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SUMMARY

This dissertation has focussed on the validation of extreme wave and crest height
distribution. The empirical distribution was simulated based on laboratory and
field measurement water elevation data. Both sets of data indicated the presence
of abnormal wave ensuring the extreme condition aimed at in this study.

The literature review was performed to identify improved predictions of wave and
crest height distribution. Wave height predictions which are involved in this study
were based on a modified Weibull distribution. Along with these predictions, a
later formula that involved nonlinear factor of wave steepness is also applied.
Meanwhile, nonlinear factors have been increasingly involved in crest height
prediction. The modified formulae which are compared include the nonlinear
factor of water depth, wave steepness, and directional factor. In all cases, standard
linear Rayleigh distribution is referred to in relation to how good the improved
formulae are in predicting the distributions.

Based on wave height validation, Rayleigh shows better accuracy than the
modified Weibull distributions. The standard Rayleigh distribution seems to fit the
laboratory data, but deviates more widely from the field measurement data. The
inadequacy of Rayleigh based on field validation showed the need of better
prediction of nonlinear wave height in nature. Validation showed that the newly
developed Rayleigh-Stokes prediction comes out with a slightly better prediction.
Nonetheless, it still largely deviates from the observed distribution.

On the other hand, the inadequacy of the Rayleigh distribution is seen very clearly
in relation to crest height validation. Newer nonlinear formulae are found to give a
better prediction showing a stronger nonlinearity affect on crest height in nature.
However these models show discrepancies from one another. It is possibly caused
by the different methods underpinning the development of these formulae and the

way nonlinear factors are included in their prediction.
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1 INTRODUCTION

Engineering problems are closely related to natural phenomena which behave
randomly. Based on this fact, it is strongly suggested that field measurements are
undertaken to complement every engineering activity. This effort will prevent the
loss of time and money which might be caused by delays, such as caused by

accidents, and other related factors.

Field observation will enable engineers to understand the characteristics
geographical nature of a particular site. Random data which was obtained from the
observation will be analysed by applying specific engineering procedures. The
product of this analysis will then be used as load factor in designing various civil

engineering structures.

In order to obtain useful parameters from the random observation, engineers need
to utilise the theory of probability and statistics. The theory of probability helps
engineers in getting the visual image of frequency of the random observed event.
Likewise, the theory of statistics assists in developing characteristics of interest

from the random processes in nature.

Figure 1-1 Offshore platform under storm conditions in Western Norway
Source: http://skywatch-media.com/2008/01/storm-hammers-norway-oil-platform-shut.html
Understanding the nature of ocean water is becoming increasingly important along
with the advancement of offshore technology. The latest concern relating to ocean

water is given to wave and crest height prediction. Recent studies focus on the

extreme waves which have caused serious problem to the offshore operations.



Inappropriate design wave and crest height has caused serious damage to offshore
platforms. Severe storms for example impaired or at least delayed offshore
operation as depicted in Figure 1-1 where storms shut down an oil platform in
western Norway. For this reason, it is important to have a precise prediction of the

behavior of extreme waves.

The conditions which were described in the previous paragraph form the motive
of this study. The natural event which will be discussed in this study is wind-
generated waves under extreme conditions. Two primary wave parameters which
are going to be compared are wave and crest height which will be presented in
probability distribution. Focus will be given mainly to the uppermost region of

wave and crest height value.

1.1 Background

Although it is visibly easy to recognise the presence of wave and crest
qualitatively in nature, there are still few quantitative predictions of wave and
crest height distribution (Forristall 2000). Many scientists have argued over the
adequacy of first order linear prediction on wave and crest distribution. They
believe that waves in nature are actually nonlinear so that standard linear

distribution is no longer suitable to be used in practice.

Following their arguments, new modified empirical formulae were developed
based on the second and the third order theories of Stokes. Initial improvements of
standard linear wave height model were done by fitting the measurement data
using Weibull’s distribution. Different scale and shape parameters of Weibull
were suggested by Haring (1976 cited Nerzic and Prevosto 1998), Forristall (1978
cited ibid.), and Krogstad (1985 cited ibid.). A further study by Nerzic and
Prevosto (ibid.) modified the linear prediction of Rayleigh using third order
Stokes. The Rayleigh-Stokes model involves the nonlinear factor of wave
steepness in its wave height prediction.

Along with the newly developed method for prediction of wave height,
nonlinearity factors of wave crest were explored deeper in order to result in better
prediction of crest height. The initial effort of developing crest height distribution
was done by Jahn and Wheeler (1972 cited Prevosto 2000.) based on the linear

transformation of Rayleigh. Nonlinear effect of water depth is considered in their



formula. Later, scientists found that crest height is strongly influenced by the
wave steepness: as a result, Tayfun (1980 cited Forristall 2000) and Huang (1986
cited ibid.) came out with a new formula derived from the narrow band model.
Wave steepness is also considered by Kriebel-Dawson (1993 cited ibid) who
developed crest height models from 2D irregular second order Stokes. Taking this
a step further Forristall tried to create formulae that involved both water depth and
wave steepness based on the perturbated narrow band model. One newest crest
prediction of Prevosto which is based on the perturbated Weibull model will also
be considered as the one and only formula that engages directional spreading. The
Rayleigh-Stokes prediction for crest height is also discussed alongside the Ochi

distribution which considered spectral width factor in the formula.

Validations have been done along with the development of wave and crest height
prediction; nevertheless, there are still disagreements on how well these models fit
the measurement data. Many factors cause the discrepancies such as the location
of study, measurement techniques, and the characteristics of wave data used for

validation.

Current validation uses laboratory simulation and field observation data. Six-day
records which were taken from North Alwyn, North Sea present the fully
developed multidirectional sea where wave interaction happens. On the other
hand, hours of laboratory simulated water elevation records are considered to

represent an idealised unidirectional irregular wave.

1.2 Objectives

This study is mainly aimed at validating new developed nonlinear prediction of
wave and crest height distribution. There is still no one source of literature that
presents all complete theories on the prediction of crest and wave height
distribution. For this reason, an initial literature survey is also included as one of

the aims. The objectives of this study are focused in the following points:

e Finding, studying and simulating new developed formulas of wave and

crest height distributions



e Knowing how well the modified distributions of wave and crest height
compared with the linear and nonlinear prediction using laboratory and
field measurement data

e Analysing the causes of discrepancies between models and determining
the factors that affect accuracy of wave and crest height probability.

1.3 Structure of the Report

The report is divided into five chapters. The first chapter is an introduction to the

study including background, scoping, objectives, and the structure of the report.

The literature review is presented following the introduction. The literature review
presents theories that support the work and analysis. They consist of the basic
understanding of probability and statistical theory, the theory of irregular waves,

and various predictions of wave and crest height distribution.

The laboratory simulation and field measurement were not conducted by the
author because it is not the main aim of this study. Nevertheless, general
information concerning the records will be explained in the third chapter. Chapter

three will discuss the methodology which is used in the study.

The results, discussion and analysis are presented in the fourth chapter. This
chapter presents the analysis of water elevation distribution (validation of
Gaussian assumption), zero-crossing wave, validation of wave height distribution,
and validation of crest height distribution. Relevant discussion and analysis

follows the results of numerical analysis.

Finally, the overall conclusions and recommendations are presented in the last
chapter. This chapter closes the study of “Validation of Extreme Wave and

Height Distribution Using Laboratory Simulation and Field Measurement Data”.



2 LITERATURE REVIEW

2.1 Probability and Statistic

Observation is an important part of planning to describe the natural behaviour of
the observed object. This activity is done to optimise the time and the cost of the
operation stage. Engineering deals with fluctuations of natural phenomena which
are uncertain. The uncertainties happen even in the same location under the same
condition. This is referred to as a random event. For this reason, site observation is
necessary to compensate for the uncertainties in design and planning. Section 2.1
discusses the probability and stochastic theory of stochastic processes which is
referred to many text books (eg. Wurdjanto 2004, Papoulis 1990, Berry and
Lindgren 1990).

2.1.1 Stochastic Process

There are two ways to deal with uncertain phenomena. The first method is called
the deterministic analysis (Naess 2007). This method requires a full history of the
related event. Another approach is stochastic analysis. In stochastic analysis, the
statistical concept is used to represent the event. This subchapter presents the
latter where it will later be shown that it is wise to use the probability and statistic

to deal with the uncertainty of nature.

Many physical events of interest to the engineering discipline are stochastic
processes. On the examination of a number of records, it can be seen that each
record is different; even when they are developed under the same conditions. It is
hard to draw a pattern of the behaviour of these physical phenomena that are very
irregular. The irregularity is clearly shown when a closer look of the record is
taken. It is not impossible that striking features are found in the observation
especially when data are zoomed. It shows that there are substantial differences
between the records. Nevertheless, considering all records they appear somewhat
similar to each other. For this reason, some basic assumptions are taken in

analysing the stochastic processes.

Using mathematical definition, a particular phenomenon defined as X(?) is called a

stochastic process if X(z) represents a random variable for each time value of t



(ibid.). In this case ¢ extends between certain intervals from possible extreme
condition of negative infinite -co and positive infinite c. In order to undertake a
stochastic analysis of the physical events in nature, two fundamental assumptions
are assumed. Those assumptions are that the stochastic process follows the

stationary and ergodic laws. Each of these two definitions is explained below.
2.1.2 Definition of Probability

Probability can be defined as the possibility of occurrence of one specific event
relative to the total events. Based on the fundamental theory of probability, a
group of data consists of three main parts. The first part is sample point which is
defined as a particular element of data denoted as x in Figure 2-1. One or more
sample points clustered form a subset denoted as X. All subsets and sample points

are located in the sample space symbolised as S.

. O A
> O s
“0

=0 x3 Ox
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/

Figure 2-1 Illustration of data components in probability

The previous figure can also be expressed by the following mathematical term:

e xis the element of S denoted asx € S
e X is the subset of S denoted as X < S

e xis the component the event X denoted as x e X

In another words, each event may be represented by each of its elements

(assuming x; < x; < x3 < x4 < x5 < x5 < x7 < x3) as follows:

e X/ is an event when X = x;
e X2 isan event when X' = {x;, x3, x4} or {Xs <X <Xs}

e X3 isan event when X = {Xs, X¢, X7, Xg} or {Xs <X <Xxg}



Based on the previous definition, X refers to random variables. In this study, X can
be replaced as wave height or crest height in the sample space where x is the value
of each variable. The probability of a variable X is defined as the sum of x in the
event, denoted as n, compared with the sum of x in all events, denoted as N. The

mathematical term is written in the following:

Pr(X)=n/N (Equation 2-1)
Where

Pr (X) = the probability of an X event
n = the number of components in the event

N = the total components of all events
2.1.2.1 Cumulative Distribution Function

Before discussing cumulative distribution function, it is necessary to touch on a
term of probability mass function, denoted by p(x). Distribution mass function is a
function that expresses the probability of random variable X. A mathematical

expression of this distribution is noted in the following:

p (x) = Pr (X=x) for all value of x (Equation 2-2)
Cumulative distribution function, usually denoted as F(x) is a function that
expresses the probability distribution in the interval of -co to x. The mathematical

expression of this type of distribution is written in the following:
Fx)=PrX<x) (Equation 2-3)
Pr (X < x) means probability of random variables less than or equal to x. In
relation to distribution mass function, the probability is written as follows:

Pr(X < x) = Zp(xi) (Equation 2-4)

x; <x

F(x) = Zp(x,.) (Equation 2-5)

For a specific interval, for example between x and x + dx, the cumulative

distribution function is expressed in the following:



Pr(x <X<x+ dx) = Z p(xi ) - Z p(xl.) (Equation 2-6)

X;<x+dx X;<x

2.1.2.2 Probability Density Function

Another way to show the probability of particular random variables beside
probability mass function is probability density function, denoted as f(x).
Probability density function for specific interval x and x + dx is denoted as

follows:

(Equation 2-7)

dx
The previous mathematical term shows that probability density function is the first
derivation of cumulative distribution function. Or from another approach, the
cumulative distribution function is the integration of probability density function

between -0 and x.

F(x) = J‘f(x)dx (Equation 2-8)

In this integration, the probability is not represented by f(x) itself but by the
notation of f{x)dx which is equal to the probability of X in the interval of -co and x,
denoted by Pr (x < X < x+dx). The relationship mathematically is written in the

following:

x+dx X

Pr(x < X < x+dx)= _jf(x)dx—_jf(x)dx

=F(x+dx)— F(x)

(Equation 2-9)

The probability density function is usually presented in the form of a two
dimensional Cartesian coordinate where the x and y axes show respectively the
random variable X and its probability density function. The probability value can
be obtained from the integration of the curve in a specific interval which is equal

to the area beneath the curve of certain interval.

Data from the field measurement are discrete. To get a representative distribution
of the data, it is necessary to determine an appropriate value of dx. The chosen

value should be able to cope with the whole range of measured data to construct



continuous distribution. Some theories which are used in this study to decide an

appropriate number of intervals are depicted in the following:

o k= \/ﬁ (Equation 2-10)
o k,=1+33logN (Sturges 1926) (Equation 2-11)
% Nl/3
o k= 2 . (Freedman and Diaconis 1981) (Equation 2-12)
iqr
Where

r = the range of minimum and maximum value of data
N = the amount of data

igr = the difference between the third and first quartile
2.1.3 Statistics

In connection with probability theory, statistical terms are introduced. These
statistical terms help to present the characteristic value of random variables. The
terms which will be discussed in this chapter can generally be grouped into three,
which are expected value, central value and distribution value. Each of these

groups will be concisely explained below.
2.1.3.1 Expected Value

Concerning the continuity of data, there are two ways of presenting the expected
value of particular random variables. For discrete data which has probability mass
function p(x;), the expected value E(x) is denoted as:

E[X] = zxip(xi) (Equation 2-13)

all x;

While the expected value of continuous random variables is presented in the form

of integration of its density function:

o0

E[X]= jxf(x)dx (Equation 2-14)

—0

The expected values also apply for functional variables; for example g(x), denoted

as follows:



E [g(X )] = Z g(xi )p(x,.) for discrete variables (Equation 2-15)

all x;

Elg(x )] = .[ g ()£ (o )x for continuous variables (Equation 2-16)

In addition, and related to moment theory, the expected value of certain function

g(X) = X" is equal to £ moment:
m, = E[g(X)] = E[Xk] (Equation 2-17)

Along with the previous theory, the expected value of g(X) = (X — u)* is called &

spectral moment which is denoted as follows:

M= E[g(X)] = E[(X - ,u)k] (Equation 2-18)

The relationship between the first three stages of moment and spectral is

elaborated in the following:

Moment

m, =FE [X ] = u (mean value) (Equation 2-19)
m, = E[XZ]: M, + ,uz (Equation 2-20)
m; = E[X3]:,u3+ 3u, + 1 (Equation 2-21)

Central Moment

M= E[(X - ,u)] =0 (Equation 2-22)
u,=E l(X - ,u)sz m, —m,m, (variant) (Equation 2-23)
My = El(X - ,u)3J= my —3mm, + 2m,m, (Equation 2-24)

2.1.3.2 Central Value

There are several terms which are used to define the central value of random
variables. The most common term is known as mean value. Mean value represents
the average of random variable X which is stated in both discrete and continuous

data.

N
My = E[X] = le.p(xi ) = —le. (Equation 2-25)

10



o0

My = Ixf(x)dx (Equation 2-26)

—00

Another term correspondent with the dominant value in the distribution is called
modus. Modus represents the most frequent value that occurs from random
variable X. This statistical parameter shows the X value with the highest

probability of occurrence.

Another central value which represents the middle value of sorted random
variables, X, is known as median, denoted as F(x,) = 0.5. In statistics, the term of
quartile is also used. Quartiles divide data which have been sorted from the
maximum value to the minimum value into four regions. As result, there are three
quartile values of data. The most common is known as second quartile Q, It
represents the value of the mid data, the same definition as median. Along with
second quartile, O, there are also first and third quartiles. They represent the mid

variable of the first and the last one fourth of the sequence, respectively.
2.1.3.3 Distribution Values: Variance and Standard Deviation

There are three parameters which are generally used to show the distribution value
of data. Those parameters are variant, standard deviation, and coefficient of
variant. Variant is the second central moment of the expected value, denoted as
Var{X]. (Note that it is different from variance definition of water surface
elevation which is defined as the zero moment of the wave energy spectrum.)

Var[X] = Z(xi —H, )2 Pr(xi)

X,

—ii(x )
- N p i lux

(Equation 2-27)

For continuous X with probability density function of f(x), the variant is
formulated in the following:

Var[X]= j(x — ) f(x)dx (Equation 2-28)
It can also be written in term of the mean square value and the square of the mean

value as follows:

Var[X] = E(x2 )— ,uf (Equation 2-29)

11



The second distribution parameter known as standard deviation, denoted as oy, is

obtained from the root of variant. In mathematics, it is stated as follows:

Oy = 1/VariXi (Equation 2-30)

Both variant and standard deviation give information on how wide the distribution
of the data is. In addition a dimensionless parameter is introduced. It is known as
the coefficient of variation (cov) which is the ratio between the standard deviation

and the mean value showing the relative deviation of data.

o
cov =—% (Equation 2-31)
Hx

2.1.3.4 Distribution Values: Skewness and Kurtosis

Skewness is a statistical parameter that measures distortion of particular
distribution and indicates direction of the distortion. For this purpose, skewness is
related closely to the shape of the probability distribution; it indicates the
asymmetry of the distribution. The value of skewness can be negative to positive.
Positive skewness indicates that the tail part of the distribution is extending out to
the right side; this type of skewness is called positively skewed. On the other
hand, negative skewness indicates that the distribution is extending to the left, also

known as negatively skewed.

Initial mathematical expression of skewness as written in Karl L. Wuensch’s
paper (2007) was proposed by Karl Pearson in 1895. Based on Pearson, skewness
is measured by standardising the difference between the mean and the mode. The

mathematical expression is depicted in the following:

—mode
sk = A mode where sk denotes the skewness (Equation 2-32)
o

Nevertheless, sample modes cannot be used as an appropriate representation of
population modes (Wuensch 2007). To overcome this barrier, Stuart and Ord in
1994 (ibid) suggested a new approach in estimating the difference between the
mean and the mode by multiplying the difference between the mean and the
median by three. Their suggestion was later re-written by many statisticians by
excluding the three. Their formula causes the skewness value to vary between -1

and 1.
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1 —median)

sk = ( (Equation 2-33)

o

There are some other definitions of skewness proposed; however the one which is
used in this study is known as Fisher’s skewness. This type of skewness is
calculated using the third moment about the mean.

> (X -u)

3
no

sk = (Equation 2-34)

The skewness shows the tendency of data deviation about the mean. The great
value of skewness lies in the fact that it indicates the presence of outliers in the
data. For a data sample, the Fisher’s skewness is calculated as follows in a slightly

different format:

3
sk = (n - I)IZn - 2)2()(; ﬂj (Equation 2-35)

Again, as discussed by Wuensch (ibid.), another distribution values is known as
kurtosis. This parameter was introduced by Karl Pearson in 1905 in a simple

mathematical form as follows:

> (X —p)

4
no

kr = —3 where kr denotes the kurtosis (Equation 2-36)

Although it was introduced by Pearson, the above equation is commonly referred
to as Fisher’s kurtosis or kurtosis excess. Kurtosis is a measure of how flat the top
of a particular symmetric distribution is compared with the normal distribution
which has the same value of variance. For a data sample, an unbiased estimator of
kurtosis is presented in the following:

1)y (X ) 3(n-1f

kr = - (Equation 2-37)

(n-1)n-2)n-3) (n-2)n-3)

When the value of kurtosis is less than zero, it shows a more flat-topped

distribution; another term for this condition is ‘platykurtic’. However, if the value
of kurtosis is greater than zero, it means the distribution is less flat-topped
‘leptokurtic’. The condition in between where kurtosis is equal to zero is referred

to as an equally flat-topped distribution or ‘mesokurtic’. Related to the size of the
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tail, leptokurtic is also referred to as the fat in the tails while platykurtic as the thin
in the tails (Wuensch 2007).

2.1.4 Stationary and Ergodicity

Based on Naess (2007) there are actually several ways of defining stationary
process. However, he chose to use the simplest definition. Stochastic process of
X(t) can be defined as (weakly) stationary if the following two conditions are
fulfilled. The first condition is that the expected value of X(#) denoted as E/X(?)] is

constant. It is actually the same as saying the mean value is constant.
my = E[X(t)] = constant (Equation 2-38)

The second condition is that the expectation of random variable X(z) times the
expected value of ¢ added with a particular time interval z, denoted as
E[X()X(t+7)] is independent of ¢. It can also be written that E/X(¢)X(t+7)] only
depends on the time interval z. The value of E/X(#)X(t+t)] is known as auto

correlation function.
Rx(t) = E[X(t)X(t+7)] = function only of ¢ (Equation 2-39)

The second common assumption is that the stochastic process is ergodic. If an
event is said to be ergodic, then it is also automatically defined as stationary.
Naess (ibid.) defined that a stochastic process is called ergodic if every ensemble
mean can be replaced by a time averaged over a single realisation. As a result,
each and every realisation has the statistical properties of the whole ergodic
process. Under this assumption, a person may calculate the statistical properties of
one single time history to represent the whole process. Fortunately, these concepts
can be applied to the observation analysis of physical phenomena of engineering

interest.
2.1.5 Probability Distribution Function

Statistical properties are used to represent the characteristic of a data set. Each
property will affect the shape of the distribution. The most common type of
distribution is known as Rayleigh distribution, which has one parameter

determining the shape. One parameter which influences the distribution is the

14



mean square value (Rp). Some of the distributions are discussed briefly in the

following:

1. Normal Distribution (Gaussian Distribution)

2
1 1 x—u .
flx)= exp| —— B (Equation 2-40)
) N27o, 2\ o,
Where:
1 N
M, =—in (Equation 2-41)
J N i=1
1 & 2 .
o, = NZ(xi—yx) (Equation 2-42)
i=1

Normal distribution is characterised by following:

e symmetric at x =y, (Equation 2-43)

(Equation 2-44)
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J Pr(x <u, ) = Pr(x > U, ) =0.5 (Equation 2-46)

2. Standard Normal Distribution

Gaussian distribution with zero mean value and unit standard distribution is

known as Standard Normal Distribution. This type distribution is written as

follows:
1 1), .
f(z) = 2—eXp - 5 z (Equation 2-47)
V4
Where
Z = Al (Equation 2-48)
o

The standard normal distribution is characterized as follow:
e symmetric atz=10 (Equation 2-49)

e Pr=(z<0)=Pr(z>0)=0.5 (Equation 2-50)
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. F(z*): Pr(Z < z*)z d)(z*): ] ; exp[— ;}dz , z>0 (Equation 2-51)
S N2x

—_—

o Pr(zz2z')=1-Pr(z<+z")=1-a(") z">0  (Equation 2-52)

Pr(z<-z")=Pr(z 2 +2")

ZI_PI(ZS+Z*)=1—CD(Z*);Z* >0 (Equation 2-53)

° Pr(Z >z )= Pr(Z <+z )= CD(Z*) z 20 (Equation 2-54)

3. Rayleigh Distribution

Related to wave height distribution, Rayleigh describes the peak to trough
distribution of wave elevation. Cumulative and Density Rayleigh distribution

are described as follows:

¢ 2x x’ x?
F(x) =|— exp[— —de =1- exp[— —J (Equation 2-55)
0 RD RD RD
f(x) = 2_x eXp| — i (Equation 2-56)
RD RD
Where Rp notes the distribution parameters which is mathematically written as
follows:
1 N
R, :sziz (Equation 2-57)
i=1

The root Rp is known as root mean square which is denoted by x,s.

4. Dimensional Rayleigh Distribution

Dimensional Rayleigh Distribution has a fixed shape which is written as

follows:
f(z) =z exp(— z? ) (Equation 2-58)
where z = S (Equation 2-59)

X

rms

This type of distribution was defined for ease in determining the value of xy/y.

T 2x x’ 1
Prix>x )= |—exp| —— [dx=— Equation 2-60
ez, )= - p( RD] - Eq )
Hence the value of x,, can be determined if » is known.
2

x, 1 _
exp| — =— (Equation 2-61)

R, n
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In| ex —i =1 1 i
p R =In (Equation 2-62)
b n

2

Xp

=—lnn (Equation 2-63)
D

X, = 1/RDiln n) (Equation 2-64)

Mean value in Rayleigh distribution is represented by the first moment of its

probability density function.

X =4t (Equation 2-65)

2.2 Irregular Waves

A fundamental study of waves is known as linear wave theory. In this study,
waves are considered to have a regular harmonic pattern. This simplification
allows waves properties such as wave height, period, and direction to be
quantified as deterministic values. Nevertheless realistic waves are random in
nature. The real sea surface shows irregularities so that it is necessary to involve
statistical calculation in determining its properties. This might complicate the
process of determination; however, it represents the real nature of waves better. In
contrast with the monochromatic wave that is considered to have constant
properties, irregular wave is indicated by statistical variability; hence, the severity

of the sea is denoted by these statistical properties.

Monochromatic wave is rarely found in nature. This simplified wave appears only
in laboratory simulation. A wave in nature which is quite similar to a
monochromatic wave is swell wave. A swell in deep water travels for a long
distance from the place it was generated. Although swell physically looks like
regular monochromatic waves, it is basically irregular in nature. When a storm
happens, there will be locally generated wind sea which consists of short-crested
waves and is highly irregular in nature. Ocean wave surface in a particular

location might consist of only swell or only sea or mix of swell and sea.
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Recent engineering practice uses linear wave theory to estimate the properties of
irregular waves using the linear spectral methods (Krogstad et al 2000). This
application considers the ocean surface as a combination of numbers of individual
waves which are generated at different locations and travel into the observed
location. It does, however, ignore the nonlinear interaction between waves. For
this reason, the wave recorded at a specific location will not consist of wave
repetition; however, it will show random and irregular water elevation. Even
though it is possible to observe each wave component, each of them will have
large differences in their properties. Therefore it is expedient to present the
properties of the waves in a relatively short time scale by statistical terms known
as short-term statistics. These properties are the ones that indicate the severity of a

particular sea.

There are generally two approaches in dealing with irregular waves in a certain
sea state of short-term statistics. The first method is the spectral method that
involves Fourier Transform in its analysis. The second one is wave to wave (wave
train) analysis. Wave train analysis uses the time history of sea surface at a

particular point to define the wave properties.
2.2.1 Short-term Statistics

Short-term ocean wave is considered as a random process that depends on the
time variable which is regulated based on probability theory (Chakrabarti 1987).
In the case of wave analysis, the surface elevation is expressed as a stochastic
process where it is constructed by random variables as a function of time. Two
fundamental assumptions in implementing short term statistics are stationary and
ergodic concepts. These two basic assumptions have been explained in the

previous chapter.

Based on the stationary assumption, wave properties of particular wave record are
considered invariant over a specific time range (few hours). In other words, the
expected value of the random variables X(z) is independent of time (time
invariant). The next assumption of ergodicity allows the replacement of ensemble
by time average of single realisation. Under this assumption, sample mean

approaches the mean of the whole ensemble; and the variance of the sample
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approaches the variance of the whole record. The statistical parameters which are

usually used are explained in the following.

Mean value of the process is defined as the expected value of x(?). The process has

constant mean based on stationary assumption.
u, =E [x(t )] (Equation 2-66)

Standard deviation is denoted by the square root of the variance which also has

constant value due to stationary assumption.

o, = 1/leiz‘ )l (Equation 2-67)

Auto correlation function which is depicted in the following depends only on the

time difference 7 = #,-¢; based on ergodicity assumptions.
R(t1 .1 ) = E[x(tl ), x(t2 )] (Equation 2-68)

Although the nature might not be as simple as this hypothesis, the concept of
stationary and ergodicity is very important in the application of short term
statistic. Another simplification is related to space. If the properties of particular
event x(t) are also invariant in space, the process is called homogeneous. The
stationary and homogeneous processes can be found in nature at specific times

and space for only a few hours duration.
2.2.2 Wave Properties

There are two parameters which are commonly used as the indication of a
particular wave record. Those parameters are wave period and wave height. Wave
parameters of water surface elevation in time domain are defined based on zero-
crossing analysis. In the time domain, one period of wave is defined as the
distance between particular directions of zero-crossing (down-crossing or up-
crossing) to the subsequent zero-crossing in the same direction. Additionally, one
wave height is the difference between the maximum and the minimum water

surface elevation in the pertinent wave.

Zero down-crossing is the transition of surface elevation from the level above the
mean to the level below the mean (IAHR 1986). In contrast, the transition of water

surface elevation from the level below the mean to the level above the mean is
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called zero-up crossing the wave. The difference between both zero-crossing
definitions is illustrated in Figure 2-2. Revising the definition of wave height,
different conventions have different definitions of wave height. It depends on
whether the trough is referred to after or before the crest. According to the
Permanent International Association of Navigation Congresses (PIANC) list,
wave is the event between two successive down-crossings. This definition is
analogous with the International Association of Hydraulic Research (IAHR)
definition. Zero down-crossing is also the definition used by the majority of
groups that deal with time domain wave analysis. For this reason, zero down-
crossing wave definition is used in the determination of wave properties in this

study.

Zero Up-crossing Wave
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Figure 2-2 Zero up-crossing and down-crossing wave
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Another term in time domain analysis is related to the local peaks and valleys of a
wave. Any point in the record where its absolute surface elevation is higher than
the adjacent elevations is named maxima. Maxima that occur on peak wave region
must have a positive elevation so that they are called positive maxima. On the
other hand, negative maxima are the ones located in the valley of a wave. As
expected, a particular point in the time history is named minima when it has lower
value compared with the adjacent elevations. Minima, so as with the maxima, are
also divided into positive and negative based on their position with respect to
mean water level. In addition, the highest positive of maxima is known as crest

height while the deepest negative of minima is referred to as trough height.

The total time of the record is called duration. A particular wave duration consists
of periods. There are generally two definitions of a wave period. The first type is
known as the zero-crossing period which is the distance between two successive
zero down-crossings in time domain analysis. The other one is called the crest
period. This period is defined as the distance between two successive crests in the

record.

Based on these definitions of wave parameters, sea state indicators are developed.
These indicators are developed in statistical way which might be obtained directly
from the time history of wave record or from its frequency domain representation.
The following subsections describe those indicators. The most common used of

significant wave height is discussed first.
2.2.2.1 Significant Wave Heights

Significant wave height was first introduced by Sverdrup and Munk in 1947 as the
average wave height of the highest one third of all waves in a particular sea
(Chakrabarti 1987). This definition was found to be close to the visual observation

of wave height predicted by sailors.

The significant wave height may be determined from a wave record in three
different ways. In general the preliminary step is to calculate the number of waves
(crest to trough) in the record, sort the height of the waves and take one third
highest value. The average of this group of wave height represents the value of

significant wave height.
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3 N/3

H,,=—)H, (Equation 2-69)
N3

N = number of individual wave heights

H; = record ranked highest to lowest

Another method in determining significant wave height was introduced by Tucker
in 1963. Based on his study, significant wave height can be approximated directly
from the wave record if the highest crest height (a.) and the deepest trough height

(a,), and the total number of zero-crossings (/) are known.

H, = \/ECrl (ac + at) (Equation 2-70)
Where Cr; is a function of N,

Cri=(nN,)"? [1 +0.289(In N, )" —0.247(In N, )™ ]‘1 (Equation 2-71)
Significant wave height related to the total energy content in the wave spectrum is
stated as a function of zeroth moment (my). Where mo is the same as the variance

value of water surface elevation or in term of spectrum analysis, it is the same as

the area under the wave energy density spectrum:

H, =4\m, (Equation 2-72)

2.2.2.2 Root Mean Square Wave Heights

Another parameter of wave height is the root mean square wave heights. Applying
the same procedure for taking the wave height, each of the wave heights is then
squared. After adding up all the square wave heights, the total is then divided by
the total number of waves. Finally the root of the mean square wave height is
calculated. In mathematical notation, root mean square is noted in the following

formulation:

N 1/2
Hrms = |:% Z Hi2 :| (Equation 2-73)
i=1

On the other hand, root mean square wave height from the frequency domain is

based on the zeroth moment (m,) as follows:

Hrms = 2 V 2m0 (Equatlon 2'74)
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The root mean square of the wave elevation is the same as the standard deviation

value:
O =,/m, (Equation 2-75)

The discrete water elevation is obtained from the wave record at every time
increment Atm while the wave amplitudes are gained from the maxima and
minima of the record. The standard deviation value for water elevation can be also

written as the following:

1/2
o= {%2772 (t)} (Equation 2-76)
s T

For simplification, Tucker generated the following formula based on the corrected

wave elevation.

o =1.253|nlt)| (Equation 2-77)
2.2.2.3 Maximum Wave and Crest Heights

Wave height measurement which brings the most concern especially in the case of
extreme conditions is maximum wave height. Maximum wave height is defined as
the largest of all crests to adjacent trough value in the record (Chakrabarti 1987).

It is also known as the measured maximum wave height.

Nevertheless, in the case of determining elevation of a platform above mean sea
level, the real concern is the height of crest. It is possible that the maximum wave
height is not the one causing the maximum crest height. For this reason, along
with maximum wave height, designers are turning their attention to the height of
maximum crest. Maximum crest is the highest water elevation in the record with

respect to mean water level.

The most probable maximum wave height in a record can be estimated from the
value of root mean square wave height or equivalently significant wave height.
Assuming a narrow band spectrum of the record, Longuet-Higgins (1952 cited
ibid.) derived a relationship between the most probable maximum wave height
and the root mean square wave height for a specific number of waves which is

depicted in the following formula:
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Hmax = |: \ ln N + 02886:|Hrms (Equation 2-78)

JIn N

This relationship can be used over a longer period of time by adjusting the value

of N based on the mean of zero-crossing periods (77).
2.2.2.4 Average Wave Period

There are different definitions concerning the characteristic periods within a wave
record. The most familiar terms are mean period, average zero-crossing period
and peak period. Average wave period is the most common manifestation of a

wave’s characteristics.
There are two methods for determining the average wave period from time
domain analysis. Both methods for average wave period are derived from the total

duration of measurement (75). If T. denotes the mean zero-crossing period and N,

symbolised the number of zero-crossing then the following relationship can be

derived:

— T

T.=— Equation 2-79
IT; (Eq )

On the other hand, if the total number of crest in the record is denoted by ., then

the mean crest period T.is expressed as follow.

— T
T:.=— Equation 2-80
~ (Eq )

c

Based on previous expressions, the difference of both T. and T. determines the
width of the spectrum. If their values are close together, this means most of the
individual waves cross the zero level. This indicates that the wave has a narrow
band spectrum which means the energy of the wave is concentrated in a small

frequency band.

Another time domain wave period characteristic is known as significant wave
period. As the significant wave height definition, significant wave period is also

defined as the average of wave period of the highest one third in the record.
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Taking the analysis from a frequency domain, mean wave period is calculated
from the spectral moment denoted as m,. The n™ order moment of an energy

density spectrum is calculated based on the following relationship:
m, = [ f"S(f)df (Equation 2-81)
0

First definition of mean period 79, is stated as the ratio between zeroth spectral

moment (my) and first spectral moment (m;).

_my

I, = (Equation 2-82)

m
Another definition of mean wave period of 7, is defined as the square root of
zeroth spectral moment (my) divided by second spectral moment (m,).
Mathematical notation of 79, is presented in the following:

my

I, = (Equation 2-83)

m,
Another wave period characteristic based on frequency domain is the peak period
denoted as Ty or T,. Peak period is the period at which the energy density

spectrum peaks.
2.2.2.5 Spectral Width Parameters

As mentioned in the previous chapter, spectral width parameters is denoted as € is
a function of the mean zero-crossing and mean crest periods. The value of width
parameter ranges from 0 tol. Small value of & indicates a narrow banded
spectrum; while large value of ¢, near to 1, points a broad banded spectrum. In

time domain analysis, spectral width parameter ¢, is estimated as follows:

2 fc ’ .
g =1- = (Equation 2-84)

This equation means that if local peaks follow a corresponding zero-crossing then

the value of T. is close to the value of T- so that T./T. near to 1 which result in

g =~ 0. This condition represents a narrow band spectrum. On the other hand if
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numbers of local peaks are found (N, is large) then the crest period T. is small. As

a result ¢,~ 1 which indicates a broad-banded spectrum.

In frequency domain, spectral width parameter is a function of the spectral

moment. The relationship is depicted in the following:

2
mym, —m
gl =0t 2 (Equation 2-85)
mym,

Chakrabarti (2001) noted that a person should be careful in calculating high
degree of moment from the spectrum. Attention should be paid to the noises
because they can amplify the value of higher moment calculation so that

calculation should be limited to a reasonable finite frequency.

2.3 Wave and Crest Height Distribution

Many ocean engineers must be familiar with the Rayleigh distribution. The
Rayleigh distribution is the standard form of wave height which was initially
suggested by Longuet-Higgins in 1952 (cited Forristall 1978) based on two
fundamental assumptions. Wave height distribution of Rayleigh arrives from the
assumption that ocean surface elevation follows the Gaussian distribution and has

a narrow-band spectrum.

A number of validations have been done to check the accuracy of the Rayleigh
distribution on predicting the wave and crest height of ocean surface. However,
there is still disagreement on how well the standard distribution matches the
observed data (Forristall 1978). The emphasis is mainly on the high wave tail of
the distribution because this extreme value was found to be the one which is

responsible for the breakage of marine structures.

In his paper, Forristall (1978) found that the Rayleigh distribution consistently
over-predicted the wave height, mainly in the highest waves. His finding confirms
the result of Thomson (1974 cited ibid.) who discovered a significant deviation
between the data taken from the Coastal Engineering Research Center (CERC)
coast station and the Rayleigh distribution at the high wave end of the distribution.
However there are differences in how far Rayleigh over-predicts the highest

observed wave even from the same location. Using the same data taken from the
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Gulf of Mexico, Earle came out with 2% while Haring resulted in 10% over-

prediction of highest wave distribution (Forristall 1978).

The concern over inaccuracy of the standard wave and crest height prediction has
motivated scientists and engineers to develop improved formulae in wave and
crest height distribution. Ocean waves in nature have higher crest and lower
trough. This nonlinear behaviour of waves is suspected to be the major factor that
causes the mismatch of the standard prediction. Nevertheless, these improved
formulae show a significant difference from one another which is intolerable for

design purposes (Nerzic and Prevosto 1998).

Nerzic and Prevosto (ibid.) presume that the discrepancies between models are
due to the differing t accuracy in presenting the wave properties. They found that
the inaccuracy mostly happens in the prediction of rough sea states with steep
waves. Their finding implicitly indicates that the linear representation of wave
kinematics is inadequate, especially in predicting the extreme wave condition. The
following sub-chapters present the development of prediction on wave and crest

height distribution. These distributions will be elaborated on shortly.
2.3.1 Wave Height Distribution

In their paper, Nerzic and Prevosto (ibid.) undertook a brief survey on the
development of wave and crest distribution. This sub-chapter represents the
available wave height distribution taken from their survey as well as other
distributions from various journals. The distributions are presented in exceeded

probability of normalised variables.
2.3.1.1 Rayleigh Distribution

Rayleigh distribution is the standard form in predicting wave height and wave
amplitude which is commonly used in practice. This distribution is derived from
the Longuet-Higgins model which was initiated in 1952 (cited Forristall 1978).
The model was developed based on its main assumption that sea surface is linear
and follows the narrow-banded Gaussian process. The exceedance probability of

Rayleigh is presented in the following.
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O(x)=Prob(X >x)= exp[— (gj J (Equation 2-86)

From the previous formula, Q is denoting the probability of exceedance of X
which is a normalised wave height against significant wave height (H/H;). The
wave height defined in this formula is the difference between the trough and the
adjacent peak of zero-crossing waves. The significant wave height is defined as

the average of the highest one third wave height in the distribution. For the sake of
simplicity, significant wave height is often expressed as 4\/m_0 .The term ‘m,’
represents the zero-order moment of the wave spectrum which is equal to the
variance of the sea surface elevation. However the analysis which will be done in
this study will use the real definition of significant wave height. Lastly, the scale

parameter for wave height distribution of Rayleigh which is denoted by @ is equal
to 0.707.

The Rayleigh distribution has been used by many new empirical wave height
distributions as a reference. These new distributions were developed from the
studies in the North Sea and the Gulf of Mexico. They were fitted against
Rayleigh and resulted in a scale parameter g. The value of q varies between 0.63
and 0.70. The earlier value of ¢ is similar to the value proposed by Det Norske

Veritas (DNV) in 1991. DNV proposed a value of 0.638 for the value of 6.
2.3.1.2 Weibull Distribution

While the Rayleigh distribution has only one scale parameter denoted byé@,
Weibull distribution contains two determining parameters. Those parameters

represent the scale and shape parameters which are denoted by fand /S
respectively. In the Rayleigh distribution, £ is equal to 2. Taking the more
general form of Weibull, some proposed values of # and £ were introduced by

scientists.

B
O(x)=Prob(X >x)= exp[— (gj J (Equation 2-87)

The above formula expresses the probability of exceedance based on the Weibull

distribution. The probability depends on the normalised wave height (H/H;). There
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are two determining factors in this distribution which are 6 for scale parameter and

B for shape parameter.

There have been scientists who tried to find the appropriate values of 6 and f.
They investigated it based on site measurements. In the late seventies, two values
of the Weibull parameters were proposed. The values were derived based on the
data taken from the Gulf of Mexico. Haring (1976 cited Nerzic and Prevosto
1998) proposed a semi-empirical model based on the Rayleigh distribution
counting certain nonlinearities factor. The modified distribution proposed by

Haring is presented in the following:
O(x) = Prob(X > x) = exp(—2x° (6 + fx)) (Equation 2-88)

The wave measurement in the Gulf of Mexico is based on Haring’s wave height
distribution model. From the study which was done by Haring and his team, the
proposed @ and f are respectively 0.968 and 0.176 (Nerzic and Prevosto 1998).
Their study was then followed by Forristall who analysed 116 hours of hurricane
generated waves in the Gulf of Mexico (Forristall 1978). He fitted the data
empirically using generalised 2 parameters of Weibull and came out with the scale

parameter of & equal to 0.681 and shape parameter of £ equal to 2.126 (Nerzic
and Prevosto 1998).

Less than a decade after Haring and Forristall proposed their Weibull parameters,
Krogstad in 1985 (cited ibid.) suggested another value of 8 and . His study was
performed based on ocean data taken from three North Sea sites which have
significant wave height of more than 5 metres. Krogstad found that the value of

will be at the range of 0.73 and 0.75 while f varies between 2.37 and 2.50.
2.3.1.3 Rayleigh-Stokes

In their paper, Nerzic and Prevosto (ibid.) introduced a modified Rayleigh model
of wave and crest height distribution. The model was developed considering the
nonlinear factor of third-order Stokes expansion. They relate Rayleigh distribution
with the shape and scale parameters of Gumbel. In the extreme statistic,

asymptotic law for maxima based on Gumbel distribution is written:
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G(y) =Pr ob(XN < y) = exp(— eXp[— Y ; il D (Equation 2-89)
N

The previous distribution of Gumbel assumes that the number of variables, N, is
high enough and follows the Weibull distribution. The mode of N variables is

denoted as a, while b, is denoting the scale parameter. The parent distribution

for both mode and scale parameters are:

Q(aN ) = % (Equation 2-90)
by = | (Equation 2-91)
Nf(ay)

QO(x) in the previous equation is denoting the probability of exceedance.

From the parent distributions, considering two parameters of Weibull distribution,

the value of mode and scale parameters for N variables are written as follows:

a, = 6(log(N))"” (Equation 2-92)

0 a,

b = -
* Blog(v) " Blog(N)

(Equation 2-93)

For Rayleigh distribution with f = 2, the mode and scale parameters are

becoming:

ay = 4 Imo (IOgT(N)j (Equation 2-94)

h, =N (Equation 2-95)
N 210g(N) )

where my and N denote the variance of ocean surface and the number of wave
respectively. Taking the nonlinear effect of wave steepness from the third order
Stokes, the mode and scale parameters of the non-normalised wave height of

Gumbel distribution are formulated in the following:
Ay =24y (l +by(k,a, )2) (Equation 2-96)
b,y =2a, (1 +3b, (kmaN )2 ) (Equation 2-97)

For deep water condition, the value of b; is equal to 3/8. These values of mode

and scale parameters are put back into the Gumbel distribution model.
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G(y) =Pr ob(XN < y) = exp(— exp(— MD (Equation 2-98)

2.3.2 Crest Height Distribution

So as with the prediction of wave height, new empirical and heuristic crest height
distributions have been proposed and they are different from one another
(Forristall 2000). Crest height distributions which are presented in the following
are mainly taken from the survey which was done by Forristall in 2000. In
addition, Prevosto (2000), Rayleigh-Stokes of Nerzic and Prevosto (2003), and
Ochi (1998) crest height distribution are also included.

2.3.2.1 Rayleigh

Standard distribution of Rayleigh is the form of the first order theory where ocean
surface is presented as Gaussian narrow band spectrum. Different papers present
this distribution in a different notation which often confuses the reader. In order to

make it consistent the crest will be denoted as ‘c’ here after.

O(c)=Prob(C >c)= exp[— (gj ] (Equation 2-99)

Having the same form as the wave height distribution, Q is denoting the
probability of exceedance of C which is a normalised crest height against
significant wave height (¢/H;). Q is the same as one minus the probability
distribution function (Q = I-F). The significant wave height is calculated as the
average of the highest one third wave height in the distribution. Finally the
determining factor of the crest distribution, &, is equal to the root of one per eight
or equal to 0.354. Another way to present the Rayleigh distribution is depicted in
the following:

2
P(f]c >7n)= exp{— 8%} (Equation 2-100)

s

Here, P represents the probability, 7. presents the wave height and the same

symbol of H; as significant wave height is used.
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2.3.2.2 Jahns and Wheeler - Haring

In 1972, Jahns and Wheeler proposed an empirical modification of Rayleigh for
wave-crest distribution taking into account the nonlinearities factor determined by
the water depth. Their model includes elevated crest height at the moderate depth

presented in the following formula (Prevosto 2000).

1 ¢? c c .
P(C>c)= exp(—ay[l -7 E](]/Z —EJ] (Equation 2-101)

From the previous formula, d is denoting the water depth and o signing the

standard deviation of the ocean surface which can also be denoted as mo.

However, they did not propose any specific value of y, andy, .

Finally approximately four years later, Haring together with Heideman proposed

the parameter value of y, =4.37 and y, = 0.57 based on empirical fitting of 376

hours storm (Forristall 2000). The data was taken from the Gulf of Mexico, the
North Sea and the Gulf of Alaska. Water depth factor is included in his formula;
nonetheless, it does not depend on wave steepness. The coefficients are calculated

based on wave measurement in the Gulf of Mexico.
2.3.2.3 Tayfun — Huang

In the eighties, Tayfun (1980 cited Forristall 2000) and Huang et al (1986 cited
ibid.) tried to develop a crest height distribution formula based on second order
Stokes model. They employed wave steepness factor into the distribution.
Nevertheless, disagreement occurred between the authors concerning the exact

formulation. A review by Tucker in 1991 on their formula is presented in the

following (Forristall 2000).
P(C >c)=ex —i[(1+2R /H )”2—1]Z Equation 2-102
= &Xp R ClH (Equation 2-102)

C in the above formula denotes crest height and Hs symbolises the significant
wave height. An additional element in the Tayfun-Haring distribution is the
inclusion of nonlinear factor of wave steepness. The wave steepness factor is

denoted as R where R is equal to k*H;.
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2.3.2.4 Kriebel — Dawson

In the same year when Tucker published his review, Kriebel and Dawson (1993
cited ibid.) elaborated on a similar distribution as the one proposed by Tayfun and
Haung. It was developed based on second-order Stokes in unidirectional narrow
banded sea. The basic formulation of the nonlinear crest is depicted in the

following:
c=a+ lka2 (Equation 2-103)

Their formula contains the same parameter of R which represents the steepness
factor. A perceptible difference is seen in that Kriebel and Dawson took out the
square root form in their distribution (Forristall 2000). The formula is depicted as

follows:

2 3
P(C > c) = exp{— 8%} exp[8R %} (Equation 2-104)

N N

Nevertheless the above formula becomes negative when dealing with very large
steepness. Improved distribution is later developed to encounter its defect. The

new version was published in 1993 as follows:

) 2
P(C > c) = exp[ 8%(1 - %RHLJ } (Equation 2-105)

N

2.3.2.5 Forristall

In the late nineties, Forristall (2000) developed another model of crest height
distribution based on second order simulation of ocean waves (Wolfram 2003).

Forristall developed his crest distribution from the two parameters of Weibull:

B
P(C > c) = exp{( ¢ J ] (Equation 2-106)

le75 8

Following earlier development of crest distribution, the modified Weibull should
also contain water depth and steepness factors. For this reason, Forristall

formulated each parameter as follows:

a=a +a,S +aU, (Equation 2-107)
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B= ﬂl - ﬂle - ﬂfiUr + /84Ur2 (Equation 2-108)

where S; denotes the steepness factor which is regulated by the significant wave
height H; and the mean wave period 7;. Along with steepness factor U, which is
known as Ursell number which is included to bring water depth factor into the

formulation. Both elements are presented in the following.

27H )
S, = > (Equation 2-109)
8Ty,
H
U, =— (Equation 2-110)
k;d’

The next attempt was to determine the value of ¢ and § by fitting the formula to

the simulated distribution based on Joint North Sea Wave Atmosphere Program
(JONSWAP) spectrum. The fitting of the two dimensional simulation resulted in

the following values:

a, = 0.3536+0.2892S, +0.1060U, (Equation 2-111)
B, =2-2.1597S, +0.0968U° (Equation 2-112)

While the three dimensional simulation came out with another values as follow:

a; = 0.3536+0.2568S, +0.0800U, (Equation 2-113)
B, =2—-1.79125, —0.5302U, + 0.284U> (Equation 2-114)

2.3.2.6 Prevosto

The next advancement in crest height distribution was suggested by Prevosto
(2000). Prevosto’s formulation is basically a nonlinear transformation of standard
Rayleigh distribution (Wolfram and Venugopal 2003). The nonlinear element in
the formulation is taken from the second order irregular wave. Basic formulation
of the Prevosto nonlinear crest height is defined in the following:
)

€, =C+ [T ()+ T (I 17 (1)

(Equation 2-115)

Cin denotes the linear crest height where in the second part it is multiplied by 77
and T° that represents the second order transfer function. Both transfer functions

contain nonlinear factor of water depth and mean wave number so that in the last
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component of C,, wave steepness is accounted for. Both transfer functions are
presented in the following:

TD(fm) = Capr (K‘)km (Equation 2-116)
T8 ( fm) =Com (K‘)km (Equation 2-117)
Where k,, denotes the mean wave number calculated from the dispersion relation.
The general form of dispersion relation is presented in the following. Wolfram
and Venugopal (2003) misprinted the dispersion relation in their paper; thus, in

this study, this is rectified by putting the square sign on the right hand side

element in the following equation.
(24, ) = gk, tanh(k, d) (Equation 2-118)

Both coefficients ¢y and cgm are determined by x which is equal to the

multiplication between wave number and water depth (x =4k, d). Both

coefficients are presented in the following.

H(K‘) + K‘[l - (tanh K‘)Z] .
e = Equation 2-119
Cay (K) H(K‘)2 - 4K(tanh K‘) (Equation )
12+ |1 —(tanh k)’ .
Coum (K) = Z [(tan(h K)3 ) ] (Equat|0n 2-120)
I(x) = tanh x + K‘ll — (tanh )? J (Equation 2-121)

Correction is made on equation 2-119 where it was printed as 4x(tanh )’ in
Wolfram and Venugopal’s (2003) paper (For corrections to the cgy formula, refer

to the appendix in the earlier Prevosto paper (Prevosto et al .2000))

In addition, Prevosto included the additional factor of spectral band width and
directional spreading into the formula. These factors are enclosed together with

the significant wave height and the mean frequency shown in the following.

ﬁs =a,H (Equation 2-122)

s N

~ . 1
.fm =x fnfm with fm = (Equation 2-123)
02

where the modification factors denoted as o is expressed as follow.
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a,y =1- l[tanh(ka’) - 0.9]1/ 2 (Equation 2-124)
2 I+s

1
oa, =—— Equation 2-125

The directional factor in the correction factor of significant wave height denoted
as s, is the power of the equivalent cos™ spreading function for the wave energy
spectrum at the peak frequency. As a result, the nonlinear transformation of

standard Rayleigh distribution was proposed by Prevosto as follows:

P(C <c)=exp -8 {(_ C, +yC7 - 4[C,(C, - C)])/2C2 }2

(Equation 2-126)

H2
Where
i
C, = -T° (fm )?S (Equation 2-127)
C=ay (Equation 2-128)
¢, = C12 [TD (fm )+ T* (fm )] (Equation 2-129)

Referring to Wolfram and Venugopal’s (2003) paper, the author found two errors
within the probability distribution formula of Prevosto printed in their paper.

Correction is made for the coefficient C, depicted above. In the reference paper, it

was writtenC, = C} [T PE)FT(f, )]1( after confirming directly with Marc

Prevosto himself (personal written communication, June 10, 2009) that C, should
be written as the one shown in equation-129. Wolfram and Venugopal has
misprinted the formula of C, by re-include average wave number, £, which has
been considered in the transfer functions. Furthermore, confusion was also shown
in the probability equation written in Wolfram and Venugopal’s paper. For this
reason, a pair of brackets is added in equation 2-126 to mark that the division

against 2C; involved both —C; and the squared numbers.

The superiority of the Prevosto model is that it also includes the directional
spreading. Additionally, it can also be applied to all water depths both in two

dimensional or three dimensional events.
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2.3.2.7 Rayleigh-Stokes

As mentioned in the previous subchapter concerning wave crest distribution,
Nerzic and Prevosto (2003) introduced a modified Rayleigh model that
considering the nonlinear factor of third-order Stokes expansion. Having the same

definition of a, and b,, the modified mode and scale parameters of the non-

normalised crest height of the Gumbel distribution are formulated in the

following:
Aoy =0y (1 +b, (kmaN )+ b, (kmaN )2 ) (Equation 2-130)
bey =ay (1 +2b, (kmaN )+ 3D, (kmaN )2 ) (Equation 2-131)

Having the same value of b; equal to 3/8, a new coefficient of b, is introduced
which is equal to '2 for infinite water depth. The shape and scale parameters are

used in the Gumbel distribution model for crest height as depicted in the

following:

P(C < c) = exp(— exp{— mj} (Equation 2-132)
bCN

2.3.2.8 Ochi

Crest distribution of Ochi used in this study is based on prediction of maxima
(Ochi 1998). The development of Ochi’s formula is discussed very briefly in this
subsection. The probability density equation of the positive maxima developed by
Ochi is a function of zeroth spectral moment and spectral width density. If the

maxima are denoted as ( then the probability density function of the positive

g
i

maxima as a function of normalised maxima &= is formulated in the

following.

— 2 £ expl =5 eI eicexp - | M
é)_(1+ /—1_82){56 P( 252j+ 1-g*&e p[ 2CD( . fm
0<&<o0

(Equation 2-133)
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When assigning ¢ = 0, presenting narrow-band condition, previous equation forms
the Rayleigh distribution. While for wide-band distribution with ¢ = 1, the

probability distribution for infinite number of frequencies becomes

2
f(f)—\/; eXP( 2} (Equation 2-134)

0<{ <o
Note: These equations can also be applied for the negative minima.

In order to get the formula of distribution function, the previous formula of
probability density function should be integrated. The integration of the

probability density function of wave maxima as a function of normalised maxima

&= is presented in the following equation:

T

F(&)= ﬁ[—% (1 V1-& )+ @(gj—@ exp(—gz}b[\/? gﬂ

0<é<o

(Equation 2-135)
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3 METHODOLOGY

This chapter presents the methodology used in wvalidating the theoretical
distribution of wave and crest distribution using field and laboratory
measurements. Data collection is not part of the study; however, the general
principal of both measurements will be discussed in this chapter. The work of the
current study focuses on time history and statistical analysis using observation
data. The analysis was executed in order to get the wave properties needed to

simulate both empirical and theoretical distributions of wave and crest height.

The field measurement data used in this study is North Sea water elevation which
was measured in November 1997. Water elevation was measured for a week
during storm conditions using a wave height altimeter. Along with field
measurements, laboratory simulations were carried out in the hydrodynamics
laboratory of the University of Southampton as depicted in Figure 3-1. The
laboratory wave generations were based on the empirical spectrum of Pierson

Moskowitz.

—

Figure 3-1 Hydrodynamics laboratory wave flume

Using both types of water elevation data, time history analysis was undertaken
numerically in MATLAB. Water elevation data which are kept as DAT or BIN
files are loaded into the interpreter to be analysed further. There are three types of
laboratory data which differ based on predicted significant wave height. Two of
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them (50 mm and 75 mm) need to be calibrated; the calibration factor converts
raw data in volt to meters. Laboratory data of 100 mm has been presented in

meters as well as the field measurement data.

The first step after conversion (the two sets of laboratory data) is to ensure that the
average water elevation is zero. After ensuring zero mean conditions, statistical
properties of water elevation; in particular distribution factor of variance, were
calculated to be used in later simulation of wave and crest distribution. Zero mean
water elevation data are then analysed statistically in order to get the probability
distribution. The empirical distribution of water elevation is then compared with

the theoretical Gaussian distribution.
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Figure 3-2 Wave properties used in this study

There are two types of waves based on zero-crossing definition which are zero up-
crossing and zero down-crossing waves. Analysis of zero-crossing waves is
presented to get some idea of how both definitions differ in the case of high
waves. However, the down-crossing definition is used in this study following the
definition used by most working groups. Based on this agreement, wave properties
which are used in this study are shown in Figure 3-2. Based on agreed zero
crossing definition, wave height, wave period, and crest height are acquired from

each water elevation data.

40



Wave periods are processed statistically in order to get the mean period which
later determines the wave number. This number is composed of the steepness
factor of the theoretical prediction of nonlinear wave and crest height distribution.
Wave and crest height which have been acquired are processed statistically to get
the empirical probability distribution of exceedance. The distributions are first
compared with the theoretical linear distribution of Rayleigh before being

validated by the modified theoretical distribution.

Laboratory Simulation
Data
(based on Pierson
Moskowitz Spectrum)

Field Measurement Data
(Storm 149, North
Alwin)

Literature Study on
Wave and Crest Height
Distribution

Time History Analysis
(MATLAB)

v
Water Elevation Analysis
(Validation of Gaussian
Theory)

\
i v v v
Statistical Parameters
of Water Surface Wave Height Wave Period | | Crest Height
Elevation
[ [ v

Theoretical Formula of
Wave and Crest Height
Distribution

Zero-crossing Wave
Analysis

Statistical Analysis
(MATLAB & MathCAD)

Theoretical Distributions Empirical Distribution
of Wave and Crest of Wave and Crest
Height Height
\ [

v

Comparison, Discussion,
and Analysis

Figure 3-3 Diagram of the methodology used in this study

The improved formulae of wave and crest height distributions were gathered from
various journals. Discussion concerning these formulae has been presented in the

literature review. These theoretical probability distributions of exceedance are
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compared with the empirical distribution. The main focus is on the highest value
of wave and crest height. Finally discussion and analysis are drawn from each

comparison. Holistic methodology is shown in Figure 3-3.

3.1 Time Series Analysis: Water Surface Elevation and Wave Properties

Determination

Analysis of water surface elevation using time series analysis is fundamental for
scientists and engineers who work with physical oceanography. At this stage, a
person no longer deals with idealised monochromatic waves. Time series analysis
uses the real complex and random data of ocean surface elevation. As discussed in
the literature study, random irregular ocean waves are presented as a result of the
interaction of multiple single frequency waves with differing wavelengths,
frequencies, wave height and direction of propagation (Whitford 2001b).
Nevertheless, probability and statistics analysis is the method which is used in this
study. The statistical properties of ocean waves are determined from the time

history recorded by a stationary observer.

Water surface elevations of random waves are commonly presented as theoretical
Gaussian probability density function. If # denotes the water elevation then the

probability density function of Gaussian is expressed in the following:
1 -n’
p(n) = eXp (Equation 3-1)
o, V2rm 20,

Nonetheless, the statistical distribution of water surface elevation is not the main

interest of the engineers. Wave along with crest height, in this case, is considered
to be the main concern for engineering purposes, especially their extreme values.
For this reason, the following part describes the procedures for obtaining the wave

and crest height distribution from time history of ocean surface elevation.

Before discussing the process of taking the wave and crest height, it is necessary
to check whether the mean wave elevation is equal to zero. In the case where
average water elevation is not zero, the record needs to be corrected to get zero
mean water levels. In the case where the average is not zero, water elevation data
should be firstly subtracted by the initial average. Wave height analysis was

conducted by taking individual waves in the record; hence, the time series was,

42



firstly, divided into individual waves. New waves begin when the water elevation
crosses down the mean water level. The wave height of an individual wave is
computed by taking the difference between the maximum and minimum water
surface elevation of each individual waves. Along with this process, the crest
height is acquired from the highest water elevation in each wave. The time

duration of one individual wave defines the period of a wave.

As we are dealing with random waves, one record consists of many individual
waves, where each record is associated with different wave height, crest height
and period. Therefore, they have to be presented in the form of statistical
parameters. The results of the statistical analysis of these parameters characterise

the inherent signal.

Wave height distribution is different from the distribution of water elevation
described previously. Longuet Higgins (1952 cited Whitford 2001b) found that
the distribution of wave height can be approximated using the Rayleigh
probability distribution.

2
P(H) =2 HIZ exp{— (52 ﬂ (Equation 3-2)

rms

rms

) ) / 1 ¥
where the root mean square wave height (H,;) is defined as: . = MZH ]2
j=1

with M being the number of waves under considerations and H, is the ™ wave of

the group M
3.1.1 Water Surface Elevation Analysis

Raw data which is used in this study is a random water surface elevation from
field measurement and voltage measurement of laboratory simulation which is
later converted into water elevation data. The field data consist of 412 records
from approximately one week’s measurements. Each measurement is 20 minutes

long with the 5 water elevation data taken every second.

As mentioned previously, the mean water level should be zero, so that re-
arrangement of water elevation data has to be conducted initially. In order to have
sufficient wave components, sampling duration should be carefully considered.

Short term statistics, which was discussed in the previous chapter, describes the
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probability of occurrence of wave height and wave crest that might occur during

one particular observation at a stationary point.

Water surface analysis can be processed directly from the raw data. The most
important parameters of the raw elevation data is the variance and standard
deviation. Using these values, the distribution of water elevation, wave, and crest

height will be normalised.

In the determination of bin (interval of data) size, maximum and minimum water
elevation is investigated. It is important to include all the water elevation data.
The difference between these data determines the width of each bin. After
knowing the distribution of the surface elevation of each bin, the probability

density function of the surface elevation data is presented. For a discrete data, the

. e N,
percentage of water elevation # in bin 7 is defined as: —-
T

where N; is the number of # values in bin i and N7 is the total number of # values

in all bins.

The next step is to determine the probability density of bin i denoted as p(#,). It is

less obvious compared with the previous definition. The idea is to create a

representation value of each bin that will be equal to the percentage of i
T

Something to be aware of is that the integral of probability density function must

be equal to 1.

jp(ﬂ)dﬂ =1 (Equation 3-3)

The probability density of bin i is expressed as follows:

p(77,-) = Ni (Equation 3-4)
N;An

(where 47 us the bin size and the units of p(3) are m™)

Where in the finite number of data, the probability density is expressed in the

following.
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binNT N N
Z —An :Z—’ =1 (Equation 3-5)
1=om N7 AR N,

3.1.2 Wave and Crest Height Analysis

The first step in analysing the wave and crest height is to conduct the zero-
crossing wave. Each zero-crossing wave has the wave height, crest height and
period. Each of these was defined at the beginning of this subchapter. The
properties which were gained are then sorted from lowest to highest. Similar to the
method applied for water surface elevation, the bin width is determined based on
the range of the maximum and minimum height. Afterwards, the probability
distribution of wave and crest height are developed. Taking wave height as a
representation the mathematical notation is presented as follow

H.
H )= L Equation 3-6
p( ,) HAH (Eq )

where
H;: the number of waves in bin i
H7: the total number of waves in the record

AH is the bin width

The statistical distribution of wave and crest height are then compared with the
theoretical Rayleigh distribution. The same step is conducted for constructing the
cumulative distribution function taking the cumulative frequency of all data less
than or equal to a particular bin. The percentage of waves having a height equal to

or less than H is presented in the following:

H 2
P(H) = Ip(H)dH =1-exp —( " J (Equation 3-7)
0 HRMS

Where the probability of exceedance is equal to one minus the cumulative

distribution
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2 2
1- P(H) =exp| — [L] 1- P(H) =exp| — (Hij (Equation 3-8)

rms rms

3.2 Field Observation

In order to validate the available prediction of wave and crest height distribution,
field measurement data is required. In this study, the wave data was taken from
the North Alwyn Metocean Station in the northern most part of the North Sea. The
measurement was taken at an approximate water depth of 130 metres. The gauges
installation was intended as part of the research which is funded by the
TotalFinaElf Corporation. This is one form of oil and gas companies’ contribution

to marine research.

The wave elevation data were measured using three Thorn EMI infrared laser
wave height altimeters. The sensors are installed in three different positions. The
first position denoted as M is called the Marex monitor. The second sensor was
located on the North East corner monitor denoted by NEc. The last one was set on
the walkway denoted by Ww. The layout is depicted in the following Figure 3-4

and the angles between monitor is illustrated in Figure 3-5.

W alkway

50 m

N O

lm KEY Extent of jacket

W Wave height meter
@ Current meter / pressure transducer

Figure 3-4 Sensor position on North Alwyn “A”
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M

Note : Exaggerated for clarity. Np and Ep are platform north and platform east.
Figure 3-5 The angles between the three monitors

The wave elevation data which is used in this study is taken from the North Sea
storm in November 1997. The storm is identified as storm 149. A whole week’s
data were taken between 16™ and 22™ November 1997. There are approximately
412 pieces of data, each of which contains 6000 wave elevations. Each
measurement was conducted for 20 minutes or 1200 second so that the interval
between water elevations is 0.2 second. The significant wave height of the North

East corner storm and its duration are shown in Figure 3-6 below.
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Figure 3-6 Storm 149: Significant wave height with storm duration
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3.3 Laboratory Simulation

3.3.1 The Flume

The simulation of non-linear wave was done by a flume in The Hydrodynamics
Laboratory, Department of Civil Engineering and Environment, University of
Southampton. The flume dimension is approximately 12 metres x 0.5 metres x 1
metre for length, width, and height respectively. For reasons of visibility, the wave
tank wall is made of glass material. The transparent wall is intended to make it

easier for the users to observe the wave train.

Wave generation is done by a bottom hinged paddle at the left end of the wave
flume. The paddle is connected to a mechanical set of spring and pulley. These
give a hydrostatic load causing the forward and backward movement of the
paddle. The work of the mechanical set is controlled by a numerical system. From

this controller, a person can set the kind of wave that is going to be generated.

To ensure that there is no reflection of wave disturbing the simulation, the flume
requires an absorption component. For this reason, a triangle shape of poly-ether
foam shown in Figure 3-7 is used at the other end of the flume as a passive

absorber.

e

Figure 3-7 Absorption system used in the wave flume

48



3.3.2 Wave Generation

Ocean waves can be regenerated in the laboratory using the identical energy
spectra observation. The procedure of generating wave consists of two steps. The
first step is to calculate the desired water elevation and position of the flume
paddle (Miskovic 2008). The second step is to govern the paddles using the
controlled signal which has been calculated for this purpose. In other words, the
control signal of surface elevation should be calculated in the beginning. Later,
this signal will be transferred to the control loop of wave maker when the

simulation is started.

The simulation will be based on wind generated waves. In this case the wind
transfers its energy to the ocean water. When the wave energy accumulation
balances the dissipation then a sea state is developed. Dealing with the wave
energy, the analysis is better interpreted using the spectral density function. The
spectral density function which was used in this simulation is the Pierson-
Moskowitz. The Pierson-Moskowitz is an empirical spectrum based on
measurements in the North Atlantic Ocean. This spectrum represents the fully
developed wind sea analysis properly. Empirical spectral density formula of

Pierson-Moskowitz is presented in the following:

S:M (f) - %exp(— %[%J J (Equation 3-9)

where f denotes the frequency, f, symbolises the peak frequency, g is the

gravitational acceleration, and a refers to scaling parameter which is equal to

8.1*107,

After spectrum generation, the next step is to construct the surface elevation. In
order to build it, the spectrum should be divided into M frequencies bin with the
same distance. M must be large enough to get smooth distributions. Each division
presents a particular amplitude of the wave component. The final result is
developed by summing each of these individual waves produced from the
spectrum. Taking a random phase, simulated ocean surface elevation is expressed

as follows:
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1) = S /25, (78 cos(2ftt, + (1)) (Equation 3-10)

f=h
where Af and Af indicate the frequency interval and the time step of the control
signal respectively, k£ denotes the time index and ¢(f) is the signal phase offset

which is distributed between 0 and 2.

The relationship between the surface elevation and the paddle motion is expressed

by the Biesel equation (Miskovic 2008) in the following:

n(f) =0+ ieox(f) (Equation 3-11)

where 7(f) notes the frequency domain water surface elevation, x(f) represents the
frequency domain paddle motion, and ey denotes the transfer function which
depends on the type of the paddle used in the simulation. The previous expression
shows the surface elevation immediately in front of the paddle. The spectrum of
paddle motion can also be computed from the water surface spectrum using the

following relationship:

Sq (f) =1ieyS, (f) (Equation 3-12)
From the paddle motion spectrum, based on the same procedure in generating the

surface elevation, paddle motion is defined as follows:

«(6)= V2. (77 sin(2afr, +olf)) (Equation 3.13)

I=h
3.3.3 Measurement Technique

The wave tank was initially filled w with water to a height of 70 cm. In this study,
the laboratory simulation involves three types of wave with approximated
significant wave of 50 mm, 75 mm and 100 mm. The frequency is set to 100 Hz
so that there will be 100 of data in 1 second; or in other words, the time interval

between the data is 0.01 sec. Each simulation was run for approximately 24 hours.

The observation techniques which are applied in the laboratory simulation include
the Eulerian method. This method observes fluid parameters in a specific point in
space as a function of time variable. It can be differentiated from the Lagrangian
method that follows an individual fluid particle which flows through space and

time.
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The only thing that will be measured in the simulation is the water elevation. For
this purpose, two wave gauges were installed. The wave gauges were put on
vertical bars. Both bars are mounted on a transversal movable carriage on the top
of the flume. The gauges measure the voltage, which is later calibrated to water
elevation in metres. Each laboratory simulation uses two gauges which are named
as gauge A and gauge B in this study. The calibration factors of gauge A and
gauge B respectively are 0.03225 and 0.02443. The final output of the simulation

will be a time history of wave elevation in metres.
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4 RESULTS, DISCUSSIONS, AND ANALYSIS

This chapter presents the results of the numerical analysis which was undertaken
to show how well the theoretical formula of wave and crest height distribution
based on field and laboratory measurement. However, prior to the main issue
under discussion in this study, there will be some discussion on how well the
standard distribution of Gaussian and Rayleigh fit the measurements. Following
validation of the standard distributions, discussion on zero-crossing definition will

also be presented.

In general, the discussion will be divided into two sections, based on the type of
data. The first type comprises field measurement which presents the three
dimensional sea in nature under extreme conditions. The second one refers to two
dimensional laboratory simulations which were generated based on the Pierson
Moskowitz spectrum. Both conditions are considered to support research related
to field investigation or laboratory simulation. Laboratory simulation that includes

three wave types will be represented by one for the sake of optimum presentation.

4.1 Distribution of Water Surface Elevation

Chapter 4.1 discusses the behavior of water elevation taken from field and
laboratory measurement. The field measurement was taken from North Alwyn in
the North Sea during the 1997 storm. The data used in this study consists of more
than two million water elevation units of data from -8.96m to 16.08m relative to
the still water level. The measurements which were taken every 20 minutes with 5
Hz frequency were combined to be analysed numerically. The time history of six

days combined water elevation data is shown in Figure 4-1.

The time history shown in Figure 4-1shows that, relative to mean water level, the
crest heights are higher compared with the trough heights. This shows the
nonlinear behaviour of wave in nature. Statistical analysis found that the skewness
value of the distribution is around 0.3 (see Table 4-1). Non-zero positive skewness
complements the nonlinear factor seen from the time history. Positive direction of
water elevation’s skewness indicates its tendency to have peaked crest and

rounded trough.

52



It can also be seen that, at some points in time, there are extremely high water
elevations recorded. It is not the concern of the current study to learn how they are
generated; however, these crests given an indication of the extreme conditions
involved in this study. These extreme crests will be the focus of later validation.
With the presence of abnormal wave and the nonlinear nature of water surface, the
next question will be how well the distribution is represented by Gaussian

distribution.

20
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water elevation
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Figure 4-1 Time history of water elevation of field measurement

In order to answer the previous question, water elevation data were analysed
statistically. Nevertheless, prior to the analysis, water elevation should be set at
zero. The result of statistical analysis on water elevation data was shown as blue
crosses in Figure 4-2. The theoretical linear probability density of water elevation
data was calculated according to the theory of Gaussian distribution discussed in
sub-chapter 2.1.5. The theoretical distribution was presented as a continuous red
line in Figure 4-2. It confirms that that theoretical distribution of Gaussian
generally fits the empirical distribution. However, impreciseness happens around

the mean water level.
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Figure 4-2 Probability density of water elevation of field measurement

Nevertheless, the interest is given to the highest water elevation. Figure 4-2 is
unable to show clearly the accuracy of theoretical Gaussian distribution in
extreme region. For this reason, the following Figure 4-3 is presented. In the
following figure, the probability distribution is expressed as a logarithmic scale.
Using logarithmic scale, it is shown more clearly that Gaussian distribution has

mis-predicted the probability of highest wave region.
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Figure 4-3 Probability density (log scale) of water elevation of field measurement
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Along with water elevation analysis of field measurement data, identical
computation was executed using the laboratory simulations data. The simulations
were arranged into three different significant wave heights where each type was
run for approximately seven hours. Figure 4-2 shows the time history of water
elevation data taking 050A (significant wave height of 5 cm measured by gauge

A) as a representation.
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Figure 4-4 Time history of water elevation of laboratory simulation (050A)

Figure 4-4 above displays water elevation recorded over a seven hour period from
one of the laboratory simulations. Through visual observation, the imbalance
between the crest and trough is much less than the field measurement. The
statistical calculation shown in Table 1 indicates the skewness value of 0.1. It
shows a non-zero positive value, which is the same as the field analysis result;
however, it is one third of the magnitude. Smaller skewness value confirms the
fluctuation of laboratory water elevation which is less compared to that from the
field measurement. Despite the fact that it is less skewed, laboratory data also

shows some extreme crest heights at certain points in time.

Again, the same question is posed on how well the distribution of laboratory water
elevation is presented by the linear Gaussian model. For this purpose, the next
figure shows the laboratory simulation compared with the Gaussian prediction.
The water elevation was analysed statistically using 100 bins of normalised water

elevation value. Using the same symbol, the blue crosses represent the observed
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probability density of laboratory data and the continuous red line shows the
theoretical Gaussian distribution. The Gaussian model fits the measured
probability relatively well; however the most obvious imprecision is that Gaussian
under-predicts the most likely water elevation around still water as shown in the

following Figure 4-5.
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Figure 4-5 Probability density of water elevation of laboratory simulation

It cannot be seen clearly from the previous figure how the extreme values deviate
from the Gaussian distribution. For this reason the probability density was
converted into a logarithmic scale as depicted in Figure 4-6 below. Using a
logarithmic scale, it is now more obvious how the Gaussian model fails to fit the
observed probability of highest range water elevation. Nonetheless, taking a
comparison between laboratory and field measurement, it is clear that the
laboratory distribution fits the Gaussian prediction better than field measurement
distribution. The highest wave is under-predicted by 10° for the laboratory
distribution while it is under-predicted by up to 10" in the case of field

distribution.
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Table 4-1 presents the statistical properties of both sets of water elevation data in
order to get numerical parameters that can easily be compared. The table lists
water elevation properties of skewness, kurtosis, and standard deviation of

laboratory and field measurements.

Table 4-1 Statistical properties of water elevation for both laboratory and field measurement

Elevation Laboratory Simulation Field

Properties 050A 050B 075A 075B 100A 100B | Measurement
Skewness 0.105 0.092 0.134 0.129 0.159 0.193 0.3
Kurtosis 3.136 3.095 3.070 3.068 3.071 3.119 3.7
Std Dev (m) 0.011 0.011 0.018 0.017 0.027 0.024 1.8

Zero skewness shows that the distribution profile is symmetrical to still water
level. This condition is basing the linear assumption of water level distribution.
Positive skewness indicates that greater fluctuation of water elevation takes place
above the mean sea level. The physical behaviour of wave that can be observed in
nature due to positive skewness is the peaked crest and rounded trough.
Comparing the skewness parameter of both types of data, the skewness of
laboratory simulation is less than that of the field measurement. Therefore, it is
concluded that field measurement data show higher nonlinearity compared with
laboratory simulation data. How the nonlinearity affects the accuracy of extreme

wave and crest height distribution will be discussed in sub-chapters 4.4 and 4.5.
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The next statistical property which also affects the behaviour of water elevation
distribution is the kurtosis value. This value represents the shape of the
distribution to the Gaussian distribution which has kurtosis equal to 3. The
kurtosis values which were calculated from the laboratory simulation are varied;
nevertheless, they are still very near to the value of 3. This indicates that
laboratory simulations are relatively well represented by Gaussian distribution. On
the other hand, field measurement has a kurtosis value larger than that of the
laboratory simulation. A comparison of the two shows that actually the
distribution of water elevation in nature deviates from the ideal Gaussian
distribution. Positive kurtosis which has a value bigger than 3 is known as
leptokurtic. Leptokurtic distribution has more distribution concentrated on the tail
part. Recent studies have shown that freak wave distribution of weakly non-
Gaussian distribution can be predicted as a function of kurtosis (Onorato et el

2007; Goda 2000).

4.2 Zero-Crossing Wave

The distribution of water elevation which was discussed in the previous chapter
does not require prior knowledge concerning zero-crossing concept. Nevertheless,
in the case of wave height and wave period, we need to be aware of the concept of
zero-crossing. This sub-chapter presents the comparison between two zero-

crossing concepts.

There are two types of zero-crossing waves; they are zero up-crossing and zero
down-crossing waves. Zero up-crossing waves are defined as water elevation
between two successive transitions of surface elevation from the level below to
the level above mean level. In contrast, zero down-crossing waves are water
elevation between two successive transitions of surface elevation from the level
above the mean to the level below the mean water elevation (IAHR 1986) as

depicted in Figure 2-2.

The investigation was carried out using the comparison of probability distribution
and probability of exceedance from both up-crossing and down-crossing wave
heights. Firstly, the probability density of wave height from the field measurement
data was simulated for both types of zero-crossing wave definitions. In order to

get clearer view of the effect of the zero-crossing definition, especially in the
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highest region, the probability density is presented in logarithmic scale as depicted

in Figure 4-7.
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Figure 4-7 Probability density of zero-crossing field measurement data

Figure 4-7 shows the probability density of normalised wave height taken from
the field’s water elevation measurement. The red circles represent the probability
density based on up-crossing waves; while the blue crosses indicate the
probability of zero down-crossing waves. The above figure shows that the
probability density of zero up-crossing and zero down-crossing are identical for

small wave height, but diverse at the highest region of wave height.
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Figure 4-8 Probability of exceedance of zero-crossing field measurement data

In addition to the previous comparison, the zero-crossing wave height is expressed

in the form of probability of exceedance. According to statistical analysis of
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exceedance probability, for the same wave height, zero down-crossing has a
higher probability of being exceeded compared to zero up-crossing waves as

shown in Figure 4-8.
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Figure 4-9 Probability density of zero-crossing laboratory simulation data

A similar result is found in the case of probability density taken from the
laboratory simulation data. The most obvious deviation takes place at the highest
region of wave height as depicted in Figure 4-9. Nevertheless, probability of
exceedance of laboratory data shows that at extreme wave height, the up-crossing

wave will have a higher probability of being exceeded, shown in Figure 4-10.
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Figure 4-10 Probability of exceedance of zero-crossing laboratory simulation data

Further study needs to be done in order to investigate whether there is a tendency

for one zero-crossing type to have a higher probability of exceedance than the
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other. In this study, it cannot be ensured that a similar pattern of probability of
exceedance can be applied for every wave data. What this study is trying to put
across is that zero-crossing definition is essential in the case of extreme wave
height analysis. Nevertheless, this study uses zero down-crossing wave definition

as recommended by IAHR (1986).

4.3 Abnormal Waves

Using the zero down-crossing definition, wave heights were derived from the
water elevation records. In order to identify the presence of abnormal waves,
attention is paid to the two main wave height parameters which are significant
wave heights and maximum wave heights. Significant wave height was calculated
based on the average wave height of the highest one third. Maximum wave height
is the highest wave height in the record. There are still no particular rules
concerning abnormal wave height definition which are generally accepted
(Petrova and Soares 2008). Nonetheless, the current study operates within the
limits defined by Dean (1990 cited Soares et al 2007) who states that an abnormal
wave happens when the maximum wave height is bigger than twice the significant

wave height, known as the Abnormality Index (AI).

Together with the abnormality definition based on wave height, there is also
another definition based on crest height. Crest height is defined as the highest
positive water elevation in each zero down-crossing wave. Each wave height
corresponds to one specific value of crest. The most important feature of crest is
the maximum crest. The crest height which is normalised with the significant
wave height is named the crest amplification index (CI). There are different rules
applied in defining the threshold value of CI to be categorised as abnormal wave.
Nevertheless, this study uses the value of 1.3 as the maximum threshold suggested

by in Soares et al (2007).

Taking the maximum wave height, significant wave height, and crest height from
the record, the values of the Al and CI of each record was calculated. Based on the
previous agreed thresholds of Al and CI, Table 4.2 shows the presence of

abnormal waves in this study.
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Table 4-2 Abnormal Index and Crest-Amplification Index

Wave Laboratory Simulation Field
Properties 050A 050B 075A 075B 100A 100B | Measurement
Hi/; (m) 0.042 0.041 0.067 0.067 0.105 0.093 7.1
Hmax (m) 0.093 0.091 0.146 0.150 0.217 0.195 22.0
Hmax/H,; (Al) 2.22 221 2.16 226 2.07 2.11 3.08
Cmax (m) 0.067 0.060 0.097 0.091 0.140 0.124 16.1
Cmax/H; (CI) 1.60 1.45 1.44 1.37 1.33 1.34 2.25

From the table above, the amplification index of the laboratory simulation varies
from 2.07 to 2.26. Based on the threshold value put forward by Dean (1990 cited
ibid.), these numbers shows the presence of abnormal wave in laboratory
simulation. On the other hand, field measurements recorded maximum height that
triples the value of its significant wave height. It shows an obvious presence of

abnormal waves in field measurement data used in this study.

The previous table also presents values of the highest wave crests of laboratory
simulation data that vary between 1.33 to 1.6 times the significant wave heights.
In addition, the crest height of field measurement reaches up to 2.25 times the
significant wave height. Based on the threshold value agreed previously, the
existence of abnormal waves in the record is also confirmed by the crest

amplification index.

4.4 Wave Height Distribution

Following the discussion of abnormal waves, this current chapter will now focus
on the main objective of this study which is extreme wave height distribution. As
the starting point, statistical wave properties will be presented. Prior to the
validation of the modified distributions, the empirical distribution will be first
compared with the linear Rayleigh distribution. The validation will show the
degree of accuracy of Rayleigh’s theory in wave height prediction. Finally, the
improved wave height distribution formulae of Forristall (1978), Haring (1976
cited Prevosto 2000), Krogstad (1985 cited ibid.), and Rayleigh-Stokes (Nerzic
and Prevosto 1998) (see subchapter 2.3.1) will be validated against the empirical

distribution. Statistical parameters of wave heights are presented in Table 4-3.

62



Table 4-3 Statistical properties of wave height

Wave Height Laboratory Simulation Field
Stat. Prop 050A 050B 075A 075B 100A 100B | Measurement
mean L (m) 0.026 0.025 0.042 0.041 0.066 0.058 4.320
std dev ¢ (m) 0.014 0.014 0.022 0.022 0.034 0.031 2.488
cov variance 0.536 0.560 0.524 0.545 0.514 0.530 0.576
skewness 0.499 0416 0.482 0.409 0.441 0.444 0.787
kurtosis 3.034 3.000 -3.007| -3.086] -3.019 3.030 3.873

The previous table shows the statistical properties of wave height of each data
type. Averaging the statistical property outcomes from gauge A and gauge B, the
mean wave height of 050 laboratory data is 2.55 cm. Averaging also 075A and
075B, the mean wave height for 075 laboratory data is 4.15 cm. Finally, the
average wave of 100A and 100B is is 6.2 cm. On the other hand, wave mean

height from the field data is 4.32 m.

Standard deviation values from laboratory data are 0.85 cm, 1.4 cm, and 2 cm for
050, 075, and 100 respectively. Meanwhile, the standard deviation of field data is
approximately 1.5 m. Based on the ratio between the standard deviation and the
mean wave height, the covariance of each type of measurements is vary around

0.6.

Wave height skewness is much higher than the one calculated from the water
elevation data. This condition comes out with the shifting of the tail of wave
distribution to the right direction. Higher skewness might have been caused by the
absolute value of wave height. On the other hand, wave height’s kurtosis of the
laboratory data indicates a small deviation from the normal distribution. However,
field measurement shows large discrepancies from the standard distribution
(standard distribution’s skewness is equal to 3). Skewness from both types of data
shows that field measurement data contains stronger non-linearity factors than

laboratory simulation data.
4.4.1 Laboratory Simulation

Prior to the validation of extreme wave height distribution against the new,
modified formulae, the laboratory empirical distribution is compared with the

linear Rayleigh distribution. Laboratory data of 050 from gauge A is taken as a
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representative in the current discussion. Figure 4-11 shows the probability density
of both empirical laboratory and theoretical Rayleigh distribution. The blue
diamonds are the observed distribution while the red line is the standard Rayleigh
distribution. From the figure, Rayleigh seems to fit the observed probability very
well for wave height less than 6 cm. Higher wave heights are not predicted as well

as the smaller ones; they tend to be scattered around the theoretical prediction of

Rayleigh.
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Figure 4-11 Probability density of wave height of laboratory data

The graph depicted above shows that Rayleigh does not give an accurate
prediction of the largest wave. The validation includes the linear distribution of
Rayleigh, Rayleigh-Stokes proposed by Nercic and Prevosto, and the modified
Weibull distribution of Krogstad, Haring, and Forristall. In order to get a clearer
validation of how these distributions fit the data, the comparison is presented as
exceedance probability of normalised wave height as depicted in Figures 4-12, 4-

13 and 4-14.

Numerical analysis results show that Rayleigh over-predicts the extreme wave
height distribution of laboratory simulation which is denoted by the continuous
red line. On the other side, the Krogstad, Haring and Forristall formulae were
found to under-predict the observed distribution. The deviation can be seen to
increase from Forristall, then Haring and finally Krogstad. Meanwhile, the

nonlinear Rayleigh-Stokes formula that includes wave steepness factor is found to
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greatly over-predict the observation. A similar pattern was seen for all types of

laboratory data. It is concluded that in the case of laboratory activities, linear

Rayleigh distribution is still preferable in predicting the wave height distribution.
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Figure 4-13 Probability of exceedance of normalised wave height 075A and 075B
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4.4.2 Field Measurement

Following the laboratory analysis result, this current sub-chapter presents the
validation using field measurement data. Figure 4-15 shows how well wave height
distribution of Rayleigh fits the field measurement. The observed distribution is
depicted as the blue diamonds while the Rayleigh prediction is described as the
continuous red line. From the results of numerical simulation, it is found that for
wave height less than 11m, the observed field data fits the Rayleigh distribution.
Nonetheless, Rayleigh seems to fail in presenting the probability value of highest
wave height region. Compared with laboratory data, it is obvious that field

measurement data show a greater deviation from the Rayleigh distribution.
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Figure 4-15 Probability density of wave height of field data

The inadequacy of the Rayleigh distribution in predicting the extreme field wave
heights has motivated the development of improved formulae on wave height
distribution. Figure 4-16 shows that the Rayleigh distribution under-predicts the
field measurement distribution used in this study. However, the improved formula
of Forristall, Haring and Krogstad does not give any better predictions.
Meanwhile, the Rayleigh-Stokes formula seems to over-predict the wave height
distribution with much less deviation compared with previous laboratory
validation. It can be concluded that nonlinearity plays a significant role in nature
so that nonlinear prediction of Rayleigh-Stokes shows a better prediction in the

case of highest wave height region based on field measurement data.
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The finding of the current validation - that Rayleigh distribution over-predicts the
observed field measurement distribution - contradicts the previous statement by
Forristall, who claimed that Rayleigh over-predicts the higher wave height
distribution (Forristall 1978). This contradiction might be caused by several

factors.

The first possible cause is location factor. Forristal’s investigation was done in the
Gulf of Mexico while the current study deals with the North Sea environment. The
second factor might come from the variance of the ocean surface elevation.
Having approximately the same number of waves, the data used in Forristall’s
formula has a variance that ranges from 0.36 to 11.02 m” It is much higher than
the variance of storm 149 used in this study. Water elevation variance which was
calculated in this study is approximately 3.3 m* much less than the one used by
Forristall. The third factor that possibly causes the difference is the presence of
abnormal waves. The normalised wave height in this study is higher than the one
presented in Forristall (Forristal 1978). Nevertheless, Forristall’s study did not
bring up the abnormal waves issues. Clearer evidence can be found from the paper
of Nervic and Prevosto (2003). In their study, they also indicate the over-
prediction of Rayleigh. Nevertheless, the observed data which was used in their
study does not involve abnormal waves. Similar findings relating to under-
prediction of wave height were found by Soares et al (2007) who involved freak

waves in their study.
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Figure 4-16 Probability of exceedance of normalised wave height form field measurement

45 Crest Height Distribution

Crest height is also a major factor to be considered in ocean engineering. Many
scientists believe that crest height shows more nonlinearity compared with wave
height. Before going on to the main discussion of crest distribution, it is best to
present some general information concerning the statistical properties of crest
height from all types of data used in this study. The statistical properties are
presented in the following table 4-4.

Table 4-4 Statistical properties of crest height

Crest Height Laboratory Simulation Field
Stat. Prop 050A 050B 075A 075B 100A 100B | Measurement
mean U (m) 0.014 0.013 0.023 0.022 0.036 0.032 2.265
std dev 6 (m) 0.009 0.008 0.014 0.014 0.021 0.019 1.507
cov variance 0.616 0.636 0.606 0.623 0.582 0.603 0.665
skewness 0.592 0.519 0.544 0.533 0.560 0.602 1.036
kurtosis 3.382 3.167 3.201 3.172 3.236 3.341 5.180

70



After analysing the statistical properties of crest height compared with wave
height, it is found that skewness (nonlinearity) values of crest are uniformly
bigger than the wave height. This shows that crest height distortion is larger
compared to wave height. Moreover, the kurtosis value that shows a bigger
difference from the normal distribution value of 3 shows how crest nonlinearity
affects the crest height more than wave height. It is obvious from the case of field
measurement data how the crest distribution shows significant difference from the
linear normal distribution. How this affects the behaviour of crest height

distribution will be elaborated on further in the following part.

Nevertheless, prior to the discussion of crest height distribution, additional wave
factors which will be involved in the empirical formulae are presented in Table 4-
5. Those additional wave parameters are spectrum width, mean period, wave

number and wave steepness.

Table 4-5 Additional wave properties used in crest distribution

Wave Laboratory Simulation Field
Properties 050A 050B 075A 075B 100A 100B | Measurement
Ndzc 33719 33664| 30911| 30759 18857| 18851 54673
Nmaxl 63119 152188] 41682| 109554 33931| 72260 81115
bandwith & 0.85 0.98 0.67 0.96 0.83 0.97 0.74
Tz (s) 0.770 0.772 0.929 0.934 1.192 1.192 9.0
kz 6.8 6.8 4.7 4.6 2.8 2.8 0.050
sz 0.045 0.044 0.050 0.049 0.047 0.042 0.057

Spectral bandwidth parameter, €, is calculated based on the number of zero down-
crossing waves (Ndzc) and the number of local positive maxima (Nmaxl). These
parameters will be used in the calculation of crest height distribution. A large
value of spectral bandwidth parameters shows that most of them have broad band-
spectrum. Below the spectral width parameter, Tz denotes the value of zero-
crossing wave period. This value is then used to calculate the wave number, kz,
using dispersion relation. Wave steepness is then calculated based on wave

number and significant wave height described earlier.
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45.1 Laboratory Simulation

This sub-chapter presents the comparison of empirical crest height distribution
and the observed laboratory distribution. Probability exceedance of crest from the
laboratory simulation is denoted as the red line. Standard linear prediction of
Rayleigh is represented as the broken blue line. From the numerical analysis, it is
found that the Rayleigh prediction of crest height largely under-predicts the
observation. The Rayleigh prediction is one of the lowest predictions on crest
height along with the Ochi formula. Comparing both predictions of Ochi
involving narrow-banded (E = 0) and broad-banded factors (E = 1), although the
observation shows large spectral width parameters, it does not make Ochi
prediction for wide-spectrum closer to the observation distribution. This indicates
that spectral width parameter does not affect the crest distribution. This finding is
equivalent to that from Cartwright’s (1958 cited Forristall 1978) study. Cartwright
succeeded in creating crest height distribution that fits the observation data

without considering the spectral width parameter.

Developed based on the second order wave simulation, Forristall’s prediction of
crest height shows inadequacy in fitting the laboratory simulation. It is found to
under-predict the distribution of crest height taken from laboratory simulation.
Distributions which are found to be the closest to observation distribution are
derived from the predictions of Haring-Jahns and Wheeler (1972 cited Prevosto
2000), Tayfun(1980 cited ibid. )-Huang (1986 cited ibid.), and Kriebel-Dawson
(1993 cited ibid). The prediction of Haring (1972 cited ibid.) was developed based
on empirical fitting. The factors which are involved in his prediction are variance
of wave elevation and water depth. On the other hand, Tayfun (1980 cited ibid.)
and Kriebel (1986 cited ibid.) consider the wave steepness factor in their
prediction. The recently developed formula of Prevosto (Prevosto et al 2000)
tends to show inconsistencies by sometimes over-predicting or under-predicting
the observation. As seen also in wave height distribution, Rayleigh-Stokes (Nerzic
and Prevosto 2003) consistently over-predicts the observation distribution with a
large discrepancy. The analysis result of laboratory simulations is presented in the

following Figure 4-17, Figure 4.18, and Figure 4-19.
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45.2 Field Measurement

Following the investigation of crest distribution using the laboratory data, this
sub-chapter presents the results of field measurement distribution. The observation
of crest height distribution of field data is denoted as a red line. The Rayleigh crest
distribution which is presented as a broken blue line is found to under-predict the
field observation. It seems Rayleigh shows similar behaviour to laboratory
validation of under-predicting the crest distribution. This finding relates to that of
the previous study by Nerzic and Prevosto (2003). The same discovery was also

made by Soares et al (2007).

The linear Ochi formulae are also found to under-predict the distribution of crest.
However, Ochi and Rayleigh are not the ones that largely under-predict the crest
distribution. It is found from the calculation that Prevosto has also greatly under-
predicted the distribution. The empirical distribution of Haring is shown to give a
better estimation compared with the linear prediction of Rayleigh; nevertheless, it
is still far below the observed distribution. Tayfun-Huang and Kriebel Dawson are

closer to the observed distribution but they still under-predict the distribution.

This time, Rayleigh-Stokes is found to fit well the highest region distribution of
crest height. Rayleigh-Stokes shows significant differences when it is used with
the laboratory data or field measurement. It somehow allows for a better
prediction when it is used in predicting extreme height from field. Rayleigh-
Stokes was developed based on the third-order Stokes expansion. It considers the
nonlinear factor of wave steepness in the third order Stokes. This is possibly the
reason why Rayleigh-Stokes fits the field data which have shown more
nonlinearity better. The uppermost predictions come from Forristall’s
distributions. Showing opposite behaviour, this time Forristall over-predicts the

field measurement.
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5 CONCLUSIONS AND RECOMMENDATIONS

There are many uncertainties in nature that need to be quantified for engineering
purposes. Therefore, it is the task of scientists and engineers to create a tool to
quantify the randomness of nature. Luckily, today’s rapid advancements in
technology enable people to acquire a better understanding of these random
phenomena. Numerical and mechanical equipment has been created to support

scientific projects related to engineering needs.

Concerning the random phenomenon of offshore waves, there is increasing
interest in developing a better understanding of their behavior. Distribution
formulae have been developed theoretically and empirically. Validations have
been done for many years; nevertheless, there is still disagreement on how well
the theory fits the observed distribution. Most recent concern has been with the

prediction of wave and crest height distribution in extreme sea conditions.

After studying several journals articles on wave and crest height distributions, the
current study proposed the validation of six formulae of wave height (Rayleigh
typel, Rayleigh type2 Forrsitall, Krogstad, Haring and Rayleigh-Stokes) and nine
predictions of crest heights (Rayleigh, Ochi, Haring, Tayfun-Huang, Kriebel-
Dawson, Forristall 2D, Forristall 3D, Prevosto, Rayleigh-Stokes). The principal
ideas of these formulae are discussed in the literature review. Most modified
formulae presented in this study involved nonlinearity factors of water depth,
wave steepness, and directional spectra. In general, new formulae are developed to
improve the performance of the linear Rayleigh distribution. Although validation
had been undertaken for some of these formulae when they were formulated,
further validation is required to check the accuracy of these new formulae in the

case of the extreme wave.

Two types of data are used in this study representing two different interests. The
first one comprises laboratory simulation data based on the Pierson Moskowitz
spectrum. The results of laboratory validation are expected to support any
laboratory research that requires wave or crest height prediction. Another data is
field measurement of water elevation from the North Alwyn region in the North
Sea. Validation of field measurement data can be used as the groundwork for
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choosing an appropriate formula for ocean engineering interests such as design
purposes.

Chapter 4 shows the validation results on wave and crest height distributions. In
general, validation showed that the nonlinearity factor was engaged more in field
measurement than laboratory simulation. Visual observation of time history and
statistical parameters supported this result. On the other hand, crest height seemed

to be more influenced by the nonlinearity factors than wave height distribution.

Validation was taken with the standard linear distribution of Rayleigh as reference
of other formulae. Empirical distribution of wave and crest height was sorted and
the statistical distribution was calculated numerically before being validated

against the theoretical formulae.

In the case of wave height distribution, focusing on the largest wave, the Rayleigh
distribution was found to over-predict the observed laboratory simulation;
contrarily, it under-predicted the field measurement distribution. From the
laboratory simulation, Rayleigh was found to be the closest theoretical formula to
the observed data showing the linearity of laboratory wave height distribution.
Therefore the Rayleigh distribution is recommended in the case of laboratory
simulation to predict the wave height distribution. On the other hand, Rayleigh
was found to under-predict wave height distribution of field measurement data.
Although Rayleigh has shown under-prediction of the field wave height
distribution, it was found to fit better than the modified Weibull distribution of
Forrsitall, Krogstad and Haring. Nevertheless, Rayleigh-Stokes was found to show
better prediction in this case. This shows the nonlinearity involvement in the case

of wave in nature.

When the Rayleigh crest distribution was validated against lab and field
measurement data, both resulted in severe under-prediction against observed
distribution. This shows stronger nonlinearity effects in crest distribution than
wave height distribution. In this case, the improved non-linear formula seems to
fit the data better. Kriebel-Dawson showed the closest prediction of crest height of
laboratory simulation. It indicates the involvement of nonlinear factor of wave
steepness in predicting laboratory crest height. The Kriebel Dawson model

deviated further from field distribution. In general all predictions tended to give a

79



larger inaccuracy against field data. However, Kriebel-Dawson showed better
prediction compared with Rayleigh, Ochi, Haring and Tayfun-Huang. In the
validation of the field measurement, Forristall seemed to over-predict the data.
The Forristall prediction of largest wave height deviated 10° from the observed
field distribution. The closest prediction was found to be derived from the
Rayleigh-Stokes distribution. Although it greatly over-predicted the laboratory
crest height, Rayleigh-Stokes managed to give the most accurate prediction of the
highest crest height from the field data. Interestingly, the Prevosto formula that
includes the directional factor did not give a better prediction even when

compared with the linear theory.

New modified crest height prediction in this study included the nonlinear factors
in a different way. The Haring formula which includes water depth did not give
the required accuracy in extreme crest height prediction. Better accuracy was
performed by formulae that considered the wave steepness factor (Tayfun-Huang
and Kriebel-Dawson). However, the discrepancy between the two theories is
caused by the mathematical construction of the formulae. A higher degree of
steepness was involved in Kriebel-Dawson (see equations 2-102 and 2-105). The
prediction of Forristall that involved both water depth and wave steepness was
less accurate for the laboratory simulation data, but showed better fitting for the
field measurement compared with the Tayfun-Huang and Kriebel-Dawson
models. This might be caused by the development of parameters used by
Forristall, which were based on field measurement fitting. Rayleigh-Stokes ,which
was found to give the best prediction of largest crest height, showed a sharp
degradation of exceedance probability which might result in large under-
prediction in a very large crest. Surprisingly, the Prevosto prediction of crest
height that considered the wave direction factor and steepness factor was found to
show a significant deviation from the observed crest height even when compared

with the linear theory.

Data which is used in current study did not set to provide variety of wave
steepness. Referring to table 4.5, the steepness values are relatively invariant.
Further study can be focused on the effect of wave steepness by delivering
simulations that address steepness variety. Because it has only used deep water

data, the current study is not informed on the water depth effect. For this reason,
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further study can involve shallow water data to examine the effect of water depth.
Different results of laboratory and field validation showed that behaviour
differences in both conditions influenced the distribution. The behaviour
differences might come from directional effect and wave interaction which needs
to be studied further.
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APPENDICES |

MATLAB CALCULATION

ON ZERO DOWN-CROSSING WAVES EXTRACTION AND

STATISTICAL DISTRIBUTIONS OF WAVE AND CREST HEIGHTS



clear all

data=load("SurfaceEI50A_out™); %Any output Files (Wave and Crest
mydata=sort(data); %height) that needs to be
n=length(mydata) ; %expressed in form of distribution

%calculating the bin interval

Numbin=100; %Number of bin is predetermined
r=max(mydata)-min(mydata) ;

int=r/Numbin;

centerl=0.5*int;

cbin=(min(mydata)-centerl):int: (max(mydata)+centerl);

bin=cbin"®;

Ibin=length(cbin);

% calculate frequency of each bin
P=zeros(2000000,1);
k=0;
freg=zeros(lbin,1);
for i=1:1Ibin
for j=1:n
if mydata(j)<=(bin(i)+centerl)&& mydata(j)>(bin(i)-centerl)
k=k+1;
P(k)=mydata(j);
else
continue
end
end
nzP=nonzeros(P);
freq(i)=length(nzP);
k=0;
P=zeros(2000000,1);
end

% calculate frequency cumulative of each wave height bin
frcum=cumsum(freq)/n;

% plot graphic
o plot(cbin,freq, b.")
o plot(cbin,frcum,b.")

XX

X

¢ Saving the Output in ASCIl form
save SEBIn50A.out bin -ASCII

save SEFreq50A.out freq -ASCII
save SEFrcum50A.out frcum -ASCII



clear all
data=load("CrestHeight050B.out™);
mydata=sort(data);
n=length(mydata) ;

% calculate the number of bin
% First method
nbinl=sqgrt(n);

% second method
nbin2=1+(3.3*1og10(n));

% third method
r=max(mydata)-min(mydata) ;
gl=round(0.25*n);
Ql=mydata(ql,1l);
g3=round(0.75*n);
Q3=mydata(qg3,1);
nbin3=r*n™(1/3)/(2*(Q3-01));

%Any output Files (Wave and Crest
%height) that needs to be
%expressed in form of distribution

% calculating the average of three methods

nbinave=roundn(1/3*(nbinl+nbin2+nbin3));

%calculating the bin interval
int=max(mydata)/nbinave;
centerl=0.5*int;

cbin=centerl:int: (max(mydata)+centerl);

bin=cbin”®;
Ibin=length(cbin);

% calculate frequency of each wave height bin

P=zeros(10000,1);
k=0;
freg=zeros(lbin,1);
for i=1:1bin

for j=1:n

if mydata(J)<=(bin(i)+centerl)&& mydata(j)>(bin(i)-centerl)

k=k+1;
P(k)=mydata(j);
else
continue
end
end
nzP=nonzeros(P);
freq(i)=length(nzP);
k=0;
P=zeros(10000,1);
end

% calculate frequency cumulative of each wave height bin

frcum=cumsum(freq)/n;

% plot graphic
o plot(cbin,freq,"b.")
o plot(cbin,frcum,*b.")

XX

% Saving the Output in ASCII form

save CrestBin050B.out bin -ASCII

save CrestFreq050B.out freq -ASCII
save CrestFrcum050B.out frcum -ASCII



clear all

fid = fopen("spec240500ut.bin®,"rv); %Open binary data

mydata = fread(fid, "float™); %Read binary data and
%define data type as float

%Dimension of data Tile

n=length(mydata) ;

gaugeA=zeros(2700000,1); %Provide empty vector with

k=0; %spesific dimension

%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties

for 1=2:3:n-1 %Taking the data from binary file
k=k+1;
gaugeA(k)=0.03225*mydata(i); %Mulltiply with calibtration factor
end
DataA=nonzeros(gaugeA) ;
MeanA=mean(DataA); %Initial mean value

%Making the data average equal to zero
%and calculate the statistical properties
dataA=DataA-MeanA;

meanA=mean(dataA);

stdA=std(dataA);

varA=var (dataA);

skewA=skewness(dataA);
kurtA=kurtosis(dataA);

%Saving the Output in ASCII form
save SurfaceEI50A.out dataA -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period

p=0;9=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positive state = 1, and negative state = -1

m=length(dataA);

for j=1:m
% The Algorithm must be started from negative state
%(zero down-crossing wave)
if state == 0 && dataA(jJ) <=0

state = -1;
q=q+1;
N(g)=dataA(J); % push data to N vector
elseif state == -1 && dataA(j) <= 0
q=q+1;
N(g)=dataA(j); % push data to N vector
elseif state == -1 && dataA(j) >0
state= 1;
p=p+1;

X

P(p)=dataA(j);

elseif state == 1 && dataA(j) >0
p=p+1;
P(p)=dataA(j);

elseif state == 1 && dataA(J) <=0

¢ push data to P vector

X

¢ push data to P vector



tempWave= max(P) - min(N); % taking the wave height

r=r+1;

wHeight(r)=tempWave;

tempCrest= max(P); % taking the crest height
S=s+1;

cHeight(s)=tempCrest;

t=t+1; % taking the wave period

T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
% flush all data, & ready to start from the beginning state
% again (the negative state)
q=0;
p=0;
N=zeros(1000,1);
q=q+1;
N(a)=dataA(i);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form
save WaveHeightO50A.out WHeight -ASCII
save CrestHeightO50A.out CHeight -ASCII
save PeriodO50A.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataA(J) > 0 && dataA(jJ) > dataA(J-1) && dataA(J) > dataA(+1l)
y=y+1;
Point(y)=(-1)*0.01;
X=X+1;
Maxi (xX)=dataA(J);
else
continue
end
end

Maxim=nonzeros(Maxi); %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,datald);

hold on

plot(Po,Maxim, "r*")



clear all

fid = fopen("spec24050out.bin®,"r"); %Open binary data

mydata = fread(fid, "float™); %Read binary data and
%define data type as float

%Dimension of data Tile

n=length(mydata) ;

gaugeB=zeros(2700000,1); %Provide empty vector with

k=0; %spesific dimension

%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties

for 1=3:3:n %Taking the data from binary file
k=k+1;
gaugeB(k)=0.02443*mydata(i); %Mulltiply with calibtration factor
end
DataB=nonzeros(gaugeB) ;
MeanB=mean(DataB) ; %Initial mean value

%Making the data average equal to zero
%and calculate the statistical properties
dataB=DataB-MeanB;

meanB=mean(dataB);

stdB=std(dataB);

varB=var(dataB);

skewB=skewness(dataB);
kurtB=kurtosis(dataB);

%Saving the Output in ASCII form
save SurfaceEI50B.out dataB -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period
p=0;9=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positif state = 1, and negatif state = -1

m=length(dataB);

for j=1:m
% The Algorithm must be started from negative state
if state == 0 && dataB(jJ) <=0

state = -1;
g=g+1;
N(g)=dataB(j): % push data to N vector
elseif state == -1 && dataB(j) <= 0
g=g+1;
N(g)=dataB(j): % push data to N vector
elseif state == -1 && dataB(J) >0
state= 1;
p=p+1;

X

P(p)=dataB(J);

elseif state == 1 && dataB(g) >0
p=p+1;
P(p)=dataB(j);

elseif state == 1 && dataB(J) <=0
tempWave= max(P) - min(N); % taking the wave height

¢ push data to P vector

X

¢ push data to P vector



r=r+1;
wHeight(r)=tempWave;

tempCrest= max(P); % taking the crest height
S=s+1;

cHeight(s)=tempCrest;

t=t+1; % taking the wave period

T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
% flush all data, & ready to start from the beginning state
% again (the negative state)
q=0;
p=0;
N=zeros(1000,1);
q=q+1;
N(a)=dataB(i);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form
save WaveHeightO050B.out WHeight -ASCII
save CrestHeightO50B.out CHeight -ASCII
save Period050B.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataB(J) > 0 && dataB(j) > dataB(J-1) && dataB(j) > dataB(j+1)
y=y+1;
Point(y)=(-1)*0.01;
X=X+1;
Maxi (x)=dataB(j);
else
continue
end
end

Maxim=nonzeros(Maxi); %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataB);

hold on

plot(Po,Maxim, "r*")



clear all

fid = fopen("spec24075out.bin”,"r"); %Open binary data

mydata = fread(fid,8640000, "float™); %Read binary data and
%define data type as float

%Dimension of data file

n=length(mydata) ;

gaugeA=zeros(3000000,1); %Provide empty vector with

k=0; %spesific dimension

%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties

for 1=2:3:n-1 %Taking the data from binary file
k=k+1;
gaugeA(k)=0.03225*mydata(i); %Multiply with calibtration factor
end
DataA=nonzeros(gaugeA) ;
MeanA=mean(DataA); %Initial mean value

%Making the data average equal to zero
%and calculate the statistical properties
dataA=DataA-MeanA;

meanA=mean(dataA);

stdA=std(dataA);

varA=var (dataA);

skewA=skewness(dataA);
kurtA=kurtosis(dataA);

%Saving the Output in ASCIl1 form
save SurfaceEI75A.out dataA -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period

p=0;9=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positive state = 1, and negative state = -1

m=length(dataA);

for j=1:m
% The Algorithm must be started from negative state
if state == 0 && dataA(jJ) <=0

state = -1;
g=g+1;
N(g)=dataA(d): % push data to N vector
elseif state == -1 && dataA(jJ) <= 0
g=g+1;
N(g)=dataA(j): % push data to N vector
elseif state == -1 && dataA(j) >0
state= 1;
p=p+1;

X

P(p)=dataA(j);

elseif state == 1 && dataA(y) >0
p=p+1;
P(p)=dataA(j);

elseif state == 1 && dataA(J) <=0
tempWave= max(P) - min(N); % taking the wave height

¢ push data to P vector

X

¢ push data to P vector



r=r+1;
wHeight(r)=tempWave;

tempCrest= max(P); % taking the crest height
S=s+1;

cHeight(s)=tempCrest;

t=t+1; % taking the wave period

T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
% flush all data, & ready to start from the beginning state
% again (the negative state)
q=0;
p=0;
N=zeros(1000,1);
q=q+1;
N(a)=dataA(i);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form

save WaveHeightO751A.out WHeight -ASCII
save CrestHeightO751A.out CHeight -ASCII
save Period0751A.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataA(jJ) > 0 && dataA(jJ) > dataA(J-1) && dataA(jJ) > dataA(gJ+1)
y=y+1;
Point(y)=(-1)*0.01;
X=X+1;
Maxi (xX)=dataA(J);
else
continue
end
end

Maxim=nonzeros(Maxi); %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,datald);

hold on

plot(Po,Maxim, "r*")



clear all

fid = fopen("spec24075out.bin”,"r"); %Open binary data

mydata = fread(fid,8640000, "float™); %Read binary data and
%define data type as float

%Dimension of data file

n=length(mydata) ;

gaugeB=zeros(3000000,1); %Provide empty vector with

k=0; %spesific dimension

%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties

for 1=3:3:n %Taking the data from binary file
k=k+1;
gaugeB(k)=0.02443*mydata(i); %Multiply with calibtration factor
end
DataB=nonzeros(gaugeB) ;
MeanB=mean(DataB) ; %Initial mean value

%Making the data average equal to zero
%and calculate the statistical properties
dataB=DataB-MeanB;

meanB=mean(dataB);

stdB=std(dataB);

varB=var(dataB);

skewB=skewness(dataB);
kurtB=kurtosis(dataB);

%Saving the Output in ASCIl1 form
save SurfaceEl75B.out dataB -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period

p=0;9=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positive state = 1, and negative state = -1

m=length(dataB);

for j=1:m
% The Algorithm must be started from negative state
if state == 0 && dataB(jJ) <=0

state = -1;
g=g+1;
N(g)=dataB(j): % push data to N vector
elseif state == -1 && dataB(jJ) <= 0
g=g+1;
N(g)=dataB(j): % push data to N vector
elseif state == -1 && dataB(j) >0
state= 1;
p=p+1;

X

P(p)=dataB(J);

elseif state == 1 && dataB(g) >0
p=p+1;
P(p)=dataB(j);

elseif state == 1 && dataB(J) <=0
tempWave= max(P) - min(N); % taking the wave height

¢ push data to P vector

X

¢ push data to P vector



r=r+1;
wHeight(r)=tempWave;

tempCrest= max(P); % taking the crest height
S=s+1;

cHeight(s)=tempCrest;

t=t+1; % taking the wave period

T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
% flush all data, & ready to start from the beginning state
% again (the negative state)
q=0;
p=0;
N=zeros(1000,1);
q=q+1;
N(a)=dataB(i);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form

save WaveHeight0751B.out WHeight -ASCII
save CrestHeightO751B.out CHeight -ASCII
save Period0751B.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataB(J) > 0 && dataB(j) > dataB(J-1) && dataB(j) > dataB(j+1)
y=y+1;
Point(y)=(-1)*0.01;
X=X+1;
Maxi (x)=dataB(j);
else
continue
end
end

Maxim=nonzeros(Maxi); %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataB);

hold on

plot(Po,Maxim, "r*")



clear all
mydata = load("spec24100outl.dat”); %Open DAT data

%Dimension of data file

n=length(mydata) ;

gaugeA=zeros(2500000,1); %Provide empty vector with
k=0; %spesific dimension

%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties

for i=1:n %Taking the data from binary file
k=k+1;
gaugeA(k)=mydata(i,1); %Multiply with calibtration factor
end
DataA=nonzeros(gaugeA) ;
MeanA=mean(DataA); %Initial mean value

%Making the data average equal to zero
%and calculate the statistical properties
dataA=DataA-MeanA;

meanA=mean(dataA);

stdA=std(dataA);

varA=var(dataA);

skewA=skewness(dataA);
kurtA=kurtosis(dataA);

%Saving the Output in ASCII1 form
save SurfaceEI100A.out dataA -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period

p=0;9=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positive state = 1, and negative state = -1

m=length(dataA);

for j=1:m
% The Algorithm must be started from negative state
if state == 0 && dataA(jJ) <=0

state = -1;
g=q+1;
N(g)=dataA(); % push data to N vector
elseif state == -1 && dataA(j) <= 0
g=g+1;
N(g)=dataA(J): % push data to N vector
elseif state == -1 && dataA(j) >0
state= 1;
p=p+1;

X

P(p)=dataA(j):

elseif state == 1 && dataA(j) >0
p=p+1;
P(p)=dataA(j);

elseif state == 1 && dataA(J) <=0
tempWave= max(P) - min(N); % taking the wave height
r=r+1;

6 push data to P vector

X

¢ push data to P vector



wHeight(r)=tempWave;

tempCrest= max(P); % taking the crest height
S=s+1;

cHeight(s)=tempCrest;

t=t+1; % taking the wave period

T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
% flush all data, & ready to start from the beginning state
% again (the negative state)
q=0;
p=0;
N=zeros(1000,1);
q=q+1;
N(q)=dataA(i);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form
save WaveHeightl00A.out WHeight -ASCII
save CrestHeightlO0OA.out CHeight -ASCII
save PeriodlOOA.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataA(J) > 0 && dataA(jJ) > dataA(J-1) && dataA(J) > dataA(J+1l)
y=y+1;
Point(y)=(-1)*0.01;
X=X+1;
Maxi (xX)=dataA(J);
else
continue
end
end

Maxim=nonzeros(Maxi); %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,datald);

hold on

plot(Po,Maxim, "r*")



clear all
mydata = load("spec24100outl.dat”); %Open DAT data

%Dimension of data file

n=length(mydata) ;

gaugeB=zeros(2500000,1); %Provide empty vector with
k=0; %spesific dimension

%FIRST: Cluster the data from each gauges to one variable
%Calculate the statistical properties

for i=1:n %Taking the data from binary file
k=k+1;
gaugeB(k)=mydata(i,2); %Multiply with calibtration factor
end
DataB=nonzeros(gaugeB) ;
MeanB=mean(DataB) ; %Initial mean value

%Making the data average equal to zero
%and calculate the statistical properties
dataB=DataB-MeanB;

meanB=mean(dataB);

stdB=std(dataB);

varB=var(dataB);

skewB=skewness(dataB);
kurtB=kurtosis(dataB);

%Saving the Output in ASCII1 form
save SurfaceEI100B.out dataB -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period

p=0;9=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positive state = 1, and negative state = -1

m=length(dataB);

for j=1:m
% The Algorithm must be started from negative state
if state == 0 && dataB(jJ) <=0

state = -1;
g=q+1;
N(g)=dataB(j); % push data to N vector
elseif state == -1 && dataB(j) <= 0
g=g+1;
N(g)=dataB(j): % push data to N vector
elseif state == -1 && dataB(j) >0
state= 1;
p=p+1;
P(p)=dataB(j): % push data to P vector
elseif state == 1 && dataB(j) >0
p=p+1;

X

P(p)=dataB(j);

elseif state == 1 && dataB(J) <=0
tempWave= max(P) - min(N); % taking the wave height
r=r+1;

¢ push data to P vector



wHeight(r)=tempWave;

tempCrest= max(P); % taking the crest height
S=s+1;

cHeight(s)=tempCrest;

t=t+1; % taking the wave period

T(t)=0.01*(length(nonzeros(P))+length(nonzeros(N)));
% flush all data, & ready to start from the beginning state
% again (the negative state)
q=0;
p=0;
N=zeros(1000,1);
q=q+1;
N(q)=dataB(i);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form
save WaveHeightl00B.out WHeight -ASCII
save CrestHeightl00B.out CHeight -ASCII
save PeriodlO0OB.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataB(J) > 0 && dataB(j) > dataB(J-1) && dataB(j) > dataB(j+1)
y=y+1;
Point(y)=(-1)*0.01;
X=x+1;
Maxi (x)=dataB(j);
else
continue
end
end

Maxim=nonzeros(Maxi); %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataB);

hold on

plot(Po,Maxim, "r*")



clear all
mydata = load("ALL.dat"); %Open DAT data

%Dimension of data file
n=length(mydata) ;

%Making the data average equal to zero
%and calculate the statistical properties
MeanFM=mean(mydata) ;
dataFM=mydata-MeanFM;
meanfm=mean(dataFM) ;

stdfm=std(dataFM);

varfm=var (dataFM);
skewfm=skewness(dataFM) ;
kurtfm=kurtosis(dataFM);

%Saving the Output in ASCII form
save SurfaceEIFM.out dataFM -ASCII

%SECOND: Getting The Crest and Wave Height
%Define temporary vectors

P=zeros(1000,1); %Positive elevation
N=zeros(1000,1); %Negative elevation
wHeight=zeros(1000000,1); %Wave height
cHeight=zeros(1000000,1); %Crest height
T=zeros(1000000,1); %Period

p=0;0=0;r=0;s=0;t=0;

state=0;

% initial state = 0, positive state = 1, and negative state = -1

m=length(dataFM);

for j=1:m
% The Algorithm must be started from negative state
if state == 0 && dataFM(J) <= 0

state = -1;
q=0+1;
N(g)=dataFM(J); % push data to N vector
elseif state == -1 && dataFM(J) <= 0
q=0+1;
N(g)=dataFM(J); % push data to N vector
elseif state == -1 && dataFM(g) >0
state = 1;
p=p+1;
P(p)=dataFM(J); % push data to P vector
elseif state == 1 && dataFM(j) >0
p=p+1;
P(p)=dataFM(J); % push data to P vector
elseif state == 1 && dataFM(J) <= 0
tempWave= max(P) - min(N); % taking the wave height
r=r+l1;
wHeight(r)=tempWave;
tempCrest= max(P); % taking the crest height
S=s+1;
cHeight(s)=tempCrest;
t=t+1; % taking the wave period

T(t)=0.2*(length(nonzeros(P))+length(nonzeros(N)));

% flush all data, & ready to start from the beginning state
% again (the negative state)

q=0;

p=0;



N=zeros(1000,1);
q=q+1;
N(q)=dataFM(]);
P=zeros(1000,1);
state=-1;
end
end

WHeight=nonzeros(wHeight);
CHeight=nonzeros(cHeight);
WPeriod=nonzeros(T);

% Saving the Output in ASCII form
save WaveHeightFM.out WHeight -ASCII
save CrestHeightFM.out CHeight -ASCII
save PeriodFM.out WPeriod -ASCII

%THIRD: Taking the positive maxima and plot the time history
Maxi=zeros(1000000,1);

Point=zeros(1000000,1);

y=0;x=0;

for j=2:m-1
if dataFM(J) > 0 && dataFM(j) > dataFM(J-1) && dataFM(j) > dataFM(j+1)
y=y+1;
Point(y)=((-1)*0.01;
X=X+1;
Maxi (x)=dataFM(J);
else
continue
end
end

Maxim=nonzeros(Maxi) ; %Positive maxima
Po=nonzeros(Point); %Pertinent time of maxima
Nmaxim=length(Maxim); %Number of Maxima

% plot the time series
timeplot=0:0.01:((m-1)*0.01);
plot(timeplot,dataFM);

hold on

plot(Po,Maxim, "r**)



APPENDICES Il

MATHCAD CALCULATION

ON WAVE AND CREST HEIGHT DISTIRBUTIONS



DISTRIBUTION OF WATER SURFACE ELEVATION

Surface elavation of laboratory simulation 050A

surface elevation bin frequency cumulative distribution
Shin = Sfreq := Scdf :=
0 0 0
0 -0.046 0 3 0 1.155-10-6
1 -0.045 1 9 1 4.62-10-6
2 -0.044 2 13 2 9.624-10-6
3 -0.043 3 37 3 2.387-10-5
4 4 4
Bin interval Probability density Probability of exceedance

NSfreq := length(Sfreq)

sbinl := Shin, — Shin SE := 1 — Scdf
1 0
-3 Sfrel .= —Sfreq

sbinl = 1.13 x 10 Z(Sfreq)

Nbl := length(Sbin) Sfreq

Nbl = 101 Spdf :=

- Z(Sfreqsbinl)
Standar deviation of water elevation data
stds := 0.011045 [Matlab analysis]
Gaussian Distribution
) i := 0..(length(Shin) — 1)

p(7) = ———exp| 2

o,N27 20; —(Sbini)

pdfgaussi =

(—1 j~exp
StdS"\’ 2T Z(StdS)Z

ZERO CROSSING WAVE HEIGHT

Zero crossing wave height in meter (hir)

hlr :=
0
hl := sort(hlr) hi2 = hi?
0 1.339-10-3
1 9.448-10-4 Number of wave A
2 1.26-10-3 NhI := length(hl) Nhl = 3.372 x 10
3 9.448-10-4
4 3.858.10-3 Root mean square wave height
5 | 8661-103 hirms := L hi2 hirms = 0.03
6 Nhl
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Surface elavation of field measurement

surface elevation bin frequency cumulative distribution
Sfbin := Sffreq := Sfedf .=
0 0 0

0 -9.088 0 1 0 4.075-10-7
1 -8.838 1 1 1 8.15-10-7
2 -8.587 2 1 2 1.222-10-6
3 -8.337 3 2 3 2.037-10-6
4 4 4

NSffreq := length(Sffreq)

sfbinl := Sfbin, — Sfbin SfE := 1 — Sfcdf
! 0 Sffreq
sthinl = 0.25 Sffrel .= ——
Z(Sffreq)
Nfbl := length(Sfbin) Sffreq
Sfpdf :=
Nfbl = 100 Z(Sffreq-sfbinl)
Standar deviation of water elevation data
sftds .= 1.8237 [Matlab analysis]
Gaussian Distribution
" 1 _772 i .= 0..(length(Sfbin) — 1)
p(7) = exp >
oN2z | 20, . —(Sfbini)2
pdffgaussi = [—)exp —_—
ZERO CROSSING WAVE HEIGHT
Zero crossing wave height in meter (hir)
hirf .=
0 2
0 4.15| hIf = sort(hlrf) hif2 := hif
1 4.475 Number of wave A
2 3.754 Nhif := length(hlf) NhIf = 5.467 x 10
3 0.655 )
2 39047 Root mean square wave height
S 2.734 hirmsf = || ——. Zhlfz hirmsf = 4.985
6 NhIf
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ZERO-CROSSING STUDY

Comparison of Up- and Down-Crossing Wave

Laboratory Simulation 050A
Lmo := 0.00012199
Ld:= 0.7

ZERO UP-CROSSING WAVE

hiru :=

0
1.339-10-3
1.339-10-3
9.448-10-4

1.26-10-3
1.024-10-3
6.141-10-3
0.014
0.015
0.025

OO |N[ojO|B|W|IN|F|O

Significant wave height

Nhsu := round[(%)-Nhlu}

Nhsu = 22480

i := (Nhsu — 1) .. (Nhlu — 1)

U \sy-1) = 00314

U gy = 0.0972

hlu. =
|

0.0314

Wave Height Distribution

hibinu := hifrequ

0
5.207-104
1.562-10-3
2.604-10-3
3.645-10-3
4.687-10-3

galbh|lw|N|F—]|O

variance of water surface elevation

water depth in meter

hlu := sort(hlru)

Number of wave

Nhlu := length(hlu)

Root mean square

- [l

hlrmsu = 0.0296

Maximum wave height

himu := max(hlu)

himu = 0.0972
(Nhlu-1)
sumhsu := Z hiu,

i = Nhsu-1

sumhsu = 472.0225

sumhsu

hsu :=
(Nhlu — Nhsu + 1)

hsu = 0.042

= hlcdfu :=

0
0 678
1 241
2 246
3 302
4 352
5

hlu2 = hlu?

Nhlu = 33720

0.02

0.027

0.035

0.044

0.054

galbh|lw|IN|F—]|O




binlu := 2-h|binuO

binlu = 0.001 hifrelu :=
Nblu := length(hlbinu)
Nblu = 90 hlpdfu

ZERO DOWN-CROSSING WAVE

Nhlfrequ := length(hlfrequ)

Nlcdfu := length(hlcdfu)
hifrequ

Z(hlfrequ)

hifrequ
Z(hlfrequ-binlu)

HEu := 1 - hlcdfu

hird := )
0 hld := sort(hird) hld2 := hid
0 1.339-10-3 Number of waves
104
1] 944810 Nhid := length(hld)  Nhid = 33719
2 1.26-10-3 .
Root mean square wave height
3 9.448-10-4
4 3.858-10-3 hlrmsd := \/Lﬁld( hldsz
> 8.661:10°7 COMPARISON
2 0.017 hirmsd = 0.0296
7 0.013 _ . hirmsu = 0.0296
Maximum wave height
8 0.048
9 himd := max(hld)
himd = 0.0932 himu = 0.0972
Significant wave height
Nhsd = round| [ 2 |-Nhid (Nhia-1)
Sd= roundi| = sumhsd =y hid,
Nhsd = 22479 = Nhsd-1
i = (Nhsd — 1) . (Nhld - 1) sumhsd = 471.7858
sumhsd
hid = 0.0314 sd .=
(Nhsd-1) (Nhld — Nhsd + 1)
hld(Nh|d_1) — 0.0932 COMPARISON
hsd = 0.042 hsu  0.042
hIdi =
0.0314
Wave Height Distribution
hlbind := hifreqd := hlcdfd :=
0 0 0
0 5.066-10-4 0 420 0 0.012
1 1.52.10-3 1 224 1 0.019
2 2.533-10-3 2 256 2 0.027
3 3 3




Probability of Exceedance

Nhlfreqd := length(hlfreqd) Nlcdfd := length(hlcdfd)

binld := 2-hibind,
binld = 0.001 hifreld = —redd
Z(hlfreqd) HEd := 1 — hlcdfd
Nbld := length(hlbind)
Nbld = 89 hipdfd := hifreqd
Z(hlfreqd-binld)
Probability Density Function of Wave Height
100, T T T T
000 up-crossing
xxx down-crossing
10 (2" -
b o
S hipdfu
S 0% o B s
£ hlpdfd R
T XXX SR
S o
o
5 k)
0.1_ O —
B X
DX A0
0.01 ' L ' '
' 2 4 6 8
hibinu hlbind
\/Lmo)\/Lmo

normalized wave height (m)

Probability of Exceedance of Normalized Wave Height

0.1
HEuU 0.01
660
HEd _3
¥¢¢  1x10

«««««
.

x10

©66 UPCrossing

¢ downcrossing
1 1

1x10~

2 4 6 8
hibinu  hlbind

\’ Lmo , \’ Lmo
Normalized Wave Height
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Field Measurement

Fmo := 3.3257
Fd := 130

ZERO UP-CROSSING WAVE

hfru :=

5.563
4.326
1.872
2.357
3.465
3.006
1.781
3.669
2.409

Ol |N[ofO|R|W[IN|F|O

Significant wave height

Nhfsu := round[(%j-Nhfu}

Nhfsu = 36449

i := (Nhfsu — 1) .. (Nhfu - 1)

hfu fsu_1) = 31219

hfu Nnfu_1) = 189794

hfui =

5.1219

Wave Height Distribution

hfbinu := hffrequ

0.079
0.238
0.397
0.556

AlW|IN|F|O

variance of water surface elevation

water depth in meter

hfu := sort(hfru) hfu2 e hfu2
Number of wave
Nhfu := length(hfu) Nhfu = 54673

Root mean square

hfrmsu := j Lﬁ(z hfuz)J

hfrmsu = 4.9747

Maximum wave height
hfmu := max(hfu)

hfmu = 18.9794

(Nhfu-1)

sumhfsu := Z

i = Nhfsu-1

hfu.
i

sumhfsu = 129799.8068

sumhfsu
hfsu :=
(Nhfu — Nhfsu + 1)
hfsu = 7.1221
= hfcdfu :=
0
0 313
1 313
2 428
3 568
4

0

5.725-10-3

0.011

0.019

0.03

AlW|IN|F|O




binfu := 2‘hfbinu0
binfu = 0.1588

Nbfu :

Nbfu = 114

Nhffrequ := length(hffrequ)

hffrelu

length(hfbinu)

hfpdfu

ZERO DOWN-CROSSING WAVE

hfrd :=

4.15

4.475

3.754

0.655

3.947

2.734

2.372

2.483

3.576

Ol |IN|jJo|lO|~|[W|IN|FL|O

Significant wave height

Nhfsd := round[(g)Nhfd}
3 sum

Nhfsd = 36449

sum

i := (Nhfsd — 1) .. (Nhfd - 1)

hfd Nhfsd-1)

hfd Nhfa—1)
hfd. =

Wave Height Distribution

hfbind :=

Nfcdfu := length(hfcdfu)
hffrequ

Z (hffrequ)
hffrequ

Z (hffrequ-binfu)

HEfu := 1 — hfcdfu

hfd - sort(hfrd) hfd2 = hfd®

Number of waves
Nhfd := length(hfd)

Root mean square wave height

hfrmsd := \/LL(Z hlusz
Nhlu COMPARISON

hfrmsd = 0.0296 hfrmsu = 4.9747

Nhfd = 54673

Maximum wave height
hfmd := max(hfd)

hfmd = 21.9815 hfmu = 18.9794

(Nhfd-1)

hfsd := Z hfd.

i = Nhfsd-1

hfsd = 130168.2955

o m sumhfsd
= 21.9815
hfsd = 7.1423 hfsu = 7.1221
5.1379
hffreqd := hfcdfd .=
0 0
0 0.088 0 360 0 6.585-10-3
1 0.264 1 514 1 0.016
2 0.44 2 573 2 0.026
3 3 3




Probability of Exceedance

binfd = 2-hfbind0 Nhffreqd := length(hffreqd) Nfcdfd := length(hfcdfd)

binfd = 0.1759 htfreld :— —nmredd
Z(hﬁreqd) HEfd := 1 — hfcdfd
Nbfd := length(hfbind)
Nbfd = 108 hfpdfd := hffreqd
Z(hﬁreqdbinfd)
Probability Density Function of Wave Height
1 T T
00O Up-Crossing
_ xxx down-crossing
0.1 ,z.:.' -
2 §
B
% hfpdfu
-; ogo 0.01 .
£ hfpdfd
@ XXX
o)
o
o
1x10” 3 .
2630
OX X
OBOR & X
1X10—4 ] NOXREPDO N, V2
0 5 10 15
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0.1 T
HEfu 0.0 7
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LABORATORY SIMULATION 050A

Variance of water surface elevation

mo := 0.00012199

Water depth in meter
d:= 0.7

ZERO CROSSING WAVE PERIOD

Tw =
0
Twm := mean(Tw)
0 0.92
1 0.22 Twm = 0.7703  sec
2 0.21 . . . o
dispersion relation of deep water condition
3 0.22
2
g 1.29 k= 4-"—2 k = 6.7819
Twm 9.81 cek  tanh(k-d) = 0.9998
ZERO CROSSING WAVE HEIGHT
Zero crossing wave height in meter (hir)
hlr :=
0 hl := sort(hlr) hi2 = hi?
0 1.339-10-3
1 9.448-10-4 Number of wave
3 | 9.448-104 Statistical properties
.10-3
4 3.858-10 mean(hl) = 0.0261
5 8.661-10-3 dev(hi) — 0.014
6 0.017 stdev(h) = 0.
8 kurt(hl) = 0.0342
Root mean square wave height Normalized wave height
hlrms := i hl2 hl
Nhl hn:= —
\/ mo
hlrms = 0.0296
Significant wave height
2
Nhs := round[(gj-Nhl} Nhs = 22479
i .= (Nhs— 1) ..(Nhl - 1)

1) = 00314 i1y = 0-0932



hl. =

[ (Nhl-1)
0.0314 sumhs:= %", sumhs = 471.7858
0.0314 i= Nhs-1
0.0314 hs - su—mhs b — 0,042
0.0314 (Nhl = Nhs + 1)

0.0314 comparison with theoritical significant wave height
0.0314
hss := 4-/mo hss = 0.0442

Maximum wave height
him := max(hl)
him = 0.0932

comparison with theoritical Rayleigh formula of maximum wave height

hmax := /In(zﬂ.hs

hmax = 0.0958

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency
hlbin := hifreq := hlcdf :=
0 0 0
0 5.066-10-4 0 420 0 0.012
1 1.52-10-3 1 224 1 0.019
2 2.533-10-3 2 256 2 0.027
3 3.547-103 3 309 3 0.036
4 4.56-10-3 4 328 4 0.046
5 5.573-10-3 5 439 5 0.059
6 6.586-10-3 6 506 6 0.074
7 7.6-10-3 7 481 7 0.088
8 8.613-103 8 617 8 0.106
9 9 9
Bin interval Probability density Probability of exceedance
binl := 2-hlbin, hifreq HE := 1 - hicdf
binl = 0.001 hifrel:= ———
Z(hlfreq)

Number of bin

Nbl := length(hlbin) hlpdf = hifreq

Nbl = 89 Z(hlfreq-binl)



RAYLEIGHT DISTRIBUTION
i := 0..(length(hlbin) — 1)
Rayleigh Distribution
. . \2 . \2
(2-h|b|ni) —(hlblni) —(hlblni)

pdfiray. := -exp cdflray. := 1 — exp

! 2 2 ! 2

hirms hlrms hlrms

PDF of Wave Height

100 T T T T
o o o observed
. —— rayleigh
L
P 10 ¢ _
‘D
c
D
S hipdf
_Bﬂ R ]
= pdflray
Q —
[5+3
o)
(@]
S
o 0.1 .
0 O\ ¢
| | | |
0.01
0 0.02 0.04 0.06 0.08 0.1
hibin
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CDF of Wave Height
1 T T = \
o o o observed
B — rayleigh | |
=
>
2
B gt %9 }
© o 0O
'g cdflray
= 0.4 T
=)
e
>3
o 0.2 -
I I I I
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh

2
Phrl := exp| - hi
0.707-hs

2
Phr2 := exp| — h
0.638-hs

Forristall

hi 2.126
Phf := exp| —
0.681-hs

Krogstad

i 2.37
Phk1 := exp| —
| \ 0.73-hs

[ ho )28
Phk2 := exp| —
| \0.75-hs

Haring 4

hi h)2
Phhl = 0.968 + 0176 Phh2 = | —2( = | -Phh1
hs hs

Phh := exp(Phh2)

Rayleigh Stokes

an := 4-/mo- log(Nhl) bn:= L — B2:
8 2-log(Nhl)
2
ahn := 2~an~[1 + B3:(k-an) ] ahn = 0.0677
2
bhn := 2~bn~[1 + 3-B3:(k-an) ] bhn = 0.0078

hl — ahn
Prs:= 1 — exp| —exp| | ————
p[ p[ ( bhn m

N |-

o |w



Probability of Exceedance

0.1

0.01

1x10~

1x10°

1x10~

1x10

1x10°

Probability of Exceedance of Normalized Wave Height

-]\\

| [—— observation
————— rayleighl

L rayleigh2
—— forristall

- krogstadl
————— krogstad?2
— - haring

— - - rayleigh-stokes
1

0 2 4 6 8 10

)

Normalized Wave Height

ZERO CROSSING CREST HEIGHT

Zero crossing crest height in meter (clr)

clr ==

Jmo

0 Sorted crest cl := sort(clr)
0 0.00133|  Number of crest Ncl := length(cl) Ncl = 33719
! 0.00094 | praximum crest height max(cl) = 0.0671
2 0.00125 L .
Statistical Properties
3 0.00094
4 0.00377 mean(cl) = 0.0138 Normalized crest height
5 0.00629 stdev(cl) = 0.0085
|
6 0.00984 skew(cl) = 0.5917 X =
7

kurt(cl) = 0.3817




OBSERVED CREST HEIGHT DISTRIBUTION

Crest height bin Crest height frequency Cumulative frequency
clbin := clfreq == clfcum =
0 0
0 3.433-104 0 1.291-103 0 0.038
1 1.03-103 1 743 1 0.06
2 1.717-103 2 658 2 0.08
3 2.403-10-3 3 571 3 0.097
4 3.09-10-3 4 682 4 0.117
5 3.776-10-3 5 691 5 0.137
6 4.463-10-3 6 750 6 0.16
7 5.15-10-3 7 656 7 0.179
8 5.836-10-3 8 811 8 0.203
9 9 9
Bin interval Probability density Probability of exceedance
Ibin := 2-clbin, clfrel clfreq CE := 1 — clfcum
Ibin = 0.0007 chfreq

Number of bin
If -\/
clpdf = _ cliregymo

Ncbl := length(clbin) Z .
(clfreq-Ibin)
Ncbl = 86

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh
cI2
Pr:= exp| -8 —
hs2

Ochi

E0 = 0.1 00 = \/(1 _e0?) narrow band
El=1 ol = \/(1 _e?) broad band

probability density function of E=1

2
a:= exp =
pa: >

_
pbl := (al-x-pa)




pcl = 0.5 + 0.5-erf ol x
E1l 2
S
pdl := (pbl-pcl)
2
pL: - = “€Xp = + pdi

cumulative distribution function E=1

2
pel = al-exp(%j

of1 = 05+ 0.5erf| 22. %
E1 2

—

pyl = (pel-pfL)

P1:= #|:_—1(1 — OLl) + [05 + OSel’f[ X jj - pgl:|
(1+al)| 2 E1+/2

PE1:=1-P1

probability density function E=0

—
pb0 := (a0-x-pa)
bc0 = 0.5 + 0.5-erf| 22. 2%
EO \/E
S
pdo := (ph0-pc0)
2
pO: - =0 “€Xp Al pd0

cumulative distribution function E=0

2
pel = aO-exp(%j

ofo = 0.5 + 05erf[ 22. 2%
E0 |2

—

pg0 := (pe0-pf0)

PO = #.{_—1(1 - a0) + [0.5 + o.5erf[ . D - pgo}
(1+a0) | 2 E0+/2

PEO:=1- PO




Haring

oG 5] e[

Ph := exp(Phb)

Tayfun and Huang
RR:= k-hs RR = 0.2846

2
Pth := exp i( 1+ 2-RR~;—I - 1)
RRZ s

Kriebel and Dawson

1 cl 2
Pkda:=|1 - —RR-—
2 hs
cI2
Pkdb := -8-—
h52
_—
Pkdc := (Pkda-Pkdb)

Pkd := exp(Pkdc)

Forristall
_ 27 hs
"~ 9.81Twm Sl = 0.0349
h
Ur = —2 Ur = 0.0027
K2 d°

Two - dimensional
a2 := 0.3536 + 0.2892SI| + 0.1060Ur a2 = 0.364
b2 := 2 — 2.1597SI + 0.0968Ur2 b2 = 1.9246

cl b2
Pf2 .= exp| -
(aZ-hs)

Three - dimensional

a3:= 0.3536 + 0.2568SI + 0.0800Ur a3 = 0.3628
b3:= 2 — 1.7912SI — 0.5302Ur + O.284UI’2 b3 = 1.9361

ol b3
Pf3 := exp| -
(a?,-hs)




Prevosto

ss:=1 unidirectional wave
1 2 . .
ahs:= 1 — | = |-(tanh(k-d) — 0.9)- ahs = 0.9501 Directional Factor
2 1+ss
afm = L afm = 0.813 Spectral Bandwith
1.23
T02 .= WM fm = —— fm = 1.5578
1.2 TO2

modified significant wave height hs

hsp := ahs-hs hsp = 0.0399

modified mean frequency fm

fmp := afm-fm fmp = 1.2665
modified wave number (dispersion relation)
2
kmp = 2mtm) kmp=9.7659 cek tanh(kmp-d) =1

9.81
dimensionless depth

kap := kmp-d kap = 6.8361

Pl = tanh(kap) + kap| 1  (tanh(kap))?| PI=1

Second order coefficients

cdiff = [P1 + kep 1 — (tanhkap)?]]

5 cdiff = —0.038
P1™) — 4-kap-tanh(kap)
2
1 2 1 - (tanh(k
csum = (—j[ h [ (tanh(kap)) Il csum= 0.5
(tanh(kap))°
Second order transfer functions
TD := cdiff-k TD = -0.2574
TS := csum-k TS = 3.391
Non-linear crest components
hs 2
o= TD~Tp CO = —0.0001
C1:= ahs C1=0.9501
C2:= C12-(TD + TS) C2 = 2.8285
2
hs

Cri=cl + (TD + TS)-cl* - TD-

Q

2
-8 [—Cl + \/C12 - 4.[C2-(CO - Cr)]:|
Pp = exp| —-
2 2C2

hs




Rayleigh Stokes
2
acn := an-[l + B2-(k-an) + B3-(k-an) ]

ben = bn| 1 + 2-B2-(k-an) + 3-B3-(k-an)?)

Prsc:=1 - exp[—exp[wﬂ
ben

Probability of Exceedance of Normalized Crest Height

1 |
CE oak
Pr
PE1 0.011~ AN -
(B}
% PEO 100 %
-O -
o PR _4| |— observation
(&) 1x10 ;
R B I rayleigh
S oPkd  1x10 ¢ ochi E=1
2 o — --ochi E=0
T — - w10 | haring
[4]
- RNiEE - tayfun-huang
a Pp 10 l— - kriebel-dawson \
Prsc o8 forristall2D W
_ X I~ . \
— forristall3D \
1)( 10_ 9_ preVOStO \)
— - rayleigh-stokes
1x10” 0 . 1 1
2 4 6
clbin
, X
\' mo

Normalized Crest Height



LABORATORY SIMULATION 050B

Variance of water surface elevation

mo := 0.00011775

Water depth in meter
d:=0.7

ZERO CROSSING WAVE PERIOD

Tw =

0.02

0.11

0.02

0.02

1.08

0.4

0.74

Njojlu|(h~h[lWIN|IFR]O

Twm := mean(Tw)

Twm = 0.7717 sec

dispersion relation of deep water condition

2
ko= 4— k = 6.7576

Twrn29.81

ZERO CROSSING WAVE HEIGHT

Zero crossing wave height in meter (hlr)

hlr :=

0
1.193-104
2.982:10-4
4.175-10-4
7.754°10-4
3.936°10-3

3.28:10-3
7.634:10-3
0.014
0.016

O[N] hAh|WIN|F|O

Root mean square wave height

1
hlrms .= || —- hl2
Nhl (Z )

hlrms = 0.0288

hl:= sort(hlr) hi2 = hi*
Number of wave

Nhl := length(hl) Nhl = 33664

Statistical properties
mean(hl) = 0.0252
stdev(hl) = 0.0141
skew(hl) = 0.4163
kurt(hl) = 0

Normalized wave height

hl

hn =
mo



Significant wave height

Nhs := round[(%)NhlJ Nhs = 22443

i:= (Nhs — 1)..(Nhl - 1)

hl g1y = 0-0307
hl qpy 1) = 0-0907
hl, =
' (Nhl-1)
0.0307 sumhs := Z hl, sumhs = 460.2459
i
0.0307 i= Nhs—1
0.0307 sumhs
hs = ——m8M888™— hs = 0.041
0.0307 (Nhl — Nhs + 1)
0.0307
0.0307 comparison with theoritical significant wave height
hss = 4-\/m0 hss = 0.0434

Maximum wave height
hlm := max(hl)
hlm = 0.0907

comparison with theoritical Rayleigh formula of maximum wave height

,1 hl
hmax = %)-hs

hmax = 0.0936

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency
hlbin := hifreq = hledf =
0 0 0

0 4,962:104 0 1.318:103 0 0.039
1 1.489-10-3 1 223 1 0.046
2 2.481°10-3 2 214 2 0.052
3 3.473°10°3 3 301 3 0.061
4 4.46610-3 4 305 4 0.07
5 5.458°10-3 5 338 5 0.08
6 6.451°10-3 6 458 6 0.094
7 7.443:10-3 7 493 7 0.108
8 8.436°10-3 8 514 8 0.124
9 9 9




Bin interval Probability density Probability of exceedance

binl := 2~hlbin0 Nhlfreq := length(hlfreq) HE := 1 — hledf
binl = 0.001 hifrel = hlfreq
Number of bin Z(hlfreq)
Nbl := length(hlbin)
hif;

hipdf = =

Nbl = 87 Z(hlfreq-binl)
RAYLEIGHT DISTRIBUTION

i:= 0..(length(hlbin) — 1)

Rayleigh Distribution
. . \2 . \2
(2~hlb1ni) —(hlbmi) —(hlbmi)
pdﬂrayi = -exp| cdﬂrayi =1 — exp|
hlrms2 hlrms2 hlrms
PDF of Wave Height
40p T T T T
> i
‘B
=
o
O hipdf
E;. 000 .
= pdflray
2
o
o
=
o .
o oo observed
— rayleigh
N
0 0.02 0.04 0.06 0.08 0.1

hlbin

wave height



CDF of Wave Height

1 T LI T

0.8

o
2
=
=
=
g 0.
S hledf
QO o909
é‘ cdflray
B 0.4 .
[a+]
O
S
g
2 1
0 o oo observed
— rayleigh
0 | | | |
0 0.02 0.04 0.06 0.08 0.1

hlbin

wave height

EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh

2
hl
Phrl := exp| -| ——
0.707-hs
2
hl
Phr2 := exp| -| ——
0.638:-hs

Forristall

2.126
hl
Phf := exp| | ———
0.681-hs

Krogstad

2.37
hl
Phk1 := exp| -
0.73-hs
2.5
hl
Phk2 := exp| -
0.75-hs

Haring

Phhl := 0.968 + 0.176~%
s

-

2
Phh2 = |2 il -Phhl
hs

Phh := exp(Phh2)



Probability of Exceedance

Rayleigh Stokes

log(Nhl
an = 4+/mo- % an = 0.0327

an
bni= ————
2-log(Nhl)

1 3
B2:=— B3 .= —
2 8

bn = 0.0036

ahn = 2~an~|:1 + B3~(k-an)2J

bhn := 2'bn'|:1 + 3~B3~(k'an)2:|

Prs 1-c¢ € hi - ahn
=1 - exp| —exp| | ——
P P bhn

Probability of Exceedance of Normalized Wave Height

1 —1_ T

HE 0.1
Phrl
----- 0.011
Phr2
Phf _
k10
Phk1 —— observation
Phk2 10”4 rayleighl
Phh rayleigh2
P_ ' o H T forristall

<10k
- krogstadl

J krogstad2
10 Tl— - haring
— - - rayleigh-stokes
1)(10_7 1 1 1 1
0 2 4 6 8
hibin
,hn

Normalized Wave Height



ZERO CROSSING CREST HEIGHT

Zero crossing crest height in meter (clr)

clr :=
0 Sorted crest
0 | 9.68253-106 Number of crest
1| 6.93261-10° Maximum crest height
2 0.00019 .y .
Statistical Properties
3 0.00037
4 0.00335 mean(cl) = 0.0132
5| 9.68253'106 stdev(cl) = 0.0084
6 0.00758 skew(cl) = 0.5191
7 0.008
kurt(cl) = 0.1672
8 0.01027
9

OBSERVED CREST HEIGHT DISTRIBUTION

cl := sort(clr)
Necl := length(cl) Ncl = 33664
max(cl) = 0.0595

Normalized crest height

Crest height bin Crest height frequency Cumulative frequency
clbin = clfreq := clfcum :=
0 0 0
0 3.159°104 0 2.074°103 0 0.062
1 9.477-104 1 600 1 0.079
2 1.5810-3 2 539 2 0.095
3 2.211°10-3 3 605 3 0.113
4 2.843°10-3 4 540 4 0.129
5 3.475°10-3 5 607 5 0.147
6 4.107°10-3 6 581 6 0.165
7 4.73910-3 7 651 7 0.184
8 5.371'10-3 8 699 8 0.205
9 9 9
Bin interval Probability density Probability of exceedance
_clfreq

Ibin := 2-clbinO
Ibin = 0.0006

Number of bin

Ncbl := length(clbin)

Ncbl = 83

clfrel .=

Z clfreq

CE := 1 — clfcum

clpdf = clfreq+/ mo
Z(clfreq Ibin)



EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh
cl2
Pr := exp| -8 —
h52
Ochi
E0 := 0.1 al = \'il—Eozj

El:=1 al ::\Hl—Elzj

probability density function of E=1

2

-X

a:= exp| —
p p[ 2]

—_—
pbl := (al-x-pa)

1
pcl := 0.5 + 0.5-erf .
El \/E
—_—
pdl := (pbl-pcl)

2 El —x2
pl: exp + pdl

(1 +al) Jzﬂ 2E12

cumulative distribution function E=1

2
el == al-exp =
pel: >

1
pfl:= 0.5+ 0.5 erf(:—~ij

12

S
pgl := (pel-pfl)

2 -1 X
= (1 - . Serf -
P1 0+ oD |:2 (1 o¢1)+(05+05er (EL 2)) pg1:|

PEl :=1-P1

probability density function E=0

—_—>
pb0 := (a0-x-pa)
a0 x
pc0 = 0.5 + 0.5-erf| —-—
EO \ﬁ
—_—>
pd0 := (pb0-pc0)

2 EO —X
p0 = . -exp + pd0



cumulative distribution function E=0

pe0 := a0- exp(Tj

pf0:= 05+ 0.5erf| 22X
E0 2

EE—

pg0 = (pe0-pf0)

2 -1 .
= —_— — _ . . " )
P o [2 (1 - a0) + (05 +0.5er (EOWD pgo}

PEO:=1 — PO

Haring

9]
[

Ph := exp(Phb)

Tayfun and Huang
RR = k-hs RR = 0.2771

2
-8 i
Pth = exp —( 1+ Z-RR-;— _ 1)
RR? s

Kriebel and Dawson

1 cl 2
Pkda:=|1 - —RR-—
2 hs

cl2
Pkdb = —8-—
2
hs
—
Pkdc = (Pkda-Pkdb)

Pkd := exp(Pkdc)

Forristall
21h
9.81Twm
hs
ur= Ur = 0.0026
23

kd



Two - dimensional
a2 := 0.3536 + 0.2892S1 + 0.1060Ur
b2 :=2 - 2.1597SI + 0.0968Ur2

ol b2
Pf2 := exp| —
a2-hs

Three - dimensional

a3 := 0.3536 + 0.2568S1 + 0.0800Ur
b3 :=2 - 1.791281 — 0.5302Ur + 0.284Ur2

ol b3
Pf3 := exp|
a3-hs

Prevosto
ss:= 1 unidirectional wave
1 2
ahs:= 1 — | — |-(tanh(k-d) — 0.9)-
2 1+ ss
1
afm = —
1.23
T02 = LV fn = ——
1.2 T02

modified significant wave height hs
hsp := ahs-hs

modified mean frequency fim

fmp := afm-fm

modified wave number (dispersion relation)
(2o71~fm)2

sl

dimensionless depth

kmp

kap := kmp-d

PI := tanh(kap) + kap~|:1 - (tanh(kap)){l

Second order coefficients
[PI + kap-[l - (tanh(kap))zﬂ
(PIQ) — 4-kap-tanh(kap)

csum = (lj[z + |:1 - (tanh(kap))z:ﬂ
4

(tanh(kap))°

cdiff :=

Second order transfer functions

a2 = 0.3637
b2 = 1.9265

a3 = 0.3626
b3 = 1.9376

ahs = 0.9501 Directional Factor

afm = 0.813 Spectral Bandwith

fm = 1.555
hsp = 0.039
fmp = 1.2642

kmp = 9.7309  cek

kap = 6.8116

PI=1

cdiff = —0.0381

csum = 0.5

tanh(kmp-d) = 1



TD := cdiff-k TD = -0.2575
TS := csum-k TS = 3.3788

Non-linear crest components

hs 2
Co = TD-Tp Co=—0
C1 := ahs C1 = 0.9501
C2:= C1%.(TD + TS) €2 = 28175

2
h
Cro= cl+ (TD + TS)-cl — TD-%

-8 ﬂ-a o c1? - aca(co - Cr)]:IT

Pp == exp| —-
P P 2 2C2
hs

Rayleigh Stokes
2
acn ;= an~[1 + B2-(k-an) + B3-(k-an) ]

ben = bn-[l + 2-B2-(k-an) + 3~B3~(k~an){|

—(cl -
Prsc:= 1 — exp| —exp (el ~ acn)
ben



Probability of Exceedance

Probability of Exceedance of Normalized Crest Height

1
CE
0.1
Pr
PE1 0.01 R
PEO
o 1x10"°F
—— observation

Pt o rayleigh
Pkd ochi E=1
pp Ix107H~ - ochi E=0
- haring
B tayfun-huang
Pp — - kriebel-dawson \
Prsc  Ix10 |~ - - forristall2D \\\
o — forristall3D

1x10” % prevosto

— - rayleigh-stokes
110" L I
0 2 4

(clbinj
,X
\mo

Normalized Crest Height



LABORATORY SIMULATION 075A
Variance of water surface elevation

mo := 0.00031172

Water depth in meter

d:=07

ZERO CROSSING WAVE PERIOD

Tw =
0 Twm := mean(Tw)
0 0.17 Twm = 0.9286  sec
1 0.15
> 0.13 dispersion relation of deep water condition
3 0.24 2
4 0.28 Ki= 4"
5 036 Twm9.81
6 k = 4.6673

ZERO CROSSING WAVE HEIGHT

Zero crossing wave height in meter (hir)

hlr := )
0 hl := sort(hlr) hl2 := hl

0 | 6.299-104 Number of wave

10-4
1 | 472410 Nhl := length(hl) Nhl = 30911
2 6.299-10-4 L. .

Statistical properties

3 6.299-10-4
4 9.448.10-4 mean(hl) = 0.0422
5 1.26-10-3 stdev(hl) = 0.0221
6 | 7.874-10-4 skew(hl) = 0.4823
7

kurt(hl) = —0.0067

Root mean square wave height

hirms i ZhIZ Normalized wave height
Nhl hi
hn .= —
hirms = 0.0477 \ymo

Significant wave height
Nhs := round[(%j-Nhl} Nhs = 20607

i := (Nhs — 1) .. (Nhl - 1)

1) = 0-0509 i) = 0-1457



hl. = (Nhl-1)

: sumhs:= S, sumhs = 694.4459
0.0509 '
i= Nhs-1
0.0509 "
0.0509 hs = — S hs = 0.0674
(Nhl — Nhs + 1)

0.0509
0.0509 comparison with theoritical significant wave height

hss := 4-\/ mo hss = 0.0706

Maximum wave height
him := max(hl)
him = 0.1457

comparison with theoritical Rayleigh formula of maximum wave height

hmax := /In(zﬂ-hs

hmax = 0.1532

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency
hlbin := hifreq := hlcdf :=
0 0 0
0 8.272-10-4 0 280 0 9.058-10-3
1 2.482-10-3 1 176 1 0.015
2 4.136-10-3 2 175 2 0.02
3 5.791-103 3 287 3 0.03
4 7.445.10-3 4 302 4 0.039
5 9.1-10-3 5 406 5 0.053
6 0.011 6 457 6 0.067
7 0.012 7 564 7 0.086
8 0.014 8 538 8 0.103
9 9 9
Bin interval Probability density Probability of exceedance
binl := 2~h|bin0 Nhlifreq := length(hlfreq) Nlcdf := length(hlcdf)
binl = 0.0017 hifrel . —ied HE:= 1 — hlcdf
Number of bin Z(hlfreq)
Nbl := length(hlbin)
Nbl = 85 hlpdf = —red

Z(hlfreq-binl)



i := 0..(length(hlbin) — 1)
Rayleigh Distribution

(2-hibin) —(hlbini)z —(hlbini>2
pdflrayi = -exp| cdflrayi =1 - exp

hIrms2 hlrms2 hlrms2

PDF of Wave Height
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh

2
Phrl := exp| - hi
0.707-hs

2
Phr2 := exp| - h
0.638-hs

Forristall

i 2.126
Phf := exp| —
0.681-hs

Krogstad
i 2.37
exp| —
0.73-hs

i 2.5
Phk2 := exp| —
0.75-hs

Haring

Phk1 :

N—

Phhl := 0.968 + 0.176~%
S

N

hi)
Phh2 := —2(—) -Phhl
hs

Phh := exp(Phh2)

Rayleigh Stokes

an := 4+/mo- %

an
bni= ——
2-log(Nhl)

ahn = 2'an»[1 + BS'(k'an)ZJ

bhn = 2.bn| 1 + 3.83 (k-an)?]

hl — ahn
Prs = 1 — exp| —exp| —
p[ pM bhn m




Probability of Exceedance of Normalized Wave Height

1 SR T
HE
—_— Ol— —
g Pl
c
S Phr2 0.01 1
D .
Q  Phf _3| |—— observation
N 1x10 leighl -
= Phk1 | [ rayleig
> phk2 1x10 F rayleigh2 -
= —— forristall
9  Phh
_c_g R krogstadl .
< Prs | ]----
s P krogstad2 \
1x10~ F|— - haring i
— - - rayleigh-stokes
110’ ' ' ' '
0 2 4 6 10
hlbin
,hn
\’ mo
Normalized Wave Height
ZERO CROSSING CREST HEIGHT
Zero crossing crest height in meter (clr)
clr =
0 Sorted crest ¢l = sort(clr)
0 b.58003-10-5 Number of crest Ncl := length(cl) Ncl = 30911
.10-5
1 p-58003-10 Maximum crest height max(cl) = 0.0968
2 0.00057 . .
Statistical Properties
3 D.58003-105
4 0.00057 mean(cl) = 0.0226 Normalized crest height
5 0.00073 stdev(cl) = 0.0137
cl
6 p.58003-105 skew(cl) = 0.5435 = —
\[ mo
7 kurt(cl) = 0.201




OBSERVED CREST HEIGHT DISTRIBUTION

Crest height bin Crest height frequency Cumulative frequency
clbin := clfreq == clfcum =
0 0 0
0 5.352.104 0 1.014-103 0 0.033
1 1.606-10-3 1 521 1 0.05
2 2.676-10-3 2 570 2 0.068
3 3.746-103 3 611 3 0.088
4 4.817-10-3 4 658 4 0.109
5 5.887-10-3 5 602 5 0.129
6 6.957-10-3 6 556 6 0.147
7 8.028-10-3 7 608 7 0.166
8 9.098-10-3 8 709 8 0.189
9 9 9
Bin interval Probability density Probability of exceedance
Ibin ;= 2-clbin, clfrel .- e CE := 1 - clfcum
Ibin = 0.0011 ’

chfreq

Ncbl := length(clbin) clpdf = —SmeaNmo
Ncbl = 83 Z(lereq-lbin)

Number of bin

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh
cI2
Pr:= exp| 8 —
hs2
Ochi

E0 = 0.1 00 = \/(1 _e0?)
El:=1 alzzxﬂl—Elzi

probability density function of E=1

2
pa:= exp >
2

R —
pbl := (al-x-pa)
pcl:= 05+ O.5~erf(:—l~ij

17z



>

pdl := (pbl-pcl)

2
pl = G exp| —— | + pd1

cumulative distribution function E=1

2
pel = al-exp(%j

1
pfl= 05 + o.5erf(‘;—-ij

NG

)

pgl := (pel-pfl)

P1:= #- _—1(1 —al)+|05+ 05erf
1+al)| 2 E1l

PE1:=1-P1

)

probability density function E=0

>

pb0 := (a0-x-pa)

0
0c0 := 0.5 + 0.5-erf| -2
E0 2

>

pdo := (pb0-pc0)

2
2 EO -
p0 = : -exp X + pdo

cumulative distribution function E=0

2
pel = aO-exp(%j

ofo = 0.5 + 05erf[ 22. 2%
E0 |2
—

pg0 := (pe0-pf0)

PO = #.{_—1(1 - a0) + [0.5 + o.5erf[ . D - pgo}
(1+0a0) | 2 E0+/2

PEO:=1- PO

Haring

RS GIGICE) e F P

mo
Ph := exp(Phb)




Tayfun and Huang

RR := k-hs

Pth :

RR

Kriebel and Dawson

1 cl 2
Pkda := (1 - ERR—)

RR =0.3145

2
8 1+ 2~RR-C—I -1
2 hs

hs
cI2
Pkdb := -8-—
hs2
—_—

Pkdc := (Pkda-Pkdb)
Pkd := exp(Pkdc)

Forristall

Sl 27 hs
9.81Twm

hs

Ur:=
K2d®
Two - dimensional

Ur = 0.009

a2 := 0.3536 + 0.2892SI + 0.1060Ur
b2 := 2 — 2.1597SI + 0.0968Ur2

ol b2
Pf2 .= exp| -
a2-hs

Three - dimensional

a3 := 0.3536 + 0.2568SI + 0.0800Ur

b3:= 2 - 1.7912SI — 0.5302Ur + 0.284Ur2

ol b3
Pf3 := exp| -
a3-hs

Prevosto
ss:=1

1 ’ 2
ahs:=1- (Ej-(tanh(kd) - 0.9)- 1o o
1

afm:= —

unidirectional wave

Sl = 0.0465

a2 = 0.368
b2 = 1.8996

a3 = 0.3663
b3 =1.912

ahs = 0.9515 Directional Factor

afm = 0.813 Spectral Bandwith



To2 .= 1M fm = — fm = 1.2923
1.2 T02

modified significant wave height hs
hsp := ahs-hs hsp = 0.0641

modified mean frequency fm

fmp := afm-fm fmp = 1.0507
modified wave number (dispersion relation)
2
2-70-f
kmp := 27 kmp = 6.7200  cek

9.81
dimensionless depth

tanh(kmp-d) = 0.9998
kap := kmp-d kap = 4.7046

Pl := tanh(kap) + kap-[l - (tanh(kap))z} Pl = 1.0014

Second order coefficients

[p1 + kap| 1 - (tanh(kap))?]]

cdiff = 2 cdiff = —0.0563
P1™) — 4-kap-tanh(kap)
2
csum = (%j [2 il [l — (tanh(kap)) Il csum = 0.5003
(tanh(kap))°
Second order transfer functions
TD := cdiff-k TD = -0.2628
TS := csum-k TS = 2.3352
Non-linear crest components
hs 2
o= TD-Tp C0 = —0.0001
Cl:= ahs C1 = 0.9515
C2:= C12(TD + TS) C2 = 1.8761

2
h
Cr:= ¢l + (TD + TS)-cl’ - TD~%

8 ﬂ_m + \/012 ~ 4[C2(CO — Cr)ﬂr

Pp := exp| —-
P P 2 2C2
hs

Rayleigh Stokes

2
acn = an_[l 4 B2.(kan) + BS-(k-an)2] ben = bn-[l + 2-B2-(k-an) + 3-B3-(k-an) ]

Prsc:=1 - exp[—exp[wﬂ
ben



Probability of Exceedance

Probability of Exceedance of Normalized Crest Height
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LABORATORY SIMULATION 075B

Variance of water surface elevation

mo := 0.00030518

Water depth in meter
d:= 0.7

ZERO CROSSING WAVE PERIOD

Tw =

0.06
0.02
0.11
0.02
0.02

albh|lw|IN|F—]|O

Twm := mean(Tw)

Twm = 0.9341 sec

dispersion relation of deep water condition

ZERO CROSSING WAVE HEIGHT

Zero crossing wave height in meter (hir)

hir :=

0
4.771-10-4
1.193-104

8.35-104
2.386-104
2.386-104
7.157-104
2.386-104
1.193-104

O |IN|O|O|DR]|W|IN|F|O

2
s
k=4 5 k = 4.6123
Twm 9.81
2
hl := sort(hlr) hl2 := hl
Number of wave
Nhl := length(hl) Nhl = 30759

Statistical properties
mean(hl) = 0.0411
stdev(hl) = 0.0224
skew(hl) = 0.409
kurt(hl) = —0.0855

Root mean square wave height

1
hirms:= || —- hi2
()

hlrms = 0.0469

Significant wave height

Nhs := round[(%j-Nhl}

i := (Nhs — 1) .. (Nhl - 1)

l ps_1) = 005

Normalized wave height
hn = s

Jmo

Nhs = 20506

i) = 0-1501



hl. = (NhI-1)

: sumhs := Z hi, sumhs = 681.726
0.05 :
i = Nhs-1
0.05 h
0.05 h = ——° hs = 0.0665
(NhI — Nhs + 1)
0.05
0.05 comparison with theoritical significant wave height
hss := 4-+/mo hss = 0.0699

Maximum wave height
him := max(hl)
him = 0.1501

comparison with theoritical Rayleigh formula of maximum wave height

hmax := /@-hs

hmax = 0.1511

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency
hibin := hifreq := hlcdf :=
0 0 0
0 8.478-10-4 0 835 0 0.027
1 2.543-10-3 1 173 1 0.033
2 4.239-10-3 2 217 2 0.04
3 5.935.10-3 3 287 3 0.049
4 7.63-10-3 4 373 4 0.061
5 9.326-10-3 5 413 5 0.075
6 0.011 6 479 6 0.09
7 0.013 7 516 7 0.107
8 0.014 8 564 8 0.125
9 9 9
Bin interval Probability density Probability of exceedance
binl := 2~h|bin0 Nhlifreq := length(hlfreq) HE := 1 — hlcdf
binl = 0.0017 hifrel - hifreq
Number of bin Z (hlfreq)
Nbl := length(hlbin) —— hifreq
Nbl = 85 pet ==

Z(hlfreq-binl)



RAYLEIGHT DISTRIBUTION
i := 0..(length(hlbin) — 1)
Rayleigh Distribution
(2-hibin) —(hlbini)z —(hlbini)z
pdfiray. := -exp cdflray. := 1 — exp
| 2 2 |
hirms hlrms hlrms

PDF of Wave Height

20 T T T
2 i
= 15
[
[<B]
S hipdf
_Bﬂ 000 10 |
= pdfiray
Q —
[5+]
o)
<) i
o o o o observed
— rayleigh
0 0.05 0.1 0.15 0.2
hibin
wave height
CDF of Wave Height
1 T 1
s
>
E hicar 08
O o900
2 cdflray
= 0.4r .
[5+]
o)
o
= W oo o observed |]
R .
/f’ —— rayleigh
0 1 1 1
0 0.05 0.1 0.15 0.2
hibin
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EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh

2
Phrl := exp| - hi
| \0.707-hs ) |

2
Phr2 := exp| - h!
| \0.638:hs/ |

Forristall

i 2.126
Phf := exp| —
0.681-hs

Krogstad

i 2.37
Phk1 := exp| —
.73-hs

i 2.5
Phk2 := exp| —
0.75-hs

o

Haring
-
Phh := 0.968 + 0.176.1% hi\
= 0900+ D400 Phh2 := —2(h—) -Phh1
S

Phh := exp(Phh2)

Rayleigh Stokes
log(Nhl
an := 4+/mo- %
bpo— — 1
2-log(Nhl)

B2 = B3 :=

N |-
o |w

ahn := 2-an-[1 + B3-(k-an)2]

bhn = 2.bn| 1 + 3-B3 (k-an)?]

hl — ahn
Prs:= 1 — exp| —exp| |
p[ p[( bhn m




Probability of Exceedance

Probability of Exceedance of Normalized Wave Height

! S
0.1f .
0.011 .
%107 .
—— observation
1><10_4_ """ I’ay|elghl —
rayleigh2
vao forristall A
krogstadl
A krogstad2
10 "F|— - haring 7
— - - rayleigh-stokes
1><10_7 1 1 1 1
0 2 4 6 8 10

)

Normalized Wave Height

ZERO CROSSING CREST HEIGHT

Zero crossing crest height in meter (clr)

clr ==

0

0.00033

9.64121-10->

0.00045

0.00022

9.64121-10->

0.00033

0.00022

9.64121-10-°

0.00069

Ol |N[ojJO|BR|W|IN|F|O

cl = sort(clr)
Ncl := length(cl) Ncl = 30759
max(cl) = 0.0908

Sorted crest
Number of crest
Maximum crest height

Statistical Properties

mean(cl) = 0.022

stdev(cl) = 0.0137

skew(cl) = 0.5326 X =
kurt(cl) = 0.1723 Vmo

Normalized crest height

cl



OBSERVED CREST HEIGHT DISTRIBUTION

Crest height bin

Crest height frequency

clbin = clfreq :=
0 0
0 5.107-10-4 0 1.435-103
1 1.532-10-3 1 587
2 2.554-10-3 2 505
3 3.575-103 3 534
4 4.596-10-3 4 614
5 5.618-10-3 5 509
6 6.639-10-3 6 614
7 7.661-10-3 7 585
8 8.682-10-3 8 670
9 9
Bin interval Probability density
Ibin := 2~c|bin0 clfrel = clfreq
Ibin = 0.001 ZCIfreq

Number of bin
Ncbl := length(clbin)
Ncbl = 86

clpdf = clfreg+/mo
Z(clfreq-lbin)

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh
cI2
Pr:= exp| -8 —
h52
Ochi
EO:=0.1
El:=1

probability density function of E=1

2
pa:= exp >
2

—
pbl := (al-x-pa)

1
pcl = 0.5+ 0.5-erf| o=
E1

Jz

pdl := (pbl-pcl)

al = \”1 — EOZi
al = \Hl - Elzi

Cumulative frequency
clfcum =

0.047

0.066

0.082

0.1

0.119

0.136

0.156

0.175

0.197

Ol |IN|o|lO|A~h|W|IN|F|O

Probability of exceedance

CE := 1 — clfcum




2 El —X
pl:= . -exp + pdl

cumulative distribution function E=1

2
pel = al-exp(%j

1
pfl= 05 + o.5erf(‘;—-ij
—

12
pgl := (pel-pfl)

P1:= #|:_—1(1 — OLl) + [05 + OSel’f[ X jj - pgl:|
(1+al)| 2 E1+/2

PE1:=1-P1

probability density function E=0
S
pb0 := (a0-x-pa)

0
pcO := 0.5 + 0.5-erf(‘;‘_.Lj

NG

EE—
pdo := (pb0-pc0)
2

2 EO -
po : exp X + pdo

cumulative distribution function E=0

2
pel = aO-exp(%j

ofo = 0.5 + 05erf[ 22. 2%
E0 |2

——

pg0 := (pe0-pf0)

PO = #.{_—1(1 - a0) + [0.5 + o.5erf[ . D - pgo}
(1+a0) | 2 E0+/2

PEO := 1 — PO

Haring

O/ C 6 TG

Ph := exp(Phb)
Tayfun and Huang
RR := k-hs RR = 0.3066




2
Pm:em—ji[h+2RRﬁl—q
RR2 S

Kriebel and Dawson

1 cl 2
Pkda:=|1 - —RR-—
2 hs

—
Pkdc := (Pkda-Pkdb)
Pkd := exp(Pkdc)

Forristall

S 27 hs
9.81Twm
hs

ur.=——

K2 d°

Two - dimensional

a2 := 0.3536 + 0.2892SI + 0.1060Ur
b2 := 2 — 2.1597SI + 0.0968Ur2

ol b2
Pf2 .= exp| -
a2-hs

Three - dimensional

a3 := 0.3536 + 0.2568SI + 0.0800Ur
b3:= 2 — 1.7912SI — 0.5302Ur + 0.284Ur2

ol b3
Pf3 := exp| -
a3-hs

Prevosto
ss:=1 unidirectional wave
1 2
ahs:= 1 - | — |-(tanh(k-d) — 0.9)-
2 1+ ss
1
afm:= —
1.23
To2 .= WM fmo— 1
1.2 T02

modified significant wave height hs

hsp := ahs-hs

modified mean frequency fm

fmp := afm-fm

Sl = 0.0456

Ur = 0.0091

Pkdb := —-8-—
hs

a2 = 0.3677
b2 = 1.9016

a3 = 0.366
b3 = 1.9135

ahs = 0.9516 Directional Factor

afm = 0.813 Spectral Bandwith

fm = 1.2847

hsp = 0.0633

fmp = 1.0444



modified wave number (dispersion relation)

_ (@nfm)’

km
P 9.81

kmp = 6.6417  cek
tanh(kmp-d) = 0.9998

dimensionless depth

kap := kmp-d kap = 4.6492

Pl := tanh(kap) + kap~[1 - (tanh(kap))z] Pl = 1.0015

Second order coefficients

cdiff := [P' A kap'[l - (tanh(kap))zﬂ

2 cdiff = —-0.057
P1”) — 4-kap-tanh(kap)
2
csum := (ij [2 h [1 — (tanh(kap)) Il csum = 0.5004
(tanh(kap))®
Second order transfer functions
TD := cdiff-k TD = -0.2631
TS := csum-k TS = 2.3078
Non-linear crest components
hs 2

Co = TD- 2P CO = —0.0001
C1:= ahs C1=0.9516
C2:= C12(TD + TS) C2 = 1.8515

2
h
Cre=cl+ (TD + TS)-cl* - TD~%

5
-8 [—Cl +c1? - a[c2.(co - Cr)]]
2C2

Pp = exp
hs®

Rayleigh Stokes
2
acn := an-[l + B2-(k-an) + B3-(k-an) ]

ben = bn 1 + 2.B2 (k-an) + 3-B3-(k-an)?]

Prsc:=1 - exp[—exp[Mﬂ
bcn



Probability of Exceedance

Probability of Exceedance of Normalized Crest Height

1,
CE ~
0.1 \
Pr
_____ \
PE1 ~
0.01f
PEO
_3 -

Ph 14107 3H— observation
pth e rayleigh
Pkd  1x10”%F ochi E=1
b2 — - - (;Ch.l E=0
s w10~k aring
— |- tayfun-huang S
Pp | | - kriebel-dawson SN

1x10” : N
Prsc — - - forristall2D \
_' i forristall3D

1x10 [ prevosto

— - rayleigh-stokes
1><10—8 | |
0 2 4
clbin
, X

Normalized Crest Height



LABORATORY SIMULATION 100A

Variance of water surface elevation

mo := 0.00072767

Water depth in meter
d:= 0.7

ZERO CROSSING WAVE PERIOD

Tw =
0
Twm := mean(Tw)
0 4.64
1 156 Twm = 1.1915
> 157 dispersion relation of deep water condition
3 1.57 2
k:i=4——— k = 2.8347
4 1 2
Twm9.81
5
ZERO CROSSING WAVE HEIGHT
Zero crossing wave height in meter (hir)
hlr :=
0
hl := sort(hlr) hi2 = hi?
0 7.5-103
1 0.056 Number of wave
2 0.129 NhI := length(hl) Nhl = 18857
3 0.079 o _
2 0.015 Statistical properties
5 0.118 mean(hl) = 0.0662
6 0.062 stdev(hl) = 0.034
7 0.054 skew(hl) = 0.441
8 0.01 kurt(hl) = —0.0188
9

Root mean square wave height Normalized wave height

1
hirms:= || —- hi2
Nhl (Z ) hl

hn:i= —
hirms = 0.0745 \ymo

Significant wave height
Nhs := round[(%j-Nhl} Nhs = 12571

i := (Nhs — 1) .. (Nhl - 1)

1) = 00794 i1y = 0-2167



hl. =

i (NhI-1)
0.0794 sumhs := z hi, sumhs = 658.5759
0.0794 i = Nhs-1
0.0794 h = —umhs hs = 0.1048
0.0794 (Nhl — Nhs + 1)
0.0794 comparison with theoritical significant wave height
hss := 4-\/ mo hss = 0.1079

Maximum wave height
him := max(hl)
him = 0.2167

comparison with theoritical Rayleigh formula of maximum wave height

hmax := /In(zﬂ-hs

hmax = 0.2324

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency Cumulative frequency
hlbin := hifreq := hlcdf :=
0 0 0
0 1.527-10-3 0 203 0 0.011
1 4.581-10-3 1 120 1 0.017
2 7.636-10-3 2 154 2 0.025
3 0.011 3 235 3 0.038
4 0.014 4 250 4 0.051
5 0.017 5 323 5 0.068
6 0.02 6 343 6 0.086
7 0.023 7 429 7 0.109
8 0.026 8 409 8 0.131
9 9 9
Bin interval Probability density Probability of exceedance
binl = 2~h|bin0 Nhlifreq := IErI?th(hlfreq) Nlcdf := length(hlcdf)
binl = 0.0031 hifrel := — 1
Z(hlfreq) HE := 1 — hlcdf

Nbl := length(hlbin)
hifreq

Nbl = 70 hlpdf == ——————
Z(hlfreq-binl)



i := 0.. (length(hlbin) — 1)

Rayleigh Distribution
(2-hibin) —(hlbini)2 —(hlbini>2
pdflray. := -exp cdflray. .= 1 — exp
I 2 2 1
hlrms hirms hirms

PDF of Wave Height
15 T T

probability density

hipdf
o OO
pdfiray

o o o observed

— rayleigh

0.2 0.3
hibin
wave height

CDF of Wave Height

® 0.8
2
=
>
g hlcdf 06
o o 0O
2 cdflray
'S 0.4 1
©
o)
o
= 0.2 .
' s o o observed
— rayleigh
.:»‘ |
0.2 0.3

hibin
wave height



EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh
2
Phrl := exp| - hi
0.707-hs
2
Phr2 := exp| - hi
0.638-hs
Forristall
| 2.126
Phf := exp| —
0.681-hs
Krogstad
2.37
Phk1 := exp| —
0.73-hs
2.5
Phk2 := exp| —
0.75-hs
Haring
Phh1 := 0.968 + O.176~%
<
-

hi\2
— _2(_) Phh1
hs
Phh := exp(Phh2)

Rayleigh Stokes

an := 4+/mo- %
bn = —an
2-log(Nhl)
B2=+  B3=-
2 8

ahn = 2'an»[1 + BS'(k'an)z]

bhn = 2.bn| 1 + 3.83 (k-an)?]

hl — ahn
Prs = 1 — exp| —exp| —
e

I



Probability of Exceedance

0.1

0.01

1x10

1x10°

1x10~

Probability of Exceedance of Normalized Wave Height

————— rayleighl
rayleigh2

[ forristall

krogstadl

5 [~ krogstad?

— - haring

—|—— observation

1x10

— - - rayleigh-stokes
1

0 2

)

Normalized Wave Height

ZERO CROSSING CREST HEIGHT

Zero crossing crest height in meter (clr)

clr =

0

0.00334

0.03694

0.07664

0.01794

0.00964

0.06984

0.01284

0.02604

O |IN|O(|O|DR|W|IN|[F]|O

Sorted crest cl := sort(clr)

Number of crest Ncl := length(cl)  Ncl = 18857
Maximum crest height  max(cl) = 0.1399
Statistical Properties

mean(cl) = 0.0361

stdev(cl) = 0.021

skew(cl) = 0.5597 c

X = ——

kurt(cl) = 0.2356 Vmo

Normalized crest height



OBSERVED CREST HEIGHT DISTRIBUTION

Crest height bin Crest height frequency Cumulative frequency
clbin := clfreq == clfcum =
0 0 0
0 9.619-104 0 577 0 0.031
1 2.886-10-3 1 374 1 0.05
2 4.809-10-3 2 324 2 0.068
3 6.733-10-3 3 311 3 0.084
4 8.657-10-3 4 348 4 0.103
5 0.011 5 358 5 0.122
6 0.013 6 434 6 0.145
7 0.014 7 447 7 0.168
8 0.016 8 491 8 0.194
9 9 9
Bin interval Probability density Probability of exceedance
Ibin := 2-clbing cifrel .= e CE =1~ clfeum
Ibin = 0.0019 D clfreq
Number of bin clpdf = clfreg/mo
Ncbl := length(clbin) Z(clfreq-lbin)
Ncbl = 67

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh cI2
Pr:= exp| -8 —

hs2
Ochi

E0 = 0.1 00 = \/(1 _e0?)
2
E1=1 al::J(l—El )

probability density function of E=1

2
pa:= exp >
2

S
pbl := (al-x-pa)

pcl:= 0.5+ 0.5-erf a—l.i
El \/E

—

pdl := (pbl-pcl)



2
pl: 2 El exp| —— | + pd1

cumulative distribution function E=1

2
pel = al-exp(%j

1
pfl= 05 + o.5erf(‘;—-ij

12
S —
pgl := (pel-pfl)

P1:= #|:_—1(1 — OLl) + [05 + OSel’f[ X jj - pgl:|
(1+al)| 2 E1+/2

PE1:=1-P1

probability density function E=0

—
pb0 := (a0-x-pa)
pc0 := 0.5 + 0.5-erf a0 x
EO \/E
S
pdo := (ph0-pc0)
2
po : 2 EO exp X + pdo

cumulative distribution function E=0

2
pel = aO-exp(%j

pf0:= 0.5+ 05erf| 22. X
E0 |2

—

pg0 := (pe0-pfo)

PO = #.{_—1(1 - a0) + [0.5 + o.5erf[ . D - pgo}
(1 + a0) E0+/2

2
PEO:=1- PO

Haring

mer(§)or 3] mom[ e

Ph := exp(Phb)



Tayfun and Huang

RR:= k-hs RR = 0.2969
2
Pth := exp i( 1+ 2~RR-C—I - 1]
RR2 hs

Kriebel and Dawson

1 cl 2
Pkda:=|1 - —RR-—
2 hs

cI2
Pkdb := -8-—
hs2
—_—
Pkdc := (Pkda-Pkdb)

Pkd := exp(Pkdc)

Forristall
Sl 27t hs
"~ 9.81Twm SI = 0.0563
Ur = —S Ur = 0.038
K2 d°

Two - dimensional

a2 := 0.3536 + 0.2892SI + 0.1060Ur

a2 = 0.3739
b2 := 2 — 2.1597SI + 0.0968Ur2 b2 = 1.8785
ol b2
Pf2 .= exp| -
a2-hs
Three - dimensional
a3 := 0.3536 + 0.2568SI| + 0.0800Ur a3 =0.3711
b3:= 2 - 1.7912SI — 0.5302Ur + 0.284Ur2 b3 = 1.8794

ol b3
Pf3 := exp| -
a3-hs

Prevosto

ss:i=1 unidirectional wave

ahs:= 1 - 1 -(tanh(k-d) — 0.9)- 2 ahs = 0.9686  Directional Factor
2 1+ss
1

afm = —— afm = 0.813 Spectral Bandwith
1.23

T02 = TWM fm = —
1.2

fm = 1.0071
T02



modified significant wave height hs

hsp := ahs-hs hsp = 0.1015

modified mean frequency fm

fmp := afm-fm fmp = 0.8188
modified wave number (dispersion relation)

2
kmp := (2mim) kmp = 4.0819  cek

9.81 tanh(kmp-d) = 0.9934
dimensionless depth
kap := kmp-d kap = 2.8573
2

Pl := tanh(kap) + kap'[l — (tanh(kap)) } Pl = 1.0309

Second order coefficients

cdiff = [P1 + kep 1 — (tanhkap)?]]

5 cdiff = —0.1038
P1™) — 4-kap-tanh(kap)
2
csum := (%j[z h [1 — (tanh(kap)) Il csum = 0.5133
(tanh(kap))°
Second order transfer functions
TD := cdiff-k TD = -0.2942
TS := csum-k TS = 1.4551
Non-linear crest components
hs 2
o= TD~Tp CO = —0.0004
C1:= ahs C1=0.9686
C2:= C12-(TD + TS)-kmp C2 = 4.4452

2
hs
Cri=cl + (TD + TS)-cl* — ™.

[—c1 + \/012 — 4.[C2:(CO - Cr)ﬂ}2
2C2

Pp := exp _—8{
hs2

Rayleigh Stokes
2
acn := an-[l + B2:-(k-an) + B3-(k-an) ]

ben = bn 1 + 2.B2 (k-an) + 3-B3-(k-an)?]

Prsc:=1 - exp[—exp[wﬂ
bcn



Probability of Exceedance

Probability of Exceedance of Normalized Crest Height

1
CE
Pr 0.1
PE1
PEO 0.01F
Ph —— observation
Pth  1x10 |----. rayleigh
Pkd ochi E=1
Pio T N ochi E=0
- haring
M tayfun-huang o
PP 1x10” °F|— - kriebel-dawson
Prsc — - - forristall2D \
T oL forristall3D N\

prevosto ‘

— - rayleigh-stokes
1x10" ' : '
0 2 4
(clbinj
, X
Jmo

Normalized Crest Height



LABORATORY SIMULATION 100B

Variance of water surface elevation

mo := 0.00057124

Water depth in meter
d:=0.7

ZERO CROSSING WAVE PERIOD

Tw =
0
Twm := mean(Tw)
0 8.28
1 1.65 Twm = 1.1923
> 1.62 dispersion rel;tion of deep water condition
J 1.14 k= 40— k = 2.8309
4 1.31 Twm?9.81
5

ZERO CROSSING WAVE HEIGHT

Zero crossing wave height in meter (hlr)

hir :=
- 00.018 hl:= sort(hlr) hi2 = hi*
1 0.08 Number of wave
> 0.103 Nhl := length(hl) Nhl = 18851
3 0.052 Statistical properties
4 0.058 mean(hl) = 0.0581
5 0.06 stdev(hl) = 0.0308
3 0.068 skew(hl) = 0.4436

kurt(hl) = 0.0302

Root mean square wave height

1
hlrms .= || —- hl2
(22

Normalized wave height

hirms = 0.0658 hn = \;%
Significant wave height
Nhs := round[(%)NhlJ Nhs = 12567
i:=(Nhs - 1)..(Nhl - 1)
= 0.0699 = 0.1954

bl Nhs-1 bl Nhi-1



(NhlI-1)

hli - sumhs := Z hli
0.0699 i= Nhs-1
0.0699 sumhs
0.0699 b = B Nhs+ D)
0.0699
0.0699
hss := 4-\/50

Maximum wave height

hlm := max(hl)

hlm = 0.1954

sumhs = 583.5509

hs = 0.0928

comparison with theoritical significant wave height

hss = 0.0956

comparison with theoritical Rayleigh formula of maximum wave height

’ In(Nhl
hmax := %)-hs

hmax = 0.206

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin Wave height frequency
hlbin := hlfreq =
0 0
0 1.371-10-3 0 421
1 4.112:10-3 1 123
2 6.853:10-3 2 175
3 9.595-10-3 3 195
4 0.012 4 245
5 0.015 5 291
6 0.018 6 336
7 0.021 7 400
8 0.023 8 457
9 9
Bin interval Probability density

binl = 2. hlbino Nhlfreq := length(hlfreq)

binl = 0.0027 hifrel = —ired__
Z(hlfreq)
Nbl := length(hlbin)
hif
Nbl = 70 hlpdf := =4

Z(hlfreq-binl)

Cumulative frequency

hlcdf =

0.022
0.029
0.038
0.048
0.061
0.077
0.095
0.116

0.14

O (N[([oojLn|PhA|WIN|[—|O

Probability of exceedance

Nledf := length(hlcdf)

HE := 1 — hlcdf



i:= 0..(length(hlbin) — 1)

Rayleigh Distribution
(2hibin) —(hlbini)z —(hlbini)z
pdﬂrayi = -exp| cdﬂrayi =1 - exp|
hlrms2 hlrms2 hlrms
PDF of Wave Height
15 T T T
2
RZ
2 _
O
O hipdf
E;. 600
= pdflray
2
© _
o
—
g,
o o o observed
— rayleigh
I
0 0.05 0.1 0.15 0.2
hlbin
wave height
CDF of Wave Height
1 ¥
'j‘é 0.8 7
5
=
§ niedf O ]
QO o000
é‘ cdflray
5 0.4 T
<
O
S
2 n |
0.2 o o o observed
R — rayleigh
OM 1 1 1
0 0.05 0.1 0.15 0.2

hlbin

wave height



EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh

2
hl
Phrl := exp| | ———
0.707-hs
2
hl
Phr2 := exp| | ———
0.638-hs

Forristall

2.126
Phf = exp| - L
0.681-hs

Krogstad
2.37
Phkl1 := exp| bl
0.73-hs
2.5
Phk2 := exp| hl
0.75-hs
Haring
hl
Phhl := 0.968 + O.l76-h—
]

%

2
Phh2 := |:—2 (Ej -Phhl}
hs

Phh := exp(Phh2)

Rayleigh Stokes

1 hl
an := 4-\/ mo- %N)

an
bn:= ———
2-log(Nhl)

B2:=— B3::2
8

ahn = 2-an-[1 + B3-(k-an)2}

bhn := 2~bn-[1 + 3-B3~(k~an)2i|

Prs 1-¢ e hi - ahn
=1 —exp|—exp| | —
P P bhn



1
HE 0.1 .
o Phrl
Q ____.
5
- Phr2 0.01F .
O
& Phf
> J—
- Phk1 -3 :
S 1x10” °-|—— observation .
2 Phk2 ----- rayleighl
E Phh 4 raylelgh2
:‘g s 10— forristall 7
g krogstad1
TS N krogstad2 i
— - haring
— - - rayleigh-stokes
1x10~° ' ! | .
0 2 4 6 8 1
hlbin
,hn
Normalized Wave Height
ZERO CROSSING CREST HEIGHT
Zero crossing crest height in meter (clr)
clr =
0
Sorted crest cl:= sort(clr)
0 0.01395
1 0.04775 Number of crest Nel := length(cl) Nel = 18851
2 0.04865 Maximum crest height max(cl) = 0.1242
3 0.02015 Statistical Properties
4 0.03075 mean(cl) = 0.0317 . ,
5 0.03245 Normalized crest height
stdev(cl) = 0.0191
6 0.03265 cl
7 0.01465 skew(cl) = 0.6018 X 1= —
\mo
8 0.01575 kurt(cl) = 0.3407
9

Probability of Exceedance of Normalized Wave Height




OBSERVED CREST HEIGHT DISTRIBUTION

Crest height bin Crest height frequency Cumulative frequency
clbin := clfreq := clfcum :=
0 0 0
0 8.555°104 0 780 0 0.041
1 2.567°10-3 1 323 1 0.059
2 4.278°10-3 2 334 2 0.076
3 5.989°10-3 3 320 3 0.093
4 7.7103 4 359 4 0.112
5 9.411-10-3 5 382 5 0.133
6 0.011 6 413 6 0.154
7 0.013 7 437 7 0.178
8 0.015 8 492 8 0.204
9 9 9
Bin interval Probability density Probability of exceedance
Ibin := 2-clbin0 clfrel .= _clfreq CE := 1 — clfcum
Ibin = 0.0017 chfreq
Number of bin e clfreq: \/Eo
Ncbl := length(clbin) pat - z(c lfreq-Ibin)

Ncbl = 71

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh cl2
Pr = exp| -8 —
hs2

Ochi

E0 := 0.1 a0 := \Hl—Eozi
El:=1 al ::\HI—Elzi

probability density function of E=1

2

—X

a = exp| —
p P( 2]

—_—
pbl := (al-x-pa)

1
pcl == 0.5 + 0.5-erf o X
El \/3
 S—
pdl := (pbl-pcl)
2 El —x2

pl:= : -exp + pdl
(1+al) |27 2E12



cumulative distribution function E=1

Ccl = al-exp| —

al x
pfl = 0.5+ 0.5erf| —-—
El |2
_
pgl := (pel-pfl)

2 -1 X
Pl = (H—Od)-[?(l -al) + (0.5 +0.5 erf(El.ﬁ)) - pgl}

PE1:=1-P1

probability density function E=0

S
pb0 := (a0-x-pa)

0
pcO:= 0.5 + 0.5~erf(a—~ij

E0 /2
—
pd0 := (pb0-pc0)

2
2 EO =
pO : -exp X + pd0

(1+a0) |2 2E02

cumulative distribution function E=0

pe0 = a0- exp[T]

0
pf0:= 0.5+ 0.5 erf(:—~ij

02
>
pg0 = (pe0-pf0)

2 -1 X
PO := m{;(l - a0) + (0.5 + 0.5 erf(EO'\ﬁ)) - ng}

PEO:=1 - PO

Haring

B3]
e [@(mij“ : Pha)}

Ph := exp(Phb)




Tayfun and Huang

RR := k-hs RR = 0.2628

2
- I
Pth = exp| ——| |1+ 2RR-E - 1
RR2 hs

Kriebel and Dawson

Pkda:

Il
7~ N\
—
|
N | =
=
~
::rlo
7z |
N

)

Pkdb :

Il
|
o e]

Pkdc := (Pkda-Pkdb)

Pkd := exp(Pkdc)

Forristall
gl 21t hs
- 9.81Twm SI = 0.0499
h
Ur = — Ur = 0.0338
2
Two - dimensional
a2 := 0.3536 + 0.2892SI + 0.1060Ur a2 = 03716
b2:=2 - 2.1597S1 + 0.0968Ur2 b2 = 1.8924
ol b2
P12 := exp| —
a2-hs
Three - dimensional
a3 := 0.3536 + 0.2568Sl + 0.0800Ur a3 = 0.3691
b3 :=2 - 1.7912S1 — 0.5302Ur + 0.284Ur2 b3 = 1.8931
ol b3
P13 := exp|
a3-hs
Prevosto
ss:= 1 unidirectional wave
1
ahs:= 1 — | — |-(tanh(k-d) — 0.9)- ahs = 0.9686
2 1+ ss
1
afm:= — afm = 0.813

1.23

Directional Factor

Spectral Bandwith



T0 = WM fin = —— fim = 1.0065
12 T02

modified significant wave height hs
hsp := ahs-hs hsp = 0.0899

modified mean frequency fm

fmp := afm-fm fmp = 0.8183
modified wave number (dispersion relation)
2
2-7-fi
kmp := % kmp = 4.0765  cek

tanh(kmp-d) = 0.9934
dimensionless depth

kap := kmp-d kap = 2.8535

PI := tanh(kap) + kap-[l - (tanh(kap))2] PI =1.031

Second order coefficients

[PI + kap'[l - (tanh(kap))zﬂ

cdiff = 5 cdiff = —0.104
PI") — 4-kap-tanh(kap)
2
csum ;= (i) [2 i [1 — (tanh(kap)) ﬂ csum = 0.5134
(tanh(kap))°
Second order transfer functions
TD := cdiff-k TD = -0.2944
TS := csum-k TS = 1.4535
Non-linear crest components
hs 2
€O = TD-TP C0 = —0.0003
Cl := ahs C1 =0.9686
C2:= C12~(TD + TS) C2 = 1.0875

2
h
Cri= ol + (TD + TS)-cl — TD~%

-8 {[—Cl + \/C12 - 4.[C2-(CO - Cr)]:|:|2

Pp = exp| —-
P P 2 2C2
hs

Rayleigh Stokes
2 2
acn := an~[1 + B2-(k-an) + B3-(k-an) ] ben = bn~[1 + 2-B2-(k-an) + 3-B3-(k-an) }

—(cl — acn)
Prsc:= 1 — exp| —exp| —————
ben



Probability of Exceedance

Probability of Exceedance of Normalized Crest Height

0.1

0.01

1x10~

Ix10~

1x107°

Ix10 T

—— observation

- rayleigh

ochi E=1

| |- - - ochi E=0

haring
----- tayfun-huang
— - kriebel-dawson
— - - forristall2D
— forristall3D
prevosto

1x10~
0

— - rayleigh-stokes

2

(clbin)
,X
\mo

Normalized Crest Height




FIELD MEASUREMENT

Variance of water surface elevation

mo := 3.3257

Water depth in meter
d:=130

ZERO CROSSING WAVE PERIOD

Tw =
0
0 3.8 Twm := mean(Tw)
1 2 Twm = 8.9769
2 8.8
3 2.6 dispersion relation of deep water condition
4 6.6 112
5 10 k=4 — k = 0.0499
6 Twm29.81
tanh(k-d) = 1
ZERO CROSSING WAVE HEIGHT
Zero crossing wave height in meter (hlr)
hlr ==
0 2
0 4.15 hl := sort(hlr) hi2 := hl
1 4475 Number of wave
2 3.754 Nhl := length(hl) Nhl = 54673
3 0.655 o .
4 3.947 Statistical properties
5 2.734 mean(hl) = 4.3195
6 2.372 stdev(hl) = 2.4877
7 2.483 skew(hl) = 0.7872
8 kurt(hl) = 0.8728

Root mean square wave height

Normalized wave height

hlrms := L hl2 hl
Nhl hn :=
mo
hlrms = 4.9847
Significant wave height
2
Nhs = round[(;)NhlJ Nhs = 36449

i:= (Nhs — 1)..(Nhl — 1)

= 5.1379 = 21.9815

bl Nhs—1) bl Ni-1y



hl, =

5.1379
5.1381
5.1381
5.1381
5.1381

Maximum wave height

hlm := max(hl)
hlm = 21.9815

(Nhl-1)
sumhs := Z hl. sumhs = 130168.2955
1
i= Nhs—1

sumhs

hs = —————— hs = 7.1423
(Nhl — Nhs + 1)

comparison with theoritical significant wave height

hss := 4+/mo hss = 7.2946

comparison with theoritical Rayleigh formula of maximum wave height

hmax :=

2
hmax = 16.6808

In(NhD)

OBSERVED WAVE HEIGHT DISTRIBUTION

Wave height bin
hlbin :=
0
0 0.088
1 0.264
2 0.44
3 0.616
4 0.792
5 0.967
6 1.143
7 1.319
8 1.495
9
Bin interval
binl := 2~hlbin0
binl = 0.1759

Number of bin
Nbl := length(hlbin)
Nbl = 108

Wave height frequency Cumulative frequency
hlfreq = hledf =
0 0
0 360 0 6.585-10-3
1 514 1 0.016
2 573 2 0.026
3 653 3 0.038
4 792 4 0.053
5 893 5 0.069
6 903 6 0.086
7 1.11-103 7 0.106
8 1.138:103 8 0.127
9 9
Probability density Probability of exceedance
Nhlfreq := length(hlfreq) HE:= 1 = hledf
hfrel .= — el
) (hifieq)
hlpdf = — e

Z(hlfreqbinl)



i:= 0..(length(hlbin) — 1)

probability density

Rayleigh Distribution
. . \2 . \2
(Z-hlbmi) —(hlbmi) —(hlbmi)
pdﬂrayi = -exp| cdﬂrayi =1 — exp|
hlrms2 hlrms2 hlrms
PDF of Wave Height
1 T T
0.1 T
0.01 T
-3
1x10 %% 1
QO 0 &
_4 00 °
gllg)clf 1x10~ % 0w 00 o -
pdflray 1107} _
1x10” .
—7
Ix10 o oo observed []]
—8 .
Ix10 1 — rayleigh |7
1x1077 : :
0 10 20 30
hlbin

wave height

CDF of Wave Height

hlcdf 06

o 00

cdflray

probability cumulative

o o o observed
— rayleigh

I
20 30

hlbin

wave height



EMPIRICAL WAVE HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh

2
hl
Phrl := exp| -| ——
0.707-hs
2
hl
Phr2 := exp| -| ———
0.638-hs

Forristall

2.126
Phf := exp| — _n
0.681:-hs

Krogstad

2.37
hl
Phk1 := exp| |
| \0.73-hs

2.5
Phk2 := exp| — hl
| \ 0.75:hs

Haring 2

2
Phhl := 0.968 + 0.176'E Phh2 := |2 il -Phhl
hs hs

Phh := exp(Phh2)

Rayleigh Stokes
log(Nhl
an := 4-/mo- log(Nh) bni= — B2:
8 2-log(Nhl)
2
ahn = 2-an-|:l + B3-(k-an) :I ahn = 11.5581
2
bhn := 2-bn-[1 + 3-B3-(k-an) } bhn = 1.2896

p 1 hl — ahn
rs = 1 — exp| —exp| -| ——
P P bhn



Probability of Exceedance of Normalized Wave Height

0.1 -
HE _
1x107°F .
o Phrl | a
Q ...
8 s
.8 Phr2 1x10"°F _
S Phf - i
& 1x10” -
o Phkl ) —— observation
2 Phk2 of [T rayleighl
= - 1x10 T . y
B P rayleigh2
< _ - . _
Ra) —— forristall
S Prs -1 .
& —-. Ix10 krogstadl
- krogstad2 T
1x10” “F— - haring ]
~|— - - rayleigh-stokes \ .
Ix 10— 15 1 1
5 10
hlbin
,hn
Normalized Wave Height
ZERO CROSSING CREST HEIGHT
Zero crossing crest height in meter (clr)
clr :=
0 Sorted crest cl := sort(clr)
0 3.44065|  Number of crest Ncl := length(cl) Nel = 54673
1 2.35235 Maximum crest height max(cl) = 16.0834
2 1.78056 . .
Statistical Properties
3 0.56368
4 2.15379 mean(cl) = 2.2648 Normalized crest height
5 1.42218 stdev(cl) = 1.5065
1
6 0.78799 skew(cl) = 1.0359 X = —
\’ mo
7 kurt(cl) = 2.1798

15



OBSERVED CREST HEIGHT DISTRIBUTION

Crest height bin Crest height frequency Cumulative frequency
clbin = clfreq := clfcum :=
0 0 0
0 0.059 0 1.554-103 0 0.028
1 0.178 1 1.459-103 1 0.055
2 0.296 2 1.274°103 2 0.078
3 0.415 3 1.269°103 3 0.102
4 0.533 4 1.261-103 4 0.125
5 0.652 5 1.34:103 5 0.149
6 0.77 6 1.363°103 6 0.174
7 0.889 7 1.314-103 7 0.198
8 1.008 8 1.575°103 8 0.227
9 9 9
Bin interval Probability density Probability of exceedance
Ibin := 2-c1b1n0 clfrel = clfreq CE := 1 — clfcum
Ibin = 0.1185 chfreq
Number of bin
clpdf = clfreq-\/mo

Ncbl := length(clbin)

(clfreq:-1bin)
Ncbl = 111 z

EMPIRICAL CREST HEIGHT DISTRIBUTION [COMPARISON]

Rayleigh
2

|
Pr := exp| -8 £
hs2

EO := 0.1 a0 = \’ ‘ 1 - Eozi narrow band
El:=1 al = \Hl - Elzj broad band

probability density function of E=1

2

—X

a = exp| —
p P[ 2}

—_—
pbl = (al-x-pa)

Ochi

al x
pcl == 0.5+ 0.5-erf| —-—
El \ﬁ

—_—>

pdl := (pbl-pcl)



2 El —x2
pl: -exp + pdl

(I+al) |21 2E12

cumulative distribution function E=1

2
el == al-exp =
pel: >

1
pfl = 0.5+ 0.5 erf(g—-ij

NG

_
pgl := (pel-pfl)

2 -1
Pli=——=— | —(1-al)+ |05+ 05erf
(1+al)| 2

PEl:=1-P1

probability density function E=0

—_—>
pb0 := (a0-x-pa)
a0 x
pc0 = 0.5 + 0.5-erf| —-—
E0 2
—_—>
pd0 := (pb0-pc0)
2
2 EO =
pO: -exp z + pd0

(1 + a0) ,/21-; 2E02

cumulative distribution function E=0

2
pe0 = al- exp(%j

0
pf0:= 0.5+ 0.5erf &£x
EO \/E
—_—
pg0 = (pe0-pf0)

= #-[_—1(1 - a0) + (0.5 + 0.5 erf(
(1 +a0)| 2

PEO:=1- PO

Haring

El-

X

&l

)

EO-

i GO0 IR OTES TR

Ph := exp(Phb)



Tayfun and Huang

RR := k-hs RR = 0.3567

2
-8 ’ 1
Pth := exp —( 1+ 2-RR-;— - 1)
RR? s

Kriebel and Dawson

Pkda :

1]
7~ N\
—_
|
N | =
=
=
rlo
7 | &
N

)

Pkdb :

Il
|
0

Pkdc := (Pkda-Pkdb)

Pkd := exp(Pkdc)

Forristall
Sl 27 hs
" | 9.81Twm Sl = 0.5096
hs
Ur = Ur = 0.0013
2
Two - dimensional
a2 := 0.3536 + 0.2892SI + 0.1060Ur a2 = 0.5011
b2:=2 - 2.1597S1 + 0.0968Ur2 b2 = 0.8994
ol b2
Pf2 := exp| —
a2-hs
Three - dimensional
a3 := 0.3536 + 0.2568S1 + 0.0800Ur a3 = 0.4846
b3 :=2 - 1.7912S1 — 0.5302Ur + 0.284Ur2 b3 = 1.0865
ol b3
Pf3 := exp| —
a3-hs
Prevosto
ss:=1
1 2
ahs:= 1 — | — |-(tanh(k-d) — 0.9)- ahs = 0.95
2 1 + ss
1
afm = — afm = 0.813
1.23
T02 - LW fim 1= —— fn = 0.1337
1.2 TO02

modified significant wave height hs

Directional Factor

Spectral Bandwith



hsp := ahs-hs

modified mean frequency fim

fmp := afm-fm

modified wave number (dispersion relation)

km
P 9.81

" (2~‘11~fm)2

dimensionless depth

kap := kmp-d

PI := tanh(kap) + kap~|:1 - (tanh(kap)){l

Second order coefficients

cdiff :=

[PI + kap-[l - (tanh(kap))z:ﬂ

(PI2) — 4-kap-tanh(kap)

csum = (lj[z + |:1 - (tanh(kap))z:ﬂ
4

(tanh(kap))°

Second order transfer functions

TD := cdiff-k
TS := csum-k

Non-linear crest components

+ TS)

2 hs2
+ TS)'C] - TD'?

[—c1 +C1 - ac2.(Co - Cr)ﬂ

2C2

2
h
C0:= TD-—
Cl := ahs
C2:= Clz-(TD
Cr:=cl+ (TD
Pp := exp _—{
hs2
Rayleigh Stokes

acn := an~|:l + B2-(k-an) + B3-(k-an)2}

ben = bn-lil + 2-B2-(k-an) + 3~B3-(k-an)2}

—(cl — acn)
Prsc:= 1 — exp| —exp| —————
ben

T

hsp = 6.7852

fmp = 0.1087

kmp = 0.0719

kap = 9.3485

PI=1

cdiff = —0.0275

csum = 0.5

TD = -0.0014
TS = 0.025

C0 = -0.0079
Cl=0.95
C2=10.0213

cek

tanh(kmp-d) = 1



Probability of Exceedance

0.01
110~ 4
110~

1x10

1x10” 1°

Ix10

Ix10” 4

1x10

Ix10” '8

1x10~ 2

Probability of Exceedance of Normalized Crest Height

—— observation
----- rayleigh
ochi E=1
— - - ochi E=0
haring
----- tayfun-huang

:— - kriebel-dawson
— - - forristall2D

— 160

| |— forristall3D

prevosto
— - rayleigh-stokes

2

[

clbin

Jmo

],x

Normalized Crest Height
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