown besides just samples at corner points.
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Figure 6-2: 2-Dimensional depth map reconstruction with added white noise (σ = 1). In red
the synthetic ground truth, in black the sparse measurement samples and finally in blue the
reconstruction. It is clear that use of a tolerance value allows for a reconstruction with less sharp
edges.

6-3-2 Three Dimensional Depth Reconstruction

In this section the 3-dimensional depth reconstruction method is evaluated using the synthetic
dataset shown in Figure 6-3. The synthetic depth map consists of various constant gradients
along it’s x and y axes, forming a regular geometry.

In the next two sections the reconstruction method will be tested using this synthetic depth
map. First randomly distributed samples are taken and used for the reconstruction. Followed
by a reconstruction using edge samples, in both x and y direction. For both cases first a
noiseless case will be tested, after which the depth value of the samples is disturbed by white
noise with a variance of 1 (σ = 1).

Randomly distributed samples

In this section the reconstruction results using 200 randomly distributed samples are given. In
Figure 6-4 the samples are indicated with red points, scattered evenly over the reconstruction
surface. It can be seen clearly that the reconstruction in Figure 6-4 has less sharp edges
relative to the ground truth shown in Figure 6-3. This is because the relaxed objective
function is written in such a way that the second order derivative is minimised, this causes
a rejection of sudden geometric shape changes. It therefore will act as a smoothing function
when it can, this is clearly seen in the lower x-axis region where the depth map shows an
attempt to smooth-out an entire edge in x-direction.

In order to asses the accuracy of the reconstruction a histogram is made of the difference
with the ground truth. The histogram is shown in Figure 6-5. As can be seen from the
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Figure 6-3: Synthetic depth map showing the ground truth for the reconstruction simulations.
The map is 128 by 96 pixels and has an arbitrary chosen depth range.

histogram, almost 50% of the reconstructed data-points lay within 0.1 of the ground truth.
The histogram shows an extreme steep slope indicating a great reconstruction of the dataset
based on the sparse sample-set. The reconstruction error in this case can be explained by
the random samples not covering the entire dataset, and thus not all information about the
edges and dataset borders are encoded in the samples. Some regions the reconstruction will
therefore minimise the second order derivative without being constrained by a data-point.

The next step is to simulate the performance in the scenario where the samples are subject to
disturbances. The disturbances of the samples are simulated by adding white noise (σ = 1)
to the depth values. In Figure 6-6 the disturbed samples are indicated with red dots, and the
surface represents the reconstructed depth map.

From the figure it is clear that the results seem to be smoothed. Given the nature of the
objective function; trying to minimise the sharpness of the edges, this is to be expected. The
white noise disturbance causes the samples to represent the ground truth less clearly and
certain edges are disregarded completely. To asses the performance of the reconstruction
disturbed by white noise, a histogram is made of the differences with the ground truth. The
histogram is given in Figure 6-7.

The error histogram shows a clear normal distribution which can be explained by the intro-
duced normal distributed white noise. The white noise does not cause a significant increase in
large deviations but does introduce an overall larger error, e.g. the number of data-points with
a error of less than 0.1 has gone down with almost 70%. In the next section the reconstruction
performance is assessed using instead of randomly distributed samples, edge samples.
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Figure 6-4: 3D reconstruction using 200 randomly distributed samples from the ground truth
depth map. The samples are indicated with red dots.

Corner point samples

In this section the results of the reconstruction using corner samples are given. Because most
stereo-matching algorithms are able to determine the distance to edge-points easily and most
accurate, the assessment of this method using edge-samples is very interesting. First the
edges are detected by calculating the 2nd order differences of the dataset. As the synthetic
dataset has constant slopes on it’s planes, all none-zero 2nd order differences indicate an edge.
These samples are selected for the reconstruction.

In Figure 6-8 edge samples are indicated using red dots, the surface is the corresponding
depth reconstruction. When comparing the reconstruction with the ground truth in Figure 6-
3 it seems that using edge values greatly improves the ability to reconstruct the depth map
relative to random sampling. The smoothing characteristic as observed in Figure 6-4 and
Figure 6-6 is not present. The only clear deviation is seen at the edges of the dataset where
the slope of the previous plane is extended to the dataset edge.

To examine the performance of the reconstruction, again a histogram is made the error of
all datapoints. The histgogram is shown in Figure 6-9. In the histogram it becomes clear
that the fit is of high quality as almost 50% of the data-points have an error of less than
0.1. Also, as observed in Figure 6-8, the deviations near the dataset edges can be seen in the
histogram. A constant error distribution is found between -5 and -25, this indicates that the
reconstruction extrapolated the planes near the edge to the edge.

In Figure 6-10 the samples, shown in red, are exposed to white noise (σ = 1). The edges are
still clearly reconstructed but errors are introduced to some extend. Again to get a better
view of the errors a histogram of the errors is made and shown in Figure 6-11.

The error histogram clearly shows the influence of the introduced white noise, the data-points
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Figure 6-5: Histogram of the differences between the noiseless reconstruction and the ground
truth. It is clear that most samples show a minimal error of less than 0.1.

which first had a error of less than 0.1, now are normally distributed around zero. This effect
is shown more clearly in Figure 6-12, where the errors values from the dataset boundaries
where removed. Although the total error has increased due to the noise, the method is still
able to reconstruct the original dataset to a large extend.
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Figure 6-6: 3D reconstruction using 200 randomly distributed samples from the ground truth
depth map and disturbed by white noise (σ = 1). The samples are indicated with red dots.

Figure 6-7: Histogram of the differences between the reconstruction and the ground truth. It is
clear that the samples show the error is influenced by the introduced white noise (σ = 1).
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Figure 6-8: 3D reconstruction using edge samples from the ground truth depth map. The
samples are indicated with red dots.

Figure 6-9: Histogram of the differences between the noiseless reconstruction and the ground
truth. It is clear that most samples show a minimal error.
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Figure 6-10: 3D reconstruction using edge samples from the ground truth depth map and
disturbed by white noise (σ = 1). The samples are indicated with red dots.

Figure 6-11: Histogram of the differences between the reconstruction and the ground truth. It
is clear that the samples show the error is influenced by the introduced white noise (σ = 1).
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Figure 6-12: Histogram of the differences between the reconstruction and the ground truth. The
errors due to deviations near the dataset boundaries have been removed to indicate the influence
of the introduced white noise (σ = 1).
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6-4 Intermediate Performance Discussion

In the previous section the results were presented where the sparse depth reconstruction
method was tested on different sample sets.

Firstly the set was tested on randomly distributed samples without any noise disturbances
(Figure 6-4). This resulted in a reconstruction where a smoothing effect was found on the
output data. This can be explained by the way the objective function is formulated. The
objective function minimises the sharpness of the depth map, so when samples do not fall
directly on an edge that edge will be smoothed out significantly.

The second simulation used the same randomly distributed samples, but now the depth values
where disturbed by white noise (σ = 1) (Figure 6-6). The white noise caused a even stronger
smoothing effect and thus sharp edges which are close to each other would be blend together,
to minimise the sharpness while the matching error with the samples was kept at a minimum.
In regions where several samples where taken on an edge, the reconstruction does show that
the edges can be reconstructed properly. This encourages for the use of edge samples instead
of randomly distributed ones.

In the third simulation all edge values from the ground truth dataset were used an impressive
reconstructed map was produced (Figure 6-8). It is clear that in order to reconstruct a
depth map, having samples at the edges is of utmost importance. A new phenomenon was
observed this simulation, the lack of samples near the dataset borders causes the planes near
the border to extrapolate their gradient all the way to the dataset edge. This is to be expected
as the sharpness is minimised, but this causes larger disturbances near the dataset edges. In
the corresponding histogram (Figure 6-9) this can be seen by the evenly distributed errors
between bin -5 and bin -25.

In the fourth and last simulation the depth values of the edge samples where disturbed by
white noise (σ = 1), and the reconstructed depth map showed signs of disturbances (Figure 6-
10). Regardless the reconstruction looks to approximate the ground-truth rather well as the
edges are still identifiable. The corresponding histogram of the reconstruction error is shown
in Figure 6-11. As could be seen in the simulation with randomly distributed samples, the
presents of white noise causes the error distribution to widen around zero. When disregarding
the error near the dataset boundary the error shows a symmetric distribution with a zero-
mean, this is visualized in Figure 6-12. Note that the bin-size has been reduced in order to
show a smoother distribution.

6-5 Intermediate Conclusion

The results presented in the previous section verify the reconstruction capabilities of the
method, introduced by Ma et. al. By examining the performances with disturbed samples
the robustness of the method could be assessed. While random sampling provides a better
approximation at the dataset boundaries, it was the simulation with edge samples that is
more capable of reconstructing a regular geometry. This was explained with the sharpness
rejecting formulation of the objective function, thus when samples don’t sufficiently mark an
edge, this edge will be smoothed out.
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Because the method works best using edge values, the use of the method in combination with
the MAVLab stereo-board seems a natural next step. The stereo-board has already been used
with edge detection algorithms but has not been used to construct a high quality dense depth
map (Tijmons, Croon, Remes, De Wagter, & Mulder, 2016; McGuire et al., 2016). Modifying
and implementing the novel reconstruction method of Ma et. al. would greatly increase the
environmental awareness of a MAV equipted with the MAVLab stereo-board camera system.

6-6 Outlier Removal using Neighbourhood Search

Because the sparse depth map, used as input, often contains outliers which will deteriorate the
dense reconstruction an attempt will be made to remove them. In this section a neighbourhood
search based method will be discussed.

Due to errors in the stereo-matching procedure, the sparse depth map often contains wrong
disparity values. These values often lay between d = 0 and d = 1, which correspond, for
the MAVLab Stereo-camera, to distances ranging from ≈ 7.8 m to ∞. Because of this, these
values tend to have no to very few neighbouring points in 3D space. This observation will be
used to identify these points, these outliers and removed from the dataset.

The first step is to calculate the points in vehicle-centred 3D space. This is done using
elementary equations;

z = fb

d
x = zu

f
y = zv

f

where z is the distance from the camera, x the distance along the horizontal axis, y the
distance along the vertical axis, u and v the horizontal and vertical pixel location with the
image centre defined as the origin. The result are 3 vectors containing the coordinates of all
measured depth values.

The second step is calculating the euclidean distance between the first measurement point
and all other points.

d̄1 =
√

(x1 − x̄)2 + (y1 − ȳ)2 + (z1 − z̄)2

Next the neighbourhood of the point is defined as a vector of boolean:

N̄1 = d̄1 < τneighbourhood

To classify as an outlier, it is set that the number of neighbours |N̄1| < 1% of the total
number of measurement points. In order to decrease the computational load, all elements in
this neighbourhood are also classified as outliers. When the number of neighbours lies between
1% and 5% of the total number of measurements, only the single value under examination is
classified as an outliers, but all it’s neighbours are not collectively classified as outliers. When
the number of neighbours is larger than 5%, the examined value and all it’s neighbours are
classified as non-outliers and their individual neighbourhoods will not be examined any more.
The algorithm is shown in Algorithm 1.
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Figure 6-13: Top view of 3D coordinates shown in the xz-plane. On the left the identified
outliers are marked with red circles with τneighbourhood = 2. On the right the remaining samples
are shown.

Due to these extra policies it was found empirically that the number of neighbourhoods
examined is reduced to maximally 10% of all measurements throughout a test sequence of
1000 images. In Figure 6-13 the effect of the neighbourhood search based outlier removal
approach is visualized.

In the left figure the raw samples are visualized in the xz-plane. Visualized with red circles,
the outlier neighbourhoods with τneighbourhood = 2m are shown. The all identified outliers lay
far away from the camera, upto 79m from the origin, approximately d = 0.1 pixels. Given the
used stereo-matching method, small disparity values tend to be falsely matched image block
pairs.

After removing the identified outliers, the remaining samples are visualized in the right figure.
It can be observed that the maximum distance has reduced from 79m to around 11m. The
result is promising in removing extreme values, but several points remain for z ≥ 6. From
extensive testing it is in practice assumed that distance values greater than 6m are not reliable
for obstacle avoidance methods. Therefore There still exists a need for a more reliable and
effective approach to dealing with the outliers.

The main reconstruction results are given in Section 6-8 and more extensively in the Appendix
7 at the end of this part.

6-6-1 Sparse to Dense Filtering using a Mean-filter

An alternative approach to deal with outliers was developed in the form of a mean-filter. The
filter’s advantage lays in it’s simplicity, the general approach is as follows.

The filter sweeps a window over the map, calculating the mean value of all non-zero samples
within the window. The second step is to calculate a lower and upper boundary from this
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Algorithm 3: Neighbourhood-Search Outlier Identification and Removal
1 Initialize a boolean list for all samples idxlist

2 Loop over all samples
3 for i = 1 to nsamples do
4 Check if the sample i is in the check list idxlist

5 if i ∈ idxlist then
6 Select the sample coordinates and all sample coordinates
7 Ci = {xi, yi, zi}
8 Call = {x, y, z}
9 Calculate the distance from sample i to all other samples

10 d̄list

√∑
(Ci − Call)2

11 idxmatches = find
(
d̄list <= τmin

)
12 Test if index i is in an outlier neighbourhood(1% neighbourhood)
13 else if |idxmatches < max (2 + 1, c/100) | then
14 Add neighbourhood to empty list as it is a outlier
15 idxemptyList = [idxemptyList, idxmatches]
16 Remove neighbourhood from check list
17 idxlist(idxmatches) = false

18 Test if index i has a neighbourhood of ≥ 5% of the dataset
19 else if |idxmatches > max (2 + 1, c/20) | then
20 Neighbourhood is safe so remove neighbours from check list
21 idxlist(idxmatches) = false

22 else
23 Else the sample i is NOT assumed to be an outlier, and
24 it’s neighbourhood is NOT assumed to be safe.
25 idxlist(i) = false

26 end
27 end

mean value, and assigning the mean value of all samples within the window that fall within the
lower and upper boundary to the center position of the window. Because in sparse maps the
chance that no samples within the window fall between the boundaries is small, the boundaries
get widened and the window is searched for samples again. If no samples are found or when
a mean value is assigned the algorithm proceeds to shift the window, sweeping over all points
on the map. The method requires multiple iterations, where the starting boundary values are
enlarged with each iteration to stimulate sharp edges to be retained and at the same time fill
the entire map with values.

A simulation of the approach using 4 iterations is visualized in Figure 6-14. The biggest step
is observed in the first iteration, where the map gains a large amount of additional samples.
In the consecutive 3 iterations the gaps between highly varying depth regions are closed until
in the fourth iteration a fully dense map is obtained.

The approach is proven to have a smoothing effect removing measurement errors, but also
makes alterations on the observed geometry as empty image regions are filled based on neigh-
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Figure 6-14: Results of the Mean-filter approach, using 4 iterations of varying boundary values.
The boundaries are set at 10, 10, 20 and 80 cm for depth values ranging from 0.4 to 5 m.

bouring samples. The current implementation in MATLAB does not show real-time perfor-
mance and a more direct implementation in C/C++ and using closest neighbour instead of a
mean operation are expected to significantly improve the computational speed. For now this
filter approach will not be considered for outlier removal or to reconstruct dense depth maps.

6-7 Sparse Sensing Depth Reconstruction using Weighted Samples

This section introduces the use of distance dependent weights for the constraints of the re-
construction optimization problem. This approach will form as an alternative for the neigh-
bourhood search approach, as discussed in the previous section.

The optimization problem and corresponding constraint is given in Equation 6-7, and repeated
below.

min
z
∥∆z∥1 subject to ∥Az − y∥∞ ≤ ϵ

The main idea is to, instead of filtering out the outlier values, to minimise their influence
on the reconstruction problem. By allocating weights to individual depth measurements,
based on their distance, it becomes possible reduce the effect wrong values have on the
reconstruction. As mentioned in the previous section, values larger than 6m are in practice
regarded as untrustworthy and therefore it is proposed to allocate distance dependent weights
to all measurements
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The vector w will contain all weights corresponding to measurements y. For values of 2m or
less, a weight of 1 is assigned while values of more than 6m are assigned a weight of 0. For
measurements between 2m and 6m the weight is linearly interpolated between 1 and 0.

In order to use the weights, the constraint will be adjusted to the following:

min
z
∥∆z∥1 subject to ∥W (Az − y)∥1 ≤ ϵ (6-8)

where W is diag (w). Note that the infinity norm is relaxed to the 1-norm reducing the impact
of difficult to reconstruct image regions. The main reconstruction results are given in Section
6-8 and more extensively in the Appendix 7 at the end of this part.

6-7-1 Stereo-Matching Confidence Based Weights

In this section it is proposed to use a quality measure of the stereo-matching procedure to
base the weights on, which are used for reconstruction.

In the previous section the use of weights to reduce the impact of outliers is proposed as
function of the measured distances. Although proven to be effective it makes more sense to
use a quality measure of the stereo-matching procedure as the base for the weights. It is
expected that outlier values will have barely passed the matching confidence test and should
therefore carry a lesser weight than values which are matched with high confidence.

6-8 Pre-filtered and Weighted Reconstruction Results

In this section the reconstruction results are given for the outlier removal approach using
neighbourhood search, the weighted constraints approach. In order to evaluate their relative
performance the results are presented next to each other enabling a quick comparison.

The results of 4 approaches are given, firstly the standard reconstruction method introduced
by Ma et. al. (Ma et al., 2016), by with the constraint as formulated in Equation 6-7,
being loosened from a infinity-norm to a 1-norm. The second approach uses the standard
reconstruction method but the input samples have been pre-filtered with the outlier removal
approach using neighbourhood search. The third approach uses the unfiltered samples in
combination with the weighted samples as shown in Equation 6-8. And lastly the fourth
approach uses the combination of pre-filtered input samples where the outliers are removed
using the neighbourhood search method, and the weighted samples method from Equation
6-8. The first test scene is visualized in Figure 6-15. The corresponding reconstruction results
of three consecutive frames are shown in Figure 6-16.

Looking at Figure 6-16, in the first column the sparse depth maps are shown. These are
calculated onboard the MAVLab stereo-camera and send to a workstation. Throughout the
results dark red will indicate a close proximity while the colder towards dark blue indicates a
larger proximity. The results will be discussed per column and from map 1 to map 3.

In the second column the reconstruction results of the standard method of Ma et. al. with
loosened constraints are given (Ma et al., 2016). The reconstruction of map 1 is clearly able

T.A. Heil Enhanced Sparse Depth Reconstruction Using Edge and Temporal Information



6-8 Pre-filtered and Weighted Reconstruction Results 87

Figure 6-15: Photo taken of scene 22 with a High-Definition camera sensor.

to obtain the general geometry of the scene. The corridor is visible and depth values are
coherent with the sparse map. Notably in the right hand side a large outlier causes the
reconstruction to have a extreme dark blue patch, visualizing a tunnel. This shows that the
standard approach is vulnerable to outliers. For map 2, the standard reconstruction is not
able to reconstruct the scene at all. Large differences in depth of cause the method to be
incapable of reconstructing it with a given tolerance of ϵ = 0.1. For map 3 the standard
reconstruction method is able to reconstruct the geometry of the scene properly.

In the third column the pre-filtered reconstruction results are given. The reconstruction of
map 1 clearly shows the general geometry of the scene, with a small blue patch on the right
side. The reconstruction of map 2 and 3 also clearly recover the general geometry of the
scene, with again an indication of vulnerability to outliers on the right hand side.

In the fourth column the weighted approach without outlier removal shows highly similar
results as the pre-filtered results in column 3. This indicates that the weighted and the
pre-filtered approaches have highly similar performance for this particular scene.

In the fifth and last column, the combined results of the pre-filtered and the weighted con-
straints approaches are given. Because the pre-filtered and the weighted approach already
perform similarly, the combination of both approaches do not show any significant improve-
ment.

The second test scene is visualized in Figure 6-17. The corresponding reconstruction results
of three consecutive frames are shown in Figure 6-18.

In the first column of Figure 6-18 three consecutive sparse depth maps from a particular scene
are shown. Columns two to five show the standard, pre-filtered, weighted and the combined
pre-filtered weighted approach respectively.

From examining the standard reconstruction results in the second column it becomes clear
that the standard approach is sensitive to outliers and it is not able to reconstruct all three
maps.

By pre-filtering, shown in the third column, the reconstruction becomes possible for all three
scenes and to a large extent robustness against outliers is introduced.
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The fourth column shows the results of the weighted approach which shows an even larger
robustness against outliers relative to the pre-filtered approach.

Just like the pre-filtered and the weighted approach, the combined approach is able to recon-
struct the scene’s geometry to a large extent. But it is noted that the combined approach
does not show any significant improvement over the weighted approach.

More test results can be found in the Appendix 7 at the end of this part.
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Figure 6-16: Reconstruction results of frame 22. First column, sparse depth map is shown. Sec-
ond to fifth column show, standard reconstruction, pre-filtered, weighted and combined approach
respectively.
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Figure 6-17: Photo taken of scene 69 with a High-Definition camera sensor.
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Figure 6-18: Reconstruction results of frame 69. First column, sparse depth map is shown. Sec-
ond to fifth column show, standard reconstruction, pre-filtered, weighted and combined approach
respectively.
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6-9 Recursive Depth Reconstruction using Temporal Information

In order to increase the robustness of the reconstruction method against outliers even further,
the use of temporal information is discussed in this section. Using information from previous
reconstructions can assist in reconstructing a robust map in present time.

Before depth information from previous frames can be used for the reconstruction of the
current depth map, the camera movement has to be estimated. This is the first of 4 main
steps before the reconstruction is possible. In the following sections the main steps are ex-
plained in detail. First the pixel shift is estimated using optical flow algorithms. Second the
sub-sampling approach of the previous reconstruction is discussed. Third the approach of al-
locating weights corresponding to the sparse depth values is discussed. And finally the overlay
of the newly measured sparse depth map (Ti+1) onto the sparsely sampled reconstruction of
Ti is discussed.

6-9-1 Pixel Shift Estimation using Optical Flow

In order to merge the depth reconstruction at Ti and the new sparse depth map at Ti + 1,
the maps have to be aligned such that the geometry they represent overlaps.

The quickest way is to apply feature matching in 2D image space, using the MATLAB5

function matchFeatures() which implements the approach described by Lowe (Lowe, 2004).
As input the sparse depth map Zsparsei at Ti and the sparse depth map Zsparsei+1 at Ti+1.
The result is a m× 2 vector of the matched features.

The next step is to calculate the pixel shift from Ti to Ti+1. A quick way is to select the
median horizontal shift du and vertical shift dv and use it for the complete sample grid. But
because of the fundamental workings of optical flow, using a single vector [du, dv] to describe
the flow is risky as it will be zero when moving perfectly forward or when subject to a roll
movement.

Alternatively a fast and more precise method as introduced by McGuire et. al. (McGuire et
al., 2016) could be implemented. This would allow for column and row wise determination
of pixel shifts du and dv. But at this stage to test the concept of recursive sparse depth map
reconstruction, the median shift will be used as a single value to describe the shift in the
entire image.

The next step is to determine the approach of sub-sampling the depth map reconstruction of
Ti.

6-9-2 Reconstruction Sub-Sampling

Super-positioning the sparse map of Ti+1 onto the entire previous reconstruction would lead
to large difficulties for the solver to pass the constraints. It is therefore considered to sub-
sample the reconstruction, this will still introduce depth values to extremely sparse regions
in the sparse depth map, guaranteeing a minimum information density.

5https://nl.mathworks.com/
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It is this information density that is expected to introduce large improvements to the recon-
struction approach. If for instance a single outlier value is positioned in an extremely sparse
region, it’s impact would be greatly minimised by the introduced samples from the previous
frame.

The choice of a evenly space grid of samples taken from the previous reconstruction is triv-
ial, as it guarantees a minimum information density while easy to implement. Other more
sophisticated methods have not been considered at this point, but could consist of random
sampling or method which guarantee a constant information density throughout the sparse
depth map.

In two top figures in Figure 6-19 represent the sparse depth map at Ti+1 on the left side, and
the recursive map on the right side, e.g. the sparse depth map at Ti+1 super-positioned onto
a grid of samples from the reconstruction at Ti.

Sparse sample input
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ix
]

Sparse sample weights

u [pix]

v 
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Recursive sample input
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Figure 6-19: Top left; Sparse depth map Ti+1. Top right; Gridded samples from the recon-
struction of Ti with the sparse depth map Ti+1 super-positioned on top e.g. the recursive depth
map. Bottom left; Weights corresponding to the sparse depth map. Bottom right; Weights
corresponding to the recursive depth map.

In the figure, the depth values are encoded in the used colour. The smaller the proximity the
darker blue and the larger the proximity, the lighter the colour blue. While comparing the
sparse map in the top left and the recursive map on the top right it is clear how large the
influence of the gridded samples are on the information density in the top and bottom of the
map.
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Table 6-1: Weight allocation as function of distance.

Weight allocation
Segment Distance [m] Weight [-]
1 0 - 2 1
2 2 - 6 1 - 0
3 6 - ∞ 0

The bottom two figures visualize the corresponding weights. The weight allocation will be
discussed in the next section.

6-9-3 Weight Allocation

In order to gain a robust performance, the assignment of the right weights is key. The two
bottom figures in Figure 6-19 visualise the weights. The dark red corresponds to a high
confidence and thus a weight of 1, while colder colours all the way to blue correspond to less
confident samples and lower weights. The gridded samples, shown in blue on the weight maps
are assigned a constant value of 0.1. The weighting scheme is shown in Table 6-1.

In the table three segments are defined for which the weights are a function of the distance
of the respective samples. In the first segment, where samples lay within 0 to 2 m, a weight
of 1 is allocated. In the second segment which spans from 2 to 6 m, the confidence decreases
linearly from 1 to 0 m. The third and last segment consists of all samples from 6 m and
beyond, which all are assigned a weight of 0.

The result is that samples beyond 6 meters will not have any influence on the reconstruction
as their constraint has a weight of zero. The choice for linear interpolation in segment 2, (2
to 6 m), is due to it’s straight forward computation and the constant relation to the distance.
The reconstruction results are shown in Figure 6-20 in Section 6-10.

Alternatively a natural choice for weights would be based on the confidence test which is used
for the stereo-matching (Hu & Mordohai, 2012). In the stereo-matching algorithm a block-
matching scheme us used to construct a cost function, from which the minimum is chosen
as the disparity value. To determine the reliability of each disparity value and filter out
low quality matches, a naive version of the peak ratio test is used (Tijmons, Croon, Remes,
De Wagter, & Mulder, 2016). A threshold value on this ratio test is used for the computation
of the sparse depth map on the MAVLab stereo-camera (Tijmons, Croon, Remes, De Wagter,
& Mulder, 2016). Because there already exists this quantitative measure for the confidence
of each measured sample, in the future it will be considered to base the weights on this test.

Further improvements in weight allocations can be sought in the direction of exploiting the
temporal information. Stable samples which are measured in sequential frames are more likely
to be correct rather than samples which are measured in only a single frame. Further work
will address this issue.
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6-9-4 Sparse Depth Map Overlay

In order to implement the recursive reconstruction approach, the gridded samples from Ti

have to be merged with the new sparse depth map from Ti+1. The recursive samples are all
given a constant weight of 0.1 and are considered less representative for the current relative
to the new sparse samples. Therefore when a gridded sample and a new sample coincide on
the same map coordinates (u, v), the sparse sample overwrites the gridded sample. This can
be interpreted as; the new sparse depth samples overwrite the sparsely gridded samples.
A more sophisticated approach for the map overlay procedure can be considered when two
improvements have been implemented. Firstly the naive peak ratio test, as described above,
should be implemented and has to be proven to be a robust alternative to a constant confi-
dence. And secondly a method is to be implemented to estimate the confidence of the recursive
samples, e.g., incorporating higher confidence in stable samples. A natural approach would
then be to, when two samples coincide on one coordinate (u, v), is to select the sample with
the highest confidence.
In the next section the results of recursive depth reconstruction are presented where the
gridded recursive samples are overwritten by the new sparse samples, regardless of their
weights.

6-10 Recursive Depth Reconstruction Results

In this section recursive reconstruction results are discussed. The results are obtained using
linear weight allocation for the new sparse samples, and a constant weight for the gridded
recursive samples. To assess the effectiveness Figure 6-20 shows both the result without
recursive samples on the top row and with recursive samples on the bottom row.
The top left figure shows the sparse depth map, and the top right figure shows the depth
reconstruction using the weighted reconstruction as described in the previous sections. The
bottom left figure shows the sparse depth map with recursive samples, and the bottom right
shows it’s respective depth reconstruction.
When looking at both sparse maps it immediately becomes clear that the added recursive
samples add a lot of information in some regions of the image where little sparse samples where
matched. In the reconstructions on the right side the consequences become clear immediately.
The largest improvement is seen in the geometry of the light blue corridor in the center of
the image. The non-recursive reconstruction uses the (faulty) blue samples in the top-center
to reconstruct the top-side of the image, while the recursive reconstruction is able to retain
most of the large-proximity values in the center and top-center of the image.
It can be said that the current sparse map has faulty values at a range smaller than 6m. The
weights of these values are clearly shown in orange in the bottom left figure of Figure 6-19.
The weights which are based on the distance are significant and therefore the non-recursive
reconstruction does not show any clear geometry of the corridor anymore. The recursive
reconstruction on the bottom left uses these gridded samples to retain the large proximity,
do note that traces of the (faulty) sparse samples are still present in the reconstruction.
When examining the recursive reconstruction in detail, traces of the gridded samples can be
found on the right side as lighter dots in the blue plane. These are the result because the
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Figure 6-20: Top left; sparse depth map Ti+1. Top right; weighted reconstruction. Bottom left;
gridded samples from the reconstruction of Ti with the sparse depth map Ti+1 super-positioned
on top e.g. the recursive sparse depth map. Bottom right; reconstruction using the recursive
samples.

the camera has moved forward around 20 cm in between the frames, causing the scene in
its entirety to get closer. Improvements are to be expected when the recursive samples are,
except from shifted (see Section 6-9-1), also adjusted for the movement of the camera.

6-11 Discussion

In this report several methods were introduced and their results presented. Firstly it is
described how the reconstruction method as introduced by Ma et. al. is implemented using
MATLAB on a desktop system. Secondly a performance evaluation of using the reconstruction
method is done on synthetic data and a description of how to implement it on a desktop
system is given. This was followed by using the sparse depth map as calculated by the
MAVLab stereo-board for depth map reconstruction. Before this could be done a method
to handle mismatched disparity values had to be developed. The third contribution is a
outlier removal approach using a neighbourhood search which has been successfully applied
and proved effective. The fourth contribution is an alteration of the method by Ma et. al. by
introducing weighted constraints to incorporate tolerance against outlier values and increase
the robustness overall. The fifth and last contribution is the introduction of recursive samples
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to improve the robustness against mismatches and improve the geometrical reconstruction
capabilities significantly.

This section briefly discusses the results, significance and potential of the previously mentioned
contributions.

6-11-1 Sparse Sensing Depth Reconstruction Method and Implementation

The method by Ma et. al. is a lean and powerful approach in reconstructing dense depth
maps from sparse samples. By levering the assumed highly regular geometry in terms of flat
surfaces and straight edges, the method proves to be effective in reconstructing the original
dense map to a great extent.

For the implementation the same approach as Ma et. al. is chosen; the combination of the
MATLAB development environment and the CVX/MOSEK solver. This solver is available
on a academic licence and provides an easy to use convex optimization environment for the
problem.

It has to be noted that for anything other than conceptual research, such as an implemen-
tation for UAV or MAV flight will require a dedicated solver written in C/C++ or similar
programming language as real time performance is impossible in the MATLAB implementa-
tion.

After successful implementation it is shown that the method is able to fully reconstruct
synthetic depth maps, given no open boundaries are given. When randomly sampling 1.6%
of the original map, the method is able to reconstruct the dense map to a great extent. When
providing all edge values of the synthetic map, the reconstruction matches perfectly with the
only errors present at the unconstrained dataset boundaries.

6-11-2 Outlier Removal Using Neighbourhood Search

In order for the reconstruction approach of Ma et. al. to work on the sparse datasets, the
data cannot contain large outliers. Because the MAVLab stereo-board camera provides sparse
maps which are not guaranteed to be without outliers, a method is proposed to remove these
potential outliers.

A neighbourhood search approach is a widely used method to identify outliers and a com-
putationally efficient implementation has proven to be effective in identifying and removing
outliers. The result is that where with the original sparse maps the reconstruction failed
several times to provide a solution to the optimization problem, the pre-filtered sparse maps
could be reconstructed in all tested scenes.

6-11-3 Sparse Sensing Depth Reconstruction using Weighted Samples

A new solution to deal with outliers came with the introduction of weighted constraints on the
sparse samples. Where the method of Ma et. al. does not take into account any confidence
measure with the samples, this report introduced depth depended weights to increase the
robustness significantly.
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As the sparse depth map from the MAVLab stereo-board is considered reliable for measure-
ments closer than 2m and unreliable for measurements further than 6m, depth depended
weights are added to the sample constraints of the optimization problem. It is shown that
for all tested scenes this approach is successful in reconstructing the geometry and robust to
any outliers. This can be explained that most outliers correspond to large distances which
are given a weight of zero, and are thus do not constrain the reconstruction.

In several scenes it was shown that the weighed approach outperforms the the neighbourhood
search method in terms of reconstructing the geometry of the environment.

Besides relating the weights on the distance of the values, it is considered to base the weights
on the confidence measure of the stereo-matching method. The block-matching algorithm on
the MAVLab stereo-board uses a naive peak ratio test to assess the confidence of finding a local
minimum in the cost function. Using this ratio as a base for the weights will automatically
put weights on good matches, and mismatches or outliers will be assigned a low weight.

It is expected that instead of interpolating the weights between a distance of 2m and 6m, using
weights based on the naive peak ratio will result in qualitatively better results. Assigning a
weight of zero to all values past 6m is still advised.

6-11-4 Recursive Depth Reconstruction using Temporal Information

The next step would be to incorporate temporal information in determining the weights. To
use information from previous frames in the current map reconstruction, the pixel shift was
estimated using the median optical flow. Although results showed to be effective, it would be
better to incorporate a more pixel shift method. The histogram method proposed by McGuire
et. al. is expected to facilitate pixel shifts at a more local level, future implementation is
therefore recommended.

After determining the pixel shift from the previous frame to the current, the previous frame
can be sub-sampled and merged with the current sparse depth map. The sub-sampling is
done in an equally spaced grid because this ensures a minimum information density in the
merged sparse map. Additional research should be done in finding an optimal step size of
the grid. From the results it was noticed that most of the gridded samples were further away
than the new sparse samples. This is explained by the forward movement of the camera with
about 20cm, this had not been taken into account and will have to be done in futute work.

The merger of gridded samples from the previous reconstruction and new sparse samples has
proven to be more successful than all other methods presented in this report. The main focus
from this point onwards should be to assign a higher and appropriate weight to samples which
are proven to be stable over time. Because these samples would have been consistently been
measured multiple times, the chances of the sample to be wrong can be considered smaller
than a sample which has been found in only one frame.

6-12 Conclusion

In this report the use of the depth map reconstruction method by Ma et. al. was proven
feasibly in combination with the sparse depth map from the MAVLab stereo-camera. The
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original method by Ma et. al. does not provide the required robustness against outliers
to reconstruct each test scene, therefore a outlier removal algorithm was developed. Using
a neighbourhood search based approach, outliers were successfully identified and could be
filtered out before the reconstruction began.

A more significant contribution is made with the introduction of weighted constraints as an
alternative to pre-filtering the samples. Samples are given a weight that corresponds to it’s
confidence level. At first this confidence level is directly coupled to the distance, this resulted
in a large improvement in the quality of the reconstruction and the required robustness against
outliers. For future work it is proposed to couple the weights to the naive peak ratio, used to
assess the confidence of the stereo-matching.

Finally recursive depth reconstruction is proposed in the sense that previous reconstructions
are sub-sampled and merged with the current sparse depth map. The result is that the
reconstructions are now dependent on current sparse measurements and on sparse values
from previous frames. The use of optical flow to shift the samples from previous frames has
proven to be sufficient, but a more sophisticated local approach should be considered in future
work. The addition of recursive samples brings the biggest improvement to the reconstruction
of the geometries in this report. Where a purely weighted reconstruction was still prone to
outliers, the recursive weighted approach shows to a large extent robustness against these
outliers.

In future work the use of temporal information should be extended even more. Current weights
were coupled to the distance, coupling them to the naive peak ratio test from the stereo-
matching presents potential improvement. But also assigning higher weights to samples which
are measured in consecutive frames and lower weights to samples which are only observed
once, is expected to improve the robustness of the quality of the reconstruction significantly.
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Chapter 7

Appendix

Figure 7-1: Photo taken of scene 15 with a High-Definition camera sensor.
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Figure 7-2: Reconstruction results of frame 15. First column, sparse depth map is shown. Second
to fifth column show, standard reconstruction, pre-filtered, weighted and combined approach
respectively.
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Figure 7-3: Photo taken of scene 495 with a High-Definition camera sensor.
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Figure 7-4: Reconstruction results of frame 495. First column, sparse depth map is shown. Sec-
ond to fifth column show, standard reconstruction, pre-filtered, weighted and combined approach
respectively.
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Figure 7-5: Photo taken of scene 985 with a High-Definition camera sensor.
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Figure 7-6: Reconstruction results of frame 985. First column, sparse depth map is shown. Sec-
ond to fifth column show, standard reconstruction, pre-filtered, weighted and combined approach
respectively.
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