

Delft University of Technology

Enriched immersed finite element and isogeometric analysis
algorithms and data structures
Wunsch, Nils; Doble, Keenan; Schmidt, Mathias R.; Noël, Lise; Evans, John A.; Maute, Kurt

DOI
10.1007/s00366-025-02163-7
Publication date
2025
Document Version
Final published version
Published in
Engineering with Computers

Citation (APA)
Wunsch, N., Doble, K., Schmidt, M. R., Noël, L., Evans, J. A., & Maute, K. (2025). Enriched immersed finite
element and isogeometric analysis: algorithms and data structures. Engineering with Computers.
https://doi.org/10.1007/s00366-025-02163-7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00366-025-02163-7
https://doi.org/10.1007/s00366-025-02163-7

Engineering with Computers
https://doi.org/10.1007/s00366-025-02163-7

ORIG INAL ART ICLE

Enriched immersed finite element and isogeometric analysis:
algorithms and data structures

Nils Wunsch1 · Keenan Doble1 ·Mathias R. Schmidt2 · Lise Noël3 · John A. Evans1 · Kurt Maute1

Received: 18 December 2024 / Accepted: 25 May 2025
© The Author(s) 2025

Abstract
Immersed finite element methods provide a convenient analysis framework for problems involving geometrically complex
domains, such as those found in topology optimization and microstructures for engineered materials. However, their imple-
mentation remains amajor challenge due to, amongother things, the need to apply nontrivial stabilization schemes and generate
custom quadrature rules. This article introduces the robust and computationally efficient algorithms and data structures com-
prising an immersed finite element preprocessing framework. The input to the preprocessor consists of a backgroundmesh and
one or more geometries defined on its domain. The output is structured into groups of elements with custom quadrature rules
formatted such that common finite element assembly routines may be used without or with only minimal modifications. The
key to the preprocessing framework is the construction of material topology information, concurrently with the generation of
a quadrature rule, which is then used to perform enrichment and generate stabilization rules. While the algorithmic framework
applies to a wide range of immersed finite element methods using different types of meshes, integration, and stabilization
schemes, the preprocessor is presented within the context of the extended isogeometric analysis. This method utilizes a
structured B-spline mesh, a generalized Heaviside enrichment strategy considering the material layout within individual basis
functions’ supports, and face-oriented ghost stabilization. Using a set of examples, the effectiveness of the enrichment and
stabilization strategies is demonstrated alongside the preprocessor’s robustness in geometric edge cases. Additionally, the
performance and parallel scalability of the implementation are evaluated.

Keywords Immersed finite element method · XIGA · Heaviside enrichment · Multi-material problems · Ghost stabilization ·
Computer implementation

Nils Wunsch, Keenan Doble contributed equally to this work.

B Kurt Maute
kurt.maute@colorado.edu

Nils Wunsch
nils.wunsch@colorado.edu

Keenan Doble
keenan.doble@colorado.edu

Mathias R. Schmidt
schmidt43@llnl.gov

Lise Noël
l.f.p.noel@tudelft.nl

John A. Evans
john.a.evans@colorado.edu

1 Smead Aerospace Engineering Sciences, University of
Colorado Boulder, 3775 Discovery Dr., Boulder 80303, CO,
USA

List of symbols
Numerical symbols: operators & conventions
(·)h Discrete quantity
˜(·) Enriched function (space)
˜(·) Polynomial extension

(·) Closure of a domain
∂(·) Boundary of a domain
{·} Weighted interface operator, see (8)
�·� Jump operator, see (9)
||·||L2 L2 norm
|·|H1 H1 semi-norm

2 Computational Engineering Division, Lawrence Livermore
National Laboratory, 7000 East Ave., Livermore 94550, CA,
USA

3 Department of Precision and Microsystems Engineering,
Delft University of Technology, Mekelweg 2, Delft 2628, CD,
The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-025-02163-7&domain=pdf

Engineering with Computers

∂
(i)
n i-th derivative in normal direction n

Numerical quantities
b Volumetric body load
B,BE Finite element basis, local to the bg. element

E
d,d Degree of freedom, solution vector
E Young’s modulus
h, h0 (Initial) background element size
n,nm Normal, pointing out from �m

N Basis function
p Polynomial degree
R(·) Residual for (B-bulk, D-Dirichlet, N-

Neumann, I-interface, G-ghost)
t Traction vector
u State variable/displacement field
u0 Prescribed displacement at boundary
v Test function/virtual displacement
V Space of test/trial functions
w Interface weight, see (8)
x Physical coordinates
γ(·) Penalty parameters (D-Dirichlet, I-interface,

G-ghost)
ε Strain vector/tensor
κ Condition number
σ Stress tensor
ν Poisson’s ratio
ψ Enrichment function, see (12)
ξ Parametric coordinates

Domains
A Ambient domain (domain of the background

mesh)
FG Skeleton domain for face-oriented ghost sta-

bilization, see (18)
R, Rε

B Connected domain within B.F. support,
support of the enriched B.F. ˜N ε

B ,
see Fig. 3

S Connected domain within bg. element
	D, 	N Dirichlet Neumann boundaries
	 I
m,l Material interface between materials with

indices m and l
	̊ I Union of material interfaces in the interior of

A, see (17)
�m Material domain
�E Domain of a background element
�̊ Union of material domains, see (1)

Implementation: indices and entities/objects
a Ancestor entity (index)
b, B Local global basis function indices
c Cell (index)

CM Child mesh
d Dimensionality
D Cluster
e Entity (index)
ε Enrichment level
E Background element (index)
F Facet (index)
G Geometry
g Geometry index
H Background mesh
i, j, k, l General indices
I Parallel ID

 Enriched B.F. multi-index (B, ε)

m Material (index)
n(·) Number of (·)
o Ordinal
P Proximity
p (Current) processor ID
q Quadrature point index
Qv,Qc Vertex cell queues
r (Entity) rank
S Subphase
T Foreground mesh
u, v Unzipping index
v Vertex (index)

Sets and graphs
C Set of all fg. cells
D(·) Set of all clusters of type (B-bulk, S-side, I-

interface, G-ghost)
E Set of all bg. elements
F Facet connectivity (graph)
GS,GI Graph of connected, disconnected subphases
M Set of (non-void) material indices
S Set of all subphases
Uu,E Set of subphases connected to SuE ,

see (20)
CtE Cell-to-entity connectivity,

see Fig. 9
DF Sets of descendant facets,

see Algorithm 4
EtC Entity-to-cell connectivity,

see Fig. 9
IEN Local to global basis function map
NVI Set of new vertex indices
Pglob Global communication table (set of all pro-

cessors)
Ploc Local communication table (set of neighbor-

ing processors)
� Set of unzipped bg. elements

123

Engineering with Computers

Compute performance
M Memory consumption
n p Number of processors
s Problem size
t Compute time
η Compute efficiency, see (25)
μ Memory efficiency, see (26)
λloc Local mesh overhead, see (27)
λglob Global mesh overhead, see (28)
O(·) Order of limiting behavior
(·)0 Value in reference run
(·)′ Relative quantity = (·)/(·)0

Contents

1 Introduction .
2 Numerical framework .

2.1 Discretization .
2.2 Element formation and integration
2.3 Face-oriented ghost stabilization

3 Mesh generation .
3.1 Preliminaries .
3.2 Conformal foreground mesh generation

3.2.1 Regular subdivision
3.2.2 Templated subdivision

3.3 Generation of topological information
3.4 Enrichment .
3.5 Face-oriented ghost stabilization
3.6 Parallelization .

4 Numerical examples .
4.1 Multiple thin beams .
4.2 Brick wall .
4.3 Scaffold sandwich .

5 Conclusion .
AppendixA Glossary .
AppendixB Additional Algorithms and Data Structures

B.1 Determining Ancestry of New Vertices
B.2 Entity Connectivity .
B.3 Foreground Mesh – Complete Data Structure

References .

1 Introduction

The finite element method (FEM) [42] has been adopted as
a standard tool to solve continuum mechanics problems in
engineering analysis. In its traditional form, theFEMrequires
boundary-fitted meshes consisting of elements that define
both the approximation of the state variable fields, e.g. tem-
perature or displacement, and the geometric domain over
which the weak statement of the governing partial differen-
tial equations (PDEs) is integrated. To obtain high-fidelity
solutions, the finite element (FE) function spaces need to be
of sufficient quality which may result in nontrivial geometric
constraints on the elements comprising the mesh. For com-
plex domain shapes, such as the fiber composite shown in

Fig. 1 Fiber composite weave with two types of fibers and a binding
matrix material. The matrix material is shown in off-white and partially
removed for better visibility

Fig. 1, boundary-fitted meshes satisfying these quality mea-
sures can generally not be generated reliably without manual
intervention. This renders mesh generation a major bottle-
neck in computational engineering analysis [10, 21].

"Unfitted" [36] or "immersed" [94] FEMs have gained
significant traction in recent years as an elegant solution to
automate finite element analysis. The commonly used meth-
ods for immersed finite element analysis include theCutFEM
[16] (which originated from partition of unity (PU) based
methods [19], namely, the PU-FEM [5, 54]), the general-
ized FEM [22, 23, 82, 83], and the extended FEM [11, 55].
Other lineages of immersed methods include the finite cell
method [24, 63, 73] (which originated from fictitious domain
methods) and the shifted boundary method [50, 51]. These
methods are specifically designed to accommodate arbitrary
strong or weak discontinuities within elements, representing
features such as cracks, domain boundaries, ormaterial inter-
faces.As a result, amesh, often referred to as the "background
mesh," can be constructed on a geometrically simple domain
into which a geometrically complex domain is immersed.
The immersed approach is of particular interest and has been
successfully applied to problems where the meshing effort
is exacerbated by complex or evolving interface geometries
such as in scan-based analysis [26, 67, 89], topology opti-
mization [33, 60, 61, 88, 90], or physical phenomena such
as multi-phase flows [69] and fluid–structure interaction [40,
41, 46].

While immersed methods provide a convenient and
time-saving design-through-analysis workflow, the approach
departs from traditional FEMs in four key aspects. To illus-
trate these non-standard aspects, consider the cross-section
of a fiber composite immersed into a background mesh, as
shown in Fig. 2.

(i) Multiple materials, components, or other features like
cracks may be present within a cut element, as shown

123

Engineering with Computers

Fig. 2 Cross-section of the fiber weave shown in Fig. 1 with a coarse
background mesh. Details: A Cut background element occupied by
three different materials. B Non-trivially intersected background ele-
ment with highlighted material interface 	 I

1,2. C Sub-element scale

material features in neighboring elements. Highlighted is a single basis
function’s support supp(N) which spans multiple features. (D) Cut
background element where one material subdomain occupies only a
small volume fraction

in Fig. 2 detail (A). The finite element basis needs to
resolve the associated discontinuities inside the back-
ground elements. This is commonly done through basis
function enrichment [28, 79].

(ii) Essential boundary and interface conditions cannot be
built into the test and trial function spaces. Instead,
these conditions require weak enforcement through the
penaltymethod [96], Lagrangemultipliermethods [13],
or Nitsche’s method [14]. For an overview of the issue,
the reader is referred to [27].

(iii) The governing equations must be satisfied on given
material domains �m . However, the background ele-
ments do not coincide with these material regions. As
a result, these elements cannot be reused to generate
quadrature rules to evaluate the integrals of the associ-
ated weak form. Instead, custom quadrature rules need
to be constructed for each background element inter-
sected by a material interface 	 I

m,l and the material
subdomainswithin them. Furthermore, quadrature rules
must be constructed for segments of the interface 	 I

m,l
within background elements, such as the one in Fig. 2
detail (B), to evaluate the integrals enforcing the bound-
ary conditions.

(iv) Lastly, the arbitrary shape and location of an interface
within a background element may lead to small volume
fractions vol(�m ∩ �E) � vol(�E) within that back-
ground element’s domain �E , as shown in Fig. 2 detail
(D). Such configurations can lead to stability and condi-
tioning issues and require stabilization. For an overview
of this issue, the reader is referred to [65].

The generation of quadrature rules and the construc-
tion of the enriched finite element space, as well as the
application of appropriate stabilization schemes, require

extensive supplemental geometric information that needs
to be generated during preprocessing. These requirements
lead to a challenging implementation of immersed meth-
ods. Multiple approaches have been developed to address
each of the four aspects individually. However, the literature
mostly presents these methods from a theoretical stand-
point or covers the implementation of individual methods
independently of howother aspects are addressed. The imple-
mentation of immersed finite elements and the associated
methods is indirectly addressed by publicly available source
code. Examples of published open-source FE packages with
immersed FE capabilities are ngsxfem [48], deal.II
[3], MOOSE-XFEM [44, 95], and the discontinued libraries
LibCutFEM [16] and MultiMesh [45]. The works by
Zhang et al. [93] and Badia et al. [6] are an exception to
this. The former provides an overview of the algorithms and
data structures underlying an enriched/immersed FE prepro-
cessor and discusses the interaction of various components of
the framework. However, it does not cover the stabilization
aspect or the realization of a parallel implementation. Sim-
ilarly, the latter presents a detailed implementation of the
package FEMPAR capable of immersed FE discretizations,
including a discussion of stabilization and parallel process-
ing; but the implementation is still tied to a specific code base,
limiting its applicability in other contexts, such as multi-
material problems requiring basis enrichment, which is not
supported by it.

The authors believe that there is significant value in the
discussion of the implementation of an immersed FE frame-
work, as not only is the translation from theory into code
challenging, but so is doing so efficiently.

This article presents a comprehensive implementation of
a preprocessor that generates all data necessary to perform
immersed finite element analysis on multi-material prob-

123

Engineering with Computers

lems, including the construction of enriched finite element
spaces, as well as the generation of custom quadrature and
stabilization rules.We discuss the algorithmic design choices
made and their impact on robustness and performance char-
acteristics, specifically runtime, memory consumption, and
parallel scalability. A further focus is placed on how the four
key aspects described previously are addressed cohesively.
Although the implementation is presented in the context of
the extended isogeometric analysis (XIGA) introduced by
[62] and [75], the algorithms and data structures are general
and adaptable to suit other immersed analysis frameworks
thatmay utilize different types of backgroundmeshes, geom-
etry descriptions, or use alternative methods to generate
quadrature and stabilization rules. The preprocessor can also
be used for interpolation-based immersed analysis [30, 31].
The implementation, as presented in this paper, is part of the
immersed FE and optimization package Moris, whose C++
source code is also publicly available [1]. The framework has
been developed with a focus on solving multi-material level-
set (LS) topology optimization problems, where the shape of
objects and their material composition are defined implicitly
by a set of LS functions. Such functions can be created, e.g.,
from images or 3D scans or via geometry modeling tools
using function representations as done by nTop [91] and
openVCAD [92].

The XIGA employs a generalized Heaviside enrichment
strategy in combinationwithNitsche’smethod [59] to resolve
material interfaces and the associated discontinuities inside
background elements. Most Heaviside enrichment strate-
gies consider either the material domains or their globally
connected subdomains [37, 87], i.e., material components,
to construct the enriched function space. However, con-
figurations with features on a length scale smaller than a
background element may arise, e.g., in the context of topol-
ogy optimization or engineered materials. This leads to
an artificial numerical coupling, sometimes referred to as
“cross-talk” [49], due to basis functions that span features
of the same globally connected material domain but are dis-
connected within that function’s support, as shown in Fig.
2 detail (C). The issue is exacerbated when basis functions
with larger supports are employed, such as high-continuity
splines. The literature on isogeometric analysis has addressed
this issue through either sufficient local refinement [20] or
modifications to the basis via control-point insertion [49]
near non-convex features. To mitigate cross-talk in this
framework, the generalized Heaviside enrichment strategy
considers the material layout on the level of the individual
basis function supports and appropriately creates additional
degrees of freedom, where artificial coupling occurs [62].

The information about the material layout necessary
to apply the generalized Heaviside enrichment strategy is
obtained by building connectivity graphs after the tessel-
lation of the background mesh. The tessellation procedure

employed relies on the application of subdivision templates
as done by, e.g., [81]. Custom quadrature rules on the various
material subdomains are generated by mapping a Gauss-
Legendre quadrature rule from the resulting boundary-fitted
"foreground" mesh onto the background elements. Alterna-
tive, potentially higher-order accurate, quadrature methods
and tessellation procedures may be employed, such as, e.g.,
the ones presented in [8] and [52] for explicit geometry
descriptions or the one in [29] for implicit geometry descrip-
tions, so long as the necessary arrangements to build a
material connectivity graph are made.

Lastly, the stabilization aspect can be addressed using
methods such as basis function removal [25], basis function
extension approaches [7, 17, 18], or ghost stabilization [12,
15]. With the information about the material layout within
intersected background elements previously obtained, either
of these stabilization methods can be applied with relative
ease. For this work, a face-oriented ghost stabilization [78]
is chosen, as, unlike the other methods, the ghost stabiliza-
tion does not rely on non-intersected elements in the vicinity
of an interface, resulting in better robustness in pathological
geometric configurations.

The remainder of this article is structured as follows.
First, Sect. 2 lays out the general challenges of an enriched
immersed method and the mathematical formulations of
the enrichment and ghost stabilization strategies. Using this
knowledge, the output information, which the preprocessor
needs to generate, is formalized. Section 3 covers the algo-
rithms and data structures underlying the implementation of
the preprocessing framework. Lastly, Sect. 4 demonstrates
robustness, efficiency, and parallel scalability using a suite
of examples.

2 Numerical framework

This section discusses the theoretical aspects of the compu-
tational framework and focuses on each of the framework’s
components, which were first introduced in [62], with the
intent of providing the requirements for its implementation.
Some details are omitted for brevity; the reader is referred
to [62] for a detailed exposure to the underlying theory. We
start the discussion by first presenting the discretized weak
form for the fiber patch shown in Fig. 1 as a linear elastic
model problem and then address each of the aspects neces-
sary for constructing the information to assemble the system
of equations within the given framework.

2.1 Discretization

Model Problem and Weak Form
The fiber patch, shown in Fig. 1, is composed of three

materials m ∈ M = {1, 2, 3} (red fibers, gray fibers, and

123

https://github.com/kkmaute/moris/

Engineering with Computers

matrixmaterial), all modeled as linear elastic, but with differ-
ent material parameters. The displacements at the interfaces
are assumed to be matching. The patch is subjected to exter-
nal loads and displacement constraints. For convenience, we
define the union �̊ of domains occupied by each material
�m , i.e., the physical domain without the internal interfaces,
as

�̊ =
⋃

m∈M
�m . (1)

The discretized weak form for the problemwith discrete trial
and test displacement uh and vh states as: find uh ∈ Vh ⊂
H1(�̊) such that, ∀vh ∈ Vh ⊂ H1(�̊):

R�(uh, vh) + RN (uh, vh) + RD(uh, vh) + · · ·
· · · + RI (uh, vh) + RG(uh, vh) = 0,

(2)

where

R�(uh, vh) =
∑

m∈M

∫

�m

ε(vh) : σ (uh) − b d�, (3)

RN (uh, vh) =
∑

m∈M

∫

	N
m

−vh · t d	, (4)

RD(uh, vh)

=
∑

m∈M

[

−
∫

	D
m

vh ·
(

σ (uh) · nm
)

d	

· · · ∓
∫

	D
m

(

σ (vh) · nm
)

· (uh − u0) d	

· · · +
∫

	D
γD vh · (uh − u0) d	

]

, (5)

RI (uh, vh)

=
∑

m,l∈M
m 	=m

[

−
∫

	 I
m,l

[[

vh
]]

·
{

σ (uh) · nm
}

d	

· · · ∓
∫

	 I
m,l

{

σ (vh) · ni
}

·
[[

uh
]]

d	

· · · +
∫

	 I
m,l

γI

[[

vh
]]

·
[[

uh
]]

d	

]

. (6)

(3) and (4) are the bulk andNeumann terms, originating from
the strong form and integration by parts. Here ε, σ , t, and
b denote the strain, stress, prescribed traction, and volumet-
ric body force, respectively; nm denotes the outward unit
normal to the interface associated with the material domain
�m . The terms used to weakly enforce the Dirichlet bound-
ary conditions via Nitsche’s method [14, 59] are collected in
(5). The contribution (6) weakly enforces matching displace-

ments and tractions at interfaces between materials

	 I
m,l = ∂�m ∩ ∂�l for m, l ∈ M,m 	= l, (7)

where ∂(·) denotes the boundary of a domain. The braces
and double brackets are jump terms defined as

{ f (x)} = lim
δ→0+ wm f (x − δ nm) + wl f (x + δ nm), (8)

� f (x)� = lim
δ→0+ f (x − δ nm) − f (x + δ nm), (9)

with wm + wl = 1 and x ∈ 	 I
m,l . The choice of weights

wm and wl , as well as the penalty parameters γD and γI are
adopted from [2]. Further, the signs of the symmetry terms
in (5) and (6) are chosen to yield either a symmetric or a non-
symmetric formulation. We briefly discuss the consequences
of this choice in Sect. 2.3 alongside the ghost termRG .

Note that every material subdomain �m is treated sepa-
rately to allow for, e.g., the use of different constitutive laws
or physics for each material, or allow for a wider range of
interface conditions to be enforced via the termRI .Materials
may be chosen to be void, thus not contributing to the resid-
ual, and some interfaces 	 I

m,l become part of the Dirichlet or
Neumann boundaries.

Approximation Spaces and Enrichment
The finite element space Vh = span(B) is provided by a set
of basis functions B = {NB(x)}nBB=1 with

uh(x) =
nB
∑

B=1

NB(x) dB , (10)

where dB are the weights associated with each basis function
NB . Throughout the remainder of this paper, we are using B
to index basis functions. Further, n(·) denotes the number
of whatever the subscript index is associated with. The basis
functions are defined on the elements of the backgroundmesh
H = {

�E
}nE
E=1 which does not conform to interfaces, and

we assume the basis functions to be compactly supported by
a set of background elements, without making any further
assumptions on the type of basis function used at this time.

To restrict the support of basis functions to the material
domains and allow for the enforcement of arbitrary interface
conditions, aHeaviside enrichment strategy is employed.The
specific strategy used in this framework considers different
material subdomains within a single basis function’s support,
as illustrated in Fig. 3. This prevents artificial numerical cou-
pling between small geometry features without the need for
local refinement, as demonstrated in Sect. 4.1.

123

Engineering with Computers

Fig. 3 Enrichment strategy for a single basis function for the material
layout shown in Fig. 2, detail (C). The basis function’s support is shown
in dashed blue lines. The support contains four connected subdomains
Rε
B for each of which an enriched basis function is defined, where

˜N ε
B = ψε

B NB with supp(˜N ε
B) = Rε

B

With this enrichment strategy, the approximation of the
state variables reads as follows:

uh(x) =
nB
∑

B=1

nε(B)
∑

ε=1

ψε
B(x) NB(x) dε

B, (11)

where we define the indicator, or "enrichment", function ψε
B

as

ψε
B(x) =

{

1, x ∈ Rε
B,

0, otherwise.
(12)

Here Rε
B ⊆ supp(NB) with

⋃nε(B)
ε=1 Rε

B = supp(NB) ∩ �̊

correspond to the disconnected subdomains within the basis
function’s support, as is shown in Fig. 3.

We refer to the product ˜N ε
B = ψε

B · NB as an "enriched
basis function". The set of all enriched basis functions is
defined as

˜B:={ ψε
B(x)NB(x) : B∈ {1, . . . , nB} , ε∈ {1, . . . , nε(B)} }

(13)

From this arises the requirement on the implementation to
identify the number of enrichment levels nε(B) for each basis
function NB and construct their enriched counterparts ˜N ε

B .As
is detailed inSect. 3.4, a flood-fill algorithm is used to identify

the disconnected subdomains. This approach subsequently
requires that the material connectivity is available.

2.2 Element formation and integration

In a body-fitted finite element approach, each finite element
has a set of non-zero basis functions supported within it and
belongs to part of a material domain. The integrals (3) -(6)
can hence be written as a sum of integrals over each ele-
ment. The evaluation of these elemental integrals is referred
to as "element formation". In contrast, for an immersed
approach withmultiple material domains, the elemental inte-
grals need to be further split into the different material or
interface subdomains within a given background element.
Taking into account the enrichment strategy (11), we specif-
ically consider materially disconnected subdomains within
a background element – rather than material subdomains –
such that it can be ensured that each subdomain supports a set
of non-zero enriched basis functions. The generalized form
of the bulk, boundary, and interface integrals (3) -(6) can then
be stated as

∑

m∈M

∫

�m

(·) d� =
nE
∑

E=1

nu(E)
∑

u=1

∫

SuE

(·) d�, (14)

∑

m∈M

∫

	m

(·) d� =
nE
∑

E=1

nu(E)
∑

u=1

∫

∂SuE∩	

(·) d	, (15)

∑

m,l∈M
m 	=l

∫

	 I
m,l

(·) d� =
nE
∑

E=1

nu(E)
∑

u,v=1
u 	=v

∫

∂SuE∩∂Sv
E

(·) d	. (16)

The background elements are indexed by E , and we corre-
spondingly denote the number of background elements by
nE . The number of disconnected subdomains SuE within a
givenbackground element’s domain�E is denotedbynu(E).
From an implementation standpoint, the challenge of evalu-
ating the integrals is twofold. The first challenge is to identify

the disconnected subdomains
{

SuE
}nu(E)

u=1 within each back-
ground element E and the enriched basis functions supported
within each subphase SuE . The second challenge is to con-
struct customquadrature rules for each subdomain to evaluate
the integrals in (14) - (16).

Element formation in the immersed setting is generalized
for any type of integral by introducing the concept of a cluster,
as shown in Fig. 4. We define a cluster to be a background
element with domain �E , a single subdomain SuE , the set
of enriched basis functions supported inside that subdomain,
and a quadrature rule associated with either that subdomain’s
volume or any part of its boundary ∂SuE . The quadrature rules
themselves consist of a set of quadrature points and associ-
ated weights. In the case of interface integrals, a linked pair
of clusters is needed to evaluate the jump terms (8) and (9).

123

Engineering with Computers

Fig. 4 Concept of a cluster: a background element with a single active
subdomain SuE , a set of enriched basis functions supported inside that
subdomain, and a quadrature rule associated with either that subdomain
(A,B) or any part of the subdomain’s boundary ∂SuE (C). Blue indicates

the volume or surface integrated over; red crosses represent exemplary
quadrature points. Additionally, linked pairs of clusters are constructed
for interfaces (D)

The step of element formation is then reduced to evaluating
integrands using the basis defined on the cluster (pair)’s back-
ground element(s) at the quadrature points and summing up
the contributions.

Within the presented framework, the disconnected sub-
domains are obtained by a tessellation of intersected back-
ground elements using a fast, templated subdivision scheme
detailed in Sect. 3.2.

2.3 Face-oriented ghost stabilization

Small material slivers lead to ill-conditioning due to the van-
ishing contributions of sparsely supported basis functions to
the global system of equations [65]. Further, stability issues
may arise due to the penalty terms in (5) and (6) not being
any longer bounded for arbitrarily small material fractions.1

The framework employs a version of the face-oriented
ghost stabilization proposed by [15] adapted to the enrich-
ment strategy used. The basic idea underlying face-oriented
ghost stabilization is to penalize the jumps in derivatives
across elemental faces adjacent to intersected background
elements, thereby ensuring a sufficient contribution of
sparsely supported basis functions. The penalties are only
applied to those faces across which connected material
regions transition, to not introduce spurious numerical cou-
pling.

To illustrate the adaptations necessary for the enrichment
strategy, consider the material layout shown in Fig. 5 (C).
The background elements E+ and E− containmultiplemate-

rial subdomains
{

SuE+
}nu(E+)

u=1 and
{

SuE−
}nu(E−)

u=1 with different
sets of enriched basis functions supported within each sub-

1 The stability parameters γ in (5) and (6) need to scale inversely with
elemental material volumes (which can be arbitrarily small) to retain
coercivity and, hence, well-posedness for the symmetric Nitsche for-
mulation [64]. An asymmetric version of Nitsche’s method avoids this
issue at the cost of losing symmetry in the linear systemof equations and
adjoint consistency of the bilinear form resulting in potentially reduced
L2-convergence [74].

domain. Additionally, the subdomains S1E+ and S3E+ support
different sets of enriched basis functions but are part of the
same material domain �1 connected in the neighboring ele-
ment E−. Hence, the penalty needs to be applied to two
different pairs of element bases on the same facet to involve
all sparsely supported basis functions and appropriately sta-
bilize the problem.

The procedure is generalized and formalized as follows.
Let’s define the union 	̊ I of allmaterial interfaces and bound-
aries inside the ambient domain A as

	̊ I =
⋃

m,l∈M
m 	=l

	 I
m,l . (17)

The set of all ghost faces is defined as the set of faces F
between neighboring background elements �E+

and �E+
,

at least one of which is intersected by an interior interface
	̊ I

FG =
{

F : �E+ ∩ 	̊ I 	= ∅ ∨ �E− ∩ 	̊ I 	= ∅
F = �E+ ∩ �E−

, E+ 	= E−}

, (18)

where (·) denotes the completion of a domain.
The contribution to the weak form (2) then reads as:

RG(uh, vh) =
∑

F∈FG

nu(E+)
∑

u=1

∑

v∈Uu,E−
· · ·

· · ·
p

∑

k=1

∫

F
γ k
G�∂kn ṽ

h� · �∂kn ũ
h� d	 (19)

where Uu,E− is the set of all subdomains in �E−
that are

connected to SuE+ across the facet F defined as follows:

Uu,E− = {

v ∈ {

1, . . . , nu(E
−)

} :
· · · m(SuE+) = m(Sv

E−) ∧
∣

∣

∣SuE+ ∩ Sv
E−

∣

∣

∣ > 0
}

, (20)

123

Engineering with Computers

Fig. 5 Ghost faces for an example material layout.AMaterial layout of
a two-material problemwithmaterialsM = {1, 2} occupying a domain
smaller than the ambient domainA filled by the background mesh. The

white domain �0 is assumed to be void. B The set of interior element
facesFG which the ghost penalty is applied to.CExemplary ghost facet
F and the material layout in its adjacent background elements

Fig. 6 Ghost cluster pairs constructed for the example ghost facet and material layout shown in Fig. 5 (C)

where m(SuE) indicates the materials the respective subdo-
mains are part of, and the term | · | > 0 indicates that
the subphases need to connect via an interface of non-zero
length/area. The operator ∂kn denotes the k-th normal deriva-
tive. The jump in normal derivatives operates on the extension
of the test and trial functions ṽh and ũh from their respec-
tive subdomains SuE+ and SuE− to the background elements

�E+
and �E−

which are obtained by omitting the enrich-
ment function ψε

B in (11). For details on the scaling of the
penalty parameter γ k

G , the reader is referred to [62].
Using the definition of clusters introduced in Sect. 2.2, the

goal of the implementation of the ghost stabilization in the
preprocessor consists of finding and constructing the cluster
pairs corresponding to each ghost facet and valid subdomain
combination. For the example shown in Fig. 5 (C), we need
to construct the cluster pairs shown in Fig. 6.

3 Mesh generation

This section outlines the implementation of the preprocessor
with its associated algorithms and data structures. Further-
more, it discusses the concepts and strategies used to achieve
robustness andparallel scalability. The input to the preproces-
sor consists of one or multiple geometries and a background
mesh in which they are immersed. The output are clusters, as
introduced in Sect. 2.2. These inputs and outputs are formal-

ized in Sect. 3.1, alongside some basic concepts and notation
used throughout this section. The preprocessor’s workflow
follows a series of four main steps as visualized in Fig. 7 and
later summarized in Algorithm 1. First, a grid conforming
to the geometric boundaries referred to as the "foreground
mesh" T , is generated. This is achieved by triangulating the
background mesh in two sub-steps: regular and templated
subdivision, both outlined in Sect. 3.2. In the second step,
topological information needed for the enrichment and ghost
stabilization is computed and stored for the foreground mesh
T , see Sect. 3.3. Using the topology information, enrichment
is performed in the third step outlined in Sect. 3.4. The gen-
eration of ghost clusters is discussed as the last step in Sect.
3.5. The parallel implementation of each of these steps is
discussed separately at the end in Sect. 3.6, with the intent
of not providing too much information at once.

3.1 Preliminaries

Inputs and Outputs
The goal of the immersed FE preprocessor is to generate sets
of clusters associated with the various subdomains, namely,
material domains �m , boundaries 	m , interfaces 	 I

m,l , and
ghost facesFG , to support immersed FE analysis. This infor-
mation is formalized in the data structure shown in Fig. 8
containing the background element, which itself consists of
geometry (vertices) information and a finite element basis

123

Engineering with Computers

Fig. 7 Sketch of the workflow used in the implementation of the pre-
processor

BE , and the custom quadrature rules needed in the immersed
setting. For internal interfaces	 I

m,l and ghost facesFG , clus-
ters are stored in pairs (D1, D2),withmatching local ordering
of the quadrature points to compute the integrals (16). The
local-to-global basis function map on each background ele-
ment, or the "IEN",2 adopting the language in [42], provides

2 The naming of the IEN in [42] stems from the fact that it is used to
"index elemental nodes". However, its usage is equally valid for non-
nodal finite element bases.

Algorithm 1 Driver algorithm.
Input: Background meshH, Geometries

{

Gg
}ng
g=1

Output: Sets of bulk DB and side clusters DS ; interface DI

and ghost side cluster pairs DG

1: # Foreground mesh generation � see Sect. 3.2
2: T ← initialize_foreground_mesh(H)

3: T .regular_subdivision(
{

Gg
}ng
g=1) � see Algorithm 2 in

Sect. 3.2.1
4: for each geometry G ∈ {

Gg
}ng
g=1 do

5: T .templated_subdivision(G) � see Algorithm 3 in
Sect. 3.2.2

6: end for
7: assign parallel IDs to the foreground cells

T .communicate_cell_IDs()

8: for each fg. cell c ∈ T .C do
9: c.m ← material_map(c.m)

10: end for
11:
12: # Generate topology information � see Sect. 3.3
13: T .F ← compute_entity_connectivity(T , d − 1) � see

Algorithm 12
14: fg. facets attached to each bg. facet DF ←

T .compute_bg_facet_descendants() � see Algorithm 4
15: T .generate_subphases() � see Algorithm 5
16: T .generate_subphase_graphs(DF) � see Algorithm 6
17:
18: # Enrichment - create unzipped background elements � see Sect.

3.4
19: � ← unzip_interpolation_mesh(H, T) � see

Algorithm7
20:
21: # Cluster generation
22: DB ← create_bulk_clusters(T , �) � see Algorithm 8
23: DS,DI ← create_side_clusters(T , �) � see Algorithm

9
24: DG ← generate_ghost_clusters(T , �) � see Algorithm

10 in Sect. 3.5
25:
26: return DB , DS, DI , DG

the information necessary to assemble the elemental residual
and tangent matrices into a global system.

The inputs needed for constructing clusters are a back-
ground mesh H and a set of geometries

{

Gg
}ng
g=1 defining

the various material domains �m . The background mesh is
a finite element mesh that provides: (i) a list of elements
that make up the support of a basis function with global
index B and (ii) the connectivity information of its mesh
entities as discussed in the following paragraph. Without
loss of generality, we assume a rectilinear background mesh
of Quad or Hex elements, but the algorithm also applies to
unstructured meshes made of different element types. Non-
conformal meshes, such as those found in locally refined
hierarchical meshes, require additional modifications, which
we may address in future work. The representation of each
geometry needs to support the following queries:

123

Engineering with Computers

Fig. 8 Unifiedmodeling language (UML) chart outlining the data struc-
tures for the input and output data for the preprocessor

• Evaluate the proximity of a point in space, i.e., whether a
point lies outside, inside, or on the boundary of the geom-
etry within some tolerance. Implicit geometry definitions
naturally lend themselves to this query. Explicit geome-

Fig. 9 Entity connectivity consisting of two maps

tries can be translated into implicit geometries [84], or
approaches such as ray-tracing [4] may be used.

• Check whether a given background element E is inter-
sected by a geometry interface. Note that, for robustness,
the querymay not return any false negatives, though false
positives are acceptable and only affect computational
efficiency. For implicit geometries, the range evaluation
procedure presented by Saye [70] may be employed.

• Find the location of an interface between two points with
opposite proximity within a background element. For
implicit geometries, this can be done by interpolating the
level-set field along the edge or on the background mesh
and then performing a polynomial root-finding operation
[56, 66, 70]. For geometries defined through boundary
representations, approaches such as the one in [8] may
be utilized.

Mesh Entities and Connectivity
Understanding the relationships betweenmesh entities – ver-
tices, edges, faces (2D cells), and 3D cells – is essential for
the algorithms presented in this paper. The following mesh
entity and connectivity terminology is used throughout this
paper:

• Rank r : The dimensionality of a mesh entity, e.g., ver-
tices have rank 0, edges rank 1, faces rank 2, and cells
rank 3.

• Facet F : A (d−1)-dimensional entity of a d-dimensional
mesh, e.g., edges in 2D and faces in 3D.

• Ordinal o: The local index of an entity with respect to
another entity, as shown in Fig. 10 (A).

• Cells c and Vertices v: Purely geometric entities, dis-
tinct from elements and nodes, which also include finite
element basis information. Vertices specifically refer to
the corner points of a cell.

• Entity Index: A (processor-local) identifier for mesh
entities of a specific type, ranging from 1 to the total
number of such entities on the processor.

Background meshes generated with commonly used mesh
generators do not provide this information directly, but it can
be computed using Algorithm 12 provided in the appendix.

Using these definitions, we introduce two maps, imple-
mented as nested arrays, to express the connectivity of mesh

123

Engineering with Computers

Fig. 10 A Vertex and edge ordinals for a triangular cell. B Vertex,
edge, and cell indices for an example mesh. C Cell-vertex connectivity
C defining the mesh in (B) and the resulting edge-to-cell (EtC) and cell-
to-edge (CtE) connectivity for the mesh in (B). A detailed annotation
is found in Sect. B.2

entities: (i) an entity-to-cell map (EtC), which contains the
cells attached to an entity of a given index, and (ii) a cell-
to-entity map (CtE), which contains the indices of entities
attached to a cell of a given index. The list of entities attached
to a cell is ordered by the ordinal of the entity with respect to
the cell, as illustrated in Fig. 9. An example of these maps is
shown in Fig. 10 (C) for the edge connectivity of the small
four-element mesh shown in Fig. 10 (B), with a more com-
plete explanation provided in Sect. B.2.
Notation and Conventions
The following notation and conventions are used in the pre-
sented algorithms.

• The "." operator denotes access to a member function or
variable of an object.

• Arrays are represented using braces "{}" and tuples using
parentheses "()".

• The presented algorithms use 1-based indexing unless
otherwise specified, for the sake of readability.

• Access to an element of an array or a map is denoted
using the "[]" operator.

• "[-1]" is shorthand for accessing the last element of an
array.

• Loops over each element of an array are condensed using
the shorthand "[:]".

• All relevant objects have an index. The symbols repre-
senting an object are used interchangeably as the index

or the object itself; e.g., in "E ∈ H.E", E may represent
the element or its index in the global list H.E .

• Lines in italics and starting with a "#", are comments.
• Components of algorithms are colored in gray to indi-
cate they are only relevant to parallel implementation.
We only discuss these additions at the end of Sect. 3.6
and recommend ignoring them on the first read-through.

• The words foreground and background are abbreviated
as "fg." and "bg.", respectively.

Using these conventions, the workflow is summarized in
Algorithm 1.

3.2 Conformal foregroundmesh generation

The goal of this part of the preprocessor algorithm is to
subdivide the background mesh’s elements intersected by
geometric interfaces into groups of triangular or tetrahedral
cells with facets conforming to those interfaces. As a result,
the geometric interfaces are approximated by sets of straight
edges in 2D or flat triangles in 3D, while the volumetric
domains for each of the materials �m are approximated by
groups of the generated triangular or tetrahedral cells. The
focus for this step, besides enabling the generation of topol-
ogy information for enrichment and ghost stabilization, is on
robustness and speed. To this end, a combination of templated
subdivision procedures is employed.

A drawback of the presented approach is that the quadra-
ture rules, which are subsequently constructed from the
triangulation in Sect. 3.4, only capture the geometry and
its interfaces with linear accuracy. However, modifications
using isoparametric projection [47] or manipulation [76, 77]
of the resulting triangulated foreground mesh are possible as
part of the foreground mesh generation; although, they are
not further addressed in this work.

To obtain a Tri/Tet mesh in the vicinity of the interfaces,
background elements cut by any geometric interfaces are first
subdivided into a pre-defined set of triangular or tetrahedral
cells. This step is referred to as the "regular subdivision".
On the resulting cells, the edges are probed for intersections
with geometric interfaces and further subdivided into trian-
gular or tetrahedral cells conforming to the interface using
a set of subdivision templates. This "templated subdivision"
approach has been used commonly in other works, see [82].
The main difference in the presented approach is the addi-
tion of background ancestry information, which enables the
computation of topology information without floating point
operations at a later stage. Lastly, a recursive procedure to
determine the material membership of each generated cell
is incorporated into the subdivision processes. The complete
process is illustrated in Fig. 11.

In what follows, we first introduce the concept of back-
ground ancestry and the initialization of the foregroundmesh,

123

Engineering with Computers

before discussing the regular subdivision, the templated sub-
division, and material assignment.

Background Ancestry
The background ancestor of an entity of the foregroundmesh
is the background entitywith index a of the lowest rank r , i.e.,
dimensionality, which fully contains the foreground entity.
This information, stored in the form of index pairs (r , a), is
used to unambiguously identify vertices during the subdivi-
sion and to generate topology information without the use of
floating point arithmetic. Examples of the background ances-
try of various entities formed during the conformal mesh
generation process are shown in Fig. 12.

Consider the tetrahedral foreground cell {4, 8, 9, 15} in
Fig. 12 that was formed during the subdivision process. Ver-
tices 4 and 8 were part of the original background mesh and
are descendants of those vertices; hence, their background
ancestry is denoted as (0, 4) and (0, 8) for background ver-
tices (rank r = 0)with indices a = 4 and a = 8, respectively.
Vertices 9 and 15 were formed on a face of the background
element; hence, their ancestors are denoted as (2, 4) and
(2, 3), for being descendants for background faces (dimen-
sionality, i.e. rank r = 2) with indices a = 4 and a = 3. A
new vertex v3 is formed on the edge connecting vertices 4
and 8. It can be checked using entity connectivity informa-
tion whether those vertices are attached to the same edge or
face, or are part of the same background element. In this case,
they are part of the same background edge (r = 1, a = 12),
and therefore any new vertex formed by them would be a
descendant of that edge. Considering entities of one dimen-
sion higher, the face formed between the vertices v1, v2, and
v3 would be a descendant of the background element (dimen-
sionality r = 3) itself, as two of the vertices descend from
different faces.

Initialization
To initialize the foreground mesh data, shown in Fig. 13, the
geometric information, i.e., the vertex coordinates and vertex
connectivity of the background elements, is copied from the
background to the foreground mesh. The ancestry (r , a) for
every foreground vertex and cell E is initialized trivially,
given that each foreground vertex or cell is a descendant of
the background vertex or element with the same index. The
material index m = 0 is assigned to all cells.

To access foreground cell information from the per-
spective of individual background elements, child mesh
containers CM are created, containing the vertices and cells
formed within each background element. This includes the
parametric coordinates of the vertices relative to the para-
metric coordinate space of the background element, which
are essential for geometry interpolation operations. During
initialization, each child mesh container is populated with
the vertices from the single cell that originally constitutes
the background element.

Fig. 11 Subdivision process overview. A Regular subdivision: appli-
cation of templates to bg. elements intersected by geometric interfaces,
shown with their original accuracy. B and C Templated subdivision
with recursive material assignment for the first G1 and second geome-
try G2, respectively. D Application of a material map and the resulting
foreground mesh

123

Engineering with Computers

Fig. 12 A Concept of background ancestry demonstrated using a Tet
whichgets subdividedbyan interface.The "parent" backgroundelement
is indicated in dashed lines. The ancestry (entity rank r , entity index
a) of the existing (blue) and added (red) vertices are shown alongside
some of the newly formed faces (gray). B Indices of the edges (green)
and faces (red) attached to the parent background element

The remaining information in Fig. 13 is related to the
material topology and is populated after the subdivision pro-
cess.

3.2.1 Regular subdivision

The regular subdivision serves the purpose of generating Tri
or Tet cells near the geometric interfaces as these allow for
a robust conformal mesh generation procedure using tem-
plates. If the algorithm is to be applied to a pure Tri/Tet
background mesh, this step is skipped. For the procedure
outlined in Algorithm 2, the templates shown in Fig. 14 are
applied to every background element intersected by a geo-
metric interface.

The templates employed here do not minimize the num-
ber of Tris or Tets required to subdivide a Quad or Hex
element. However, they offer two distinct advantages over
templates generating aminimal number of Tri/Tet cells. First,

Fig. 13 UML chart showing the data stored in the foreground mesh.
The first four members listed for the foreground mesh are populated
during the subdivision process in Sect. 3.2; the remaining four are filled
during the generation of the topology information in Sect. 3.3

the cells generated by these templates do not further subdi-
vide existing background edges, ensuring that each generated
foreground cell includes at most one complete background
edge in both 2D and 3D. This simplifies the determination
of the background ancestry of newly formed vertices and
facets during the templated subdivision, reducing the pro-
cess to a series of straightforward checks outlined in Sect.
B.1. Second, the templates exhibit symmetry about all axes,
which ensures that, for higher-order geometry descriptions,
the resulting lower-order approximation does not introduce

123

Engineering with Computers

a bias depending on the orientation of the applied tem-
plate.

To perform the regular subdivision, as outlined in Algo-
rithm 2, the templates contain the following information:

1. A list of new vertices to be generated with their
location ξ in the parametric space of the background
element in addition to the rank r and ordinal o of
the background entity they are located on. This
information is provided through the function
get_new_vertex_locations().

2. A pre-defined cell-vertex connectivity for the new cells in
the format shown in Fig. 10. The template expresses the
connectivity using the indices of both the existing and
new vertices. This information is provided through the
function generate_cells(E .V,NVI), where E .V is
the list of vertices of the existing cell and NVI is the list
of indices of the new vertices generated by the template.

New vertices and cells are temporarily stored in a queue,
rather than directly added into the foreground mesh data
structure. A queue consists of an array of requested entities
with their initialization data and a (hash) map, which relates
identifying information with the position of the entity in the
array of requests. This approach

1. avoids repeated resizing operations of the global lists of
vertices V and cells C on the foreground mesh, which can
be computationally costly,3

2. facilitates the generation of unique vertices. The regular
subdivision templates, shown in Fig. 14, generate at most
a single vertex on a given background entity. The rank
and index of the background entity are used to identify
identical vertices that may have already been requested
by a neighboring background element if the new ver-
tex is located on a shared background facet. Otherwise,
newly created vertices would need to be merged using
their physical coordinates, as is done by [93], requiring
floating point arithmetic.

Lastly, to eliminate the subdivided cell from the foreground
mesh, its vertex list is overwritten with the vertex list of one
of the new cells. This avoids a delete operation and the need
for re-indexing.

3 Dynamic arrays, such as C++’s std::vector are equipped with
smart resizing strategies when repeatedly appending elements to the
array. Such strategies may lead to over-allocation of memory and
repeated copying of the existing array elements, resulting in signifi-
cant computational cost and memory fragmentation in the context of
the large arrays being edited in this case.

Fig. 14 Regular subdivision templates in 2D (A) and 3D (B). New ver-
tices generated by the templates are shown with their ancestry (ancestor
entity rank, ordinal) in red and existing vertices in blue

3.2.2 Templated subdivision

The templated subdivision completes the generation of the
foreground mesh by subdividing the cells generated in the
regular subdivision into cells conforming to the geometric
interfaces. This procedure is outlined in Algorithm 3.

The procedure assesses foreground edges generated dur-
ing the regular subdivision if they are intersected by a
geometric interface and then generates additional vertices
and cells according to one of the templates shown in Fig. 15
or their permutations. Depending on the proximity of ver-
tices, a new material index m is assigned to the elements.
The process is repeated for every geometry applied.

First, the proximity of each foreground vertex, i.e.,
whether a vertex is located inside, outside, or on the boundary
of a geometry, is determined and stored to avoid error-prone
re-computation. Subsequently, the edges of every potentially
intersected cell are checked for differences in the proximity
of the adjacent two vertices. If so, it is considered intersected
and the intersection point is determined. The approach does

123

Engineering with Computers

Algorithm 2 Regular Subdivision.
Input: Initialized foreground mesh T (self), Geometries
{

Gg
}ng
g=1

Output: Foreground mesh T with triangulated cut bg. ele-
ments
1: initialize new vertex Qv and cell queues Qc, get template T ←

regular_subdivison_template(d)

2: get location of newvertices in bg. element {(ξ, r , o)}NumNewVertsi=1 ←
T .get_new_vertex_locations()

3: for each bg. element E ∈ H.E do
4: if G.is_element_intersected(E) for any G ∈ {

Gg
}ng
g=1

then
5: for each new vertex in template (ξ, r , o) ∈

{(ξ, r , o)}NumNewVertsi=1 do
6: get the entity index e =

H.get_entities_on_element(E, r)[o]
7: if this is a new vertex !Qv.request_exists((r , e))

then
8: compute the physical coordinates x ←

E .interpolate_space(ξ)

9: request new vertex and remember its index
NVI.append(Qv.queue(x, r , e))

10: else #another bg. element has already requested this vertex
11: store the index for the new vertex

NVI.append(Qv.get_index(r , e))
12: end if
13: store the new vertex in the child mesh

CMS[E].add_vertex(NVI[−1], ξ)

14: end for
15: get the cell-vertex connectivity for the new cells Cnew ←

T .generate_cells(E .V,NVI)
16: for each new cell in template except the first cnew ∈

Cnew[−1 : 2] do
17: queue cell and add its index to the child mesh

CMS[E].C.append(Qc.queue(cnew, E, 0))
18: end for
19: replace the subdivided element with the first new cell

C[E].V ← Cnew[1]
20: end if
21: end for
22: create_vertices(Qv)

23: create_cells(Qc)

not allow for geometry intersections on edges that contain a
vertex that lies on the interface. It also limits the number of
intersections to one per edge. This ensures robustness toward
unwanted intersection configurations but leads to a depen-
dency of the final foreground mesh on the order in which
the geometries are applied. Consider G2 in Fig. 11 (A): the
protrusion on the right would be cut off if G2 were to be
applied first, as it intersects the background edge twice. The
process would not consider the edge intersected in this case
as both its vertices, i.e., its end-points, lie on the same side
of the interface. The issue of insufficiently resolved geom-
etry can be overcome by local mesh refinement, either by
refining the backgroundmesh or by applying additional, e.g.,
quadtree/octree subdivision templates before the regular sub-
division.

Fig. 15 Possible intersection configurations for foreground cells during
the templated subdivision in 2D (A) and 3D (B). The templates are
permutations of the configurations shown

Computing the interface location along the edge, both the
physical and parametric coordinates of the new vertex are
found. The background ancestry of the new vertex is deter-
mined byfinding a common ancestor of the two edge vertices.
For the regular subdivision template presented here, deter-
mining the ancestor is simplified as outlined inAppendixB.1.
If a different regular subdivision template or an unstructured
Tri or Tet input background mesh were to be used, search
operations would need to be performed on the entity connec-
tivity of the background mesh to determine the background
ancestors of the new vertices. Requests for the new vertices
on the intersected edges are queued in the samemanner as for
the regular subdivision. A sorted pair of vertex indices serves
as the identifier for the edge. The cell-vertex connectivity for
the new cells is generated by providing the indices of the
new and existing vertices to the template through the method
generate_cells(c.V,Vnew) in Algorithm 3, and, again,
one of the new cells is used to replace the information of the
subdivided cell to forego an explicit deletion.

123

Engineering with Computers

Material assignment
The material membership of all cells is determined concur-
rently with the templated subdivision in a recursive process.
We have found that performing material assignment after the
subdivision process leads to robustness issues, due to themis-
match of discretized interfaces and the geometries of the LS
isocontours.

The sign of the proximity of each cell is stored for every
geometry applied. Interpreting the resulting Boolean array
as an integer, as shown in Fig. 16, yields a material index.
Alternatively, this can be stated as a recursive rule applied
during the subdivision process:

m = 2 · m +
{

1, if P > 0,

0, otherwise,
(21)

where P represents the proximity of the cell to the geometry.
Given the restrictions on the possible intersection con-

figurations for the subdivision templates, each of the cells
generated by a template can necessarily only have vertices
attached to it with non-conflicting proximity values, i.e., 0
and +, or 0 and −, but never + and − or only 0’s. Ignoring
vertices with 0, the proximity values of the remaining ver-
tices uniquely determine the proximity of the cell. Figure 16
demonstrates this logic for a single subdivided cell in 2D.
The rule (21) is also applied to the cells without edges inter-
sected by the geometric interface within a given subdivision
step.

In the last step, a user-defined material map may be
applied to the foreground mesh to merge different mate-
rial regions, as shown in Fig. 11 (D). The material map
H : {0, 1, · · · , 2ng − 1} �→ M assigns a material index m
to each of the 2ng material domains created during the subdi-
vision process. For the particular example shown in Fig. 11
(D), this material map, if represented as a lookup table, reads
as

H = {0, 1, 2, 2} , (22)

where each material region is reassigned the index m =
H(m). The application of a material map avoids the need
to construct interface conditions between regions associated
with the same material and physics but separated by an inter-
face of one of the input geometries. It also allows for the exact
representation of sharp corners and edges in the interior of
background elements, e.g., when defining a square domain
using four planes and merging the outside regions.

3.3 Generation of topological information

As discussed in Sect. 2.2, the goal is to evaluate the inte-
grals (14)-(16). To this end, the disconnected subdomains
{

SuE
}nu(E)

u=1 within a given background element E need to

Algorithm 3 Templated subdivision.
Input: Foreground mesh T (self), Geometry G
Output: Fully subdivided foreground mesh T (self)
1: evaluate each vertex’s proximity P[:] ←

G.compute_proximity(V[:].x) � possible values (+, 0,−)

2: initialize new vertex Qv and cell queues Qc
3: for each intersected bg. element E ∈ {1, · · · , nE } do
4: if bg. element is intersected G.is_intersected(E) then
5: for each child cell in bg. element c ∈ CMS[E].C do
6: initialize array with empty entry for every edge on cell

Vnew ← {0}NumEdgese=1

7: for each edge on cell (v1, v2)e ∈ {(v1, v2)e}NumEdgese=1 do
8: if edge is intersected P[v1] 	= P[v2] 	= 0 then
9: get the location of the interface on edge ξe ←

G.find_interface(v1.x, v2.x)
10: ξ ← interpolate_on_edge
11: (ξe,CMS[E].get_coords(v1),
12: CMS[E].get_coords(v2))
13: if existing vertex Qv.request_exists((v1, v2))

then
14: Vnew[e] ← Qv.get_index((v1, v2))
15: else
16: get the physical coordinates x ←

E .interpolate_space(ξ)

17: compute the ancestry (r , a) ←
find_common_ancestor(v1, v2)

18: Vnew[e] ← Qv.queue((v1, v2), x, r , a)

19: end if
20: CMS[E].add_vertex_if_not_found(Vnew[e])
21: end if
22: end for
23: copy the proximity of vertices on c into an array Pc[:] =

P[c.V[:]]
24: select template using intersected edges & proximity T ←

select_template(Vnew 	= 0,Pc, c)
25: for cell-vertex connectivity for each new cell cnew ∈

T .generate_cells(c.V,Vnew) do
26: determine new cell’s proximity and material m ← 2 ·

c.m + is_positive(vote(P[cnew[:]]))
27: (# for vote function, ignore new vertices which are

outside the index range of P)
28: if iteration is not the last in loop then
29: CMS[E]V.append(Qc.queue(cnew, E,m))

30: else # replace information for subdivided cell with one
of the new cells

31: c.V ← cnew , c.m ← m
32: end if
33: end for
34: end for
35: else # non-cut bg. elements
36: determine proximity of the cell P ← vote(P[E .V[:]])
37: for each of the child cells c ∈ CMS[E].C do
38: increment the material index c.m ← 2 · c.m +

is_positive(P)

39: end for
40: end if
41: end for
42: create_vertices(Qv)

43: create_cells(Qc)

123

Engineering with Computers

Fig. 16 Recursive material assignment rule (21) applied during the
templated subdivision. The proximity P of each cell after subdivision
is obtained by applying a vote to their attached vertices. The angle
brackets 〈·, · · · 〉 indicate arrays of Booleans, which are interpreted as
binary numbers to obtain material index m

Fig. 17 Data structure for the subphase

Fig. 18 Example for the foreground facets descending from two back-
ground facets in 3D. On the left: non-conformal transition between a
non-cut and a cut element due to the regular subdivision template. On
the right: conformal transition with an intersecting interface

be identified. From here on, the term "subphase" is used to
refer to these disconnected subdomains. In code, a subphase
is represented by a list of foreground cells that constitute a
connectedmaterial subdomainwithin a background element.
The associated data structure is shown in Fig. 17.

Following the discussion in Sects. 2.1 and 2.3, connected
material regions within each basis function’s support need

Algorithm 4Generate descendants for the interior bg. facets
Input: fg. mesh T (self) with facet connectivity F
Output: fg. mesh T (self), descendant fg. facets of each bg.
facet DF
1: initialize list of descendant facets for each bg. facet DF =

{{}}H.get_num_entities(d−1)
f =1

2: for each fg. facet Ff g ∈ F .CtE[c] on each fg. cell c ∈ T .C do
3: if Ff g has not already been processed then
4: get the vertices attached to the current facet VF ←

c.get_entity(d − 1, Ff g)

5: bg. elements vertices are contained in A ←
⋂size(VF)

i=1 H.get_entities_on_cell(Vf [i].r ,Vf [i].a)

6: if size(A) = 2, i.e., the fg. facet is contained on a bg. facet
then

7: get the bg. facet Fbg ←
⋂2

i=1 H.get_entities_on_cell(d − 1, A[i])
8: store that the current fg. facet coincides with bg. facet

DF[Fbg].append(Ff g)

9: end if
10: end if
11: end for
12: return DF

to be identified for the enrichment and ghost stabilization
strategies. Additionally, an easy identification of interfaces
between each of the material regions is useful. The pre-
processing steps in this subsection generate, besides the
subphases themselves, two graphs: one to represent the con-
nection between the subphases GS and one to represent
adjacent but disconnected material regions GI . Both graphs
are stored in the form of adjacency lists.

Generation of Facet Connectivity Information
A connectivity for the facets on the foreground mesh is
generated using Algorithm 12. The regular subdivision tem-
plates in 3D, see Fig. 14 (B), resulting in a foreground mesh
with hanging vertices, where subdivided and non-subdivided
background elements meet. The left background facet in
Fig. 18 depicts such a configuration. Due to the mismatch-
ing facets, the connectivity information between the adjacent
foreground cells needs to be established separately.

The background ancestry of the foreground vertices and
the entity connectivity of the background mesh are used to
find the missing connections in Algorithm 4. The procedure
is based on the fact that any foreground facet coinciding with
an interior background facet is attached to exactly two back-
ground elements. First, the background ancestors for each
vertex on each foreground facet are found. If the intersection
between the lists of cells attached to the respective ances-
tors returns exactly two background element indices, the
foreground facet must be a subset of the background facet
connecting the two background elements. The resulting list
of descendant foreground facets DF for each interior back-

123

Engineering with Computers

Algorithm 5 Generate the subphases.
Input: subdivided fg. mesh T (self)
Output: fg. mesh T (self) with subphases S
1: initialize interface subphase graph GI ← {{}} and list of subphases

S ← {}
2: for each bg. element E ∈ H.E do
3: generate graph of elements in child mesh Glocal ←

generate_element_graph(CMS[E].C,F)

4: get thematerials for each of the fg. cellsM[:] ← CMS[E].C[:].m
5: get groups of connected fg. cells within bg. element {Cu}nu (E)

u=1 ←
flood_fill(Glocal ,M)

6: for each connected group of cells Cu ∈ {Cu}nu (E)
u=1 do

7: create a new subphase
8: S.append(create_subphase(Cu, E, u))

9: for each fg. cell in group c ∈ Cu do
10: assign the subphase index to the cell c.S ← size(S)

11: end for
12: end for
13: for each subphase Cu ∈ {Cu}nu (E)

u=1 do
14: find subphase indices of adjacent elements Sa ←

collect_subphase_neighbors(Cu,Glocal ,F)

15: add the neighbors to the subphase interface graph
GI .append(Sa)

16: end for
17: end for
18: communicate_subphase_IDs()

ground facet is used to establish the subphase connectivity
across background elements.

Identification and Generation of Subphases
The subphases themselves are created by component anal-

ysis. A cell connectivity graph Glocal is generated on each
child mesh and followed by a flood-fill operation consider-
ing their material membership, as stated in Algorithm 5. The
previously generated facet connectivityF lends itself to con-
structing the cell connectivity, as it represents its dual-graph.
Subphases are initialized from each of the containers of fore-
ground cells returned by the flood-fill. In addition, the index
of the subphases is storedwith the cells. The subphases result-
ing fromperforming these operations on the foregroundmesh
in Fig. 11 (D) are visualized in Fig. 19 (A). Further, the local
connectivity information already constructed is used to iden-
tify neighboring subphases and store them in the interface
graph GI . As the subphases are disconnected by definition,
subphase neighbors inside a background element are never
part of the graph GS . The initialized graph GI is shown in
Fig. 19 (B).

Generation of the Subphase Graphs
For the subsequent construction of GS and completion of
GI , only subphase connections across background elements
need to be considered. Hence, only foreground facets fully
contained on the interior background facets, i.e., those in DF,
are needed to find the connections. The procedure outlined in
Algorithm 6 iterates over these facets and stores the subphase
connections in the adjacency lists GS and GI .

Algorithm 6 Generate the subphase graphs.
Input: fg. mesh T (self) with subphases S, descendant facets
of each bg. facet DF
Output: finalized fg. mesh T (self) with subphase graphs GS

and GI

1: initialize empty subphase graph GS ← {{}}size(S)
S=1

2: for each bg. facet Fbg ∈ {1, · · · ,size(DF)} do
3: get the bg. elements connected to bg. facet {E1, E2} ←

H.get_cell_on_entity(d − 1, Fbg)
4: if facet is on exterior E2 = NULL then
5: skip it
6: # if one of the cells is not cut, the material of the bg. facet adjacent

cells must be the same
7: else if one of the elements is not cut size(CMS[E1].C) = 1

OR size(CMS[E2].C) = 1 then
8: get the subphases on either side of the bg. facet (S1, S2)
9: mark the two subphases as neighbors GS[S1].append(S2),

GS[S2].append(S1)
10: else # both adjacent bg. elements are cut
11: for each fg. facet on bg. facet Ff g ∈ DF[Fbg] do
12: get the subphases on either side {S1, S2} ← F .EtC[:].S
13: if the neighboring subphases are of the same material

S1.m = S2.m then
14: GS[Si].append_if_not_found(S j), for (i, j) ∈

{(1, 2), (2, 1)}
15: else
16: GI [Si].append_if_not_found(S j), for (i, j) ∈

{(1, 2), (2, 1)}
17: end if
18: end for
19: end if
20: end for

Two cases need to be considered for each background
facet:

1. One or both background elements are non-cut, as shown
on the left of Fig. 18. In this case, any geometric inter-
faces are necessarily some non-zero distance away from
the background facet, and only one subphase is attached
to either side of the background facet. The two attached
subphases must be of the same material and, hence, are
connected. In Algorithm 6, the two subphases are col-
lected from the cells attached to the facets.

2. Both background elements are intersected, as shown on
the right of Fig. 18. In this case, the foreground mesh is
conformal and, by iterating over the foreground facets,
the neighboring subphases are collected and stored. For
the special case where a geometric interface coincides
with the background facet, the connection is stored in GI

rather than GS .

3.4 Enrichment

To enrich the background basis and construct the enriched
basis (13), the supports of the enriched basis functions ˜N ε

B

123

Engineering with Computers

Fig. 19 Generation of subphases and the subphase graph. A Identifi-
cation of disconnected groups of fg. cells in each bg. element using a
flood-fill. B Subphase interface graph GI containing neighboring sub-
phaseswithin the background elements.CComplete subphase neighbor
and interface graphs GS and GI

are identified. This requires finding where the enrichment
functions ψε

B(x) are non-zero and the number of "enrich-
ment levels"nε(B) for a givenbackgroundbasis function NB .
The number of enrichment levels nε(B) is computed by per-
forming a flood-fill on the subphase graph within each basis
function’s support, as outlined in Fig. 20. A list of subphases
SB within the elements comprising supp(NB) is collected by
pruning the global adjacency listGS toRB = supp(NB). Lists
of subphases connected within supp(NB) are then obtained
by performing a flood-fill algorithm on the pruned graph GP .
The number of lists is nε(B) and each list corresponds to
where ˜N ε

B(x) 	= 0.

Unzipping
After identifying the enriched basis functions ˜N ε

B(x), the
challenge remains to represent and store the resulting
enriched basis on the background elements associated with
the final cluster output. The strategy chosen here is to rep-
resent the enrichment function ψε

B(x) implicitly by ensuring
that a given enrichedbasis function ˜N ε

B(x) is only evaluated at
quadrature points x ∈ supp(˜N ε

B), where NB(x) = ˜N ε
B(x). To

achieve this, copies of each of the background elements are
created for every subphase within that background element,
as shown inFig. 21.We refer to this process, outlined inAlgo-
rithm 7, as "unzipping". The basis functions of the copied

background elements
{

�u
E

}nu(E)

u=1 will, during the element
formation, only be evaluated at points within the associated
subphase SuE . Hence, the basis functions {Nb(x)}nbb=1 on the
copied elements do not need to be altered by adding the asso-
ciated indicator functions ψε

b .
In a next step, a single index
 is created to replace

the double-index (B, ε) used for the functions ˜N ε
B(x). This

allows for (11) to be stated as

uh(x) =
n

∑

=1

˜N
(x) d
, (23)

where n
 is the total number of enriched basis functions
˜N
(x) = ˜N ε

B(x). Subsequently, each of the basis function
indices B listed in the IEN of each of the copied background
elements �u

E is replaced with the index of the enriched
counterpart
 ← (B, ε) supported within the subphase SuE .
As a result, the enrichment information is fully encoded in
the basis function indices in the IEN-arrays and not further
exposed to the outside, so, existing element assembly rou-
tines apply to the clusters.

The procedure combining both the enrichment of the basis
functions and the unzipping of the background elements is
presented in Algorithm 7.

Construction of Clusters
The remaining task is to generate the quadrature points asso-
ciated with each subphase and package the information up

123

Engineering with Computers

Fig. 20 Basis function enrichment using flood-fill. A Restriction of
the subphase graph GS shown in Figure 19 to the support of a single
background basis function NB . B Lists of connected subphases within
supp(NB) resulting from a flood-fill operation.CSupport of an example
enriched basis function whose support consists of a list of connected
subphases

in the cluster data structure introduced in Sect. 3.1. The cre-
ation of volumetric bulk cluster is discussed first, before the
creation of side clusters. An example of clusters generated
on a single background element is shown in Fig. 22.

For the bulk clusters, the creation is summed up in Algo-
rithm 8. For every subphase in the foregroundmesh, the fore-
ground cells are collected. Using the parametric coordinates
of their vertices stored on the corresponding child meshes, a
standard Gauss-Legendre quadrature rule is mapped into the
parametric coordinates of the background element. Pairing
the quadrature rule with the unzipped background element
associatedwith the subphase yields a complete cluster. These
clusters are grouped by their respective material domains,
such that, during assembly, these groups are iterated over,
considering the same set of equations associated with the
given material domain.

To construct the side clusters and cluster pairs to evaluate
integral equations of the form (15) and (16), the steps outlined
in Algorithm 9 are necessary. The specific foreground facets
Fc between each neighboring but (materially) disconnected
subphase pair (S1, S2) are determined. Information about the
facet connectivity on the foreground mesh F and the fore-
ground cells c that comprise the subphases Si are employed.

Fig. 21 Unzipping of background mesh. Copies of background ele-
ments are created for each of the subphases contained in them, see Fig.
19. The IEN-arrays of the resulting "unzipped" background elements
�u

E are edited to encode the enrichment information

Fig. 22 Construction of bulk and side clusters in background element
E = 4 from Figure 19. Left: A connection in the interface subphase
graphGI corresponds to a pair of side clusters constructedwithmatching
Gauss points on every foreground facet. Right: Mapping Gauss points
from the foreground cells to the parametric space of the background
elements yields quadrature rules for the volume of every subphase

The ordinals o of these facets with respect to the foreground
cells attached to either side are obtained concurrently. Know-
ing the facet ordinal and foreground cell on either side, Gauss
points on the facets are mapped into the coordinate space of
the background elements. In addition, the facet has an out-
ward pointing normal, which is stored with the quadrature
points.

123

Engineering with Computers

Algorithm 7 Enrichment: Unzip background elements
Input: Background mesh H, Foreground mesh T
Output: Unzipped background elements �

1: initialize empty container for unzipped background elements � ←
{}nEE=1

2: for each background element E ∈ {1, · · · , nE } do
3: size inner container �[E] ← {}nu (E)

u=1
4: for each subphase in the element u ∈ {1, · · · , nu(E)} do
5: copy initialize from background element �[E][u] =

create_element(H.get_element(E))

6: end for
7: end for
8: initialize enriched basis function counter
 ← 0
9: for each basis function B ∈ {1, · · · , nB} do
10: initialize list of subphases in B’s support SB ← {}
11: for each background element in the support E ∈

H.get_elements_in_support(B) do
12: collect subphases in support

SB .append(T .get_subphases_in_element(E))

13: end for
14: Gp ← prune(T .get_subphase_graph(), SB)

15: groups of connected subphases
{

Rε
B

}nε(B)

ε=1 ←
flood_fill(Gp)

16: for each enrichment level ε ∈ {1, · · · , nε(B)} do
17: increment the basis function counter
 ←
 + 1
18: for each subphase in the connected group S ∈ Rε

B do
19: replace basis function index

�[S.E][S.u].IEN.find_and_replace(B,
)

20: (# operation includes safeguard preventing IEN entries
from being replaced multiple times)

21: end for
22: end for
23: end for
24: assign basis function IDs and get index to ID map I
 ←

T .communicate_basis_function_IDs(�)

25: replace the basis function indices with IDs in IEN arrays
replace_IEN_with_IDs(�, I
)

26: return �

Algorithm 8 Create bulk clusters.
Input: Foreground mesh T , unzipped background elements
�

Output: Sets of bulk clusters for every material DB

1: initialize containers of bulk clusters for every material DB ←
{{}}nm−1

m=0
2: for each subphase S ∈ T .S, for which S.E .is_owned() do
3: generate quadrature rule

{

ξq , ωq
}nq
q=1 ←

T .map_param_gauss_points(S.C[:])
4: create bulk cluster DB [S.get_material()].

append(create_cluster(�[S.E][S.u], {ξq , ωq
}nq
q=1))

5: end for
6: return DB

With a matched ordering of quadrature points on either
side of the interface, the jump terms (8) and (9) are computed
without storing additional information. This is achieved by
iterating over the attached foreground facets in the sameorder
from either side and then requesting quadrature points from
either side in opposite orientation, i.e., clockwise or counter-
clockwise. The quadrature rules generated from either side

Algorithm 9 Create side clusters.
Input: Foreground mesh T , unzipped background elements
�

Output: Sets of side clusters and side cluster pairs for every
interface DS and DI
1: initialize containers of side clusters for every material combination

DS, DI ← {{}}n2mk=1
2: for each subphase pair (S1, S2) ∈ T .GI , for which S1.I > S2.I

AND S1.E .is_owned() do
3: find facets between subphases FS ←

T .find_connecting_facets(S1, S2)
4: for each side of the interface (i, j) ∈ {(1, 2), (2, 1)} do
5: get the cells attached to the facets on this side of the interface

with the facet ordinals C, o
6: generated quadrature rule

{

ξq , ωq ,nq
}nq
q=1 ←

T .map_facet_gauss_points(C[:], o[:], i)
7: (# the last input indicates whether (counter-)clockwise order-

ing is used)
8: ravel the multi-index ki ← Si .get_material() · nm +

S j .get_material() + 1
9: create side cluster Di ←

create_cluster(�[Si .E][Si .u], {ξq , ωq ,nq
}nq
q=1)

10: end for
11: store side clustersDS[k1].append(D1), DS[k2].append(D2)

12: store side cluster pairs DI [k1].append((D1, D2)),
DI [k2].append((D2, D1))

13: collect non-owned subphases if !S2.E .is_owned() :
Scomm.append(S2)

14: end for
15: communicate IENs for non-owned unzipped bg. elements

communicate_IEN(�,Scomm)

16: return DS , DI

are matched up to the unzipped background elements associ-
atedwith the subphases on either side to form the side clusters
D1, D2 and pairs (D1, D2), (D2, D1), before being stored on
the list of side cluster (pairs) associated with the interfaces
	 I
m,l . The basesBE belonging to the different unzipped back-

ground elements allow the terms (8) and (9) to be evaluated.

Note on Quadrature Rules
We chose Gauss-Legendre quadrature rules generated on the
foreground mesh cells for their simplicity. Other, potentially
more efficient, quadrature rules could be generated using the
existing subphase information. This could include Stokes’
theorem-based methods [34, 35] or moment-fitting [44, 57,
86], both on the volume of the subphases directly or on their
boundaries using Stokes’ theorem.

3.5 Face-oriented ghost stabilization

This subsection details the implementation of the residual
term (19) for face-oriented ghost stabilization. From a theo-
retical point of view, the challenge here is twofold. The first
is to identify the ghost facets FG and the adjacent material
regions (u, v) : u ∈ {

1, · · · , nu(E+)
}

, v ∈ Uu,E− for each
ghost facet F ∈ FG , that is finding the sets of the first three
sums in (19). The second is to construct the polynomial exten-

123

Engineering with Computers

Algorithm 10 Construct side cluster pairs for ghost stabi-
lization
Input: Background meshH, Foreground mesh T , Unzipped
background elements �

Output: Ghost side cluster pairs for every material DG

1: initialize empty container for ghost side cluster pairsDG ← {}nm−1
m=0

2: for each subphase S1 ∈ {1, · · · , T .G.size()} do
3: for each neighbor subphase S2 ∈ T .G[S1] do
4: # check if at least one of the adjacent bg. elements is cut and

each pair is only constructed once
5: if (T .nu[S1.E] > 1 OR T .nu[S2.E] > 1) AND S1.I >

S2.I AND S1.E .is_owned() then
6: get the connecting facet ordinals {o1, o2} ←

H.get_connecting_facets(S1.E, S2.E)

7: for primary and secondary sides i ∈ {1, 2} do
8: get quadrature points on facet

{

(ξq , ωq ,nq)
}nq
q=1 ←

get_quadrature_points(Si .E, oi , i)
9: (# the last input indicates whether to output clockwise

or counter-clockwise ordering)
10: create side cluster Di ←

create_cluster(�[Si .E][Si .u], {(ξq , ωq ,nq)
}nq
q=1)

11: end for
12: store cluster pair for material

DG [S1.get_material()].append((D1, D2))

13: collect non-owned subphases if !S2.E .is_owned() :
Scomm.append(S2)

14: end if
15: end for
16: end for
17: communicate IENs for non-owned unzipped bg. elements

communicate_IEN(�,Scomm)

18: return DG

sions ṽh and ũh and evaluate the jumps in their derivatives at
the facets F ∈ FG .

The triple sum in Equation (19) is restated as a sum over
all subphase neighbors in GS , where at least one of the back-
ground elements contains two or more subphases, i.e., it
contains a material interface. Figure 23 (A) shows an exam-
ple of this for a single facet F ∈ FG in themesh in Fig. 19.On
this facet, there are four subphase pairs which the second and
third sum in (19) amount to. During the unzipping process,
outlined in Sect. 3.4, the basis functions on the background

elementsBE are not changed to include the enrichment func-
tion ψε

B . Hence, the basis already represents the polynomial
extension ṽh and ũh without further modification. Pairing
up the unzipped background elements corresponding to each
of the subphases and adding matching integration points to
either side, as is illustrated in Fig. 23 (B), allows for conve-
nient evaluation of the jump terms.

Algorithm 10 outlines the compact procedure to generate
the cluster pairs. Analogous to the side cluster construction,
a standard Gauss-Legendre quadrature rule is generated on
the relevant background element facets with mirrored spatial
ordering on either side of each facet. Note, that this is done
using the background element’s facet directly, as opposed to
collecting the attached foreground cells, reducing the number
of quadrature points.

3.6 Parallelization

This subsection addresses the parallel implementation of
the presented preprocessing framework. First, the general
approach taken to parallelization is discussed before cover-
ing the additional considerations for executing each of the
previously presented steps in parallel.

The preprocessor uses a domain decomposition approach.
The processors independently execute the presented algo-
rithms on parts of the domain assigned to them, allowing for
efficient use of distributed memory systems.

An extra layer of elements, referred to as the "aura", is
added beyond the part of the background mesh assigned to,
or "owned" by, a given processor. This is to keep parallel
communication on such systems to a minimum. Due to the
enrichment strategy requiring the topological analysis of the
full support of each basis function, the aura’s width is such
that the support of any basis function, partially supported
within a given processor’s owned domain, is fully contained
in the owned domain and the aura. The resulting parallel
decomposition scheme is illustrated in Fig. 24 using a domain
split into four parts and a single basis function. Assuming
all basis functions have a support size of 3 × 3 background

Fig. 23 Ghost side cluster pairs generated from graph. A Section of GS for a single background facet. B Each of the connections in GS results in a
ghost cluster pair being constructed, since at least one of the adjacent background elements is cut

123

Engineering with Computers

Algorithm 11 Communicate IDs.
Inputs: My proc. pc, list of adjacent procs. Ploc
1: # Assign IDs to owned entities
2: initialize O,N = {}
3: for each entity e do
4: if is_owned(e) then
5: O.append(e)
6: else # entity is not owned
7: N.append(e)
8: end if
9: end for
10:

{

nie
}NumProcs
i=1 ← MPI_Allgather(size(O))

11: first ID I ← 1 + ∑pc
i=1 n

i
e

12: for each owned entity e ∈ O do
13: e.I ← I + +
14: end for
15:
16: # Send and receive ID requests
17: initialize R,E,A ← {{}}p∈Ploc
18: for each non-owned entity e ∈ N do
19: find owning proc. po
20: get identifying information id
21: store request R[po].append(id)
22: ... and entity E[po].append(e)
23: end for
24: send requests MPI_Isend(

{

Rp
}

p∈Ploc ,Ploc)

25: receive
{

Rp
}

p∈Ploc ← MPI_Irecv(Ploc)
26:
27: # Answer ID requests
28: for each proc. neighbor p ∈ Ploc do
29: for each request r ∈ Rp do
30: find entity e ← find_entity(r)
31: store ID answer A[p].append(e.I)
32: end for
33: end for
34: send answers MPI_Isend(

{

Ap
}

p∈Ploc ,Ploc)

35: receive
{

Ap
}

p∈Ploc ← MPI_Irecv(Ploc)
36: for each proc. neighbor p ∈ Ploc do
37: for each answer i ∈ {

1, · · · ,size(Ap)
}

do
38: store the ID E[p][i].I ← Ap[i]
39: end for
40: end for

elements, like the one shown in the figure, the aura needs to
extend by two elements beyond the domain.

An advantage of this approach is that the amount of data
communicated between each of the independent processors
is minimal. As such, only indexing information within the
aura is communicated, as discussed in the next paragraph.
While, from a hardware perspective, this allows for efficient
scaling across multiple compute nodes, a weakness becomes
apparent from the illustration in Fig. 24. If the size of the
processors’ domains is very small and the aura constitutes
a considerable fraction of a mesh handled by a given pro-
cessor, the computational overhead of processing the aura is
large. We are quantifying this overhead in the scaling study
presented in Sect. 4.3.

Concept of Parallel IDs

Fig. 24 Domain decomposition in parallel.AGlobal background mesh
being split across four processors with the support of one basis func-
tion NB highlighted in blue. B Each processor has access to a layer of
background elements, the "aura", beyond the owned domain such that
the support of any basis function in the owned domain can be analyzed
for enrichment

Entities, that are present on two or more processor domains
simultaneously, need to be handled in a parallel consistent
manner. As the indices of entities differ between processors,
a parallel consistent, and globally unique ID is assigned to
each entity. Further, it is assumed that any entity is owned

123

Engineering with Computers

by exactly one processor. Upon creation of entities of any
type, Algorithm 11 is used to assign IDs to the owned enti-
ties and communicate IDs with neighboring processors that
have access to those entities but do not own them. The first
step of the procedure, i.e., the assignment of IDs to owned
entities, only requires the communication of the number of
owned entities by each processor. In the second step, infor-
mation is collected for non-owned entities with which they
are identified unambiguously by the owning processor. The
content of this information is discussed in the following. In
the last step, using the identifying information received from
adjacent processor domains, the IDs of the associated entities
are collected and sent back to the requesting processors. The
communication calls in Algorithm 11 are adapted from the
OpenMPI library [32].
Background Mesh
For the presented algorithms to work in parallel, the data
structure of the input mesh, shown in Fig. 8, needs to meet
the following requirements:

• The list of elements E provided to a given processor p
includes both the owned and the aura elements. Each
element E ∈ E stores its owning processor p and has a
parallel ID assigned to it.

• The basis functions provided by themesh and their index-
ing are restricted to those basis functions that are at least
partially supportedwithin the owned domain. Basis func-
tions only supportedwithin the aura are ignored. The IEN
arrays of the aura elements are left empty.

• All basis functions are assigned an owner and a parallel
consistent ID.

Foreground Mesh
The foreground cells and the subphases need parallel con-
sistent IDs. The parallel consistent subdivision in each
processor’s aura is ensured by the order in which the for
loops in Algorithm 3 are executed. After the regular sub-
division templates are applied in identical orientation by
each processor, the foreground cells generated during the
subdivision are stored in identical order and with identical
orientation on the child meshes across the processors. Know-
ing the ID of the background element a child mesh is located
in and the local index of a given cell inside the child mesh,
cells are identified across processors and their IDs commu-
nicated in the function T .communicate_cell_IDs() in
Algorithm 1. Subsequently, subphases are identified by pro-
viding the ID of one of the foreground cells as part of the
function T .communicate_subphase_IDs() in Algo-
rithm 5.

Enrichment
The enriched basis functions require parallel consistent IDs
to assemble the global system of equations. As part of the

enrichment process in Algorithm 7, one of the subphases
comprising the support of an enriched basis function is
collected to identify enriched basis functions across proces-
sors. The basis function indices listed in the IEN arrays of
the unzipped background elements are replaced with their
respective parallel IDs.

Clusters
Generally, only clusters and cluster pairs contained within
a processor’s domain are constructed to ensure each clus-
ter or cluster pair’s contribution is only added once to the
global linear system during assembly. For side cluster pairs,
particularly for those constructed for the purpose of ghost
stabilization, situations may arise, where the two adjacent
unzipped background elements are part of different pro-
cessors’ domains. In this case, the adjacent subphases are
collected in Algorithms 9 and 10, and the content of the IENs
of the associated unzipped background elements is commu-
nicated. Recall, that the IEN of background elements within
the aura was initially left empty.

4 Numerical examples

This section presents a series of numerical examples which
study the features and performance of the preprocessing
framework and its implementation specifically. For a detailed
analysis of the numerical framework’s performance, e.g., its
convergence behavior and stability properties, the reader is
referred to [62]. The first example in Sect. 4.1 is used to val-
idate and discuss the impacts of the enrichment strategy and
the ghost stabilization for a geometrywith small features. The
"Brick Wall" example in Sect. 4.2 demonstrates the prepro-
cessing framework’s robustness for pathological geometric
cases with multiple geometries, sharp features, vanishing
material domains, and coinciding interfaces. Lastly, we
demonstrate the performance and parallel scalability with
a "scaffold sandwich" structure in Sect. 4.3.

While the numerical examples presented in the following
are all structural problems governed by the equations intro-
duced in Sect. 2.1, the preprocessing framework applies to
most types of (continuum) physics – including those with
non-linear governing equations – that do not involve inter-
faces that evolve in time. Earlier works have applied the
implementation presented herein to, e.g., thermo-structural
problems [62, 75] or to incompressible fluid flow with ther-
mal advection–diffusion [61].

The condition numbers presented were estimated using
either Matlab’s cond() function for small systems or by
solving for the smallest and largest eigenvalues using a
Krylov-Schur Method [85], as implemented in the SLEPc
package [39]. To solve linear systems, the direct solver imple-
mented in PARDISO [71, 72] and a flexible generalized

123

Engineering with Computers

Fig. 25 A Setup of the example with multiple connected beams includ-
ing the background mesh and the support of a single basis function.
B Normal stresses in the solution to the non-enriched problem and C

the problem using the enrichment strategy (11) with fillets added to the
interior corners. The reference displacement solution generated using a
highly refined mesh is shown in gray in the background

minimal residual solver (FGMRES) [68] as implemented in
the PETSc library [9] were used.

4.1 Multiple thin beams

Weconsider the setup shown inFig. 25 (A)withmultiple con-
nected beams under a bending load. The beams are immersed
in a coarse background mesh with element size h0 = 1. The
material has a Poisson ratio of ν = 0.3 and Young’s modulus
of E = 1000. A uniform body load b = (1, 0) is applied in
x-direction. For the initial setup, the beams have a width of
δt = h0, are spaced apart by δd = h0, and, to avoid gener-
ating a body-fitted mesh, are offset by δo = 0.6 h0 relative
to the background mesh. The problem is discretized using
quadratic C1-continuous B-spline basis functions.

In this configuration, without basis function enrichment,4

the support of individual basis functions spans across multi-
ple features, as shown in Fig. 25 (A). This results in severe
artificial stiffening, or "cross-talk", as the basis functions
incorrectly couple the individual beams. This results in the
normal stress, σyy , being under-predicted by a factor of
approximately 5.5, see Fig. 25 (B). The enrichment strat-
egy (11) remedies this issue by effectively creating separate
enriched basis functions for each beam. Even with the exces-
sively coarse backgroundmesh, the enriched solution follows
the overall stress response of the reference solution created
using a highly refined mesh, as shown in Fig. 25 (C).

The impacts of the enrichment strategy can further be
quantified by comparing the error in the solution with and
without enrichment under quad-tree, i.e., isotropic, back-
ground mesh refinement. Omitting enrichment, the errors in
the stresses, see Fig. 27, drastically decrease as the size of

4 The numerical frameworkwithout basis function enrichment is equiv-
alent to CutFEM [16] with B-spline basis functions, sometimes also
referred to as CutIGA [25].

Fig. 26 Relative L2-error with increasing mesh resolution with and
without the generalized enrichment strategy using quadratic p = 2
B-splines. Note that the convergence rate r is double the slope when
plotted against the number of DOFs in 2D

Fig. 27 Relative H1-semi-error with increasing mesh resolution with
and without the generalized enrichment strategy using quadratic p = 2
B-splines

the support of basis functions shrinks to below the distance
between the beams δd ; only once the mesh is sufficiently

123

Engineering with Computers

Fig. 28 Condition number κ of the linear system with and without the
face-oriented ghost stabilization applied as the structure is translated in
x-direction through the background mesh. A penalty of γ k

G = 0.01 ·
Eh2k−1

0 is used in the stabilized case

refined, the errors converge at an (above) optimal rate.5

Employing the proposed enrichment strategy, we do not
observe the initial region of high error and below optimal
convergence due to under-resolved features. Note that the
enriched problem has a greater number of degrees of free-
dom compared to the non-enriched problem on an equal
background mesh with element size h. For higher mesh res-
olutions, the enrichment has no impact on the number of
degrees of freedom and the error in the solution. The enrich-
ment, in essence, adds anisotropic refinement in regions
where, and only where, the effects of the material topol-
ogy would otherwise not be captured by the background
mesh. Hence, the generalized Heaviside enrichment strategy
loosens the requirements on the mesh resolution relative to
the feature size in a given problem.Unlike a local refinement-
based approach to mitigate cross-talk [20], the enrichment
scheme adds fewer additional degrees of freedom and does
(most likely) not affect the critical time step size in, e.g.,
fluid dynamics problems. From a conceptual standpoint,
the enrichment strategy and the control point duplication
approach presented in [49] are identical; hence, they exhibit
the same overall behavior in terms of where degrees of free-
dom are added and their effect on the critical time step size.

Ghost Stabilization
We investigate the impact of the ghost stabilization on the
enriched problem by considering the setup shown in Fig. 25
(A). Compared to the previous study, the beam spacing is
decreased to a size smaller than the background element size
δd = 0.6 h0, and the beam width is increased to δt = 1.4 h0,
such that multiple beams connect in the same background
element. The configuration requires the construction of mul-
tiple ghost penalty terms on the same facet, as shown in Fig.

5 To mitigate stress singularities and obtain optimal convergence rates,
fillets are added to the interior corners, as shown in Fig. 25 (B),(C).
Additionally, the foregroundmesh is refined to limit the geometric error.

Fig. 29 Geometry of the "Brick Wall" example

6. The position of the beams δo relative to the background
mesh is then shifted to obtain various cut configurations. The
impact on the condition number is shown in Fig. 28. The
condition number for the non-stabilized system spikes as the
beams’ edges transition through the background mesh lines,
while the stabilized system only experiences small changes
in the condition number due to the double penalization of a
single facet leading to an increased contribution of the ghost
penalty term. The conditioning of the linear system remains
unaffected by the location of intersections besides this small
perturbation. This alignswith the expected behavior for ghost
stabilization and indicates that the adapted ghost stabiliza-
tion scheme successfully targets any insufficiently supported
enriched basis functions.

4.2 Brick wall

This example aims to demonstrate the robustness of the pre-
processing framework in amulti-material setting, specifically
in terms of handling geometric edge cases and in terms of
retaining good conditioning of the linear system. To this end,
a multi-material geometry involving straight edges, vanish-
ingmaterial domains, and coinciding interfaces is considered
and randomly placed within a background mesh.

The geometric setup consists of a 2× 1× 1 cuboid cut in
half in each spatial dimension by three axis-aligned planes.
Additionally, two planes are placed symmetrically at varying
positions x = −δ and x = +δ from the center of the cuboid.
Some of the resulting subdomains are then joined together
to generate material blocks, or "bricks", of various shapes,
as shown in Fig. 29. Examples of various edge cases in the
alignment of the geometry with the backgroundmesh and the
resulting foreground meshes generated by the preprocessor
are shown in Fig. 30.

The impact of the geometry’s position in the background
mesh on the conditioning of the linear system is determined

123

Engineering with Computers

by immersing the geometry in a Cartesian grid background
mesh with element size h = 0.1, such that for δ = 5 h all
interfaces align with the background mesh lines. From this
starting configuration, the distance δ is reduced to 0 to gen-
erate increasingly smaller material domains. In addition, the
geometry is translated randomly in all coordinate directions
100 times for each value of δ, where the translation in each
spatial dimension is given by

�xi = sign(Z) · 10−|Z | · h, (24)

with Z being a random number drawn from a normal dis-
tribution with mean 0 and standard deviation 1. Quadratic
C1-continuous B-spline basis functions are used for dis-
cretization, and random, uniformly distributed, Young’s
moduli E ∈ [1, 5] and Poisson ratios μ ∈ [0.25, 0.35] are
assigned to the different material blocks. Thewhole structure
is clamped at x = −1 and a traction load of t = (1, 1, 1)
is applied at x = −1. The condition number ranges of the
linear system resulting from the different cut configurations,
with and without ghost stabilization, are shown in Fig. 31.

The results demonstrate that the problem exhibits a con-
ditioning behavior expected for the face-oriented ghost
stabilization: the stabilizationmethod keeps the conditioning
close to the best-case cut configuration for the given geome-
try, independent of the geometry’s position in the background
mesh. For small values of δ, thin slices of material are cre-
ated which are only supported by cut background elements.
Hence, the ghost stabilization is not able to stabilize cut basis
functions against non-cut basis functions and prevent a slight
increase in the condition number κ . The system remains
solvable for the considered material sliver sizes with the lin-
ear solvers employed in this study. However, this may not
remain true for smaller sliver sizes. This observation informs
the choice of numerical tolerances that should be used in
the compute_proximity and find_interface func-
tions in Algorithm 3. Tolerances for the proximity of a vertex
to be considered "on the interface" (P(v) = 0) should be cho-
sen large enough to ensure numerical stability in geometric
edge cases, like the one presented, as opposed to only being
large enough to avoid errors due to machine precision arith-
metic.

Fig. 30 Edge cases for cut configurations and resulting foreground
mesh on a 2 × 2 × 2 element section of the bg. mesh, shown in black.
A Intersections align with the centers of bg. elements. B Intersections
align with the edges of bg. elements. C Rotation of the geometry in the
bg. mesh with interfaces coinciding at a background vertex. D Small
offset of interfaces to the bg. mesh resulting in slim material slivers

123

Engineering with Computers

Fig. 31 Mean and range of log10(κ) of the linear systems resulting from
the "BrickWall" example for varying cut distances r and random trans-
lations of the geometry inside the background mesh. The stabilization
penalty is set to γ k

G = 0.01 · Eh2k−1. Note, the left-most entry violates
the scale and is δ/h = 0

4.3 Scaffold sandwich

We consider the scaffold structure with thin geometric fea-
tures, shown in Fig. 32 (A), to investigate the computational
performance and scalability of the preprocessing framework.
The structure consists of a periodic grid of unit blocks shown
in subfigure (B). This problem setup is chosen as the size of
the numerical model can be altered by increasing the number
of unit blocks, whereas the global geometric complexity – the
portion of background elements intersected by an interface,
the number of enriched basis functions generated relative to
the number of basis functions on the background mesh, the
density of the skeleton mesh of ghost facets, etc. – stays con-
stant. For the following parallel scaling studies, the domain
is only decomposed in x- and y-directions to ensure that the
geometry near processor interfaces remains similar. Further,
the effect of the parallel domain decomposition on the scaling
behavior due to unequally distributed geometric complexity
is mitigated by ensuring that each processor’s domain con-
tains approximately the same geometry.

Each unit block is discretized using a part of the back-
ground mesh with 24 × 24 × 96 elements and quadratic
C1-continuous B-spline basis functions. Each unit block
contains ∼ 7400 intersected background elements and ∼
530, 000 cells in the foreground mesh.6 A detailed view of
the tessellation generated is shown in Fig. 32 (C).

Three types of scaling are investigated.

1. Time complexity: The problem size is increased by
increasing the number of unit blocks while keeping the
number of processors constant.

2. Weak parallel scaling: The problem size and the num-
ber of processors are increased simultaneously. Theweak

6 A voxel-based geometry definition for the entire structure is used
which does not align exactly with the background mesh; hence, the
geometry and number of cut elements in each unit block may differ
slightly.

scalability is an indicator of how well the framework
performs in scenarios where both the computational
resources available and the problem size are large.

3. Strong parallel scaling: The number of processors
is increased while keeping the problem size constant.
Strong scalability is a crucial factor in how viable the
framework is in use cases where the solution time is
critical, and a large number of processors is available.
Examples of such scenarios are optimization or design
studies during which many designs are analyzed in rapid
succession.

Quantifying Scalability
The generalized efficiency measure η is used to quantify the
scalability, i.e., how efficiently the framework uses compu-
tational resources in the three scaling scenarios.

η =
s
s0

n p
n p,0

· t
t0

, (25)

where s, n p, and t denote the problem size, the number of
processors used, and the time to perform the various pre-
processing steps, respectively. The subscript (·)0 denotes the
baseline values relative to which the efficiency is evaluated.
An efficiency value of η = 1 indicates perfect scaling. The
measure is generalized in the sense that it is applicable to eval-
uate strong and weak parallel scalability, as well as problem
size scaling assuming that the algorithms in question scale
linear in time, t = O(s). Additionally, thememory efficiency
is defined as

μ =
s
s0
M
M0

, (26)

where M denotes the memory consumption.
We define two mesh overhead values to better understand

the scaling results and how they are impacted by the chosen
parallel strategy. The processor local mesh overhead λloc is
defined as the maximum ratio across all processors of back-
ground elements on a processor including the aura over the
number of elements owned by it

λloc = max
p∈Pglob

(

#bg. elems. on p

#bg. elems. owned by p

)

. (27)

Meanwhile, the global mesh overhead λglob is the total num-
ber of background elements processed across all processors
– counting aura elements multiple times as they are shared
between different processors – over the actual number of

123

Engineering with Computers

Fig. 32 Geometry for the
scaffold sandwich. A Largest
problem size constructed from
an 8 × 8 grid of unit blocks. B
Single unit block which is
periodically repeated to
construct the example. C Detail
of the tessellation generated
during the decomposition

background elements.

λglob =
∑

p∈Pglob #bg. elems. on p
∑

p∈Pglob #bg. elems. owned by p
. (28)

The efficiency measures η andμ are compared to the local or
global mesh overheads relative to the baseline configurations
λ′ = λ/λ0.

Hardware and Measurements
All results were run on a single server node using a single
AMDEPYC™ 7713 64-core processorwith an eight-channel
DDR4 memory configuration. Dynamic frequency scaling
was disabled to prevent any parallel efficiency losses due to
clock-speed variations.

The timing and memory consumption of the presented
preprocessor is split into three sections: the decomposition,
enrichment, andghost facet generation consisting of the steps
described in Sect. 3.2 and Sects. 3.3, 3.4, and Sect. 3.5,
respectively.

The memory consumption is measured using the memory
allocation reported by the operating system. This measure-
ment slightly overestimates the actual amount of memory
used, though this error is negligible when measuring mem-
ory consumption in the decomposition and enrichment steps.
However, the creation of the ghost stabilization facets con-
sumes comparatively negligible amounts of memory, on the
order of 1e0 ∼ 1e1 megabytes for problems consuming
1e1∼1e2 gigabytes, which cannot be measured accurately.
Given their insignificance, these measurements are omitted
from the results. Running the large-scale problems presented
with a memory profiler to obtain precise memory consump-
tion would be cost-prohibitive. For runtime measurements,
the maximum core time across all processes is used.

All measurements are averaged over three independent
runs of each problem setup. The baseline values for timing
and memory consumption, t0 and M0, for the results pre-
sented in the following, are summarized in Table 1.

Time & Memory Complexities

Fig. 33 Runtime efficiency η when scaling up the problem size from
one to 64 unit blocks using four processors

Fig. 34 Memory efficiency μ when scaling up the problem size from
one to 64 unit blocks using four processors

The time and memory complexities of the framework are
analyzed by scaling the problem size from a single unit block
to a grid of 8 × 8 = 64 unit blocks. The problems were
run in parallel on four processors with the domain split in
half in x- and y-directions in each case. The runtime and
memory efficiencies η and μ are shown in Figs. 33 and 34,
respectively. The relative mesh overhead decreases as the
problem size increases, given that the number of processors is
constant. Hence, efficiency measures η,μ > 1 are observed.

The runtime for the decomposition closely follows λ′
loc

which indicates that the algorithms employed have an
approximately linear time complexity t ≈ O(s). For the
ghost facet generation, η ≈ 1 throughout. Given that the
individual processors do not generate ghost facets in the

123

Engineering with Computers

aura, these operations are not expected to be affected by the
decreasing relative mesh overhead. For the enrichment, only
part of the basis functions supported in the aura is processed.
As the runtime for the enrichment scales between the mesh
overhead and 1.0, the operations have an approximately lin-
ear time complexity t ≈ O(s).

The memory consumption of the decomposition step
closely follows the expected memory consumption due to
the mesh overhead. The enrichment is less affected by the
mesh overhead, and therefore its memory efficiency remains
slightly below λ′

glob. These results suggest that the memory
consumption of the algorithms scales linearly with the prob-
lem size M = O(s).

Weak Parallel Scaling
The weak parallel scalability is investigated by increasing
both the number of parallel processors and the number of
unit blocks in the problem from one to 64, yielding a domain
size of one unit block per processor.

The weak parallel efficiency is shown in Fig. 35. For the
decomposition, η mostly follows the relative mesh overhead
with a few percentage points offset, which can be explained
by the approximately constant time it requires to perform
the communication procedure in Algorithm 11. The mesh
overhead increases as new processor boundaries and, there-
fore, aura elements are created when adding unit blocks to
the initial 1-processor case with no aura. Notably, though,
the runtime efficiency decreases significantly when scal-
ing to above 16 processors. This is caused by a saturation
of the available memory bandwidth. This assumption was
confirmed by repeating the study on a server node with
half the number of memory channels, and therefore mem-
ory bandwidth, but otherwise identical hardware. Its parallel
scaling behavior showed the same significant performance
breakdown scaling above 8 processors. The enrichment is
not as strictly affected by the mesh overhead but suffers
from the same problem. It is a known problem that the
improvements to raw compute performance have outpaced
improvements to memory performance for multiple decades
of high-performance hardware development [53, 80]. The
result is that for modern hardware, such as the one used
here, the memory performance is generally the bottleneck.
Additionally, the presented algorithms heavily rely on stor-
ing and accessing data at different points in the workflow,
which results in cache misses and frequent random memory
access operations. Hence, the algorithms presented end up
being memory-bound.

Memory consumption can, again, accurately be predicted
by the mesh overhead as shown in Fig. 36.

Strong parallel scaling
We investigate the strong Parallel Scalability by increasing
the number of processors from one to 64 on two problems, a
larger one with 64 unit blocks and a smaller one with 16 unit

Fig. 35 Weak scaling efficiency η when increasing the number of both
the processors and unit blocks in the problem from one to 64

Fig. 36 Memory efficiency μ when increasing the number of both the
processors and unit blocks in the problem from one to 64

Fig. 37 Strong scaling efficiency η when increasing the number of
processors from one to 64 on a large problem consisting of 64 unit
blocks

Fig. 38 Strong scaling efficiency η when increasing the number of
processors from one to 64 on a small problem consisting of 4×4 = 16
unit blocks

123

Engineering with Computers

Table 1 Runtime t0 and
memory consumption M0 for
the baseline cases in Figs. 34–
38

scaling type problem size weak strong (large) strong (small)

tessellation t0 1.740s 4.801s 349.5s 84.05s

enrichment t0 1.895s 6.097s 439.8s 110.6s

ghost facet gen. t0 0.084s 0.265s 24.71s 5.41s

λloc,0 1.361 1.0 1.0 1.0

tessellation M0 1250 MB 919 MB 60775 MB 13311 MB

enrichment M0 1621 MB 1239 MB 81519 MB 29395 MB

λglob,0 1.333 1.0 1.0 1.0

blocks. Timing results for these two cases are shown in Fig.
37 and 38, respectively. Scaling to more than 16 processors,
again, results in a significant performance breakdown due
to memory bandwidth saturation, regardless of the problem
size. Ignoring this, the runtime efficiency for the decompo-
sition follows the mesh overhead, while the enrichment is
not as affected by the mesh overhead. Compared to the weak
scaling scenario, the overhead created by communication is
negligible. Comparing the two size cases, the decreasing per-
formance ceiling due to the mesh aura for smaller problem
sizes presents itself. E.g., for the smaller problem, the over-
all parallel efficiency for running the smaller scale problem
on 16 processors is limited to only η ≈ 80%, as opposed to
η ≈ 91% for the larger problem.

Summary
Both the compute time and memory consumption for the
presented preprocessing framework scale approximately lin-
early with the problem size if the geometric complexity is
kept constant. In weak and strong scaling scenarios, the com-
pute time and memory consumption scale close to optimally,
once the mesh overhead is accounted for, with only a couple
of percentage points decrease due to communication in the
weak scaling scenarios.

Thememory-bound design of the algorithms and themesh
overhead created by the aura present arguably the biggest
shortfalls of the preprocessing framework. Re-designing the
algorithms to more smartly (re-)compute data in place of
access would mitigate the former bottleneck. However, it
remains an open question to what extent this is possible.

The mesh overhead can constrain the performance
severely when moving to very small background meshes on
each processor’s domain. As an example, consider a prob-
lem using quadratic C1-continuous B-splines and running
on a large number of processors such that the processors’
domains are surrounded by those of adjacent processors to
all sides. Reducing the processor-local mesh size to, e.g.,
10 × 10 × 10 elements results in a mesh overhead limit-
ing the performance to η ≈ λ′

loc = 2.6%, whereas a local
mesh size of 25 × 25 × 25 elements leads to a more mod-
est loss η ≈ λ′

loc = 64%. Given the overall speed of the
procedures presented, it is likely unnecessary to move to

such small processor-local domains during preprocessing.
Re-distributing the generated clusters among a larger num-
ber of processors after preprocessing would be a solution if
small processor-local domains are necessary to rapidly per-
form element assembly.

5 Conclusion

In this article, we discussed the implementation of an
efficient, parallel, and robust immersed finite element pre-
processing framework, including the underlying algorithms
and data structures.

A tessellation procedure creates a grid of cells fitted to
the interfaces and generates quadrature rules on the different
material regions and their interfaces. Material connectivity
data is built on this grid and provides the information nec-
essary to subsequently perform basis function enrichment
and apply a stabilization scheme. This approach of building
information about thematerial connectivity from a geometric
decomposition of the background mesh forms the backbone
of the pre-processing framework. It allows some of the chal-
lenges associatedwith immersedfinite elementmethods – the
generation of custom quadrature rules, enrichment if needed,
and stabilization – to be addressed cohesively.

The tessellation procedure applies subdivision templates
repeatedly for an arbitrary number of geometries, enabling
multi-material domains to be defined. Further, the pre-
sented algorithms for building topological information are
designed without floating-point arithmetic, making them
highly robust. The preprocessor’s output is organized into
elements paired with custom quadrature rules. Any informa-
tion about the enriched finite element basis and stabilization
methods is implicitly contained in them and not further
exposed to the outside as such. Hence, assembly may be
performed with existing, standard finite element routines
without or with only minimal modifications.

The presented examples demonstrate the robustness and
performance characteristics of the preprocessor. The general-
ized enrichment strategy prevents spurious coupling between
close but disconnected features and thereby eliminates the
case where the lack of mesh resolution leads not only to a

123

Engineering with Computers

large error but also to the simulation of a geometrically dif-
ferent, de-featured domain. Robustness is demonstrated in
multi-material cases, both in terms of handling geometric
edge cases and in terms of retaining good conditioning. The
implementation’s time complexity andmemory consumption
are found to scale approximately linearly with the problem
size η,μ ≈ O(s), and the overhead created by parallel com-
munication is shown to be minimal.

However, as summarized at the end of Section 4.3, the
outlined parallel strategy creates a performance overhead
for very small processor domains. Further, the scaling study
highlighted that the implementation is limited by mem-
ory performance, rather than compute performance due to
the algorithms’ reliance on frequently accessing data stored
in memory. Future work substituting the tessellation pro-
cedure and quadrature method, which only yield a linear
geometry approximation, with ones that capture the geom-
etry with higher-order accuracy, would likely improve the
framework’s numerical efficiency. This especially applies to
problems involving non-linear interface phenomena, such as
those encountered in contactmechanics,where highly refined
meshes are currently needed. Furthermore, the framework,
in its current form, does not support interfaces and external
boundaries evolving in time. While mesh transformation-
based approaches have been applied to enable, e.g., the
simulation of fluid–structure problems with large deforma-
tions [43], due to the required mesh transformation, they
contend with mesh quality issues in the case of (very) large
deformations and an inability to handle topological changes
[46]. The arguably most natural extension to the presented
framework, enabling the simulation of problemswith dynam-
ically evolving geometries, would be to also discretize the
geometry in time, yielding a space-time approach similar to
those presented in [38, 58].

Appendix A Glossary

Adjacency list • Data structure to represent the graphs
G(·) as an array of arrays. In our case, the outer array entries
correspond to each subphase and the inner (unordered) array
contains the adjacent subphase neighbors, in the sense of the
particular graph.

(Background) ancestry/ancestor • Symbol: a • The
background ancestor of an entity of the foreground mesh is
the background entity of the lowest rank, i.e., dimensionality,
which fully contains the foreground entity. See: Section 3.2,
par. Background Ancestry.

Backgroundmesh •Symbol:H • Inputmesh constructed
on a geometrically simple domain into which the geometry
to be analyzed is immersed. It defines the (non-enriched)
finite element basis. The associated data structure is shown in
Fig. 8.

Cell •Symbol: c •Purely geometric, d-dimensional entity
on a d-dimensional mesh. They are, e.g., the triangles and
quadrilateral in 2D, or tetrahedrons and hexahedrons in 3D
comprising the foreground and background meshes. Note,
that unlike elements, cells do not have a basis associated with
them. See: Section 3.1, par. Mesh Entities and Connectivity.

Child mesh: • Symbol: CM • Group of foreground cells
generated from a single background element during the tes-
sellation procedure outlined in Section 3.2. The associated
data structure is shown in Fig. 13.

Cluster • Symbol: D • Data structure that combines
a (background) element with a (custom) quadrature rule
defined on its domain, or a subdomain thereof. The output of
the preprocessors are groups of clusters, intended for stan-
dard finite element assembly routines. The associated data
structure is shown in Fig. 8. The concept of a cluster is dis-
cussed from a theoretical standpoint in Section 2.2.

(Parallel, mesh) decomposition • Process of dividing the
background mesh into subdomains to be handled by proces-
sors independently. See: Section 3.6.

(Background, finite) element • Symbol: E •Afinite ele-
ment consists of a domain �E and a set of basis functions
BE with their associated degrees of freedom IEN. In the arti-
cle, the only finite elements used are those comprising the
background mesh. Hence, they are referred to as background
elements. The associated data structure is shown in Fig. 8.

Enrichment function • Symbol: ψ • The indicator
function associated with an enriched basis function with
multi-index
 = (B, ε). For a definition, see (12).

(Mesh) entity • Symbol: e • Geometric objects compris-
ing a mesh or grid, namely: vertices, edges, faces, 2D/3D
cells. See: Section 3.1, par. Mesh Entities and Connectivity.

Facet • Symbol: F • The (d − 1)-dimensional entity of a
d-dimensional mesh, e.g., edges in 2D and faces in 3D. See:
Section 3.1, par. Mesh Entities and Connectivity.

Foreground Mesh • Symbol: T • Body-fitted mesh
resulting from the subdivision process outlined in Section
3.2. Additionally, the associated data structure, shown in
Fig. 13, carries information about the material topology con-
structed in Section 3.3.

Geometry •Symbol:G •Object defining amaterial inter-
face or volumetric domain. The associated data structure is
shown in Fig. 8.

(Parallel) ID • Symbol: I • An entity ID is a parallel-
globally unique identifier for a mesh entity that ensures
consistency and facilitates communication across processors
in parallel computations. See: Section 3.6, par. Concept of
Parallel IDs.

Index • A (processor-local) identifier for entities or other
programming objects of a specific type, ranging from 1 to
the total number of such entities or objects on a processor.
Indices are used to access entities or objects that are stored in
arrays. See: Section 3.1, par.Mesh Entities and Connectivity.

123

Engineering with Computers

Initializer list • A list of values, entities, and/or objects
that are used to create/initialize another entity or object.

Ordinal • Symbol: o • The local index of an entity with
respect to another entity, as shown in Fig. 10 (A). See: Section
3.1, par. Mesh Entities and Connectivity.

Proximity • Symbol: P • Whether an entity lies outside
(+), inside (−), or on the boundary (0) of the geometrywithin
some tolerance. The concept is first introduced in Section 3.1
and used extensively in the step of material assignment.

Queue • Symbol: Q • Data structure collecting new enti-
ties/objects to be created, also ensuring their uniqueness. The
concept is discussed in Section 3.2.1. The associated data
structure is shown in Fig. 40.

Rank • Symbol: r • Dimensionality of an entity in the
foreground mesh. See: Section 3.1, par. Mesh Entities and
Connectivity.

Subphase • Symbol: S • Topologically connected mate-
rial region within a single background element’s domain�E .
Their generation is discussed in Section 3.3, par. Identifica-
tion and Generation of Subphases. data structure: Fig. 17.

Tessellation • Process of dividing a domain into geomet-
ric primitives. In the context of this article, it is used to refer
to the subdivision process generating the foreground mesh.

Unzipping • Index: u • Process of duplicating back-
ground elements intersected by material interfaces and re-
indexing their basis functions to represent the enriched basis.
The process is described in Section 3.4, par. Unzipping and
illustrated in Fig. 21.

Vertex • Symbol: v • Purely geometric 0-dimensional
entity on a mesh. They are the corners (or endpoints) of cells
(or edges). Note, that unlike nodes, vertices do not have the
notion of a basis function associated with them. See: Section
3.1, par. Mesh Entities and Connectivity.

Appendix B Additional Algorithms and Data
Structures

B.1 Determining Ancestry of NewVertices

Using the particular regular subdivision templates shown in
Fig. 14, the background ancestry of a new vertex added at any
stage during the hierarchical templated subdivision process
outlined in Section 3.2.2 can be determined by the ancestry
of the two vertices attached to that edge. One only needs to
check which of the following conditions is true:

1. One of the vertices is inside the bg. element: the new
vertex is inside the element.

2. The edge vertices descend from the same edge or face:
the new vertex is a descendant of that edge or face.

3. Both edge vertices each descend from a background ver-
tex: these bg. vertices are necessarily part of the same

Algorithm 12 Generate entity connectivity.
Input: mesh T containing a cell-vertex connectivity C, rank
of entities r
Output: entity connectivity F
1: initialize empty entity connectivity F and hash map VtE :

(v1, v2, · · ·) �→ e, and running index i ← 0
2: # the number of cells is known and the cell-to-entity array in F can

be initialized accordingly
3: for each cell c ∈ T .C do
4: for each entity ordinal on cell o ∈

{1, · · · , c.num_entities(r)} do
5: get the entities expressed as a list of vertices (v1, v2, · · ·) ←

sort(c.get_entity(r , o))
6: find entity in the map e ← VtE.find((v1, v2, · · ·))
7: if the entity does not exist in the map already ! j then
8: store the entity in the map VtE.insert((v1, v2, · · ·),++

i)
9: add information F .EtC.append({c}),

F .CtE[c].append(i)
10: else
11: add information F .EtC[e].append(c),

F .CtE[c].append(e)
12: end if
13: end for
14: end for

Fig. 39 AVertex and edge ordinals (i.e., their ordering convention) for
a triangular cell. B Vertex, edge, and cell indices for an example mesh
consisting of three triangular elements

background edge, and the new vertex is a descendant of
that edge.

4. The edge vertices descend from different background
faces: the new vertex is inside the background element.

5. One edge vertex descends from a vertex and the other
from a face or edge: the new vertex is a descendant of
that face or edge.

B.2 Entity Connectivity

The algorithms presented require information about which
lower-order entities, vertices, edges, and faces, are connected
to cells and vice versa. This information is stored in the data
structure shown in Fig. 10, and can be generated on any con-
formal mesh using Algorithm 12.
Example: edge-to-cell connectivity for a three-element
mesh

123

Engineering with Computers

Fig. 40 UML chart of the data structures used in the presented preprocessor

123

Engineering with Computers

Using the example previously shown inFig. 10 inSection 3.1,
we detail how to store and read/understand the entity-to-cell
connectivity.

The cell connectivity C declares the cells in the mesh by
listing, in order, the vertices that define them. For the mesh
shown inFig. 39 (B) andusing the ordering convention shown
in Fig. 39 (A), the cell connectivity is:

C = { cell connectivity

{1, 2, 3}, cell 1: vertices 1, 2, and 3

{4, 3, 2}, cell 2: vertices 4, 3, and 2

{3, 4, 1}} cell 3: vertices 3, 4, and 1

The entity-to-cell connectivity EtC for the edges, i.e., the
edge-to-cell connectivity, lists the cells connected to each
edge. For the example mesh in Fig. 39 (B), this is:

EtC = { edge-to-cell connectivity

{1}, edge 1: connected to cell 1

{1, 2}, edge 2: connected to cells 1 and 2

{1, 3}, edge 3: connected to cells 1 and 3

{2, 3}, edge 4: connected to cells 2 and 3

{2}, edge 5: connected to cell 1

{3}} edge 6: connected to cell 1

The cell-to-entity connectivity EtC for the edges, i.e., the
cell-to-edge connectivity, lists the edges connected to each
cell in the order of their ordinal. For the example mesh in
Fig. 39 (B), this is:

CtE = { cell-to-edge connectivity

{1, 2, 3}, cell 1: attached are edges 1, 2, and 3

{4, 2, 5}, cell 2: attached are edges 4, 2, and 5

{4, 6, 3}} cell 3: attached are edges 4, 6, and 3

B.3 ForegroundMesh – Complete Data Structure

The presented algorithms make use of data structures intro-
duced in Figs. 8, 9, 13, and 17 throughout Section 3. The
unified modeling language (UML) chart in Figure 40 illus-
trates their interaction with each other.

Acknowledgements N. Wunsch, J. A. Evans, and K. Maute were sup-
ported by the National Science Foundation (NSF), United States award
OAC-2104106. N. Wunsch and K. Maute were additionally supported
by the Air Force Office of Scientific Research (AFOSR), United States
grant FA9550-20-1-0306. K. Doble was supported by Sandia National
Laboratories through the contract PO2120843.M. R. Schmidt acknowl-
edges the partial auspice of theU.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344
(LLNL-JRNL-871539). L. Noël, M. R. Schmidt, J.A. Evans, and K.

Maute received support from the Defense Advanced Research Projects
Agency (DARPA) under the TRADES program (agreement HR0011-
17-2-0022). The geometry data for the example presented in Section
4.3 was provided by nTopology, Inc. free of charge. The opinions and
conclusions presented in this paper are those of the authors and do not
necessarily reflect the views of the sponsoring organizations.

Author Contributions The conceptual design and software develop-
ment of the presented preprocessor were led by K. Doble and N.
Wunsch. M. R. Schmidt and L. Noël have made significant contribu-
tions to both the design and development of the preprocessor. J. A.
Evans and K. Maute supervised the presented work and contributed to
the conceptual design. The numerical studies presented were performed
by N.Wunsch. The first draft of the manuscript was written by N.Wun-
sch. All authors revised and commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Data availability The numerical studies presented in this paper used the
open-source software Moris, available at https://github.com/kkmaute/
moris. The input decks for the presented exampleproblems are archived
in the same repository under /share/papers/XTK_paper. ”LaTeX type-
set, incl. hyperlinks, if this helps: “ The numerical studies presented
in this paper used the open-source software Moris, available at
github.com/kkmaute/moris. Theinput decks for the presented example
problems are archived in the same repository under /share/papers/XTK
_paper.”

Declarations

Conflict of interest J. A. Evans is an editor of Engineering with Com-
puters. The other authors have no Conflict of interest to declare that are
relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. (2024)Moris –multi-physics optimization research and innovation
system. https://github.com/kkmaute/moris, accessed: 2024-10-25

2. Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust
Nitsche’s formulation for interface problems. Comput Methods
Appl Mech Eng 225:44–54. https://doi.org/10.1016/j.cma.2012.
03.008

3. Arndt D, BangerthW, BergbauerM et al (2023) The deal.II library,
version9.5. JNumerMath31(3):231–246. https://doi.org/10.1515/
jnma-2023-0089

4. Arvo J, Kirk D (1989) A survey of ray tracing acceleration tech-
niques. An Introduction to Ray Tracing, Academic Press, Ltd, pp
201–262

5. Babuška I, Melenk JM (1997) The partition of unity method. Int J
Numer Methods Eng 40(4):727–758

123

https://github.com/kkmaute/moris
https://github.com/kkmaute/moris
https://github.com/kkmaute/moris/
https://github.com/kkmaute/moris/tree/main/share/papers/XTK_paper
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/kkmaute/moris
https://doi.org/10.1016/j.cma.2012.03.008
https://doi.org/10.1016/j.cma.2012.03.008
https://doi.org/10.1515/jnma-2023-0089
https://doi.org/10.1515/jnma-2023-0089

Engineering with Computers

6. Badia S, Martín AF, Principe J (2018) Fempar: An object-oriented
parallel finite element framework. Arch Comput Methods Eng
25(2):195–271

7. Badia S, Verdugo F, Martín AF (2018) The aggregated unfitted
finite element method for elliptic problems. ComputMethods Appl
Mech Eng 336:533–553. https://doi.org/10.1016/j.cma.2018.03.
022

8. Badia S, Martorell PA, Verdugo F (2022) Geometrical discretisa-
tions for unfitted finite elements on explicit boundary represen-
tations. J Comput Phys 460:111162. https://doi.org/10.1016/j.jcp.
2022.111162

9. Balay S, Gropp WD, McInnes LC, et al (1997) Efficient manage-
ment of parallelism in object-oriented numerical software libraries.
In: Modern software tools for scientific computing. Springer, p
163–202, https://doi.org/10.1007/978-1-4612-1986-6_8

10. BazilevsY, CaloVM,Cottrell JA et al (2010) Isogeometric analysis
using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–
263. https://doi.org/10.1016/j.cma.2009.02.036

11. Belytschko T, Black T (1999) Elastic crack growth in finite
elements with minimal remeshing. Int J Numer Methods Eng
45(5):601–620

12. BurmanE (2010)Ghost penalty. CRMath 348(21–22):1217–1220.
https://doi.org/10.1016/j.crma.2010.10.006

13. Burman E, Hansbo P (2010) Fictitious domain finite element meth-
ods using cut elements: I. A stabilized Lagrangemultiplier method.
Comput Methods Appl Mech Eng 199(41–44):2680–2686. https://
doi.org/10.1016/j.cma.2010.05.011

14. Burman E, Hansbo P (2012) Fictitious domain finite element meth-
ods using cut elements: II. A stabilized Nitsche method. Appl
Numer Math 62(4):328–341. https://doi.org/10.1016/j.apnum.
2011.01.008

15. Burman E, Hansbo P (2014) Fictitious domain methods using cut
elements: III. A stabilized Nitsche method for Stokes’ problem.
ESAIM Math Modelling Numer Anal-Modél Math Anal Numér
48(3):859–874. https://doi.org/10.1051/m2an/2013123

16. Burman E, Claus S, Hansbo P et al (2015) Cutfem: discretizing
geometry and partial differential equations. Int J Numer Meth Eng
104(7):472–501. https://doi.org/10.1002/nme.4823

17. BurmanE,HansboP, LarsonMG(2022)Cutfembased on extended
finite element spaces. Numer Math 152(2):331–369. https://doi.
org/10.1007/s00211-022-01313-z

18. Burman E, Hansbo P, Larson MG et al (2023) Extension opera-
tors for trimmed spline spaces. Comput Methods Appl Mech Eng
403:115707. https://doi.org/10.1016/j.cma.2022.115707

19. Claus S, Burman E, Massing A (2015) CutFEM: A stabilised
Nitsche XFEM method for multi-physics problems. In: 23rd Con-
ference on Computational Mechanics, ACME 2015, 8-10 April
2015, Swansea, Wales, UK, Swansea University, pp 171–174

20. Coradello L, D’angella D, Carraturo M et al (2020) Hierarchically
refined isogeometric analysis of trimmed shells. Comput Mech
66:431–447. https://doi.org/10.1007/s00466-020-01858-6

21. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis:
toward integration of CAD and FEA. JohnWiley Sons. https://doi.
org/10.1002/9780470749081

22. Duarte CA, Babuška I, Oden JT (2000) Generalized finite element
methods for three-dimensional structural mechanics problems.
Comput Struct 77(2):215–232. https://doi.org/10.1016/S0045-
7949(99)00211-4

23. Duarte CA, Hamzeh O, Liszka T et al (2001) A generalized finite
element method for the simulation of three-dimensional dynamic
crack propagation. Comput Methods Appl Mech Eng 190(15–
17):2227–2262. https://doi.org/10.1016/S0045-7825(00)00233-4

24. Düster A, Parvizian J, Yang Z et al (2008) The finite cell method for
three-dimensional problems of solid mechanics. Comput Methods
Appl Mech Eng 197(45–48):3768–3782. https://doi.org/10.1016/
j.cma.2008.02.036

25. Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis
function removal. Adv Model Simul Eng Sci 5(1):1–19. https://
doi.org/10.1186/s40323-018-0099-2

26. Elhaddad M, Zander N, Bog T et al (2018) Multi-level hp-finite
cell method for embedded interface problems with application in
biomechanics. Int J Numer Methods Biomed Eng 34(4):e2951.
https://doi.org/10.1002/cnm.2951

27. Fernández-Méndez S, Huerta A (2004) Imposing essential bound-
ary conditions inmesh-free methods. ComputMethods ApplMech
Eng 193(12–14):1257–1275. https://doi.org/10.1016/j.cma.2003.
12.019

28. Fries TP, Belytschko T (2010) The extended/generalized finite ele-
ment method: an overview of the method and its applications. Int
J Numer Meth Eng 84(3):253–304. https://doi.org/10.1002/nme.
2914

29. Fries TP, Omerović S (2016) Higher-order accurate integration
of implicit geometries. Int J Numer Meth Eng 106(5):323–371.
https://doi.org/10.1002/nme.5121

30. Fromm JE, Wunsch N, Xiang R et al (2023) Interpolation-based
immersed finite element and isogeometric analysis. Comput Meth-
ods Appl Mech Eng 405:115890. https://doi.org/10.1016/j.cma.
2023.115890

31. Fromm JE, Wunsch N, Maute K et al (2024) Interpolation-based
immersogeometric analysis methods for multi-material and multi-
physics problems.ComputMech 75:1–25. https://doi.org/10.1007/
s00466-024-02506-z

32. Gabriel E, Fagg GE, Bosilca G, et al (2004) Open mpi: Goals,
concept, and design of a next generation mpi implementation.
In: Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 11th European PVM/MPI Users’ Group Meet-
ing Budapest, Hungary, September 19-22, 2004. Proceedings 11,
Springer, pp 97–104, https://doi.org/10.1007/978-3-540-30218-
6_19

33. Groen JP, LangelaarM,SigmundOet al (2017)Higher-ordermulti-
resolution topology optimization using the finite cell method. Int J
Numer Meth Eng 110(10):903–920. https://doi.org/10.1002/nme.
5432

34. GundermanD,WeissK, Evans JA (2021)High-accuracymesh-free
quadrature for trimmed parametric surfaces and volumes. Com-
put Aided Des 141:103093. https://doi.org/10.1016/j.cad.2021.
103093

35. Gunderman D, Weiss K, Evans JA (2021) Spectral mesh-free
quadrature for planar regions bounded by rational parametric
curves. Comput Aided Des 130:102944. https://doi.org/10.1016/
j.cad.2020.102944

36. Hansbo A, Hansbo P (2002) An unfitted finite element method,
based onNitsche’s method, for elliptic interface problems. Comput
Methods Appl Mech Eng 191(47–48):5537–5552. https://doi.org/
10.1016/S0045-7825(02)00524-8

37. HansboA,HansboP (2004)Afinite elementmethod for the simula-
tion of strong andweak discontinuities in solidmechanics. Comput
Methods Appl Mech Eng 193(33–35):3523–3540. https://doi.org/
10.1016/j.cma.2003.12.041

38. Heimann F, Lehrenfeld C, Preuß J (2023) Geometrically higher
order unfitted space-time methods for pdes on moving domains.
SIAM J Sci Comput 45(2):B139–B165. https://doi.org/10.1137/
22M1476034

39. HernándezV,Román JE,TomásA, et al (2007)Krylov-Schurmeth-
ods in SLEPc.Universitat Politecnica deValencia, TechRepSTR-7

40. Hsu MC, Kamensky D, Bazilevs Y et al (2014) Fluid-structure
interaction analysis of bioprosthetic heart valves: significance of
arterial wall deformation. Comput Mech 54:1055–1071. https://
doi.org/10.1007/s00466-014-1059-4

41. Hsu MC, Kamensky D, Xu F et al (2015) Dynamic and fluid-
structure interaction simulations of bioprosthetic heart valves using
parametric design with T-splines and fung-type material mod-

123

https://doi.org/10.1016/j.cma.2018.03.022
https://doi.org/10.1016/j.cma.2018.03.022
https://doi.org/10.1016/j.jcp.2022.111162
https://doi.org/10.1016/j.jcp.2022.111162
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1016/j.cma.2009.02.036
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.cma.2010.05.011
https://doi.org/10.1016/j.cma.2010.05.011
https://doi.org/10.1016/j.apnum.2011.01.008
https://doi.org/10.1016/j.apnum.2011.01.008
https://doi.org/10.1051/m2an/2013123
https://doi.org/10.1002/nme.4823
https://doi.org/10.1007/s00211-022-01313-z
https://doi.org/10.1007/s00211-022-01313-z
https://doi.org/10.1016/j.cma.2022.115707
https://doi.org/10.1007/s00466-020-01858-6
https://doi.org/10.1002/9780470749081
https://doi.org/10.1002/9780470749081
https://doi.org/10.1016/S0045-7949(99)00211-4
https://doi.org/10.1016/S0045-7949(99)00211-4
https://doi.org/10.1016/S0045-7825(00)00233-4
https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1186/s40323-018-0099-2
https://doi.org/10.1186/s40323-018-0099-2
https://doi.org/10.1002/cnm.2951
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1002/nme.2914
https://doi.org/10.1002/nme.2914
https://doi.org/10.1002/nme.5121
https://doi.org/10.1016/j.cma.2023.115890
https://doi.org/10.1016/j.cma.2023.115890
https://doi.org/10.1007/s00466-024-02506-z
https://doi.org/10.1007/s00466-024-02506-z
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1002/nme.5432
https://doi.org/10.1002/nme.5432
https://doi.org/10.1016/j.cad.2021.103093
https://doi.org/10.1016/j.cad.2021.103093
https://doi.org/10.1016/j.cad.2020.102944
https://doi.org/10.1016/j.cad.2020.102944
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1016/j.cma.2003.12.041
https://doi.org/10.1016/j.cma.2003.12.041
https://doi.org/10.1137/22M1476034
https://doi.org/10.1137/22M1476034
https://doi.org/10.1007/s00466-014-1059-4
https://doi.org/10.1007/s00466-014-1059-4

Engineering with Computers

els.ComputMech55:1211–1225. https://doi.org/10.1007/s00466-
015-1166-x

42. Hughes TJ (2012) The finite element method: linear static and
dynamic finite element analysis. Courier Corporation

43. Jenkins N, Maute K (2016) An immersed boundary approach for
shape and topology optimization of stationary fluid-structure inter-
action problems. Struct Multidiscip Optim 54:1191–1208. https://
doi.org/10.1007/s00158-015-1229-9

44. Jiang W, Spencer BW, Dolbow JE (2020) Ceramic nuclear fuel
fracture modeling with the extended finite element method. Eng
Fract Mech 223:106713. https://doi.org/10.1016/j.engfracmech.
2019.106713

45. Johansson A, Kehlet B, Larson MG et al (2019) Multimesh finite
element methods: Solving PDEs on multiple intersecting meshes.
Comput Methods Appl Mech Eng 343:672–689. https://doi.org/
10.1016/j.cma.2018.09.009

46. Kamensky D, Hsu MC, Schillinger D et al (2015) An immer-
sogeometric variational framework for fluid-structure interaction:
Application to bioprosthetic heart valves. Comput Methods Appl
Mech Eng 284:1005–1053. https://doi.org/10.1016/j.cma.2014.
10.040

47. Lehrenfeld C (2016) High order unfitted finite element methods on
level set domains using isoparametric mappings. Comput Methods
ApplMechEng 300:716–733. https://doi.org/10.1016/j.cma.2015.
12.005

48. Lehrenfeld C, Heimann F, Preuß J et al (2021) ngsxfem: Add-on
to ngsolve for geometrically unfitted finite element discretizations.
J Open Source Softw 6(64):3237. https://doi.org/10.21105/joss.
03237

49. Lian Z, Leidinger L, Hartmann S et al (2025) Cross-talk effects
in trimmed isogeometric shells and the control point duplication
approach. Comput Methods Appl Mech Eng 438:117849. https://
doi.org/10.1016/j.cma.2025.117849

50. Main A, Scovazzi G (2018) The shifted boundary method for
embedded domain computations. Part I: Poisson and Stokes prob-
lems. J Comput Phys 372:972–995. https://doi.org/10.1016/j.jcp.
2017.10.026

51. Main A, Scovazzi G (2018) The shifted boundary method
for embedded domain computations. part ii: Linear advection-
diffusion and incompressible Navier-Stokes equations. J Comput
Phys 372:996–1026. https://doi.org/10.1016/j.jcp.2018.01.023

52. Martorell PA, Badia S (2024)High order unfitted finite element dis-
cretizations for explicit boundary representations. J Comput Phys
511:113127. https://doi.org/10.1016/j.jcp.2024.113127

53. McCalpin JD et al (1995)Memory bandwidth andmachine balance
in current high performance computers. IEEE Comput Soc Tech
Comm Comput Archit (TCCA) Newsl 2:19–25

54. Melenk JM, Babuška I (1996) The partition of unity finite
element method: basic theory and applications. Comput Meth-
ods Appl Mech Eng 139(1–4):289–314. https://doi.org/10.1016/
S0045-7825(96)01087-0

55. Moës N, Dolbow J, Belytschko T (1999) A finite element method
for crack growth without remeshing. Int J Numer Methods Eng
46(1):131–150

56. Mourrain B, Rouillier F, Roy MF (2004) Bernstein’s basis and real
root isolation. PhD thesis, INRIA, France

57. Müller B, Kummer F, Oberlack M (2013) Highly accurate surface
and volume integration on implicit domains by means of moment-
fitting. Int J Numer Meth Eng 96(8):512–528. https://doi.org/10.
1002/nme.4569

58. Nagai T (2018) Space-time extended finite element method with
applications to fluid-structure interaction problems. PhD thesis,
University of Colorado at Boulder, US

59. Nitsche J (1971) Über ein variationsprinzip zur lösung von
dirichlet-problemen bei verwendung von teilräumen, die keinen
randbedingungen unterworfen sind. In: Abhandlungen aus dem

mathematischen Seminar der Universität Hamburg, Springer, pp
9–15, https://doi.org/10.1007/BF02995904

60. Noël L, Duysinx P (2017) Shape optimization of microstructural
designs subject to local stress constraints within an XFEM-level
set framework. Struct Multidiscip Optim 55:2323–2338. https://
doi.org/10.1007/s00158-016-1642-8

61. Noël L, Maute K (2023) XFEM level set-based topology opti-
mization for turbulent conjugate heat transfer problems. Struct
Multidiscip Optim 66(1):2. https://doi.org/10.1007/s00158-022-
03353-3

62. Noël L, Schmidt M, Doble K et al (2022) XIGA: An extended
isogeometric analysis approach for multi-material problems. Com-
put Mech 70(6):1281–1308. https://doi.org/10.1007/s00466-022-
02200-y

63. Parvizian J, Düster A, Rank E (2007) Finite cell method: h-and
p-extension for embedded domain problems in solid mechanics.
Comput Mech 41(1):121–133. https://doi.org/10.1007/s00466-
007-0173-y

64. de Prenter F, Lehrenfeld C, Massing A (2018) A note on the sta-
bility parameter in Nitsche’s method for unfitted boundary value
problems. Comput Math Appl 75(12):4322–4336. https://doi.org/
10.1016/j.camwa.2018.03.032

65. de Prenter F, Verhoosel CV, van Brummelen EH et al (2023) Stabil-
ity and conditioning of immersed finite element methods: analysis
and remedies. Archiv Comput Methods Eng. https://doi.org/10.
1007/s11831-023-09913-0

66. Reuter M,Mikkelsen TS, Sherbrooke EC et al (2008) Solving non-
linear polynomial systems in the barycentric Bernstein basis. Vis
Comput 24:187–200. https://doi.org/10.1007/s00371-007-0184-x

67. Ruess M, Tal D, Trabelsi N et al (2012) The finite cell method
for bone simulations: verification and validation. Biomech Model
Mechanobiol 11:425–437. https://doi.org/10.1007/s10237-011-
0322-2

68. Saad Y (1993) A flexible inner-outer preconditioned gmres algo-
rithm. SIAM J Sci Comput 14(2):461–469. https://doi.org/10.
1137/0914028

69. Sauerland H, Fries TP (2013) The stable XFEM for two-
phase flows. Comput Fluids 87:41–49. https://doi.org/10.1016/j.
compfluid.2012.10.017

70. Saye RI (2022) High-order quadrature on multi-component
domains implicitly defined by multivariate polynomials. J Com-
put Phys 448:110720. https://doi.org/10.1016/j.jcp.2021.110720

71. Schenk O, Gärtner K (2004) Solving unsymmetric sparse sys-
tems of linear equations with pardiso. Futur Gener Comput Syst
20(3):475–487. https://doi.org/10.1016/j.future.2003.07.011

72. SchenkO, Gärtner K (2006) On fast factorization pivotingmethods
for sparse symmetric indefinite systems. Electron Trans Numer
Anal 23(1):158–179

73. Schillinger D, RuessM (2015) The Finite CellMethod: A review in
the context of higher-order structural analysis of CAD and image-
based geometric models. Arch Comput Methods Eng 22:391–455.
https://doi.org/10.1007/s11831-014-9115-y

74. Schillinger D, Harari I, Hsu MC et al (2016) The non-symmetric
Nitsche method for the parameter-free imposition of weak bound-
ary and coupling conditions in immersed finite elements. Comput
Methods Appl Mech Eng 309:625–652. https://doi.org/10.1016/j.
cma.2016.06.026

75. Schmidt M, Noël L, Doble K et al (2023) Extended isogeometric
analysis ofmulti-material andmulti-physics problems using hierar-
chical B-splines. Comput Mech 71(6):1179–1203. https://doi.org/
10.1007/s00466-023-02306-x

76. Scholz F, Jüttler B (2019) Numerical integration on trimmed three-
dimensional domains with implicitly defined trimming surfaces.
Comput Methods Appl Mech Eng 357:112577. https://doi.org/10.
1016/j.cma.2019.112577

123

https://doi.org/10.1007/s00466-015-1166-x
https://doi.org/10.1007/s00466-015-1166-x
https://doi.org/10.1007/s00158-015-1229-9
https://doi.org/10.1007/s00158-015-1229-9
https://doi.org/10.1016/j.engfracmech.2019.106713
https://doi.org/10.1016/j.engfracmech.2019.106713
https://doi.org/10.1016/j.cma.2018.09.009
https://doi.org/10.1016/j.cma.2018.09.009
https://doi.org/10.1016/j.cma.2014.10.040
https://doi.org/10.1016/j.cma.2014.10.040
https://doi.org/10.1016/j.cma.2015.12.005
https://doi.org/10.1016/j.cma.2015.12.005
https://doi.org/10.21105/joss.03237
https://doi.org/10.21105/joss.03237
https://doi.org/10.1016/j.cma.2025.117849
https://doi.org/10.1016/j.cma.2025.117849
https://doi.org/10.1016/j.jcp.2017.10.026
https://doi.org/10.1016/j.jcp.2017.10.026
https://doi.org/10.1016/j.jcp.2018.01.023
https://doi.org/10.1016/j.jcp.2024.113127
https://doi.org/10.1016/S0045-7825(96)01087-0
https://doi.org/10.1016/S0045-7825(96)01087-0
https://doi.org/10.1002/nme.4569
https://doi.org/10.1002/nme.4569
https://doi.org/10.1007/BF02995904
https://doi.org/10.1007/s00158-016-1642-8
https://doi.org/10.1007/s00158-016-1642-8
https://doi.org/10.1007/s00158-022-03353-3
https://doi.org/10.1007/s00158-022-03353-3
https://doi.org/10.1007/s00466-022-02200-y
https://doi.org/10.1007/s00466-022-02200-y
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1016/j.camwa.2018.03.032
https://doi.org/10.1016/j.camwa.2018.03.032
https://doi.org/10.1007/s11831-023-09913-0
https://doi.org/10.1007/s11831-023-09913-0
https://doi.org/10.1007/s00371-007-0184-x
https://doi.org/10.1007/s10237-011-0322-2
https://doi.org/10.1007/s10237-011-0322-2
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0914028
https://doi.org/10.1016/j.compfluid.2012.10.017
https://doi.org/10.1016/j.compfluid.2012.10.017
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1007/s11831-014-9115-y
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1007/s00466-023-02306-x
https://doi.org/10.1007/s00466-023-02306-x
https://doi.org/10.1016/j.cma.2019.112577
https://doi.org/10.1016/j.cma.2019.112577

Engineering with Computers

77. Scholz F, Jüttler B (2020)High-order quadrature on planar domains
based on transport theorems for implicitly defined moving curves.
Tech. rep., Tech. Rep. 89, Nationales Forschungsnetzwerk, Geom-
etry+ Simulation (May 2020)

78. Schott B, Wall W (2014) A new face-oriented stabilized XFEM
approach for 2d and 3d incompressible Navier-Stokes equations.
Comput Methods Appl Mech Eng 276:233–265. https://doi.org/
10.1016/j.cma.2014.02.014

79. Schweitzer MA (2012) Generalizations of the finite element
method. Central Eur J Math 10:3–24. https://doi.org/10.2478/
s11533-011-0112-1

80. Shalf J (2020) The future of computing beyond Moore’s Law. Phi-
los TransRSocAMathPhysEngSci 378(2166):20190061. https://
doi.org/10.1098/rsta.2019.0061

81. Soghrati S (2014) Hierarchical interface-enriched finite element
method: an automated technique for mesh-independent simula-
tions. J Comput Phys 275:41–52. https://doi.org/10.1016/j.jcp.
2014.06.016

82. Soghrati S, Geubelle PH (2012) A 3D interface-enriched gener-
alized finite element method for weakly discontinuous problems
with complex internal geometries. Comput Methods Appl Mech
Eng 217:46–57. https://doi.org/10.1016/j.cma.2011.12.010

83. Soghrati S, Aragón AM, Armando Duarte C et al (2012) An
interface-enriched generalized fem for problems with discontinu-
ous gradient fields. Int J NumerMeth Eng 89(8):991–1008. https://
doi.org/10.1002/nme.3273

84. Stanford JW, Fries TP (2019) A higher-order conformal decom-
position finite element method for plane B-rep geometries. Com-
put Struct 214:15–27. https://doi.org/10.1016/j.compstruc.2018.
12.006

85. Stewart GW (2002) AKrylov-Schur algorithm for large eigenprob-
lems. SIAM JMatrixAnal Appl 23(3):601–614. https://doi.org/10.
1137/S0895479800371529

86. Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary
convex/concave volumes and integration of weak form in enriched
partition of unity methods. Comput Methods Appl Mech Eng
258:39–54. https://doi.org/10.1016/j.cma.2013.01.007

87. Terada K, Asai M, Yamagishi M (2003) Finite cover method for
linear and non-linear analyses of heterogeneous solids. Int J Numer
Meth Eng 58(9):1321–1346. https://doi.org/10.1002/nme.820

88. VanDijk NP,Maute K, LangelaarM et al (2013) Level-set methods
for structural topology optimization: a review. Struct Multidiscip
Optim 48:437–472. https://doi.org/10.1007/s00158-013-0912-y

89. Verhoosel CV, Van Zwieten G, Van Rietbergen B et al (2015)
Image-based goal-oriented adaptive isogeometric analysis with
application to the micro-mechanical modeling of trabecular bone.
Comput Methods Appl Mech Eng 284:138–164. https://doi.org/
10.1016/j.cma.2014.07.009

90. Villanueva CH, Maute K (2017) CutFEM topology optimization
of 3d laminar incompressible flow problems. Comput Methods
ApplMechEng 320:444–473. https://doi.org/10.1016/j.cma.2017.
03.007

91. VlahinosM, O’Hara R (2020) Unlocking advanced heat exchanger
design and simulation with nTop platform and ANSYS CFX.
NTopology Inc 8

92. Wade C, Williams G, Connelly S et al (2023) OpenVCAD:
An open source volumetric multi-material geometry com-
piler. Addit Manuf 79(103912):103912. https://doi.org/10.1016/
j.addma.2023.103912

93. Zhang J, Zhebel E, van den Boom SJ et al (2022) An object-
oriented geometric engine design for discontinuities in unfit-
ted/immersed/enriched finite element methods. Int J Numer Meth
Eng 123(21):5126–5154. https://doi.org/10.1002/nme.7049

94. Zhang L, Gerstenberger A, Wang X et al (2004) Immersed finite
element method. Comput Methods Appl Mech Eng 193(21–
22):2051–2067. https://doi.org/10.1137/1.9780898717464.ch8

95. Zhang Z, Jiang W, Dolbow JE et al (2018) A modified moment-
fitted integration scheme for X-FEM applications with history-
dependent material data. Comput Mech 62:233–252. https://doi.
org/10.1007/s00466-018-1544-2

96. ZhuT,Atluri S (1998)Amodified collocationmethod and a penalty
formulation for enforcing the essential boundary conditions in
the element free galerkin method. Comput Mech 21(3):211–222.
https://doi.org/10.1007/s004660050296

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cma.2014.02.014
https://doi.org/10.1016/j.cma.2014.02.014
https://doi.org/10.2478/s11533-011-0112-1
https://doi.org/10.2478/s11533-011-0112-1
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1016/j.jcp.2014.06.016
https://doi.org/10.1016/j.jcp.2014.06.016
https://doi.org/10.1016/j.cma.2011.12.010
https://doi.org/10.1002/nme.3273
https://doi.org/10.1002/nme.3273
https://doi.org/10.1016/j.compstruc.2018.12.006
https://doi.org/10.1016/j.compstruc.2018.12.006
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1016/j.cma.2013.01.007
https://doi.org/10.1002/nme.820
https://doi.org/10.1007/s00158-013-0912-y
https://doi.org/10.1016/j.cma.2014.07.009
https://doi.org/10.1016/j.cma.2014.07.009
https://doi.org/10.1016/j.cma.2017.03.007
https://doi.org/10.1016/j.cma.2017.03.007
https://doi.org/10.1016/j.addma.2023.103912
https://doi.org/10.1016/j.addma.2023.103912
https://doi.org/10.1002/nme.7049
https://doi.org/10.1137/1.9780898717464.ch8
https://doi.org/10.1007/s00466-018-1544-2
https://doi.org/10.1007/s00466-018-1544-2
https://doi.org/10.1007/s004660050296

	Enriched immersed finite element and isogeometric analysis: algorithms and data structures
	Abstract
	1 Introduction
	2 Numerical framework
	2.1 Discretization
	2.2 Element formation and integration
	2.3 Face-oriented ghost stabilization
	3 Mesh generation
	3.1 Preliminaries
	3.2 Conformal foreground mesh generation
	3.2.1 Regular subdivision
	3.2.2 Templated subdivision

	3.3 Generation of topological information
	3.4 Enrichment
	3.5 Face-oriented ghost stabilization
	3.6 Parallelization

	4 Numerical examples
	4.1 Multiple thin beams
	4.2 Brick wall
	4.3 Scaffold sandwich

	5 Conclusion

	Appendix A Glossary
	Appendix B Additional Algorithms and Data Structures
	B.1 Determining Ancestry of New Vertices
	B.2 Entity Connectivity
	B.3 Foreground Mesh – Complete Data Structure
	Acknowledgements
	References

