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Abstract

As vehicles advance toward full autonomy, SAE Level 5 systems are typically designed and envisioned
without driver controls. While this promises convenience and safety, it also raises challenges around
user trust and the discomfort of having no agency. This study investigates how explanation modality
(vocal vs. text) and optional control mechanisms influence trust and intervention behavior in a simulated
SAE Level 5 context. Thirty-six participants completed three VR driving scenarios that varied in explana-
tion and control design. Trust and intervention behavior were measured alongside thematic analysis of
open-ended feedback. Results showed that vocal explanations increased trust more than text, though
not significantly. However, the presence of control buttons significantly enhanced trust among partici-
pants who perceived them positively. These participants also intervened less often, though the effect
was not statistically significant. Exploratory analyses revealed that self-reported comfort with automa-
tion was associated with higher trust and lower intervention rates. These findings challenge the SAE
Level 5 assumption of no user input. Even minimal, optional control features can foster trust and reduce
unnecessary interventions. The study underscores the value of designing autonomous systems that
maintain transparency and user agency, supporting safer and more acceptable human-AI interaction.
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1
Introduction

1.1. SAE Level 5 Autonomous Vehicles
SAE International defines six levels of vehicle automation (Levels 0–5), specifying whether the human
driver or the system is responsible for tasks such as steering, braking, and monitoring the driving
environment [34]. Level 0 corresponds to no automation, while Level 5 indicates full automation under
all driving conditions. The transition to Level 5 autonomous vehicles (AVs) marks a paradigm shift in
mobility, promising significant improvements in safety, efficiency, and accessibility [24]. Human error
accounts for over 90% of road accidents globally; eliminating this factor through full automation could
substantially reduce fatalities and transform transportation systems [39, 14, 12].

However, the success of AVs hinges not only on technical robustness but also on user trust. Trust is
shaped by factors such as transparency, perceived control, and user experience [11, 19]. Control in
automated driving refers to the authority to influence the vehicle’s trajectory or behavior. In SAE terms,
this spans a spectrum: full human control (Levels 0–2), shared or conditional control (Levels 3–4), and
full system control with no human intervention (Level 5) [10].

The journey toward fully autonomous vehicles has been marked by key milestones, notably the DARPA
Urban Challenge, which catalyzed major advancements in AV technology [40, 4]. These early systems
demonstrated the feasibility of autonomous driving in structured environments but also revealed the dif-
ficulty of achieving human-like decision-making in dynamic urban settings [23]. While current research
aims for fully autonomous Level 5 systems, practical deployments still relied on human supervision,
highlighting the need for continued work in perception, planning, and robust system integration. There-
fore, it is essential to design systems that balance full autonomy with mechanisms that foster trust and
engagement.

Achieving SAE Level 5 autonomy today involves not only refining algorithms and sensor systems but
also addressing human factors that affect adoption, particularly how users perceive and trust a system
that functions entirely without their oversight.

1.2. Trust, Explainable AI, Cognitive Load
Central to the success of Level 5 AVs is maintaining user trust while preserving full automation. Op-
tional controls, such as a button that signals attention, allow users to feel engaged without compro-
mising the AV’s autonomy [39, 16]. These controls mitigate feelings of helplessness and foster trust
by enabling users to communicate with the system during high-stakes situations [31]. However, the
presence of such controls also introduces the risk of wrong/unwarranted interventions, disrupting the
vehicle’s intended operation. A wrong (unnecessary) intervention is where a user would deviate from
the pre-defined behaviour that the AV had planned in situations where it would have been both safe
and efficient. Such user-initiated overrides do not avert hazards, instead, they degrade comfort, slow
traffic, or create new conflict situations. Trust is a critical determinant of AV acceptance and effective
operation. Literature identifies a dual challenge: addressing under trust, which hinders user engage-
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1.3. Research goal 5

ment, and over trust, which can lead to misuse of the technology [42, 6]. Trust calibration, aligning
user expectations with the system’s actual capabilities, has emerged as a critical strategy to mitigate
these issues. Systems lacking clear communication exacerbate distrust, leading to disengagement or
inappropriate interventions [5]. Conversely, clear and contextually relevant feedback has been shown
to build trust and user satisfaction [21, 19].

Explainable AI (XAI) plays a vital role in fostering trust by providing clear, actionable insights into AV
decision-making [2, 1]. XAI reduces user uncertainty by clarifying why the system behaves as it does,
helping align user mental models with system behavior and lowering the chance of unnecessary in-
terventions. AV explanations can be divided into ”how” and ”why” messages. ”How” messages (e.g.,
”The car is stopping”) inform users of system actions, offering straightforward operational feedback.
”Why” messages (e.g., ”Obstacle ahead”) explain the reasoning behind system behavior, fostering a
deeper understanding and trust [21, 41, 42]. Studies suggest that combining both ”how” and ”why”
messages provides the most comprehensive explanations, although it may increase cognitive load in
certain contexts [6]. The modality of explanation delivery further impacts trust calibration. Vocal cues
provide immediate, easily processed information, reducing cognitive effort and enhancing situational
awareness, especially in time sensitive situations [5, 37]. In contrast, text-based explanations allow for
more detailed and deliberate information processing, supporting thoughtful decision making [42].

Cognitive load, the mental effort required to process information, is a critical factor in designing effec-
tive explanation mechanisms. High cognitive load caused by complex or ambiguous information can
overwhelm users, hinder comprehension, and increase stress, potentially leading to inappropriate ac-
tions [37, 28]. Tailoring explanation modalities to minimize cognitive load is essential for effective trust
calibration. For example, while vocal explanations can quickly deliver critical information, they may
unintentionally prompt hasty user actions if overused. Conversely, text explanations can support more
deliberate decision-making but may increase cognitive load in fast-paced scenarios [5].

1.3. Research goal
Traditional research on AV trust has largely focused on enhancing the user’s ability to take control
during system failures, assuming imperfections in the AV [36]. This focus overlooks a critical aspect in
SAE Level 5 systems, which are designed to operate autonomously without requiring human input. In
this context, user driven errors, such as unwarranted use of control mechanisms, emerge as a more
critical concern than system failures.

Current research has not yet fully explored how the combination of explanation modalities and optional
control mechanisms influences user trust and intervention behavior in fully autonomous systems. Un-
like Level 4 systems, where a fallback driver must assume control outside a limited operational design
domain, Level 5 vehicles are expected to self-recover from all edge cases. This shifts the focus from
system failure to driver-induced disturbances, such as unnecessary interventions. This study aims to
investigate how different explanation modalities (vocal vs. text) and optional control mechanisms in-
fluence user trust and the frequency of unnecessary interventions in SAE Level 5 AVs. By examining
this dynamic, the study aims to inform the design of AV systems that effectively balance autonomy and
user engagement

1.3.1. Research Question
This thesis aims to answer the following research question:

How do explanation modalities (vocal vs. text explanations) and the availability of control mech-
anisms influence user trust and intervention behavior in SAE Level 5 autonomous vehicles?

To address this question, an experimental study was designed in which participants experienced differ-
ent driving conditions varying in explanation modality and control availability. Trust levels, intervention
behavior, and subjective feedback were collected to examine how these factors interact and affect user
experience.
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1.3.2. Chapter Overview
The remainder of this thesis is divided into five chapters. Chapter 2 reviews the relevant literature on
trust in automation, explainable AI, cognitive load, and control mechanisms in autonomous vehicles.
Chapter 3 explains the experimental design, including the driving simulator setup, participant selection,
and data collection procedures. Chapter 4 presents the findings, including quantitative analyses and
thematic coding of qualitative feedback. Chapter 5 discusses the findings in relation to the research
question and prior literature, addressing limitations and highlighting key takeaways. Chapter 5.3 out-
lines recommendations for future work, followed by the conclusion in Chapter 6.



2
Background

The development of SAE Level 5 autonomous vehicles (AVs) presents an unprecedented opportunity
to revolutionize mobility, enhancing safety, efficiency [39, 14, 12, 24].

However, earning public trust in fully autonomous vehicles remains a key barrier to their widespread
adoption. Addressing this requires understanding the technical limitations of AVs, including their sus-
ceptibility to unexpected environmental scenarios, sensor failures, and ambiguous road situations. For
instance, both perceptual and planning errors have been observed when AVs encounter novel or poorly
understood environments [4, 23]. In addition, users might intervene inappropriately due to misinterpret-
ing system behavior, thereby disrupting optimal AV performance. In systems designed to minimize
such errors, user-initiated mistakes, driven by mistrust or misunderstanding, can become the primary
source of operational inefficiencies. This section explores foundational concepts related to trust in au-
tomation, user interaction design, feedback modalities, cognitive workload, and the dynamics of user
errors in SAE Level 5 AVs.

2.1. Autonomous Vehicles: Taxonomy, Challenges and Expected Er-
rors

Autonomous vehicles are classified using the SAE taxonomy, ranging from Level 0 (no automation) to
Level 5 (full automation) [34]. Level 5 AVs offer benefits such as improved road safety, broader mobility
access, and increased traffic efficiency [23, 40]. While technical reliability continues to improve, user
interaction introduces a distinct class of challenges [36].

SAE Levels of Automation:

• Level 0 (No Automation): The driver is fully responsible for all driving tasks, though the system
may offer warnings or momentary assistance.

• Level 1 (Driver Assistance): The system assists with either steering or acceleration/deceleration,
but not both simultaneously (e.g., cruise control).

• Level 2 (Partial Automation): The vehicle can control both steering and speed but requires con-
stant driver supervision (e.g., Tesla Autopilot, GM Super Cruise).

• Level 3 (Conditional Automation): The AV manages most driving tasks but may request driver
intervention in complex scenarios (e.g., traffic jams).

• Level 4 (High Automation): The AV handles all driving functions in specific conditions or environ-
ments (e.g., urban areas), but human takeover may still be necessary outside those conditions.

• Level 5 (Full Automation): The vehicle performs all driving tasks under any condition, eliminating
the need for human input or traditional controls such as a steering wheel or pedals.

AVs must navigate complex urban environments, adapt to dynamic traffic scenarios, and address chal-
lenging cases such as occlusions or unpredictable agent behavior [4]. Expected errors include sensor
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2.2. Shared Control and User Interaction 8

malfunctions, object misclassifications, and suboptimal decisions in ambiguous situations [3]. However,
as system reliability improves, user-driven disruptions become more prominent. Users may unneces-
sarily engage with optional control mechanisms due to uncertainty or misjudgment, interrupting au-
tonomous operation. This highlights the importance of interaction mechanisms that maintain trust and
reduce unnecessary intervention. Shared control approaches—where users can intervene or signal
concerns—must be carefully designed to balance transparency and system robustness [16, 31].

2.2. Shared Control and User Interaction
User interaction design in AVs must balance full autonomy with opportunities for user engagement
to maintain trust. Shared control mechanisms and adaptive decision-making can foster a sense of
involvement while preserving system performance and safety [39, 19, 41].

In SAE Levels 2-4, driver and automation alternate or share the control loop, often called shared control.
At Level 5, the vehicle executes the control loop independently. However, perceived control features
may still be present, even though they are not formally required. These features should be one-way:
users can influence the AV, but the AV never expects the human to resume continuous driving.

User concerns about relinquishing control to automation have been shown to significantly affect trust
and adoption of autonomous vehicles [14]. While traditional AV systems allowed for user interven-
tion during failures, future SAE Level 5 systems may challenge this dynamic. Understanding how the
presence or absence of control interfaces influences trust remains crucial for designing effective trust
calibration strategies.

Historically, shared control interfaces like steering wheels and pedals have been included in semi-
autonomous vehicles to facilitate user takeovers during failures. However, in fully autonomous SAE
Level 5 systems, these controls may no longer serve a functional role. It is shown that trust in au-
tomation and concerns about giving up control are critical factors influencing adoption of autonomous
vehicles [12]. Their findings suggest that the removal of control interfaces could amplify users’ dis-
comfort with loss of control, thereby undermining trust. This highlights the need for trust calibration
strategies that address both cognitive trust in system reliability and affective concerns about autonomy
[14].

Critically, the effectiveness of shared control mechanisms depends on how well the system communi-
cates its actions and limitations. Clear explanations are essential for minimizing unnecessary interven-
tions and maintaining trust.

2.3. Trust in Automation
Research identifies a dual challenge in trust in automation: under-trust leads to disengagement and
hesitancy, while over-trust can lead to misuse [42, 6]. Striking a balance through trust calibration,
aligning user expectations with system capabilities, is therefore essential.

Studies have shown that systems lacking clear communication or exhibiting failure can exacerbate
distrust, resulting in reduced cooperation or disengagement [5]. Conversely, contextually relevant ex-
planations, particularly those conveying both intent and reasoning, can enhance trust and satisfaction
in semi, autonomous systems [21, 19]. These findings underscore the importance of trust calibration:
aligning user expectations with system capabilities to support effective human-agent collaboration.

Trust in automation is influenced by several key factors:

• Perceived Competence: Users must believe that the AV can handle complex driving tasks safely
and effectively [22, 25].

• Transparency and Explainability: Systems must clearly convey how and why decisions are made
to foster user understanding and acceptance [9, 2].

• User Control and Engagement: Offering optional control mechanisms can enhance trust by giv-
ing users a sense of agency [39]. However, misuse of these controls can undermine system
performance.

• Cognitive Load : Trust calibration is closely influenced by the user’s cognitive load. High cognitive
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load can overwhelm users, leading to stress and impaired decision-making. Thus, designing
systems that minimize cognitive load through intuitive feedback and interaction mechanisms is
crucial for fostering trust and reducing unnecessary interventions [37, 28].

2.4. Trust as a Risk-Taking relationship
Trust in automation is not simply a static attitude. It is fundamentally a risk-taking relationship, as
described in Mayer et al.’s model and extended by Johnson and Bradshaw [18]. Trust involves “the
willingness of a party to be vulnerable to the actions of another party based on the expectation that the
other will perform a particular action important to the trustor.” This definition highlights that trust inher-
ently involves accepting vulnerability and risk. The user must rely on the system with the expectation
that it will act competently and in alignment with user goals. In an autonomous vehicle (AV) context,
this means a rider trusts the AV to drive safely and effectively, risking their safety on the assumption
that the vehicle will not fail. Crucially, trust is manifested through action: a user’s trusting behaviors
(or lack thereof) indicate their willingness to take risks. For example, choosing to rely on the AV’s deci-
sions without intervening reflects a high degree of trust, whereas frequently overriding or doubting the
AV indicates low trust. Prior research shows a strong link between trust and reliance on automation:
when people trust an automated system, they are far more likely to use it and not intervene, and when
trust is low they tend to disuse or override the automation [27]. It is then safe to say that trust directly
drives risk-taking behaviors, where trusting the AV means the user willingly takes the risk of not taking
control, conversely leads to the user taking control to mitigate risk.

An essential aspect of trust as a risk relationship is the role of user perception and individual differences.
System performance alone does not determine trust. A user’s prior experiences, personality, and per-
ceptions strongly influence how much risk they are willing to take on the system [18]. Merritt and Ilgen
[27] demonstrated that people’s perceptions of an automation’s attributes (e.g. how safe, reliable, or
capable it seems) can account for over half of the variance in their trust, above and beyond the system’s
actual reliability. In other words, two users might experience the exact same driving performance from
an AV, yet develop different trust levels because they interpret that performance differently, perhaps
due to one person’s greater technophobia or another’s familiarity with similar systems. Moreover, they
showed that trust has both a dispositional component (a baseline tendency to trust machines) and a
situational component that is shaped by interaction history. When administered before any interaction,
the trust survey reflected general propensity to trust technology. After interaction, it reflected situational,
experience-based trust.

To ground this study theoretically, we adopt the risk-based trust framework from Mayer et al., as ex-
tended to human-automation teams by Johnson and Bradshaw [18]. The model identifies key an-
tecedents of trust in a trustee, namely the trustee’s perceived ability, integrity, and benevolence, which
together shape the trustor’s willingness to be vulnerable. Johnson and Bradshaw extend this by fram-
ing trust in human–machine interaction as relational and built on interdependence: trust emerges from
structured relationships involving observability, predictability, and directability. In autonomous driving
scenarios, while the AV does not itself “trust”, the interaction design can foster mutual adjustment. The
human may provide input in rare cases, while the AV handles routine driving. The Risk-Taking Trust
Relationship framework suggests that providing avenues for user engagement increases the user’s
willingness to trust, because it reduces the perceived stake of vulnerability (the user knows they have
a fallback if needed) [38]. In other words, even in a fully self-driving car, trust is not a passive state. It
involves the user deciding whether to sit back and let the car drive (taking the risk of non-intervention) or
to step in. Therefore we can assume that in a Level 5 context the primary risk may shift from technical
failure to mis-calibrated human risk-taking, pressing any input when no hazard exists.
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Figure 2.1: Model of a risk-taking trust relationship decision taken from Johnson and Bradshaw [18]

2.5. The Role of Explanations
Empirical studies show that transparency and user control are key factors influencing trust in automation.
When the AV clearly explains its decisions or actions, It can reassure users about the system’s behavior
and decision-making rationale, addressing the antecedents of trust. Providing explanations (either via
auditory or visual) makes the system’s behavior more transparent, which is known to foster trust by
helping users understand why the automation is doing something [20]. Similarly, giving users a form
of control or override can bolster trust by granting the user a sense of agency. Participants expressed
that the ability to override increased their comfort, particularly in uncertain scenarios [38]. Therefore,
incorporating explanation modalities and optional control mechanisms directly ties into the theoretical
antecedents of trust: explanations improve predictability and transparency, and control options reduce
the perceived risk of trusting the automation.

Explanainable AI (XAI) frameworks enable systems to communicate why decisions were made, improv-
ing user trust and understanding [7]. Different explanation types (e.g., causal, intentional, or rationale-
based) impact trust development and mental model formation in users [9, 35]. This becomes particu-
larly important in maintaining user safety and managing expectations in systems where AV behavior
may otherwise appear unpredictable. Explanations are often categorized into ‘how’ (descriptive) and
‘why’ (causal) messages. ”How” messages (e.g., ”The car is stopping”) inform users of system actions,
while ”why” messages (e.g., ”Obstacle ahead”) provide reasoning, fostering deeper understanding and
trust [21] [41] [42]. Combining both explanation types improves user understanding, though this may
increase cognitive load, as discussed earlier. The modality of feedback also impacts trust. Vocal feed-
back supports fast, low-effort communication, making it effective in time-sensitive scenarios. [5, 37].
Text feedback, on the other hand, allows users to process information more deliberately but may be
less effective in urgent scenarios [42]. This transparency into decision-making is the core goal of XAI
[7] [35].

Cognitive load significantly affects how users respond during automated driving. High workload—
whether from demanding monitoring tasks or secondary activities—can impair performance and lead to
inappropriate actions [37, 28]. Consequently, the risk of overwhelming users with excessive or poorly
designed information must be carefully managed. Tailoring the communication modality, such as using
augmented reality interfaces to provide ”how” and ”why” explanations, has been shown to enhance
trust and situation awareness in safety-critical scenarios [26]. This interplay between workload, trust,
and explanation design highlights the importance of developing interfaces that minimize user errors
and foster appropriate reliance on automation.
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2.6. Knowledge Gaps and Research Direction
Despite extensive research on trust, explanations, and shared control in AVs, the combined effect of
explanation modalities and optional control mechanisms on user trust and intervention behavior in SAE
Level 5 systems remains understudied.

This study addresses this gap by investigating how different explanation modalities (vocal vs. text)
and optional control mechanisms influence user trust and the frequency of unnecessary interventions.
Understanding these dynamics is key to designing AVs that maintain full autonomy while encouraging
appropriate user engagement and contributing to trust-centric AV design.



3
Methodology

This chapter outlines the methodology used to investigate the research question. A controlled exper-
iment was designed using a driving simulator to expose participants to different combinations of ex-
planation output and available control mechanisms. Participant behavior and attitudes were observed
across these conditions to test hypotheses about how trust develops in response to explanation and
control variations. The following sections describe our hypothesis, experimental design, participant
sample, materials and measures, and the data analysis approach.

3.1. Hypotheses
Given the cognitive processing differences between vocal and textual explanations, the role of user
control in trust calibration, and the influence of individual differences such as cognitive load, propensity
to trust AI, and prior experience with AVs, the following hypotheses are formulated.

3.1.1. Primary Hypotheses
The main objective of this study is to evaluate how explanation modality affects user trust and interven-
tion behavior.

• H1: Modality → Trust : Vocal feedback enhances trust more than text-based feedback due to its
lower cognitive load.

• H2: Modality → Intervention Behavior : Users receiving vocal explanations will press the inter-
vention buttons less frequently, as they feel more reassured.

3.1.2. Secondary Hypotheses
Beyond modality, other factors, such as the availability of control mechanisms, the presence of ex-
planations, and individual user differences may influence trust and intervention behavior. These will
be explored using qualitative data from post-experiment interviews, which will provide context for the
quantitative findings by capturing user preferences, perceived explanation effectiveness, and overall
trust levels. While the secondary hypotheses are not the primary focus, the collected data may provide
valuable insights into their effects and contribute to a broader understanding of user behavior in fully
autonomous vehicles.

• H3: Control Mechanism → Trust : Providing intervention buttons increases trust, as users feel
they have a degree of control over the AV’s decisions.

• H4: Explanations → Trust : The presence of explanations increases trust, as users now feel they
have transparency with what the AV is thinking.

Furthermore, individual biases and situational factors may play a role in shaping user trust and inter-
vention behaviors. These factors will be explored using the pre-study survey in cohesion with the rest
of the gathered data:

12
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• Age does not correlate with how much trust people will have in an AV system
• Gender does not correlate with how much trust people will have in an AV system
• Users with a naturally higher propensity to trust AI will exhibit higher baseline trust in AVs.
• Users familiar with AVs will have higher trust levels compared to those without prior exposure.
• Experienced drivers may intervene more often due to risk sensitivity.
• Trust and intervention behavior are expected to be negatively correlated (higher trust, fewer inter-
ventions)

3.2. Experimental Design
The study employed a mixed-design structure. The between-subjects factor was explanation modality.
The within-subjects factors were explanation availability and user control availability. All participants
experienced a progression of trials varying in explanation and control, allowing within-subject compari-
son of their presence vs. absence. By varying control and explanation within subjects, each participant
experienced both the absence and presence of interventions and explanations.

Each participant underwent three trials in the driving simulator, corresponding to increasing levels of
system transparency and user control:

• Trial 1: No Explanations, No Control: The AV drove autonomously without providing any ex-
planations for its decisions, and the participant had no means to intervene (no buttons). This trial
establishes a baseline for the behavior when the AV is effectively a “black box” and the user is
entirely hands-off. This is used as a get-to-know trial.

• Trial 2: No Explanations, Control Available: The AV still provided no explanations of its ac-
tions, but now the participant had access to the “Inform” and “Intervene” buttons (user control
mechanisms). This condition isolates the effect of giving the user a way to influence or override
the AV, without any explanations. We can observe if merely having control options (even with-
out explanations) changes the user’s tendency to intervene. This round is used as a learning
round for understanding how the user interaction buttons work with the vehicle. The participant
is instructed to use the buttons as much as they can so they have a good idea how to use the
system.

• Trial 3: Explanations + Control: In the final trial, the AV provided real-time explanations for its
decisions, either via text displayed on the interface or vocally through a headset, depending on the
participant’s assigned modality group, and the participant also had the control buttons available.
This is the fullest condition, combining transparency (through explanations) with user agency. It
is in Trial 3 that we expect the modality effect to manifest: differences in outcomes between the
text explanation group and the voice explanation group should become measurable here, since
both groups receive explanations but in different formats. We also expect the cumulative effect
of having had the ability to intervene (from Trial 2 onward) and now also explanations to influence
trust. Button usage was logged exclusively during Trial 3 to assess actual intervention behavior
under the combined influence of control and explanations.

The order of trials was the same for all participants (progressing from least transparency/control to
most), as this simulates a scenario where an initially fully autonomous system is gradually augmented
with user-centric features. To control for potential learning effects or ordering confounds, we made
sure that the driving scenarios in each trial were of comparable difficulty and risk. Each trial had a
distinct driving route and situation (e.g., different traffic conditions or events), but the set of scenarios
was balanced in complexity so that no trial was inherently more challenging than the others. The total
experimental phase lasted approximately 20 minutes per participant: 5 minutes for Trial 1, 5 minutes
for Trial 2, and 10 minutes for Trial 3, see Figure 3.1.
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Figure 3.1: Trial Times and Order

3.2.1. Experiment Procedure
Each participant followed the standardized procedure below. Upon arrival, participants signed the in-
formed consent form (A.1). Next, they completed a pre-study survey (A.2) used for analyzing individual
differences. Following that, the participant will start engaging in the experimental trials. Participants
first experienced the baseline condition, followed by the second and third trials. The third trial is con-
siderably longer than the first two, due to its longer duration and potential for VR sickness, it was split
into 2 equal parts where the user can continue from trial 3.1 to 3.2 seamlessly. Next, the participant
is required to fill in an overall trust survey (A.3) that only concerns the last trial where both control
and explanations are present. Finally, the participant is required to fill out a general post-experiment
questionnaire (A.4) that targets all three trials. This questionnaire has open-ended questions which
gives us the ability to assess how explanations and control mechanisms influence user trust in a more
qualitative manner.

Figure 3.2: Experimental Procedure

3.3. Participants
We recruited N = 36 participants through personal connections and online advertisements, all of whom
possessed a valid driver’s license or a student driving license, and had normal vision and hearing.
Participants were randomly assigned to either the Text Explanation group (n = 18) or the Vocal Expla-
nation group (n = 18), ensuring equal group sizes. Within each group, participants experienced both
control conditions as described. The sample included a mix of genders and ages (ranging from early
20s to mid 40s), reflecting a variety of driving backgrounds. Before the experiment, they were briefed
about the general nature of a “virtual autonomous driving experience,” though they were not told the
specific hypotheses to avoid expectation bias. Participation is voluntary, and no financial or material
compensation was provided. The study has received ethical approval from the Human Research Ethics
Committee of Delft University of Technology. Important demographic and relevant background infor-
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mation was also collected through a pre-study questionnaire (A.2). It included items on age, gender,
propensity to trust AI, prior AV experience (e.g., whether they had been in an autonomous vehicle),
and general driving experience (e.g., years of driving). This information was used to characterize the
sample and to analyze whether factors like prior AV exposure or driving experience influenced trust in
the simulation. Table 3.1 provides an overview of the participants characteristics.

Vocal group Text group
Amount Percentage Amount Percentage

Gender
Men 13 72% 11 61%
Women 5 28% 7 39%
Other 0 0% 0 0%
Age
18–22 years old 5 28% 4 22%
22–26 years old 9 50% 10 56%
26–30 years old 1 6% 2 11%
30–35 years old 1 6% 2 11%
35–45 years old 2 11% 0 0%
Been in a car which was driverless
Yes 6 33% 5 28%
No 12 67% 13 72%
Driving experience
Not Experienced 1 6% 1 6%
Slightly Experienced 0 0% 4 22%
Experienced 3 17% 4 22%
Moderately Experienced 8 44% 5 28%
Very Experienced 6 33% 4 22%
Comfort with Autonomous Vehicles
Strongly Disagree 1 6% 1 6%
Disagree 1 6% 2 11%
Slightly Disagree 4 22% 3 17%
Neutral 4 22% 5 28%
Slightly Agree 4 22% 2 11%
Agree 3 17% 5 28%
Mostly Agree 1 6% 0 0%

Table 3.1: Participant characteristics for Vocal and Text groups.
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3.4. Materials
The experiment requires a combination of software tools and input mechanisms to simulate a Level 5
autonomous vehicle (AV) driving experience. The following materials are used:

3.4.1. Driving Simulator: CARLA with JOAN Framework
The experiment was conducted on a high-fidelity driving simulator in the Cognitive Robotics lab. The
simulator consists of an office chair as the driver’s seat, with a Varjo XR-3 headset providing a full
field of view. We used the Carla Simulator (an open-source driving simulation environment) to create
realistic urban and highway driving scenarios for the AV [8]. Carla is based on the Unreal Engine
which is a powerful and versatile 3D computer graphics game engine developed by Epic Games. The
autonomous driving behavior of the simulated vehicle was governed by a script that followed traffic rules
and responded to other vehicles/pedestrians in a human-like manner. The vehicle did not adhere to
Traffic lights and Speed limit signs. Importantly, the simulator was programmed to introduce a few
pre-determined events (such as a sudden appearance of a car at an interesection, or an obstacle on
the road) in each trial to test participant reactions and trust-related behaviors. These events were
designed such that the AV’s correct action might be non-obvious to a human driver (thus testing if the
user would trust the AV’s decision or try to intervene). The simulator also recorded telemetry data
(location of other cars, speed, etc.), but our primary behavioral measures were the button presses of
each participant. To structure the experiment within CARLA, the JOAN framework is used [29]. JOAN
is a specialized experiment framework designed to facilitate human-in-the-loop studies in CARLA. It
allows for controlled AV behavior, event scripting, and logging of participant interactions, making it an
essential tool for conducting this study. The simulator runs on a Windows machine with an NVIDIA
GPU, ensuring smooth rendering of the environment and minimal input lag.

The External Environment
Figure 3.3 shows the experimental setup used during the study. The participant is seated in a quiet,
enclosed room to minimize distractions, wearing a Varjo XR-3 headset. The simulation is mirrored on a
secondary screen for monitoring purposes. A standard keyboard is used to interact with the vehicle via
left Ctrl and right Ctrl buttons. A steering wheel is also present, but was not used in this experiment. The
environment was designed to ensure consistent conditions across sessions. On the desk the headset
used for the Vocal explanations is also visible.

Figure 3.3: Participant seated in the lab using the VR-based driving simulator setup.
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The Simulator Environment
Figure 3.4 shows a typical city scene where the AV encounters a partial obstruction and explains its
behavior via an on-screen message. The speedometer indicates the car moving with 10 km/h. Partici-
pants experiencing the Voice condition would receive the same explanation through a headset.

Figure 3.4: City scenario with AV-generated explanation and speed display during navigation.

In contrast, the highway view (Figure 3.5) depicts an unobstructed environment with higher speeds (38
km/h), fewer dynamic elements, and a more predictable AV trajectory. Just below the speedometer,
the interface highlights label mappings (e.g., “Slow down,” “Break,” “Stop”, ”Don’t Stop”) corresponding
to the participant’s input buttons.

Figure 3.5: Highway driving scene showing speed and control label interface.

A wider perspective of the city layout is illustrated in Figure 3.6, showing parked vehicles, pedestrian



3.4. Materials 18

zones, and urban infrastructure. This context helped elicit decisions under ambiguity.

Figure 3.6: Wider city landscape used for urban navigation scenarios.

Finally, Figure 3.7 captures a complex scenario in which the AV detects a lane-blocking van. After
stopping and displaying an “Obstacle Ahead” message, the AV waits for an approaching vehicle to
pass, overtakes the van via the opposite lane, and then safely merges back. This was designed to test
trust in nuanced AV decision-making.

Figure 3.7: Dynamic event with lane blockage and AV-generated explanation.

3.4.2. Control Mechanisms: Inform and Intervene Buttons
Participants can interact with the AV through two dedicated control mechanisms:

• Inform Button: Allows users to notify the AV that they perceive a situation requiring additional
caution. Pressing this button signals the system to begin slowing down earlier or makes the
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car continue with less speed but does not override its decision-making. The car resets to its
standard behaviour after 7 seconds. The button can also be used to make the vehicle move from
a stationary state, to a moving state of 15 km/h max. The car resets its standard behaviour after
7 seconds.

• Intervene Button: Enables participants to directly override the AV’s behavior. If the car is stopping,
pressing this button will force it to continue driving. Conversely, if the car is proceeding, pressing
this button will force it to stop. The car resets its standard behaviour after 7 seconds.

Both buttons aremapped to keyboard inputs to standardize interactions across participants. Left control
was set for the ”Inform” and Right control for the ”Intervene”. The keyboard buttons had a distinction
so the participant could easily distinguish them from the rest of the keys while wearing a virtual reality
headset. See Table 3.2 which shows how each button press affects the vehicle depending on its state
at the time. These interaction mechanisms allow participants to actively engage with the AV while
assessing their trust and intervention tendencies.

Scenario Inform (Left Ctrl) Intervene (Right Ctrl) Do Nothing

Car sees an obstacle which
blocks the road

Car slows down faster
than planned

Car ignores the obsta-
cle and continues its
predetermined course

Car follows the normal
stop & go routine

Car detects a partially blocked
road, decides not to stop, but
continue slowly

Car slows down and
continues at an even
lower speed

Car stops completely,
then resumes after a
few seconds

Car follows its normal
behavior (no stop, just
continue)

Car is driving normally Car temporarily slows
down for a bit

Car stops completely
and resumes by itself

Car continues driving
normally

Table 3.2: Inform, Intervene, and Do Nothing responses for different scenarios.

3.4.3. Explanation Mechanisms: How and Why Messages
In Trial 3, the autonomous system provided explanations in one of two forms. For participants in the Text
condition, a heads-up display on the simulator screen would show a short text message whenever the
AV made a significant decision. The text was displayed in a subtitle-like overlay at the top of the screen
for a few seconds. For participants in the Voice condition, the simulator played a spoken explanation
through the car’s audio system (using a pre-recorded human voice) conveying the same content. The
content of the explanations was scripted to be identical in meaning across modalities, and was kept
concise to avoid overloading the user with information. The rationale for testing voice vs text comes
from interface design considerations in vehicles: auditory messages can allow the user to keep their
eyes on the road, whereas text might require visual attention and reading. Although the prior studies we
build on do not directly compare voice to text, the rationale comes from HMI theory: auditory messages
may reduce visual distraction, while text could introduce cognitive demand. Our experiment will shed
light on whether modality also affects the user’s trust and intervention frequency. These explanations
follow the How-Why framework, adapted from prior research on Explainable AI (XAI) in AVs [33, 26].
Although Why-only explanations are reported to induce the highest trust, we chose to use How + Why
messages because they are shown to enhance safety most effectively. The explanations used are:

• Information that conveys only machine behavior (automation-centered communication). How-
Only: ”The car is stopping.”

• Message that conveys only the situational reasoning for automation (context-centered communi-
cation). Why-Only: ”Obstacle ahead”

• How + Why: ”The car is stopping. Obstacle ahead”.

The participant experiences 2 events of where it has to do something out of the ordinary in each trial
except Trial 3 where they experience 5 events. One event is where the car slows down because of a
warning but continues and avoids the obstacle, and the other scenario is one where the car has to stop
completely because of an obstacle and then continue. For this three core messages were used, each
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with slight variations to avoid repetition.

• Stopping completely: ”The car is stopping. Obstacle ahead”
• Continuing slower: ”Road slightly blocked, Slowing down”
• Slowing down on highway : ”Congestion on Lane, Slowing down”

3.4.4. Qualtrics
Qualtrics was used as both a data management tool and a survey platform throughout the study. All par-
ticipant surveys, including the pre-study demographic and propensity questions, the post, Trial 3 trust
survey, and the final open-ended interview questions—were created and administered using Qualtrics.
After the driving trials, participants accessed the survey through a provided link and completed their
responses digitally. The resulting data were downloaded via Qualtrics, facilitating efficient data organi-
zation and export for statistical analysis.

3.4.5. Calendly
Calendly was employed to coordinate the scheduling of in-person experimental sessions. Participants
were provided with a link containing a brief description of the study and a calendar showing available
appointment slots. Each session was allocated 45 minutes to allow sufficient time for instructions,
the experiment itself, and the completion of surveys. Calendly also automated email reminders to
participants, including details about the experiment’s location and timing.

3.5. Task
Each participant undertook three driving trials using a high-fidelity simulator developed in CARLA. The
simulation was conducted in a customized virtual city, adapted from an existing CARLA map and modi-
fied to enhance realism. Two versions of the map were used to account for the two experimental groups:
one with narrated and one with text-based explanations. The autonomous vehicle (AV) behavior was
pre-scripted and trajectories were manually recorded by driving the route, saving positional (x, y, z),
acceleration, and yaw data. These data were used in a custom steering and speed-following algorithm
developed for this study, enabling the AV to navigate smoothly between trajectory points while adjusting
speed to the context of the environment.

Throughout the simulation, dynamic traffic was present to create realistic driving conditions, including
other vehicles moving alongside or in front of the AV. In city areas, the AV maintained speeds between
10 and 35 km/h, while highway segments allowed speeds up to 70 km/h. Participants were seated in
the vehicle and given two keyboard-based control buttons, ”Inform” and ”Intervene,” used in the second
and third trials.

In Trial 1, the AV operated fully autonomously without any participant control or explanations. The AV
autonomously navigated around two events: a slow-down situation and a full blockade requiring a stop
and overtake maneuver.

In Trial 2, participants could use the Inform and Intervene buttons to influence the AV’s behavior but
did not receive explanations for the AV’s actions. Participants were instructed to experiment with the
buttons frequently during this trial to become familiar with their function. Excessive button usage could
lead to a minor collision, demonstrating the potential consequences of over-intervention.

In Trial 3, participants retained control through the buttons and additionally received ”How” and ”Why”
explanations about the AV’s behavior. Participants were instructed to use the buttons at their discretion,
pressing them only when they felt intervention was necessary. This final trial was longer and featured
multiple blockade scenarios to allow for a comprehensive assessment of trust and intervention behavior.
Participants received no information from the experiment designer during the final trial.

Button usage was logged exclusively during Trial 3 to capture behavioral data aligned with the primary
experimental hypotheses.
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3.6. Measurements
To evaluate the impact of explanation modality and control mechanisms, this study employs a combi-
nation of subjective and objective measurements.

• Subjectivemeasurements: Gather self-reported trust levels using validated trust questionnaires
at the end of the experiment. This includes pre-study variables and four open-ended questions
covering all trials.

• Objective measurements: Track actual behavior through button-press frequency (intervene/in-
form usage) during experimental trials.

This mixed-method approach provides a robust picture of user trust, combining survey data with behav-
ioral indicators. The trust questions were adapted from the Foundations for an Empirically Determined
Scale of Trust in Automated Systems [17], complemented with constructs from the Situational Trust
Scale for Automated Driving (STS-AD) [15]. Potential item order bias was mitigated following insights
from Gutzwiller et al. [13].

3.6.1. Subjective Measurements
Self-Reported Trust: Trust in the AV was assessed through structured surveys administered at one
key point, after Trial 3 (Final Trust Survey). This survey assessed the participant’s overall trust in
the AV after experiencing all conditions but participants were specifically tasked with rating the last
trial. For example, participants rated statements like “The AV is reliable”, “I can depend on the AV
to make safe decisions”, or “I felt wary of the AV’s behavior” on a 7-point Likert scale from “Strongly
Disagree” to “Strongly Agree” . Choosing ”Strongly Disagree” would award 1 point, where as choosing
”Strongly Agree” would award 7 points. Some items were phrased positively and others negatively to
capture trust and distrust aspects. Items were scored (with negatively worded items reverse-coded;
see Equation 3.2) and averaged into a composite trust score. A higher score corresponds to greater
trust in the AV 3.1. In addition to the final post-trial survey, we also administered the Pre-Study Trust
Survey before any driving began.

t̄ =
1

n

n∑
i=1

qi (3.1)

Equation 3.1: Mean trust score.

q∗ =

{
q, if positively worded
8− q, if negatively worded

(3.2)

Equation 3.2: Reverse coding for negative ques-
tions.

The pre-study trust score serves as a baseline for each participant which also helps us reason for any
effect visible in the experiment (A.2). Finally, after Trial 3 and the final survey, we conducted a short
semi-structured interview where participants could qualitatively describe their experience, explain their
preferences (e.g., did they prefer having control or not, did they trust the explanations), and any other
observations. These qualitative responses help interpret the quantitative data and provide illustrative
quotes about the trust relationship.

3.6.2. Objective Measurements
Intervention Behavior: The primary objective measure of trust-related behavior was the usage of the
Inform and Intervene buttons across trials. The frequency and circumstances of button presses were
logged as indicators of the participant’s willingness to take control. We interpret higher intervention
rates as evidence of lower trust as the user did not feel comfortable letting the AV handle the situation.
Conversely, if a participant rarely or never pressed the intervene or the inform button and chose to “do
nothing” during critical moments, it suggests they trusted the AV’s autonomy and accepted the risk of
not intervening. Because intervention behavior can influence trip duration (e.g., frequent interventions
prolong the trip), raw counts of button presses were preferred over rate-based measures to avoid
confounding time and frequency. For each participant, the total number of presses was computed (look
at 3.3), where I is the amount of informing and V the amount of intervening, and compared between
the two modality groups (Text vs. Voice) .

Ti = Ii + Vi (3.3)

Equation 3.3: Total amount of interventions.
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Combining these measures, we have a rich dataset: subjective trust ratings (pre and post) and behav-
ioral intervention data for each participant. In the next section, we describe how we analyzed these to
test our hypotheses.

3.7. Data Analysis
The data analysis plan integrates statistical tests for the quantitative hypotheses (H1 and H2) and
qualitative analysis for the exploratory hypotheses (H3 and H4), using appropriate tools to ensure
thoroughness and reliability. All quantitative analyses will be performed using Python with relevant
libraries (e.g., Pandas for data handling, SciPy/Statsmodels for statistics), which enables reproducible
computation and visualization. Prior to hypothesis testing, the dataset will be screened for any data-
entry errors or missing values and addressed accordingly. Basic descriptive statistics will be computed
for all measures, and distributions of key variables (trust scores, button-press counts) will be visualized
(e.g., via histograms or boxplots) to check for outliers and inform assumption checks.

3.7.1. Quantitative Analysis of Primary Outcomes (H1 & H2)
• To test H1 (Modality → Trust), an independent-samples t-test will be used to compare the Trust
in Automated Systems survey scores between the two explanation modality groups (voice vs.
text) after Trial 3. The t-test will determine whether the mean trust score of participants who
received vocal explanations differs significantly from that of participants who received textual
explanations. A higher mean in the vocal condition, if observed, would support H1’s expectation
that vocal explanations (which does not require reading and thus imposes lower visual-cognitive
load) leads to greater user trust in the SAE Level 5 AV compared to text-based feedback.

• For H2 (Modality → Intervention Behavior), an independent-samples t-test will similarly be con-
ducted to compare the total number of intervention button presses in Trial 3 between the voice
and text explanation groups. The number of button presses (combining “Inform” and “Intervene”
actions) during Trial 3 serves as an objective measure of the participant’s intervention behav-
ior. This test will assess whether participants with vocal explanations tend to intervene (press
the buttons) less frequently than those with textual explanations, as H2 posits. A lower mean
intervention count in the vocal explanation group would indicate that voice explanations reassure
users and reduce unnecessary interventions (consistent with the hypothesis that they felt more
confident in the AV’s decisions).

While the hypotheses are directional in nature (H1 is assumed to have higher trust for the voice condi-
tion; H2 is predicted to have fewer interventions), we still use a two-tailed Welch’s t-tests with a signifi-
cance threshold of α = 0.05, as its possible textual information to exarcerbate more trust. Assumptions
of normality and homogeneity of variance will be checked for each comparison. Shapiro-Wilk tests (and
normal Q–Q plots) will be used to verify whether trust scores and intervention counts are approximately
normally distributed in each group, and Levene’s test will examine the equality of variances between the
voice and text conditions. If these assumptions are violated (for example, if the intervention counts are
heavily skewed or variances are unequal), appropriate non-parametric alternatives will be employed.
In particular, a Mann-Whitney U test would replace the t-test if normality is not met, and Welch’s t-test
adjustment would be applied if variances are unequal. Alongside p-values, we will report effect sizes to
quantify the magnitude of any observed differences. For the t-tests, Cohen’s d will be calculated (using
pooled standard deviation) and interpreted using conventional benchmarks (≈0.2 for a small effect, 0.5
medium, 0.8 large). This provides additional insight into the practical significance of modality effects
on trust and intervention behavior, beyond mere statistical significance.

3.7.2. Qualitative Analysis for Control Effects (H3 & H4)
Hypotheses H3 and H4 pertain to the influence of providing control buttons and explanations on user
trust. Because the study’s design did not include separate quantitative measures of trust for Trials 1
and 2 (trust was only formally surveyed after Trial 3), these hypotheses will be explored qualitatively
through participants’ reflections in post-experiment interview questions alongwith their quantitative data.
At the end of the study, participants provided open-ended feedback about their experience across all
three trials, including their sense of control, preferences for having (or not having) the inform/intervene
buttons, the presence of explanations and which version of the car they preferred and why. These
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narrative responses will be analyzed using a thematic analysis approach to glean insights on H3 and
H4.

The qualitative analysis will involve transcribing the open-ended responses and then coding them to
identify recurring themes related to control and trust. Key themes of interest include: perceptions of
trust in the AV when no user control was available (Trial 1) versus when control buttons were intro-
duced (Trials 2 and 3), and perceptions of trust in regards to the explanations between the trials. For
H3 (Control Mechanism → Trust), we will examine participants’ comments for indications that having
the ability to intervene increased their confidence or comfort with the AV (e.g., statements expressing
greater peace of mind or trust knowing they could take over if needed). For H4 (Explanations → Trust),
we will look for any comments that indicate that having the explanations in general increased their trust
towards the system. Four themes are created in total: Positive, Negative, Mixed and Neutral which
are being decided based on two survey questions respectively. For H3 the questions that are taken
into account are 2 and 4, and for H4 are questions 2 and 3 from the Post-study survey (Look at A.4).
While our analysis used predefined sentiment combinations to structure responses into themes (Posi-
tive, Negative, Mixed, Neutral), the themes themselves were grounded in patterns that emerged during
an initial review of participant feedback. Thus, our approach is best described as a hybrid thematic
analysis: inductive in identifying response patterns, and deductive in organizing these patterns around
our hypotheses (H3 and H4).

Each theme was derived by combining sentiment responses from specific questions as men-
tioned above:

• Button Theme (H3) used responses from Question 2 and Question 4.
• Explanation Theme (H4) used responses from Question 2 and Question 3.
• Sentiments between Q2 and Q4/Q3 are interchangeable

Q2 Sentiment Q4/Q3 Sentiment Resulting Theme
Positive Positive Positive
Positive Negative Mixed
Negative Positive Mixed
Negative Negative Negative
Neutral/Unclear Neutral/Unclear Neutral
Neutral Positive Positive
Neutral Negative Negative

Table 3.3: Thematic encoding rules based on sentiment combinations from Q2 and Q3/Q4. Sentiment between the questions
is interchangeable

Two independent coders assigned thematic labels to each response using the scheme mentioned
above (3.3). To reconcile differences and create a single final label per response, a rule-based la-
bel fusion function was applied. This function respected coder agreement where present, and applied
consistent rules for disagreement. Key fusion rules included:

• Identical Labels kept as a final label
• Conflicting positive and negative was kept as Mixed
• Positive with neutral or mixed would always be mapped to the latter.
• Negative with neutral or mixed would always be mapped to negative
• Mixed and neutral would be mapped to neutral

This ensured a reproducible, transparent, and non-arbitrary consolidation of qualitative codes. The
result was one fused theme label per participant for both control (button) and explanation perceptions.

To complement the qualitative coding, the following quantitative analyses were performed:
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• Independent-samples t-testswere conducted to compare the trust scores and intervention counts
between participants who expressed positive views and those who expressed non-positive views
(i.e., combined Mixed, Neutral, and Negative categories).

• Cohen’s d was calculated to estimate the effect size of these differences, providing insight into
the practical magnitude of any observed effects.

This combined approach enables a more robust analysis of H3 and H4 by integrating subjective per-
ceptions with statistical comparisons. While small subgroup sizes, particularly for negative and neutral
categories, limit generalizability, this method provides a more interpretable and consistent framework
for evaluating H3 and H4 alongside the primary hypotheses (H1 and H2). The qualitative component
supplements these findings by offering illustrative quotes and thematic insights that contextualize the
observed statistical patterns. For example, explaining why participants in certain conditions felt more
or less compelled to intervene.

Exploratory Analysis of Individual Differences
Beyond the primary and secondary hypotheses, the study includes an exploratory analysis to investi-
gate whether individual differences among participants might correlate with trust or intervention behav-
ior. Several background variables were collected in the pre-study survey that could plausibly affect how
they interact with the autonomous vehicle. These include demographic factors and prior experiences
or attitudes, specifically:

• Age: The participant’s age (in years). We will examine if age is related to trust in the AV or
willingness to intervene (e.g., younger vs. older drivers’ trust levels).

• Gender: Participants’ gender identity. Although our sample size may limit statistical power, any
differences in trust or intervention frequency between genders will be explored.

• Driving Experience: Measures of driving history, such as years of driving or self-reported driving
skill and risk aversion. More experienced drivers might be more critical of the AV’s decisions
(potentially intervening more) or, alternatively, may trust the system if they find it behaves like a
proficient driver.

• Comfort with Automation: The general comfort level with automated technologies (e.g., responses
to survey items about using autopilot features or other AI systems). Higher comfort or tech-
savviness could be associated with greater trust in the AV and fewer interventions.

• Prior AV Exposure: Any prior experience with autonomous vehicles (for example, having ridden
in a self-driving car or used Level 4 autonomy in personal driving). Familiarity with AVs might lead
to higher initial trust and potentially less frequent interventions, as users know what to expect from
the system.

The relationships between each of these individual difference variables and the main outcomes (trust
score after Trial 3, and intervention button count in Trial 3) will be examined using correlation analy-
ses. If the data are approximately normally distributed and linear, Pearson’s correlation will be used to
compute correlation coefficients between, for example, age and trust score, or comfort-with-automation
rating and number of interventions. For variables that are ordinal or not normally distributed (which may
be the case for some survey ratings or skewed counts), Spearman’s rank-order correlation will be em-
ployed instead. We will apply these tests in an exploratory manner (without strict a priori hypotheses),
so any significant findings will be interpreted with caution.

3.7.3. Correlation Between Trust and Intervention
To investigate the relationship between the subjective trust and their objective intervention behavior, a
correlation analysis between final trust scores and total button presses (inform + intervene) during Trial
3 will be conducted. Shapiro–Wilk tests will confirm if both variables were approximately normally dis-
tributed within each explanation modality group (text and voice), allowing us to use Pearson correlation
coefficients. To assess whether the strength of this relationship differed by modality, a Fisher z-test will
also be conducted on the correlation coefficients from each group.

In summary, the data analysis combines rigorous quantitative tests for the primary modality effects
on trust and intervention behavior with qualitative and exploratory methods to capture the influence
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of control mechanisms and individual differences. This mixed-methods approach ensures that the hy-
potheses H1 and H2 are tested with appropriate statistical power and assumptions checks (reporting
any significant differences along with their effect sizes), while H3 and H4 are explored through rich
qualitative insights. By triangulating quantitative results with interview-derived explanations and con-
sidering personal factors, the analysis will provide a comprehensive understanding of how explanation
modality and user control features jointly shape user trust in, and interaction with, a fully autonomous
vehicle.



4
Results

This chapter presents the results of the study in alignment with the predefined hypotheses. Quantitative
results are reported first, targeting H1 and H2. Subsequently, qualitative insights from post-experiment
interviews along with the quantitative analysis is reported in regards to H3 and H4. Finally, exploratory
correlations with individual differences are presented.

4.1. Participants
Before conducting any analysis, it is important to verify that pre-study variables do not systematically
differ between groups or influence the results. It is important to see if any of the pre-study variables
are significantly different when comparing the two groups since the same type of participant is needed
in each group.

The participants were divided evenly between the voice and text explanation groups. Statistical tests re-
vealed no significant group differences across any of the measured variables. Chi-square tests showed
no group differences in gender or prior AV experience. Mann–Whitney U tests confirmed similar distri-
butions for age, driving experience, and comfort with automation. While minor variations existed (e.g.,
slightly more males in each group, or non-normal age distributions), none reached statistical signifi-
cance. Thus, the participant groups were considered demographically and attitudinally comparable,
minimizing the risk of confounding effects in subsequent analyses.

Detailed distributions and test results can be found in Appendix A.5.

4.2. Quantitative Results: Effects of Explanation Modality on Trust
and Intervention (H1, H2)

4.2.1. Trust Scores Across Modalities (H1)
An independent-samples t-test was conducted to compare the composite trust scores (Trial 3) between
the voice and text explanation groups.

The Shapiro–Wilk test confirmed that trust scores were approximately normally distributed for both the
voice group (p = 0.112) and the text group (p = 0.243). Levene’s test indicated no significant difference
in variances (p = 0.118), supporting the assumption of homogeneity of variance.

There was no significant difference in trust between the voice and text groups (t = 0.73, p = 0.469).
The effect size (Cohen’s d = 0.24) indicates a small, non-significant difference, with slightly higher trust
scores in the voice group.

Figure 4.1 presents a violin plot with embedded boxplots and individual data points (strip plot) comparing
trust scores between the text and voice explanation groups. The distribution of trust scores appears
slightly higher in the voice group, though there is notable overlap between the two groups. The boxplots
indicate comparablemedians and interquartile ranges, while the wider spread in the text group suggests
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greater variability in trust responses among those participants.

Figure 4.1: Distribution of trust scores by explanation modality (text vs. voice). Violin plots show the full distribution, boxplots
indicate the interquartile range and median, and individual dots represent participant scores. Mean trust scores are annotated

for each group.

To further quantify the group difference, a Gardner–Altman plot (Figure 4.2) was generated. The vertical
thickness of the violin shows the kernel-density estimate of all bootstrap mean-differences, how often a
given mean-difference appeared during bootstrapping. The observed mean difference in trust scores
between the voice and text groups was 0.25 points in favor of the voice condition, with a 95% confidence
interval (CI) ranging from -0.42 to 0.88. The bootstrap sampling distribution, shown as the grey violin,
indicated that the most frequent resampled differences clustered slightly above zero. However, the
95% CI included zero, confirming that the difference was not statistically significant. This result is
consistent with the previously reported small effect size (Cohen’s d = 0.24). Interpretation: Average
trust in the voice condition was 0.25 points higher than in the text condition; however, this difference
was not statistically significant.

Figure 4.2: Gardner–Altman plot showing the mean trust score difference between explanation modalities, with 95%
confidence interval.
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4.2.2. Button Usage Across Modalities (H2)
An independent-samples t-test was also conducted to compare the total number of button presses
(combining Inform and Intervene actions) between the voice and text groups during Trial 3.

Normality checks using the Shapiro–Wilk test confirmed acceptable distribution for both groups (voice:
p = 0.149 text: p = 0.118). Levene’s test found no significant variance difference (p = 0.663).

There was no significant difference in button presses between the voice and text groups (t = 0.65,
p = 0.519). Cohen’s d = 0.22 suggests a small, non-significant effect, with slightly fewer interventions
in the text group on average.

Figure 4.3 shows the distribution of total intervention button presses (inform + intervene) during Trial 3,
again using a violin plot overlaid with boxplots and individual participant data points. The distributions
for both groups demonstrated considerable spread and overlap.

Figure 4.3: Distribution of total button presses by explanation modality (text vs. voice). Violin plots depict the full distribution of
press counts, boxplots show the interquartile range and median, and individual dots represent participant data. Mean total

presses are annotated for each group.

The Gardner–Altman plot in Figure 4.4 provides the effect size analysis for intervention behavior. The
vertical thickness of the violin shows the kernel-density estimate of all bootstrap mean-differences,
how often a given mean-difference appeared during bootstrapping. The mean difference in total button
presses between the groups was 1.06 presses (voice minus text), with a 95% confidence interval from
-2.06 to 4.17. As with the trust score analysis, the confidence interval crossed zero, suggesting no
statistically significant difference in intervention frequency between the two groups. This is consistent
with the small observed effect size (Cohen’s d = 0.22) and the descriptive statistics showing only
a modest trend toward more interventions in the voice condition. Interpretation: Participants in the
voice group pressed the intervention buttons 1.06 times more on average than those in the text group;
however, this difference was not statistically significant.
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Figure 4.4: Gardner–Altman plot showing the mean difference in intervention button presses between explanation modalities,
with 95% confidence interval.

Although the hypothesized benefits of vocal explanations (greater trust and reduced intervention) were
not statistically supported, the observed trends align directionally with H1. These results suggest the
need for further investigation using larger sample sizes or alternative study designs.

4.3. Qualitative Insights: Controls and Explanations with Trust (H3,
H4)

To explore how participants’ subjective experiences with control mechanisms (buttons) and explana-
tions aligned with their trust and behavior, thematic analysis was conducted on open-ended responses
from the post-experiment survey. Responses were coded into four categories: positive, negative, neu-
tral, and mixed, separately for themes related to control mechanisms (H3) and explanations (H4). This
coding captured whether participants perceived these system features as trust-enhancing, problematic,
or ambivalent.

4.3.1. H3 : Control Mechanisms (Buttons) and Trust
Thematic coding of participants’ views on the control buttons yielded the following distribution: 17 pos-
itive, 9 mixed, 6 negative, and 4 neutral. Participants who expressed positive attitudes towards the
buttons reported a higher mean trust score (M = 5.03, SD = 0.81) compared to those with mixed,
neutral, or negative views combined (M = 4.35, SD = 1.06), see Figure 4.5. An independent-samples
t-test confirmed that this difference was statistically significant (t = 2.06, p = 0.047) with a medium-to-
large effect size (d = 0.678), supporting H3.

In terms of behavior, those with positive button perceptions exhibited a lower mean number of interven-
tions (M = 6.18, SD = 4.39) compared to others (M = 8.52, SD = 4.83), although this difference was
not statistically significant (t = −1.36, p = 0.184). However, the effect size was moderate (d = −0.449)
indicating a potentially meaningful reduction in interventions associated with positive control percep-
tions even if not statistically confirmed in this sample.
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Figure 4.5: Trust scores and total intervention counts across button perception themes. Participants who expressed positive
views of the control mechanisms (buttons) generally reported higher trust and exhibited fewer interventions compared to

participants with mixed, negative, or neutral perceptions. Individual data points are overlaid.

4.3.2. H4 : Explanations and Trust
For the explanations theme, most participants (26) provided positive evaluations, with fewer express-
ing mixed (6), neutral (3), or negative (1) views. Participants with positive explanation perceptions
reported higher trust scores (M = 4.88, SD = 0.89) than others (M = 3.77, SD = 1.01), though this
difference was not statistically significant (t = 1.64, p = 0.124), see Figure 4.6. The effect size was mod-
erately large (d = 0.682) indicating a potentially meaningful behavioral difference between explanation
perceptions and trust.

In terms of intervention behavior, participants with positive explanation perceptions had fewer button
presses (M = 6.46, SD = 4.32) than those with other views (M = 8.5, SD = 3.7). While this difference
also did not reach statistical significance (t = 1.56, p = 0.143), the effect size was moderately large (d =
−0.649) suggesting a potentially meaningful behavioral difference that warrants further investigation
with larger samples.

Figure 4.6: Trust scores and total intervention counts across explanation perception themes. Participants with positive
evaluations of the explanations reported slightly higher trust scores and lower intervention rates than other groups, although

these differences were not statistically significant. Individual data points are overlaid.

A cross-tabulation further supported this trend: 22 out of 26 participants (84.6%) who gave positive
evaluations of the explanations also selected Version 3 (Control + Explanations) as their most preferred
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driving condition (Figure 4.7). Only four participants with positive views did not choose Version 3, pos-
sibly due to unrelated individual preferences or situational factors. This alignment between subjective
perception and condition preference strengthens the interpretation that explanations can enhance user
trust and satisfaction.

Figure 4.7: Percentage of participants ranking Version 3 (Control + Explanations) as their most preferred condition, split by
explanation perception themes. Notably, 84.6% (22 out of 26) of participants who expressed positive views about the

explanations also ranked Version 3 highest, suggesting alignment between subjective perception and overall user preference.

4.3.3. Summary
The qualitative themes triangulate well with the quantitative data for H3, providing converging evidence
that perceiving the control mechanisms positively is associated with higher trust and potentially less
intervention behavior. For H4, while the trends were consistent with the hypothesis that positive per-
ceptions of explanations relate to higher trust and fewer interventions, the statistical comparisons did
not reach significance, likely reflecting the limited sample sizes for non-positive themes.

4.4. Exploratory Analyses
Pearson or Spearman correlations were computed between participants’ pre-study variables and their
trust scores and button usage. These exploratory analyses aimed to generate additional insights rather
than formally test hypotheses.

4.4.1. Ranking Preferences Across Versions
Participants ranked the three driving conditions based on comfort. The majority (32 out of 36 partici-
pants; 88.88%) ranked Version 3 (Control + Explanations) as the experience with the least discomfort
(Rank 3), followed by Version 2 (Control only) and Version 1 (Baseline). Version 1 was rarely chosen
as the preferred option. Rank 1 points to most discomfort while Rank 3 points to least discomfort
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Figure 4.8: Participant ranking frequencies for each driving version. The majority ranked Version 3 (Control + Explanations) as
the experience with the least discomfort (Rank 3). Versions offering user control (Versions 2 and 3) were consistently ranked

higher than the baseline condition (Version 1).

A pairwise comparison of ranking choices revealed consistent preferences:

• Version 3 was preferred over Version 1 by 32 participants and over Version 2 by 32 participants.
• Version 2 was preferred over Version 1 by 24 participants.
• Version 1 was preffered over Version 2 by 12 participants

While most participants favored systems offering both control and explanations, a notable subset (n =
12) preferred Version 1 (no control, no explanations) over Version 2 (control only), indicating that for
some, control alone was less appealing than a minimalist baseline experience.

4.4.2. Correlations with Individual Differences
To explore potential influences of individual differences, correlations were computed between partici-
pants’ pre-study variables and two key outcomes: trust scores and intervention behavior (total button
presses). The analysis automatically applied Pearson or Spearman correlation methods depending on
variable normality, as verified using Shapiro-Wilk tests.

Figure 4.9: Correlation matrix showing relationships between pre-study individual difference variables and key outcomes (trust
scores and total intervention presses). Statistically significant correlations were observed between comfort with automation and
both trust scores (positive correlation) and total presses (negative correlation), suggesting that participants more comfortable

with automation reported higher trust and intervened less frequently.
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Two statistically significant relationships emerged:

• Trust scores were positively correlated with participants’ comfort with automation (r = 0.48, p =
0.002), suggesting that individuals that reported that they are already comfortable with automated
systems tend to report higher trust in the AV.

• Total intervention presseswere negatively correlated with comfort with automation (r = −0.35, p =
0.043), indicating that participants more comfortable with automation intervened less frequently.

Other individual differences (e.g., age, gender, driving experience, AV exposure) did not show signifi-
cant correlations with trust or intervention behavior. These findings highlight the role of the self reported
automation comfort in shaping both subjective and behavioral responses, aligning with prior research
on trust calibration.

4.4.3. Correlation Between Trust and Intervention Behavior
We explored whether trust scores were associated with actual intervention behavior.

• Text Group : r = −0.283, p = 0.254

• Voice Group: r = −0.281, p = 0.258

Both groups showed a weak negative correlation, suggesting that higher trust was associated with
slightly fewer interventions, though neither reached statistical significance.

To assess whether the strength of these correlations differed significantly between groups, a Fisher
z-test was performed. The result showed no significant difference in correlation strength: z = 0.01, p =
0.995. Thus, the relationship between trust and intervention appears consistent across both explanation
modalities. Figure 4.10 displays a scatterplot of trust scores versus total button presses with linear
regression lines for each group.

Figure 4.10: Correlation between trust scores and total button presses during Trial 3, separated by modality. While both
groups show a slight negative trend, neither correlation is statistically significant.
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4.5. Result Summary
Hypothesis Descr. Test Used Result p-value Supported Cohen’s d

H1 Vocal explanations in-
crease trust more than
text explanations.

Welch two-tailed t-test t = 0.73 0.469 No 0.244

H2 Vocal explanations
reduce intervention
behavior compared to
text.

Welch two-tailed t-test t = 0.65 0.519 No 0.217

H3 Positively viewing the
presence of control
buttons increases
trust.

Welch two-tailed t-test t = 2.06 0.047 Yes 0.678

H3 Positively viewing the
presence of control
buttons decreases
interventions.

Welch two-tailed t-test t = -1.36 0.184 No -0.449

H4 Positively viewing the
presence of explana-
tions increases trust.

Welch two-tailed t-test t = 1.64 0.124 No 0.682

H4 Positively viewing the
presence of explana-
tions decreases inter-
ventions.

Welch two-tailed t-test t = -1.56 0.143 No -0.649

Table 4.1: Summary of hypothesis testing results and effect sizes.
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Discussion

In this chapter, we discuss the results of the research conducted in this thesis. We do this by revisiting
the research questions and interpreting the results of the previous chapter. This chapter ends with our
limitations and future work

5.1. Results
5.1.1. Modality and Trust
The primary hypothesis (H1) proposed that vocal explanations would lead to higher trust compared to
text-based explanations, based on the premise that vocal communication may lower cognitive effort
and foster greater understanding in automated driving contexts [35, 20]. However, the results did not
yield a statistically significant difference between the two modalities . As shown in the violin plot (Figure
4.1) and further quantified through the Gardner–Altman plot (Figure 4.2), participants receiving vocal
explanations reported slightly higher trust scores (mean difference = 0.25), but the 95% confidence
interval (−0.42 to 0.88) included zero. This suggests that the observed difference, while directionally
consistent with H1, could plausibly be due to chance.

There are several factors that may explain this non-significant finding. First, prior studies highlight that
explanation modality can influence trust, but also that user preferences and cognitive workload vary
significantly across individuals [35, 20] . In controlled simulation, comprising short driving scenarios
with only 5 intervention relevant events, both modalities may have provided sufficient transparency,
minimizing the potential benefits of vocal over text explanations and the cognitive demands may not
have exceeded the threshold where modality differences become salient

Second, exploratory analyses revealed that individual factors, such as participants’ comfort with au-
tomation, were strongly correlated with trust (r = 0.48, p = 0.002), independent of modality (Figure 4.9).
This finding echoes that dispositional trust and personal attitudes often outweigh system characteristics
in shaping automation trust [27]. It also aligns with earlier findings that trust in automation is influenced
not only by objective system attributes but also by subjective user experience and perceived control
[33, 22]. Finally, the study’s sample size (N = 36) may have limited the power to detect modest effects
where a total of 64 participants would ideally be present.

In summary, while vocal explanations showed a slight advantage in fostering trust, the evidence does
not support a statistically significant modality effect. Instead, trust in this study appears more strongly
shaped by participants’ general attitudes toward automation and the overall presence of explanations
and control mechanisms as further discussed in later sections.

5.1.2. Modality and Intervention
The second hypothesis examined whether explanation modality influenced participants’ intervention
behavior, measured through total button presses. Although the data showed a modest trend toward
slightly more interventions in the voice condition compared to the text condition, this difference was
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not statistically significant (see Figure 4.3 and Figure 4.4). The effect size (Cohen’s d = 0.22) and
the Gardner–Altman plot indicated that, while the mean difference favored the text modality (mean
difference = 1.06 presses), the confidence interval crossed zero (95% CI = -2.06 to 4.17), reinforcing
the lack of statistical significance.

Several factors may explain this non-significant outcome. First, while prior studies suggest that vocal
explanations may lower cognitive load and enhance situational awareness [20], such advantages may
not consistently translate into reduced intervention behavior. In this study, variability in participants’
comprehension and usage of the intervention buttons likely moderated the influence of modality. As
one participant noted, “The multiple functions made them confusing to use, but it was nice to have
some form of control”, illustrating mixed perceptions of the buttons’ utility and clarity.

Second, the simulation environment itself may have influenced intervention rates. Despite instructions
clarifying that traffic lights and speed limits were not enforced, participants’ real-world driving habits
could have conflicted with the AV’s actions. Notably, the vehicle lacked signaling (e.g., turn indicators),
which may have contributed to uncertainty or perceived errors, prompting interventions unrelated to
explanation modality. The fact that the experiment also takes place into a simulation, also affects the
participants ability to perform the tasks as if they are in the real world. The participant could easily
adopt the environment as being in a game which makes reasons to interact with the vehicle completely
different as to being in a real, complex scenario.

Finally, similarly to H1, individual differences and the relatively small sample size could have limited
statistical power. Even though exploratory analyses suggested that comfort with automation negatively
correlated with total button presses, variability in how participants interpreted and used the buttons
added noise to the outcome measure.

In conclusion, the results did not support H2: explanation modality did not significantly influence inter-
vention behavior. Instead, intervention rates appeared more influenced by participants’ understanding
of control mechanisms, their subjective experience within the simulation, and individual comfort with
automation.

5.1.3. Controls with Trust and Total Interventions
The third hypothesis proposed that the availability of control mechanisms, specifically the inform and
intervene buttons, would increase trust and reduce the frequency of user interventions. This hypothesis
was supported by the data, see Section 4, yielding a significant result. Participants who expressed
positive attitudes towards the buttons reported a higher mean trust score compared to those with mixed,
neutral, or negative views combined (See Figure 4.5).

In terms of behavior, those with positive button perceptions exhibited a lower mean number of inter-
ventions, although this difference did not reach statistical significance (p = 0.184). However, the effect
size was d = −0.449, which suggests a moderate difference in the expected direction: participants
with positive button perceptions intervened less often than others. This pattern nonetheless suggests
that perceiving the control mechanisms positively may reduce the tendency to intervene, aligning with
higher perceived trust.

The importance of the control buttons in shaping participants’ experiences was further reinforced by
open-ended feedback. In the responses (see Section A.4), the majority of participants expressed pos-
itive or mixed opinions. Many emphasized that simply having the option to inform or override the AV
enhanced their sense of safety and trust. As one participant stated: ”The fact that I had the option to
intervene gave me peace of mind, even though I hardly used it.” This reflects the broader phenomenon
that the perception of control, even if rarely exercised, can be sufficient to bolster trust [22, 10, 39].

These findings also invite reflection on what constitutes a “wrong” intervention. In the present study
an intervention was tagged as ‘unnecessary’ or ’wrong’ if it deviated from the AV’s planned trajectory
without preventing a collision. Yet that engineering-centric definition excludes subjective factors such
as motion comfort, perceived courtesy toward other road users, or simply the passenger’s desire for
a larger headway buffer. Interviews revealed clear individual differences: some participants felt any
override that avoided “hard braking at the last second” was entirely justified, whereas others considered
the same action trigger-happy. Thus, labelling an intervention as wrong is partly normative and partly
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personal. A promising design implication is to give passengers adjustable “driving styles” or tunable
safety margins, analogous to adaptive cruise-control distance settings, so that the AV’s behaviour can
converge toward each user’s comfort zone, reducing the likelihood that they will feel compelled to
intervene.

Additional feedback, particularly from the open-ended questions, confirmed that the availability of but-
tons influenced participants’ overall comfort and trust. Many who ranked versions with control mech-
anisms higher mentioned the reassurance and agency the buttons provided. For example: ”I trusted
the system more when I knew I could inform it about issues or take action if necessary.”

However, some participants expressed uncertainty about the functionality of the buttons, including
doubts about when to use them or whether their input had a real effect. This was evident in neu-
tral or mixed responses. One participant commented: ”I was sometimes unsure if pressing a button
would really change anything.” Such uncertainty may have introduced variability into the intervention
behavior, potentially dampening the statistical strength of the behavioral findings.

Additionally, the simulation environment may have contributed to this variability. As mentioned before,
the absence of traffic lights, speed limits, and turn signals, despite participants being informed about
these omissions, likely added ambiguity to their decision-making. Some participants may have been
unsure when an intervention was warranted or may have perceived system behavior as erroneous
when it was not. These factors could explain both the higher-than-expected intervention rates and the
individual differences in how the control buttons were used or perceived.

Despite these limitations, the findings strongly indicate that providing drivers with control mechanisms,
especially those allowing non-invasive input, such as inform buttons, can effectively enhance trust and
support appropriate calibration of intervention behavior.

5.1.4. Explanations with Trust and Total Interventions
The fourth hypothesis proposed that the presence of explanations, delivered either as vocal or text mes-
sages, would increase trust and reduce intervention behavior, as participants would better understand
the AV’s decisions.

While the thematic coding revealed a consistent trend, the hypothesis was not statistically supported.
Participants who expressed positive views on the explanations exhibited a higher mean trust score
than those with mixed, negative, or neutral opinions (See Figure 4.6), but this difference did not reach
statistical significance (p = 0.124). The effect size was mediun to large, d = 0.682, indicating a modest
increase in trust among participants with positive perceptions of explanations.

Similarly, participants with positive perceptions of explanations pressed the intervention buttons less
frequently compared to others (See Figure 4.6), yet this difference was also non-significant (p = 0.143).
Still, the effect size was d = −0.649, a moderately large negative effect, meaning that participants
with positive views of explanations intervened noticeably less than others. The pattern nonetheless
suggests that favorable attitudes towards explanations may be associated with both higher trust and
lower intervention behavior.

One important consideration is the limited sample size of participants with negative or neutral attitudes,
which likely reduced statistical power and contributed to the non-significant results despite moderate
effect sizes. This imbalance, combined with high variability in subjective responses, makes it difficult
to draw firm conclusions from between-group comparisons.

Qualitative feedback provided valuable context for these findings. In the open-ended responses, many
participants reported that explanations, particularly those offering “why” rationales, helped them make
sense of the AV’s behavior and increased their trust: ”The voice explanations gave me a better un-
derstanding of what the car was doing and why.”. Another participant stated: ”Knowing why the car
stopped or slowed down made me feel more in control and more confident in the system.”. This aligns
with prior research highlighting the importance of intentional explanations (explaining ”why” actions are
taken) for building trust and mental models in automated systems [30, 42].

Several participants also expressed that vocal explanations were especially effective in maintaining
their attention and reducing uncertainty: ”I preferred the voice messages because they felt more nat-
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ural and kept me engaged without distraction.” However, some participants reported confusion or dis-
satisfaction with the explanations, particularly when they found them too sparse or lacking sufficient
detail: ”Sometimes the explanations felt too generic, and I wasn’t sure what the car was reacting to.”.
Others noted that explanations occasionally lagged behind events or failed to mention specific behav-
iors, leading to uncertainty or skepticism about their reliability. This variability in explanation clarity and
timing may have contributed to the non-significant quantitative results, despite the observed trends.
Additionally, several environmental limitations as mentioned above likely introduced inconsistencies
in how participants interpreted the explanations, especially for complex driving scenarios where more
context would have been beneficial.

Despite these challenges, the overall pattern suggests that participants who perceived explanations
positively tended to trust the AV more and intervened less frequently, consistent with previous findings
that well-designed explanations enhance user understanding and trust [30, 20, 32]. While statistical
significance was not achieved, the qualitative data supports the continued development of explanation
strategies as a key component of trust calibration in automated driving.

5.1.5. Exploratory Findings
Beyond testing the predefined hypotheses, several exploratory analyses offered additional insights into
the factors influencing trust and intervention behavior.

First, correlational analyses revealed meaningful relationships between participants’ pre-study self-
reported variables and their behavior and trust in themain trials. Notably, a positive correlation emerged
between participants’ comfort with automation and their trust scores in Trial 3 (r = 0.48, p = 0.002). Sim-
ilarly, comfort with automation was negatively correlated with total intervention presses (r = -0.35, p =
0.043), see Figure 4.9. This suggests that participants who reported higher comfort with automated
systems tended to trust the AV more and felt less need to intervene.

By contrast, age, gender, general driving experience, and prior AV familiarity did not show statistically
significant correlations with either trust scores or intervention frequency. This suggests that situational
trust development during the experimentmay have played amore influential role than dispositional traits.
However, the self-reported nature of the pre-study variables should be considered when interpreting
these results. Participants’ subjective assessments may not fully reflect their in-simulator behavior or
attitudes, especially under novel or unexpected driving scenarios.

An analysis of participants’ ranking preferences for the different system versions (Control Only, Expla-
nations + Control, and Baseline) provided additional insights into how the combination of explanations
and control mechanisms influenced perceived trust and usability.

While the Explanation + Control version was most frequently ranked highest, a noteworthy subset of 12
participants ranked the Baseline version (no explanations or controls) above the Control Only version.
Their open-ended responses often cited a clear rationale: ”I feel more stressed when i have control but
no explanations, because I feel like I HAVE to intervene. No control and explanations therefore feels
safer. ”

This reasoning highlights an important nuance: control mechanisms alone, without sufficient explana-
tory context, can introduce cognitive uncertainty or anxiety rather than empowering the user. This aligns
with prior findings suggesting that perceived control must be both meaningful and understandable to
positively affect trust [22, 32, 39]. Participants seemed to prefer a lack of control over ambiguous or
unexplained control opportunities.

Trust - Intevention Correlation
We examined the correlation between trust scores and total intervention presses during Trial 3. Al-
though both the text and voice groups exhibited a weak negative correlation (r ≈ −0.28), the associa-
tions were not statistically significant. Moreover, a Fisher z-test indicated no difference in correlation
strength between the two groups (z = −0.01, p = 0.995), see Figure 4.10.

Despite the lack of statistical significance, the direction of the correlations aligns with expectations from
trust theory: lower trust is generally associated with more frequent interventions. This trend, although
modest, supports the conceptual framework that users’ trust influences their decision to override or
accept AV behavior. Larger sample sizes may be needed to detect a clearer relationship or confirm the
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observed patterns with greater confidence.

In summary, the exploratory findings underscore the complex interplay between individual predisposi-
tions, system design features, and user preferences in shaping trust and intervention behavior. They
also reinforce the importance of designing transparent control and explanation strategies that are not
only available but also perceived as intuitive and meaningful by users.

5.1.6. Statistical Analysis Approach
The choice of statistical methods in this study was guided by the research design and data characteris-
tics. For hypothesis testing, independent-samples t-tests were employed to compare trust scores and
intervention counts between groups defined by participants’ subjective evaluations (e.g., positive vs.
non-positive views of control buttons or explanations).

While one-way ANOVA or non-parametric alternatives (e.g., Kruskal–Wallis with ε² effect size) are typ-
ically recommended when comparing more than two groups (e.g., positive, neutral, mixed, negative),
they were not employed here due to the extreme imbalance across categories. For example, only one
participant was coded as having a negative view of explanations (see Figure 4.6), and that same partic-
ipant also had the highest intervention count, creating an outlier effect. Running ANOVA or ANCOVA
under such conditions would violate key assumptions (e.g., homogeneity of variances, minimum group
sizes) and likely produce unreliable results. Furthermore, adding covariates (as in ANCOVA) was not
feasible given the limited sample size.

Bayesian methods were also evaluated as an alternative but were not pursued due to the confirmatory
nature of the primary hypotheses and the exploratory status of many qualitative variables. Furthermore,
specifying appropriate priors would have introduced additional complexity without clear benefits for the
study’s goals.

Using t-tests allowed for direct and interpretable comparisons between pairs of conditions, aligning with
the study’s hypotheses and data structure. However, it is acknowledged that the small sample sizes,
especially within some coded categories, limit the power of these tests and should be considered when
interpreting the results.

5.1.7. Key Take-away
The most consequential finding of this study is the strong relationship between the availability of con-
trol mechanisms, specifically the inform and intervene buttons, and participants’ trust in the automated
vehicles. When participants perceived these controls positively, their reported trust scores were sig-
nificantly higher. This effect persisted despite the fact that actual use of the buttons was relatively
infrequent and did not always correspond to lower intervention counts. This insight has important impli-
cations for the design of future automated vehicles, particularly SAE Level 5 systems, which are typically
conceptualized as fully autonomous with no user controls or input. The present findings challenge this
assumption by demonstrating that even minimal control affordances, when designed to be simple, non-
intrusive, and easily understood, can significantly enhance user trust. Participants frequently described
the mere availability of controls as increasing their comfort and reducing anxiety, even when they chose
not to exercise those controls during driving.

Furthermore, the importance of perceived control aligns with established human factors literature em-
phasizing the role of shared control and the psychological value of having agency, even in largely
automated contexts. This suggests that future SAE Level 5 systems might benefit from reconceptualiz-
ing driver roles, shifting from passive occupants to users with optional, limited interaction opportunities
that support trust without undermining automation.

An important nuance that emerged in during the experiments, but is easily missed in purely quantitative
metrics, is the large grey area between “preventing a crash” and being “too careful.” A significant subset
of interventions occurred in situations where the AV’s behaviour was objectively safe but felt uncomfort-
ably close to the participant’s personal risk threshold (e.g., overtaking a stopped van with limited lateral
clearance). In those cases, intervening neither avoided an accident nor unequivocally degraded safety;
it simply reflected a different tolerance for proximity, braking distance, or gap acceptance. Future AV
evaluation metrics might therefore incorporate a ‘comfort-margin’ band, not just binary crash/ no-crash
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outcomes, when assessing unwanted interventions.

In summary, while explanation modalities and user factors influenced trust and intervention behavior
to varying degrees, the perceived value of having control emerged as the clearest, most actionable
design takeaway from this research.

5.2. Limitations
While the study yielded valuable insights into how explanation modalities and control mechanisms
shape trust and intervention behavior in automated driving, several limitations should be acknowledged.
First, although the simulation environment was designed to be highly immersive, it could not fully repli-
cate the complexity and dynamic nature of real-world driving. Participants navigated a realistic vehicle
interior and scenarios, but the environment lacked traffic lights, speed limits, and did not have a plethora
of dynamic road actors, potentially influencing participants’ perceptions and decision-making. Several
participants noted that the absence of these cues made it harder to judge when intervention or inform-
ing actions were appropriate. The car’s occasional wiggling at high speeds, due to simulator physics,
may have also affected participants’ trust or prompted unnecessary interventions.

Second, the functionality and usability of the control buttons introduced some challenges. Although
participants generally valued the availability of the inform and intervene options, some feedback indi-
cated uncertainty about how and when to use them, or whether button presses effectively influenced
the vehicle’s behavior. This ambiguity could have introduced variability into both the trust ratings and
the frequency of interventions. Additionally, the placement of the buttons on the keyboard, and the
need to press them without looking while wearing a VR headset, may have affected response behavior,
especially under time pressure.

Third, while participants were informed that the scenarios aimed to mimic real-world driving, some
treated the experience more like a game than a real-life situation. This is a common challenge in
simulated studies and could have influenced trust calibration and intervention decisions.

Fourth, the lack of route visualization meant participants could not easily anticipate where the car was
heading, possibly increasing uncertainty or leading to interventions that might not have occurred with
clearer navigational cues.

Fifth, the binary nature of the intervention system (intervene or not) did not allow for more granular user
input or feedback. In reality, drivers might prefer or attempt more nuanced control actions, such as
requesting a slow-down or slight trajectory adjustment, rather than a full takeover.

Additionally, some participants reported experiencing virtual reality dizziness or discomfort, which could
have distracted from the task and affected both trust ratings and intervention behavior.

Another limitation concerns the relatively small sample size (N = 36), which may have limited the sta-
tistical power to detect subtle effects of explanation modality or control mechanisms. The recruitment
process was primarily constrained to local participants and relied on in-place exposure without broad
advertisement or monetary compensation. This limited outreach reduced the pool of eligible partici-
pants and may have introduced sampling bias. While sufficient for exploratory insights and feasibility
testing, future studies would benefit from larger and more diverse samples to improve generalizability
and statistical robustness.

Furthermore, to reduce subjectivity, two independent coders labelled every open-ended response.
When coders disagreed we collapsed the two labels with a simple rule-based “fusion” (e.g., positive +
negative → mixed). Although this is preferable to relying on a single coder, it is still an ad-hoc com-
promise that (i) forces nuanced disagreements into coarse categories, (ii) treats all disagreements as
equally important, and (iii) does not propagate the residual uncertainty into the quantitative analyses.
A more rigorous approach, e.g., adjudication until consensus, or Bayesian latent-class modelling of
coder uncertainty, could yield finer-grained themes and more precise effect estimates in future work.

Finally, while self-reported pre-study variables provided valuable context, these measures are inher-
ently subjective and may not fully reflect participants’ true abilities, experiences, or baseline trust ten-
dencies.
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Collectively, these limitations highlight the challenges of translating complex human-automation inter-
action dynamics into controlled experimental settings. They also underscore important design consid-
erations for future studies aiming to improve ecological validity and user experience fidelity.

5.3. Future Work
Building on the findings of this study, several avenues for future research are proposed to further inves-
tigate and refine the role of control mechanisms, explanation modalities, and user interaction in SAE
Level 5 autonomous vehicles.

5.3.1. Improving Control Mechanism Design and Feedback
While the presence of the inform and intervene buttons positively influenced trust, some participants re-
ported uncertainty about their use and effectiveness. Future studies should focus on refining the design
of these control mechanisms, ensuring they provide clear feedback when activated. Visual or auditory
confirmation signals could help users understand when their inputs have been registered and what
effects they produce, reducing confusion and enhancing the perceived reliability of the controls. Future
work may also explore adaptive or multi-modal explanation strategies tailored to user preferences or
context.

5.3.2. Enhancing Simulator Realism and Complexity
The simulation environment, while functional and moderately realistic, lacked certain real-world driving
complexities such as traffic lights, speed limits, more dynamic actors, and route signaling. Future work
should incorporate these elements to create a more immersive and representative driving experience.
Increasing realism will not only improve ecological validity but also provide more accurate insights into
how drivers might behave and trust automation in real-world contexts.

5.3.3. Differentiating Levels of Intervention
The current binary intervention model limited participants to either intervening or not, without the possi-
bility of expressing varying levels of concern or control. Future research should explore more granular
intervention mechanisms, such as graded inputs or suggestive feedback options. This could provide a
deeper understanding of how different levels of control affect user trust, perceived safety, and interac-
tion patterns.

5.3.4. Longitudinal and Repeated Exposure Studies
Trust and user behavior in automated driving systems are likely to evolve over time. This study captured
participants’ responses in single-session exposures, which may not fully reflect long-term interaction dy-
namics. Future studies should employ longitudinal designs or repeated exposure protocols to examine
how trust, intervention behavior, and perceptions of control develop with continued experience. Such
research could reveal whether initial impressions persist or change as users become more familiar with
the system.

5.3.5. Outlook
Future investigations addressing these directions will not only refine our understanding of user trust
and control in fully autonomous vehicles but will also inform the development of SAE Level 5 systems
that are both technically robust and aligned with human expectations and preferences. By integrating
nuanced control options, enhancing environmental realism, and studying long-term interactions, future
research can contribute to safer, more trustworthy, and user-centered autonomous driving experiences.
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Conclusion

This thesis explored how explanation modality (vocal vs. text) and optional control mechanisms (infor-
m/intervene buttons) affect user trust and intervention behavior in SAE Level 5 autonomous vehicles.
Using a VR simulator study with 36 participants, the results offer empirical evidence for how design
choices influence user experience in fully autonomous contexts.

Although vocal explanations led to slightly higher trust than text, the difference was not statistically
significant. In contrast, participants who valued the presence of control buttons reported significantly
higher trust, highlighting the importance of perceived control even when actual intervention was rare.
This challenges the SAE Level 5 assumption of no user input, suggesting that minimal, well-designed
control affordances can improve user comfort and trust calibration.

Behavioral differences in intervention were aligned with trust trends but did not reach significance, likely
influenced by limited realism, ambiguity in button functionality, and small group sizes. Exploratory
results reinforced that comfort with automation predicted higher trust and fewer interventions, while
open-ended feedback revealed diverse attitudes toward the balance between agency and automation.
However, the study’s findings must be interpreted in light of several limitations, including potential VR-
induced discomfort, the simulator’s lack of many dynamic traffic actors, limited route cues, and the
discrete nature of intervention measures. Moreover, the simulated environment, despite efforts at real-
ism, cannot fully replicate real-world driving conditions. Future research should address these issues
by refining the simulation fidelity, diversifying user control options, and exploring how these findings
generalize to more complex or real-world driving tasks.

Together, these findings contribute to the growing body of work on trust in automation and shared control.
They suggest that fully autonomous systems may benefit from reintroducing minimal, optional controls
to support user comfort without undermining automation. Future AV designs should incorporate intuitive
feedback mechanisms, richer environments, and consider long-term exposure to capture evolving user
trust
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A
Study Materials and Participant Data

A.1. Informed Consent
User Trust and Intervention Behavior in SAE Level 5 Autonomous Vehicles

Principal Researcher
Stelios Avgousti, Master’s Student, Computer Science, Interactive Intelligence

Responsible Researcher
Myrthe Tielman, Assistant Professor

Institution
Delft University of Technology (TU Delft)

Invitation
You are invited to participate in a study investigating how users interact with fully autonomous vehicles 
(SAE Level 5). This study will involve using a driving simulator under three different conditions, followed 
by trust-related surveys, and will take place at TU Delft facilities.

Procedure

• Complete a pre-study questionnaire about general attitudes toward AI and past experiences with
autonomous vehicles.

• Perform three simulated driving trials, lasting approximately 20–25 minutes in total.
• Complete a final survey assessing overall trust in AVs after Trial 3.
• Answer interview questions regarding the different driving trials.
• Total time commitment: approximately 45–60 minutes.

Experiment Details
The simulator will mimic real-world driving conditions. You will experience fully autonomous driving and
will not need to manually control the vehicle. In certain trials, you may use provided buttons to signal or
override the system’s behavior. The first trial will be a familiarization round. The second and third trials
will use slightly different simulation versions. Interaction data and survey responses will be recorded.

Eligibility Criteria
• At least 18 years old.
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• Valid driving license.
• Proficient in English.

Voluntary Participation & Right to Withdraw
• Participation is voluntary.
• You may withdraw at any time without providing a reason or penalty.
• Uponwithdrawal, your data will be deleted upon request unless it has been included in anonymized
analyses.

Potential Risks and Benefits
Risks: No significant risks are expected. Some participants may experience mild discomfort such as
motion sickness or fatigue. You may take breaks or discontinue participation at any time.
Benefits: You may gain insight into AI vehicles. Your participation will contribute to improving trust-
calibrated autonomous vehicle systems.

Confidentiality & Data Protection
• Responses will be anonymized and stored securely on TU Delft servers.
• No personally identifiable information will be published.
• Data will be stored for five years, following TU Delft’s research policies.
• Only authorized researchers will have access to your data.
• A random participant ID will be used to anonymize data.

Consent Statement
Please tick the appropriate boxes:

• I confirm that I have read and understood the information above and had the opportunity to ask
questions.

• I understand that my participation is voluntary and that I may withdraw at any time without conse-
quences.

• I understand the purpose of this study and what my participation involves.
• I consent to my anonymized data being used for research and publication purposes.
• I understand that button usage and responses to trust surveys will be recorded for analysis.
• I understand that no personally identifiable information will be linked to my responses.
• I understand that I can contact the research team if I have concerns or wish to withdraw my data
before publication.

Name of Participant:

Signature:

Date:

A.2. Pre-Study
• Age:
• Gender: Male Female Other
• Driving experience: Likert scale 1–5 (1 = Not experienced, 5 = Very experienced)
• Have you ever been in a vehicle where the driver didn’t need to have their hands on the
steering wheel? (e.g., Waymo or Tesla): Yes / No
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• I feel comfortable relying on automated systems like self-driving cars: Likert scale 1–7 (1 =
Strongly disagree, 7 = Strongly agree)

A.3. Trust Survey
All questions use a 1–7 Likert scale (1 = Strongly disagree, 7 = Strongly agree).

1. The autonomous vehicle provides security.
2. The autonomous vehicle behaves in an underhanded manner.
3. I am familiar with the autonomous vehicle.
4. The autonomous vehicle is deceptive.
5. I am confident in the autonomous vehicle.
6. I am suspicious of the autonomous vehicle’s intent, action, or output.
7. I am wary of the autonomous vehicle.
8. I can trust the autonomous vehicle.
9. The autonomous vehicle’s action will have harmful or injurious outcomes.
10. The autonomous vehicle has integrity.
11. The autonomous vehicle is dependable.
12. The autonomous vehicle is reliable.

A.4. Post-study Open Questions
1. Rank the versions of the car starting with the one you felt least comfortable with:

• Version 1 – No buttons or explanations
• Version 2 – Buttons only
• Version 3 – Buttons + Explanations

(Participants dragged and rearranged the versions.)
2. Why did you assign the versions in this order? (Keep answers short and concise.)
3. How did the explanations influence your trust in the vehicle, if at all? (Keep answers short

and concise.)
4. What was your experience with the control buttons during the drive? (Keep answers short

and concise.)
5. Any feedback or thoughts about the driving experience? (Keep answers short and concise.)

A.5. Participant Distributions
A.5.1. Gender
The gender distribution across the two modality groups was relatively balanced. In the text explanation
group, there were 7 female and 11 male participants, whereas the voice explanation group included 5
female and 13 male participants as seen in A.1. A chi-square test of independence was conducted to
examine whether gender distribution differed significantly between the groups. The results indicated no
significant association between gender and explanation modality, χ²(1) = 0.12, p = 0.724, suggesting
that gender was approximately evenly distributed across the two groups.
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Figure A.1: The gender distribution per group.

A.5.2. Age
The age distribution of participants was examined across the two explanation modality groups. Visual
inspection of histograms and density plots indicated roughly similar age distributions but suggested
potential deviations from normality, see A.2. To formally assess normality, Shapiro–Wilk tests were
conducted for each group. Results indicated significant departures from normality in both the voice
group (W = 0.867, p = 0.016) and the text group (W = 0.888, p = 0.036). Therefore, a non-parametric
Mann–Whitney U test was used to compare ages between groups. The test revealed no significant
difference in participant age distributions between the voice and text conditions (U = 142.5, p = 0.544).
This suggests that age was approximately balanced across the two groups.

Figure A.2: The Age distribution per group.

A.5.3. Driving Experience
Participants reported their self-assessed driving experience on a 5-point scale (1 = not experienced,
5 = very experienced). To test whether driving experience differed across modality groups, a Mann–
Whitney U test was conducted. The test indicated no significant difference between the voice and text
groups (U = 209.5, p = 0.122). This suggests that driving experience was approximately balanced
between groups and unlikely to confound the effects of explanation modality on trust or intervention
behavior. The distribution is visible at A.3
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Figure A.3: The Self-reported driving experience distribution per group.

A.5.4. Comfortability with automated systems
Participants rated their comfort with relying on automated systems like self-driving cars on a 7-point
Likert scale (1 = strongly disagree, 7 = strongly agree), serving as a proxy for propensity to trust au-
tomation. A Mann–Whitney U test revealed no significant difference between the voice and text groups
(U = 167.0, p = 0.885). This indicates that the two groups had comparable baseline attitudes toward au-
tomation, minimizing potential confounding effects on trust or intervention behaviors observed in later
trials. Distribution between the two groups is visible below (A.4).

Figure A.4: The Self-reported propensity to trust AI distribution per group.

A.5.5. People that have been passengers in Avs
Participants indicated whether they had previously been passengers in a fully autonomous vehicle (no
steering wheel). A chi-square test of independence revealed no significant difference in prior AV expe-
rience between the voice and text groups (χ²(3) = 0.00, p = 1.000). This suggests that prior exposure
to autonomous vehicles was balanced across groups, reducing the likelihood that familiarity effects
influenced trust or intervention behaviors during the experimental trials. The distribution between the
two groups can be found A.5.
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Figure A.5: People that have been in an AV before, distribution per group.

A.6. Open-ended Responses and Themes
Participant Explanation

Question
Control Question Why Ranked in

that order
Final Feedback Btn

Theme
Expl
Theme

Btn
Theme 2

Expl
Theme 2

1 The explanations
gave me more
trust and made
the use of buttons
more easy.

In the beginning it
didnt feel intuitive
because you are
used to brake
and accelerate,
but with the ex-
planation and in
the context of a
self driving car it
worked well.

The addition of
buttons gave the
idea that the car
was not safe by
itself. Adding ex-
planations made it
more understand-
able why the car
behaved like it did,
making it more
comfortable.

I wouldn’t say it
was comfortable.
You still need
to pay a lot of
attention.

mixed positive mixed positive

2 It gave me insight
into the vehicles
decisions and I
wasn’t surprised
by any abrupt
alterations in the
driving.

They felt respon-
sive and gave me
enough control
over the vehicle’s
decisions.

Having no expla-
nations and no
buttons felt like
I was simply a
passenger with
no impact on the
outcome of the
driving experi-
ence. The buttons
in trial 2 gave a
sense of control
over the vehicles
actions but it was
still unclear what
the vehicle was
doing and why.
In the third trial
it felt the most
comfortable since
I also had input
as to why we are
stopping/slowing
down, and at the
same time I could
influence these
decisions.

It felt reassuring
and the car was
driving compe-
tently, it didn’t
feel unsafe at any
point.

positive positive positive positive

3 Explanations
help me to under-
stand the thinking
process of the ve-
hicle; thus, I know
what I will expect
(e.g. slowing
down or stop)

It helps me to
give a control
when needed. It
is similar to the
brake/accelera-
tion pedal.

The button helps
me to feel that
I still have a
control over the
autonomous
vehicles. The
explanations help
me to understand
or expect what will
happen in the few
seconds ahead.

Maybe you can
add indication if
the vehicle wants
to turn left or right.
It helps to to know
which side of the
road I need to look
at.

positive positive positive positive

4 Help me prepare
for car’s next
move

Gave me more
control

Buttons give a bit
more control, ex-
planations let me
know the intend
beforehand

Never been to au-
tonomous vihacle
before, felt a bit un-
sure

positive positive positive positive



A.6. Open-ended Responses and Themes 53

Participant Trust Explana-
tion

Control Buttons Why Ranked Final Feedback Btn
Theme

Expl
Theme
Btn
Theme 2

Expl
Theme 2

5 it increased my
awareness re-
garding the car’s
decision making
but it did not make
me trust it much
more.

Intuitive but I
could use some
more time getting
used to the right
Ctrl button.

Having some
control over the
actions gives me
some confidence
in case I disagree
with the decisions
of the autonomous
system. Having
the explanations
of what the car
does also pro-
vides an extra
reassurance since
I do not have to
guess what the
car is planning to
do or react

Some rapid move-
ments of the
wheel lead me
to slow down the
car. Maybe some
more incidents
or cases in the
town would be
interesting to see.

neutral neutral positive positive

6 It helped me de-
cide if i should
take any manual
actions or not

hard to under-
stand at first
but gets easier
through time and
practise

It s nice ti get
action verification
so that i dont
have to think if
the car is trying to
stop or not. And
manuak overwrite
is always good,
gives the more
confidence in the
experience

I would love to see
some more com-
plex scenarios to
test the trust to the
limit

mixed positive positive positive

7 Helped me un-
derstand the
intentions of the
car, however it is
annoying having
to read what the
car is doing while
doing it, since i
might start reading
a bit late.

easy to under-
stand but took
some time to get
used to

having an expla-
nation makes it
easier to predict
the car move-
ments and take
the necessary
actions to prevent
accidents. Not
having any input
in the car driving
feels dangerous
and stressful

Fun driving experi-
ence

mixed mixed positive mixed

8 They made me
feel safer, and
like I am more
connected with
the vehicle.

The multiple func-
tions made them
confusing to use,
but it was nice to
have some form of
control.

I feel more
stressed when
i have control but
no explanations,
because I feel like
I HAVE to inter-
vene. No control
and explanations
therefore feels
safer. Having
control and ex-
planations make
me feel the safest,
because I don’t
feel pressured to
intervene, but I
can if I want to.

The car moves
a bit erratically
when corner-
ing, and gets quite
close to obstacles.

mixed positive mixed positive

9 It increase trans-
parent communi-
cation

No very control-
lable because it is
not familiar to me

when no buttons I
feel easy and relax
because the vehi-
cle will probably
do everything for
me. when I have
a button and expla-
nation I will more
in control of every-
thing.

slow down too
much

negative positive mixed positive

10 By adding audio
it enhance the
senses used,
creating a more
holistic experi-
ence

Confortrable I had more control
and that gave me
please of mind

Still needs a bit of
work to run more
smoothly but is a
nice overall driving
stimulation

positive positive positive positive



A.6. Open-ended Responses and Themes 54

Participant Trust Explana-
tion

Control Buttons Why Ranked Final Feedback Btn
Theme
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Theme
Btn
Theme 2

Expl
Theme 2

11 Although some-
times I could
already suspect
what the vehicle is
doing, it felt even
better to see it
written.

I didn’t really use
them. I used them
ones and I killed a
biker. RIP.

I felt like no
buttons and ex-
planations has
absolutely no
control, Although
I felt very com-
fortable with the
autonomous car.
Buttons only
makes me feel a
bit worried that I
forget what each
buttons do, but
buttons and expla-
nations make me
feel even more
confident!

In general I felt
complete trust
on the vehicle
and I felt very
comfortable know-
ing that it has
full control. Of
course having the
buttons in case of
emergency such
as system failure
makes me feel
safer.

positive neutral positive positive

12 I knewwhat the ve-
hicle was going to
do, so I knew if i
had to intervene or
not.

They were helpful
in some situations,
mainly the break
button

Being able to
control the car,
and the car telling
what it is going to
do, gives a sense
of security and
makes me as a
driver feel more
safe

Would like the car
to have a bit more
speed so break-
ing would be nece-
cairy more often

positive positive positive positive

13 I was a bit late
seeing the expla-
nations although
they did pop up in
front of my eyes
but i was more
focused on the
road than on the
explanations. I
feel if i got more
used to it to check
on the explana-
tions that pop out
i would cooperate
better.

It was easy to
remember what
each button does
since it was also
written with yellow
letters in the car
although it was a
bit tricky when it
comes to actually
using them but
again the more
practice the better
it work.

Having no buttons
felt less comfort-
able as i feel i
was able to see
the cars stopped
in the middle of
the road before
the car would
provide explana-
tions to what is
happening.

The fact that the
car did not stop
at the red lights
made be a bit
hesitant whether
to stop the car
or not so maybe
if the car was
automated to stop
on the red lights
and i knew then i
wouldn’t press the
button to sto.

mixed mixed mixed neutral

14 the explanations
were 1-2 seconds
too late, i had
already seen
the obstacle and
decided to slow
down, and then
the car did the
same. i didnt feel
like intervening
many times as
i usually agreed
with the explana-
tions.

very normal, just
felt a bit weird
to start again
after stopping
completely.

version 3, the car
behaved in the
most predictable
manner, there
were also fewer
obstacles.

i liked the experi-
ence and the car
behaved in a pre-
dictable manner. i
only thought the
steering was a bit
off centre and not
realistic. car ac-
celerated and de-
celerated as ex-
pected.

neutral mixed neutral mixed

15 i was more pre-
pared for the up-
coming obstacles
and could see if i
could trust it or not.
if it was legit info

they were really
helpful but didn’t
have full control

It starts with an
unknown kind of
feeling of what is
going on but then
it becomes clearer
when you’re given
the explanations
as well

there was not
a signaling of
direction changing
lanes with no
apparent reason
the messages
on the screen
were helpful and
accurate

mixed positive mixed positive

16 You are prepared
on the situation,
and you dont
have to wait to the
last moment to
see whats gonna
happen

Its good to keep
the control in your
own hands, so
you will always be
able of stopping if
something seems
to go wrong

with the 1st one
you have no single
control, as you do
have the most con-
trol with the 3rd
trial. You can stop
at any time and
you are informed
on what the vehi-
cle is gonna do.

the car sometimes
drove quite close
to some cars
parked on the
curb, personally i
would take a bit
more space to
them.

positive positive positive positive
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Theme
Btn
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Expl
Theme 2

17 The explanations
provided a quick
explanation to
why the car made
a decision, pro-
viding clarity and
transparency,
therefore more
trust.

Quite intuitive
thanks to the
ability to test it out
during Trial 2.

Having any control
of the movement
of the car provides
some kind of confi-
dence to intervene
if possible. Adding
the explanations
to the car’s actions
provides clarity.
Having both then
provides the most
comfort.

Smoother steering
on the highway
next time

positive positive positive positive

18 They increased
my trust

I was feeling
more comfortable
because I had
the option to take
some kind of
control

I felt less comfort-
able with version
2, because I had
no input infortma-
tion. The buttons
may cause an
accident if not
used correctly.
Version 1 felt
more comfortable
because I was
only relying on the
car. With version
3 I was feeling
very comfortable
because I had the
option to interrupt
based on the
information given
by the car

After this ex-
periment I feel
more comfort-
able driving in an
autonomous car
(Never been in
one)

mixed positive mixed positive

19 positively but
would need more
feedback to feel
sure about the car
experience

good based onmy expe-
rience with the 3
vehicles i felt the
most comfortable
when instructions
where present and
when i had no con-
trol or responsibil-
ity for the outcome

smooth and re-
liable driving
except some
key errors that
cause my concern
( getting on the
pavement to make
a turn)

positive mixed positive positive

20 Feeling some
safety that the ve-
hicle understands
what its doing

Used mostly after
the car stopped
completely after
congestion/acci-
dent/roadblock.
Only to begin it
again. Other than
that I generally
agreed with the
car and didnt have
to press

I felt safer with
the audio expla-
nations knowing
to anticipate how
the car is going to
behave. Buttons
made me feel i
had some control.
Having no control
is a bit stressful

Would like it to
drive faster.

positive positive positive positive

21 no they didn’t easy im an experienced
driver

Good experience,
good for response
practice from new
drivers

negative positive negative neutral

22 It made me misin-
terpret the timing
of the execution of
the action

a bit confusing but
overall fine

There is a slight
delay between
what the car says
its gonna so vs
when it actually
does it

the slight delay is
a annoying

mixed negative mixed negative

23 good and under-
standable

fun and explo-
rative

Version 3 and ver-
sion 1 give more
comfortable com-
pare to the ver-
sion 2, it is clear
and the informa-
tion easy to under-
stand or no infor-
mation or control
like version 1

good exploration
and experiment

positive positive positive positive

24 Knowing what the
car is intending to
do is assuring.

Overly simplistic.
Lack of control.

I want to know
what the car is do-
ing and what it is
going to do. And I
want to be able to
intervene.

I’d rather drive the
car myself.

neutral positive mixed positive
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Theme
Btn
Theme 2

Expl
Theme 2

25 it’s nice to know
what the car is
thinking so if it
slows down out of
nowhere at least i
know why. thus
the trust increased

they worked really
well, i just had
some trouble
understanding
which button
made the car
start again after
stopping. how-
ever there was no
issues with the
functioning

i liked having no
buttons in version
1 cause i didn’t
have to think
about anything,
but i was com-
fortable enough
with the buttons in
version 3

the car was wob-
bly in the highway

positive positive positive positive

26 helped me to pre-
dict what the car
will do and to rely
on it

felt easier to
experience the
self-driving, gave
control to me if
there was unex-
pected event

aural explanations
help trusting the
vehicle by giving
a prediction of its
actions, buttons
gives human
control to feel
more humaine
and trustworthy

stressful expe-
rience, aural
explanations
helped with feel-
ing uneven

positive positive positive positive

27 It gave me re-
assurance that
it sees what is
happening

Neutral because
even there were
only 2 buttons,
they were per-
forming 4 func-
tions which was a
little confusing

In version 2, I
felt like I had to
keep an eye on
the road and also
’help’ the system.
Even though ver-
sion 1 didn’t have
buttons, I felt a
little more com-
fortable because I
assumed that the
car would have
been properly
tested before
hitting the streets.
The explanations
on version 3 are
a nice to have. It
gives reassurance
without the need
for me to press
buttons.

Something I
missed was the
car indicating the
direction it would
go to. It’s quite
important on the
road

negative positive neutral positive

28 More trust in the
system used for
the first time

Not so comfort-
able or intuitive

I prefer to know
what the vehicle is
going to do

The lateral control
was quite dizzy
and makes my
trust low

negative positive negative positive

29 They made me
trust the vehicle
more, as I could
potentially spot
any mistakes,
even if it didnt
make any. At the
same time, if I
really trusted the
vehicle I would
not need any
explanations.

During the first
trial with the
control buttons
things were pretty
confusing. During
the second one,
where the car’s
intentions were
visible, things
made a little more
sense.

Buttons only cre-
ate unreliability
for responses.
The car could be
already stopping
and you could un-
knowingly cause
a crash like I did.
If there is no ex-
planation I would
prefer to have to
trust the car.

I personally be-
lieve that the
buttons introduce
a weird middle
ground between
trust and account-
ability. If the car
is really better
at driving that
humans, then real
trust would imply
never needing to
interfere with the
car’s actions.

negative mixed negative mixed

30 it gave me more
trust.

going against my
instincts. (both
slow down)

First version i
had to adapt, so i
didnt really focus.
version 2 felt bet-
ter then version
3. version 3 had
moments when it
didnt explain, but i
felt like sometimes
it drove to close to
the curf/car.

perhaps a trial
zero for people
who never did vr
before.

neutral positive neutral positive
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31 It made me trust
the vehicle less be-
cause it didn’t al-
ways stop or break
fast enough for the
situation.

The stop/don’t
stop button did not
work properly in
the previous sim-
ulations, mean-
ing that when i
pressed it before
it would only stop
and never not
stop. The one
time I needed a
hard/quick stop it
didn’t stop, it just
kept going and so
I crashed.

Because when
you did not have
any control over
the car, it didn’t
matter what you
felt or did where as
when I had expla-
nations and could
control the buttons
the buttons felt
counterintuative
from the previous
experiences.

The driving ex-
perience was
relatively nice, a
bit slow and not
very natural but
overall I could
trust the car for
the basic driving
needs.

negative positive negative positive

32 Explaining, added
a layer of un-
derstanding and
made me less
wary

Easy to manage,
after the first trials

The voice helped
ease the transition
between stages
the car is going
through

Sound would
make this more
immersive and
might change the
outcomes but it
was still engaging.

positive positive positive positive

33 The explanations
helped to increase
trust given that
it allows for me
to make the final
judgement if I
want to accept the
decision or not.

I think it was good,
after understand-
ing that the left
one is more like a
”go slower for a bit”
button it became
better.

While the car didnt
generate distrust
allowing me to
override the deci-
sion made it more
comfortable, and
also I was more
aquainted with the
experience by the
third trial

Very relaxing,
although the first
one was a bit un-
comfortable given
that I was still
getting aquainted
with the experi-
ence and had no
control over it.

positive positive positive positive

34 make me trust
car’s reactions

I liked it cause
it gave me more
control

I prefer it when I
have some level of
control

it was a fun experi-
ence

positive positive positive positive

35 Because I knew
what the next ac-
tion of the car was,
so it made me
more comfortable.

The controls were
helpful

I assigned the
version three as
the most comfort-
able one because
it was generally
more comfortable
when I knew what
actions to expect
from the car, and it
felt most comfort-
able when I was
able to control its
actions.

The experience
was fun and
interesting.

positive positive positive positive

36 It influenced my
trust since the ve-
hicle did exactly
what the explana-
tion said

got a bit confused
at first but after
1-2 tries i was very
comfortable with
the buttons

version 1 made
me feel a bit un-
safe not knowing
what the actions
will be or having
no control, version
2 made me feel
more comfortable
since i had control
of the vehicle, ver-
sion 3, at this point
the vehicle gained
my full trust since
it showed me it
is reliable and it
also showed me
its intentions

maybe next time
some people can
jump in the road
out of nowhere so
we can see the ve-
hicles reaction

mixed positive mixed positive
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