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SUMMARY 

 

This dissertation has focussed on the validation of extreme wave and crest height 

distribution. The empirical distribution was simulated based on laboratory and 

field measurement water elevation data. Both sets of data indicated the presence 

of abnormal wave ensuring the extreme condition aimed at in this study.   

The literature review was performed to identify improved predictions of wave and 

crest height distribution. Wave height predictions which are involved in this study 

were based on a modified Weibull distribution. Along with these predictions, a 

later formula that involved nonlinear factor of wave steepness is also applied. 

Meanwhile, nonlinear factors have been increasingly involved in crest height 

prediction. The modified formulae which are compared include the nonlinear 

factor of water depth, wave steepness, and directional factor. In all cases, standard 

linear Rayleigh distribution is referred to in relation to how good the improved 

formulae are in predicting the distributions.  

Based on wave height validation, Rayleigh shows better accuracy than the 

modified Weibull distributions. The standard Rayleigh distribution seems to fit the 

laboratory data, but deviates more widely from the field measurement data. The 

inadequacy of Rayleigh based on field validation showed the need of better 

prediction of nonlinear wave height in nature. Validation showed that the newly 

developed Rayleigh-Stokes prediction comes out with a slightly better prediction. 

Nonetheless, it still largely deviates from the observed distribution. 

On the other hand, the inadequacy of the Rayleigh distribution is seen very clearly 

in relation to crest height validation. Newer nonlinear formulae are found to give a 

better prediction showing a stronger nonlinearity affect on crest height in nature. 

However these models show discrepancies from one another. It is possibly caused 

by the different methods underpinning the development of these formulae and the 

way nonlinear factors are included in their prediction.   
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1 INTRODUCTION 

Engineering problems are closely related to natural phenomena which behave 

randomly. Based on this fact, it is strongly suggested that field measurements are 

undertaken to complement every engineering activity. This effort will prevent the 

loss of time and money which might be caused by delays, such as caused by 

accidents, and other related factors.  

Field observation will enable engineers to understand the characteristics 

geographical nature of a particular site. Random data which was obtained from the 

observation will be analysed by applying specific engineering procedures. The 

product of this analysis will then be used as load factor in designing various civil 

engineering structures.  

In order to obtain useful parameters from the random observation, engineers need 

to utilise the theory of probability and statistics. The theory of probability helps 

engineers in getting the visual image of frequency of the random observed event. 

Likewise, the theory of statistics assists in developing characteristics of interest 

from the random processes in nature.     

 

Figure  1-1 Offshore platform under storm conditions in Western Norway  

Source: http://skywatch-media.com/2008/01/storm-hammers-norway-oil-platform-shut.html  

Understanding the nature of ocean water is becoming increasingly important along 

with the advancement of offshore technology. The latest concern relating to ocean 

water is given to wave and crest height prediction. Recent studies focus on the 

extreme waves which have caused serious problem to the offshore operations. 
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Inappropriate design wave and crest height has caused serious damage to offshore 

platforms. Severe storms for example impaired or at least delayed offshore 

operation as depicted in Figure 1-1 where storms shut down an oil platform in 

western Norway. For this reason, it is important to have a precise prediction of the 

behavior of extreme waves.  

The conditions which were described in the previous paragraph form the motive 

of this study. The natural event which will be discussed in this study is wind-

generated waves under extreme conditions. Two primary wave parameters which 

are going to be compared are wave and crest height which will be presented in 

probability distribution. Focus will be given mainly to the uppermost region of 

wave and crest height value.  

1.1 Background 

Although it is visibly easy to recognise the presence of wave and crest 

qualitatively in nature, there are still few quantitative predictions of wave and 

crest height distribution (Forristall 2000). Many scientists have argued over the 

adequacy of first order linear prediction on wave and crest distribution. They 

believe that waves in nature are actually nonlinear so that standard linear 

distribution is no longer suitable to be used in practice. 

Following their arguments, new modified empirical formulae were developed 

based on the second and the third order theories of Stokes. Initial improvements of 

standard linear wave height model were done by fitting the measurement data 

using Weibull’s distribution. Different scale and shape parameters of Weibull 

were suggested by Haring (1976 cited Nerzic and Prevosto 1998), Forristall (1978 

cited ibid.), and Krogstad (1985 cited ibid.). A further study by Nerzic and 

Prevosto (ibid.) modified the linear prediction of Rayleigh using third order 

Stokes. The Rayleigh-Stokes model involves the nonlinear factor of wave 

steepness in its wave height prediction.  

Along with the newly developed method for prediction of wave height, 

nonlinearity factors of wave crest were explored deeper in order to result in better 

prediction of crest height. The initial effort of developing crest height distribution 

was done by Jahn and Wheeler (1972 cited Prevosto 2000.) based on the linear 

transformation of Rayleigh. Nonlinear effect of water depth is considered in their 
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formula. Later, scientists found that crest height is strongly influenced by the 

wave steepness: as a result, Tayfun (1980 cited Forristall 2000) and Huang (1986 

cited ibid.) came out with a new formula derived from the narrow band model. 

Wave steepness is also considered by Kriebel-Dawson (1993 cited ibid) who 

developed crest height models from 2D irregular second order Stokes. Taking this 

a step further Forristall tried to create formulae that involved both water depth and 

wave steepness based on the perturbated narrow band model. One newest crest 

prediction of Prevosto which is based on the perturbated Weibull model will also 

be considered as the one and only formula that engages directional spreading. The 

Rayleigh-Stokes prediction for crest height is also discussed alongside the Ochi 

distribution which considered spectral width factor in the formula.     

Validations have been done along with the development of wave and crest height 

prediction; nevertheless, there are still disagreements on how well these models fit 

the measurement data. Many factors cause the discrepancies such as the location 

of study, measurement techniques, and the characteristics of wave data used for 

validation.  

Current validation uses laboratory simulation and field observation data.  Six-day 

records which were taken from North Alwyn, North Sea present the fully 

developed multidirectional sea where wave interaction happens. On the other 

hand, hours of laboratory simulated water elevation records are considered to 

represent an idealised unidirectional irregular wave.  

1.2 Objectives 

This study is mainly aimed at validating new developed nonlinear prediction of 

wave and crest height distribution. There is still no one source of literature that 

presents all complete theories on the prediction of crest and wave height 

distribution. For this reason, an initial literature survey is also included as one of 

the aims. The objectives of this study are focused in the following points: 

• Finding, studying and simulating new developed formulas of wave and 

crest height distributions 
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• Knowing how well the modified distributions of wave and crest height 

compared with the linear and nonlinear prediction using laboratory and 

field measurement data 

• Analysing the causes of discrepancies between models and determining 

the factors that affect accuracy of wave and crest height probability. 

1.3 Structure of the Report 

The report is divided into five chapters. The first chapter is an introduction to the 

study including background, scoping, objectives, and the structure of the report.  

The literature review is presented following the introduction. The literature review 

presents theories that support the work and analysis. They consist of the basic 

understanding of probability and statistical theory, the theory of irregular waves, 

and various predictions of wave and crest height distribution.  

The laboratory simulation and field measurement were not conducted by the 

author because it is not the main aim of this study. Nevertheless, general 

information concerning the records will be explained in the third chapter. Chapter 

three will discuss the methodology which is used in the study.  

The results, discussion and analysis are presented in the fourth chapter. This 

chapter presents the analysis of water elevation distribution (validation of 

Gaussian assumption), zero-crossing wave, validation of wave height distribution, 

and validation of crest height distribution. Relevant discussion and analysis 

follows the results of numerical analysis. 

Finally, the overall conclusions and recommendations are presented in the last 

chapter.  This chapter closes the study of “Validation of Extreme Wave and 

Height Distribution Using Laboratory Simulation and Field Measurement Data”.   
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2 LITERATURE REVIEW 

2.1 Probability and Statistic 

Observation is an important part of planning to describe the natural behaviour of 

the observed object. This activity is done to optimise the time and the cost of the 

operation stage. Engineering deals with fluctuations of natural phenomena which 

are uncertain. The uncertainties happen even in the same location under the same 

condition. This is referred to as a random event. For this reason, site observation is 

necessary to compensate for the uncertainties in design and planning. Section 2.1 

discusses the probability and stochastic theory of stochastic processes which is 

referred to many text books (eg. Wurdjanto 2004, Papoulis 1990, Berry and 

Lindgren 1990). 

2.1.1 Stochastic Process 

There are two ways to deal with uncertain phenomena. The first method is called 

the deterministic analysis (Naess 2007). This method requires a full history of the 

related event. Another approach is stochastic analysis. In stochastic analysis, the 

statistical concept is used to represent the event. This subchapter presents the 

latter where it will later be shown that it is wise to use the probability and statistic 

to deal with the uncertainty of nature.  

Many physical events of interest to the engineering discipline are stochastic 

processes. On the examination of a number of records, it can be seen that each 

record is different; even when they are developed under the same conditions. It is 

hard to draw a pattern of the behaviour of these physical phenomena that are very 

irregular. The irregularity is clearly shown when a closer look of the record is 

taken. It is not impossible that striking features are found in the observation 

especially when data are zoomed. It shows that there are substantial differences 

between the records. Nevertheless, considering all records they appear somewhat 

similar to each other. For this reason, some basic assumptions are taken in 

analysing the stochastic processes.  

Using mathematical definition, a particular phenomenon defined as X(t) is called a 

stochastic process if X(t) represents a random variable for each time value of t 
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(ibid.). In this case t extends between certain intervals from possible extreme 

condition of negative infinite -∞ and positive infinite ∞. In order to undertake a 

stochastic analysis of the physical events in nature, two fundamental assumptions 

are assumed. Those assumptions are that the stochastic process follows the 

stationary and ergodic laws. Each of these two definitions is explained below.   

2.1.2 Definition of Probability 

Probability can be defined as the possibility of occurrence of one specific event 

relative to the total events. Based on the fundamental theory of probability, a 

group of data consists of three main parts. The first part is sample point which is 

defined as a particular element of data denoted as x in Figure 2-1. One or more 

sample points clustered form a subset denoted as X. All subsets and sample points 

are located in the sample space symbolised as S.  

x1

x4

x3
x2

x5
x6

x7

x8

X1

X2 X3

S

 

Figure  2-1 Illustration of data components in probability 

The previous figure can also be expressed by the following mathematical term: 

• x is the element of S denoted as x ∈  S 

• X is the subset of S denoted as X ⊂  S 

• x is the component the event X  denoted as x ∈X 

In another words, each event may be represented by each of its elements 

(assuming x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8) as follows: 

• X1 is an event when X = x1  

• X2 is an event when X = {x2, x3, x4} or {x2 < X < x5} 

• X3 is an event when X = {x5, x6, x7, x8} or {x5 < X < x8}  
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Based on the previous definition, X refers to random variables. In this study, X can 

be replaced as wave height or crest height in the sample space where x is the value 

of each variable. The probability of a variable X is defined as the sum of x in the 

event, denoted as n, compared with the sum of x in all events, denoted as N. The 

mathematical term is written in the following: 

Pr (X) = n / N              (Equation  2-1) 

Where  

 Pr (X)  = the probability of an X event 

 n = the number of components in the event 

 N  = the total components of all events 

2.1.2.1 Cumulative Distribution Function 

Before discussing cumulative distribution function, it is necessary to touch on a 

term of probability mass function, denoted by p(x). Distribution mass function is a 

function that expresses the probability of random variable X. A mathematical 

expression of this distribution is noted in the following: 

p (x) = Pr (X=x) for all value of x        (Equation  2-2) 

Cumulative distribution function, usually denoted as F(x) is a function that 

expresses the probability distribution in the interval of -∞ to x. The mathematical 

expression of this type of distribution is written in the following: 

F (x) = Pr (X < x)       (Equation  2-3) 

Pr (X < x) means probability of random variables less than or equal to x. In 

relation to distribution mass function, the probability is written as follows: 

( ) ( )∑
≤

=≤
xx

i
i

xpxXPr        (Equation  2-4) 

( ) ( )∑
≤

=
xx

i
i

xpxF        (Equation  2-5) 

For a specific interval, for example between x and x + dx, the cumulative 

distribution function is expressed in the following: 
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( ) ( ) ( )∑∑
≤+≤

−=+≤≤
xx

i
dxxx

i
ii

xpxpdxxXxPr       (Equation  2-6) 

2.1.2.2 Probability Density Function 

Another way to show the probability of particular random variables beside 

probability mass function is probability density function, denoted as f(x). 

Probability density function for specific interval x and x + dx is denoted as 

follows: 

( ) ( ) ( )( )

( )
dx

xdF
dx

xFdxxFxf

=

−+
=

      (Equation  2-7) 

The previous mathematical term shows that probability density function is the first 

derivation of cumulative distribution function. Or from another approach, the 

cumulative distribution function is the integration of probability density function 

between -∞ and x. 

( ) ( )∫
∞−

=
x

dxxfxF        (Equation  2-8) 

In this integration, the probability is not represented by f(x) itself but by the 

notation of f(x)dx which is equal to the probability of X in the interval of -∞ and x, 

denoted by Pr (x < X < x+dx). The relationship mathematically is written in the 

following: 

( ) ( ) ( )

( ) ( )xFdxxF

dxxfdxxfdxxXx
xdxx

−+=

−=+≤≤ ∫∫
∞−

+

∞−

Pr
       (Equation  2-9) 

The probability density function is usually presented in the form of a two 

dimensional Cartesian coordinate where the x and y axes show respectively the 

random variable X and its probability density function. The probability value can 

be obtained from the integration of the curve in a specific interval which is equal 

to the area beneath the curve of certain interval.  

Data from the field measurement are discrete. To get a representative distribution 

of the data, it is necessary to determine an appropriate value of dx. The chosen 

value should be able to cope with the whole range of measured data to construct 
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continuous distribution.  Some theories which are used in this study to decide an 

appropriate number of intervals are depicted in the following: 

• Nk =1         (Equation  2-10) 

• Nk log3.312 +=  (Sturges 1926)    (Equation  2-11) 

• 
iqr
Nrk
.2

. 3/1

3 =   (Freedman and Diaconis 1981) (Equation  2-12) 

 Where  

 r   = the range of minimum and maximum value of data 

 N  = the amount of data 

 iqr = the difference between the third and first quartile  

2.1.3 Statistics 

In connection with probability theory, statistical terms are introduced. These 

statistical terms help to present the characteristic value of random variables. The 

terms which will be discussed in this chapter can generally be grouped into three, 

which are expected value, central value and distribution value. Each of these 

groups will be concisely explained below. 

2.1.3.1 Expected Value 

Concerning the continuity of data, there are two ways of presenting the expected 

value of particular random variables. For discrete data which has probability mass 

function p(xi), the expected value E(x) is denoted as: 

[ ] ( )∑=
ixall

ii xpxXE         (Equation  2-13) 

While the expected value of continuous random variables is presented in the form 

of integration of its density function:  

[ ] ( )dxxxfXE ∫
∞

∞−

=        (Equation  2-14) 

The expected values also apply for functional variables; for example g(x), denoted 

as follows: 
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( )[ ] ( ) ( )∑=
ixall

ii xpxgXgE      for discrete variables  (Equation  2-15) 

( )[ ] ( ) ( )dxxfxgXgE ∫
∞

∞−

=                      for continuous variables (Equation  2-16) 

In addition, and related to moment theory, the expected value of certain function 

g(X) = Xk is equal to kth moment:  

( )[ ] [ ]k
k XEXgEm ==       (Equation  2-17) 

Along with the previous theory, the expected value of g(X) = (X – μ)k is called kth 

spectral moment which is denoted as follows: 

( )[ ] ( )[ ]k
k XEXgE μμ −==       (Equation  2-18) 

The relationship between the first three stages of moment and spectral is 

elaborated in the following: 

Moment 

[ ] μ== XEm1   (mean value)      (Equation  2-19) 

[ ] 2
2

2
2 μμ +== XEm        (Equation  2-20) 

[ ] 3
33

3
3 3 μμμμ ++== XEm       (Equation  2-21) 

Central Moment 

( )[ ] 01 =−= μμ XE        (Equation  2-22) 

( )[ ] 212
2

2 mmmXE −=−= μμ  (variant)    (Equation  2-23) 

( )[ ] 32213
3

3 23 mmmmmXE +−=−= μμ     (Equation  2-24) 

2.1.3.2 Central Value 

There are several terms which are used to define the central value of random 

variables. The most common term is known as mean value. Mean value represents 

the average of random variable X which is stated in both discrete and continuous 

data.  

 [ ] ( ) ∑∑
=

===
N

i
i

x
iiX x

N
xpxXE

i 1

1μ      (Equation  2-25) 
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( )∫
∞

∞−

= dxxfxXμ        (Equation  2-26) 

Another term correspondent with the dominant value in the distribution is called 

modus. Modus represents the most frequent value that occurs from random 

variable X. This statistical parameter shows the X value with the highest 

probability of occurrence.  

Another central value which represents the middle value of sorted random 

variables, X, is known as median, denoted as F(xm) = 0.5. In statistics, the term of 

quartile is also used. Quartiles divide data which have been sorted from the 

maximum value to the minimum value into four regions. As result, there are three 

quartile values of data. The most common is known as second quartile Q2. It 

represents the value of the mid data, the same definition as median. Along with 

second quartile, Q2, there are also first and third quartiles. They represent the mid 

variable of the first and the last one fourth of the sequence, respectively. 

2.1.3.3 Distribution Values: Variance and Standard Deviation  

There are three parameters which are generally used to show the distribution value 

of data. Those parameters are variant, standard deviation, and coefficient of 

variant. Variant is the second central moment of the expected value, denoted as 

Var[X]. (Note that it is different from variance definition of water surface 

elevation which is defined as the zero moment of the wave energy spectrum.) 

[ ] ( ) ( )

( )∑

∑

=

−=

−=

N

i
xi

x
ixi

x
N

xxXVar
i

1

2

2

1

Pr

μ

μ

      (Equation  2-27) 

For continuous X with probability density function of f(x), the variant is 

formulated in the following: 

[ ] ( ) ( )∫
∞

∞−

−= dxxfxXVar x
2μ       (Equation  2-28) 

It can also be written in term of the mean square value and the square of the mean 

value as follows: 

[ ] ( ) 22
xxEXVar μ−=        (Equation  2-29) 
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The second distribution parameter known as standard deviation, denoted as σx, is 

obtained from the root of variant. In mathematics, it is stated as follows: 

( )XVarX =σ        (Equation  2-30) 

Both variant and standard deviation give information on how wide the distribution 

of the data is. In addition a dimensionless parameter is introduced. It is known as 

the coefficient of variation (cov) which is the ratio between the standard deviation 

and the mean value showing the relative deviation of data. 

X

X

μ
σ

=cov         (Equation  2-31) 

2.1.3.4 Distribution Values: Skewness and Kurtosis 

Skewness is a statistical parameter that measures distortion of particular 

distribution and indicates direction of the distortion. For this purpose, skewness is 

related closely to the shape of the probability distribution; it indicates the 

asymmetry of the distribution. The value of skewness can be negative to positive. 

Positive skewness indicates that the tail part of the distribution is extending out to 

the right side; this type of skewness is called positively skewed. On the other 

hand, negative skewness indicates that the distribution is extending to the left, also 

known as negatively skewed.   

Initial mathematical expression of skewness as written in Karl L. Wuensch’s 

paper (2007) was proposed by Karl Pearson in 1895. Based on Pearson, skewness 

is measured by standardising the difference between the mean and the mode. The 

mathematical expression is depicted in the following: 

σ
μ esk mod−

=   where sk denotes the skewness    (Equation  2-32) 

Nevertheless, sample modes cannot be used as an appropriate representation of 

population modes (Wuensch 2007). To overcome this barrier, Stuart and Ord in 

1994 (ibid) suggested a new approach in estimating the difference between the 

mean and the mode by multiplying the difference between the mean and the 

median by three. Their suggestion was later re-written by many statisticians by 

excluding the three. Their formula causes the skewness value to vary between -1 

and 1.  
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( )
σ

μ mediansk −
=        (Equation  2-33) 

There are some other definitions of skewness proposed; however the one which is 

used in this study is known as Fisher’s skewness. This type of skewness is 

calculated using the third moment about the mean.  

( )
3

3

σ
μ

n
X

sk ∑ −
=        (Equation  2-34) 

The skewness shows the tendency of data deviation about the mean. The great 

value of skewness lies in the fact that it indicates the presence of outliers in the 

data. For a data sample, the Fisher’s skewness is calculated as follows in a slightly 

different format:  

( )( )∑ ⎟
⎠
⎞

⎜
⎝
⎛ −

−−
=

3

21 σ
μX

nn
nsk      (Equation  2-35) 

Again, as discussed by Wuensch (ibid.), another distribution values is known as 

kurtosis. This parameter was introduced by Karl Pearson in 1905 in a simple 

mathematical form as follows: 

( )
34

4

−
−

= ∑
σ

μ
n
X

kr    where kr denotes the kurtosis   (Equation  2-36) 

Although it was introduced by Pearson, the above equation is commonly referred 

to as Fisher’s kurtosis or kurtosis excess. Kurtosis is a measure of how flat the top 

of a particular symmetric distribution is compared with the normal distribution 

which has the same value of variance. For a data sample, an unbiased estimator of 

kurtosis is presented in the following: 

( ) ( )
( )( )( )

( )
( )( )32

13
321

1 24

−−
−

−
−−−

−+
= ∑

nn
n

nnn
Xnn

kr
μ

    (Equation  2-37) 

When the value of kurtosis is less than zero, it shows a more flat-topped 

distribution; another term for this condition is ‘platykurtic’. However, if the value 

of kurtosis is greater than zero, it means the distribution is less flat-topped 

‘leptokurtic’. The condition in between where kurtosis is equal to zero is referred 

to as an equally flat-topped distribution or ‘mesokurtic’. Related to the size of the 
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tail, leptokurtic is also referred to as the fat in the tails while platykurtic as the thin 

in the tails (Wuensch 2007).  

2.1.4 Stationary and Ergodicity 

Based on Naess (2007) there are actually several ways of defining stationary 

process. However, he chose to use the simplest definition. Stochastic process of 

X(t) can be defined as (weakly) stationary if the following two conditions are 

fulfilled. The first condition is that the expected value of X(t) denoted as E[X(t)] is 

constant. It is actually the same as saying the mean value is constant.  

mX = E[X(t)] = constant      (Equation  2-38) 

The second condition is that the expectation of random variable X(t) times the 

expected value of t added with a particular time interval τ, denoted as 

E[X(t)X(t+τ)] is independent of t. It can also be written that E[X(t)X(t+τ)] only 

depends on the time interval τ. The value of E[X(t)X(t+τ)] is known as auto 

correlation function.  

RX(τ) = E[X(t)X(t+τ)] = function only of τ    (Equation  2-39) 

The second common assumption is that the stochastic process is ergodic. If an 

event is said to be ergodic, then it is also automatically defined as stationary. 

Naess (ibid.) defined that a stochastic process is called ergodic if every ensemble 

mean can be replaced by a time averaged over a single realisation. As a result, 

each and every realisation has the statistical properties of the whole ergodic 

process. Under this assumption, a person may calculate the statistical properties of 

one single time history to represent the whole process. Fortunately, these concepts 

can be applied to the observation analysis of physical phenomena of engineering 

interest.      

2.1.5 Probability Distribution Function 

Statistical properties are used to represent the characteristic of a data set. Each 

property will affect the shape of the distribution. The most common type of 

distribution is known as Rayleigh distribution, which has one parameter 

determining the shape. One parameter which influences the distribution is the 
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mean square value (RD).  Some of the distributions are discussed briefly in the 

following: 

1. Normal Distribution (Gaussian Distribution) 
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Where:  

∑
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N
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1μ        (Equation  2-41) 
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i
xix x

N 1

21 μσ       (Equation  2-42) 

Normal distribution is characterised by following: 

• symmetric at x = μx      (Equation  2-43) 
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• ( ) ( ) 5.0PrPr =≥=≤ xx xx μμ     (Equation  2-46) 

 

2. Standard Normal Distribution 

Gaussian distribution with zero mean value and unit standard distribution is 

known as Standard Normal Distribution. This type distribution is written as 

follows: 

( ) ⎥
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⎛−= 2

2
1exp

2
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      (Equation  2-47) 

Where 

x

xx
Z

σ
μ−

=        (Equation  2-48) 

The standard normal distribution is characterized as follow: 

• symmetric at z = 0      (Equation  2-49) 

•  ( ) ( ) 5.00Pr0Pr =≥=≤= zz     (Equation  2-50) 
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• ( ) ( ) ( ) 01Pr1Pr **** ≥Φ−=+≤−=≥ zzzZzZ  (Equation  2-52) 
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  (Equation  2-53) 

• ( ) ( ) ( ) 0PrPr **** ≥Φ=+≤=−≥ zzzZzZ  (Equation  2-54) 

3. Rayleigh Distribution 

Related to wave height distribution, Rayleigh describes the peak to trough 

distribution of wave elevation. Cumulative and Density Rayleigh distribution 

are described as follows: 
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Where RD notes the distribution parameters which is mathematically written as 

follows: 

∑
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iD x

N
R
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21        (Equation  2-57) 

The root RD is known as root mean square which is denoted by xrms.    

4. Dimensional Rayleigh Distribution 

Dimensional Rayleigh Distribution has a fixed shape which is written as 

follows: 

( ) ( )2exp zzzf −=        (Equation  2-58) 

where 
rmsx
xz =        (Equation  2-59) 

This type of distribution was defined for ease in determining the value of x1/n.  
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Hence the value of xp can be determined if n is known. 
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( )nRx Dp ln=        (Equation  2-64) 

Mean value in Rayleigh distribution is represented by the first moment of its 

probability density function.  
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2.2 Irregular Waves 

A fundamental study of waves is known as linear wave theory. In this study, 

waves are considered to have a regular harmonic pattern. This simplification 

allows waves properties such as wave height, period, and direction to be 

quantified as deterministic values. Nevertheless realistic waves are random in 

nature. The real sea surface shows irregularities so that it is necessary to involve 

statistical calculation in determining its properties. This might complicate the 

process of determination; however, it represents the real nature of waves better. In 

contrast with the monochromatic wave that is considered to have constant 

properties, irregular wave is indicated by statistical variability; hence, the severity 

of the sea is denoted by these statistical properties.  

Monochromatic wave is rarely found in nature. This simplified wave appears only 

in laboratory simulation. A wave in nature which is quite similar to a 

monochromatic wave is swell wave. A swell in deep water travels for a long 

distance from the place it was generated. Although swell physically looks like 

regular monochromatic waves, it is basically irregular in nature. When a storm 

happens, there will be locally generated wind sea which consists of short-crested 

waves and is highly irregular in nature. Ocean wave surface in a particular 

location might consist of only swell or only sea or mix of swell and sea.  
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Recent engineering practice uses linear wave theory to estimate the properties of 

irregular waves using the linear spectral methods (Krogstad et al 2000). This 

application considers the ocean surface as a combination of numbers of individual 

waves which are generated at different locations and travel into the observed 

location. It does, however, ignore the nonlinear interaction between waves. For 

this reason, the wave recorded at a specific location will not consist of wave 

repetition; however, it will show random and irregular water elevation. Even 

though it is possible to observe each wave component, each of them will have 

large differences in their properties. Therefore it is expedient to present the 

properties of the waves in a relatively short time scale by statistical terms known 

as short-term statistics. These properties are the ones that indicate the severity of a 

particular sea. 

There are generally two approaches in dealing with irregular waves in a certain 

sea state of short-term statistics. The first method is the spectral method that 

involves Fourier Transform in its analysis. The second one is wave to wave (wave 

train) analysis. Wave train analysis uses the time history of sea surface at a 

particular point to define the wave properties.      

2.2.1 Short-term Statistics 

Short-term ocean wave is considered as a random process that depends on the 

time variable which is regulated based on probability theory (Chakrabarti 1987). 

In the case of wave analysis, the surface elevation is expressed as a stochastic 

process where it is constructed by random variables as a function of time. Two 

fundamental assumptions in implementing short term statistics are stationary and 

ergodic concepts. These two basic assumptions have been explained in the 

previous chapter.  

Based on the stationary assumption, wave properties of particular wave record are 

considered invariant over a specific time range (few hours). In other words, the 

expected value of the random variables X(t) is independent of time (time 

invariant). The next assumption of ergodicity allows the replacement of ensemble 

by time average of single realisation. Under this assumption, sample mean 

approaches the mean of the whole ensemble; and the variance of the sample 
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approaches the variance of the whole record. The statistical parameters which are 

usually used are explained in the following.  

Mean value of the process is defined as the expected value of x(t). The process has 

constant mean based on stationary assumption.  

( )[ ]txEx =μ         (Equation  2-66) 

Standard deviation is denoted by the square root of the variance which also has 

constant value due to stationary assumption.  

( )[ ]txVx =σ         (Equation  2-67) 

Auto correlation function which is depicted in the following depends only on the 

time difference τ = t2-t1 based on ergodicity assumptions.    

( ) ( ) ( )[ ]2121 ,, txtxEttR =       (Equation  2-68) 

Although the nature might not be as simple as this hypothesis, the concept of 

stationary and ergodicity is very important in the application of short term 

statistic. Another simplification is related to space. If the properties of particular 

event x(t) are also invariant in space, the process is called homogeneous. The 

stationary and homogeneous processes can be found in nature at specific times 

and space for only a few hours duration.  

2.2.2 Wave Properties 

There are two parameters which are commonly used as the indication of a 

particular wave record. Those parameters are wave period and wave height. Wave 

parameters of water surface elevation in time domain are defined based on zero-

crossing analysis. In the time domain, one period of wave is defined as the 

distance between particular directions of zero-crossing (down-crossing or up-

crossing) to the subsequent zero-crossing in the same direction. Additionally, one 

wave height is the difference between the maximum and the minimum water 

surface elevation in the pertinent wave.  

Zero down-crossing is the transition of surface elevation from the level above the 

mean to the level below the mean (IAHR 1986). In contrast, the transition of water 

surface elevation from the level below the mean to the level above the mean is 
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called zero-up crossing the wave. The difference between both zero-crossing 

definitions is illustrated in Figure 2-2. Revising the definition of wave height, 

different conventions have different definitions of wave height. It depends on 

whether the trough is referred to after or before the crest. According to the 

Permanent International Association of Navigation Congresses (PIANC) list, 

wave is the event between two successive down-crossings. This definition is 

analogous with the International Association of Hydraulic Research (IAHR) 

definition. Zero down-crossing is also the definition used by the majority of 

groups that deal with time domain wave analysis. For this reason, zero down-

crossing wave definition is used in the determination of wave properties in this 

study.   
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Figure  2-2 Zero up-crossing and down-crossing wave 
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Another term in time domain analysis is related to the local peaks and valleys of a 

wave. Any point in the record where its absolute surface elevation is higher than 

the adjacent elevations is named maxima. Maxima that occur on peak wave region 

must have a positive elevation so that they are called positive maxima. On the 

other hand, negative maxima are the ones located in the valley of a wave. As 

expected, a particular point in the time history is named minima when it has lower 

value compared with the adjacent elevations. Minima, so as with the maxima, are 

also divided into positive and negative based on their position with respect to 

mean water level. In addition, the highest positive of maxima is known as crest 

height while the deepest negative of minima is referred to as trough height. 

The total time of the record is called duration. A particular wave duration consists 

of periods. There are generally two definitions of a wave period. The first type is 

known as the zero-crossing period which is the distance between two successive 

zero down-crossings in time domain analysis. The other one is called the crest 

period. This period is defined as the distance between two successive crests in the 

record.    

Based on these definitions of wave parameters, sea state indicators are developed. 

These indicators are developed in statistical way which might be obtained directly 

from the time history of wave record or from its frequency domain representation. 

The following subsections describe those indicators. The most common used of 

significant wave height is discussed first.  

2.2.2.1 Significant Wave Heights 

Significant wave height was first introduced by Sverdrup and Munk in 1947 as the 

average wave height of the highest one third of all waves in a particular sea 

(Chakrabarti 1987). This definition was found to be close to the visual observation 

of wave height predicted by sailors.   

The significant wave height may be determined from a wave record in three 

different ways. In general the preliminary step is to calculate the number of waves 

(crest to trough) in the record, sort the height of the waves and take one third 

highest value. The average of this group of wave height represents the value of 

significant wave height.   



 22

∑
=

=
3/

1
3/1

3 N

i
iH

N
H        (Equation  2-69) 

N = number of individual wave heights  

Hi = record ranked highest to lowest    

Another method in determining significant wave height was introduced by Tucker 

in 1963. Based on his study, significant wave height can be approximated directly 

from the wave record if the highest crest height (ac) and the deepest trough height 

(at), and the total number of zero-crossings (Nz) are known.  

( )tcs aaCrH += 12         (Equation  2-70) 

Where Cr1 is a function of Nz 

( ) ( ) ( )[ ] 1212/1
1 ln247.0ln289.01ln

−−−− −+= zZZ NNNCr   (Equation  2-71) 

Significant wave height related to the total energy content in the wave spectrum is 

stated as a function of zeroth moment (m0).  Where mo is the same as the variance 

value of water surface elevation or in term of spectrum analysis, it is the same as 

the area under the wave energy density spectrum: 

04 mH s =         (Equation  2-72) 

2.2.2.2 Root Mean Square Wave Heights 

Another parameter of wave height is the root mean square wave heights. Applying 

the same procedure for taking the wave height, each of the wave heights is then 

squared. After adding up all the square wave heights, the total is then divided by 

the total number of waves. Finally the root of the mean square wave height is 

calculated. In mathematical notation, root mean square is noted in the following 

formulation: 
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On the other hand, root mean square wave height from the frequency domain is 

based on the zeroth moment (m0) as follows: 

022 mH rms =        (Equation  2-74) 
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The root mean square of the wave elevation is the same as the standard deviation 

value: 

0m=σ         (Equation  2-75) 

The discrete water elevation is obtained from the wave record at every time 

increment ∆tm while the wave amplitudes are gained from the maxima and 

minima of the record. The standard deviation value for water elevation can be also 

written as the following:  
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For simplification, Tucker generated the following formula based on the corrected 

wave elevation. 

( ) ||253.1 tησ =        (Equation  2-77) 

2.2.2.3 Maximum Wave and Crest Heights 

Wave height measurement which brings the most concern especially in the case of 

extreme conditions is maximum wave height. Maximum wave height is defined as 

the largest of all crests to adjacent trough value in the record (Chakrabarti 1987). 

It is also known as the measured maximum wave height.  

Nevertheless, in the case of determining elevation of a platform above mean sea 

level, the real concern is the height of crest. It is possible that the maximum wave 

height is not the one causing the maximum crest height. For this reason, along 

with maximum wave height, designers are turning their attention to the height of 

maximum crest. Maximum crest is the highest water elevation in the record with 

respect to mean water level. 

The most probable maximum wave height in a record can be estimated from the 

value of root mean square wave height or equivalently significant wave height. 

Assuming a narrow band spectrum of the record, Longuet-Higgins (1952 cited 

ibid.) derived a relationship between the most probable maximum wave height 

and the root mean square wave height for a specific number of waves which is 

depicted in the following formula: 
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This relationship can be used over a longer period of time by adjusting the value 

of N based on the mean of zero-crossing periods (Tz).  

2.2.2.4 Average Wave Period 

There are different definitions concerning the characteristic periods within a wave 

record. The most familiar terms are mean period, average zero-crossing period 

and peak period. Average wave period is the most common manifestation of a 

wave’s characteristics.   

There are two methods for determining the average wave period from time 

domain analysis. Both methods for average wave period are derived from the total 

duration of measurement (Ts). If zT denotes the mean zero-crossing period and Nz 

symbolised the number of zero-crossing then the following relationship can be 

derived: 

z

s
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N
T

T =          (Equation  2-79) 

On the other hand, if the total number of crest in the record is denoted by Nc, then 

the mean crest period cT is expressed as follow.  

c

s
c

N
T

T =         (Equation  2-80) 

Based on previous expressions, the difference of both zT  and cT  determines the 

width of the spectrum. If their values are close together, this means most of the 

individual waves cross the zero level. This indicates that the wave has a narrow 

band spectrum which means the energy of the wave is concentrated in a small 

frequency band.  

Another time domain wave period characteristic is known as significant wave 

period. As the significant wave height definition, significant wave period is also 

defined as the average of wave period of the highest one third in the record. 
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Taking the analysis from a frequency domain, mean wave period is calculated 

from the spectral moment denoted as mn. The nth order moment of an energy 

density spectrum is calculated based on the following relationship:  

dffSfm n
n )(

0
∫
∞

=            (Equation  2-81) 

First definition of mean period T01 is stated as the ratio between zeroth spectral 

moment (m0) and first spectral moment (m1). 
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0
1,0 m

m
T =         (Equation  2-82) 

Another definition of mean wave period of T02 is defined as the square root of 

zeroth spectral moment (m0) divided by second spectral moment (m2). 

Mathematical notation of T02 is presented in the following:  
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m
T =         (Equation  2-83) 

Another wave period characteristic based on frequency domain is the peak period 

denoted as T0 or Tp. Peak period is the period at which the energy density 

spectrum peaks.  

2.2.2.5  Spectral Width Parameters 

As mentioned in the previous chapter, spectral width parameters is denoted as ε is 

a function of the mean zero-crossing and mean crest periods. The value of width 

parameter ranges from 0 to1. Small value of ε indicates a narrow banded 

spectrum; while large value of ε, near to 1, points a broad banded spectrum. In 

time domain analysis, spectral width parameter εt is estimated as follows: 
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This equation means that if local peaks follow a corresponding zero-crossing then 

the value of cT  is close to the value of zT  so that cT / cT  near to 1 which result in 

εt ≈ 0. This condition represents a narrow band spectrum. On the other hand if 
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numbers of local peaks are found (Nc is large) then the crest period cT  is small. As 

a result εt ≈ 1 which indicates a broad-banded spectrum.  

In frequency domain, spectral width parameter is a function of the spectral 

moment. The relationship is depicted in the following: 
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Chakrabarti (2001) noted that a person should be careful in calculating high 

degree of moment from the spectrum. Attention should be paid to the noises 

because they can amplify the value of higher moment calculation so that 

calculation should be limited to a reasonable finite frequency. 

2.3 Wave and Crest Height Distribution 

Many ocean engineers must be familiar with the Rayleigh distribution. The 

Rayleigh distribution is the standard form of wave height which was initially 

suggested by Longuet-Higgins in 1952 (cited Forristall 1978) based on two 

fundamental assumptions. Wave height distribution of Rayleigh arrives from the 

assumption that ocean surface elevation follows the Gaussian distribution and has 

a narrow-band spectrum.  

A number of validations have been done to check the accuracy of the Rayleigh 

distribution on predicting the wave and crest height of ocean surface. However, 

there is still disagreement on how well the standard distribution matches the 

observed data (Forristall 1978). The emphasis is mainly on the high wave tail of 

the distribution because this extreme value was found to be the one which is 

responsible for the breakage of marine structures. 

In his paper, Forristall (1978) found that the Rayleigh distribution consistently 

over-predicted the wave height, mainly in the highest waves. His finding confirms 

the result of Thomson (1974 cited ibid.) who discovered a significant deviation 

between the data taken from the Coastal Engineering Research Center (CERC) 

coast station and the Rayleigh distribution at the high wave end of the distribution. 

However there are differences in how far Rayleigh over-predicts the highest 

observed wave even from the same location. Using the same data taken from the 
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Gulf of Mexico, Earle came out with 2% while Haring resulted in 10% over-

prediction of highest wave distribution (Forristall 1978).     

The concern over inaccuracy of the standard wave and crest height prediction has 

motivated scientists and engineers to develop improved formulae in wave and 

crest height distribution. Ocean waves in nature have higher crest and lower 

trough. This nonlinear behaviour of waves is suspected to be the major factor that 

causes the mismatch of the standard prediction. Nevertheless, these improved 

formulae show a significant difference from one another which is intolerable for 

design purposes (Nerzic and Prevosto 1998).  

Nerzic and Prevosto (ibid.) presume that the discrepancies between models are 

due to the differing t accuracy in presenting the wave properties. They found that 

the inaccuracy mostly happens in the prediction of rough sea states with steep 

waves. Their finding implicitly indicates that the linear representation of wave 

kinematics is inadequate, especially in predicting the extreme wave condition. The 

following sub-chapters present the development of prediction on wave and crest 

height distribution. These distributions will be elaborated on shortly.   

2.3.1 Wave Height Distribution 

In their paper, Nerzic and Prevosto (ibid.) undertook a brief survey on the 

development of wave and crest distribution. This sub-chapter represents the 

available wave height distribution taken from their survey as well as other 

distributions from various journals. The distributions are presented in exceeded 

probability of normalised variables.  

2.3.1.1 Rayleigh Distribution  

Rayleigh distribution is the standard form in predicting wave height and wave 

amplitude which is commonly used in practice. This distribution is derived from 

the Longuet-Higgins model which was initiated in 1952 (cited Forristall 1978). 

The model was developed based on its main assumption that sea surface is linear 

and follows the narrow-banded Gaussian process. The exceedance probability of 

Rayleigh is presented in the following. 
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From the previous formula, Q is denoting the probability of exceedance of X 

which is a normalised wave height against significant wave height (H/Hs). The 

wave height defined in this formula is the difference between the trough and the 

adjacent peak of zero-crossing waves. The significant wave height is defined as 

the average of the highest one third wave height in the distribution. For the sake of 

simplicity, significant wave height is often expressed as 04 m .The term ‘mo’ 

represents the zero-order moment of the wave spectrum which is equal to the 

variance of the sea surface elevation. However the analysis which will be done in 

this study will use the real definition of significant wave height. Lastly, the scale 

parameter for wave height distribution of Rayleigh which is denoted by θ is equal 

to 0.707.  

The Rayleigh distribution has been used by many new empirical wave height 

distributions as a reference. These new distributions were developed from the 

studies in the North Sea and the Gulf of Mexico. They were fitted against 

Rayleigh and resulted in a scale parameter q. The value of q varies between 0.63 

and 0.70. The earlier value of q is similar to the value proposed by Det Norske 

Veritas (DNV) in 1991. DNV proposed a value of 0.638 for the value of θ .  

2.3.1.2 Weibull Distribution 

While the Rayleigh distribution has only one scale parameter denoted byθ , 

Weibull distribution contains two determining parameters. Those parameters 

represent the scale and shape parameters which are denoted by θ and β  

respectively. In the Rayleigh distribution, β  is equal to 2. Taking the more 

general form of Weibull, some proposed values of θ and β  were introduced by 

scientists.  
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The above formula expresses the probability of exceedance based on the Weibull 

distribution. The probability depends on the normalised wave height (H/Hs). There 
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are two determining factors in this distribution which are θ for scale parameter and 

β for shape parameter.  

There have been scientists who tried to find the appropriate values of θ and β. 

They investigated it based on site measurements. In the late seventies, two values 

of the Weibull parameters were proposed. The values were derived based on the 

data taken from the Gulf of Mexico. Haring (1976 cited Nerzic and Prevosto 

1998) proposed a semi-empirical model based on the Rayleigh distribution 

counting certain nonlinearities factor. The modified distribution proposed by 

Haring is presented in the following: 

))(2exp()(Pr)( 2 xxxXobxQ βθ +−=>=      (Equation  2-88) 

The wave measurement in the Gulf of Mexico is based on Haring’s wave height 

distribution model. From the study which was done by Haring and his team, the 

proposed θ  and β  are respectively 0.968 and 0.176 (Nerzic and Prevosto 1998). 

Their study was then followed by Forristall who analysed 116 hours of hurricane 

generated waves in the Gulf of Mexico (Forristall 1978). He fitted the data 

empirically using generalised 2 parameters of Weibull and came out with the scale 

parameter of θ equal to 0.681 and shape parameter of β  equal to 2.126 (Nerzic 

and Prevosto 1998).  

Less than a decade after Haring and Forristall proposed their Weibull parameters, 

Krogstad in 1985 (cited ibid.) suggested another value of θ and β. His study was 

performed based on ocean data taken from three North Sea sites which have 

significant wave height of more than 5 metres. Krogstad found that the value of θ 

will be at the range of 0.73 and 0.75 while β varies between 2.37 and 2.50.   

2.3.1.3 Rayleigh-Stokes 

In their paper, Nerzic and Prevosto (ibid.) introduced a modified Rayleigh model 

of wave and crest height distribution. The model was developed considering the 

nonlinear factor of third-order Stokes expansion. They relate Rayleigh distribution 

with the shape and scale parameters of Gumbel. In the extreme statistic, 

asymptotic law for maxima based on Gumbel distribution is written: 
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The previous distribution of Gumbel assumes that the number of variables, N, is 

high enough and follows the Weibull distribution. The mode of N variables is 

denoted as Na  while Nb  is denoting the scale parameter. The parent distribution 

for both mode and scale parameters are: 

( )
N

aQ N
1

=         (Equation  2-90) 

( )N
N aNf

b 1
=         (Equation  2-91) 

Q(x) in the previous equation is denoting the probability of exceedance.  

From the parent distributions, considering two parameters of Weibull distribution, 

the value of mode and scale parameters for N variables are written as follows: 

( )( ) βθ /1log NaN =        (Equation  2-92) 

( ) ( ) ( )N
a

N
b N

N loglog /11 ββ
θ

β == −      (Equation  2-93) 

For Rayleigh distribution with β  = 2, the mode and scale parameters are 

becoming: 
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( )N
a

b N
N log2
=        (Equation  2-95) 

where m0 and N denote the variance of ocean surface and the number of wave 

respectively.  Taking the nonlinear effect of wave steepness from the third order 

Stokes, the mode and scale parameters of the non-normalised wave height of 

Gumbel distribution are formulated in the following: 

( )( )2
312 NmNHN akbaa +=       (Equation  2-96) 

( )( )2
3312 NmNHN akbab +=       (Equation  2-97) 

For deep water condition, the value of b3 is equal to 3/8. These values of mode 

and scale parameters are put back into the Gumbel distribution model.  
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2.3.2 Crest Height Distribution 

So as with the prediction of wave height, new empirical and heuristic crest height 

distributions have been proposed and they are different from one another 

(Forristall 2000). Crest height distributions which are presented in the following 

are mainly taken from the survey which was done by Forristall in 2000. In 

addition, Prevosto (2000), Rayleigh-Stokes of Nerzic and Prevosto (2003), and 

Ochi (1998) crest height distribution are also included.  

2.3.2.1 Rayleigh 

Standard distribution of Rayleigh is the form of the first order theory where ocean 

surface is presented as Gaussian narrow band spectrum. Different papers present 

this distribution in a different notation which often confuses the reader. In order to 

make it consistent the crest will be denoted as ‘c’ here after.  
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Having the same form as the wave height distribution, Q is denoting the 

probability of exceedance of C which is a normalised crest height against 

significant wave height (c/Hs). Q is the same as one minus the probability 

distribution function (Q = 1-F). The significant wave height is calculated as the 

average of the highest one third wave height in the distribution. Finally the 

determining factor of the crest distribution,θ , is equal to the root of one per eight 

or equal to 0.354. Another way to present the Rayleigh distribution is depicted in 

the following: 
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⎡
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2

8exp
s

C H
P ηηη       (Equation  2-100) 

Here, P represents the probability, cη presents the wave height and the same 

symbol of Hs as significant wave height is used. 
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2.3.2.2 Jahns and Wheeler - Haring 

In 1972, Jahns and Wheeler proposed an empirical modification of Rayleigh for 

wave-crest distribution taking into account the nonlinearities factor determined by 

the water depth. Their model includes elevated crest height at the moderate depth 

presented in the following formula (Prevosto 2000). 
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    (Equation  2-101) 

From the previous formula, d is denoting the water depth and σ signing the 

standard deviation of the ocean surface which can also be denoted as mo. 

However, they did not propose any specific value of 1γ  and 2γ .  

Finally approximately four years later, Haring together with Heideman proposed 

the parameter value of 1γ  = 4.37 and 2γ  = 0.57 based on empirical fitting of 376 

hours storm (Forristall 2000). The data was taken from the Gulf of Mexico, the 

North Sea and the Gulf of Alaska. Water depth factor is included in his formula; 

nonetheless, it does not depend on wave steepness. The coefficients are calculated 

based on wave measurement in the Gulf of Mexico.  

2.3.2.3 Tayfun – Huang 

In the eighties, Tayfun (1980 cited Forristall 2000) and Huang et al (1986 cited 

ibid.) tried to develop a crest height distribution formula based on second order 

Stokes model. They employed wave steepness factor into the distribution. 

Nevertheless, disagreement occurred between the authors concerning the exact 

formulation. A review by Tucker in 1991 on their formula is presented in the 

following (Forristall 2000). 
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2 1/218exp sHRc

R
cCP     (Equation  2-102) 

C in the above formula denotes crest height and Hs symbolises the significant 

wave height. An additional element in the Tayfun-Haring distribution is the 

inclusion of nonlinear factor of wave steepness. The wave steepness factor is 

denoted as R where R is equal to k*Hs. 
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2.3.2.4 Kriebel – Dawson 

In the same year when Tucker published his review, Kriebel and Dawson (1993 

cited ibid.) elaborated on a similar distribution as the one proposed by Tayfun and 

Haung. It was developed based on second-order Stokes in unidirectional narrow 

banded sea. The basic formulation of the nonlinear crest is depicted in the 

following: 

2

2
1 kaac +=         (Equation  2-103) 

Their formula contains the same parameter of R which represents the steepness 

factor. A perceptible difference is seen in that Kriebel and Dawson took out the 

square root form in their distribution (Forristall 2000). The formula is depicted as 

follows: 
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Nevertheless the above formula becomes negative when dealing with very large 

steepness. Improved distribution is later developed to encounter its defect. The 

new version was published in 1993 as follows: 
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2.3.2.5 Forristall 

In the late nineties, Forristall (2000) developed another model of crest height 

distribution based on second order simulation of ocean waves (Wolfram 2003). 

Forristall developed his crest distribution from the two parameters of Weibull:  
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Following earlier development of crest distribution, the modified Weibull should 

also contain water depth and steepness factors. For this reason, Forristall 

formulated each parameter as follows: 

rUS 3121 αααα ++=         (Equation  2-107) 
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2
43121 rr UUS βββββ +−−=       (Equation  2-108) 

where S1 denotes the steepness factor which is regulated by the significant wave 

height Hs and the mean wave period T1. Along with steepness factor Ur which is 

known as Ursell number which is included to bring water depth factor into the 

formulation. Both elements are presented in the following. 
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The next attempt was to determine the value ofα andβ  by fitting the formula to 

the simulated distribution based on Joint North Sea Wave Atmosphere Program 

(JONSWAP) spectrum. The fitting of the two dimensional simulation resulted in 

the following values: 

rUS 1060.02892.03536.0 12 ++=α      (Equation  2-111) 
2

12 0968.01597.22 rUS +−=β      (Equation  2-112) 

While the three dimensional simulation came out with another values as follow: 

rUS 0800.02568.03536.0 13 ++=α      (Equation  2-113) 
2

13 284.05302.07912.12 rr UUS +−−=β     (Equation  2-114) 

2.3.2.6 Prevosto 

The next advancement in crest height distribution was suggested by Prevosto 

(2000). Prevosto’s formulation is basically a nonlinear transformation of standard 

Rayleigh distribution (Wolfram and Venugopal 2003). The nonlinear element in 

the formulation is taken from the second order irregular wave. Basic formulation 

of the Prevosto nonlinear crest height is defined in the following: 
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Clin denotes the linear crest height where in the second part it is multiplied by TD 

and TS that represents the second order transfer function. Both transfer functions 

contain nonlinear factor of water depth and mean wave number so that in the last 
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component of Cr, wave steepness is accounted for. Both transfer functions are 

presented in the following:  

( ) ( ) mdiffm
D kcfT κ=        (Equation  2-116) 

( ) ( ) msumm
S kcfT κ=        (Equation  2-117) 

Where km denotes the mean wave number calculated from the dispersion relation. 

The general form of dispersion relation is presented in the following. Wolfram 

and Venugopal (2003) misprinted the dispersion relation in their paper; thus, in 

this study, this is rectified by putting the square sign on the right hand side 

element in the following equation. 

( ) ( )dkgkf mmm tanh2 2 =π       (Equation  2-118) 

Both coefficients cdiff and csum are determined by κ  which is equal to the 

multiplication between wave number and water depth ( dkm=κ ). Both 

coefficients are presented in the following. 
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( ) ( )[ ]2tanh1tanh κκκκ −+=Π      (Equation  2-121) 

Correction is made on equation 2-119 where it was printed as ( )2tanh4 κκ in 

Wolfram and Venugopal’s (2003) paper (For corrections to the cdiff formula, refer 

to the appendix in the earlier Prevosto paper (Prevosto et al .2000)) 

In addition, Prevosto included the additional factor of spectral band width and 

directional spreading into the formula. These factors are enclosed together with 

the significant wave height and the mean frequency shown in the following. 

sHss HH α=~              (Equation  2-122) 

mfmm ff α=~   with 
02

1
T

fm =       (Equation  2-123) 

where the modification factors denoted as α is expressed as follow. 
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=fmα         (Equation  2-125) 

The directional factor in the correction factor of significant wave height denoted 

as s, is the power of the equivalent cos2s spreading function for the wave energy 

spectrum at the peak frequency. As a result, the nonlinear transformation of 

standard Rayleigh distribution was proposed by Prevosto as follows: 
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Where  
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HsC α=1         (Equation  2-128) 

( ) ( )[ ]m
S

m
D fTfTCC += 2

12       (Equation  2-129) 

Referring to Wolfram and Venugopal’s (2003) paper, the author found two errors 

within the probability distribution formula of Prevosto printed in their paper. 

Correction is made for the coefficient C2 depicted above. In the reference paper, it 

was written ( ) ( )[ ] mm
S

m
D kfTfTCC += 2

12 , after confirming directly with Marc 

Prevosto himself (personal written communication, June 10, 2009) that C2 should 

be written as the one shown in equation-129. Wolfram and Venugopal has 

misprinted the formula of C2 by re-include average wave number, km, which has 

been considered in the transfer functions. Furthermore, confusion was also shown 

in the probability equation written in Wolfram and Venugopal’s paper. For this 

reason, a pair of brackets is added in equation 2-126 to mark that the division 

against 2C2 involved both –C1 and the squared numbers. 

The superiority of the Prevosto model is that it also includes the directional 

spreading. Additionally, it can also be applied to all water depths both in two 

dimensional or three dimensional events.    
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2.3.2.7 Rayleigh-Stokes 

As mentioned in the previous subchapter concerning wave crest distribution, 

Nerzic and Prevosto (2003) introduced a modified Rayleigh model that 

considering the nonlinear factor of third-order Stokes expansion. Having the same 

definition of Na  and Nb , the modified mode and scale parameters of the non-

normalised crest height of the Gumbel distribution are formulated in the 

following:   

( ) ( )( )2
321 NmNmNCN akbakbaa ++=      (Equation  2-130) 

( ) ( )( )2
32 321 NmNmNCN akbakbab ++=     (Equation  2-131) 

Having the same value of b3 equal to 3/8, a new coefficient of b2 is introduced 

which is equal to ½ for infinite water depth. The shape and scale parameters are 

used in the Gumbel distribution model for crest height as depicted in the 

following: 
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2.3.2.8 Ochi 

Crest distribution of Ochi used in this study is based on prediction of maxima 

(Ochi 1998). The development of Ochi’s formula is discussed very briefly in this 

subsection. The probability density equation of the positive maxima developed by 

Ochi is a function of zeroth spectral moment and spectral width density. If the 

maxima are denoted as ζ then the probability density function of the positive 

maxima as a function of normalised maxima 
0m

ζξ =  is formulated in the 

following.    
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         (Equation  2-133)  
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When assigning ε = 0, presenting narrow-band condition, previous equation forms 

the Rayleigh distribution. While for wide-band distribution with ε = 1, the 

probability distribution for infinite number of frequencies becomes 
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Note: These equations can also be applied for the negative minima. 

In order to get the formula of distribution function, the previous formula of 

probability density function should be integrated. The integration of the 

probability density function of wave maxima as a function of normalised maxima 

0m
ζξ =  is presented in the following equation: 
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3 METHODOLOGY 

This chapter presents the methodology used in validating the theoretical 

distribution of wave and crest distribution using field and laboratory 

measurements. Data collection is not part of the study; however, the general 

principal of both measurements will be discussed in this chapter. The work of the 

current study focuses on time history and statistical analysis using observation 

data. The analysis was executed in order to get the wave properties needed to 

simulate both empirical and theoretical distributions of wave and crest height.  

The field measurement data used in this study is North Sea water elevation which 

was measured in November 1997. Water elevation was measured for a week 

during storm conditions using a wave height altimeter. Along with field 

measurements, laboratory simulations were carried out in the hydrodynamics 

laboratory of the University of Southampton as depicted in Figure 3-1. The 

laboratory wave generations were based on the empirical spectrum of Pierson 

Moskowitz.   

 

Figure  3-1 Hydrodynamics laboratory wave flume  

Using both types of water elevation data, time history analysis was undertaken 

numerically in MATLAB. Water elevation data which are kept as DAT or BIN 

files are loaded into the interpreter to be analysed further. There are three types of 

laboratory data which differ based on predicted significant wave height. Two of 
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them (50 mm and 75 mm) need to be calibrated; the calibration factor converts 

raw data in volt to meters. Laboratory data of 100 mm has been presented in 

meters as well as the field measurement data. 

The first step after conversion (the two sets of laboratory data) is to ensure that the 

average water elevation is zero. After ensuring zero mean conditions, statistical 

properties of water elevation; in particular distribution factor of variance, were 

calculated to be used in later simulation of wave and crest distribution. Zero mean 

water elevation data are then analysed statistically in order to get the probability 

distribution. The empirical distribution of water elevation is then compared with 

the theoretical Gaussian distribution.     

6.2535 6.254 6.2545 6.255 6.2555 6.256 6.2565 6.257

x 10
4

-4

-3

-2

-1

0

1

2

3

4

time (sec)

w
at

er
 e

le
va

tio
n 

(m
)

H

Tz

C
Tc

 

Figure  3-2 Wave properties used in this study 

There are two types of waves based on zero-crossing definition which are zero up-

crossing and zero down-crossing waves. Analysis of zero-crossing waves is 

presented to get some idea of how both definitions differ in the case of high 

waves. However, the down-crossing definition is used in this study following the 

definition used by most working groups. Based on this agreement, wave properties 

which are used in this study are shown in Figure 3-2. Based on agreed zero 

crossing definition, wave height, wave period, and crest height are acquired from 

each water elevation data.  
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Wave periods are processed statistically in order to get the mean period which 

later determines the wave number. This number is composed of the steepness 

factor of the theoretical prediction of nonlinear wave and crest height distribution. 

Wave and crest height which have been acquired are processed statistically to get 

the empirical probability distribution of exceedance. The distributions are first 

compared with the theoretical linear distribution of Rayleigh before being 

validated by the modified theoretical distribution. 
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Figure  3-3 Diagram of the methodology used in this study 

The improved formulae of wave and crest height distributions were gathered from 

various journals. Discussion concerning these formulae has been presented in the 

literature review. These theoretical probability distributions of exceedance are 
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compared with the empirical distribution. The main focus is on the highest value 

of wave and crest height. Finally discussion and analysis are drawn from each 

comparison. Holistic methodology is shown in Figure 3-3. 

3.1 Time Series Analysis: Water Surface Elevation and Wave Properties 

Determination 

Analysis of water surface elevation using time series analysis is fundamental for 

scientists and engineers who work with physical oceanography. At this stage, a 

person no longer deals with idealised monochromatic waves. Time series analysis 

uses the real complex and random data of ocean surface elevation. As discussed in 

the literature study, random irregular ocean waves are presented as a result of the 

interaction of multiple single frequency waves with differing wavelengths, 

frequencies, wave height and direction of propagation (Whitford 2001b). 

Nevertheless, probability and statistics analysis is the method which is used in this 

study. The statistical properties of ocean waves are determined from the time 

history recorded by a stationary observer.  

Water surface elevations of random waves are commonly presented as theoretical 

Gaussian probability density function. If η denotes the water elevation then the 

probability density function of Gaussian is expressed in the following: 
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Nonetheless, the statistical distribution of water surface elevation is not the main 

interest of the engineers. Wave along with crest height, in this case, is considered 

to be the main concern for engineering purposes, especially their extreme values. 

For this reason, the following part describes the procedures for obtaining the wave 

and crest height distribution from time history of ocean surface elevation.  

Before discussing the process of taking the wave and crest height, it is necessary 

to check whether the mean wave elevation is equal to zero. In the case where 

average water elevation is not zero, the record needs to be corrected to get zero 

mean water levels. In the case where the average is not zero, water elevation data 

should be firstly subtracted by the initial average. Wave height analysis was 

conducted by taking individual waves in the record; hence, the time series was, 
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firstly, divided into individual waves. New waves begin when the water elevation 

crosses down the mean water level. The wave height of an individual wave is 

computed by taking the difference between the maximum and minimum water 

surface elevation of each individual waves. Along with this process, the crest 

height is acquired from the highest water elevation in each wave. The time 

duration of one individual wave defines the period of a wave.  

As we are dealing with random waves, one record consists of many individual 

waves, where each record is associated with different wave height, crest height 

and period. Therefore, they have to be presented in the form of statistical 

parameters. The results of the statistical analysis of these parameters characterise 

the inherent signal.  

Wave height distribution is different from the distribution of water elevation 

described previously. Longuet Higgins (1952 cited Whitford 2001b) found that 

the distribution of wave height can be approximated using the Rayleigh 

probability distribution.     
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where the root mean square wave height (Hrms) is defined as: ∑
=

=
M

j
jrms H

M
H

1

21  

with M being the number of waves under considerations and Hj is the jth wave of 

the group M 

3.1.1 Water Surface Elevation Analysis 

Raw data which is used in this study is a random water surface elevation from 

field measurement and voltage measurement of laboratory simulation which is 

later converted into water elevation data. The field data consist of 412 records 

from approximately one week’s measurements. Each measurement is 20 minutes 

long with the 5 water elevation data taken every second.  

As mentioned previously, the mean water level should be zero, so that re-

arrangement of water elevation data has to be conducted initially. In order to have 

sufficient wave components, sampling duration should be carefully considered. 

Short term statistics, which was discussed in the previous chapter, describes the 
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probability of occurrence of wave height and wave crest that might occur during 

one particular observation at a stationary point.  

Water surface analysis can be processed directly from the raw data. The most 

important parameters of the raw elevation data is the variance and standard 

deviation. Using these values, the distribution of water elevation, wave, and crest 

height will be normalised.  

In the determination of bin (interval of data) size, maximum and minimum water 

elevation is investigated. It is important to include all the water elevation data. 

The difference between these data determines the width of each bin. After 

knowing the distribution of the surface elevation of each bin, the probability 

density function of the surface elevation data is presented. For a discrete data, the 

percentage of water elevation η in bin i is defined as: 
T

i

N
N  

where Ni is the number of η values in bin i and NT is the total number of η values 

in all bins.  

The next step is to determine the probability density of bin i denoted as p(ηi). It is 

less obvious compared with the previous definition. The idea is to create a 

representation value of each bin that will be equal to the percentage of 
T

i

N
N . 

Something to be aware of is that the integral of probability density function must 

be equal to 1.  

( ) 1≡∫
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ηη dp         (Equation  3-3) 

The probability density of bin i is expressed as follows: 

( )
η

η
Δ

=
T

i
i N

Np         (Equation  3-4) 

(where Δη us the bin size and the units of p(η) are m-1)   

Where in the finite number of data, the probability density is expressed in the 

following.  
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3.1.2 Wave and Crest Height Analysis 

The first step in analysing the wave and crest height is to conduct the zero-

crossing wave. Each zero-crossing wave has the wave height, crest height and 

period. Each of these was defined at the beginning of this subchapter. The 

properties which were gained are then sorted from lowest to highest. Similar to the 

method applied for water surface elevation, the bin width is determined based on 

the range of the maximum and minimum height. Afterwards, the probability 

distribution of wave and crest height are developed. Taking wave height as a 

representation the mathematical notation is presented as follow 

( )
HH

HHp
T

i
i Δ
=        (Equation  3-6) 

where  

Hi: the number of waves in bin i  

HT: the total number of waves in the record 

ΔH is the bin width  

The statistical distribution of wave and crest height are then compared with the 

theoretical Rayleigh distribution. The same step is conducted for constructing the 

cumulative distribution function taking the cumulative frequency of all data less 

than or equal to a particular bin. The percentage of waves having a height equal to 

or less than H is presented in the following: 
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Where the probability of exceedance is equal to one minus the cumulative 

distribution 



 46

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

2

exp1
rmsH

HHP ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

2

exp1
rmsH

HHP   (Equation  3-8) 

3.2 Field Observation 

In order to validate the available prediction of wave and crest height distribution, 

field measurement data is required. In this study, the wave data was taken from 

the North Alwyn Metocean Station in the northern most part of the North Sea. The 

measurement was taken at an approximate water depth of 130 metres. The gauges 

installation was intended as part of the research which is funded by the 

TotalFinaElf Corporation. This is one form of oil and gas companies’ contribution 

to marine research.  

The wave elevation data were measured using three Thorn EMI infrared laser 

wave height altimeters. The sensors are installed in three different positions. The 

first position denoted as M is called the Marex monitor. The second sensor was 

located on the North East corner monitor denoted by NEc. The last one was set on 

the walkway denoted by Ww. The layout is depicted in the following Figure 3-4 

and the angles between monitor is illustrated in Figure 3-5. 

Wave height meter
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Figure  3-4 Sensor position on North Alwyn “A” 
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Note : Exaggerated for clarity. Np and Ep are platform north and platform east. 

Figure  3-5 The angles between the three monitors 

The wave elevation data which is used in this study is taken from the North Sea 

storm in November 1997. The storm is identified as storm 149. A whole week’s 

data were taken between 16th and 22nd November 1997. There are approximately 

412 pieces of data, each of which contains 6000 wave elevations. Each 

measurement was conducted for 20 minutes or 1200 second so that the interval 

between water elevations is 0.2 second. The significant wave height of the North 

East corner storm and its duration are shown in Figure 3-6 below.   

 

Figure  3-6 Storm 149: Significant wave height with storm duration  
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3.3 Laboratory Simulation 

3.3.1 The Flume 

The simulation of non-linear wave was done by a flume in The Hydrodynamics 

Laboratory, Department of Civil Engineering and Environment, University of 

Southampton. The flume dimension is approximately 12 metres x 0.5 metres x 1 

metre for length, width, and height respectively. For reasons of visibility, the wave 

tank wall is made of glass material. The transparent wall is intended to make it 

easier for the users to observe the wave train.  

Wave generation is done by a bottom hinged paddle at the left end of the wave 

flume. The paddle is connected to a mechanical set of spring and pulley. These 

give a hydrostatic load causing the forward and backward movement of the 

paddle. The work of the mechanical set is controlled by a numerical system. From 

this controller, a person can set the kind of wave that is going to be generated. 

To ensure that there is no reflection of wave disturbing the simulation, the flume 

requires an absorption component. For this reason, a triangle shape of poly-ether 

foam shown in Figure 3-7 is used at the other end of the flume as a passive 

absorber.  

 

Figure  3-7 Absorption system used in the wave flume  
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3.3.2 Wave Generation 

Ocean waves can be regenerated in the laboratory using the identical energy 

spectra observation. The procedure of generating wave consists of two steps. The 

first step is to calculate the desired water elevation and position of the flume 

paddle (Miskovic 2008). The second step is to govern the paddles using the 

controlled signal which has been calculated for this purpose. In other words, the 

control signal of surface elevation should be calculated in the beginning. Later, 

this signal will be transferred to the control loop of wave maker when the 

simulation is started. 

The simulation will be based on wind generated waves. In this case the wind 

transfers its energy to the ocean water. When the wave energy accumulation 

balances the dissipation then a sea state is developed. Dealing with the wave 

energy, the analysis is better interpreted using the spectral density function. The 

spectral density function which was used in this simulation is the Pierson-

Moskowitz. The Pierson-Moskowitz is an empirical spectrum based on 

measurements in the North Atlantic Ocean. This spectrum represents the fully 

developed wind sea analysis properly. Empirical spectral density formula of 

Pierson-Moskowitz is presented in the following: 
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where f denotes the frequency, fp symbolises the peak frequency, g is the 

gravitational acceleration, and α refers to scaling parameter which is equal to 

8.1*10-3.  

After spectrum generation, the next step is to construct the surface elevation. In 

order to build it, the spectrum should be divided into M frequencies bin with the 

same distance. M must be large enough to get smooth distributions. Each division 

presents a particular amplitude of the wave component. The final result is 

developed by summing each of these individual waves produced from the 

spectrum. Taking a random phase, simulated ocean surface elevation is expressed 

as follows: 
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where Δf and Δt indicate the frequency interval and the time step of the control 

signal respectively, k denotes the time index and φ(f) is the signal phase offset 

which is distributed between 0 and 2π.  

The relationship between the surface elevation and the paddle motion is expressed 

by the Biesel equation (Miskovic 2008) in the following: 

( ) ( )fxief 00 +=η         (Equation  3-11) 

where η(f) notes the frequency domain water surface elevation, x(f) represents the 

frequency domain paddle motion, and e0 denotes the transfer function which 

depends on the type of the paddle used in the simulation. The previous expression 

shows the surface elevation immediately in front of the paddle. The spectrum of 

paddle motion can also be computed from the water surface spectrum using the 

following relationship: 

( ) ( )fSiefS x0=η          (Equation  3-12) 

From the paddle motion spectrum, based on the same procedure in generating the 

surface elevation, paddle motion is defined as follows: 
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3.3.3 Measurement Technique 

The wave tank was initially filled w with water to a height of 70 cm. In this study, 

the laboratory simulation involves three types of wave with approximated 

significant wave of 50 mm, 75 mm and 100 mm. The frequency is set to 100 Hz 

so that there will be 100 of data in 1 second; or in other words, the time interval 

between the data is 0.01 sec. Each simulation was run for approximately 24 hours.  

The observation techniques which are applied in the laboratory simulation include 

the Eulerian method. This method observes fluid parameters in a specific point in 

space as a function of time variable. It can be differentiated from the Lagrangian 

method that follows an individual fluid particle which flows through space and 

time.         
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The only thing that will be measured in the simulation is the water elevation. For 

this purpose, two wave gauges were installed. The wave gauges were put on 

vertical bars. Both bars are mounted on a transversal movable carriage on the top 

of the flume. The gauges measure the voltage, which is later calibrated to water 

elevation in metres. Each laboratory simulation uses two gauges which are named 

as gauge A and gauge B in this study. The calibration factors of gauge A and 

gauge B respectively are 0.03225 and 0.02443. The final output of the simulation 

will be a time history of wave elevation in metres.  
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4 RESULTS, DISCUSSIONS, AND ANALYSIS  

This chapter presents the results of the numerical analysis which was undertaken 

to show how well the theoretical formula of wave and crest height distribution 

based on field and laboratory measurement. However, prior to the main issue 

under discussion in this study, there will be some discussion on how well the 

standard distribution of Gaussian and Rayleigh fit the measurements. Following 

validation of the standard distributions, discussion on zero-crossing definition will 

also be presented.  

In general, the discussion will be divided into two sections, based on the type of 

data. The first type comprises field measurement which presents the three 

dimensional sea in nature under extreme conditions. The second one refers to two 

dimensional laboratory simulations which were generated based on the Pierson 

Moskowitz spectrum. Both conditions are considered to support research related 

to field investigation or laboratory simulation. Laboratory simulation that includes 

three wave types will be represented by one for the sake of optimum presentation.   

4.1 Distribution of Water Surface Elevation 

Chapter 4.1 discusses the behavior of water elevation taken from field and 

laboratory measurement. The field measurement was taken from North Alwyn in 

the North Sea during the 1997 storm. The data used in this study consists of more 

than two million water elevation units of data from -8.96m to 16.08m relative to 

the still water level. The measurements which were taken every 20 minutes with 5 

Hz frequency were combined to be analysed numerically. The time history of six 

days combined water elevation data is shown in Figure 4-1.  

The time history shown in Figure 4-1shows that, relative to mean water level, the 

crest heights are higher compared with the trough heights. This shows the 

nonlinear behaviour of wave in nature. Statistical analysis found that the skewness 

value of the distribution is around 0.3 (see Table 4-1). Non-zero positive skewness 

complements the nonlinear factor seen from the time history. Positive direction of 

water elevation’s skewness indicates its tendency to have peaked crest and 

rounded trough.  
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It can also be seen that, at some points in time, there are extremely high water 

elevations recorded. It is not the concern of the current study to learn how they are 

generated; however, these crests given an indication of the extreme conditions 

involved in this study. These extreme crests will be the focus of later validation. 

With the presence of abnormal wave and the nonlinear nature of water surface, the 

next question will be how well the distribution is represented by Gaussian 

distribution.  
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Figure  4-1 Time history of water elevation of field measurement  

In order to answer the previous question, water elevation data were analysed 

statistically. Nevertheless, prior to the analysis, water elevation should be set at 

zero. The result of statistical analysis on water elevation data was shown as blue 

crosses in Figure 4-2. The theoretical linear probability density of water elevation 

data was calculated according to the theory of Gaussian distribution discussed in 

sub-chapter 2.1.5. The theoretical distribution was presented as a continuous red 

line in Figure 4-2. It confirms that that theoretical distribution of Gaussian 

generally fits the empirical distribution. However, impreciseness happens around 

the mean water level.   
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Figure  4-2 Probability density of water elevation of field measurement 

Nevertheless, the interest is given to the highest water elevation. Figure 4-2 is 

unable to show clearly the accuracy of theoretical Gaussian distribution in 

extreme region. For this reason, the following Figure 4-3 is presented. In the 

following figure, the probability distribution is expressed as a logarithmic scale. 

Using logarithmic scale, it is shown more clearly that Gaussian distribution has 

mis-predicted the probability of highest wave region.  
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Figure  4-3 Probability density (log scale) of water elevation of field measurement 
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Along with water elevation analysis of field measurement data, identical 

computation was executed using the laboratory simulations data. The simulations 

were arranged into three different significant wave heights where each type was 

run for approximately seven hours. Figure 4-2 shows the time history of water 

elevation data taking 050A (significant wave height of 5 cm measured by gauge 

A) as a representation.  
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Figure  4-4 Time history of water elevation of laboratory simulation (050A) 

Figure 4-4 above displays water elevation recorded over a seven hour period from 

one of the laboratory simulations. Through visual observation, the imbalance 

between the crest and trough is much less than the field measurement. The 

statistical calculation shown in Table 1 indicates the skewness value of 0.1. It 

shows a non-zero positive value, which is the same as the field analysis result; 

however, it is one third of the magnitude. Smaller skewness value confirms the 

fluctuation of laboratory water elevation which is less compared to that from the 

field measurement. Despite the fact that it is less skewed, laboratory data also 

shows some extreme crest heights at certain points in time.  

Again, the same question is posed on how well the distribution of laboratory water 

elevation is presented by the linear Gaussian model. For this purpose, the next 

figure shows the laboratory simulation compared with the Gaussian prediction. 

The water elevation was analysed statistically using 100 bins of normalised water 

elevation value. Using the same symbol, the blue crosses represent the observed 



 56

probability density of laboratory data and the continuous red line shows the 

theoretical Gaussian distribution. The Gaussian model fits the measured 

probability relatively well; however the most obvious imprecision is that Gaussian 

under-predicts the most likely water elevation around still water as shown in the 

following Figure 4-5.  
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Figure  4-5 Probability density of water elevation of laboratory simulation 

It cannot be seen clearly from the previous figure how the extreme values deviate 

from the Gaussian distribution. For this reason the probability density was 

converted into a logarithmic scale as depicted in Figure 4-6 below. Using a 

logarithmic scale, it is now more obvious how the Gaussian model fails to fit the 

observed probability of highest range water elevation. Nonetheless, taking a 

comparison between laboratory and field measurement, it is clear that the 

laboratory distribution fits the Gaussian prediction better than field measurement 

distribution. The highest wave is under-predicted by 103 for the laboratory 

distribution while it is under-predicted by up to 1011 in the case of field 

distribution.    
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Figure  4-6 Probability density (log scale) of water elevation of laboratory simulation 

Table 4-1 presents the statistical properties of both sets of water elevation data in 

order to get numerical parameters that can easily be compared. The table lists 

water elevation properties of skewness, kurtosis, and standard deviation of 

laboratory and field measurements.  

Table  4-1 Statistical properties of water elevation for both laboratory and field measurement 

Elevation Field
Properties 050A 050B 075A 075B 100A 100B Measurement

Skewness 0.105 0.092 0.134 0.129 0.159 0.193 0.3

Kurtosis 3.136 3.095 3.070 3.068 3.071 3.119 3.7

Std Dev (m) 0.011 0.011 0.018 0.017 0.027 0.024 1.8

Laboratory Simulation

 

Zero skewness shows that the distribution profile is symmetrical to still water 

level. This condition is basing the linear assumption of water level distribution. 

Positive skewness indicates that greater fluctuation of water elevation takes place 

above the mean sea level. The physical behaviour of wave that can be observed in 

nature due to positive skewness is the peaked crest and rounded trough. 

Comparing the skewness parameter of both types of data, the skewness of 

laboratory simulation is less than that of the field measurement. Therefore, it is 

concluded that field measurement data show higher nonlinearity compared with 

laboratory simulation data. How the nonlinearity affects the accuracy of extreme 

wave and crest height distribution will be discussed in sub-chapters 4.4 and 4.5.  
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The next statistical property which also affects the behaviour of water elevation 

distribution is the kurtosis value. This value represents the shape of the 

distribution to the Gaussian distribution which has kurtosis equal to 3. The 

kurtosis values which were calculated from the laboratory simulation are varied; 

nevertheless, they are still very near to the value of 3. This indicates that 

laboratory simulations are relatively well represented by Gaussian distribution. On 

the other hand, field measurement has a kurtosis value larger than that of the 

laboratory simulation. A comparison of the two shows that actually the 

distribution of water elevation in nature deviates from the ideal Gaussian 

distribution. Positive kurtosis which has a value bigger than 3 is known as 

leptokurtic. Leptokurtic distribution has more distribution concentrated on the tail 

part. Recent studies have shown that freak wave distribution of weakly non-

Gaussian distribution can be predicted as a function of kurtosis (Onorato et el 

2007; Goda 2000).  

4.2 Zero-Crossing Wave 

The distribution of water elevation which was discussed in the previous chapter 

does not require prior knowledge concerning zero-crossing concept. Nevertheless, 

in the case of wave height and wave period, we need to be aware of the concept of 

zero-crossing. This sub-chapter presents the comparison between two zero-

crossing concepts.  

There are two types of zero-crossing waves; they are zero up-crossing and zero 

down-crossing waves. Zero up-crossing waves are defined as water elevation 

between two successive transitions of surface elevation from the level below to 

the level above mean level. In contrast, zero down-crossing waves are water 

elevation between two successive transitions of surface elevation from the level 

above the mean to the level below the mean water elevation (IAHR 1986) as 

depicted in Figure 2-2.   

The investigation was carried out using the comparison of probability distribution 

and probability of exceedance from both up-crossing and down-crossing wave 

heights. Firstly, the probability density of wave height from the field measurement 

data was simulated for both types of zero-crossing wave definitions. In order to 

get clearer view of the effect of the zero-crossing definition, especially in the 
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highest region, the probability density is presented in logarithmic scale as depicted 

in Figure 4-7. 
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Figure  4-7 Probability density of zero-crossing field measurement data 

Figure 4-7 shows the probability density of normalised wave height taken from 

the field’s water elevation measurement. The red circles represent the probability 

density based on up-crossing waves; while the blue crosses indicate the 

probability of zero down-crossing waves. The above figure shows that the 

probability density of zero up-crossing and zero down-crossing are identical for 

small wave height, but diverse at the highest region of wave height.  
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Figure  4-8 Probability of exceedance of zero-crossing field measurement data 

In addition to the previous comparison, the zero-crossing wave height is expressed 

in the form of probability of exceedance. According to statistical analysis of 
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exceedance probability, for the same wave height, zero down-crossing has a 

higher probability of being exceeded compared to zero up-crossing waves as 

shown in Figure 4-8. 
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Figure  4-9 Probability density of zero-crossing laboratory simulation data 

A similar result is found in the case of probability density taken from the 

laboratory simulation data. The most obvious deviation takes place at the highest 

region of wave height as depicted in Figure 4-9. Nevertheless, probability of 

exceedance of laboratory data shows that at extreme wave height, the up-crossing 

wave will have a higher probability of being exceeded, shown in Figure 4-10.  
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Figure  4-10 Probability of exceedance of zero-crossing laboratory simulation data 

Further study needs to be done in order to investigate whether there is a tendency 

for one zero-crossing type to have a higher probability of exceedance than the 
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other. In this study, it cannot be ensured that a similar pattern of probability of 

exceedance can be applied for every wave data. What this study is trying to put 

across is that zero-crossing definition is essential in the case of extreme wave 

height analysis. Nevertheless, this study uses zero down-crossing wave definition 

as recommended by IAHR (1986).  

4.3 Abnormal Waves 

Using the zero down-crossing definition, wave heights were derived from the 

water elevation records. In order to identify the presence of abnormal waves, 

attention is paid to the two main wave height parameters which are significant 

wave heights and maximum wave heights. Significant wave height was calculated 

based on the average wave height of the highest one third. Maximum wave height 

is the highest wave height in the record. There are still no particular rules 

concerning abnormal wave height definition which are generally accepted 

(Petrova and Soares 2008). Nonetheless, the current study operates within the 

limits defined by Dean (1990 cited Soares et al 2007) who states that an abnormal 

wave happens when the maximum wave height is bigger than twice the significant 

wave height, known as the Abnormality Index (AI).  

Together with the abnormality definition based on wave height, there is also 

another definition based on crest height. Crest height is defined as the highest 

positive water elevation in each zero down-crossing wave. Each wave height 

corresponds to one specific value of crest. The most important feature of crest is 

the maximum crest. The crest height which is normalised with the significant 

wave height is named the crest amplification index (CI). There are different rules 

applied in defining the threshold value of CI to be categorised as abnormal wave. 

Nevertheless, this study uses the value of 1.3 as the maximum threshold suggested 

by in Soares et al (2007).  

Taking the maximum wave height, significant wave height, and crest height from 

the record, the values of the AI and CI of each record was calculated. Based on the 

previous agreed thresholds of AI and CI, Table 4.2 shows the presence of 

abnormal waves in this study.  
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Table  4-2 Abnormal Index and Crest-Amplification Index 

Wave Field
Properties 050A 050B 075A 075B 100A 100B Measurement

H1/3 (m) 0.042 0.041 0.067 0.067 0.105 0.093 7.1

Hmax (m) 0.093 0.091 0.146 0.150 0.217 0.195 22.0

Hmax/H1/3 (AI) 2.22 2.21 2.16 2.26 2.07 2.11 3.08

Cmax (m) 0.067 0.060 0.097 0.091 0.140 0.124 16.1

Cmax/H1/3 (CI) 1.60 1.45 1.44 1.37 1.33 1.34 2.25

Laboratory Simulation

 

From the table above, the amplification index of the laboratory simulation varies 

from 2.07 to 2.26. Based on the threshold value put forward by Dean (1990 cited 

ibid.), these numbers shows the presence of abnormal wave in laboratory 

simulation. On the other hand, field measurements recorded maximum height that 

triples the value of its significant wave height. It shows an obvious presence of 

abnormal waves in field measurement data used in this study. 

The previous table also presents values of the highest wave crests of laboratory 

simulation data that vary between 1.33 to 1.6 times the significant wave heights. 

In addition, the crest height of field measurement reaches up to 2.25 times the 

significant wave height. Based on the threshold value agreed previously, the 

existence of abnormal waves in the record is also confirmed by the crest 

amplification index.   

4.4 Wave Height Distribution 

Following the discussion of abnormal waves, this current chapter will now focus 

on the main objective of this study which is extreme wave height distribution. As 

the starting point, statistical wave properties will be presented. Prior to the 

validation of the modified distributions, the empirical distribution will be first 

compared with the linear Rayleigh distribution. The validation will show the 

degree of accuracy of Rayleigh’s theory in wave height prediction. Finally, the 

improved wave height distribution formulae of Forristall (1978), Haring (1976 

cited Prevosto 2000), Krogstad (1985 cited ibid.), and Rayleigh-Stokes (Nerzic 

and Prevosto 1998) (see subchapter 2.3.1) will be validated against the empirical 

distribution. Statistical parameters of wave heights are presented in Table 4-3.  
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Table  4-3 Statistical properties of wave height  

 Wave Height Field
Stat. Prop 050A 050B 075A 075B 100A 100B Measurement

mean μ (m) 0.026 0.025 0.042 0.041 0.066 0.058 4.320

std dev σ (m) 0.014 0.014 0.022 0.022 0.034 0.031 2.488

cov variance 0.536 0.560 0.524 0.545 0.514 0.530 0.576

skewness 0.499 0.416 0.482 0.409 0.441 0.444 0.787

kurtosis 3.034 3.000 -3.007 -3.086 -3.019 3.030 3.873

Laboratory Simulation

 

The previous table shows the statistical properties of wave height of each data 

type. Averaging the statistical property outcomes from gauge A and gauge B, the 

mean wave height of 050 laboratory data is 2.55 cm. Averaging also 075A and 

075B, the mean wave height for 075 laboratory data is 4.15 cm. Finally, the 

average wave of 100A and 100B is is 6.2 cm. On the other hand, wave mean 

height from the field data is 4.32 m.  

Standard deviation values from laboratory data are 0.85 cm, 1.4 cm, and 2 cm for 

050, 075, and 100 respectively. Meanwhile, the standard deviation of field data is 

approximately 1.5 m. Based on the ratio between the standard deviation and the 

mean wave height, the covariance of each type of measurements is vary around 

0.6.  

Wave height skewness is much higher than the one calculated from the water 

elevation data. This condition comes out with the shifting of the tail of wave 

distribution to the right direction. Higher skewness might have been caused by the 

absolute value of wave height. On the other hand, wave height’s kurtosis of the 

laboratory data indicates a small deviation from the normal distribution. However, 

field measurement shows large discrepancies from the standard distribution 

(standard distribution’s skewness is equal to 3). Skewness from both types of data 

shows that field measurement data contains stronger non-linearity factors than 

laboratory simulation data.  

4.4.1 Laboratory Simulation 

Prior to the validation of extreme wave height distribution against the new, 

modified formulae, the laboratory empirical distribution is compared with the 

linear Rayleigh distribution. Laboratory data of 050 from gauge A is taken as a 
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representative in the current discussion. Figure 4-11 shows the probability density 

of both empirical laboratory and theoretical Rayleigh distribution. The blue 

diamonds are the observed distribution while the red line is the standard Rayleigh 

distribution. From the figure, Rayleigh seems to fit the observed probability very 

well for wave height less than 6 cm. Higher wave heights are not predicted as well 

as the smaller ones; they tend to be scattered around the theoretical prediction of 

Rayleigh.  
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Figure  4-11 Probability density of wave height of laboratory data 

The graph depicted above shows that Rayleigh does not give an accurate 

prediction of the largest wave. The validation includes the linear distribution of 

Rayleigh, Rayleigh-Stokes proposed by Nercic and Prevosto, and the modified 

Weibull distribution of Krogstad, Haring, and Forristall. In order to get a clearer 

validation of how these distributions fit the data, the comparison is presented as 

exceedance probability of normalised wave height as depicted in Figures 4-12, 4-

13 and 4-14.  

Numerical analysis results show that Rayleigh over-predicts the extreme wave 

height distribution of laboratory simulation which is denoted by the continuous 

red line. On the other side, the Krogstad, Haring and Forristall formulae were 

found to under-predict the observed distribution. The deviation can be seen to 

increase from Forristall, then Haring and finally Krogstad. Meanwhile, the 

nonlinear Rayleigh-Stokes formula that includes wave steepness factor is found to 
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greatly over-predict the observation.  A similar pattern was seen for all types of 

laboratory data. It is concluded that in the case of laboratory activities, linear 

Rayleigh distribution is still preferable in predicting the wave height distribution.  
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Figure  4-12 Probability of exceedance of normalised wave height 050A and 050B   
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Figure  4-13 Probability of exceedance of normalised wave height 075A and 075B   
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Figure  4-14 Probability of exceedance of normalised wave height 100A and 100B   
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4.4.2 Field Measurement 

Following the laboratory analysis result, this current sub-chapter presents the 

validation using field measurement data. Figure 4-15 shows how well wave height 

distribution of Rayleigh fits the field measurement. The observed distribution is 

depicted as the blue diamonds while the Rayleigh prediction is described as the 

continuous red line. From the results of numerical simulation, it is found that for 

wave height less than 11m, the observed field data fits the Rayleigh distribution. 

Nonetheless, Rayleigh seems to fail in presenting the probability value of highest 

wave height region. Compared with laboratory data, it is obvious that field 

measurement data show a greater deviation from the Rayleigh distribution.   
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Figure  4-15 Probability density of wave height of field data 

The inadequacy of the Rayleigh distribution in predicting the extreme field wave 

heights has motivated the development of improved formulae on wave height 

distribution. Figure 4-16 shows that the Rayleigh distribution under-predicts the 

field measurement distribution used in this study. However, the improved formula 

of Forristall, Haring and Krogstad does not give any better predictions. 

Meanwhile, the Rayleigh-Stokes formula seems to over-predict the wave height 

distribution with much less deviation compared with previous laboratory 

validation. It can be concluded that nonlinearity plays a significant role in nature 

so that nonlinear prediction of Rayleigh-Stokes shows a better prediction in the 

case of highest wave height region based on field measurement data.  
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The finding of the current validation - that Rayleigh distribution over-predicts the 

observed field measurement distribution - contradicts the previous statement by 

Forristall, who claimed that Rayleigh over-predicts the higher wave height 

distribution (Forristall 1978). This contradiction might be caused by several 

factors.  

The first possible cause is location factor. Forristal’s investigation was done in the 

Gulf of Mexico while the current study deals with the North Sea environment. The 

second factor might come from the variance of the ocean surface elevation. 

Having approximately the same number of waves, the data used in Forristall’s 

formula has a variance that ranges from 0.36 to 11.02 m2. It is much higher than 

the variance of storm 149 used in this study. Water elevation variance which was 

calculated in this study is approximately 3.3 m2; much less than the one used by 

Forristall. The third factor that possibly causes the difference is the presence of 

abnormal waves. The normalised wave height in this study is higher than the one 

presented in Forristall (Forristal 1978). Nevertheless, Forristall’s study did not 

bring up the abnormal waves issues. Clearer evidence can be found from the paper 

of Nervic and Prevosto (2003). In their study, they also indicate the over-

prediction of Rayleigh. Nevertheless, the observed data which was used in their 

study does not involve abnormal waves. Similar findings relating to under-

prediction of wave height were found by Soares et al (2007) who involved freak 

waves in their study.          
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Figure  4-16 Probability of exceedance of normalised wave height form field measurement 

 

4.5 Crest Height Distribution 

Crest height is also a major factor to be considered in ocean engineering. Many 

scientists believe that crest height shows more nonlinearity compared with wave 

height. Before going on to the main discussion of crest distribution, it is best to 

present some general information concerning the statistical properties of crest 

height from all types of data used in this study. The statistical properties are 

presented in the following table 4-4.  

Table  4-4 Statistical properties of crest height  

Crest Height Field

Stat. Prop 050A 050B 075A 075B 100A 100B Measurement

mean μ (m) 0.014 0.013 0.023 0.022 0.036 0.032 2.265

std dev σ (m) 0.009 0.008 0.014 0.014 0.021 0.019 1.507

cov variance 0.616 0.636 0.606 0.623 0.582 0.603 0.665

skewness 0.592 0.519 0.544 0.533 0.560 0.602 1.036

kurtosis 3.382 3.167 3.201 3.172 3.236 3.341 5.180

Laboratory Simulation
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After analysing the statistical properties of crest height compared with wave 

height, it is found that skewness (nonlinearity) values of crest are uniformly 

bigger than the wave height. This shows that crest height distortion is larger 

compared to wave height. Moreover, the kurtosis value that shows a bigger 

difference from the normal distribution value of 3 shows how crest nonlinearity 

affects the crest height more than wave height. It is obvious from the case of field 

measurement data how the crest distribution shows significant difference from the 

linear normal distribution. How this affects the behaviour of crest height 

distribution will be elaborated on further in the following part.  

Nevertheless, prior to the discussion of crest height distribution, additional wave 

factors which will be involved in the empirical formulae are presented in Table 4-

5. Those additional wave parameters are spectrum width, mean period, wave 

number and wave steepness. 

Table  4-5 Additional wave properties used in crest distribution  

Wave Field

Properties 050A 050B 075A 075B 100A 100B Measurement

Ndzc 33719 33664 30911 30759 18857 18851 54673

Nmaxl 63119 152188 41682 109554 33931 72260 81115

bandwith ε 0.85 0.98 0.67 0.96 0.83 0.97 0.74

Tz (s) 0.770 0.772 0.929 0.934 1.192 1.192 9.0

kz 6.8 6.8 4.7 4.6 2.8 2.8 0.050

sz 0.045 0.044 0.050 0.049 0.047 0.042 0.057

Laboratory Simulation

 

Spectral bandwidth parameter, ε, is calculated based on the number of zero down-

crossing waves (Ndzc) and the number of local positive maxima (Nmaxl). These 

parameters will be used in the calculation of crest height distribution. A large 

value of spectral bandwidth parameters shows that most of them have broad band-

spectrum. Below the spectral width parameter, Tz denotes the value of zero-

crossing wave period. This value is then used to calculate the wave number, kz, 

using dispersion relation. Wave steepness is then calculated based on wave 

number and significant wave height described earlier.  
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4.5.1 Laboratory Simulation 

This sub-chapter presents the comparison of empirical crest height distribution 

and the observed laboratory distribution. Probability exceedance of crest from the 

laboratory simulation is denoted as the red line. Standard linear prediction of 

Rayleigh is represented as the broken blue line. From the numerical analysis, it is 

found that the Rayleigh prediction of crest height largely under-predicts the 

observation. The Rayleigh prediction is one of the lowest predictions on crest 

height along with the Ochi formula. Comparing both predictions of Ochi 

involving narrow-banded (E = 0) and broad-banded factors (E = 1), although the 

observation shows large spectral width parameters, it does not make Ochi 

prediction for wide-spectrum closer to the observation distribution. This indicates 

that spectral width parameter does not affect the crest distribution. This finding is 

equivalent to that from Cartwright’s (1958 cited Forristall 1978) study. Cartwright 

succeeded in creating crest height distribution that fits the observation data 

without considering the spectral width parameter.   

Developed based on the second order wave simulation, Forristall’s prediction of 

crest height shows inadequacy in fitting the laboratory simulation. It is found to 

under-predict the distribution of crest height taken from laboratory simulation. 

Distributions which are found to be the closest to observation distribution are 

derived from the predictions of Haring-Jahns and Wheeler (1972 cited Prevosto 

2000), Tayfun(1980 cited ibid. )-Huang (1986 cited ibid.), and Kriebel-Dawson 

(1993 cited ibid). The prediction of Haring (1972 cited ibid.) was developed based 

on empirical fitting. The factors which are involved in his prediction are variance 

of wave elevation and water depth. On the other hand, Tayfun (1980 cited ibid.) 

and Kriebel (1986 cited ibid.) consider the wave steepness factor in their 

prediction. The recently developed formula of Prevosto (Prevosto et al 2000) 

tends to show inconsistencies by sometimes over-predicting or under-predicting 

the observation. As seen also in wave height distribution, Rayleigh-Stokes (Nerzic 

and Prevosto 2003) consistently over-predicts the observation distribution with a 

large discrepancy.  The analysis result of laboratory simulations is presented in the 

following Figure 4-17, Figure 4.18, and Figure 4-19.  
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Figure  4-17 Probability of exceedance of normalised crest height 050A and 050B   
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Figure  4-18 Probability of exceedance of normalised crest height 075A and 075B   
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Figure  4-19 Probability of exceedance of normalised crest height 100A and 100B   
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4.5.2 Field Measurement 

Following the investigation of crest distribution using the laboratory data, this 

sub-chapter presents the results of field measurement distribution. The observation 

of crest height distribution of field data is denoted as a red line. The Rayleigh crest 

distribution which is presented as a broken blue line is found to under-predict the 

field observation. It seems Rayleigh shows similar behaviour to laboratory 

validation of under-predicting the crest distribution. This finding relates to that of 

the previous study by Nerzic and Prevosto (2003). The same discovery was also 

made by Soares et al (2007).  

The linear Ochi formulae are also found to under-predict the distribution of crest.  

However, Ochi and Rayleigh are not the ones that largely under-predict the crest 

distribution. It is found from the calculation that Prevosto has also greatly under-

predicted the distribution. The empirical distribution of Haring is shown to give a 

better estimation compared with the linear prediction of Rayleigh; nevertheless, it 

is still far below the observed distribution. Tayfun-Huang and Kriebel Dawson are 

closer to the observed distribution but they still under-predict the distribution.  

This time, Rayleigh-Stokes is found to fit well the highest region distribution of 

crest height. Rayleigh-Stokes shows significant differences when it is used with 

the laboratory data or field measurement. It somehow allows for a better 

prediction when it is used in predicting extreme height from field. Rayleigh-

Stokes was developed based on the third-order Stokes expansion. It considers the 

nonlinear factor of wave steepness in the third order Stokes. This is possibly the 

reason why Rayleigh-Stokes fits the field data which have shown more 

nonlinearity better. The uppermost predictions come from Forristall’s 

distributions. Showing opposite behaviour, this time Forristall over-predicts the 

field measurement.        
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Figure  4-20 Probability of exceedance of normalised crest height of field measurement   
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5 CONCLUSIONS AND RECOMMENDATIONS  

There are many uncertainties in nature that need to be quantified for engineering 

purposes. Therefore, it is the task of scientists and engineers to create a tool to 

quantify the randomness of nature. Luckily, today’s rapid advancements in 

technology enable people to acquire a better understanding of these random 

phenomena. Numerical and mechanical equipment has been created to support 

scientific projects related to engineering needs.  

Concerning the random phenomenon of offshore waves, there is increasing 

interest in developing a better understanding of their behavior. Distribution 

formulae have been developed theoretically and empirically. Validations have 

been done for many years; nevertheless, there is still disagreement on how well 

the theory fits the observed distribution. Most recent concern has been with the 

prediction of wave and crest height distribution in extreme sea conditions.   

After studying several journals articles on wave and crest height distributions, the 

current study proposed the validation of six formulae of wave height (Rayleigh 

type1, Rayleigh type2 Forrsitall, Krogstad, Haring and Rayleigh-Stokes) and nine 

predictions of crest heights (Rayleigh, Ochi, Haring, Tayfun-Huang, Kriebel-

Dawson, Forristall 2D, Forristall 3D, Prevosto, Rayleigh-Stokes). The principal 

ideas of these formulae are discussed in the literature review. Most modified 

formulae presented in this study involved nonlinearity factors of water depth, 

wave steepness, and directional spectra. In general, new formulae are developed to 

improve the performance of the linear Rayleigh distribution. Although validation 

had been undertaken for some of these formulae when they were formulated, 

further validation is required to check the accuracy of these new formulae in the 

case of the extreme wave.    

Two types of data are used in this study representing two different interests. The 

first one comprises laboratory simulation data based on the Pierson Moskowitz 

spectrum. The results of laboratory validation are expected to support any 

laboratory research that requires wave or crest height prediction. Another data is 

field measurement of water elevation from the North Alwyn region in the North 

Sea. Validation of field measurement data can be used as the groundwork for 
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choosing an appropriate formula for ocean engineering interests such as design 

purposes. 

Chapter 4 shows the validation results on wave and crest height distributions. In 

general, validation showed that the nonlinearity factor was engaged more in field 

measurement than laboratory simulation. Visual observation of time history and 

statistical parameters supported this result. On the other hand, crest height seemed 

to be more influenced by the nonlinearity factors than wave height distribution.  

Validation was taken with the standard linear distribution of Rayleigh as reference 

of other formulae. Empirical distribution of wave and crest height was sorted and 

the statistical distribution was calculated numerically before being validated 

against the theoretical formulae.  

In the case of wave height distribution, focusing on the largest wave, the Rayleigh 

distribution was found to over-predict the observed laboratory simulation; 

contrarily, it under-predicted the field measurement distribution. From the 

laboratory simulation, Rayleigh was found to be the closest theoretical formula to 

the observed data showing the linearity of laboratory wave height distribution. 

Therefore the Rayleigh distribution is recommended in the case of laboratory 

simulation to predict the wave height distribution. On the other hand, Rayleigh 

was found to under-predict wave height distribution of field measurement data. 

Although Rayleigh has shown under-prediction of the field wave height 

distribution, it was found to fit better than the modified Weibull distribution of 

Forrsitall, Krogstad and Haring. Nevertheless, Rayleigh-Stokes was found to show 

better prediction in this case. This shows the nonlinearity involvement in the case 

of wave in nature.  

When the Rayleigh crest distribution was validated against lab and field 

measurement data, both resulted in severe under-prediction against observed 

distribution. This shows stronger nonlinearity effects in crest distribution than 

wave height distribution. In this case, the improved non-linear formula seems to 

fit the data better. Kriebel-Dawson showed the closest prediction of crest height of 

laboratory simulation. It indicates the involvement of nonlinear factor of wave 

steepness in predicting laboratory crest height. The Kriebel Dawson model 

deviated further from field distribution. In general all predictions tended to give a 
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larger inaccuracy against field data. However, Kriebel-Dawson showed better 

prediction compared with Rayleigh, Ochi, Haring and Tayfun-Huang. In the 

validation of the field measurement, Forristall seemed to over-predict the data. 

The Forristall prediction of largest wave height deviated 102 from the observed 

field distribution. The closest prediction was found to be derived from the 

Rayleigh-Stokes distribution. Although it greatly over-predicted the laboratory 

crest height, Rayleigh-Stokes managed to give the most accurate prediction of the 

highest crest height from the field data. Interestingly, the Prevosto formula that 

includes the directional factor did not give a better prediction even when 

compared with the linear theory.  

New modified crest height prediction in this study included the nonlinear factors 

in a different way. The Haring formula which includes water depth did not give 

the required accuracy in extreme crest height prediction. Better accuracy was 

performed by formulae that considered the wave steepness factor (Tayfun-Huang 

and Kriebel-Dawson). However, the discrepancy between the two theories is 

caused by the mathematical construction of the formulae. A higher degree of 

steepness was involved in Kriebel-Dawson (see equations 2-102 and 2-105). The 

prediction of Forristall that involved both water depth and wave steepness was 

less accurate for the laboratory simulation data, but showed better fitting for the 

field measurement compared with the Tayfun-Huang and Kriebel-Dawson 

models. This might be caused by the development of parameters used by 

Forristall, which were based on field measurement fitting. Rayleigh-Stokes ,which 

was found to give the best prediction of largest crest height, showed a sharp 

degradation of exceedance probability which might result in large under-

prediction in a very large crest. Surprisingly, the Prevosto prediction of crest 

height that considered the wave direction factor and steepness factor was found to 

show a significant deviation from the observed crest height even when compared 

with the linear theory.        

Data which is used in current study did not set to provide variety of wave 

steepness. Referring to table 4.5, the steepness values are relatively invariant. 

Further study can be focused on the effect of wave steepness by delivering 

simulations that address steepness variety. Because it has only used deep water 

data, the current study is not informed on the water depth effect. For this reason, 
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further study can involve shallow water data to examine the effect of water depth. 

Different results of laboratory and field validation showed that behaviour 

differences in both conditions influenced the distribution. The behaviour 

differences might come from directional effect and wave interaction which needs 

to be studied further.          
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APPENDICES I 

MATLAB CALCULATION  

ON ZERO DOWN-CROSSING WAVES EXTRACTION AND 

STATISTICAL DISTRIBUTIONS OF WAVE AND CREST HEIGHTS 

 



clear all
data=load('SurfaceEl50A.out');      %Any output files (Wave and Crest 
mydata=sort(data);                  %height) that needs to be 
n=length(mydata);                   %expressed in form of distribution
 
%calculating the bin interval
Numbin=100;                         %Number of bin is predetermined
r=max(mydata)-min(mydata);
int=r/Numbin;
center1=0.5*int;
cbin=(min(mydata)-center1):int:(max(mydata)+center1);
bin=cbin';
lbin=length(cbin);
 
% calculate frequency of each bin
P=zeros(2000000,1);
k=0;
freq=zeros(lbin,1);
for i=1:lbin
    for j=1:n
        if mydata(j)<=(bin(i)+center1)&& mydata(j)>(bin(i)-center1)
            k=k+1;
            P(k)=mydata(j);
        else
            continue
        end
    end
    nzP=nonzeros(P);
    freq(i)=length(nzP);
    k=0;        
    P=zeros(2000000,1);  
end
 
% calculate frequency cumulative of each wave height bin
frcum=cumsum(freq)/n;
 
% plot graphic
% plot(cbin,freq,'b.')
% plot(cbin,frcum,'b.')
 
% Saving the Output in ASCII form
save SEBin50A.out bin -ASCII
save SEFreq50A.out freq -ASCII
save SEFrcum50A.out frcum -ASCII
 



clear all
data=load('CrestHeight050B.out');       %Any output files (Wave and Crest 
mydata=sort(data);                      %height) that needs to be 
n=length(mydata);                       %expressed in form of distribution
 
% calculate the number of bin
% first method
nbin1=sqrt(n);
% second method
nbin2=1+(3.3*log10(n));
% third method
r=max(mydata)-min(mydata);
q1=round(0.25*n);
Q1=mydata(q1,1);
q3=round(0.75*n);
Q3=mydata(q3,1);
nbin3=r*n^(1/3)/(2*(Q3-Q1));
% calculating the average of three methods
nbinave=roundn(1/3*(nbin1+nbin2+nbin3));
 
%calculating the bin interval
int=max(mydata)/nbinave;
center1=0.5*int;
cbin=center1:int:(max(mydata)+center1);
bin=cbin';
lbin=length(cbin);
 
% calculate frequency of each wave height bin
P=zeros(10000,1);
k=0;
freq=zeros(lbin,1);
for i=1:lbin
    for j=1:n
        if mydata(j)<=(bin(i)+center1)&& mydata(j)>(bin(i)-center1)
            k=k+1;
            P(k)=mydata(j);
        else
            continue
        end
    end
    nzP=nonzeros(P);
    freq(i)=length(nzP);
    k=0;        
    P=zeros(10000,1);  
end
 
% calculate frequency cumulative of each wave height bin
frcum=cumsum(freq)/n;
 
% plot graphic
% plot(cbin,freq,'b.')
% plot(cbin,frcum,'b.')
 
% Saving the Output in ASCII form
save CrestBin050B.out bin -ASCII        
save CrestFreq050B.out freq -ASCII
save CrestFrcum050B.out frcum -ASCII
 



clear all
fid = fopen('spec24050out.bin','r');   %Open binary data
mydata = fread(fid,'float');           %Read binary data and 
                                       %define data type as float
%Dimension of data file 
n=length(mydata);
gaugeA=zeros(2700000,1);                %Provide empty vector with
k=0;                                    %spesific dimension
 
%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties        
for i=2:3:n-1                           %Taking the data from binary file
    k=k+1;
    gaugeA(k)=0.03225*mydata(i);        %Multiply with calibtration factor
end                                         
DataA=nonzeros(gaugeA);                 
MeanA=mean(DataA);                      %Initial mean value
 
%Making the data average equal to zero 
%and calculate the statistical properties
dataA=DataA-MeanA;
meanA=mean(dataA);
stdA=std(dataA);
varA=var(dataA);
skewA=skewness(dataA);
kurtA=kurtosis(dataA);
 
%Saving the Output in ASCII form
save SurfaceEl50A.out dataA -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;            
state=0;
% initial state = 0, positive state = 1, and negative state = -1
 
m=length(dataA);
for j=1:m
    % The Algorithm must be started from negative state
    %(zero down-crossing wave) 
    if state == 0 && dataA(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataA(j);                      % push data to N vector
    elseif state == -1 && dataA(j) <= 0
            q=q+1;
            N(q)=dataA(j);                  % push data to N vector
    elseif state == -1 && dataA(j) >0
            state= 1;
            p=p+1;
            P(p)=dataA(j);                  % push data to P vector
    elseif  state == 1 && dataA(j) >0
            p=p+1;
            P(p)=dataA(j);                  % push data to P vector
    elseif state == 1 && dataA(j) <= 0 



            tempWave= max(P) - min(N);      % taking the wave height
            r=r+1;
            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;
            N=zeros(1000,1);
            q=q+1;
            N(q)=dataA(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeight050A.out WHeight -ASCII
save CrestHeight050A.out CHeight -ASCII
save Period050A.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataA(j) > 0 && dataA(j) > dataA(j-1) && dataA(j) > dataA(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataA(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataA);
hold on
plot(Po,Maxim,'r*')
 



clear all
fid = fopen('spec24050out.bin','r');   %Open binary data
mydata = fread(fid,'float');           %Read binary data and 
                                       %define data type as float
%Dimension of data file 
n=length(mydata);
gaugeB=zeros(2700000,1);                %Provide empty vector with
k=0;                                    %spesific dimension
 
%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties        
for i=3:3:n                             %Taking the data from binary file
    k=k+1;
    gaugeB(k)=0.02443*mydata(i);        %Multiply with calibtration factor
end
DataB=nonzeros(gaugeB);
MeanB=mean(DataB);                      %Initial mean value
 
%Making the data average equal to zero 
%and calculate the statistical properties
dataB=DataB-MeanB;
meanB=mean(dataB);
stdB=std(dataB);
varB=var(dataB);
skewB=skewness(dataB);
kurtB=kurtosis(dataB);
 
%Saving the Output in ASCII form
save SurfaceEl50B.out dataB -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;
state=0;
% initial state = 0, positif state = 1, and negatif state = -1
 
m=length(dataB);
for j=1:m
    % The Algorithm must be started from negative state
    if state == 0 && dataB(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataB(j);                      % push data to N vector
    elseif state == -1 && dataB(j) <= 0
            q=q+1;
            N(q)=dataB(j);                  % push data to N vector
    elseif state == -1 && dataB(j) >0
            state= 1;
            p=p+1;
            P(p)=dataB(j);                  % push data to P vector
    elseif  state == 1 && dataB(j) >0
            p=p+1;
            P(p)=dataB(j);                  % push data to P vector
    elseif state == 1 && dataB(j) <= 0 
            tempWave= max(P) - min(N);      % taking the wave height



            r=r+1;
            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;
            N=zeros(1000,1);
            q=q+1;
            N(q)=dataB(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeight050B.out WHeight -ASCII
save CrestHeight050B.out CHeight -ASCII
save Period050B.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataB(j) > 0 && dataB(j) > dataB(j-1) && dataB(j) > dataB(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataB(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataB);
hold on
plot(Po,Maxim,'r*')
 



clear all
fid = fopen('spec24075out.bin','r');    %Open binary data
mydata = fread(fid,8640000,'float');    %Read binary data and 
                                        %define data type as float
%Dimension of data file 
n=length(mydata);
gaugeA=zeros(3000000,1);                %Provide empty vector with
k=0;                                    %spesific dimension
 
%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties        
for i=2:3:n-1                           %Taking the data from binary file
    k=k+1;
    gaugeA(k)=0.03225*mydata(i);        %Multiply with calibtration factor
end
DataA=nonzeros(gaugeA);
MeanA=mean(DataA);                      %Initial mean value
 
%Making the data average equal to zero 
%and calculate the statistical properties
dataA=DataA-MeanA;
meanA=mean(dataA);
stdA=std(dataA);
varA=var(dataA);
skewA=skewness(dataA);
kurtA=kurtosis(dataA);
 
%Saving the Output in ASCII form
save SurfaceEl75A.out dataA -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;
state=0;
% initial state = 0, positive state = 1, and negative state = -1
 
m=length(dataA);
for j=1:m
    % The Algorithm must be started from negative state
    if state == 0 && dataA(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataA(j);                      % push data to N vector
    elseif state == -1 && dataA(j) <= 0
            q=q+1;
            N(q)=dataA(j);                  % push data to N vector
    elseif state == -1 && dataA(j) >0
            state= 1;
            p=p+1;
            P(p)=dataA(j);                  % push data to P vector
    elseif  state == 1 && dataA(j) >0
            p=p+1;
            P(p)=dataA(j);                  % push data to P vector
    elseif state == 1 && dataA(j) <= 0 
            tempWave= max(P) - min(N);      % taking the wave height



            r=r+1;
            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;
            N=zeros(1000,1);
            q=q+1;
            N(q)=dataA(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeight0751A.out WHeight -ASCII
save CrestHeight0751A.out CHeight -ASCII
save Period0751A.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataA(j) > 0 && dataA(j) > dataA(j-1) && dataA(j) > dataA(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataA(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataA);
hold on
plot(Po,Maxim,'r*')
 



clear all
fid = fopen('spec24075out.bin','r');    %Open binary data
mydata = fread(fid,8640000,'float');    %Read binary data and 
                                        %define data type as float
%Dimension of data file 
n=length(mydata);
gaugeB=zeros(3000000,1);                %Provide empty vector with
k=0;                                    %spesific dimension
 
%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties        
for i=3:3:n                             %Taking the data from binary file
    k=k+1;
    gaugeB(k)=0.02443*mydata(i);        %Multiply with calibtration factor         
end
DataB=nonzeros(gaugeB);
MeanB=mean(DataB);                      %Initial mean value
 
%Making the data average equal to zero 
%and calculate the statistical properties
dataB=DataB-MeanB;
meanB=mean(dataB);
stdB=std(dataB);
varB=var(dataB);
skewB=skewness(dataB);
kurtB=kurtosis(dataB);
 
%Saving the Output in ASCII form
save SurfaceEl75B.out dataB -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;
state=0;
% initial state = 0, positive state = 1, and negative state = -1
 
m=length(dataB);
for j=1:m
    % The Algorithm must be started from negative state
    if state == 0 && dataB(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataB(j);                      % push data to N vector
    elseif state == -1 && dataB(j) <= 0
            q=q+1;
            N(q)=dataB(j);                  % push data to N vector
    elseif state == -1 && dataB(j) >0
            state= 1;
            p=p+1;
            P(p)=dataB(j);                  % push data to P vector
    elseif  state == 1 && dataB(j) >0
            p=p+1;
            P(p)=dataB(j);                  % push data to P vector
    elseif state == 1 && dataB(j) <= 0 
            tempWave= max(P) - min(N);      % taking the wave height



            r=r+1;
            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;
            N=zeros(1000,1);
            q=q+1;
            N(q)=dataB(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeight0751B.out WHeight -ASCII
save CrestHeight0751B.out CHeight -ASCII
save Period0751B.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataB(j) > 0 && dataB(j) > dataB(j-1) && dataB(j) > dataB(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataB(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataB);
hold on
plot(Po,Maxim,'r*')
 



clear all
mydata = load('spec24100out1.dat');     %Open DAT data
 
%Dimension of data file 
n=length(mydata);
gaugeA=zeros(2500000,1);                %Provide empty vector with
k=0;                                    %spesific dimension
 
%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties        
for i=1:n                               %Taking the data from binary file
    k=k+1;
    gaugeA(k)=mydata(i,1);              %Multiply with calibtration factor
end
DataA=nonzeros(gaugeA);
MeanA=mean(DataA);                      %Initial mean value
 
%Making the data average equal to zero 
%and calculate the statistical properties
dataA=DataA-MeanA;
meanA=mean(dataA);
stdA=std(dataA);
varA=var(dataA);
skewA=skewness(dataA);
kurtA=kurtosis(dataA);
 
%Saving the Output in ASCII form
save SurfaceEl100A.out dataA -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;
state=0;
% initial state = 0, positive state = 1, and negative state = -1
 
m=length(dataA);
for j=1:m
    % The Algorithm must be started from negative state
    if state == 0 && dataA(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataA(j);                      % push data to N vector
    elseif state == -1 && dataA(j) <= 0
            q=q+1;
            N(q)=dataA(j);                  % push data to N vector
    elseif state == -1 && dataA(j) >0
            state= 1;
            p=p+1;
            P(p)=dataA(j);                  % push data to P vector
    elseif  state == 1 && dataA(j) >0
            p=p+1;
            P(p)=dataA(j);                  % push data to P vector
    elseif state == 1 && dataA(j) <= 0 
            tempWave= max(P) - min(N);      % taking the wave height
            r=r+1;



            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;
            N=zeros(1000,1);
            q=q+1;
            N(q)=dataA(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeight100A.out WHeight -ASCII
save CrestHeight100A.out CHeight -ASCII
save Period100A.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataA(j) > 0 && dataA(j) > dataA(j-1) && dataA(j) > dataA(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataA(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataA);
hold on
plot(Po,Maxim,'r*')
 



clear all
mydata = load('spec24100out1.dat');     %Open DAT data
 
%Dimension of data file 
n=length(mydata);
gaugeB=zeros(2500000,1);                %Provide empty vector with
k=0;                                    %spesific dimension
 
%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties        
for i=1:n                               %Taking the data from binary file
    k=k+1;
    gaugeB(k)=mydata(i,2);              %Multiply with calibtration factor
end
DataB=nonzeros(gaugeB);
MeanB=mean(DataB);                      %Initial mean value
 
%Making the data average equal to zero 
%and calculate the statistical properties
dataB=DataB-MeanB;
meanB=mean(dataB);
stdB=std(dataB);
varB=var(dataB);
skewB=skewness(dataB);
kurtB=kurtosis(dataB);
 
%Saving the Output in ASCII form
save SurfaceEl100B.out dataB -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;
state=0;
% initial state = 0, positive state = 1, and negative state = -1
 
m=length(dataB);
for j=1:m
    % The Algorithm must be started from negative state
    if state == 0 && dataB(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataB(j);                      % push data to N vector
    elseif state == -1 && dataB(j) <= 0
            q=q+1;
            N(q)=dataB(j);                  % push data to N vector
    elseif state == -1 && dataB(j) >0
            state= 1;
            p=p+1;
            P(p)=dataB(j);                  % push data to P vector
    elseif  state == 1 && dataB(j) >0
            p=p+1;
            P(p)=dataB(j);                  % push data to P vector
    elseif state == 1 && dataB(j) <= 0 
            tempWave= max(P) - min(N);      % taking the wave height
            r=r+1;



            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;
            N=zeros(1000,1);
            q=q+1;
            N(q)=dataB(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeight100B.out WHeight -ASCII
save CrestHeight100B.out CHeight -ASCII
save Period100B.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataB(j) > 0 && dataB(j) > dataB(j-1) && dataB(j) > dataB(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataB(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataB);
hold on
plot(Po,Maxim,'r*')
 



clear all
mydata = load('ALL.dat');       %Open DAT data
 
%Dimension of data file 
n=length(mydata);
 
%Making the data average equal to zero 
%and calculate the statistical properties
MeanFM=mean(mydata);
dataFM=mydata-MeanFM;
meanfm=mean(dataFM);
stdfm=std(dataFM);
varfm=var(dataFM);
skewfm=skewness(dataFM);
kurtfm=kurtosis(dataFM);
 
%Saving the Output in ASCII form
save SurfaceElFM.out dataFM -ASCII
 
%SECOND: Getting The Crest and Wave Height
%Define temporary vectors
P=zeros(1000,1);                %Positive elevation 
N=zeros(1000,1);                %Negative elevation 
wHeight=zeros(1000000,1);       %Wave height 
cHeight=zeros(1000000,1);       %Crest height 
T=zeros(1000000,1);             %Period 
p=0;q=0;r=0;s=0;t=0;
state=0;
% initial state = 0, positive state = 1, and negative state = -1
 
m=length(dataFM);
for j=1:m
    % The Algorithm must be started from negative state
    if state == 0 && dataFM(j) <= 0
        state = -1;
        q=q+1;
        N(q)=dataFM(j);                      % push data to N vector
    elseif state == -1 && dataFM(j) <= 0
            q=q+1;
            N(q)=dataFM(j);                  % push data to N vector
    elseif state == -1 && dataFM(j) >0
            state = 1;
            p=p+1;
            P(p)=dataFM(j);                  % push data to P vector
    elseif  state == 1 && dataFM(j) >0
            p=p+1;
            P(p)=dataFM(j);                  % push data to P vector
    elseif state == 1 && dataFM(j) <= 0 
            tempWave= max(P) - min(N);      % taking the wave height
            r=r+1;
            wHeight(r)=tempWave;            
            tempCrest= max(P);              % taking the crest height
            s=s+1;
            cHeight(s)=tempCrest;           
            t=t+1;                          % taking the wave period
            T(t)=0.2*(length(nonzeros(P))+length(nonzeros(N)));
            % flush all data, & ready to start from the beginning state
            % again (the negative state)
            q=0;
            p=0;



            N=zeros(1000,1);
            q=q+1;
            N(q)=dataFM(j);
            P=zeros(1000,1);
            state=-1;
    end
end
 
WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);
 
% Saving the Output in ASCII form
save WaveHeightFM.out WHeight -ASCII
save CrestHeightFM.out CHeight -ASCII
save PeriodFM.out WPeriod -ASCII
 
%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);
Point=zeros(1000000,1);
y=0;x=0;
 
for j=2:m-1
      if dataFM(j) > 0 && dataFM(j) > dataFM(j-1) && dataFM(j) > dataFM(j+1)
        y=y+1;
        Point(y)=(j-1)*0.01;  
        x=x+1;
        Maxi(x)=dataFM(j);                    
      else
          continue
      end
end
 
Maxim=nonzeros(Maxi);               %Positive maxima
Po=nonzeros(Point);                 %Pertinent time of maxima 
Nmaxim=length(Maxim);               %Number of Maxima
 
% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataFM);
hold on
plot(Po,Maxim,'r*')
 



 

 

 

 

 

 

 

APPENDICES II 

MATHCAD CALCULATION  

ON WAVE AND CREST HEIGHT DISTIRBUTIONS 

 



DISTRIBUTION OF WATER SURFACE ELEVATION

Surface elavation of laboratory simulation 050A
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Surface elavation of field measurement

surface elevation bin frequency cumulative distribution
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ZERO-CROSSING STUDY
Comparison of Up- and Down-Crossing Wave
Laboratory Simulation 050A

Lmo 0.00012199:= variance of water surface elevation

Ld 0.7:= water depth in meter

ZERO UP-CROSSING WAVE 

hlru
0

0
1

2

3

4

5

6

7

8

9

-31.339·10
-31.339·10
-49.448·10
-31.26·10
-31.024·10
-36.141·10

0.014

0.015

0.025

...

:= hlu sort hlru( ):= hlu2 hlu2
:=

Number of wave

Nhlu length hlu( ):= Nhlu 33720=

Root mean square

hlrmsu
1

Nhlu
hlu2∑⎛⎜⎝

⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=

hlrmsu 0.0296=

Maximum wave height

hlmu max hlu( ):=

hlmu 0.0972=

Significant wave height

Nhsu round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhlu⋅⎡⎢
⎣

⎤⎥
⎦

:=

sumhsu

Nhsu 1−

Nhlu 1−( )

i

hlui∑
=

:=Nhsu 22480=

i Nhsu 1−( ) Nhlu 1−( )..:=
sumhsu 472.0225=hlu Nhsu 1−( ) 0.0314=

hsu
sumhsu

Nhlu Nhsu− 1+( )
:=hlu Nhlu 1−( ) 0.0972=

hlui

0.0314
...

= hsu 0.042=

Wave Height Distribution

hlbinu
0

0
1

2

3

4

5

-45.207·10
-31.562·10
-32.604·10
-33.645·10
-34.687·10

...

:= hlfrequ
0

0
1

2

3

4

5

678
241

246

302

352

...

:= hlcdfu
0

0
1

2

3

4

5

0.02
0.027

0.035

0.044

0.054

...

:=



Nhlfrequ length hlfrequ( ):= Nlcdfu length hlcdfu( ):=binlu 2 hlbinu0⋅:=

binlu 0.001= hlfrelu
hlfrequ

hlfrequ( )∑
:=

HEu 1 hlcdfu−:=
Nblu length hlbinu( ):=

Nblu 90= hlpdfu
hlfrequ

hlfrequ binlu⋅( )∑
:=

ZERO DOWN-CROSSING WAVE 

hlrd
0

0
1

2

3

4

5

6

7

8

9

-31.339·10
-49.448·10
-31.26·10
-49.448·10
-33.858·10
-38.661·10

0.017

0.013

0.048

...

:=
hld sort hlrd( ):= hld2 hld2

:=

Number of waves

Nhld length hld( ):= Nhld 33719=

Root mean square wave height

hlrmsd
1

Nhld
hld2∑⎛⎜⎝

⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=

COMPARISON
hlrmsd 0.0296= hlrmsu 0.0296=

Maximum wave height

hlmd max hld( ):=

hlmd 0.0932= hlmu 0.0972=

Significant wave height

Nhsd round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhld⋅⎡⎢
⎣

⎤⎥
⎦

:= sumhsd

Nhsd 1−

Nhld 1−( )

i

hldi∑
=

:=

Nhsd 22479=

sumhsd 471.7858=i Nhsd 1−( ) Nhld 1−( )..:=

hld Nhsd 1−( ) 0.0314= hsd
sumhsd

Nhld Nhsd− 1+( )
:=

COMPARISONhld Nhld 1−( ) 0.0932=
hsd 0.042= hsu 0.042=

hldi

0.0314
...

=

Wave Height Distribution

hlbind
0

0
1

2

3

-45.066·10
-31.52·10
-32.533·10

...

:= hlfreqd
0

0
1

2

3

420
224

256

...

:= hlcdfd
0

0
1

2

3

0.012
0.019

0.027

...

:=



Nhlfreqd length hlfreqd( ):= Nlcdfd length hlcdfd( ):=binld 2 hlbind0⋅:=

binld 0.001= hlfreld
hlfreqd

hlfreqd( )∑
:=

HEd 1 hlcdfd−:=
Nbld length hlbind( ):=

Nbld 89= hlpdfd
hlfreqd

hlfreqd binld⋅( )∑
:=
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Field Measurement

Fmo 3.3257:= variance of water surface elevation

Fd 130:= water depth in meter

ZERO UP-CROSSING WAVE 

hfru
0

0
1

2

3

4

5

6

7

8

9

5.563
4.326

1.872

2.357

3.465

3.006

1.781

3.669

2.409

...

:= hfu sort hfru( ):= hfu2 hfu2
:=

Number of wave

Nhfu length hfu( ):= Nhfu 54673=

Root mean square

hfrmsu
1

Nhfu
hfu2∑⎛⎜⎝

⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=

hfrmsu 4.9747=

Maximum wave height

hfmu max hfu( ):=

hfmu 18.9794=

Significant wave height

Nhfsu round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhfu⋅⎡⎢
⎣

⎤⎥
⎦

:=

sumhfsu

Nhfsu 1−

Nhfu 1−( )

i

hfui∑
=

:=Nhfsu 36449=

i Nhfsu 1−( ) Nhfu 1−( )..:=
sumhfsu 129799.8068=hfu Nhfsu 1−( ) 5.1219=

hfsu
sumhfsu

Nhfu Nhfsu− 1+( )
:=hfu Nhfu 1−( ) 18.9794=

hfui

5.1219
...

= hfsu 7.1221=

Wave Height Distribution

hfbinu
0

0
1

2

3

4

0.079
0.238

0.397

0.556

...

:= hffrequ
0

0
1

2

3

4

313
313

428

568

...

:= hfcdfu
0

0
1

2

3

4

-35.725·10
0.011

0.019

0.03

...

:=



Nhffrequ length hffrequ( ):= Nfcdfu length hfcdfu( ):=binfu 2 hfbinu0⋅:=

binfu 0.1588= hffrelu
hffrequ

hffrequ( )∑
:=

HEfu 1 hfcdfu−:=
Nbfu length hfbinu( ):=

hfpdfu
hffrequ

hffrequ binfu⋅( )∑
:=

Nbfu 114=

ZERO DOWN-CROSSING WAVE 

hfrd
0

0
1

2

3

4

5

6

7

8

9

4.15
4.475

3.754

0.655

3.947

2.734

2.372

2.483

3.576

...

:= hfd sort hfrd( ):= hfd2 hfd2
:=

Number of waves

Nhfd length hfd( ):= Nhfd 54673=

Root mean square wave height

hfrmsd
1

Nhlu
hlu2∑⎛⎜⎝

⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=
COMPARISON

hfrmsd 0.0296= hfrmsu 4.9747=

Maximum wave height

hfmd max hfd( ):=
hfmu 18.9794=hfmd 21.9815=

Significant wave height

Nhfsd round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhfd⋅⎡⎢
⎣

⎤⎥
⎦

:= sumhfsd

Nhfsd 1−

Nhfd 1−( )

i

hfdi∑
=

:=

Nhfsd 36449=

sumhfsd 130168.2955=i Nhfsd 1−( ) Nhfd 1−( )..:=

hfd Nhfsd 1−( ) 5.1379= hfsd
sumhfsd

Nhfd Nhfsd− 1+( )
:=

COMPARISON
hfd Nhfd 1−( ) 21.9815=

hfsd 7.1423= hfsu 7.1221=
hfdi

5.1379
...

=

Wave Height Distribution

hfbind
0

0
1
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3

0.088
0.264

0.44

...

:= hffreqd
0

0
1

2

3

360
514

573

...

:= hfcdfd
0

0
1

2

3

-36.585·10
0.016

0.026

...

:=



Nhffreqd length hffreqd( ):= Nfcdfd length hfcdfd( ):=binfd 2 hfbind0⋅:=

binfd 0.1759= hffreld
hffreqd

hffreqd( )∑
:=

HEfd 1 hfcdfd−:=
Nbfd length hfbind( ):=

Nbfd 108= hfpdfd
hffreqd

hffreqd binfd⋅( )∑
:=
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LABORATORY SIMULATION 050A  
Variance of water surface elevation

mo 0.00012199:=

Water depth in meter

d 0.7:=

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

0.92
0.22

0.21

0.22

1.29

...

:=

Twm mean Tw( ):=

Twm 0.7703= sec 

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
⋅:= k 6.7819=

cek tanh k d⋅( ) 0.9998=

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
0

0
1

2

3

4

5

6

7

8

-31.339·10
-49.448·10
-31.26·10
-49.448·10
-33.858·10
-38.661·10

0.017

0.013

...

:=

hl sort hlr( ):= hl2 hl2:=

Number of wave
Nhl length hl( ):= Nhl 33719=

Statistical properties

mean hl( ) 0.0261=

stdev hl( ) 0.014=

skew hl( ) 0.4991=

kurt hl( ) 0.0342=

Root mean square wave height Normalized wave height

hlrms
1

Nhl
hl2∑⎛⎜⎝

⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:= hn
hl

mo
:=

hlrms 0.0296=

Significant wave height

Nhs round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhl⋅⎡⎢
⎣

⎤⎥
⎦

:= Nhs 22479=

i Nhs 1−( ) Nhl 1−( )..:=

hl Nhs 1−( ) 0.0314= hl Nhl 1−( ) 0.0932=



hli

0.0314
0.0314

0.0314

0.0314

0.0314

0.0314

...

=

sumhs

Nhs 1−

Nhl 1−( )

i

hli∑
=

:= sumhs 471.7858=

hs
sumhs

Nhl Nhs− 1+( )
:= hs 0.042=

comparison with theoritical significant wave height

hss 4 mo⋅:= hss 0.0442=

Maximum wave height

hlm max hl( ):=

hlm 0.0932=

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs⋅:=

hmax 0.0958=

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 

hlbin
0

0
1

2

3

4

5

6

7

8

9

-45.066·10
-31.52·10
-32.533·10
-33.547·10
-34.56·10
-35.573·10
-36.586·10
-37.6·10
-38.613·10

...

:= hlfreq
0

0
1

2

3

4

5

6

7

8

9

420
224

256

309

328

439

506

481

617

...

:= hlcdf
0

0
1

2

3

4

5

6

7

8

9

0.012
0.019

0.027

0.036

0.046

0.059

0.074

0.088

0.106

...

:=

Bin interval Probability density Probability of exceedance
binl 2 hlbin0⋅:= HE 1 hlcdf−:=hlfrel

hlfreq

hlfreq( )∑
:=binl 0.001=

Number of bin

Nbl length hlbin( ):= hlpdf
hlfreq

hlfreq binl⋅( )∑
:=

Nbl 89=



RAYLEIGHT DISTRIBUTION

i 0 length hlbin( ) 1−( )..:=

Rayleigh Distribution

pdflrayi

2 hlbini⋅( )
hlrms2

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= cdflrayi 1 exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

−:=
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Phr1 exp
hl

0.707 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phr2 exp
hl

0.638 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Forristall 

Phf exp
hl

0.681 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.126
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Krogstad 

Phk1 exp
hl

0.73 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.37
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phk2 exp
hl

0.75 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.5
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Haring 

Phh1 0.968 0.176
hl
hs

⋅+:= Phh2 2−
hl
hs

⎛⎜
⎝

⎞⎟
⎠

2
Phh1⋅

⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯

:=

Phh exp Phh2( ):=

Rayleigh Stokes

an 4 mo⋅
log Nhl( )

8
⎛⎜
⎝

⎞⎟
⎠

⋅:= bn
an

2 log Nhl( )⋅
:= B2

1
2

:= B3
3
8

:=

ahn 2 an⋅ 1 B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:= ahn 0.0677=

bhn 2 bn⋅ 1 3 B3⋅ k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:= bhn 0.0078=

Prs 1 exp exp
hl ahn−

bhn
⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦
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ZERO CROSSING CREST HEIGHT 

Zero crossing crest height in meter (clr)

clr
0

0
1

2

3

4

5

6

7

0.00133
0.00094

0.00125

0.00094

0.00377

0.00629

0.00984

...

:=
Sorted crest cl sort clr( ):=

Number of crest Ncl length cl( ):= Ncl 33719=

Maximum crest height max cl( ) 0.0671=

Statistical Properties

mean cl( ) 0.0138= Normalized crest height
stdev cl( ) 0.0085=

skew cl( ) 0.5917= x
cl

mo
:=

kurt cl( ) 0.3817=



OBSERVED CREST HEIGHT DISTRIBUTION 

Crest height bin Crest height frequency Cumulative frequency 

clbin
0

0
1

2

3

4

5

6

7

8

9

-43.433·10
-31.03·10
-31.717·10
-32.403·10
-33.09·10
-33.776·10
-34.463·10
-35.15·10
-35.836·10

...

:= clfreq
0

0
1

2

3

4

5

6

7

8

9

31.291·10
743

658

571

682

691

750

656

811

...

:= clfcum
0

0
1

2

3

4

5

6

7

8

9

0.038
0.06

0.08

0.097

0.117

0.137

0.16

0.179

0.203

...

:=

Bin interval Probability density Probability of exceedance

lbin 2 clbin0⋅:= CE 1 clfcum−:=clfrel
clfreq

clfreq∑
:=

lbin 0.0007=

Number of bin
clpdf

clfreq mo⋅

clfreq lbin⋅( )∑
:=Ncbl length clbin( ):=

Ncbl 86=

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Pr exp 8−
cl2

hs2

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

:=

Ochi 

E0 0.1:= α0 1 E02
−( ):= narrow band

E1 1:= α1 1 E12
−( ):= broad band

probability density function of E=1

pa exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

:=

pb1 α1 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=



pc1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd1 pb1 pc1⋅( )
→⎯⎯⎯⎯

:=

p1
2

1 α1+( )
E1

2π

exp
x2

−

2E12

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd1+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=1

pe1 α1 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

+:=

pg1 pe1 pf1⋅( )
→⎯⎯⎯

:=

P1
2

1 α1+( )
1−

2
1 α1−( ) 0.5 0.5 erf

x

E1 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

+⎛
⎜
⎝

⎞
⎟
⎠

+ pg1−⎡
⎢
⎣

⎤
⎥
⎦

⋅:=

PE1 1 P1−:=

probability density function E=0 

pb0 α0 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc0 0.5 0.5 erf
α0
E0

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd0 pb0 pc0⋅( )
→⎯⎯⎯⎯

:=

p0
2

1 α0+( )
E0

2π

exp
x2

−

2E02
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⎜
⎝
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⎟
⎠
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⎜
⎝
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⎟
⎠

⋅:=

cumulative distribution function E=0

pe0 α0 exp
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−
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⎛
⎜
⎝

⎞
⎟
⎠

⋅:=
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2
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⎜
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⎞
⎟
⎠

+:=

pg0 pe0 pf0⋅( )
→⎯⎯⎯

:=
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2
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2
1 α0−( ) 0.5 0.5 erf

x
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⎛
⎜
⎝

⎞
⎟
⎠
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⎜
⎝

⎞
⎟
⎠

+ pg0−⎡
⎢
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⎤
⎥
⎦

⋅:=

PE0 1 P0−:=



Haring

Pha 4.37
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d

⎛⎜
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⎠

⋅ 0.57
cl
d

−⎛⎜
⎝

⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:= Phb
1
2

⎛⎜
⎝

⎞⎟
⎠

−
cl2

mo

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 1 Pha−( )⋅
⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=

Ph exp Phb( ):=

Tayfun and Huang 

RR k hs⋅:= RR 0.2846=

Pth exp
8−

RR2
1 2 RR⋅

cl
hs

⋅+ 1−
⎛
⎜
⎝

⎞
⎟
⎠

2⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

Kriebel and Dawson 

Pkda 1
1
2

RR
cl
hs

⋅−⎛⎜
⎝

⎞⎟
⎠

2
:=

Pkdb 8−
cl2

hs2
⋅:=

Pkdc Pkda Pkdb⋅( )
→⎯⎯⎯⎯⎯

:=

Pkd exp Pkdc( ):=

Forristall 

Sl
2π hs

9.81Twm
⎛⎜
⎝

⎞⎟
⎠

:= Sl 0.0349=

Ur
hs

k2 d3
:= Ur 0.0027=

Two - dimensional

a2 0.3536 0.2892Sl+ 0.1060Ur+:= a2 0.364=

b2 2 2.1597Sl− 0.0968Ur2
+:= b2 1.9246=

Pf2 exp
cl

a2 hs⋅
⎛⎜
⎝

⎞⎟
⎠

b2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Three - dimensional

a3 0.3536 0.2568Sl+ 0.0800Ur+:= a3 0.3628=

b3 2 1.7912Sl− 0.5302Ur− 0.284Ur2
+:= b3 1.9361=

Pf3 exp
cl

a3 hs⋅
⎛⎜
⎝

⎞⎟
⎠

b3
−

⎡
⎢
⎣

⎤
⎥
⎦

:=



Prevosto 
ss 1:= unidirectional wave

ahs 1
1
2

⎛⎜
⎝

⎞⎟
⎠

tanh k d⋅( ) 0.9−( )⋅
2

1 ss+
⋅−:= ahs 0.9501= Directional Factor

afm
1

1.23
:= afm 0.813= Spectral Bandwith

T02
Twm
1.2

:= fm
1

T02
:= fm 1.5578=

modified significant wave height hs

hsp ahs hs⋅:= hsp 0.0399=

modified mean frequency fm

fmp afm fm⋅:= fmp 1.2665=

modified wave number (dispersion relation)

kmp
2 π⋅ fm⋅( )2

9.81
:= kmp 9.7659= cek  tanh kmp d⋅( ) 1=

dimensionless depth

kap kmp d⋅:= kap 6.8361=

PI tanh kap( ) kap 1 tanh kap( )( )2
−⎡⎣ ⎤⎦⋅+:= PI 1=

Second order coefficients 

cdiff
PI kap 1 tanh kap( )( )2

−⎡⎣ ⎤⎦⋅+⎡⎣ ⎤⎦

PI2( ) 4 kap⋅ tanh kap( )⋅−
:= cdiff 0.038−=

csum
1
4

⎛⎜
⎝

⎞⎟
⎠

2 1 tanh kap( )( )2
−⎡⎣ ⎤⎦+⎡⎣ ⎤⎦

tanh kap( )( )3
⋅:= csum 0.5=

Second order transfer functions

TD cdiff k⋅:= TD 0.2574−=

TS csum k⋅:= TS 3.391=

Non-linear crest components

C0 TD
hsp2

8
⋅:= C0 0.0001−=

C1 ahs:= C1 0.9501=

C2 C12 TD TS+( )⋅:= C2 2.8285=

Cr cl TD TS+( ) cl2⋅+ TD
hs2

8
⋅−:=

Pp exp
8−

hs2

C1− C12 4 C2 C0 Cr−( )⋅[ ]⋅−+⎡⎣ ⎤⎦
2C2

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=



Rayleigh Stokes

acn an 1 B2 k an⋅( )⋅+ B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

bcn bn 1 2 B2⋅ k an⋅( )⋅+ 3 B3⋅ k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

Prsc 1 exp exp
cl acn−( )−
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⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

−:=
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LABORATORY SIMULATION 050B  
Variance of water surface elevation

mo 0.00011775��

Water depth in meter

d 0.7��

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

6

7

0.02
0.11

0.02

0.02

1.08

0.4

0.74

...

��
Twm mean Tw( )��

Twm 0.7717� sec 

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
��� k 6.7576�

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
0

0
1

2

3

4

5

6

7

8

9

-41.193·10
-42.982·10
-44.175·10
-47.754·10
-33.936·10
-33.28·10
-37.634·10

0.014

0.016

...

��
hl sort hlr( )�� hl2 hl2��

Number of wave

Nhl length hl( )�� Nhl 33664�

Statistical properties

mean hl( ) 0.0252�

stdev hl( ) 0.0141�

skew hl( ) 0.4163�

kurt hl( ) 0�

Root mean square wave height
Normalized wave height

hlrms
1

Nhl
hl2����

	

�

��

�

�
�
�

��
hn

hl

mo
��

hlrms 0.0288�



Significant wave height

Nhs round
2
3

��
�

	

�

Nhl��
�

��
�

�� Nhs 22443�

i Nhs 1�( ) Nhl 1�( )����

hl Nhs 1�( ) 0.0307�

hl Nhl 1�( ) 0.0907�

hli

0.0307
0.0307

0.0307

0.0307

0.0307

0.0307

...

�

sumhs

Nhs 1�

Nhl 1�( )

i

hli�
�

�� sumhs 460.2459�

hs
sumhs

Nhl Nhs� 1�( )
�� hs 0.041�

comparison with theoritical significant wave height

hss 4 mo��� hss 0.0434�

Maximum wave height

hlm max hl( )��

hlm 0.0907�

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs���

hmax 0.0936�

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 

hlbin
0

0
1

2

3

4

5

6

7

8

9

-44.962·10
-31.489·10
-32.481·10
-33.473·10
-34.466·10
-35.458·10
-36.451·10
-37.443·10
-38.436·10

...

�� hlfreq
0

0
1

2

3

4

5

6

7

8

9

31.318·10
223

214

301

305

338

458

493

514

...

�� hlcdf
0

0
1

2

3

4

5

6

7

8

9

0.039
0.046

0.052

0.061

0.07

0.08

0.094

0.108

0.124

...

��



Bin interval Probability density Probability of exceedance

binl 2 hlbin0��� Nhlfreq length hlfreq( )�� HE 1 hlcdf���

binl 0.001� hlfrel
hlfreq

hlfreq( )�
��

Number of bin

Nbl length hlbin( )��
hlpdf

hlfreq

hlfreq binl�( )�
��

Nbl 87�

RAYLEIGHT DISTRIBUTION

i 0 length hlbin( ) 1�( )����

Rayleigh Distribution

pdflrayi

2 hlbini�� �
hlrms2

�

�

��
�
�

exp
hlbini� �2

�

hlrms2

�


�

�
�
�
�

��� cdflrayi 1 exp
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�
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Phr1 exp
hl

0.707 hs�
��
�

	

�

2
�

�

�

�
�
�

��

Phr2 exp
hl

0.638 hs�
��
�

	

�

2
�

�

�

�
�
�

��

Forristall 

Phf exp
hl

0.681 hs�
��
�

	

�

2.126
�

�

�

�
�
�

��

Krogstad 

Phk1 exp
hl

0.73 hs�
��
�

	

�

2.37
�

�

�

�
�
�

��

Phk2 exp
hl

0.75 hs�
��
�

	

�

2.5
�

�

�

�
�
�

��

Haring  

Phh1 0.968 0.176
hl
hs

����

Phh2 2�
hl
hs

��
�

	

�

2
Phh1�

�

�

�
�
�

��������

��

Phh exp Phh2( )��



Rayleigh Stokes

an 4 mo�
log Nhl( )

8
��
�

	

�

��� an 0.0327�

bn
an

2 log Nhl( )�
�� bn 0.0036�

B2
1
2

�� B3
3
8

��

ahn 2 an� 1 B3 k an�( )2
���� �����

bhn 2 bn� 1 3 B3� k an�( )2
���� �����

Prs 1 exp exp
hl ahn�

bhn
��
�
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ZERO CROSSING CREST HEIGHT 

Zero crossing crest height in meter (clr)

clr
0

0
1

2

3

4

5

6

7

8

9

-69.68253·10
-56.93261·10

0.00019

0.00037

0.00335
-69.68253·10

0.00758

0.008

0.01027

...

��
Sorted crest cl sort clr( )��

Number of crest Ncl length cl( )�� Ncl 33664�

Maximum crest height max cl( ) 0.0595�

Statistical Properties

mean cl( ) 0.0132� Normalized crest height
stdev cl( ) 0.0084�

skew cl( ) 0.5191� x
cl

mo
��

kurt cl( ) 0.1672�

OBSERVED CREST HEIGHT DISTRIBUTION 

Crest height bin Crest height frequency Cumulative frequency 

clbin
0

0
1

2

3

4

5

6

7

8

9

-43.159·10
-49.477·10
-31.58·10
-32.211·10
-32.843·10
-33.475·10
-34.107·10
-34.739·10
-35.371·10

...

�� clfreq
0

0
1

2

3

4

5

6

7

8

9

32.074·10
600

539

605

540

607

581

651

699

...

�� clfcum
0

0
1

2

3

4

5

6

7

8

9

0.062
0.079

0.095

0.113

0.129

0.147

0.165

0.184

0.205

...

��

Bin interval Probability density Probability of exceedance

lbin 2 clbin0��� clfrel
clfreq

clfreq�
�� CE 1 clfcum���

lbin 0.0006�

Number of bin
clpdf

clfreq mo�

clfreq lbin�( )�
��Ncbl length clbin( )��

Ncbl 83�



EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

 Rayleigh

Pr exp 8�
cl2

hs2

��
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��

Ochi 
E0 0.1�� α0 1 E02

�� ���

E1 1�� α1 1 E12
�� ���

probability density function of E=1

pa exp
x2

�

2

�
�
�

	


�

��

pb1 α1 x� pa�( )
�����

��

pc1 0.5 0.5 erf
α1
E1

x

2
��

�
�

	


�

����

pd1 pb1 pc1�( )
�����

��

p1
2

1 α1�( )
E1

2π
exp
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�

2E12

��
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�
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���

cumulative distribution function E=1

pe1 α1 exp
x2

�
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�
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���

pf1 0.5 0.5 erf
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E1

x
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�

	


�

���
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����
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1�

2
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x
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probability density function E=0

pb0 α0 x� pa�( )
�����

��
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α0
E0

x
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�
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1 α0�( )
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cumulative distribution function E=0

pe0 α0 exp
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�
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�
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���
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E0

x
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��
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�
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���
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����
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x
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PE0 1 P0���

Haring 

Pha 4.37
cl
d

��
�

	

�

� 0.57
cl
d

���
�

	

�

��
�

��
�

�����������

��

Phb
1
2

��
�

	

�

�
cl2

mo

�
�
�

	


�

� 1 Pha�( )�
�

�

�
�
�

�����������

��

Ph exp Phb( )��

Tayfun and Huang 

RR k hs��� RR 0.2771�

Pth exp
8�

RR2
1 2 RR�

cl
hs

�� 1�
�
�
�

	


�

2�


�

�
�
�
�

��

Kriebel and Dawson 

Pkda 1
1
2

RR
cl
hs

����
�

	

�

2
��

Pkdb 8�
cl2

hs2
���

Pkdc Pkda Pkdb�( )
������

��

Pkd exp Pkdc( )��

 Forristall 

Sl
2π hs

9.81Twm
��
�

	

�

�� Sl 0.034�

Ur
hs

k2 d3
�� Ur 0.0026�



Two - dimensional

a2 0.3536 0.2892Sl� 0.1060Ur��� a2 0.3637�

b2 2 2.1597Sl� 0.0968Ur2
��� b2 1.9265�

Pf2 exp
cl

a2 hs�
��
�

	

�

b2
�

�

�

�
�
�

��

Three - dimensional

a3 0.3536 0.2568Sl� 0.0800Ur��� a3 0.3626�

b3 2 1.7912Sl� 0.5302Ur� 0.284Ur2
��� b3 1.9376�

Pf3 exp
cl

a3 hs�
��
�

	

�

b3
�

�

�

�
�
�

��

Prevosto 
ss 1�� unidirectional wave

ahs 1
1
2

��
�

	

�

tanh k d�( ) 0.9�( )�
2

1 ss�
���� ahs 0.9501� Directional Factor

afm
1

1.23
�� afm 0.813� Spectral Bandwith

T02
Twm
1.2

�� fm
1

T02
�� fm 1.555�

modified significant wave height hs

hsp ahs hs��� hsp 0.039�

modified mean frequency fm

fmp afm fm��� fmp 1.2642�

modified wave number (dispersion relation)

kmp
2 π� fm�( )2

9.81
�� kmp 9.7309� cek  tanh kmp d�( ) 1�

dimensionless depth

kap kmp d��� kap 6.8116�

PI tanh kap( ) kap 1 tanh kap( )( )2
��� ������ PI 1�

Second order coefficients 

cdiff
PI kap 1 tanh kap( )( )2

��� ������ ��

PI2� � 4 kap� tanh kap( )��
�� cdiff 0.0381��

csum
1
4

��
�

	

�

2 1 tanh kap( )( )2
��� ����� ��

tanh kap( )( )3
��� csum 0.5�

Second order transfer functions



TD cdiff k��� TD 0.2575��

TS csum k��� TS 3.3788�

Non-linear crest components

C0 TD
hsp2

8
��� C0 0��

C1 ahs�� C1 0.9501�

C2 C12 TD TS�( )��� C2 2.8175�

Cr cl TD TS�( ) cl2�� TD
hs2

8
����

Pp exp
8�

hs2

C1� C12 4 C2 C0 Cr�( )�[ ]����� ��
2C2

�

�

�
�
�
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�

�
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��

Rayleigh Stokes

acn an 1 B2 k an�( )�� B3 k an�( )2
���� �����

bcn bn 1 2 B2� k an�( )�� 3 B3� k an�( )2
���� �����
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LABORATORY SIMULATION 075A  
Variance of water surface elevation

mo 0.00031172:=

Water depth in meter

d 0.7:=

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

6

0.17
0.15

0.13

0.24

0.28

0.36

...

:=
Twm mean Tw( ):=

Twm 0.9286= sec 

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
⋅:=

k 4.6673=

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
0

0
1

2

3

4

5

6

7

-46.299·10
-44.724·10
-46.299·10
-46.299·10
-49.448·10
-31.26·10
-47.874·10

...

:=
hl sort hlr( ):= hl2 hl2:=

Number of wave

Nhl length hl( ):= Nhl 30911=

Statistical properties

mean hl( ) 0.0422=

stdev hl( ) 0.0221=

skew hl( ) 0.4823=

kurt hl( ) 0.0067−=

Root mean square wave height

Normalized wave height
hlrms

1
Nhl

hl2∑⎛⎜⎝
⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=

hn
hl

mo
:=

hlrms 0.0477=

Significant wave height

Nhs round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhl⋅⎡⎢
⎣

⎤⎥
⎦

:= Nhs 20607=

i Nhs 1−( ) Nhl 1−( )..:=

hl Nhs 1−( ) 0.0509= hl Nhl 1−( ) 0.1457=



hli

0.0509
0.0509

0.0509

0.0509

0.0509

...

=
sumhs

Nhs 1−

Nhl 1−( )

i

hli∑
=

:= sumhs 694.4459=

hs
sumhs

Nhl Nhs− 1+( )
:= hs 0.0674=

comparison with theoritical significant wave height

hss 4 mo⋅:= hss 0.0706=

Maximum wave height

hlm max hl( ):=

hlm 0.1457=

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs⋅:=

hmax 0.1532=

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 

hlbin
0

0
1

2

3

4

5

6

7

8

9

-48.272·10
-32.482·10
-34.136·10
-35.791·10
-37.445·10
-39.1·10

0.011

0.012

0.014

...

:= hlfreq
0

0
1

2

3

4

5

6

7

8

9

280
176

175

287

302

406

457

564

538

...

:= hlcdf
0

0
1

2

3

4

5

6

7

8

9

-39.058·10
0.015

0.02

0.03

0.039

0.053

0.067

0.086

0.103

...

:=

Bin interval Probability density Probability of exceedance

binl 2 hlbin0⋅:= Nhlfreq length hlfreq( ):= Nlcdf length hlcdf( ):=

binl 0.0017= hlfrel
hlfreq

hlfreq( )∑
:= HE 1 hlcdf−:=

Number of bin

Nbl length hlbin( ):=

Nbl 85= hlpdf
hlfreq

hlfreq binl⋅( )∑
:=



i 0 length hlbin( ) 1−( )..:=

Rayleigh Distribution

pdflrayi

2 hlbini⋅( )
hlrms2

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= cdflrayi 1 exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Phr1 exp
hl

0.707 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phr2 exp
hl

0.638 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Forristall  

Phf exp
hl

0.681 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.126
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Krogstad  

Phk1 exp
hl

0.73 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.37
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phk2 exp
hl

0.75 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.5
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Haring 

Phh1 0.968 0.176
hl
hs

⋅+:=

Phh2 2−
hl
hs

⎛⎜
⎝

⎞⎟
⎠

2
Phh1⋅

⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯

:=

Phh exp Phh2( ):=

Rayleigh Stokes

an 4 mo⋅
log Nhl( )

8
⎛⎜
⎝

⎞⎟
⎠

⋅:=

bn
an

2 log Nhl( )⋅
:=

B2
1
2

:= B3
3
8

:=

ahn 2 an⋅ 1 B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

bhn 2 bn⋅ 1 3 B3⋅ k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

Prs 1 exp exp
hl ahn−

bhn
⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

−:=
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ZERO CROSSING CREST HEIGHT 

Zero crossing crest height in meter (clr)

clr
0

0
1

2

3

4

5

6

7

-59.58003·10
-59.58003·10

0.00057
-59.58003·10

0.00057

0.00073
-59.58003·10

...

:= cl sort clr( ):=Sorted crest
Ncl length cl( ):= Ncl 30911=Number of crest

Maximum crest height max cl( ) 0.0968=

Statistical Properties

mean cl( ) 0.0226= Normalized crest height
stdev cl( ) 0.0137=

skew cl( ) 0.5435= x
cl

mo
:=

kurt cl( ) 0.201=



OBSERVED CREST HEIGHT DISTRIBUTION 

Crest height bin Crest height frequency Cumulative frequency 

clbin
0

0
1

2

3

4

5

6

7

8

9

-45.352·10
-31.606·10
-32.676·10
-33.746·10
-34.817·10
-35.887·10
-36.957·10
-38.028·10
-39.098·10

...

:= clfreq
0

0
1

2

3

4

5

6

7

8

9

31.014·10
521

570

611

658

602

556

608

709

...

:= clfcum
0

0
1

2

3

4

5

6

7

8

9

0.033
0.05

0.068

0.088

0.109

0.129

0.147

0.166

0.189

...

:=

Bin interval Probability density Probability of exceedance
lbin 2 clbin0⋅:= CE 1 clfcum−:=clfrel

clfreq

clfreq∑
:=lbin 0.0011=

Number of bin

Ncbl length clbin( ):= clpdf
clfreq mo⋅

clfreq lbin⋅( )∑
:=

Ncbl 83=

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Pr exp 8−
cl2

hs2

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

:=

Ochi 

E0 0.1:= α0 1 E02
−( ):=

E1 1:=
α1 1 E12

−( ):=

probability density function of E=1

pa exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

:=

pb1 α1 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=



pd1 pb1 pc1⋅( )
→⎯⎯⎯⎯

:=

p1
2

1 α1+( )
E1

2π

exp
x2

−

2E12

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd1+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=1

pe1 α1 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

+:=

pg1 pe1 pf1⋅( )
→⎯⎯⎯

:=

P1
2

1 α1+( )
1−

2
1 α1−( ) 0.5 0.5 erf

x

E1 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

+⎛
⎜
⎝

⎞
⎟
⎠

+ pg1−⎡
⎢
⎣

⎤
⎥
⎦

⋅:=

PE1 1 P1−:=

probability density function E=0

pb0 α0 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc0 0.5 0.5 erf
α0
E0

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd0 pb0 pc0⋅( )
→⎯⎯⎯⎯

:=

p0
2

1 α0+( )
E0

2π

exp
x2

−

2E02

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd0+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=0

pe0 α0 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf0 0.5 0.5 erf
α0
E0

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

+:=

pg0 pe0 pf0⋅( )
→⎯⎯⎯

:=

P0
2

1 α0+( )
1−

2
1 α0−( ) 0.5 0.5 erf

x

E0 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

+⎛
⎜
⎝

⎞
⎟
⎠

+ pg0−⎡
⎢
⎣

⎤
⎥
⎦

⋅:=

PE0 1 P0−:=

Haring 

Pha 4.37
cl
d

⎛⎜
⎝

⎞⎟
⎠

⋅ 0.57
cl
d

−⎛⎜
⎝

⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:= Phb
1
2

⎛⎜
⎝

⎞⎟
⎠

−
cl2

mo

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 1 Pha−( )⋅
⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=

Ph exp Phb( ):=



Tayfun and Huang 

RR k hs⋅:= RR 0.3145=

Pth exp
8−

RR2
1 2 RR⋅

cl
hs

⋅+ 1−
⎛
⎜
⎝

⎞
⎟
⎠

2⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

Kriebel and Dawson 

Pkda 1
1
2

RR
cl
hs

⋅−⎛⎜
⎝

⎞⎟
⎠

2
:=

Pkdb 8−
cl2

hs2
⋅:=

Pkdc Pkda Pkdb⋅( )
→⎯⎯⎯⎯⎯

:=

Pkd exp Pkdc( ):=

Forristall 

Sl
2π hs

9.81Twm
⎛⎜
⎝

⎞⎟
⎠

:= Sl 0.0465=

Ur
hs

k2 d3
:= Ur 0.009=

Two - dimensional

a2 0.3536 0.2892Sl+ 0.1060Ur+:= a2 0.368=

b2 2 2.1597Sl− 0.0968Ur2
+:= b2 1.8996=

Pf2 exp
cl

a2 hs⋅
⎛⎜
⎝

⎞⎟
⎠

b2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Three - dimensional

a3 0.3536 0.2568Sl+ 0.0800Ur+:= a3 0.3663=

b3 2 1.7912Sl− 0.5302Ur− 0.284Ur2
+:= b3 1.912=

Pf3 exp
cl

a3 hs⋅
⎛⎜
⎝

⎞⎟
⎠

b3
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Prevosto 
ss 1:= unidirectional wave

ahs 1
1
2

⎛⎜
⎝

⎞⎟
⎠

tanh k d⋅( ) 0.9−( )⋅
2

1 ss+
⋅−:= ahs 0.9515= Directional Factor

afm
1

1.23
:= afm 0.813= Spectral Bandwith



T02
Twm
1.2

:= fm
1

T02
:= fm 1.2923=

modified significant wave height hs

hsp ahs hs⋅:= hsp 0.0641=

modified mean frequency fm

fmp afm fm⋅:= fmp 1.0507=

modified wave number (dispersion relation)

kmp
2 π⋅ fm⋅( )2

9.81
:= kmp 6.7209= cek  

tanh kmp d⋅( ) 0.9998=
dimensionless depth

kap kmp d⋅:= kap 4.7046=

PI tanh kap( ) kap 1 tanh kap( )( )2
−⎡⎣ ⎤⎦⋅+:= PI 1.0014=

Second order coefficients 

cdiff
PI kap 1 tanh kap( )( )2

−⎡⎣ ⎤⎦⋅+⎡⎣ ⎤⎦

PI2( ) 4 kap⋅ tanh kap( )⋅−
:= cdiff 0.0563−=

csum
1
4

⎛⎜
⎝

⎞⎟
⎠

2 1 tanh kap( )( )2
−⎡⎣ ⎤⎦+⎡⎣ ⎤⎦

tanh kap( )( )3
⋅:= csum 0.5003=

Second order transfer functions

TD cdiff k⋅:= TD 0.2628−=

TS csum k⋅:= TS 2.3352=

Non-linear crest components

C0 TD
hsp2

8
⋅:= C0 0.0001−=

C1 ahs:= C1 0.9515=

C2 C12 TD TS+( )⋅:= C2 1.8761=

Cr cl TD TS+( ) cl2⋅+ TD
hs2

8
⋅−:=

Pp exp
8−

hs2

C1− C12 4 C2 C0 Cr−( )⋅[ ]⋅−+⎡⎣ ⎤⎦
2C2

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

Rayleigh Stokes
bcn bn 1 2 B2⋅ k an⋅( )⋅+ 3 B3⋅ k an⋅( )2

⋅+⎡⎣ ⎤⎦⋅:=acn an 1 B2 k an⋅( )⋅+ B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

Prsc 1 exp exp
cl acn−( )−

bcn
⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

−:=
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LABORATORY SIMULATION 075B  
Variance of water surface elevation

mo 0.00030518:=

Water depth in meter

d 0.7:=

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

0.06
0.02

0.11

0.02

0.02

...

:=

Twm mean Tw( ):=

Twm 0.9341= sec

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
⋅:= k 4.6123=

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
0

0
1

2

3

4

5

6

7

8

-44.771·10
-41.193·10
-48.35·10
-42.386·10
-42.386·10
-47.157·10
-42.386·10
-41.193·10

...

:=

hl sort hlr( ):= hl2 hl2:=

Number of wave

Nhl length hl( ):= Nhl 30759=

Statistical properties

mean hl( ) 0.0411=

stdev hl( ) 0.0224=

skew hl( ) 0.409=

kurt hl( ) 0.0855−=

Root mean square wave height

Normalized wave height
hlrms

1
Nhl

hl2∑⎛⎜⎝
⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=

hn
hl

mo
:=

hlrms 0.0469=

Significant wave height

Nhs round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhl⋅⎡⎢
⎣

⎤⎥
⎦

:= Nhs 20506=

i Nhs 1−( ) Nhl 1−( )..:=

hl Nhs 1−( ) 0.05= hl Nhl 1−( ) 0.1501=



hli

0.05
0.05

0.05

0.05

0.05

...

=
sumhs

Nhs 1−

Nhl 1−( )

i

hli∑
=

:= sumhs 681.726=

hs
sumhs

Nhl Nhs− 1+( )
:= hs 0.0665=

comparison with theoritical significant wave height

hss 4 mo⋅:= hss 0.0699=

Maximum wave height

hlm max hl( ):=

hlm 0.1501=

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs⋅:=

hmax 0.1511=

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 

hlbin
0

0
1

2

3

4

5

6

7

8

9

-48.478·10
-32.543·10
-34.239·10
-35.935·10
-37.63·10
-39.326·10

0.011

0.013

0.014

...

:= hlfreq
0

0
1

2

3

4

5

6

7

8

9

835
173

217

287

373

413

479

516

564

...

:= hlcdf
0

0
1

2

3

4

5

6

7

8

9

0.027
0.033

0.04

0.049

0.061

0.075

0.09

0.107

0.125

...

:=

Bin interval Probability density Probability of exceedance

binl 2 hlbin0⋅:= Nhlfreq length hlfreq( ):= HE 1 hlcdf−:=

binl 0.0017= hlfrel
hlfreq

hlfreq( )∑
:=

Number of bin

Nbl length hlbin( ):=
hlpdf

hlfreq

hlfreq binl⋅( )∑
:=Nbl 85=



RAYLEIGHT DISTRIBUTION

i 0 length hlbin( ) 1−( )..:=

Rayleigh Distribution

pdflrayi

2 hlbini⋅( )
hlrms2

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= cdflrayi 1 exp
hlbini( )2

−

hlrms2
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⎢
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⎥
⎥
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Phr1 exp
hl

0.707 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phr2 exp
hl

0.638 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Forristall  

Phf exp
hl

0.681 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.126
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Krogstad  

Phk1 exp
hl

0.73 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.37
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phk2 exp
hl

0.75 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.5
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Haring  

Phh1 0.968 0.176
hl
hs

⋅+:= Phh2 2−
hl
hs

⎛⎜
⎝

⎞⎟
⎠

2
Phh1⋅

⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯

:=

Phh exp Phh2( ):=

Rayleigh Stokes

an 4 mo⋅
log Nhl( )

8
⎛⎜
⎝

⎞⎟
⎠

⋅:=

bn
an

2 log Nhl( )⋅
:=

B2
1
2

:= B3
3
8

:=

ahn 2 an⋅ 1 B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

bhn 2 bn⋅ 1 3 B3⋅ k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

Prs 1 exp exp
hl ahn−

bhn
⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

−:=
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ZERO CROSSING CREST HEIGHT 

Zero crossing crest height in meter (clr)

clr
0

0
1

2

3

4

5

6

7

8

9

0.00033
-59.64121·10

0.00045

0.00022
-59.64121·10

0.00033

0.00022
-59.64121·10

0.00069

...

:= cl sort clr( ):=Sorted crest
Ncl length cl( ):= Ncl 30759=Number of crest
max cl( ) 0.0908=Maximum crest height

Statistical Properties

mean cl( ) 0.022=
Normalized crest height

stdev cl( ) 0.0137=

skew cl( ) 0.5326= x
cl

mo
:=

kurt cl( ) 0.1723=



OBSERVED CREST HEIGHT DISTRIBUTION 

Crest height bin Crest height frequency Cumulative frequency 
clbin

0

0
1

2

3

4

5

6

7

8

9

-45.107·10
-31.532·10
-32.554·10
-33.575·10
-34.596·10
-35.618·10
-36.639·10
-37.661·10
-38.682·10

...

:= clfreq
0

0
1

2

3

4

5

6

7

8

9

31.435·10
587

505

534

614

509

614

585

670

...

:= clfcum
0

0
1

2

3

4

5

6

7

8

9

0.047
0.066

0.082

0.1

0.119

0.136

0.156

0.175

0.197

...

:=

Bin interval Probability density Probability of exceedance

lbin 2 clbin0⋅:= CE 1 clfcum−:=clfrel
clfreq

clfreq∑
:=

lbin 0.001=

Number of bin
clpdf

clfreq mo⋅

clfreq lbin⋅( )∑
:=Ncbl length clbin( ):=

Ncbl 86=

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

 Rayleigh

Pr exp 8−
cl2

hs2

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

:=

Ochi 
E0 0.1:= α0 1 E02

−( ):=

E1 1:= α1 1 E12
−( ):=

probability density function of E=1

pa exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

:=

pb1 α1 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd1 pb1 pc1⋅( )
→⎯⎯⎯⎯

:=



p1
2

1 α1+( )
E1

2π

exp
x2

−

2E12

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd1+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=1

pe1 α1 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

+:=

pg1 pe1 pf1⋅( )
→⎯⎯⎯

:=

P1
2

1 α1+( )
1−

2
1 α1−( ) 0.5 0.5 erf

x

E1 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

+⎛
⎜
⎝

⎞
⎟
⎠

+ pg1−⎡
⎢
⎣

⎤
⎥
⎦

⋅:=

PE1 1 P1−:=

probability density function E=0

pb0 α0 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc0 0.5 0.5 erf
α0
E0

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd0 pb0 pc0⋅( )
→⎯⎯⎯⎯

:=

p0
2

1 α0+( )
E0

2π

exp
x2

−

2E02

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd0+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=0

pe0 α0 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf0 0.5 0.5 erf
α0
E0

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

+:=

pg0 pe0 pf0⋅( )
→⎯⎯⎯

:=

P0
2

1 α0+( )
1−

2
1 α0−( ) 0.5 0.5 erf

x

E0 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

+⎛
⎜
⎝

⎞
⎟
⎠

+ pg0−⎡
⎢
⎣

⎤
⎥
⎦

⋅:=

PE0 1 P0−:=

Haring 

Pha 4.37
cl
d

⎛⎜
⎝

⎞⎟
⎠

⋅ 0.57
cl
d

−⎛⎜
⎝

⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:= Phb
1
2

⎛⎜
⎝

⎞⎟
⎠

−
cl2

mo

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 1 Pha−( )⋅
⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=

Ph exp Phb( ):=

Tayfun and Huang

RR k hs⋅:= RR 0.3066=



Pth exp
8−

RR2
1 2 RR⋅

cl
hs

⋅+ 1−
⎛
⎜
⎝

⎞
⎟
⎠

2⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

Kriebel and Dawson 

Pkdb 8−
cl2

hs2
⋅:=Pkda 1

1
2

RR
cl
hs

⋅−⎛⎜
⎝

⎞⎟
⎠

2
:=

Pkdc Pkda Pkdb⋅( )
→⎯⎯⎯⎯⎯

:=

Pkd exp Pkdc( ):=

Forristall 

Sl
2π hs

9.81Twm
⎛⎜
⎝

⎞⎟
⎠

:= Sl 0.0456=

Ur
hs

k2 d3
:= Ur 0.0091=

Two - dimensional

a2 0.3536 0.2892Sl+ 0.1060Ur+:= a2 0.3677=

b2 2 2.1597Sl− 0.0968Ur2
+:= b2 1.9016=

Pf2 exp
cl

a2 hs⋅
⎛⎜
⎝

⎞⎟
⎠

b2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Three - dimensional

a3 0.3536 0.2568Sl+ 0.0800Ur+:= a3 0.366=

b3 2 1.7912Sl− 0.5302Ur− 0.284Ur2
+:= b3 1.9135=

Pf3 exp
cl

a3 hs⋅
⎛⎜
⎝

⎞⎟
⎠

b3
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Prevosto 
ss 1:= unidirectional wave

ahs 1
1
2

⎛⎜
⎝

⎞⎟
⎠

tanh k d⋅( ) 0.9−( )⋅
2

1 ss+
⋅−:= ahs 0.9516= Directional Factor

afm
1

1.23
:= afm 0.813= Spectral Bandwith

T02
Twm
1.2

:= fm
1

T02
:= fm 1.2847=

modified significant wave height hs

hsp ahs hs⋅:= hsp 0.0633=

modified mean frequency fm

fmp afm fm⋅:= fmp 1.0444=



modified wave number (dispersion relation)

kmp
2 π⋅ fm⋅( )2

9.81
:= kmp 6.6417= cek  

tanh kmp d⋅( ) 0.9998=

dimensionless depth

kap kmp d⋅:= kap 4.6492=

PI tanh kap( ) kap 1 tanh kap( )( )2
−⎡⎣ ⎤⎦⋅+:= PI 1.0015=

Second order coefficients 

cdiff
PI kap 1 tanh kap( )( )2

−⎡⎣ ⎤⎦⋅+⎡⎣ ⎤⎦

PI2( ) 4 kap⋅ tanh kap( )⋅−
:= cdiff 0.057−=

csum
1
4

⎛⎜
⎝

⎞⎟
⎠

2 1 tanh kap( )( )2
−⎡⎣ ⎤⎦+⎡⎣ ⎤⎦

tanh kap( )( )3
⋅:= csum 0.5004=

Second order transfer functions

TD cdiff k⋅:= TD 0.2631−=

TS csum k⋅:= TS 2.3078=

Non-linear crest components

C0 TD
hsp2

8
⋅:= C0 0.0001−=

C1 ahs:= C1 0.9516=

C2 C12 TD TS+( )⋅:= C2 1.8515=

Cr cl TD TS+( ) cl2⋅+ TD
hs2

8
⋅−:=

Pp exp
8−

hs2

C1− C12 4 C2 C0 Cr−( )⋅[ ]⋅−+⎡⎣ ⎤⎦
2C2

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

Rayleigh Stokes

acn an 1 B2 k an⋅( )⋅+ B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

bcn bn 1 2 B2⋅ k an⋅( )⋅+ 3 B3⋅ k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

Prsc 1 exp exp
cl acn−( )−

bcn
⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

−:=
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LABORATORY SIMULATION 100A  
Variance of water surface elevation

mo 0.00072767:=

Water depth in meter

d 0.7:=

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

4.64
1.56

1.57

1.57

1

...

:=

Twm mean Tw( ):=

Twm 1.1915=

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
⋅:= k 2.8347=

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
0

0
1

2

3

4

5

6

7

8

9

-37.5·10
0.056

0.129

0.079

0.015

0.118

0.062

0.054

0.01

...

:=

hl sort hlr( ):= hl2 hl2:=

Number of wave

Nhl length hl( ):= Nhl 18857=

Statistical properties

mean hl( ) 0.0662=

stdev hl( ) 0.034=

skew hl( ) 0.441=

kurt hl( ) 0.0188−=

Root mean square wave height Normalized wave height

hlrms
1

Nhl
hl2∑⎛⎜⎝

⎞⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

:=

hn
hl

mo
:=

hlrms 0.0745=

Significant wave height

Nhs round
2
3

⎛⎜
⎝

⎞⎟
⎠

Nhl⋅⎡⎢
⎣

⎤⎥
⎦

:= Nhs 12571=

i Nhs 1−( ) Nhl 1−( )..:=

hl Nhs 1−( ) 0.0794= hl Nhl 1−( ) 0.2167=



hli

0.0794
0.0794

0.0794

0.0794

0.0794

...

=

sumhs

Nhs 1−

Nhl 1−( )

i

hli∑
=

:= sumhs 658.5759=

hs
sumhs

Nhl Nhs− 1+( )
:= hs 0.1048=

comparison with theoritical significant wave height

hss 4 mo⋅:= hss 0.1079=

Maximum wave height

hlm max hl( ):=

hlm 0.2167=

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs⋅:=

hmax 0.2324=

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 

hlbin
0

0
1

2

3

4

5

6

7

8

9

-31.527·10
-34.581·10
-37.636·10

0.011

0.014

0.017

0.02

0.023

0.026

...

:= hlfreq
0

0
1

2

3

4

5

6

7

8

9

203
120

154

235

250

323

343

429

409

...

:= hlcdf
0

0
1

2

3

4

5

6

7

8

9

0.011
0.017

0.025

0.038

0.051

0.068

0.086

0.109

0.131

...

:=

Bin interval Probability density Probability of exceedance

Nhlfreq length hlfreq( ):= Nlcdf length hlcdf( ):=binl 2 hlbin0⋅:=

binl 0.0031= hlfrel
hlfreq

hlfreq( )∑
:= HE 1 hlcdf−:=

Nbl length hlbin( ):=

Nbl 70= hlpdf
hlfreq

hlfreq binl⋅( )∑
:=



i 0 length hlbin( ) 1−( )..:=

Rayleigh Distribution

pdflrayi

2 hlbini⋅( )
hlrms2

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= cdflrayi 1 exp
hlbini( )2

−

hlrms2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

−:=
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 

Phr1 exp
hl

0.707 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phr2 exp
hl

0.638 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Forristall 

Phf exp
hl

0.681 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.126
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Krogstad 

Phk1 exp
hl

0.73 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.37
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Phk2 exp
hl

0.75 hs⋅
⎛⎜
⎝

⎞⎟
⎠

2.5
−

⎡
⎢
⎣

⎤
⎥
⎦

:=

Haring 

Phh1 0.968 0.176
hl
hs

⋅+:=

Phh2 2−
hl
hs

⎛⎜
⎝

⎞⎟
⎠

2
Phh1⋅

⎡
⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯

:=

Phh exp Phh2( ):=

Rayleigh Stokes

an 4 mo⋅
log Nhl( )

8
⎛⎜
⎝

⎞⎟
⎠

⋅:=

bn
an

2 log Nhl( )⋅
:=

B2
1
2

:= B3
3
8

:=

ahn 2 an⋅ 1 B3 k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

bhn 2 bn⋅ 1 3 B3⋅ k an⋅( )2
⋅+⎡⎣ ⎤⎦⋅:=

Prs 1 exp exp
hl ahn−

bhn
⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

−:=
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ZERO CROSSING CREST HEIGHT 

Zero crossing crest height in meter (clr)

clr
0

0
1

2

3

4

5

6

7

8

0.00334
0.03694

0.07664

0.01794

0.00964

0.06984

0.01284

0.02604

...

:= cl sort clr( ):=Sorted crest

Number of crest Ncl length cl( ):= Ncl 18857=

Maximum crest height max cl( ) 0.1399=

Statistical Properties

mean cl( ) 0.0361=
Normalized crest height

stdev cl( ) 0.021=

skew cl( ) 0.5597= x
cl

mo
:=

kurt cl( ) 0.2356=



OBSERVED CREST HEIGHT DISTRIBUTION 

Crest height bin Crest height frequency Cumulative frequency 

clbin
0

0
1

2

3

4

5

6

7

8

9

-49.619·10
-32.886·10
-34.809·10
-36.733·10
-38.657·10

0.011

0.013

0.014

0.016

...

:= clfreq
0

0
1

2

3

4

5

6

7

8

9

577
374

324

311

348

358

434

447

491

...

:= clfcum
0

0
1

2

3

4

5

6

7

8

9

0.031
0.05

0.068

0.084

0.103

0.122

0.145

0.168

0.194

...

:=

Bin interval Probability density Probability of exceedance
CE 1 clfcum−:=lbin 2 clbin0⋅:= clfrel

clfreq

clfreq∑
:=

lbin 0.0019=

Number of bin
clpdf

clfreq mo⋅

clfreq lbin⋅( )∑
:=

Ncbl length clbin( ):=

Ncbl 67=

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 
Pr exp 8−

cl2

hs2

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

:=

Ochi 

E0 0.1:= α0 1 E02
−( ):=

E1 1:= α1 1 E12
−( ):=

probability density function of E=1

pa exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

:=

pb1 α1 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd1 pb1 pc1⋅( )
→⎯⎯⎯⎯

:=



p1
2

1 α1+( )
E1

2π

exp
x2

−

2E12

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd1+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=1

pe1 α1 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf1 0.5 0.5 erf
α1
E1

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

+:=

pg1 pe1 pf1⋅( )
→⎯⎯⎯

:=

P1
2

1 α1+( )
1−

2
1 α1−( ) 0.5 0.5 erf

x

E1 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

+⎛
⎜
⎝

⎞
⎟
⎠

+ pg1−⎡
⎢
⎣

⎤
⎥
⎦

⋅:=

PE1 1 P1−:=

probability density function E=0 

pb0 α0 x⋅ pa⋅( )
→⎯⎯⎯⎯

:=

pc0 0.5 0.5 erf
α0
E0

x

2
⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅+:=

pd0 pb0 pc0⋅( )
→⎯⎯⎯⎯

:=

p0
2

1 α0+( )
E0

2π

exp
x2

−

2E02

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ pd0+
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

cumulative distribution function E=0

pe0 α0 exp
x2

−

2

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

pf0 0.5 0.5 erf
α0
E0

x

2
⋅⎛
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Tayfun and Huang 

RR k hs⋅:= RR 0.2969=

Pth exp
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RR2
1 2 RR⋅
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Kriebel and Dawson 
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cl2

hs2
⋅:=

Pkdc Pkda Pkdb⋅( )
→⎯⎯⎯⎯⎯
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Forristall 
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k2 d3
:= Ur 0.038=

Two - dimensional
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Three - dimensional
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ss 1:= unidirectional wave
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tanh k d⋅( ) 0.9−( )⋅
2

1 ss+
⋅−:= ahs 0.9686= Directional Factor
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1

1.23
:= afm 0.813= Spectral Bandwith

T02
Twm
1.2

:= fm
1

T02
:= fm 1.0071=



modified significant wave height hs

hsp ahs hs⋅:= hsp 0.1015=

modified mean frequency fm

fmp afm fm⋅:= fmp 0.8188=

modified wave number (dispersion relation)

kmp
2 π⋅ fm⋅( )2

9.81
:= kmp 4.0819= cek  

tanh kmp d⋅( ) 0.9934=
dimensionless depth

kap kmp d⋅:= kap 2.8573=

PI tanh kap( ) kap 1 tanh kap( )( )2
−⎡⎣ ⎤⎦⋅+:= PI 1.0309=

Second order coefficients 
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tanh kap( )( )3
⋅:= csum 0.5133=

Second order transfer functions

TD cdiff k⋅:= TD 0.2942−=

TS csum k⋅:= TS 1.4551=

Non-linear crest components

C0 TD
hsp2

8
⋅:= C0 0.0004−=

C1 ahs:= C1 0.9686=

C2 C12 TD TS+( )⋅ kmp⋅:= C2 4.4452=
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Rayleigh Stokes
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⋅+⎡⎣ ⎤⎦⋅:=
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LABORATORY SIMULATION 100B  
Variance of water surface elevation

mo 0.00057124��

Water depth in meter

d 0.7��

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

8.28
1.65

1.62

1.14

1.31

...

��

Twm mean Tw( )��

Twm 1.1923�

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
��� k 2.8309�

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
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0.018
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0.103

0.052

0.058

0.06
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��

hl sort hlr( )�� hl2 hl2��

Number of wave

Nhl length hl( )�� Nhl 18851�

Statistical properties

mean hl( ) 0.0581�

stdev hl( ) 0.0308�

skew hl( ) 0.4436�

kurt hl( ) 0.0302�

Root mean square wave height
Normalized wave height

hlrms
1

Nhl
hl2����
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�
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hl
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��hlrms 0.0658�

Significant wave height

Nhs round
2
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�

Nhl��
�
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�� Nhs 12567�

i Nhs 1�( ) Nhl 1�( )����

hl Nhs 1�( ) 0.0699� hl Nhl 1�( ) 0.1954�



hli

0.0699
0.0699

0.0699

0.0699

0.0699

...

� sumhs

Nhs 1�

Nhl 1�( )

i

hli�
�

�� sumhs 583.5509�

hs
sumhs

Nhl Nhs� 1�( )
�� hs 0.0928�

comparison with theoritical significant wave height

hss 4 mo��� hss 0.0956�

Maximum wave height

hlm max hl( )��

hlm 0.1954�

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs���

hmax 0.206�

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 
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Bin interval Probability density Probability of exceedance

Nhlfreq length hlfreq( )�� Nlcdf length hlcdf( )��binl 2 hlbin0���
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��

HE 1 hlcdf���
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hlfreq binl�( )�
��



i 0 length hlbin( ) 1�( )����

Rayleigh Distribution

pdflrayi

2 hlbini�� �
hlrms2

�

�

��
�
�

exp
hlbini� �2

�

hlrms2

�


�

�
�
�
�

��� cdflrayi 1 exp
hlbini� �2

�

hlrms2

�


�

�
�
�
�

���

0 0.05 0.1 0.15 0.2
0

5

10

15

observed
rayleigh

PDF of Wave Height

wave height

pr
ob

ab
ili

ty
 d

en
si

ty

hlpdf

pdflray

hlbin

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

observed
rayleigh

CDF of Wave Height

wave height

pr
ob

ab
ili

ty
 c

um
ul

at
iv

e

hlcdf

cdflray

hlbin



EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh 
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Forristall 
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Krogstad 
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Rayleigh Stokes
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ZERO CROSSING CREST HEIGHT 

Zero crossing crest height in meter (clr)

clr
0

0
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2

3

4
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0.01395
0.04775

0.04865
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Sorted crest cl sort clr( )��

Number of crest Ncl length cl( )�� Ncl 18851�

Maximum crest height max cl( ) 0.1242�

Statistical Properties

mean cl( ) 0.0317� Normalized crest height
stdev cl( ) 0.0191�

skew cl( ) 0.6018� x
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kurt cl( ) 0.3407�



OBSERVED CREST HEIGHT DISTRIBUTION 

Crest height bin Crest height frequency Cumulative frequency 
clbin

0
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��

Bin interval Probability density Probability of exceedance
lbin 2 clbin0��� clfrel

clfreq
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�� CE 1 clfcum���

lbin 0.0017�

Number of bin
clpdf

clfreq mo�

clfreq lbin�( )�
��Ncbl length clbin( )��

Ncbl 71�

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]
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probability density function of E=1
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cumulative distribution function E=1
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Tayfun and Huang 

RR k hs��� RR 0.2628�

Pth exp
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RR2
1 2 RR�
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Kriebel and Dawson 

Pkda 1
1
2

RR
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�
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Pkdb 8�
cl2
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���

Pkdc Pkda Pkdb�( )
������

��

Pkd exp Pkdc( )��

Forristall 

Sl
2π hs

9.81Twm
��
�

	

�

�� Sl 0.0499�

Ur
hs

k2 d3
�� Ur 0.0338�

Two - dimensional

a2 0.3536 0.2892Sl� 0.1060Ur��� a2 0.3716�

b2 2 2.1597Sl� 0.0968Ur2
��� b2 1.8924�
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Three - dimensional

a3 0.3536 0.2568Sl� 0.0800Ur��� a3 0.3691�
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��� b3 1.8931�
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Prevosto 
ss 1�� unidirectional wave
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tanh k d�( ) 0.9�( )�
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1 ss�
���� ahs 0.9686� Directional Factor

afm
1
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�� afm 0.813� Spectral Bandwith



T02
Twm
1.2

�� fm
1

T02
�� fm 1.0065�

modified significant wave height hs

hsp ahs hs��� hsp 0.0899�

modified mean frequency fm

fmp afm fm��� fmp 0.8183�

modified wave number (dispersion relation)

kmp
2 π� fm�( )2

9.81
�� kmp 4.0765� cek  

tanh kmp d�( ) 0.9934�
dimensionless depth

kap kmp d��� kap 2.8535�

PI tanh kap( ) kap 1 tanh kap( )( )2
��� ������ PI 1.031�

Second order coefficients 

cdiff
PI kap 1 tanh kap( )( )2

��� ������ ��

PI2� � 4 kap� tanh kap( )��
�� cdiff 0.104��

csum
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��� ����� ��

tanh kap( )( )3
��� csum 0.5134�

Second order transfer functions

TD cdiff k��� TD 0.2944��

TS csum k��� TS 1.4535�

Non-linear crest components
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FIELD MEASUREMENT
Variance of water surface elevation

mo 3.3257��

Water depth in meter

d 130��

ZERO CROSSING WAVE PERIOD

Tw
0

0
1

2

3

4

5

6

3.8
9

8.8

2.6
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10

...

��

Twm mean Tw( )��

Twm 8.9769�

dispersion relation of deep water condition 

k 4
π

2

Twm29.81
��� k 0.0499�

tanh k d�( ) 1�

ZERO CROSSING WAVE HEIGHT  

Zero crossing wave height in meter (hlr)

hlr
0

0
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2

3

4
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6

7

8

4.15
4.475

3.754

0.655

3.947

2.734

2.372

2.483

...

��

hl sort hlr( )�� hl2 hl2��

Number of wave
Nhl length hl( )�� Nhl 54673�

Statistical properties

mean hl( ) 4.3195�

stdev hl( ) 2.4877�

skew hl( ) 0.7872�

kurt hl( ) 0.8728�

Root mean square wave height Normalized wave height

hlrms
1

Nhl
hl2����
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hl
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��

hlrms 4.9847�

Significant wave height

Nhs round
2
3

��
�

	

�

Nhl��
�
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�� Nhs 36449�

i Nhs 1�( ) Nhl 1�( )����

hl Nhs 1�( ) 5.1379� hl Nhl 1�( ) 21.9815�



hli

5.1379
5.1381

5.1381

5.1381

5.1381

...

�

sumhs

Nhs 1�

Nhl 1�( )

i

hli�
�

�� sumhs 130168.2955�

hs
sumhs

Nhl Nhs� 1�( )
�� hs 7.1423�

comparison with theoritical significant wave height

hss 4 mo��� hss 7.2946�

Maximum wave height

hlm max hl( )��

hlm 21.9815�

comparison with theoritical Rayleigh formula of maximum wave height

hmax
ln Nhl( )

2
hs���

hmax 16.6808�

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency 

hlbin
0

0
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]
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ZERO CROSSING CREST HEIGHT 
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OBSERVED CREST HEIGHT DISTRIBUTION 
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