
Designing Multi-Energy

Systems

N oor tje Bo nen kam p

Designing Multi-Energy Systems
Solution methods for a multi-period network design

problem

by

Noortje Bonenkamp

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday July 9, 2020 at 10:00 AM.

This research was undertaken in partial fulfillment of the Master’s Applied Mathematics, with an annota-
tion in Technology in Sustainable Development (TiSD). ORTEC B.V. has agreed to supervise and support
this research, in addition to supervision from TU Delft.

Student number: 4323769

Date: July 3, 2020

Thesis committee: Dr. ir. J.T. van Essen TU Delft

Dr. D.C. Gijswijt TU Delft

Dr. ir. M.B. van Gijzen TU Delft

I. van Beuzekom, MSc ORTEC

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

The work in front of you is the result of my thesis for a MSc title in Applied Mathematics at
Delft University of Technology. I would like to thank several people that made it possible for
me to finish this work.

I was lucky to have two very dedicated supervisors during this whole process: Iris and There-
sia. Thank you, Iris, for your endless enthusiasm, ideas and for always reminding me of the
bigger picture. Thank you Theresia, for the motivating meetings, all your advice and for lots
and lots of proofreading. It was great to work with you both.

I look back at a wonderful internship experience at ORTEC. I would like to thank my colleagues
for interesting talks and for a lot of fun in the office. Special thanks to Bolor and Tim for help
with coding in Pyomo, to the linksachterin crew for all the songs on Friday, and to Julie for
many great talks.

A large part of this thesis is written from home, both in Delft and at my parents place. To my
roommates in Delft: thank you for all the support and comic relief. Especially Bas, for much
help and coffee, and Charlotte and Merlijn: it was a pleasure to be in the same graduation
boat. And lastly, to my parents and my brothers: thank you for a great time during our lock-
down together. You are my favorite network!

Noortje Bonenkamp
Delft, July 2020

iii

Nomenclature

Parameters

𝜂፤ Standing loss factor for storage of energy carrier 𝑘

𝜇።፣ Multiplicator on arc/edge (𝑖, 𝑗) representing distance losses or conversion rates

𝜉፤ Efficiency loss factor for storage of energy carrier 𝑘

𝑏።፭ Demand at node 𝑖 at time 𝑡

𝑐፤፭ Costs of building a single storage unit for carrier 𝑘 at time 𝑡

𝑐፬፭ Costs of building a single supply unit 𝑠 at time 𝑡

𝑐።፣፭ Costs of building a single asset on arc/edge (𝑖, 𝑗) at time 𝑡

𝑔።፭ Gas supply at node 𝑖 at time 𝑡

𝑢፤ Capacity of a single storage unit for energy carrier 𝑘

𝑢፬፭ Capacity of a supply unit 𝑠 at time 𝑡

𝑢።፣ Capacity of a single asset on arc/edge (𝑖, 𝑗)

Sets

𝐸 Set of edges

𝐾 Set of energy carriers

𝐿 Set of locations

𝑇 Set of time periods

𝑉 Set of nodes

Variables

𝑊ፈፍ
።፭ Energy flow that gets stored at location 𝑖 at time 𝑡

v

vi Nomenclature

𝑊ፎፔፓ
።፭ Energy flow that gets supplied from storage at location 𝑖 at time 𝑡

𝑥።፣፭ Energy flow on edge (𝑖, 𝑗) at time 𝑡

𝑧።፣፭ Number of assets built at arc/edge (𝑖, 𝑗) at time 𝑡

𝑧፬።፭ Number of electricity supply units of type 𝑠 built at node 𝑖 at time 𝑡

𝑧ፖ።፭ Number of storage units built at node 𝑖 at time 𝑡

Glossary

CHP combined heat- and power plant.

GHG greenhouse gases.

HP heat pump.

MES multi-energy system.

P2G power-to-gas unit.

RES renewable energy sources.

vii

Contents

1 Introduction 1
1.1 Research motivation . 1
1.2 Research objective and questions . 3
1.3 Relevance . 4

2 Background 7
2.1 Multi-energy systens . 7
2.2 Network flow and design . 10

2.2.1 The minimum cost flow model . 10
2.2.2 Network design problems . 12

2.3 Solution Methods . 16
2.3.1 Branch and bound methods . 16
2.3.2 Decomposition methods . 18

2.4 Complexity classes . 20

3 The Multi-Energy System Design Problem 23
3.1 Model description . 23
3.2 Model formulation . 27
3.3 Problem characteristics . 35
3.4 Computational complexity of the MESDP . 37

4 Empirical Research 43
4.1 Background . 43

4.1.1 Theoretical vs. empirical research . 43
4.1.2 Assessing implementations . 44
4.1.3 MIP solvers . 47

4.2 Experiments. 48
4.2.1 Experiments with default settings . 49
4.2.2 Experiments with parameter tuning . 50

5 Valid inequalities 53
5.1 Theory . 53
5.2 Valid inequalities for the MESDP . 55
5.3 Implementation . 65

6 Decomposition methods 67
6.1 Benders decomposition . 67

6.1.1 Classical Benders decomposition . 67

ix

x Contents

6.1.2 Improving the Benders decomposition method 71
6.1.3 Benders decomposition for the MESDP . 72

6.2 Lagrangean Relaxation . 79
6.2.1 Theory . 80
6.2.2 The subgradient method . 81
6.2.3 Lagrangean relaxation for the MESDP . 82

7 Computational results 87
7.1 Casy study . 87
7.2 Experiments with the Gurobi solver . 88

7.2.1 Experiments with default settings . 91
7.2.2 Experiments with parameter variations and valid inequalities 95

7.3 Decomposition methods . 105
7.3.1 Benders decomposition . 105
7.3.2 Lagrangean relaxation . 107

7.4 Summary . 107

8 Conclusions and recommendations 109
8.1 Conclusions . 109
8.2 Recommendations . 110

Bibliography 111

A Additional figures 117

1
Introduction

In this introduction, we first explain the motivation for this research by introducing the urgency
for and challenge of designing multi-energy systems. Second, we introduce the research ob-
jective and questions, and provide the outline of this report. Third, we explain the scientific and
practical relevance of this research.

1.1. Research motivation
Climate change is one of the biggest challenges of the 21st century. In order to prevent the
world from its worst impacts, the transition to a low-carbon society has to be made as quickly
as possible. This is defined as the Energy Transition, which aims to transform the current en-
ergy system that is based on fossil fuels into one that is based on renewable energy sources.
Creating a society that can function without fossil fuels, while maintaining maintaining or even
increasing the current level of prosperity is a highly complex process in which decision makers
have to consider multiple environmental, social and financial objectives.

Transforming the energy system

The energy supply sector is the largest contributor to global emissions from greenhouse gases
(GHG) (Bruckner et al., 2014). Under the Paris agreement, world-wide targets on reducing GHG
emissions and increasing the share of renewable energy sources (RES) have been set, pushing
the decarbonization of our energy system (European Commission, 2015). Multiple options ex-
ist for improving the design of energy systems, such as energy efficiency improvements, fugi-
tive emission reduction, implementation of low GHG energy supply technologies, such as RES
and nuclear power, and carbon capture- and storage. Due to significant efforts worldwide at
various levels, RES have been increasingly implemented in the power generation mix over the
last years (Bruckner et al., 2014). However, two challenges arise here. First, decarbonization
of existing uses of electricity is only part of the story. Other energy sectors, such as heating
and cooling, are also a major contribution to energy consumption as well as GHG emissions,
and these sectors are harder to decarbonize than electricity (Mancarella, 2014). Second, RES
can have large fluctuations in supply at different temporal scales and provide mostly electric-
ity, whereas that is currently only less than 20% of the worldwide energy demand (IEA, 2019).

1

2 1. Introduction

Future energy systems should be able to cope with thesemismatches in both energy carrier
and time. To achieve a truly reliable and sustainable energy system, long-term strategies that
address all energy sectors are required.

Integrating multiple energy carriers (for example electricity, heating/cooling and gas) in a holis-
tic whole-energy system could address these challenges (Mancarella, 2014). Such a coupled
system has the potential to provide secure and affordable energy to present and future gener-
ations while meeting ambitious environmental targets. Better understanding and development
of these so-called integrated ormulti-energy system (MES)s, where different energy carriers op-
timally interact at different levels, is therefore crucial for the energy systems of the future. In
MES, the interactions between energy carriers are exploited in the design and operation phase,
improving the technical, environmental end economic performance of the system. Combin-
ing or coupling the traditionally separate energy systems can result in a number of benefits, as
it becomes possible to take advantage of specific virtues of each energy carrier (Geidl et al.,
2007). For example, electricity can easily be produced in a sustainable way, but is inefficient
and expensive to store, especially at mid to long-term; whereas a natural gas equivalent is diffi-
cult to produce in a sustainable way, but can be stored using relatively simple and cheap tech-
nologies. Through converter devices, that transform one energy carrier into another, separate
energy systems can be coupled, which enables exchange of energy among them.

Figure 1.1: Integrating different energy infrastructures is crucial for energy systems of the future.
Source: Kopernikus/BMBF.

Optimizing multi-energy systems

Due to the high variety of possibilities both in how energy is used and in how it is converted
and/or stored, optimizing the design and operation of a multi-energy system results in a com-
plex problem with many decision variables. With the increasing interaction of the electrical
smart grid with other energy sectors, it becomes more important to develop models that are

1.2. Research objective and questions 3

capable of dealing with the full complexity of MES problems to support policy makers and in-
dustry. This becomes even more apparent when we consider the long-term consequences and
high impact of decisions on energy infrastructure. Various models and methods have been
developed to find the optimal coupling and energy exchange among multiple energy carriers
based on various criteria such as cost, emissions, energy efficiency, availability, security, and
other parameters (Geidl et al., 2007). However, most existing models are not capable of op-
timizing both geographical and temporal aspects of all energy carriers (Van Beuzekom et al.,
2016), which therefore represents a key research opportunity.

In this research, we investigate a model that intends to optimize the design of a MES in which
electricity, gas and heat networks for mid-size cities are combined through conversion and
storage assets. The developed model builds upon research of Van Beuzekom (2017), which
has a unique approach in addressing a MES that combines e.g. temporal and geographical
constraints for the investment planning of three energy carriers. The model intends to opti-
mize the topology and operation of electricity, heat and gas networks simultaneously, given
demand and resources. Solving real-case problem instances of this model with state-of-the-
art solvers is computationally challenging. In this research, we intend to examine computa-
tional “bottlenecks” of this model, and provide strategies to reduce the resulting optimality
gap.

1.2. Research objective and questions
This research aims to solve the proposed multi-energy systems model in an efficient way. Our
main research question is stated as follows.

What are good solution methods for optimizing the design of multi-energy systems, using the
developed model?

With the following sub-questions:

1. What are suitable solution methods for solving these types of problems?

2. How difficult is the model from both a theoretical and practical viewpoint?

3. How succesful are the solution methods for solving large instances and can these prob-
lem instances be solved to (near) optimality?

4. What is the influence of taking into account Brownfield data on the complexity of the model?

Report outline

This report is structured around the subquestions. After introducing the concept of multi-
energy systems in more depth, as well as the fundamentals of network design and relevant
previous work in Chapter 2, we intend to answer subquestion 1. In Chapter 3, we introduce
details of the model and our formulation. In addition, we analyze the model’s computational
complexity and characteristics within a network optimization framework, and intend to answer

4 1. Introduction

the first part of subquestion 2. In Chapter 4, we intend to answer the second part of this sub-
question, by examining the performance of a state-of-the-art solver and, subsequently, investi-
gate how its settings can be improved for solving a set of varying problem instances. In Chap-
ter 5, we formulate various valid inequalities for our model that can be used as an extension to
the standard solver. In Chapter 6, we introduce Benders- and Lagrangian based algorithms for
our model. In Chapter 7, we perform various computational experiments and intend to answer
subquestions 3 and 4. With our findings, we can answer the main question and provide ideas
for future research in Chapter 8.

Research scope

The model can be formulated in different ways, but we only investigate and conduct experi-
ments with a single formulation that we base on previous work. Even though the long-term
planning of energy infrastructure consists of many uncertain factors both on the supply- and
demand side, we limit this research to deterministic optimization. In addition, our focus lies
mainly on mathematical programming methods for reasons that will become apparent in the
following chapters.

1.3. Relevance
This study has both scientific and practical relevance.

Scientific relevance

The proposed model by Van Beuzekom (2017) is the first MES framework combining spatial
and long-term temporal aspects for three energy networks, and therefore, contributes to the
existing body of MES research. Investigating this model in a mathematical optimization con-
text, we are dealing with a strongly NP-hard network design problem with many additional
complicating factors, as will become apparent in the following chapters. To the best of our
knowledge, there have not been many studies of network optimization models that share all
of these complicating factors. For instance, we consider a purely integer objective function, as
operational costs are modeled as energy losses. In addition, we are dealing with generalized
flow constraints due to these energy losses and conversion rates. Another complicating factor
is the possibility of flow to travel to the next time period through storage assets. Network opti-
mization models consisting of all of these factors have not yet been investigated. In addition,
very few studies on (multi-period) network design problems that model energy infrastructure
have been conducted.

Practical relevance

The goal of the proposed model is to create a framework that helps decision makers on dif-
ferent levels with designing a pathway to a sustainable and reliable energy system in the most
cost-efficient manner. Though there are many uncertainties in any long-term planning situa-
tion, especially one with so many variables as an energy transition, the model can be insightful

1.3. Relevance 5

for analyzing difficult trade-offs between investment possibilities. This is especially interesting
in the field of MES, as there are no fully coupled models that can provide this insight.

Although the model that we investigate can be applied to various scales, we will demonstrate
its use on a city-scale in this research. Cities play a crucial role in the battle against climate
change. As cities currently emit more than 70% of the GHG emissions and an increasing pro-
portion of the world’s population is moving to urban areas, improving the design of urban en-
ergy systems is crucial for reaching environmental targets (Samsatli and Samsatli, 2018). At
the same time, cities are at high risk from climate change consequences. Determined to take
action, many cities have been shown to committing themselves to challenging sustainable de-
velopment goals (Van Beuzekom et al., 2016). A multi-energy perspective on the urban energy
system is crucial for achieving these goals, which is why we foresee great benefit from this
framework for urban decision makers. Providing decision makers with a good model might
provide them with insights that incentivize them to take action on different levels in the - for
them often rather unknown - field of MES.

By investigating suitable mathematical optimization methods for solving real-case problem
instances in this research, we intend to improve computing times for finding good solutions.
On a city level, even a small improvement in the objective value corresponds to large costs
savings in infrastructure investments. Therefore, improving the model’s objective and com-
puting times has a significant effect from an economic point of view. In addition, the model
can support decision makers with achieving a more reliable and sustainable energy system,
as it takes environmental and demand constraints over the whole energy system into account,
while optimizing over all of these simultaneously. Improving ways in which the general model
is solved considering all of these constraints is attractive from a social- and environmental
point of view. More specifically, as we intend to understand and improve the most general ver-
sion of the model, modifications or extensions to the model might be easier to make, which
can make the model more useful and therefore more attractive to apply in practical cases.

2
Background

In this chapter, we first discuss previous work on multi-energy systems and introduce the model
that our research builds upon. Second, we review the fundamentals of network design and dis-
cuss solution methods that are relevant to our model. Third, we discuss the theory of compu-
tational complexity.

2.1. Multi-energy systens
In the modern world, different forms of energy are required, such as coal, petroleum prod-
ucts, biomass, and grid-bound energy carriers like electricity, natural gas, and district heat-
ing/cooling. Different energy forms are managed and transported through their own infrastruc-
ture. Interactions between these energy infrastructures have always taken place at different
levels and are increasing (Mancarella, 2014): from a physical perspective, all energy systems
are “multi-energy”. However, the different energy infrastructures are considered and operated
almost independently.

The need for a whole-system perspective

The concept of multi-energy systems refers to considering a holistic system-perspective in op-
timization and evaluation of a case (for example within a building, a city or an entire country).
Because there is a need for decarbonization of our entire energy system, and not just electric-
ity, the role of energy systems integration has recently increased in importance (Mancarella
et al., 2016). In classical case studies, often only one energy sector is considered (such as
heat or electricity), whereas the approach for analyzing MES expands the boundary beyond in-
dividual sectors, taking a whole-system perspective on all of the activities in the energy sys-
tem. This perspective allows for identifying how traditionally independent energy systems
can best be integrated to improve their collective performance. The question now arises as
to what is the optimal way of integrating our energy systems.

There is a growing body of literature that recognises the importance of multi-energy systems.
Geidl et al. (2007) were one of the first to propose the integration of energy systems as an im-
portant concept for future energy systems. Introducing the concept of energy hubs, i.e., units
where multiple energy carriers can be converted, conditioned and stored, they inspired much

7

8 2. Background

follow-up research in the field of MES. Kroposki and OMalley (2012) introduce different exam-
ples of successful energy system integration. Mancarella et al. (2014) provide a, now rather
outdated, overview of different models and assessment techniques that are available to ana-
lyze MES. They stated that, although it is becoming more established that MES perform better
than classical separate energy systems from energy, environmental, and techno-economic
perspectives, there is a lack of a comprehensive view on them. A single definition of a MES
has not yet been made, which is why it is challenging for researchers and policy makers to find
common terminology and system boundaries.

Modeling MES

In another paper, Mancarella et al. (2016) addressed the need for modeling the (multi) energy
system as a whole, instead of separate energy sectors. Modeling helps to assess interactions
between different energy sectors and get insight into benefits and potential (or unforeseen)
constraints and drawbacks from systems integration. They address different challenges. First,
they highlight the often fragmented nature of ownership and operational responsibilities in en-
ergy systems, despite their physical interaction. Responsibilities are split up among a num-
ber of parties, that ideally compete with each other. The natural monopolies that often de-
fine energy network infrastructures further complicate interaction between different actors
in MES. One can think of examples in which options have moderate benefits in separate en-
ergy systems, but which can be very attractive for the energy system as a whole. Currently, the
incentives for industry to invest in such solutions might not be strong enough. Second, mis-
alignment of the regulation and financing of different networks can be an issue. For instance,
heat networks are often treated as private investments, while electricity- and gas networks are
heavily regulated and benefit from privileged conditions or financing. If “business as usual”
regulations do not transform our energy-systems into a MES, then there might be a need to
revise the set of responsibilities and opportunities that different actors, such as owners, oper-
ators, energy retailers, etc., have and to introduce new regulations on existing parties. These
changes cannot be made without evidence that they will have the desired effect. This again
points out the need for accurate MES models.

Unfortunately, modeling MES in an accurate way is a complex task. First and foremost be-
cause of the added complexity of combining multiple infrastructures. In the majority of stud-
ies on MES, the problem is therefore often simplified beforehand, by analyzing or optimizing
the systems separately and connecting them iteratively (Van Beuzekom et al., 2020). The
question of what level of detail is needed is challenging. This is often the case for modeling
complex systems, but even more so for modeling MES, since different levels of simplifica-
tions/reductions can be required for different sub-systems. In addition, it is challenging to
adopt suitable temporal- and spatial scales and perspectives as different scales should be
considered for different energy sectors (Mancarella et al., 2016). For instance, for an electric-
ity and heat network, different time periods are interesting to use. Particularly sensitive to the
choice of timescales is the modeling of energy storage, which is something that becomes in-
creasingly important (Ruth and Kroposki, 2014). However, most existing MES models are not

2.1. Multi-energy systens 9

capable of optimizing the spatial and temporal aspects of all energy carriers.

The use of mixed-integer linear programming (MILP) for modeling energy optimization prob-
lems has proven to be a particularly useful tool in literature (Gabrielli et al., 2018). MILP can
capture the features of energy problems well and approximate solutions within reasonable
computation times; although this often requires significant model simplifications to deal with
the complexity of such problems. There are many studies in which objectives for individual
energy networks at a variety of scales are optimized using MILP (Adams and Laughton, 1974;
Chang, 2014; Hugo et al., 2005). Less publications focus on the integrated flow of combined
energy networks. In most of these, a network of two energy sectors is modeled using MILP,
as opposed to the three energy sectors that we consider in this thesis (Casisi et al., 2009;
Gabrielli et al., 2018; Wakui et al., 2014; Weber and Shah, 2011; Wouters et al., 2015). In addi-
tion, in most of these publications a static case is considered. There are examples of multi-
period optimization problems, but they mostly consider a time period of maximally one year
(Omu et al., 2013; Weber and Shah, 2011), using a number of design days. Besides that, often
the operations of a network were optimized, instead of the network design or the (long-term)
investment strategy. Longer time horizons for investigating MES have not yet been consid-
ered at the design phase (Gabrielli et al., 2018). However, it is crucial to consider long-term
investments on infrastructure design: not only to enable an energy transition, incorporate large
amounts of RES, and reach the stringent 2050 climate goals, but also because, more practi-
cally, optimizing the design of energy networks can provide significant cost savings in the or-
der of hundreds of billions of dollars (Balakrishnan et al., 2017).

A long-term MES planning model

Van Beuzekom et al. (2017) were the first to propose an optimal long-term investment plan-
ning model for energy networks in medium-sized cities which couples long-term planning of
all three main energy infrastructures: electricity, gas and heat. In the following chapter, we for-
mally introduce the concepts of the model and our formulation of it. The model’s approach is
unique in its long-term planning optimization of a network of three energy sectors simultane-
ously. It illustrates the effects of integrating the planning of MES on the different networks and
on interactions between them. Interactions between the respective energy infrastructures are
modeled and the network is optimized by considering all of the individual energy infrastruc-
tures and all of the (discrete) time periods simultaneously. The model is general, can easily be
extended and is applicable over different spatial and temporal scales. It includes geograph-
ical and temporal investment decisions on energy distribution networks, - conversion, - stor-
age and - supply, i.e., it should decide where and when to build, and its objective is to minimize
long-term investment costs. Modeling investment decisions as integer variables over a dis-
crete set of time periods and locations, and energy quantity as a continuous variable results
in a mixed-integer linear program (MILP). There is a large degree of freedom: energy flow can
be converted into other forms, travel to different locations or get stored and used in another
time period, and investment decisions can be made in each time period and at each location.
Solving this fully coupled optimization problem with state-of-the-art solvers is therefore com-

10 2. Background

putationally challenging (Van Beuzekom et al., 2020).

Often, energy systems can be modeled as networks defined by a collection of nodes and arcs
with energy flowing from node to node along paths in the network. This is also the case for the
MES model that we investigate in this research. Therefore, we now introduce some fundamen-
tal concepts of network flow and network design.

2.2. Network flow and design
In this chapter, we review the fundamentals of network flow and network design, as well as
previous work within these fields that is specifically interesting for our model.

Many real-life infrastructures can be represented by networks. Network design consists of,
broadly defined, the planning and modification of these networks. In network flow problems,
entities move from one location to another in an underlying network, and ways to do this as ef-
ficient as possible are looked into. A good understanding of both network design and network
flows is crucial for designing energy systems, as many energy infrastructure design problems
can be modeled as network flow problems (Gabrielli et al., 2018).

2.2.1. The minimum cost flow model
The theory of network flow is reviewed based on the textbook by Ahuja, Magnanti and Orlin
(1993). We assume that the reader is familiar with the basic concepts and tools from graph
theory and linear programming.

There are many applications of network flow models. A common class of network flow mod-
els consists of physical networks that arise in transportation settings and several other dis-
ciplines of science and engineering. But also for problems that might not appear to involve
networks at all, network flow problems arise. For instance, many scheduling applications can
be modeled as network flow problems.

The most fundamental of all network flow problems is the minimum cost flow model. In this
problem, one wishes to determine a least cost shipment of a commodity through a network,
while demands at nodes are satisfied from supplies at other nodes. The model has many ap-
plications, for instance in transportation- and communication networks, distribution problems,
scheduling, and so on. Special versions of the minimum cost flow problem include:

• Shortest path problem

• Maximum flow problem

• Assignment problem

• Transportation problem

• Circulation problem

Ahuja et al. introduce a standard mathematical programming formulation of the minimum

2.2. Network flow and design 11

cost flow problem. Let 𝐺 = (𝑁, 𝐴) be a directed network, where 𝑁 is a set of 𝑛 nodes and 𝐴 is a
set of𝑚 directed edges. Each edge (𝑖, 𝑗) ∈ 𝐴 has an associated cost 𝑐።፣ , denoting the cost per
unit flow on that edge, a capacity 𝑢።፣ that denotes the maximum amount that can flow on the
edge and a lower bound 𝑙።፣ that denotes the minimum amount that must flow on the edge. For
each node 𝑖 ∈ 𝑁, 𝑏(𝑖) denotes its supply/demand. Nodes 𝑖 where 𝑏(𝑖) > 0 are called supply
nodes; nodes 𝑖 where 𝑏(𝑖) < 0 are called demand nodes (where the demand is equal to −𝑏(𝑖));
and nodes where 𝑏(𝑖) = 0 are transshipment nodes. The edge flows are the decision variables
in the minimum cost flow problem. Let 𝑥።፣ be the flow on edge (𝑖, 𝑗) ∈ 𝐴. The minimum cost
flow problem is formulated as follows:

Minimize

∑
(።,፣)∈ፀ

𝑐።፣𝑥።፣ (2.1a)

subject to

∑
{፣∶(።,፣)∈ፀ}

𝑥።፣ − ∑
{፣∶(፣,።)∈ፀ}

𝑥፣። = 𝑏። ∀𝑖 ∈ 𝑁, (2.1b)

𝑙።፣ ≤ 𝑥።፣ ≤ 𝑢።፣ ∀(𝑖, 𝑗) ∈ 𝐴, (2.1c)

where ∑፧።ኻ 𝑏(𝑖) = 0.
Constraints (2.1b) are referred to asmass balance constraints: the total outflow minus inflow
must equal the supply/demand of every node. For a supply node, the outflow exceeds the in-
flow; for a demand node, the inflow exceeds the outflow; and for transshipment nodes, the
outflow equals the inflow. Constraints 2.1c are referred to as flow bound constraints. If lower
bounds are not stated for a specific problem, it is assumed that the value of the lower bounds
is zero.

Generalized flow problems

In the minimum cost flow problem as formulated above, it is assumed that edges conserve
flows. In some applications however, this assumption is violated. In generalized flow prob-
lems, edges are allowed to consume or generate flow. If 𝑥።፣ units of flow enter an edge (𝑖, 𝑗),
then 𝜇።፣𝑥።፣ units of flow arrive at node 𝑗. 𝜇።፣ is a positivemultiplier (gain/loss factor) associ-
ated with the edge (Figure 2.1). It is a loss factor if 0 < 𝜇።፣ ≤ 1 and a gain factor if 𝜇።፣ > 1. In
the “classical” minimum cost flow problem, 𝜇።፣ is equal to 1. The generalized flow problem is
formulated as follows:

12 2. Background

Minimize

∑
(።,፣)∈ፀ

𝑐።፣𝑥።፣ (2.2a)

subject to

∑
{፣∶(።,፣)∈ፀ}

𝑥።፣ − ∑
{፣∶(፣,።)∈ፀ}

𝜇፣።𝑥፣። = 𝑏። ∀𝑖 ∈ 𝑁, (2.2b)

0 ≤ 𝑥።፣ ≤ 𝑢።፣ ∀(𝑖, 𝑗) ∈ 𝐴, (2.2c)

Without loss of generality, it is assumed that the lower bound on every edge flow is equal to
zero. Generalized flow problems arise in several applications, such as power transmission

Figure 2.1: In the generalized flow problem, flow on edge (።, ፣) gets multiplied with a factor ᎙ᑚᑛ

through electric lines, with power lost with distance traveled; or flow of water in pipes that lose
water due to seepage.

Generalized flow problems are often significantly more complex than classical network flow
problems when using network optimization solution methods, as some “nice” properties of
regular network flow problems cannot be extended to the generalized flow case. First, the total
supply does not necessarily equal the total demand in generalized flow problems. In addition,
integrality properties of classical network flow problems do not extend to the generalized case
if the gain/loss factors are not integer-valued.

2.2.2. Network design problems
Sometimes we are not only interested in the optimal flow in a network, but also (or particu-
larly) in its optimal design. Network Design or Topology Design problems are network flow
problems in which the set of “installed” nodes or links is optimized in a network. The objec-
tive is to minimize the total cost of the system, i.e., the sum of the design costs and the rout-
ing costs. Typically, these problems appear in long-term network planning projects, such as
warehouse location, hub location, and so on. Greenfield planning is a planning study in which a
network is built from scratch and Brownfield planning is a study in which a network exists and
nodes/edges can be added or upgraded.

In a network design model, commodities also have to be routed on arcs between different
points of origin and destination. In addition to a unit (variable) cost for routing the flow, a fixed
cost for using an arc can be imposed. Because these design variables involve choices from a
discrete set of values, the network design problem (NDP) can be modeled as a (mixed) integer

2.2. Network flow and design 13

linear program. Magnanti et al. (1984) propose the following integer programming-based for-
mulation for the general network design model, for a network 𝐺 = (𝑁, 𝐴). Let 𝐾 denote the set
of commodities 𝑘. Let 𝑅፤ denote the required amount of flow of commodity 𝑘 to be shipped
from its point of origin 𝑂(𝑘) to its point of destination 𝐷(𝑘). There are two types of variables:
one modeling discrete choice decisions and one modeling continuous flow decisions. Let 𝑦።፣
denote a binary variable, indicating whether arc (𝑖, 𝑗) is chosen as part of the network design,
and let 𝑓፤።፣ denote the amount of flow of 𝑘 on (𝑖, 𝑗). The (mixed) integer linear program for the
NDP is then stated as follows, where the set 𝑆 includes all the side constraints on either the
flow or the design variables:

Minimize

∑
(።,፣)∈ፀ

∑
፤∈ፊ

𝑐፤።፣𝑓፤።፣ + ∑
(።,፣)∈ፀ

𝐹።፣𝑦።፣ (2.3a)

subject to

∑
{፣∶(።,፣)∈ፀ}

𝑓፤።፣ − ∑
{፣∶(፣,።)∈ፀ}

𝑓፤፣። =
⎧⎪
⎨⎪⎩

𝑅፤ , if 𝑖 = 𝑂(𝑘)
−𝑅፤ , if 𝑖 = 𝐷(𝑘)
0, otherwise

∀𝑘 ∈ 𝐾 (2.3b)

∑
፤∈ፊ

𝑓፤።፣ ≤ 𝐾።፣𝑦።፣ ∀(𝑖, 𝑗) ∈ 𝐴 and 𝑘 ∈ 𝐾 (2.3c)

(𝑓, 𝑦) ∈ 𝑆 (2.3d)

𝑓፤።፣ ≥ 0, 𝑦።፣ ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾. (2.3e)

Interactions between design decisions and routing of flow can be considered in these types of
models, as the optimal solution minimizes the combination of the per unit (variable) flow rout-
ing costs 𝑐፤።፣ and the fixed arc design costs 𝐹።፣. The flow costs depend on the total arc flow vol-
ume, and the fixed charge costs depend on whether the arc is “opened”, i.e., whether capacity
is installed on the arcs. Constraints (2.4b) are the usual network flow conservation equations.
Constraints (2.3c) state that the total flow 𝑓።፣ = ∑፤∈ፊ 𝑓፤።፣ of all of the commodities 𝑘 cannot
exceed the capacity of each edge if the edge is chosen as part of the network design, and that
the capacity of an edge is zero if it is not chosen as part of the design.

Magnanti et al. (1984) show the intimate connection between the general network design
problem and other well-known network flow problems, such as the shortest-path problem,
vehicle routing problem, the traveling salesman problem, facility location models, minimum
spanning trees and several other combinatorial optimization problems. They state that mi-
nor modifications to the model can make it far more complicated to solve. Assumptions on

14 2. Background

the (un)directness of the arcs, an (in)complete demand or on the amount of sources can af-
fect our ability to solve network design problems. Magnanti et al. show the NP-hardness of
the general NDP and state that there is extensive empirical evidence suggesting that large
scale (50-100) NDPs are extremely difficult to solve. When, for instance, budget constraints
are taken into account, even finding a near-optimal solution in an efficient manner is most of
the times very difficult.

Commonly used for modeling network design problems is the instance of the NDP with un-
capacitated arc capacitites, linear routing costs, fixed opening costs and no side constraints.
This problem is often referred to as the fixed charge design problem and is known to be an NP-
hard problem (Holmberg and Yuan, 1998). In Section 2.3, solution methods for some of these
network design problems are discussed.

The network loading problem

A special version of the NDP, the network loading problem (NLP), models the design of net-
works for which the variable flow costs are zero and facilities of fixed capacity are available
to carry flow. Integer amounts of these facilities can be loaded on arcs of the network. In the
NLP, the total costs for loading facilities on each of the arcs is minimized, where a given de-
mand has to be met. In Figure 2.2, it is illustrated what the cost function for flow 𝑥 looks like in
an instance where there is one type of facility that can be loaded on the arcs.

Figure 2.2: The cost function for sending flow ፱ over a link in the network loading
problem. In this instance, facilities all have the same price and capacity.

Magnanti et al. (1991) modeled the network loading problem with two facilities (the Two Facil-
ity Loading Problem or TFLP). A piecewise staircase form is assumed for the fixed costs and
no costs are assumed for the routing of flow. The TFLP is modeled as follows:

2.2. Network flow and design 15

Minimize

∑
(።,፣)∈ፀ

(𝑎።፣𝑥።፣ + 𝑏።፣𝑦።፣) (2.4a)

subject to

∑
{፣∶(።,፣)∈ፀ}

𝑓።፣ − ∑
{፣∶(፣,።)∈ፀ}

𝑓፣። =
⎧⎪
⎨⎪⎩

−𝑅፤ , if 𝑖 = 𝑂(𝑘)
𝑅፤ , if 𝑖 = 𝐷(𝑘)
0, otherwise

∀𝑖 ∈ 𝑁, for all 𝑘 ∈ 𝐾 (2.4b)

∑
፤∈ፊ
(𝑓፤።፣ + 𝑓፤፣።) ≤ 𝑥።፣ + 𝐶𝑦፤።፣ ∀(𝑖, 𝑗) ∈ 𝐴 (2.4c)

0 ≤ 𝑓፤።፣ , 𝑥።፣ , 𝑦።፣ ∈ ℤዄ for all (𝑖, 𝑗) ∈ 𝐴, for all 𝑘 ∈ 𝐾 (2.4d)

In the above formulation, 𝑁 and 𝐴 denote the set of nodes and arcs of the network respec-
tively, and 𝐾 denotes the set of commodities. Commodity 𝑘 has origin 𝑂(𝑘), destination 𝐷(𝑘)
and demand 𝑑፤. There are two types of facilities considered: low capacity (LC) and high ca-
pacity (HC) facilities. The LC facility has capacity 1 and the HC facility has capacity 𝐶. Design
variables 𝑥።፣ and 𝑦።፣ define the number of LC and HC facilities that are loaded on arc (𝑖, 𝑗), and
𝑎።፣ and 𝑏።፣ represent the costs of loading a single LC or HC facility. Flow variables 𝑓፤።፣ model
the flow of commodity 𝑘 on arc (𝑖, 𝑗). The objective function minimizes the total cost for load-
ing all of the facilities.

From a computational complexity point of view, the TFLP is difficult. By reducing the strongly
NP-complete 3-partition problem to the decision version of the TFLP, Magnanti et al. show that
the TFLP is strongly NP-hard. In Chapter 3, we prove in a similar way that this also holds for
our problem.

Multi-period extensions

Most of the work carried out in the field of network design concerns static models, meaning
that an optimal design is looked for when the requirements at a specific time instance are con-
sidered. The evolution of requirements over a longer time period is not taken into account in
these models. A possible way of considering this evolution over time is to solve the static
model at the consecutive time instances 𝑡 = 0, 1, … , 𝑇 of the time period [0, 𝑇], i.e., finding a
sequence of optimal static solutions. However, as pointed out in a paper by Minoux (1987),
because of the discontinuous nature of possible investment decisions, examples are easily
found where such a sequence is not only far from the optimum, but also practically infeasi-
ble. Minoux states that good investment policies can only be obtained by taking the dynamic
nature of network optimization problems into account. Still, little attention has been given to
multi-period extensions of network design problems, likely due to the intrinsic complexity of
realistic dynamic models.

16 2. Background

Most studies on multi-period network design consider problems in the telecommunication net-
works. Even though the problem settings are different, many of these models apply equally
well to energy infrastructure design models, as the underlying mathematical models are of-
ten the same. Minoux (1987) was the first to study the complexity and the dynamic nature of
the multi-period NDP. In this research, a dynamic NDP to investigate network expansion over a
given time period [0, 𝑇] is presented. The time period is divided into 𝑇 intervals of unit duration
and it is required that, at each time instance, the installed capacity on each link is sufficient
to meet the traffic requirements of that link. Once an investment is made, it is not reconsid-
ered later on. Link capacitites are therefore considered as non-decreasing functions of time.
The resulting dynamic NDP is highly combinatorial, and finding exact solutions is extremely
difficult. Efficient approximation algorithms have to be devised to approximate near-optimal
solutions. Some of these algorithms for different variations of the multi-period network design
problem are discussed in Section 2.3.

2.3. Solution Methods
In this section, we discuss various solution methods for network design problems. We explic-
itly focus on introducing methods that are relevant for solving our MES problem.

For a few special cases of the NDP, there are efficient optimization methods (Magnanti and
Wong, 1984). For instance, a fixed charge design problem with zero routing costs, uncapaci-
tated arcs and a complete demand (i.e., a demand between each pair of nodes), reduces to a
minimal spanning tree problem. A fixed charge design problem with zero fixed costs, on the
other hand, reduces to a shortest path problem for each commodity. It is well-established that
very efficient algorithms exist for the shortest path problem and the minimal spanning tree
problem. Therefore, whenever routing costs or design costs are dominant, and the network
is undirected and uncapacitated, the problem becomes relatively easy to solve. The addition
of various side constraints can make special purpose network flow programming methods
inapplicable. However, by exploiting substructures of such a problem with complicating side
constraints, one might find subproblems that can be solved using network flow programming
algorithms. In this method, problems are decomposed into subproblems that can be solved as
stand-alone models using efficient special purpose algorithms. In more general and complex
cases of the NDP, mathematical programming methods are necessary for obtaining exact so-
lutions (Magnanti and Wong, 1984). Since every network design model with linear functions
has a linear programming model, it is possible to solve them with general purpose linear pro-
gramming algorithms. When there are no integer variables and the NDP can be formulated as
an LP, the simplex method can be applied. For a detailed explanation of the simplex method,
we refer to (Ahuja et al., 1993). When there are integer variables present, branch and bound
methods are among the most effective techniques for general and complex cases of the NDP.

2.3.1. Branch and bound methods
For many optimization problems, direct solution methods might not exist, or they might be
highly inefficient. Branch and bound methods enable us to solve these “difficult” problems

2.3. Solution Methods 17

by applying existing methods to “easy” subproblems. By solving the easy subproblems, one
hopes to find a solution for the original problem.

General branch and bound

In general branch and bound methods, optimal solutions are found through a structural search
of the space of all feasible solutions (Lawler and Wood, 1966). In the search process, which is
represented by a tree of subproblems, the space of feasible solutions is iteratively partitioned
into smaller and smaller subsets (nodes) and lower bounds are calculated within each subset.
At some nodes, the corresponding subproblem can be split into smaller subproblems, creating
child nodes in the tree. Nodes with a bound that exceeds a known feasible solution are ex-
cluded from further partitioning (pruned). The algorithm keeps track of the best solution found
during the search, the incumbent, which can be updated throughout the whole search. When
the complete tree is visited, the partitioning terminates, and the incumbent equals an optimal
solution. The number of computations is related to the number of distinct bounding problems
created, i.e., the number of nodes in the tree.

For the remainder of our explanation of branch and bound methods, we will only consider how
they are applied for solving MILPs. For a complete overview of applications of branch and
bound methods, within and outside of the domain of mathematical programming, we refer to
Lawler and Wood (1966). Unless stated otherwise, we consider minimization problems.

In the case of (mixed) integer linear programs, the “easy” subproblems are linear programs,
that we can solve using the simplex method. Branch and bound methods continuously solve
linear relaxations, i.e., the version of the problem in which the integrality constraints are re-
laxed, and keep track of the best current feasible solution (incumbent). The root node of the
tree is the linear relaxation of the original problem. If all original integer variables have an in-
teger value in the optimal relaxed solution, an optimal integer solution to the original problem
is found. If this is not the case, then an integer variable with a noninteger value is chosen and
restricted to be lower than the rounded down non-integer value or higher than the rounded up
non-integer value. As an example, let 𝑥 be an integer variable which equals 3.3 in the LP relax-
ation of the original problem. Then, two subproblems (child nodes) are created in which 𝑥 ≤ 3
and 𝑥 ≥ 4. On both of these problems, the process is repeated.

For the LP relaxation in a node in the search tree, there are several possibilities.

• The LP relaxation is infeasible. If this is the case, then the corresponding node will be
pruned.

• The objective value of the LP relaxation is larger than the incumbent. If the objective
value of the relaxation is larger than the incumbent, then the node cannot yield a better
integral solution and will therefore be pruned.

• The objective value of the LP relaxation is better than the incumbent. In this case, two
new child nodes will be created.

18 2. Background

• All the integrality restrictions of the original MILP are satisfied in the LP relaxation. A fea-
sible solution is found and the node becomes a permanent leaf on the search tree: it is
no longer necessary to branch on it.

Best bound and gap The objective value of the incumbent is a valid upper bound (denoted by
𝑍ፔ) on the optimal solution of the MILP. There is also a valid lower bound (𝑍ፋ), which is ob-
tained by taking the minimum of all the objective values of the current leaf nodes. The differ-
ence between the current upper and lower bounds is known as the gap (denoted by 𝛾(𝑍ፋ , 𝑍ፔ)).
It is computed as follows

𝛾(𝑍ፋ , 𝑍ፔ) = {
0, if |𝑍ፋ| = |𝑍ፔ| = 0,
|𝑍ፔ − 𝑍ፋ|

max{|𝑍ፋ|, |𝑍ፔ|} , else
(2.5)

When the gap is zero, optimality is demonstrated.

Branch and cut Cutting plane methods solve linear relaxations of MILP’s and use violated con-
straints in the original problem to generate cuts (Winston and Goldber, 2004). These cuts are
additional constraints in the next iteration and the process is repeated until an optimal inte-
ger solution is found. Branch and cut methods combine both branch and bound and cutting
plane methods. They are known to have the ability to solve large MILP’s in reasonable time
(Matuschke et al., 2014) and lie at the heart of most state-of-the-art MIP solvers.

Since many NDPs are extremely difficult to solve, it can be helpful to strengthen the branch
and bound or branch and cut methods. There are multiple ways of strengthening these meth-
ods, and we highlight a few here.

Valid inequalitiesWithin a branch and bound or branch and cut algorithm, valid inequalities
(VI) can be added to the initial formulation of the MILP. This formulation has a better initial LP
relaxation and is often easy to implement. However, when considering VI, a trade-off has to be
made between a tighter LP relaxation and more difficult subproblems due to the addition of
constraints.

Heuristic methods When solving MILPs with branch and bound, it is extremely valuable to
have good incumbents and to find these as quick as possible. There are a few reasons for
this. Sometimes it might not be possible to solve a problem to provable optimality, for instance
if the underlying MILP is too difficult or if the solver can only run for a restricted amount of
time. Good incumbents help the solver to end up with the best possible solution at termina-
tion. It is therefore valuable to do a little extra work in some of the nodes of the search tree to
see if a good integer feasible solution can be extracted.

2.3.2. Decomposition methods
Various network design problems, however difficult they might be to solve, can have an at-
tractive substructure. Network design problems with variable flow costs, for instance, have

2.3. Solution Methods 19

shortest path problems as embedded network structure. When solving NDPs, it is therefore
often interesting to exploit their substructure algorithmically. In literature, many examples can
be found of decomposition based approaches that are applied to network design problems.
Among these, the Lagrangean relaxation method and Benders decomposition appear com-
mon methods in the field of network design, testified by a large body of literature as will be
discussed next. In Chapter 6, we provide a detailed explanation of these respective methods.

Lagrangean relaxation In literature, many examples can be found of Lagrangean relaxation
based approaches that are applied to network design problems. Studies on (static) fixed charge
network design often propose a Lagrangean relaxation approach, combined with subgradient
methods and branch and bound methods (Gendron and Crainic, 1998; Holmberg and Yuan,
1998, 2000). In all of these works, it it stated that Lagrangean relaxation used alone is insuf-
ficient to solve large-scale and difficult instances and that it works best when combined with
primal heuristics. Also the class of multi-period network design problems is an attractive can-
didate for Lagrangean relaxation. Various studies on multi-period network design problems
successfully applied variations of Lagrangean relaxation, again often in combination with
other methods, to find approximate solutions to the problem (Bernard Fortz and Enrico Gor-
gone, 2012; Chang and Gavish, 1995a; Dutta and Lim, 1992; Fragkos et al., 2017; Kubat and
Smith, 2001; Quelhas et al., 2007). Magnanti et al. (1993) apply a Lagrangean relaxation strat-
egy to the network loading problem and show that their bound is stronger than the LP relax-
ation in the case of the two-facility loading problem (TFLP). However, in another paper by Mag-
nanti et al. (1991), it is showed that for the TFLP, a linear programming formulation that in-
cludes valid inequalities always approximates the value of the MILP at least as well as the
Lagrangean relaxation bound. Dutta en Lim (1992) consider a joint multi-period capacity and
flow allocation problem on a network graph with internode traffic requirements for each pe-
riod. As their problem is combinatorially explosive, they propose a method for finding approx-
imate solutions based on Lagrangean relaxations. The method finds relatively good solutions
to the problem for instances of 30 nodes and six time periods. Chang and Gavish (1995b) sug-
gest in their paper tight lower bounding procedures for a multiperiod network expansion prob-
lem for a telecommunications network. For this, they develop a heuristic that combines La-
grangean relaxation with the addition of valid inequalities, and find that good solutions can be
found for various network instances.

Benders decomposition A survey provided by Costa (2005) presents an overview of appli-
cations of Benders decomposition for fixed charge network design problems. Benders de-
composition was usually applied to problems containing one set of integer variables, associ-
ated with the arcs in the network, and one set of continuous variables, associated with com-
modity flows. Costa stated that Benders decomposition is an efficient method for solving
network design problems, and may outperform other techniques such as Branch-and-Bound
or Lagrangean relaxation. Gabrel et al. (1999) propose an exact constraint generation ap-
proach for solving network optimization problems with general discontinuous step-increasing
cost functions. The procedure that they propose is a specialization of the Benders procedure.
They were the first to perform a systematic computational study providing exact optimal so-

20 2. Background

lutions to this class of network optimization problems and they confirm that standard LP soft-
ware can be practically applied for solving these. Gascon et al. (1993) combine Benders de-
composition and Lagrangean relaxation for a multi-period network design problem, where La-
grangean relaxations are used to solve the master problem. They found that their combined
method outperformed branch and bound methods. Fragkos et al. (2017) propose a formula-
tion for a multi-period multicommodity network design problem, capturing the time-dependent
network decisions. They develop a custom heuristic tailored to large-scale, multi-period prob-
lems. For capacitated variants of the network design problem, they develop an arc-based La-
grangean relaxation, combined with local improvement heuristics. For uncapacitated variants,
several Benders decomposition variants are developed. Computational results show that both
Lagrange relaxation and Benders decomposition are efficient in finding near-optimal solutions
within a reasonable amount of time.

2.4. Complexity classes
In this section, we provide an introduction to computational complexity, based on Pinedo (2016)
and Karp (1975). In the study of computational complexity, problems are classified on how
“difficult” they are to solve. The term problem refers to the description of the abstract ques-
tion to be solved. An instance is a problem with a given set of data. The size of an instance
refers to the length of the data string that is necessary to specify the data as input for the
problem. Measuring the difficulty of a problem can be done by examining the worst-case num-
ber of computational steps that a Turing machine requires to solve it optimally. This number
of steps is proportional to the size 𝑛 of an instance, and is therefore calculated as a function
𝑇(𝑛) of the instance size. If 𝑇(𝑛) is a polynomial, then we say that the problem can be solved
optimally in polynomial time.

Within the framework of computational complexity, we distinguish between decision problems
and optimization problems. Decision problems contain a question to which the answer is “yes”
or “no”, whereas an optimization problem consists of finding the best solution from a set of
feasible solutions. For each optimization problem, a decision problem can be defined. An op-
timization problem and its corresponding decision problem are strongly related: if there exists
a polynomial time algorithm for the optimization problem, then there exists a polynomial time
algorithm for its decision problem and the other way around.

Many optimization problems are shown to be equivalent, in the sense that either all of them or
none of them can be solved in polynomial time. A complexity class is a set of problems with a
similar complexity. We formally introduce the following problem classes.

Definition 1 (Class 𝒫). The complexity class 𝒫 is the set of all decision problems for which a
Turing machine algorithm exists that, for each instance, leads to the right answer in polynomial
time (or equivalently, in a number of steps that is bounded by a polynomial function of the in-
stance size).

In the definition of the class 𝒫, we consider the time a Turing machine requires to solve a de-
cision problem. A larger class of decision problems considers the time a Turing machine re-

2.4. Complexity classes 21

quires to verify whether a proposed solution (certificate) is correct or not.

Definition 2 (Class𝒩𝒫). The complexity class𝒩𝒫 is the set of all the decision problems for
which the correct answer can be verified by a Turing machine algorithm within polynomial time
when given a certificate.

It is obvious that 𝒫 ⊂ 𝒩𝒫: if a solution can be found in polynomial time, then the solution can
be verified in polynomial time. One of the most important unsolved problems in mathematical
logic and combinatorial optimization is whether or not 𝒫 = 𝒩𝒫. If this would be the case, then
there would exist polynomial time algorithms for a very large class of problems for which, up
until now, no polynomial time algorithms have been found.

Combinatorial problems are often either special cases of other problems, more general than
other problems, or equivalent to other problems. Therefore, an algorithm that works well for
one combinatorial problem often works well for many other problems after minor modifica-
tions. To show the equivalence of problems, we make use of the concept of problem reduc-
tion. We say that decision problem 𝑃 (polynomally) reduces to 𝑃ᖣ if there exists a (polynomial
time) function that translates any instance of 𝑃 into an instance of 𝑃ᖣ.

We can now introduce the class of NP-hard problems.

Definition 3 (NP-hardness). A decision- or optimization problem 𝑃 is called NP-hard if every
problem in𝒩𝒫 polynomially reduces to 𝑃.

Some problems in the class of NP-hard problems are more difficult than others. The set of
strongly NP-hard problems is the set of problems that remain NP-hard, even if all the numbers
in the input are bounded by some polynomial in the length of the input. Other NP-hard prob-
lems can be solved with polynomial time algorithms with such an input: the problems that are
NP-hard in the ordinary sense or simply NP-hard.

Lastly, we introduce the class of NP-complete problems.

Definition 4 (NP-completeness). A decision problem 𝑃 is called (strongly) NP-complete if 1) 𝑃
is (strongly) NP-hard and 2) 𝑃 ∈ 𝒩𝒫.

If any NP-complete problem has a polynomial time algorithm, then all problems in𝒩𝒫 do.

3
The Multi-Energy System Design

Problem

In this chapter, we formally introduce the model that this research is based upon. First, we in-
troduce the model and its elements. Second, we introduce a network flow formulation for this
model and evaluate it from a network flow perspective. Third, we investigate its computational
complexity.

3.1. Model description
Van Beuzekom et al. (2017) introduce a mixed integer linear program for optimizing the design
of a multi-energy system which couples different energy carriers. All of these energy carriers
are fully coupled at each location and in each time period. The model is intended for use at a
city-scale, but could be scaled up- and downwards for different geographical scales, such as
buildings or larger regions. The design of the system is defined as the infrastructure of elec-
tricity, gas and heat networks, including three types of conversion and three types of storage
assets and energy suppliers. The focus lies on long-term planning, using annual time steps,
although it could also be adjusted to other temporal scales. Both temporal and geographical
scale adjustments would require some adjustments in the model assumptions. In this sec-
tion, the setup and the different elements of the model that we examine in this research are
introduced. This is a variation on the most general version of the model as introduced by Van
Beuzekom et al. (2017) and focuses specifically on medium-sized cities coupling electricity,
gas and heat.

Energy carriers and networks
Three energy carriers and corresponding networks are considered in the model: electricity,
(natural) gas and district heating. The city is modeled as a set of different locations, each con-
taining a demand profile. All of the locations have a demand for electricity, gas and heat in
each of the time periods considered. These energy carriers all behave in a different way, but
also share some similarities: as an example, transportation losses occur for each of these car-
riers. These losses are taken into account in the model.

23

24 3. The Multi-Energy System Design Problem

Network connections transport energy between different nodes. These can either represent
electricity lines, gas pipelines or heat pipelines. All networks are modeled at medium voltage
or equivalent levels and network losses are linearized. The district heating network generally
consists of a combination of high and lower temperature heat, but is modeled here as a sin-
gle network. For each of the network connections, it is assumed that energy can flow in both
directions.

Assets
Investment decisions can be made regarding network connections, and supply-, conversion-
and storage technologies.

Supply The energy supply mix is based on future scenarios and climate goals for a specific
city. In this case, only gas and electricity are fed into the system from suppliers; electricity
through RES (wind- and photovoltaic or solar (PV) energy) and gas supply through pre-determined
gas access points. The location and capacity of gas supply is known beforehand for each year
and not variable (in variations on the model, the gas supply can also be declared as a decision
variable). RES, on the other hand, are declared as decision variables and can be built on the
different nodes.

Conversion Energy conversion units are essential for an integrated energy system. A conver-
sion is defined as a transformation between the energy carriers within the energy network.
Several technologies exist which convert one energy carrier into another. The ones that are
considered in this research are a combined heat- and power plant (CHP), heat pump (HP) and
power-to-gas unit (P2G). CHP technologies allow the generation of electricity and heat at the
same time from a variety of fuels. In this model, CHP transforms natural gas into both heat
and electricity. Heat pumps can be used as suppliers for district heating, integrating the heat-
ing, cooling and electricity networks. For simplicity, this is modeled here as the conversion
of electricity into heat. Power-to-gas is a technology that converts electricity into gas, using
electrolysis. In the model, a P2G unit allows for the conversion of electricity into gas. The con-
version rate for each of these technologies specifies how much of a certain energy carrier you
can “create” from another.

Storage Storage units are used for storing excess energy at the end of the year and supply-
ing this to the system in the next year. For each of the energy carriers, storage possibilities
are considered. The storage possibilities differ significantly in costs and efficiency: due to the
large size of the time periods, large standing losses can occur. Storage technologies for elec-
tricity, for instance, are most effective at a short term, whereas heat storage can be used most
effectively between seasons. Two efficiency factors are taken into account for the storage
technologies: an efficiency factor for feeding energy into/taking energy from the storage units
and standing losses, which is an annual percentage.

Combining all of these assets in the same system allows for energy flow to travel between
locations and between time periods, respectively, or get converted into another form.

3.1. Model description 25

An overview of the model elements can be found in Table 3.1. Figure 3.1 provides an overview
of a network for a 7-node case.

Figure 3.1: An example of results for a 7-node network (van Beuzekom et al., 2017)

Requirements
The model is constrained by sustainability objectives (modeled on the supply side), the (spa-
tial) demand for the different energy carriers in each time period and the law of conservation
of energy.

Objective
The goal of the model is to find the optimal mix and location of supply- , storage- , and con-
version units and network connections such that investment costs are minimized and that all
of the requirements of the system are met. The investment decisions can be made at each
time step and at each location. Only the annual investment costs are considered in this model:
operational costs (such as maintenance, operating time, etc) are (indirectly) included in the
model as energy losses. The annual investment costs are based on a pre-determined discount
rate. The model can either take the existing infrastructure into account, i.e., provide a starting
solution for the first time step (Brownfield), or build a network from scratch (Greenfield).

Even though the behaviour of the individual energy systems is non-linear, the model is set up
as a mixed integer linear program. Because of the large size of the time steps and the and
given the much larger uncertainty in the future scenarios, the error from the linearization is
relatively minor (Van Beuzekom et al., 2020).

Scope and limitations
Mixed-integer programming models are attractive in cases where a large variety of decisions
are considered simultaneously (Magnanti and Wong, 1984). However, they are not well-suited
for dealing with underlying uncertainties and risks. Investment strategies developed by this
model should therefore ideally be tested by a simulation analysis. Especially the combination

26 3. The Multi-Energy System Design Problem

Energy carrier Element Function Data available

Gas supply Supply gas Capacity per location
(PJ/yr)

Gas pipeline Transport (and possibly
store) gas

Costs (euro/m)
Capacity (PJ/yr)
Loss

Gas
Combined Heat and
Power

Transform gas into heat
and electricity

Costs (euro/unit)
Capacity (PJ/yr/unit)
Conversion rate

Gas storage unit Store gas
Costs (euro/unit)
Capacity (PJ/yr/unit)
Loss and efficiency factor

Renewable Energy Sup-
ply (RES): PV and wind Produce electricity

Costs (euro/unit)
Capacity (PJ/yr/unit)

Electricity line Transport electricity
Costs (euro/m)
Capacity (PJ/yr)
Loss factor

Power-to-gas Convert electricity into
gas

Costs (euro/unit)
Capacity (PJ/yr/unit)
Conversion rate

Electricity

Heat pump Consume electricity for
producing heat

Costs (euro/unit)
Capacity (PJ/yr/unit)
Conversion rate

Electricity storage unit Store electricity
Costs (euro/unit)
Capacity (PJ/yr/unit)
Loss and efficiency factor

Heat pipeline Transport heat
Costs (euro/m)
Capacity
Loss factor

Heat

Heat storage unit Store heat
Costs (euro/unit)
Capacity (PJ/yr/unit)
Loss and efficiency factor

Table 3.1: An overview of the elements and corresponding data used in the multi energy infrastructure in the model
proposed by Van Beuzekom. For all the costs, a yearly discount rate of 4% is assumed.

of the large time scale that this model considers and the short-term fluctuations in real-life
supply from renewable sources illustrates the need for some “post-processing” of the optimal
network. This is however beyond the scope of this research. In addition, it is assumed that
integer amounts of assets can be built. To be able to solve real-case instances, coarsening
of the original network should often be applied and all of the model’s parameters should be
scaled accordingly. However, integrality of the investment decisions remains a constraint for
each problem size. In this sense, the optimal solution for a coarser and a finer representation
of the same network might differ. Finer networks are, with a fear of stating the obvious, pre-
ferred, but might be more difficult to solve. Solving the problem on a coarsened network, on
the other hand, could result in large assets that are operating (far) below their optimal capac-
ity, something that is not desired in practical cases. A possibility to deal with this is to change
the decision variables into binary variables, i.e., a single fixed cost, while incurring a variable

3.2. Model formulation 27

cost for the energy flow. This is also beyond the scope of this research, as we only consider
integer investment decisions.

3.2. Model formulation
In this section, we introduce a network flow formulation for the model that was introduced in
Section 3.1 and evaluate it from a network perspective.

For the network flow formulation of thismulti-energy system design problem (MESDP) , we first
introduce the following sets. Given is a set of locations 𝑙 ∈ 𝐿 as shown in Figure 3.2 , each with
a yearly demand for each of the different energy carriers. Let 𝑡 ∈ 𝑇 denote the set of different
(discrete) time periods and let 𝑘 ∈ 𝐾 denote the set of energy carriers, consisting of electricity,
gas and heat. On each location, we can build three types of conversion- and storage units and
two types of supply units. Between these locations, we can build three different network con-
nections. To model this as a network graph, we split each location in three different nodes, by
introducing a node for each of the energy carriers.

Figure 3.2: Transforming the graph of locations ፥ ∈ ፋ into nodes in network graph ፆ(ፕ, ፄ).
An instance with ፧ locations results in a network graph with ኽ፧ nodes.

By introducing a node for each energy carrier (commodity), we can formulate the multi-commodity
MESDP as a single-commodity network flow problem, i.e. a more aggregate formulation. The
motivation for this is that if the number of commodities in a problem is small, an aggregated
formulation has proven to be most efficient for various solution algorithms (Fragkos et al.,
2017).

Let 𝑖 ∈ 𝑉 denote the set of nodes, where |𝑉| = 3|𝐿|. 𝑉 has the following subsets: 𝑉፞ , 𝑉፠ and
𝑉፡ , representing the electricity- gas- and heat nodes, respectively. Each node 𝑖 ∈ 𝑉 has a de-
mand 𝑏። for its corresponding energy carrier. To model the different conversion units, we intro-
duce arcs between these nodes, as illustrated in Figure 3.2. Let 𝐸ፂ denote the arcs that repre-
sent these conversion units. To model the network connections, i.e. (pipe)lines between the
different locations, we introduce 𝐸ፍ , the set of bidirectional arcs or edges. This set consists of
all the possible connections within 𝑉፞ , 𝑉፠ and 𝑉፡ and represents the possible electricity lines,
gas pipelines and heat pipelines. We finally introduce network 𝐺 = (𝑉, 𝐸), where 𝐸ፂ ∪ 𝐸ፍ = 𝐸.

Mass balance constraint The first constraint for the flow in network 𝐺 = (𝑉, 𝐸) is the mass
balance constraint, which states that no energy is lost and that the demand of each node has
to be fulfilled at each time period. Energy flow can enter node 𝑖 from other nodes, i.e., via con-

28 3. The Multi-Energy System Design Problem

verters or network connections; or from assets built on node 𝑖: either from electricity supply
units (only at electricity nodes), gas supply (only at gas nodes) or storage units, i.e., excess
flow from the previous time period. In each time period, flow can leave node 𝑖 and travel to
other nodes or get stored at node 𝑖 in a storage unit.

We introduce the following variables. Let 𝑥።፣፭ denote the energy flow between node 𝑖 and 𝑗 at
time 𝑡 1. Let 𝑆።፭ denote the amount of flow that gets fed into the system from (gas or electric-
ity) supply at node 𝑖 at time 𝑡. Let𝑊ፈፍ

።፭ denote the amount of flow that gets stored (in a “well”)
at node 𝑖 at time 𝑡. Let𝑊ፎፔፓ

።፭ denote the energy flow fed into the system from the storage
units at node 𝑖 at time 𝑡, i.e., energy that has been stored in time periods before 𝑡. We intro-
duce the following parameters. Let 𝑏።፭ denote the demand at node 𝑖 ∈ 𝑉 at time 𝑡, where each
node has a demand for its corresponding carrier (heat nodes have a heat demand, etc). Lastly,
let 𝜇።፣ denote the arc multiplier of arc/edge (𝑖, 𝑗): either the rate of converting the energy car-
rier of 𝑖 into the energy carrier of 𝑗 (on converter arcs), or the energy losses over the distance
between 𝑖 and 𝑗 (on network edges).

We then find the following mass balance constraint in network 𝐺(𝑉, 𝐸):

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ − ∑
{፣∶(።,፣)∈ፄ}

𝑥።፣፭ + 𝑆።፭ −𝑊ፈፍ
።፭ +𝑊ፎፔፓ

።፭ = 𝑏።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (3.1a)

Supply capacity constraints Let 𝑧፬።፭ denote an integer investment decision that represents the
number of electricity supply units of type 𝑠 (either PV or wind), built on node 𝑖 at time 𝑡. Let
parameter 𝑢፬፭ denote the capacity of electric supply unit 𝑠 at time 𝑡 and let parameter 𝑔።፭ be
the gas supply at node 𝑖 at time 𝑡. We find the following constraint for supply 𝑆።፭.

𝑆።፭ ≤∑
፬

፭

∑
፪ኻ

(𝑢፬፭ ⋅ 𝑧፬።፪ + 𝑔።፭) ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (3.1b)

It is important to note that 𝑔።፭ = 0 for all the non-gas nodes. As 𝑔።፭ represents a parameter, we
do not add this specifically in the model. In addition, (electricity) supply units can only be built
on electricity nodes. Therefore, the following constraint is added:

𝑧፬።፭ = 0, if 𝑖 ∉ 𝑉፞ ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.1c)

1Flow variable ፱ᑚᑛᑥ can either represent electricity-, gas- or heat flow, but because of the way that we defined network
graph ፆ(ፕ, ፄ), we do not distinguish between different energy carriers (commodities) and can consider the problem
as a single-commodity one.

3.2. Model formulation 29

Flow capacity constraints In network 𝐺(𝑉, 𝐸), the capacity of the arcs and edges at time 𝑡 is
dependent on the amount of assets that are built on it at time 𝑡 and in each time period be-
fore 𝑡. Let 𝑧።፣፭ denote an integer investment decision that represents the number of assets
(either (pipe)lines or conversion units) build on arc/edge (𝑖, 𝑗) at time 𝑡. Each arc or edge has
exactly one type of asset that can be built on it. Let 𝑢።፣ denote the capacity of a single asset
on arc/edge (𝑖, 𝑗). We find the following constraints for the maximum flow on all of the arcs
and edges:

𝑥።፣፭ ≤ 𝑢።፣ ⋅
፭

∑
፪ኻ

𝑧።፣፪ ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑡 ∈ 𝑇 (3.1d)

Modeling the MESDP as a directed graph, we require additional constraints for the bidirec-
tional network edges between different locations. If a network connection is built between two
nodes, then flow can can be sent in two different directions. To assure that network edges are
bidirectional, we add an additional constraint for the (network) edges 𝐸ፍ:

𝑧።፣፭ = 𝑧፣።፭ ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (3.1e)

In a feasible flow solution, flow should only travel in one direction on the bidirectional edges
in each time period. To assure that this is the case, we introduce the following “forcing” con-
straints, where 𝛾።፣፭ denotes a binary variable andℳ is a parameter with a sufficiently large
value:

𝑥።፣፭ ≤ℳ𝛾።፣፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (3.1f)

𝑥።፣፭ ≤ℳ(1 − 𝛾፣።፭), ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (3.1g)

CHP constraints The CHP converts gas into both electricity and heat. In other words, with a
single CHP investment, two different outflows are created from the gas inflow. In the network
graph, this means that by building a single CHP you build assets on two arcs: from gas to heat
and from gas to electricity. To assure this, we introduce the following constraint:

𝑧።፣፭ = 𝑧።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (3.1h)

An additional constraint from the “double” conversion of gas is that the amount of gas that is
transformed into heat equals the amount that is transformed into electricity. We model this by
forcing the flow from the gas nodes to the heat- and electricity nodes to be equal, as illustrated
in Figure 3.4. We add the following constraint to the CHP edges.

𝑥።፣፭ = 𝑥።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (3.1i)

30 3. The Multi-Energy System Design Problem

Storage constraints Let 𝑧ፖ።፭ denote an integer investment decision that represents the number
of storage units, built at node 𝑖 at time 𝑡. Let parameter 𝑢፤ denote the capacity of a storage
unit for energy carrier 𝑘. When energy gets stored in a certain time period, two types of losses
occur. Efficiency losses 𝜉፤ occur when energy gets stored or when energy is taken from stor-
age units. Standing losses 𝜂፤ occur for each year that the energy remains in the storage unit.
The amount of flow that gets stored at node 𝑖 at time 𝑡,𝑊ፈፍ

።፭ , cannot exceed the available stor-
age space, which equals the capacity of the storage unit minus the total of what is stored in it
up to time 𝑡. To ensure this, we introduce the following constraint.

(3.1j)

𝑊ፈፍ
።፭ ≤ 𝑢፤ ⋅

፭

∑
፪ኻ

𝑧ፖ።፪ −
፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇 (3.1k)

Additionally, the amount of flow that is supplied from storage units at node 𝑖 at time 𝑡,𝑊ፎፔፓ
።፭ ,

cannot exceed the amount that is stored in it at that time 𝑡. Therefore, we introduce the follow-
ing constraint:

𝑊ፎፔፓ
።፭ ≤ 𝜉፤ ⋅

፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇 (3.1l)

Nonnegativity constraints Lastly, we define all the variables to be nonnegative, the investment
decision variables to be integer and the flow direction variable to be binary:

𝑧።፣፭ , 𝑧፬።፭ , 𝑧ፖ።፭ ∈ ℤዄ, 𝑥።፣፭ , 𝑆።፭ , 𝑊ፈፍ
።፭ , 𝑊ፎፔፓ

።፭ ∈ ℝዄ, 𝛾።፣፭ ∈ {0, 1} (3.1m)

The objective function that is constructed minimizes the total investment costs. This is equal
to all the investment decisions made over time multiplied by the costs of making these de-
cisions. Let 𝑐።፣፭ , denote the costs of building a single asset on edge/arc (𝑖, 𝑗), i.e., a network
connection or a conversion unit. Let 𝑐፬፭ and 𝑐ፖ፭ denote the costs of building a single asset on
one of the nodes, i.e., a supply unit 𝑠 or a storage unit. We find the following objective function:

Minimize∑
፭∈ፓ
(∑
(።,፣)∈ፄ

𝑧።፣፭ ⋅ 𝑐።፣፭ +∑
፤∈ፊ

∑
።∈⋃ᑜ∈ᑂ ፕᑜ

(∑
፬
𝑧፬።፭ ⋅ 𝑐፬፭ + 𝑧ፖ።፭ ⋅ 𝑐ፖ፭)) (3.1)

We arrive at the following flow-based Mixed Integer Linear Programming Problem for the MES
design problem (MESDP):

3.2. Model formulation 31

Minimize

∑
፭∈ፓ
(∑
(።,፣)∈ፄ

𝑧።፣፭ ⋅ 𝑐።፣፭ +∑
፤∈ፊ

∑
።∈⋃ᑜ∈ᑂ ፕᑜ

(∑
፬
𝑧፬።፭ ⋅ 𝑐፬፭ + 𝑧ፖ።፭ ⋅ 𝑐ፖ፭)) (3.1)

subject to

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ − ∑
{፣∶(።,፣)∈ፄ}

𝑥።፣፭ + 𝑆።፭ −𝑊ፈፍ
።፭ +𝑊ፎፔፓ

።፭ = 𝑏።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (3.1a)

𝑆።፭ ≤∑
፬

፭

∑
፪ኻ

(𝑢፬፭ ⋅ 𝑧፬።፪ + 𝑔።፭) ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (3.1b)

𝑧፬።፭ = 0, if 𝑖 ∉ 𝑉፞ ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (3.1c)

𝑥።፣፭ ≤ 𝑢።፣ ⋅
፭

∑
፪ኻ

𝑧።፣፪ , ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑡 ∈ 𝑇 (3.1d)

𝑧።፣፭ = 𝑧፣።፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (3.1e)

𝑥።፣፭ ≤ℳ𝛾።፣፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (3.1f)

𝑥።፣፭ ≤ℳ(1 − 𝛾፣።፭), ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (3.1g)

𝑧።፣፭ = 𝑧።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (3.1h)

𝑥።፣፭ = 𝑥።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (3.1i)

𝑊ፈፍ
።፭ ≤ 𝑢፤ ⋅

፭

∑
፪ኻ

𝑧ፖ።፪ −
፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇 (3.1k)

𝑊ፎፔፓ
።፭ ≤ 𝜉፤ ⋅

፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇 (3.1l)

𝑧።፣፭ , 𝑧፬።፭ , 𝑧፤።፭ ∈ ℤዄ, 𝑥።፣፭ , 𝑆።፭ , 𝑊ፈፍ
።፭ , 𝑊ፎፔፓ

።፭ ∈ ℝዄ, 𝛾።፣፭ ∈ {0, 1} (3.1m)

In Figure 3.3 it is illustrated what the network graph looks like for one location.

32 3. The Multi-Energy System Design Problem

Figure 3.3: The network graph of the MESDP for one geographical location

3.2. Model formulation 33

Figure 3.4: CHP units are modelled as two separate arcs from gas nodes to heat- and electricity nodes.
As gas flow gets converted in both electricity and heat, we force the flow from the gas nodes to be split equally, hence

the 0.5 factor in the figure. The amount of flow that arrives at the heat- and electricity nodes depends on the
respective conversion rates ᎙.

A few additions to the introduced notation are the following:

• We have modelled the MEDSP as a single-commodity problem. This choice is motivated
because there are no links possible on which multiple commodities can travel. For in-
stance, heat and gas cannot travel on electricity lines, gas cannot be fed into a heat pump,
etc. Instead of sending flows 𝑥፤ for carrier 𝑘 ∈ 𝐾 that can be transformed into flow of a
different carrier 𝑙 ∈ 𝐾, we therefore send (general) energy flow 𝑥 and use the arcs mul-
tipliers 𝜇።፣ and the (conversion) arcs between the different node sets 𝑉፤ to model the
real-life transformations of the energy flow.

• To examine the influence of “bad weather years” on the network design, the time factor
is taken into account for the capacity of the electricity supply units 𝑢ፒ፭ . By varying this
parameter, one can easily see the influence of the electricity supply on the final design.

• In this model, capacities are a step function of the costs: It is only possible to build as-
sets with capacity 𝑧።፣፭ ⋅ 𝑢።፣ , with costs 𝑧።፣፭ ⋅ 𝑐።፣ where 𝑧።፣፭ is integer valued. An exam-
ple: a “single” CHP costs 8,19 million euros and it can convert 0.47 PJ (“units”) of gas.
Should a slightly larger CHP at a certain location be required, then the model is forced
to “build” a CHP that is twice as large (and thus twice as expensive). This holds for all
supply-, conversion- and storage units and all network connections in the model.

The above defined model can easily be varied to model a slightly different scenario. A few ex-
amples are:

• The storage constraints can be adjusted, for instance to force the model to store a mini-
mum amount of energy in every year. This can help to deal with unexpected fluctuations
in the supply.

• The gas supply 𝑔።፭ depends on node 𝑖: only a few locations have gas access points, each

34 3. The Multi-Energy System Design Problem

with a pre-determined (and thus non-variable) gas supply maximum. The value of this
parameter can be varied, for instance based on policy decisions.

• In variations of the model, the cost function can be defined in a different way. For in-
stance, economies of scale could be taken into account.

• Multiple spatial or financial constraints can be added to the model. For practical cases,
it might be necessary to take a total or yearly budget into account. It is probably also
not possible to build all assets at each location (or in each time period); additional con-
straints on the investment decision variables will therefore result in more realistic prob-
lem instances.

• The model has a Greenfield planning approach when it is assumed that there is no cur-
rent network and everything has to be built from scratch. Adding a “starting” solution,
i.e., adding Brownfield data, makes the final design planning more realistic and could
also improve the computation time, since the addition of the starting solution might de-
crease the solution space. In the model, existing infrastructure can be implemented by
adding a 𝑧ኺ term to the capacity constraints modeling the number of current assets.

• The implemented infrastructure data can also include details on the age of the individual
aspects of the current network. This is relevant because of the large timescale consid-
ered in the model: it is probably not the case that each part of the current network can be
used throughout the full time period considered.

Most of these additional elements are beyond the scope of this research. We conduct exper-
iments with a Brownfield network, with various problem sizes and parameter variations, and
with a few extra restrictions on the investment variables.

3.3. Problem characteristics 35

3.3. Problem characteristics
In this section, we discuss the characteristics of the MESDP and analyze which of these char-
acteristics can be a (strongly) determining factor for its difficulty. Kallrath (2008) defines dif-
ficult optimization problems as “problems that cannot be solved to optimality or to any guaran-
teed bound by any standard solver within a reasonable time limit.”

Large instances
First of all, in practical implementations of the model we are dealing with very large instances.
A case study for 3 energy carriers with 𝑛 locations and 𝑇 time periods results in 𝑇 network
graphs with 3𝑛 nodes, 4𝑛 arcs and 3 ⋅ (፧ኼ) edges. In these networks 𝐺(𝑉, 𝐸), it is possible to
build assets in various manners: storage and supply units can be built on the set of nodes,
converters and pipe(lines) can be built on the set of arcs and edges respectively, and addition-
ally, all of these decisions can be made in the different discrete time periods. On this network
we are therefore solving a problem with 𝑇 ⋅ (13𝑛 + 6 ⋅ (፧ኼ)) integer variables, 𝑇 ⋅ (6 ⋅ (

፧
ኼ)) binary

variables and 𝑇 ⋅ (13𝑛 + 6 ⋅ (፧ኼ)) continuous variables. As an example: a case study with 110
locations and 17 time periods results in a MILP with a total of 1,247,290 integer variables and
635,800 continuous variables: a highly combinatorial problem. 2

A multi-period network loading problem
Second of all, because only integer investment decisions 𝑧፬።፭ , 𝑧ፖ።፭ and 𝑧።፣፭ can be made, the
MESDP turns out to be an instance of the strongly NP-hard network loading problem. In ad-
dition to that, the MESDP considers multiple time periods in the design problem, which further
complicates solving it. For instance, if we would consider only one time-period in the MESDP,
we could model a cost function for flow 𝑥።፣፭ as a discontinuous step function, instead of opti-
mizing on the integer investment decisions. A few studies on network optimization problems
with these kinds of cost functions have been performed, as discussed in the previous chap-
ters. However, the multi-period element makes it difficult to follow a similar approach as these
previous studies, as the possibility to increase existing capacity makes an accurate cost func-
tion for flow 𝑥።፣፭ in the MESDP more complex. If a number of assets are built on edge (𝑖, 𝑗) at
time 𝑡, then those assets can also be used in the time steps following 𝑡. In a way it would be
“cheaper” to send flow in those later time periods, as less additional capacity has to be built.
Therefore the cost function for flow depends on previous capacity expansion decisions. Stud-
ies on multi-period network design on the other hand, for which we again refer to the previous
chapter, rarely consider step-cost functions within the time periods. Since multi-period net-
work design problems are also a very difficult class in itself, we are dealing with a combined
problem that is extremely difficult to solve.

2In realistic scenarios, this number will probably be lower: not all connections can be built and it is also not possible to
build storage-, supply- or conversion assets on each location. However, for now we assume that there are no restric-
tions on building assets or connections.

36 3. The Multi-Energy System Design Problem

Storage
A difference with most of the studies on multi-period network design problems, is the flow’s
ability to travel to another time period in the MESDP. This is due to the use of storage assets,
that can store excess flow in one time period and discharge this flow (one of) the next one(s).
This significantly increases the solution space, as more trade-offs have to be made in certain
time periods, for instance between building supply or storage, so excess flow from previous
periods can be used.

Figure 3.5: Network ፆᑋ(ፕᑋ , ፄᑋ) represents an expanded network for ፆ(ፕ, ፄ), where only investment decisions on arcs
or edges can be made, for two locations ። and ፣.

The flow’s ability to travel between time periods in the MESDP can be modeled by expanding
network 𝐺(𝑉, 𝐸) into the time-expanded network 𝐺ፓ(𝑉ፓ , 𝐸ፓ) (Figure 3.5). By copying network
𝐺(𝑉, 𝐸) for each time period and adding edges for supply and storage investment decisions,
design decisions can only be made on network edges/arcs. Electricity- and gas supply “su-
per nodes” are introduced as sources node for network 𝐺ፓ(𝑉ፓ , 𝐸ፓ). Finding a feasible flow in
time-expanded network 𝐺ፓ(𝑉ፓ , 𝐸ፓ) corresponds to finding a feasible solution for the MESDP.

3.4. Computational complexity of the MESDP 37

In Chapter 5, we make use of this fact for deriving valid inequalities for the MESDP.

Generalized flow
The MESDP is a network problem with generalized flow, as the conversion rates and distance
loss factors are multipliers on the arcs and edges respectively in the network in each time pe-
riod 𝑡, and the loss factors of the storage units are multipliers of arcs in the time-expanded
graph of the network. Regular network flow models have the so-called integrality property,
meaning that their optimal solutions are integer if all the underlying data is integer (Ahuja
et al., 1993). This property does not hold for generalized network flow models, due to the non-
unimodularity of their constraint matrices. Therefore, to find integer solutions for generalized
flow problems, methods of (mixed) integer programming should be applied, even if we were to
provide the model with integer data only.

The MESDP consists of various complicating elements, which is why many well-established
network optimization techniques are not applicable to the model. Predicting the effect of these
elements, together or individually, on solution times when applying to mathematical program-
ming methods is very difficult. Empirical evidence is therefore required to assess the quality of
solvers and create a roadmap for a solution approach. An additional important factor for as-
sessing the difficulty of the model is the its computational complexity, which we investigate in
the next section.

3.4. Computational complexity of the MESDP
We show in this section that the MESDP is strongly NP-hard, by providing a reduction from an
instance of a strongly NP-complete problem to an instance of the MESDP. For this, we intro-
duce the 3-partition problem (3-PART).

Definition 5 (3-partition). Given 3𝑛+1 integers 𝑎ኻ, 𝑎ኼ, … 𝑎ኽ፧ and 𝐵 satisfying ∑ኽ፧።ኻ 𝑎። = 𝑛𝐵, does
there exist a partition of 𝑎ኻ, 𝑎ኼ, … 𝑎ኽ፧ , consisting of 𝑛 sets 𝑆ኻ, 𝑆ኼ, … 𝑆፧ , each of cardinality 3, that
satisfies the property that ∑፣∈ፒᑚ 𝑎፣ = 𝐵 for all 𝑆። , where 1 ≤ 𝑖 ≤ 𝑛?

Lemma 1. The 3-partition problem is NP-complete in the strong sense.

The proof of Lemma 1 can be found in the textbook by Garey and Johnson (1979).

To show that the MESDP is strongly NP-hard, we reduce an instance of 3-PART to an instance
of the MESDP with a single time period and two energy carriers (gas and electricity). This re-
duction has similarities with the reduction of 3-PART to the TFLP, introduced in the previous
section (Magnanti et al., 1991). We can state the following.

Theorem 1. The MESDP is strongly NP-hard.

Proof. Given an instance ℐኽዅፏፀፑፓ of 3-PART, we construct an instance ℐፌፄፒፃፏ of the above
mentioned special case of the MESDP as follows. For every integer 𝑎። , 𝑖 ∈ {1, 2, … , 3𝑛}, intro-
duce a location 𝑖 ∈ 𝐿, with electricity demand 𝑏፞። = 𝑎። + 𝑀 for sufficiently large𝑀, and gas

38 3. The Multi-Energy System Design Problem

demand 𝑏፠። = 0. Figure 3.6 shows the network graph 𝐺(𝑉, 𝐸), as defined in the previous chap-
ter, for this particular instance of the MESDP. To graph 𝐺(𝑉, 𝐸), we introduce a root node 𝑟:
building assets on the arcs between 𝑟 and the other nodes corresponds to building electricity
supply units. Gas supply 𝑔። is equal to zero.

Figure 3.6: Network graph ፆ(ፕ, ፄ) for instance ℐᑄᐼᑊᐻᑇ of the MESDP, where ፧ is equal to 2. Connections exist be-
tween all of the electricity nodes, all of the gas nodes, and between the electricity- and gas nodes at the same loca-
tion.

Flow travelling between electricity nodes of location 𝑖 and 𝑗 in graph 𝐺 corresponds to either 1)
flow travelling over an electricity line between 𝑖 and 𝑗, or 2) flow travelling over a conversion arc
to a gas node at location 𝑖, then over a gas pipeline to the gas node at location 𝑗 and lastly over
another conversion arc to the electricity node at location 𝑗. In Figure 3.7a, this is illustrated for
the electricity nodes at location 1 and 4: the blue route corresponds to option 1) and the green
route corresponds to option 2).

We transform graph 𝐺 into graph 𝐺ℐ by clustering the electricity- and gas nodes at the same
location into a single location node. This is illustrated in Figure 3.7. Through clustering, we
have defined a fully connected network graph 𝐺ℐ(𝑉ℐ , 𝐸ℐ) with 3𝑛+1 nodes. One of these nodes
represents root node 𝑟, which has demand 𝑏፠፫ = 𝑏፞፫ = 0. The other 3𝑛 nodes represent the
locations 𝑖 ∈ 𝐿. Since the gas demand for each location is equal to zero, we find that the total
demand of each location 𝑖 is equal to 𝑏፞። . Let 𝐸ፒ denote the set of edges from 𝑟 to all the other
nodes (“supply edges”), and let 𝐸ፍ denote the set of edges between any other pair of nodes
(“network edges”). Then 𝐸ℐ = 𝐸ፒ∪𝐸ፍ. Increasing capacity on the supply edges corresponds to
building electricity supply units and increasing capacity on the network edges corresponds to
building network connections between the different locations. We assume that the conversion
rates are equal to one and distance loss factors are equal to zero, i.e. 𝜇።፣ = 1 for each edge
(𝑖, 𝑗) ∈ 𝐸ℐ.

In this instance of the MESDP, there are two different electricity supply types (PV and wind)

3.4. Computational complexity of the MESDP 39

that can be built on the supply edges 𝐸ፒ and two different network connections that can be
built on the network edges 𝐸ፍ (gas3 and electricity), i.e., for each edge (𝑖, 𝑗) ∈ 𝐸ℐ , there are
two different “facilities” that can be installed. Even though the facilities on supply or network
edges are not of the same kind in real life, we model them as such by assuming that both the
“supply facilities” and the “network facilities” consist of the same two sets: on all of the edges,
we can install facilities with capacity equal to 1 (low-capacity (LC) facilities) and facilities with
capacity equal to 𝐵 + 3𝑀 (high-capacity (HC) facilities). So, the LC facilities represent a wind
supply unit on the supply edges and a gas connection on the network edges, and the HC fa-
cilities represent PV and an electricity line on the supply and network edges respectively. The
capacity of a wind supply unit and a gas connection (LC facilities) are equal and the capacity
of the PV units and the electricity connections (HC facilities) are equal. Furthermore, assume
that the cost of installing a LC or HC facility on the supply edges is equal to 1 and the cost of
installing a LC or HC facility on the network edges is equal to 𝜖. In Table 3.2, the data for this
instance is summarized.

Edge set Asset to build Modeled as Cost Capacity

Supply edges
PV HC facilities 1 ፁ ዄ ኽፌ
Wind LC facilities 1 1

Network edges
Electricity connections HC facilities Ꭸ ፁ ዄ ኽፌ
Gas connections LC facilities Ꭸ 1

Table 3.2: An example of modeling the different assets as LC and HC facilities for the MESDP

We have defined the following instance of the MESDP:

Minimize

∑
(።,፣)∈ፄᑊ

(𝑧ፇፂ።፣ + 𝑧ፋፂ።፣) + ∑
(።,፣)∈ፄᑅ

𝜖 ⋅ (𝑧ፇፂ።፣ + 𝑧ፋፂ።፣) (3.3a)

subject to

∑
{፣∶(፣,።)∈ፄℐ}

𝑥፤፣። − ∑
{፣∶(።,፣)∈ፄℐ}

𝑥፤።፣ =

⎧
⎪

⎨
⎪
⎩

− ∑
{፣∈ፕ∶፣ጽ።}

(𝑎፣ +𝑀), if 𝑖 = 𝑟

𝑎። +𝑀, if 𝑖 ≠ 𝑟 and 𝑘 = electricity

0, if 𝑖 ≠ 𝑟 and 𝑘 = gas

(3.3b)

𝑥፤።፣ ≤ 𝑧ፋፂ።፣ + (𝐵 + 3𝑀) ⋅ 𝑧ፇፂ።፣ , ∀(𝑖, 𝑗) ∈ 𝐸ℐ (3.3c)

𝑧ፋፂ።፣ , 𝑧ፇፂ።፣ ∈ ℤዄ and 𝑥፤።፣ ∈ ℝዄ (3.3d)

3In this instance, a “gas connection” actually consists of three assets: a gas pipeline and two conversion units, for
gas- electricity (CHP) and electricity-gas (P2G). This corresponds to the green route in Figure 3.7a. We model these
three assets as a single gas connection, i.e., as a single facility in graph ፆℐ .

40 3. The Multi-Energy System Design Problem

(a) Graph ፆ: Flow travelling from electricity nodes at
location 1 and 4 corresponds to the flow travelling
over either the blue or green route.

(b) Graph ፆℐ : Electricity flow travelling from location
1 to location 4 travels over the bold edge. This corre-
sponds to either the blue or green route in graph ፆ.
The assets that have to be installed for the blue (red)
route in ፆ correspond to installing an HC (LC) facility
on the bold edge in ፆℐ .

Figure 3.7: We can transform graph ፆ into graph ፆℐ by clustering the gas- and electricity nodes at the same location

An optimal solution to this instance of the MESDP has the following properties:

• An optimal design does not use LC facilities. The reason for this is that on any edge, in-
stalling a HC facility instead of a LC facility increases the capacity of the edge without
increasing the cost.

• A feasible design has at least 𝑛 HC facilities on the supply arcs 𝐸ፒ. This is because the
total demand is 𝐵𝑛 + 3𝑀𝑛 and each HC facility has a capacity of 𝐵 + 3𝑀.

• The cost of an optimal solution is at least 𝑛 + 2𝑛𝜖. Any solution with this cost has 𝑛
HC facilities on the supply edges and 2𝑛 HC facilities on the network edges. An optimal
design cannot place two or more HC facilities on one supply edge: if this would be the
case, then more than 2𝑛 network edges contain a HC facility, and the total cost would
then exceed 𝑛 + 2𝑛𝜖. In Figure 3.9, this is illustrated. Therefore, we can assume that an
optimal design places maximally a single HC facility on each supply edge.

• Since𝑀 is chosen to be sufficiently large, each node will be a transshipment node for at
most two other nodes in an optimal solution with cost 𝑛 + 2𝑛𝜖. In Figure 3.8 we illustrate
why the𝑀-term is necessary for this claim.

We claim that we have a Yes instance of 3-PART if and only if the optimal solution to the con-
structed instance ℐፌፄፒፃፏ of the MESDP has cost 𝑛 + 2𝑛𝜖. To show the first direction of this
claim, assume that we have a Yes instance to 3-PART, and that the partitions are given by 𝑆፣ =
{𝑗ኻ, 𝑗ኼ, 𝑗ኽ} for 1 ≤ 𝑗 ≤ 𝑛. Then, a Yes instance of the MESDP can be obtained by installing HC
facilities on arcs {0, 𝑗ኻ}, {𝑗ኻ, 𝑗ኼ} and {𝑗ኻ, 𝑗ኽ} for 1 ≤ 𝑗 ≤ 𝑛.

3.4. Computational complexity of the MESDP 41

(a) The optimal design whenፌ ኺ (b) This design is not feasible when
ፌ ኻኺ (c) An optimal design whenፌ ኻኺ

Figure 3.8: Take the following instance of 3-PART:

፧ ኼ, ፁ ዃ, ፚᎳ ኾ, ፚᎴ ኼ, ፚᎵ ኽ, ፚᎶ ኼ, ፚᎷ , ፚᎸ ኼ
and letፌ ኺ. Then there exists an optimal design for ℐᑄᐼᑊᐻᑇ with cost ፧ ዄ ኼ፧Ꭸ, where node ፥Ꮃ serves as
transmission node for three other nodes (Figure 3.8a). This design does not correspond to a 3-partition of
ፚᎳ , … , ፚᎸ. In Figure 3.8b, we have setፌ ኻኺ for the same problem, and find that the design of Figure 3.8a
is no longer feasible. In Figure 3.8c an optimal design for the case whereፌ ኻኺ is given. This design
does correspond with a 3-partition of ፚᎳ , … ፚᎸ.

For proving the reverse direction of the claim, assume that we have a solution to the MESDP
with cost 𝑛 + 2𝑛𝜖. Then, we have used 𝑛 facilities on the supply edges and 2𝑛 facilities on the
network edges. The demand is satisfied for 𝑛 nodes directly, and for 2𝑛 nodes through some
transshipment node. As previously stated, the optimal design is a tree with 3𝑛 edges, where
each node serves as a transshipment node for at most two other nodes. But then, we have a
3-partition of the nodes, where each partition 𝑆፣ is given by a node 𝑗 served directly by 𝑟 and
the two nodes for which 𝑗 serves as a transshipment nodes. The total demand is 𝑛𝐵 + 3𝑛𝑀,
which implies that each of the partitions 𝑆፣ has a total demand of exactly 𝐵 + 3𝑀. Therefore,
we have a Yes instance to the 3-PART problem.

42 3. The Multi-Energy System Design Problem

(a) A design with a single HC facility on each supply
edge and its corresponding costs

(b) A design with two HC facilities on a single supply
edge and its corresponding costs

Figure 3.9: Loading 2 HC facilities on a supply edge does not correspond with an optimal design.

4
Empirical Research

By highlighting model characteristics of the MESDP and investigating its computational com-
plexity in Chapter 3 , we tried to gain insight into its difficulty. However, for investigating how
difficult it is to solve practical problem instances, we cannot rely on reasoning and theory only.
As the proof of the pudding is in the eating, empirical testing of algorithms is crucial for as-
sessing their performance (Ahuja et al., 1993). In this chapter, we introduce various exper-
iments with practical instances of the multi-energy system design problem that provide in-
sights in the performance of MIP solvers.

4.1. Background
4.1.1. Theoretical vs. empirical research
In Chapter 3, we have proven that the MESDP is strongly NP-hard. Within the framework of
computational complexity, we can now state that we are dealing with a “difficult” problem: it
is not possible to find a polynomial-time algorithm to solve this problem, unless P = NP. How-
ever, the theory of computational complexity deals with worst-case running time of algorithms,
i.e., the maximum number of iterations 𝑇(𝑛) that an algorithm needs for any input of size 𝑛.
Predicting real-case running times based on worst-case estimates might fail, as these esti-
mates could correspond to problem instances that are highly unlikely in practice (Bertsekas,
1998). To understand and predict the behaviour of algorithms for real-life instances of the
MESDP, we therefore require empirical evidence. The empirical behaviour of an algorithm is
often much better than its worst-case analysis suggests. A well-established example of this is
the simplex method, that in its worst case does not run in polynomial time, but has proven to
be very effective for solving problems in practice (Karp, 1975).

The statement above by no means implies that analyzing the computational complexity of an
optimization problem is not valuable. Firstly, this analysis is often necessary for pointing out
computational “bottlenecks” of many algorithms. By showing the strong NP-hardness of an in-
stance of the MESDP with a single time period and two energy carriers, we found that solving
a case with the possibility of loading different “facilities” on the edges is significantly more dif-
ficult than a case in which only a single energy carrier is considered. Therefore, we can expect
that difficult trade-offs between different facilities could be a bottleneck for a solver. Secondly,

43

44 4. Empirical Research

specifically for network flow problems, if we can point out the NP-hardness of a given prob-
lem (assuming that P ≠ NP), we can (and should) give up hope of formulating it as a regular
minimum cost flow problem, which we know can be solved using polynomial algorithms (Bert-
sekas, 1998).

4.1.2. Assessing implementations
Before providing details on our experiments, we provide some background information on as-
sessing implementations in an empirical study.

According to Ahuja et al. (1993), a typical empirical study tests multiple algorithms and con-
sists of the following steps:

• Write a program for each algorithm to be tested;

• Generate different (random) problem instances with different input data;

• Run the implementations and compare their effectiveness.

For discussing the assessment of implementations, we make use of the framework as pro-
posed by Maher et al. (2019). According to this framework, the following steps should be
taken to compare the effectiveness of implementations:

• Measure the effectiveness of an implementation on a set of instances individually;

• Produce, for each implementation, summary statistics or a visualization that enables
conclusions to be drawn about effectiveness across an entire class of instances.

The latter allows for identifying the “best” algorithm. General conclusions regarding this should
preferably be done using statistical methods, but this is often difficult to do: since the true
probability distributions of measures of effectiveness are unknown, they should be approxi-
mated by determining the empirical cumulative distribution function (CDF) with respect to a
(small) set of test instances that are chosen to represent to full class. At best, this is a rough
approximation, where a uniform probability distribution is often assumed for simplicity.

The aspect of effectiveness that we focus on is efficiency. Ameasure of efficiency for a given
computation is the amount of a chosen resource that is required to perform that computation.
Specifically for branch and bound implementations, which we investigate in this research, the
efficiency of an implementation can be assessed by measuring its resource consumption, the
performed work or the progress (Maher et al., 2019).

Measuring resource consumption The easiest way to assess the efficiency of an implemen-
tation is directly measuring the amount of resources required to achieve a given termination
criterium. Typically, this resource is time (either CPU or wall clock). In branch and bound im-
plementations, the time to provable optimality is the most common measure. For instances
whose computation does not complete within a reasonable amount of time, the time to a fixed
optimality gap is usually measured. And lastly, if feasible solutions are difficult to be found,
the time to the first solution can be an appropriate measure. Some argue that it is debatable

4.1. Background 45

whether time is the best resource measure to use (Ahuja et al., 1993): firstly, because times
are often difficult to replicate due to the multiple sources of variabilities from the operating
system itself, and secondly, being a measure that combines multiple measures of empirical
performance, time does not provide detailed insight into the behaviour of an algorithm.

Measuring work performed Measures of work count the number of operations that are re-
quired to complete a computation, which is in many cases linearly related to the amount of
time required. The first common measure of performed work in branch and bound implemen-
tations is the number of nodes explored in the tree for solving a problem to optimality. This
measure does have a drawback, since it relies on the assumption that nodes have equal pro-
cessing times, which is not always the case: different component algorithms of the MIP solver
are executed at different nodes throughout the tree. When using the number of nodes as a
measure of efficiency, it is necessary to understand which algorithms are executed during
node processing. For example, generating more cuts at each node in the tree increases the
process time of a node, but could reduce the total number of nodes in the tree. To measure
the amount of work performed in processing all of the nodes, the total number of iterations
performed over all nodes can be a good measure. Therefore, measuring the combination of
the total number of processed nodes and the total number of performed iterations gives a
more complete picture of the overall efficiency of an algorithm.

Measuring progress Measures of progress are important to provide insight in computations
that cannot fully be completed within a given time limit. Instead of measuring resource con-
sumption, it is measured how much “useful computation” can be done with a fixed amount of
resources. Unfortunately, it is difficult to measure this in a rigorous way for branch and bound
implementations: solving NP-hard problems can involve a significant amount of backtrack-
ing, which results in little perceivable progress (besides the elimination of dead ends). Despite
this, it is essential to report on measures of progress, as it is not always possible to perform
the full computation. Beside that, it provides insight in the time it takes to do a fixed fraction
of the computation and allows us to determine the rate of progress for different resource set-
tings. The most commonly used measure of progress is the optimality gap, which is calcu-
lated as in Equation (2.5). In Figure 4.1, three different examples of the evolution of the lower
bound (the green curve) and incumbent (the blue curve) in implementations are given. Fig-
ure 4.2 shows the evolution of their corresponding optimality gaps. Figure 4.1a illustrates a
constant and regular improvement of both the incumbent and the lower bound, resulting in
the rather smooth gap function in Figure 4.2a. This is typically not the case: more often the
biggest changes in the size of the gap come from large improvements in the incumbent value
(with long periods of no improvements), while the lower bound has a more smooth evolution,
as illustrated in Figure 4.1b and 4.1c. The difficulty of using the optimality gap as an accurate
measure of progress is illustrated by these examples: after 5 seconds of computation, it ap-
pears that the implementation of Figure 4.1a outperformes the other two. However, this imple-
mentation has the largest total runtime and is therefore not necessarily the “best” one. Still, to
our best knowledge, the optimality gap is an appropriate measure for comparing the progress
made by different algorithms with the same resources. Caution should be taken for drawing

46 4. Empirical Research

conclusions based on findings regarding the optimality gap, as large differences are not al-
ways very significant in this case.

(a) Implementation 1 - Bounds (b) Implementation 2 - Bounds (c) Implementation 3 - Bounds

Figure 4.1: Example graphs of incumbent and lower bound values in implementations (Maher et al., 2019)

(a) Implementation 1 - Gap (b) Implementation 2 - Gap (c) Implementation 3 - Gap

Figure 4.2: The evolution of the gaps corresponding to the graphs of Figure 4.1 (Maher et al., 2019)

In some cases, practitioners prefer implementations that take a long time to solve to optimal-
ity, but quickly find a good solution over implementations that require less time for optimality,
but do not find good solutions early in the solution stage. To illustrate this, the implementation
of Figure 4.2c might be the “winner” when we investigate the time to provable optimality or the
time to a very small fixed gap. But this conclusion discards the total evolution of the gap func-
tion, something that can be very insightful when measuring progress. The gap integral (GI) is
proposed as an alternative to the gap itself as a measure of progress (Maher et al., 2019). The
gap integral measures the “average gap” over a given time interval by capturing the evolution
of the gap over a limited computation time. Formally, it is defined as the following integral

𝐺𝐼 = ∫
ፓ

ኺ
𝛾(𝑍ፋ(𝑡), 𝑍ፔ(𝑡))d𝑡, (4.1)

where 𝑇 denotes the time needed to solve to optimality or the time limit and 𝛾(𝑍ፋ , 𝑍ፔ) denotes
the optimality gap for lower bound 𝑍ፋ and current incumbent 𝑍ፔ. When discrete samples of
the upper and lower bounds are obtained, as often the case in practice, we can approximate
the gap integral with the following formula.

𝐺𝐼 =
ፈ

∑
።ኻ
𝛾(𝑍ፋ(𝑡።), 𝑍ፔ(𝑡።)) ⋅ (𝑡። − 𝑡።ዅኻ), (4.2)

4.1. Background 47

where 𝑡። ∈ [0, 𝑇] and 𝑖 ∈ 1, … 𝐼 are the discrete times at which the bounds are updated with
𝑡ኺ = 0 and 𝑡ፈ = 𝑇. The GI is a number between zero and 𝑇, where numbers closer to zero
indicate a more effective implementation. Revisiting the examples of gap functions in Figure
4.2, we can state that the second implementation (Figure 4.2b) has the best “average gap”
over time and would therefore have the lowest GI. Even though it produces a single summary
statistic, the GI value does capture the progress of an algorithm over time and is therefore an
insightful measure.

4.1.3. MIP solvers
Practical mixed integer (linear) programs are typically solved by state-of-the-art MIP solvers
(Klotz and Newman, 2013). Recent advantages in the implementation of algorithms and hard-
ware improvements in MIP solvers allow practicioners to formulate and solve increasingly
large and complex models. A MIP solver reads a MIP problem, executes an optimization pro-
cedure, containing both exact and heuristic methods, and returns the best solution found. For
obtaining solutions to instances of the MESDP, we make use of Gurobi, a mathematical pro-
gramming solver for mixed-integer programs. The methods that Gurobi applies for solving
MIPs are a branch and bound procedure combined with problem reductions, cutting planes
and various heuristic methods. More details on some of these components can be found in
Chapter 2.3. We shortly introduce how these components are implemented in the solver.

Presolve The first step in solving a MIP is the presolve section. MIP presolve is a collection of
problem reductions that reduce the size of the problem and tighten its formulation, i.e., the de-
gree to which the constraints of the formulation accurately describe the underlying polyhedron
of the solution space.

Branch and bound In the next step, the presolved problem is passed on to the branch and
bound part of the solver. In the root node of the branch and bound tree, the LP relaxation is
solved. After that, a branch and bound tree search is generated by iteratively selecting nodes
as the next subproblem to process. The solver keeps track of the incumbent, the global lower
bound and the gap between the incumbent and the lower bound throughout the whole proce-
dure (optimality gap). When this gap is equal to 0, optimality is reached and the solver termi-
nates.

Cutting planes The implementation of cutting planes is the most important contributor to
computational advances in integer programming over the last years. During the branch and
bound procedure, different cutting planes are applied to cut off relaxed solutions. Even though
the set of automatically generated cutting planes is very powerful and robust, it can be inter-
esting to vary the “aggressiveness” of the cut settings in some cases, especially with model-
specific knowledge.

Heuristics The branching part of the branch and bound algorithm is not the only method that
the solver uses to find new feasible solutions. Gurobi includes multiple heuristics, such as
feasibility heuristics, local search heuristics and some additional heuristics in the root node.
Good heuristic methods find solutions earlier than branching. By exploiting the problem struc-

48 4. Empirical Research

ture, Gurobi adapts its strategy deciding when to apply which heuristics.

Additional techniques Besides the above mentioned components, many additional techniques
are included in the solver’s optimization procedure, such as sophisticated branch variable
techniques, node presolve, symmetry detection, disjoint subtree detection, etc. In most cases,
their goal is to limit the size of the branch and bound tree that must be explored.

Parameter tuning The behaviour of the methods that the solver applies can be controlled by
adjusting their settings, i.e., tuning certain parameters. While default settings generally work
well for solving MIPs, models can benefit from parameter tuning in some cases. By running
various problem instances with the solver’s default settings, practitioners can get more insight
in possible problems for the solver. Based on these and on in-depth model knowledge, they
can choose to experiment with different parameters and investigate whether the model bene-
fits from this. Ideally, it should thoroughly be investigated whether (and how) the solver’s effi-
ciency can be enhanced through parameter tuning before turning to performance-enhancing
strategies that require (much) more work, such as model reformulations or decomposition
methods. There are a few reasons for this. First, from a practical point of view, this is a simple
approach that might result in better computing times but hardly requires any effort to imple-
ment. Second, from a more theoretical point of view, it can provide researchers with additional
insight in the solver’s “bag of tricks” and the many underlying computational trade-offs that are
a part of it. Third, as well as a better understanding of the solver itself, it provides additional in-
sight in the model’s characteristics and provides a direction for future research in performance
enhancements.

An overview of the building blocks in the optimization procedure for MIPs is given in Figure
4.3. It should be clear that each box represents “a giant bag of tricks” (Gurobi Optimization
Inc., 2017). As a detailed overview and explanation of these “tricks” lies beyond the scope of
this thesis, we refer to Gurobi’s reference manual (Gurobi Optimization Inc., 2017). The devel-
opment of many of these tricks have proven to be very helpful for efficiently solving MIPs, and
recent developments in solvers allow us to now solve very large and complex problems. How-
ever, they also make it rather difficult to fully understand the solver and its behaviour.

It is challenging to relate theoretical to empirical evidence when we make use of state-of-the-
art mathematical programming solvers. Nevertheless, as there is a particular interest in solv-
ing practical instances of the MESDP, we gather empirical evidence using Gurobi.

4.2. Experiments
By assessing implementations of different problem instances of the MESDP, we intend to:

1. find out which parts of the model are difficult for the solver by running various instances
with default settings;

2. find out which parameter settings are potentially beneficial for the model by comparing
implementations with different settings, where these settings are based on information
gathered in the previous step.

4.2. Experiments 49

Figure 4.3: MIP building blocks used in Gurobi’s optimization procedure (Gurobi Optimization Inc., 2017).
The orange blocks represent the components that we assess in this empirical study.

It should be obvious that the efficiency of an implementation cannot be assessed by looking
at the result of a single instance. According to Maher et al. (2019), randomly generated in-
stances are usually not representative. The set of instance variations should rather be diverse
with respect to particular properties of instances that seem complicating. This can however
be difficult to achieve: computational experiments are a good way of highlighting these prop-
erties, but without a set of test instances, it is not possible to run computational experiments.
We construct a set of test instances for the MESDP by varying the input data of the regular
case. To construct this set, we perform various experiments with 1) smaller instances of the
regular case and 2) variations on the MESDP that exclude constraints that we expect to be
complicating. Details of the implementation and results of these experiments can be found in
Chapter 7.1. Though these experiments, we have generated a set of instances for the MESDP
for the remainder of this study. An overview of these is provided in Table 7.1.

4.2.1. Experiments with default settings
In this empirical experiment we intend to:

1. find out which parts of the model are difficult for the solver by running various instances
with default settings.

We are interested in identifying difficult parts of the model, i.e., causes of performance prob-
lems for the solver, as we eventually want to to improve the solver’s performance by optimiz-
ing its parameter settings. We assess the performance of the solver on this set of instances,
based on the following various measures of efficiency.

Time to optimality The first measure of efficiency that we use for assessing the quality of the
solver for various instances is the time to optimality. To this end, we should let the solver run
without a time limit and examine how much time is required for solving the problem optimally.

50 4. Empirical Research

Solving the relaxation The continuous model that gets solved at the root node of the MILP
model can be solved with different algorithms: the primal simplex method, the dual simplex
method or the barrier method (also known as interior point algorithms) (Gurobi Optimization
Inc., 2019). When deciding which algorithm suits the model best, it is important to investi-
gate the degeneracy of the model. If the model is degenerate, i.e., if it has a basis where a
basic variable is equal to zero, the simplex method is not guaranteed to be finite (Orlin and
Nasrabadi, 2013). A problem that is primal degenerate might work well with a dual simplex
method, and vice versa. A problem that is both primal and dual degenerate, might work well
with the barrier method. The MESDP is highly degenerate, as many investment decision vari-
ables will have a value of zero in the optimal solution. For this reason, we conduct various ex-
periments with all of the three methods on the set of instances.

Time to solve to a fixed gap To get more insight in the time the solver requires to come up
with good quality solutions, we let the solver run until a solution with a fixed optimality gap is
found.

For the results of the above experiments, we refer to Chapter 7.2. We would like to highlight
an important finding from these experiments here however, as our strategy in the remainder
of the empirical study is based on these initial results. In almost all cases, after a while there
is very little progress in the best bound and no progress at all in the incumbent, resulting in
an optimality gap that decreases extremely slowly. In smaller cases that were solved to opti-
mality, the optimal solution was found in an early stage, while the lower bound kept increas-
ing very slowly. This particular result can not necessarily be extended to the larger and more
complicated cases: without knowledge on the optimal objective function one can not state
whether the incumbent will not change anymore throughout the remainder of the solution
process. Still, this result for the incumbent values in the smaller cases do motivate us to in-
vestigate ways in which we can improve the convergence of the lower bound; considering the
slowly improving lower bound function that we also see in the larger cases.

4.2.2. Experiments with parameter tuning
In this empirical experiment we intend to:

2. find out which parameter settings are potentially beneficial for the model by comparing
implementations with different settings, where these settings are based on information
gathered in the previous step,

where the slowly improving lower bound function is the information on which we should base
the settings.

Klotz and Newman (2013) propose guidelines for the performance bottleneck of a lack of
progress in the best bound. To strenghten the solver’s performance, they propose to adjust
different parameters, as this is easily done and might have a significant effect.

We investigate the effect of changing the following parameters for all of the instances in the
test set:

4.2. Experiments 51

• Apply aggressive cut generation (for all cutting plane methods)

• Apply aggressive model-specific cuts

• Apply strong branching

• Let the solver focus on finding the best bound in node selection

In Figure 4.3 it is illustrated in which components of the solver the parameter adjustments are
made.

Aggressive cut generation Aggressive cut generation allows for the solver to spend more
time calculating cutting planes throughout the entire algorithm. This results in more cuts, and
thus a further tightening of the formulation, but might also result in a slower rate of node pro-
cessing due to the additional constraints in the node LPs.

Aggressive model-specific cut generation The cuts that are added by the solver rely on gen-
eral polyhedral theory that applies MIPs. It is less likely that a state-of-the-art MIP solver imple-
ments cuts that rely on a structure that is specific to indivual MIPs (Klotz and Newman, 2013).
Cuts that have proven to be particularly useful for fixed charge network flow problems are flow
cover cuts. MIP solvers have the ability to add these, but might not always recognize the net-
work design structure of a model. Forcing the solver to spend a more effort in calculating flow
cover cuts might therefore help its performance.

Strong branching When strong branching is applied, solvers run a (modest) number of iter-
ations on each branching variable candidate at each node, testing which one gives the best
improvement before actually branching on them. Infeasible branches are exploited, tighten-
ing the problem formulation in the node. A trade-off has to be made, as strong branching does
increase the computation at each node in the tree.

Focus on best bound in node selection Letting the solver select the node with the minimal
relaxation objective value (while ignoring the number of integer infeasibilities) allows for it to
update the best node value faster. However, this also may cause the solver to find less integer
feasible solutions. In our case, the solver finds feasible integer solutions rather quickly, while
the objective bound moves slowly. Best bound node selection could therefore help the solver’s
performance.

For the results of these experiments, we refer to Chapter 7.2.

52 4. Empirical Research

Figure 4.4: The parameters that we vary in this study with the components in which this is applied.

5
Valid inequalities

In this chapter, we investigate the influence of including valid inequalities on solving the MESDP.

5.1. Theory
Knowledge on model characteristics allows practitioners to formulate their own cuts in order
to improve the solver’s performance. There is a large amount of theory on cut derivation for
MIPs available. And even though in-depth knowledge of this adds to the possibility of improv-
ing the solver’s performance, there are some fairly simple techniques for deriving useful cuts
(or valid inequalities) that have proven to enhance run times (Klotz and Newman, 2013).

Valid inequalities A valid inequality (VI) is any constraint that does not eliminate any feasible
solutions to the original problem. These VI or cutting planes should eliminate part of the LP
feasible region (Orlin and Nasrabadi, 2013). The convex hull is the smallest LP feasible region
containing all of the integer solutions. For a MILP, it holds that solving an LP with the convex
hull of integer solutions as feasible solution space guarantees finding the optimal solution, be-
cause all of the corner points are integer. Finding constraints of the convex hull or finding the
convex hull itself would therefore result in better bounds. However, this is extremely difficult to
do. More commonly in practice, useful VI are looked for, where useful implies that they cut of
some fractional solutions, but no integer solutions.

For a while, it has been possible to add VI during the branch and bound process for most MIP
solvers (CPLEX, for instance, introduced this already in 2006). A somewhat new development
for MIP solvers is the introduction of lazy constraints.

Lazy constraints The amount of time required to solve an MIP can heavily depend on the
number of constraints (Pearce and Hons, 2019). A lazy constraint is a constraint that is only
considered by the solver once it is violated. Using lazy constraints allows practitioners to “leave
out” constraints from a problem that have to be satisfied for any feasible solution, but which
may not be required by the solver to find the optimal solution. Leaving out some of these con-
straints results in a smaller model. When solving this relaxed model, each integer solution
found during the branch and bound procedure is checked. If this solution violates one of the
constraints that is not included in the relaxed model, i.e., one of the lazy constraints, the inte-

53

54 5. Valid inequalities

ger solution is discarded and the violated constraint is pulled back into the active model. In
this way, only the constraints that are required for finding the optimal solution are included. It
can be useful to designate constraints as lazy when you know beforehand that they are triv-
ially satisfied (or rarely violated) in feasible solutions, as this reduces the total number of con-
straints that the solver has to deal with.

Besides the ability to designate constraints as lazy before solving a model, lazy constraints
can be implemented through the use of callback functions. Modern solvers have callback ca-
pabilities that allows the user to retrieve information and change parts of a model during the
solution process. Using callback functions, cuts and lazy constraints can be added dynami-
cally every time that a feasible solution is found in the branch and bound tree, while continuing
the solving process. In this sense, lazy constraints might be considered user-generated “cut-
ting planes” that are allowed to cut off feasible solutions. A graphical representation of this
idea is given in Figure 5.1.

Figure 5.1: The difference between user cuts and lazy constraints for the convex hull of a MILP. Lazy
constraints are, opposed to user cuts, allowed to cut off a part of the feasible region.

Pearce and Hons (2019) highlight three main scenarios in which lazy constraints are useful:

1. Models with an exponential-sized set of constraints;

2. Models with a large set of redundant constraints;

3. In cases where not all constraints can be identified at the model initialization phase, for
instance within the application of Benders decomposition.

Both lazy constraints and VI can iteratively be added through the use of callback functions. It
is crucial to inform the solver whether the constraint you want to add from the callback func-
tion is an actual cutting plane or a lazy constraint: adding a lazy constraint as a cutting plane
might cut of feasible solutions, something that a cutting plane should never do. Calling a con-
straint a cutting plane tells the solver that it cannot cut of a feasible solution, so the solver will
not check the violation of such a cutting plane every time a feasible solution is found. This can
lead to incorrect results. Lazy constraints on the other hand are guaranteed to be checked by
the solver every time a feasible solution is found.

5.2. Valid inequalities for the MESDP 55

In the following section, we apply theory from VI to the MESDP.

5.2. Valid inequalities for the MESDP
In this section, we identify valid inequalities that tighten the formulation of the MESDP and in-
vestigate their influence on the solver’s performance. Our choices of VI are motivated both by
successful applications in similar problems in previous research and some computational ex-
perience regarding outcomes of solving the MESDP. From common situations that often arise
in the solutions we can, rather intuitively, draw some patterns that allow us to predict which VI
might have a positive effect.

Single node inequalities

Mass balance constraint (3.1a) states that in each time period 𝑡 ∈ 𝑇 the net flow in each node
𝑖 ∈ 𝑉 should be equal to its demand 𝑏።፭ in that time period. As stated before, inflow can come
from 1) other nodes, through arcs (conversion units) or edges (network connections); 2) sup-
ply units at node 𝑖 (only in electricity- or gas nodes) or 3) storage units at node 𝑖. Outflow can
go to 1) other nodes or 2) storage units at node 𝑖.

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ − ∑
{፣∶(።,፣)∈ፄ}

𝑥።፣፭ + 𝑆።፭ −𝑊ፈፍ
።፭ +𝑊ፎፔፓ

።፭ = 𝑏።፭ , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (3.1a)

Since 𝑥።፣፭ ,𝑊ፈፍ
።፭ ≥ 0∀𝑖 ∈ 𝑉, (𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇 , the following holds.

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ + 𝑆።፭ +𝑊ፎፔፓ
።፭ ≥ 𝑏።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (5.1)

Combining constraints (3.1k) and (3.1l), it follows that the amount of flow taken from storage
at node 𝑖 ∈ 𝑉፤ in time period 𝑡,𝑊ፎፔፓ

።፭ , cannot exceed the total installed capacity of storage
in the previous time periods, 𝑢፤ ⋅ ∑፭ዅኻ፪ኻ 𝑧ፖ።፪ . Therefore, taking into account loss and efficiency
factors 𝜂፤ and 𝜉፤ , the following holds.1

𝑊ፎፔፓ
።፭ ≤ 𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤ ⋅

፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ , ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇 (5.2)

The total amount of inflow from other edges, ∑{፣∶(፣,።)∈ፄ} 𝜇፣። ⋅ 𝑥፣።፭ , depends on the total installed
capacity on those edges, which is for each edge (𝑗, 𝑖) ∈ 𝐸 equal to 𝑢፣። ⋅ ∑

፭
፪ኻ 𝑧፣።፪ (constraint

(3.1d)). We obtain an upper bound for the total inflow in node 𝑖 from other edges.

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ ≤ ∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑢⋅፣።
፭

∑
፪ኻ

𝑧፣።፪ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇, (5.3)

1Note that this inequality is not necessarily strong, as we only consider standing losses ᎔ᑜ from a single time period.
This does allow us to take ᎔ᑜ outside of the sum, which is necessary for the way we derive the VI here.

56 5. Valid inequalities

from which we obtain

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ ≤ max
(፣,።)∈ፄ

(𝜇፣። ⋅ 𝑢፣።) ⋅ ∑
{፣∶(፣,።)∈ፄ}

፭

∑
፪ኻ

𝑧፣።፪ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇. (5.4)

For supply 𝑆።፭ , we have the following inequality (constraint (3.1b)).

𝑆።፭ ≤∑
፬

፭

∑
፪ኻ

(𝑢፬፭ ⋅ 𝑧፬።፪) + 𝑔።፭ , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑉, (5.5)

from which we derive

𝑆።፭ ≤max
፬
(𝑢፬፭) ⋅∑

፬

፭

∑
፪ኻ

𝑧፬።፪ + 𝑔።፭ , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑉. (5.6)

Combining inequalities (5.1), (5.2), (5.4) and (5.6), we obtain the following inequality.

max
(፣,።)∈ፄ

(𝜇፣። ⋅ 𝑢፣።) ⋅ ∑
{፣∶(፣,።)∈ፄ}

፭

∑
፪ኻ

𝑧፣።፪ +max
፬
(𝑢፬፭) ⋅∑

፬

፭

∑
፪ኻ

𝑧፬።፪+

𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤ ⋅
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ ≥ 𝑏።፭ − 𝑔።፭ , ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇.

As 𝑧፬።፪ = 0 ∀𝑖 ∈ 𝑉፠⋃𝑉፡ , we can strengthen this inequality for the gas- and heat nodes.

max
(፣,።)∈ፄ

(𝜇፣። ⋅ 𝑢፣።) ⋅ ∑
{፣∶(፣,።)∈ፄ}

፭

∑
፪ኻ

𝑧፣።፪ + 𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤ ⋅
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ ≥ 𝑏።፭ − 𝑔።፭ , ∀𝑖 ∈ 𝑉፠ ∪ 𝑉፡ , ∀𝑡 ∈ 𝑇. (5.7)

Let

𝐴።፭ = {
max (max(፣,።)∈ፄ(𝜇፣። ⋅ 𝑢፣።), max፬(𝑢፬፭), 𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤), if 𝑖 ∈ 𝑉፞

max (max(፣,።)∈ፄ(𝜇፣። ⋅ 𝑢፣።), 𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤), if 𝑖 ∈ 𝑉፠ ∪ 𝑉፡
, ∀𝑡 ∈ 𝑇.

We then find

5.2. Valid inequalities for the MESDP 57

𝐴።፭ ⋅ (∑
{፣∶(፣,።)∈ፄ}

፭

∑
፪ኻ

𝑧፣።፪ +∑
፬

፭

∑
፪ኻ

𝑧፬።፪ +
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪) ≥ 𝑏።፭ − 𝑔።፭ , ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇, (5.8)

which is equivalent to

∑
{፣∶(፣,።)∈ፄ}

፭

∑
፪ኻ

𝑧፣።፪ +∑
፬

፭

∑
፪ኻ

𝑧፬።፪ +
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ ≥
𝑏።፭ − 𝑔።፭
𝐴።፭

, ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇. (5.9)

The left-hand side of Equation (5.9) is integer-valued, which is why we can state the following.

∑
{፣∶(፣,።)∈ፄ}

፭

∑
፪ኻ

𝑧፣።፪ +∑
፬

፭

∑
፪ኻ

𝑧፬።፪ +
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ ≥ ⌈
𝑏።፭ − 𝑔።፭
𝐴።፭

⌉, ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇. (5.10)

This is the first (globally valid) inequality that we derive for the MESDP.

Inequalities based on the graph structure

To derive VI from the graph structure of the MESDP, we re-introduce the time-expanded graph
of 𝐺, 𝐺ፓ = (𝑉ፓ , 𝐸ፓ), where each node 𝑖 ∈ 𝑉ፓ represents a node from 𝑉 in a distinct time period
𝑡 ∈ 𝑇 or a gas/electricity supply node, and each arc/edge (𝑖, 𝑗) ∈ 𝐸ፓ represents i) the edges
from 𝐸 in the distinct time periods if 𝑖 and 𝑗 are nodes in the same time period; ii) storage, if 𝑖
and 𝑗 belong to different time periods; and iii) supply, if 𝑖 is one of the supply nodes.

Considering the fact that a feasible flow in the time-expanded graph 𝐺ፓ corresponds to a feasi-
ble solution for the MESDP, we can derive VI by defining graph cuts in graph 𝐺ፓ - where we are
motivated by the fact that facet defining inequalities for the general network loading problem
have been derived using similar cut inequalities. The capacity of a cut in a classical network
graph should be at least the sum of the requirements separated by this cut (Barahona, 1996).
Due to the presence of arc multipliers in the MESDP, we cannot apply this result in network
graph 𝐺ፓ. We can however apply a similar idea and derive (potentially weaker) cuts.

Consider Figure 5.2, 5.3, 5.4 and 5.5, illustrating cuts in graph 𝐺ፓ.

58 5. Valid inequalities

Figure 5.2: Cut-sets in the time-expanded graph ፆᑋ (1)

5.2. Valid inequalities for the MESDP 59

Figure 5.3: Cut-sets in the time-expanded graph ፆᑋ (2)

60 5. Valid inequalities

Figure 5.4: Cut-sets in the time-expanded graph ፆᑋ (3)

5.2. Valid inequalities for the MESDP 61

Figure 5.5: Cut-sets in the time-expanded graph ፆᑋ (4)

62 5. Valid inequalities

Due to the generalized flow in our problem, conservation of flow does not hold in graph 𝐺ፓ.
This has some implications for the way that we derive VI from cuts in the graph: if for all edge
multipliers we would have 𝜇።፣ ≤ 1, then we could state, for example for the cut in Figure 5.2,
that the capacity of the cut, i.e., the maximum amount supplied by the electricity- and gas sup-
ply nodes, should equal at least the total demand over all time periods.

∑
።∈ፕ
∑
፭∈ፓ
(∑

፬
𝑢፬፭ ⋅

፭

∑
፪ኻ

𝑧፬።፪ + 𝑔።፭) ≥∑
።∈ፕ
∑
፭∈ፓ
𝑏።፭ (5.11)

However, as flow is not conserved, Equation (5.11) does not hold for the MESDP: flow can be
“created” on edges or arcs where 𝜇።፣ > 1, implying that in some feasible solutions the capacity
of the cut might be less than the total demand. Therefore, we should take edge multipliers 𝜇።፣
into account when deriving VI from cut-sets in the graph.

Let 𝑃። be a possible path from the electricity- or gas supply node to a node 𝑖 in the time-expanded
graph 𝑉ፓ. Through storage, flow can travel from or to the next time period, which is why the
storage arcs should also be taken into account in path 𝑃።. Note that storage efficiency and
loss factors therefore correspond to arc multipliers in the time-expanded graph. Let 𝜃።፣ denote
such an arc multiplier for arc (𝑖, 𝑗) ∈ 𝐸ፓ , i.e.,

𝜃።፣ = {
𝜇።፣ , if 𝑖, 𝑗 ∈ 𝑉፭

𝜂፤ ⋅ 𝜉ኼ፤ , if 𝑖 ∈ (𝑉፭)፤ and 𝑗 ∈ (𝑉፭ዄኻ)፤ .

For each unit flow leaving the electricity supply node and traveling over path 𝑃። , ∏(፣,፥)∈ፏᑚ 𝜃፣፥
units of flow arrive at node 𝑖.

Figure 5.6: A possible flow path in the time-expanded graph for a single location.
For each unit flow that travels from the supply node to the gas node in ፭ ዄ ኻ, ᎙ ⋅ ᎔ᑘ units of flow arrive 2.

For each 𝑖 ∈ 𝑉ፓ , let Μ። = maxፏᑚ (∏(፣,፥)∈ፏᑚ 𝜃፣፥), i.e., the maximum amount of flow that can be
created or the least amount of flow that is lost (depending on whether ∏(፣,፥)∈ፏᑚ 𝜃፣፥ < 1) on
each path 𝑃 from the electricity supply node to node 𝑖. The path corresponding to Μ። never
contains any directed cycles (dicycles) in 𝐺ፓ: first and foremost, because there are no dicycles
that create flow - the only arcs where 𝜇።፣ > 1 are the (directed) HP arcs - and in addition, if a

2Where ᎙, in this case, equals the conversion rate of a P2G unit.

5.2. Valid inequalities for the MESDP 63

path 𝑃ᖣ። contains a directed cycle 𝐶 with ∏(።,፣)∈ፂ 𝜃።፣ < 1, then there exists a path 𝑃ᖥ። = 𝑃ᖣ። \𝐶,
where we have ∏(።,፣)∈ፏᖦᑚ 𝜃።፣ > ∏(።,፣)∈ፏᖤᑚ 𝜃።፣.

Therefore, it holds that Μ። > 0 and finite for each 𝑖 ∈ 𝑉ፓ.

We now arrive at the following result. Let ∑።∈ፕ ∑፭∈ፓ 𝑏።፭ denote the total demand for all nodes
in all time periods. We know that the total amount of supplied flow from the electricity- and
gas supply node, ∑።∈ፕ ∑፭∈ፓ 𝑆።፭ , should suffice to fulfill the total demand ∑።∈ፕ ∑፭∈ፓ(𝑏።፭), i.e., be
greater or equal than the total amount of flow that arrives at the non-supply nodes in 𝑉ፓ (while
taking into account the gain- and loss factors), implying that:

∑
።∈ፕ
∑
፭∈ፓ
𝑆።፭ ≥∑

።∈ፕ
∑
፭∈ፓ

𝑏።፭
Μ።

(5.12)

Combining Equation (5.12) with capacity constraints (3.1b), we find the following.

∑
።∈ፕ
∑
፭∈ፓ
(∑

፬
𝑢፬፭ ⋅

፭

∑
፪ኻ

𝑧፬።፪ + 𝑔።፭) ≥∑
።∈ፕ
∑
፭∈ፓ

𝑏።፭
Μ።

⇒ (5.13)

max
፬,፭
(𝑢፬፭) ⋅∑

።∈ፕ
∑
፭∈ፓ
(∑

፬

፭

∑
፪ኻ

𝑧፬።፪ + 𝑔።፭) ≥∑
።∈ፕ
∑
፭∈ፓ

𝑏።፭
Μ።

⇒ (5.14)

∑
።∈ፕ
∑
፭∈ፓ
∑
፬

፭

∑
፪ኻ

𝑧፬።፪ ≥
1

max፬,፭(𝑢፬፭)
∑
።∈ፕ
∑
፭∈ፓ
(𝑏።፭Μ።

− 𝑔።፭) (5.15)

As the left-hand side of Equation (5.15) is integer, the following holds.

∑
።∈ፕ
∑
፭∈ፓ
∑
፬

፭

∑
፪ኻ

𝑧፬።፪ ≥ ⌈
1

max፬,፭(𝑢፬፭)
∑
።∈ፕ
∑
፭∈ፓ
(𝑏።፭Μ።

− 𝑔።፭)⌉ (5.16)

The left-hand side of this (globally valid) inequality corresponds to the capacity of the cut-set
in Figure 5.2.

To strenghten the VI in Equation (5.16), we consider the cuts in Figure 5.3. In addition to the
cut corresponding to the total demand over all time periods, we apply cuts in which the total
demand in each time period is considered. It is important to take the flow between time pe-
riods, i.e., from storage, into account here. Instead of dividing the sum of the demand by the
maximum supply capacity as in (5.16), we should now also account for storage capacities. To
this end, we define

𝐵፭ = {
max(max፤(𝑢፤),max፬(𝑢፬፭)), if t>1

max፬(𝑢፬፭)), else

and 𝑡፦ፚ፱ is equal to the last time period, i.e., 𝑡፦ፚ፱ =max፭∈ፓ(𝑡).

64 5. Valid inequalities

In a similar way as before, we arrive at the following (globally valid) inequalities:

∑
።∈ፕ

፭ᑞᑒᑩ

∑
Ꭱ፭

∑
፬

Ꭱ

∑
፪ኻ

𝑧፬።፪ +∑
፤∈ፊ

∑
።∈ፕᑜ

፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ ≥ ⌈
1
𝐵፭
⋅∑
።∈ፕ

፭ᑞᑒᑩ

∑
Ꭱ፭

(𝑏።ᎡΜ።
− 𝑔።Ꭱ)⌉, ∀𝑡 ∈ 𝑇 (5.17)

Lastly, we consider “terminal” nodes in 𝐺ፓ , i.e., nodes that cannot pass flow on to other nodes.
As there are no actual terminal nodes in 𝐺ፓ (all nodes can pass flow on), we create one by ag-
gregating the heat nodes in the last time period, as illustrated in Figure 5.7. Even though we
can only consider a small part of the integer investment variables in this specific cut, we might
still find this cut to be useful.

Figure 5.7: Aggregating the heat nodes in a single terminal node at ፭ ፭ᑞᑒᑩ.

We derive a VI corresponding to the cut in Figure 5.4. In the figure, the capacity of the cut is
equal to the total capacity of installed heat storage at 𝑡 + 1, and the total capacity of installed
CHP and HP units at 𝑡 + 2, i.e., the total capacity of all edges from (𝑉፭ዄኼ)፠ and (𝑉፭ዄኼ)፞ to
(𝑉፭ዄኼ)፡.

The total installed heat storage at a time 𝑡 is equal to 𝑢፡ ⋅ ∑
።∈ፕᑙ

፭

∑
፪ኻ
𝑧ፖ።፪ , and the total installed CHP

and HP units at a time 𝑡 is equal to ∑
።∈ፕᑙ

∑
{፣∈(ፕᑘ ⋃ፕᑖ)∶
(፣,።)∈ፄ}

𝑢፣። ⋅
፭

∑
፪ኻ
𝑧፣።፪.

We can therefore derive the following inequality from the cut in Figure 5.4, where 𝑡፦ፚ፱ denotes
the last time period in 𝑇, and Μ፡። denotes the maximum of the capacity of a CHP unit, HP unit,
or heat storage unit, times their respective multipliers, i.e.,

Μ፡። =max(max{(𝜇፣። ⋅ 𝑢፣።)| (𝑗, 𝑖) ∈ 𝐸 ∶ 𝑗 ∈ 𝑉፠ ∪ 𝑉፞}, 𝜉ኼ፡ ⋅ 𝜂፡ ⋅ 𝑢፡).

In other words,𝑀፡። is equal to the maximum amount of flow that can arrive at a heat node 𝑖
from a single asset installed on either CHP, HP or heat storage arcs.

In a similar manner as before, we arrive at the following (globally valid) inequality

5.3. Implementation 65

∑
።∈ፕᑙ

፭ᑞᑒᑩዅኻ

∑
፪ኻ

𝑧ፖ።፪ +∑
።∈ፕᑙ

∑
{፣∈(ፕᑘ ⋃ፕᑖ)∶
(፣,።)∈ፄ}

፭ᑞᑒᑩ

∑
፪ኻ

𝑧፣።፪ ≥ ⌈∑
።∈ፕᑙ

𝑏።፭ᑞᑒᑩ
Μ፡።

⌉ (5.18)

Similar to how we derived Equation (5.17), we can extend this result to multiple time periods
by taking heat storage into account. Let

Μ፡።፭ = {
max(max{(𝜇፣። ⋅ 𝑢፣።)| (𝑗, 𝑖) ∈ 𝐸 ∶ 𝑗 ∈ 𝑉፠ ∪ 𝑉፞}, 𝜉ኼ፡ ⋅ 𝜂፡ ⋅ 𝑢፡), if 𝑡 > 1
max{(𝜇፣። ⋅ 𝑢፣።)| (𝑗, 𝑖) ∈ 𝐸 ∶ 𝑗 ∈ 𝑉፠ ∪ 𝑉፞}, else .

We then arrive at the following VI, corresponding to the cuts in Figure 5.5.

∑
።∈ፕᑙ

፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ +∑
።∈ፕᑙ

፭ᑞᑒᑩ

∑
Ꭱ፭

∑
{፣∈(ፕᑘ ⋃ፕᑖ)∶
(፣,።)∈ፄ}

Ꭱ

∑
፪ኻ

𝑧፣።፪ ≥ ⌈∑
።∈ፕᑙ

፭ᑞᑒᑩ

∑
Ꭱ፭

𝑏።Ꭱ
Μ፡።፭

⌉, ∀𝑡 ∈ 𝑇 (5.19)

5.3. Implementation
We investigate the influence of adding valid inequalites (5.17), (5.18) (5.19) to the MESDP.
There are multiple ways in which these VI can be implemented. First, they can be added a pri-
ori to the model. Although this (possibly) improved polyhedral description of the feasible solu-
tion space results in tighter LP relaxations and therefore in better lower bounds from the start,
directly adding all the VI is often not practical: it might become very difficult for the solver to
generate feasible solutions, as the number of VI grows rapidly with the problem size. A sec-
ond option is to add the VI dynamically when they are violated in an LP relaxation in a node
in branch-and-bound tree. This can be implemented using callback functions. A third option
is to add the VI a priori as aggressive lazy constraints. As mentioned before, regular lazy con-
straints are only pulled into the model when they are violated by a feasible solution. Aggres-
sive lazy constraints are also pulled into the model when they are violated by a feasible so-
lution in an LP relaxation . Only the VI that are violated by LP relaxations are pulled in, which
might be more efficient as the solver does not have to deal with the entire set of VI in each iter-
ation.

The results of these implementations can be found in Chapter 7

6
Decomposition methods

To solve large and complicated network design problems, the use of decomposition tech-
niques can be convenient (Conejo et al., 2006). Through the application of decomposition
techniques, certain types of problems can be solved in a decentralized or distributed fashion
that can lead to a significant simplification of the problem. For a decomposition technique to
be useful, the problem must have the appropriate structure. In practice, a distinction here is
made between the following cases: the complicating variable and the complicating constraint
structure. The MESDP can be viewed as a MILP with both a complicating variable and compli-
cating constraint structure. In Section 6.1 and Section 6.2, we exploit the complicating variable
and constraint structure of the MESDP, respectively.

6.1. Benders decomposition
Benders decomposition (BD) is based on the notion of complicating variables. The amount of
literature on successful applications of this methodology to MI(L)Ps is extensive. The idea be-
hind the BD method is to decompose a problem into two parts: themaster problem, solving a
relaxed version of the problem and obtaining values for a subset of the variables, and the sub-
problem, where values for the remaining variables are obtained while keeping the other ones
fixed. Values of these remaining variables are then used to generate cuts for the master prob-
lem. Iteratively, the master- and the subproblem are solved, until no more cuts can be gener-
ated. Values found in the last iteration represent the optimal solution to the original problem.
It is important to note that BD is only reasonable when both the master- and subproblem can
be solved efficiently. This procedure is often applied to fixed charge network design problems,
as the variables representing the opening of the links and the variables representing the flow
of commodities form a natural decomposition scheme of a master- and subproblem, respec-
tively (Costa, 2005).

6.1.1. Classical Benders decomposition
Since we are dealing with a MILP in this research, we present the theory of Benders decompo-
sition for MILPs of the required structure. For a more general description of the BD method,
we refer to Geoffrion (1972).

67

68 6. Decomposition methods

Consider the general formulation represented in (6.1), corresponding to most fixed-charge net-
work design models in literature.

Minimize

𝑐ፓ𝑥 + 𝑓ፓ𝑦 (6.1)

Subject to

𝐴𝑥 + 𝐵𝑦 ≥ 𝑏
𝑥 ≥ 0, 𝑦 ∈ 𝑌

Here, 𝑌 is a restricted set of potential solutions, often stating that 𝑦 should be integer-valued.
The variables 𝑦 ∈ 𝑌 are considered complicating variables: a known solution for them would
reduce the total problem to an easier optimization problem that may be solved efficiently. For
our explanation of the BD algorithm, we consider the case in which the problem reduces to an
LP.

We can reformulate (6.1) as follows:

min
፲∈ፘ

{𝑓ፓ𝑦 +min
፱ጿኺ

{𝑐ፓ𝑥 ∶ 𝐴𝑥 ≥ 𝑏 − 𝐵𝑦}}. (6.2)

The inner minimization problem in (6.2) is a continuous linear program, which is known as the
Benders (primal) subproblem. Associating dual variables 𝑢 to constraints 𝐴𝑥 ≥ 𝑏 − 𝐵𝑦 , we can
write the dual version of this problem as

max
፮ጿኺ

{𝑢ፓ(𝑏 − 𝐵�̄�) ∶ 𝐴ፓ𝑢 ≤ 𝑐}, (6.3)

for a fixed �̄�.

Problem (6.3) is known as the Benders dual subproblem.

Let �̄� denote a fixed solution to the master problem. By strong duality, 𝑢∗ፓ(𝑏 − 𝐵�̄�) = 𝑐ፓ𝑥∗, i.e.,
the objective value of the optimal solution to the dual subproblem is the same as the objective
value of the optimal solution to the primal subproblem for �̄� (Geoffrion, 1972). Therefore, the
primal and dual formulations can be interchanged and we can write (6.2) as

min
፲∈ፘ

{𝑓ፓ𝑦 +max
፮ጿኺ

{𝑢ፓ(𝑏 − 𝐵𝑦) ∶ 𝐴ፓ𝑢 ≤ 𝑐}}. (6.4)

If the primal subproblem is infeasible for a given �̄�, then we know that the dual subproblem

6.1. Benders decomposition 69

is either unbounded or infeasible. Since the constraints of the dual subproblem do not de-
pend upon �̄�, we know that if the dual subproblem is infeasible for a single �̄� ∈ 𝑌, that it is
infeasible for all 𝑦 ∈ 𝑌. This in turn would imply that the primal subproblem is infeasible or
unbounded for all 𝑦 ∈ 𝑌, and thus, that the original problem (6.1) is either infeasible or un-
bounded. In other words: if the original problem has a feasible solution, then we know that the
dual subproblem is either bounded or unbounded, i.e., has a non-empty feasible space. Let
𝐹 = {𝑢 | 𝑢 ≥ 0, 𝐴ፓ𝑢 ≤ 𝑐} denote this feasible space. We know that the non-empty polyhedron
𝐹 is composed of extreme points 𝑢፩ (for 𝑝 = 1,… , 𝑃) and extreme rays 𝑟፪ (for 𝑞 = 1,…𝑄)
(Bertsimas and Tsitsiklis, 1998). If the dual subproblem is bounded, then a solution 𝑢 repre-
sents one of the extreme points 𝑢፩. If the dual subproblem is unbounded, then there is a direc-
tion 𝑟፪ for which 𝑟፪(𝑏 −𝐵�̄�) > 0 (Costa, 2005). This situation corresponds to an unfeasible pri-
mal problem and must be avoided. Therefore, the values of �̄� corresponding to an unbounded
dual subprogram must be eliminated. By explicitly considering the restrictions

𝑟፪(𝑏 − 𝐵�̄�) ≤ 0, 𝑞 = 1,… , 𝑄, (6.5)

we can prevent this from happening.

In formulation (6.4), the maximum value of the inner problem is the value of one of the ex-
treme points of 𝐹. We can rewrite this problem as

min
፲∈ፘ

{𝑓ፓ𝑦 +max
፮ጿኺ

{𝑢ፓ(𝑏 − 𝐵𝑦) ∶ 𝐴ፓ𝑢 ≤ 𝑐}} (6.6)

s.t. 𝑟፪(𝑏 − 𝐵𝑦) ≤ 0, 𝑞 ∈ 1,… , 𝑄,

or, with some continuous variable 𝑧:

Minimize

𝑓ፓ𝑦 + 𝑧 (6.7a)

subject to

𝑧 ≥ 𝑢፩(𝑏 − 𝐵𝑦), 𝑝 ∈ 1,… , 𝑃, (6.7b)

𝑟፪(𝑏 − 𝐵𝑦) ≤ 0, 𝑞 ∈ 1,… , 𝑄, (6.7c)

𝑦 ∈ 𝑌, 𝑧 ≥ 0. (6.7d)

Formulation (6.7) is known as the Benders reformulation. In this formulation, constraints (6.7b)
provide an underestimate of the objective value of the Benders primal subproblem and con-

70 6. Decomposition methods

straints (6.7c) eliminate values of 𝑦 that are infeasible for the original problem. The auxiliary
variable 𝑧 serves as an underestimator of the optimal objective value of the subproblem.

A limitation in solving (6.7) directly is the often extremely large set of constraints (6.7b)-(6.7c).
To overcome this limitation, these constraints are generated iteratively. Initially, only constraints
(6.7d) are considered, i.e., the first Benders master problem,

Minimize

𝑓ፓ𝑦 + 𝑧 (6.8a)

subject to

𝑦 ∈ 𝑌, 𝑧 ≥ 0, (6.8b)

is solved. Problem (6.8) is a relaxed version of (6.7), i.e., for a solution (�̄�, �̄�) of (6.8), we know
that 𝑓ፓ�̄� + �̄� provides a lower bound to the obective of original problem (6.7).

In the first iteration, the solution of the first master problem �̄� is inserted in dual subproblem
(6.3). Solving the dual subproblem with either yields an unbounded solution, in which case
a constraint of type (6.7c) is inserted in the master problem (known as a Benders feasibility
cut); or finds a solution that is an extreme point, in which case the solution of the primal sub-
problem and the master problem form a complete solution and an upper bound to the original
problem, while the solution of the dual subproblem is used to generate a constraint of type
(6.7b) (known as a Benders optimality cut). The master- and subproblems are solved itera-
tively, until the upper- and lower bounds are sufficiently close.

Summarizing the above, the classical algorithm for implementing Benders decomposition is
as follows:

6.1. Benders decomposition 71

Algorithm 1: Benders algorithm
Start with the original problemmin{𝑐ፓ𝑥 + 𝑓ፓ𝑦 ∶ 𝐴𝑥 + 𝐵𝑦 ≥ 𝑏, 𝑥 ≥ 0, 𝑦 ∈ 𝑌}
Solve the initial master problem: min{𝑓ፓ𝑦 + 𝑧 ∶ 𝑦 ∈ 𝑌, 𝑧 ≥ 0}
Let (�̄�, �̄�) denote the optimal solution to the first master problem
Lower bound (𝐿𝐵) ∶= −∞
Upper bound (𝑈𝐵) ∶= ∞
while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do

solve dual subproblemmax፮ጿኺ{𝑢ፓ(𝑏 − 𝐵�̄�) ∶ 𝐴ፓ𝑢 ≤ 𝑐}
if subproblem is unbounded then

Get unbounded ray �̄�
Add cut �̄�ፓ(𝑏 − 𝐵𝑦) ≤ 0 to the master problem

else
Get extreme point �̄�
Add cut 𝑧 ≥ �̄�ፓ(𝑏 − 𝐵𝑦) to the master problem
𝑈𝐵 ∶=min{𝑈𝐵, 𝑓ፓ�̄� + (𝑏 − 𝐵�̄�)ፓ�̄�)}

end
Solve the updated master problemmin{𝑓ፓ𝑦 + 𝑧 ∶ 𝑐𝑢𝑡𝑠, 𝑦 ∈ 𝑌, 𝑧 ≥ 0}
Let (�̄�, �̄�) denote the optimal solution to the updated master problem
𝐿𝐵 ∶= �̄� + 𝑓ፓ�̄�

end

6.1.2. Improving the Benders decomposition method
The classical BD method as given in Algorithm 1 often does not perform well without the in-
clusion of various (problem-specific) acceleration techniques (Rahmaniani et al., 2017). The
main drawbacks of the classical algorithm include: time consuming iterations; poor cuts; inef-
fective initial iterations and slow convergence at the end of the algorithm. A large and growing
body of literature on BD is dedicated to exploring ways in which the convergence of the classi-
cal BD algorithm could be improved. In literature reviews by Costa (2005) and Rahmaniani et
al. (2017), various computational enhancements to different components of the BD method
are discussed. Listing all of these is beyond the scope of this research. Therefore, we only dis-
cuss extensions to the BD method that are relevant for applying Benders decomposition to the
MESDP.

Disaggregation of the Benders sub problem In some cases, part of the constraint matrix 𝐴 in
the Benders sub problem is block-diagonal, implying that this problem can be partitioned into
a set of independent optimization problems, one corresponding to each block. This frequently
occurs in practice, when the subproblems contain a number of independent decisions that can
be solved individually. In each iteration, the disaggregated cuts formed by the dual variables of
the independent subproblems are added to the master problem simultaneously. This results in
numerous benefits: solving a set of subproblems is often faster than solving one aggregated
subproblem, and the cuts generated from the disaggregated problem are tighter than the ones
from the original problem (Pearce and Forbes, 2018).

72 6. Decomposition methods

Benders within a branch and cut framework Solving the master problem (6.7) to optimality in
each iteration can be computationally costly (Fragkos et al., 2017). Taking advantage of call-
back capabilities MIP solvers, it is possible to solve the master problem only once, generate
cuts every time a feasible solution is found, add these as lazy constraints to the current set of
cuts and return control to the solver. Note that in this method, it is necessary to add the Ben-
ders cuts as lazy constraints, as it is not possible to add user cuts that cut off feasible solu-
tions from callback functions, as explained in Chapter 5.

Initial cuts The master problem is a relaxation of the original model. A master problem with
fewer constraints is easier to solve, but it might also result in relaxed solutions that are far
from the optimum in the first iterations of the BD algorithm, and therefore possibly in an al-
gorithm that requires much more iterations. By providing a set of initial Benders cuts as well
as additional valid inequalities to the initial problem, one might find the optimal solution in less
iterations.

Two phase Benders To come up with such a collection of initial cuts for the first master prob-
lem, the Benders two phase algorithm can be useful (McDaniel and Devine, 1977). In the first
phase, it applies the BD algorithm to the LP relaxation of the original problem. Note that these
cuts are also valid for the original problem. When the BD algorithm for the LP relaxation has
terminated, one can proceed to the second phase, in which the original problem is solved. In
the intial master problem, the cuts generated in the first phase are added. Often, the LP relax-
ation is easier to solve using BD, and in addition generates a “good” set of cuts for the initial
master problem, making two phase Benders a promising approach for MILP problems.

Selecting a branching direction When BD is implemented within a branch and cut framework
using callback functions, it is possible to force the solver to always explore a particular branch
first; either up or down. In some problems, always selecting a certain branching direction mield
yield some benefit (Pearce and Hons, 2019).

6.1.3. Benders decomposition for the MESDP
We now introduce a Benders decomposition algorithm for the MESDP. First, we first introduce
the (classical) BD of the MESDP. Second, we propose ways to enhance its performance.

Classical Benders decomposition

For the MESDP, the integer design variables {(𝑧።፣፭ , 𝑧፬።፭ , 𝑧ፖ።፭) ∶ (𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇} (throughout
this section referred to as 𝑧 for notation purposes) and binary variables {𝛾።፣፭ ∶ (𝑖, 𝑗) ∈ 𝐸, 𝑡 ∈ 𝑇}
are complicating variables. Let the initial master problem for the MESDP therefore be given by

6.1. Benders decomposition 73

Minimize

∑
፭∈ፓ
(∑
(።,፣)∈ፄ

𝑧።፣፭ ⋅ 𝑐።፣፭ +∑
፤∈ፊ

∑
።∈⋃ᑜ∈ᑂ ፕᑜ

(∑
፬
𝑧፬።፭ ⋅ 𝑐፬፭ + 𝑧ፖ።፭ ⋅ 𝑐ፖ፭)) (6.9a)

subject to

𝑧።፣፭ = 𝑧፣።፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (6.9b)

𝑧፬።፭ = 0, if 𝑖 ∉ 𝑉፞ ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.9c)

𝑧።፣፭ = 𝑧።፡፭ , ∀𝑖 ∈ 𝑉፠ , ∀𝑗 ∈ 𝑉፞ , ℎ ∈ 𝑉፡ , ∀𝑡 ∈ 𝑇 (6.9d)

𝑧።፣፭ , 𝑧፬።፭ , 𝑧ፖ።፭ ∈ ℤዄ, 𝛾።፣፭ ∈ {0, 1}, (6.9e)

A solution (�̄�, �̄�) denotes a feasible solution for the MESDP if and only if there exist energy
flow-, supply- and storage variables 𝑥።፣፭ , 𝑆።፭ ,𝑊ፈፍ

።፭ and𝑊ፎፔፓ
።፭ , (𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 satisfying the

inequalities in the original model (3.1) given by (3.1a), (3.1b), (3.1d), (3.1f), (3.1g), (3.1k), (3.1l),
(3.1i) for (�̄�, �̄�). Checking whether (�̄�, �̄�) is feasible, corresponds to finding a feasible flow in
the time expanded graph (where the capacities of all assets and the direction of flow on the
network edges is fixed). Note that this problem can be reduced to a network flow problem and
solved with any max-flow algorithm (Ahuja et al., 1993).

For a fixed solution (�̄�, �̄�) the Benders sub-problem is

Minimize

0 (6.10a)

74 6. Decomposition methods

subject to

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ − ∑
{፣∶(።,፣)∈ፄ}

𝑥።፣፭ + 𝑆።፭ −𝑊ፈፍ
።፭ +𝑊ፎፔፓ

።፭ = 𝑏።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.10b)

𝑆።፭ ≤∑
፬

(𝑢፬፭ ⋅
፭

∑
፪ኻ

�̄�፬።፪) + 𝑔።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.10c)

𝑥።፣፭ ≤ 𝑢።፣ ⋅
፭

∑
፪ኻ

�̄�።፣፪ , ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑡 ∈ 𝑇 (6.10d)

𝑥።፣፭ ≤ℳ�̄�።፣፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (6.10e)

𝑥።፣፭ ≤ℳ(1 − �̄�፣።፭), ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (6.10f)

𝑊ፈፍ
።፭ ≤ 𝑢፤ ⋅

፭

∑
፪ኻ

�̄�ፖ።፪ −
፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ 𝑉፤ , ∀𝑙, 𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (6.10g)

𝑊ፎፔፓ
።፭ ≤ 𝜉፤ ⋅

፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ 𝑉፤ , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (6.10h)

𝑥።፣፭ = 𝑥።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (6.10i)

𝑥።፣፭ , 𝑆።፭ , 𝑊ፈፍ
።፭ , 𝑊ፎፔፓ

።፭ ∈ ℝዄ, ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇, (6.10j)

Note that this is a feasibility problem with a “dummy” objective. If, for an optimal solution
(�̄�, �̄�) of the master problem, we have a feasible subproblem, then an optimal solution for the
original problem is found, as we are minimizing an objective function with (integer) design
variables 𝑧 only.

Let 𝛼።፭ , 𝛽።፭ , 𝜋።፣፭ , 𝜔ኻ።፣፭ , 𝜔ኼ።፣፭ , 𝜎ፈፍ።፭ , 𝜎ፎፔፓ።፭ and 𝜏።፣፭ denote the dual variables for constraints (6.10b),
(6.10c), (6.10d), (6.10e), (6.10f), (6.10g), (6.10h) and (6.10i), respectively.

The Benders dual sub-problem for the MESDP is given by:

Maximize

∑
።∈ፕ
∑
፭∈ፓ
𝑏።፭ ⋅ 𝛼።፭ +∑

።∈ፕ
∑
፭∈ፓ
(∑

፬
(𝑢፬፭ ⋅

፭

∑
፪ኻ

�̄�፬።፪) + 𝑔።፭) ⋅ 𝛽።፭+

∑
(።,፣)∈ፄ

∑
፭∈ፓ
(𝑢።፣ ⋅

፭

∑
፪ኻ

�̄�።፣፪) ⋅ 𝜋።፣፭ +∑
፤∈ፊ

∑
።∈ፕᑜ

∑
፭∈ፓ
𝜎ፈፍ።፭ ⋅ (𝑢፤

፭

∑
፪ኻ

�̄�፤።፪)+

∑
(።,፣)∈ፄᑅ

∑
፭∈ፓ
ℳ ⋅ (�̄�።፣፭ ⋅ 𝜔ኻ።፣፭ + (1 − �̄�።፣፭) ⋅ 𝜔ኼ።፣፭))

(6.11a)

6.1. Benders decomposition 75

subject to

𝜇።፣𝛼፣፭ − 𝛼።፭ + 𝜋።፣፭ + 𝜔ኻ።፣፭ + 𝜔ኼ፣።፭ ≤ 0, ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (6.11b)

𝜇።፣𝛼፣፭ − 𝛼።፭ + 𝜋።፣፭ + 𝜏።፣፭ − 𝜏።፡፭ ≤ 0, ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (6.11c)

𝜇።፣𝛼፣፭ − 𝛼።፭ + 𝜋።፣፭ ≤ 0, ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∉ 𝑉፠ , ∀𝑡 ∈ 𝑇 (6.11d)

𝛼።፭ + 𝛽።፭ ≤ 0, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.11e)

−𝛼።፭ + 𝜎ፈፍ።፭ + 𝜉፤ ⋅
፭ᑞᑒᑩ
∑
፪፭ዄኻ

𝜂፪ዅ፭፤ ⋅ (𝜎ፈፍ።፪ − 𝜉፤ ⋅ 𝜎ፎፔፓ።፪) ≤ 0, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉፤ , ∀𝑡 ∈ 𝑇 (6.11f)

𝛼።፭ + 𝜎ፎፔፓ።፭ +
፭ᑞᑒᑩ
∑
፪፭ዄኻ

(𝜉፤ ⋅ 𝜎ፎፔፓ።፪ − 𝜎ፈፍ።፪) ≤ 0, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉፤ , ∀𝑡 ∈ 𝑇 (6.11g)

𝛽።፭ , 𝜋።፣፭ , 𝜔ኻ።፣፭ , 𝜔ኼ።፣፭ , 𝜎ፈፍ።፭ , 𝜎ፎፔፓ።፭ ∈ ℝዅ, ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.11h)

𝛼።፭ , 𝜏።፣፭ ∈ ℝ, ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.11i)

Corresponding to Algorithm 1, we iteratively solve problems (6.9) and (6.11). When problem
(6.11) is unbounded, we retrieve an unbounded ray (𝛼።፭ , 𝛽።፭ , 𝜋።፣፭ , 𝜔ኻ።፣፭ , 𝜔ኼ።፣፭ , 𝜎ፈፍ።፭ , 𝜎ፎፔፓ።፭ , 𝜏።፣፭) and
add the following (feasibility) cut to the master problem (6.9):

∑
።∈ፕ
∑
፭∈ፓ
𝑏።፭ ⋅ �̄�።፭ +∑

።∈ፕ
∑
፭∈ፓ
(∑

፬
(𝑢፬፭ ⋅

፭

∑
፪ኻ

𝑧፬።፪) + 𝑔።፭) ⋅ �̄�።፭+

∑
(።,፣)∈ፄ

∑
፭∈ፓ
(𝑢።፣ ⋅

፭

∑
፪ኻ

𝑧።፣፪) ⋅ �̄�።፣፭ +∑
፤∈ፊ

∑
።∈ፕᑜ

∑
፭∈ፓ
�̄�ፈፍ።፭ ⋅ (𝑢፤

፭

∑
፪ኻ

𝑧፤።፪)+

∑
(።,፣)∈ፄᑅ

∑
፭∈ፓ
ℳ ⋅ (𝛾።፣፭ ⋅ �̄�ኻ።፣፭ + (1 − 𝛾።፣፭) ⋅ �̄�ኼ።፣፭)) ≤ 0.

(6.12)

When problem (6.11) is bounded for a given master solution �̄�, we know that a primal feasible
solution must exist for �̄� and that this primal feasible solution has to be optimal for the original
problem.

Implementing the classical version of BD as given in Algorithm 1 turns out to be highly ineffi-
cient for solving even small cases of the MESDP. However, as mentioned in Section 6.1.2, this
is not surprising as the classical BD algorithm often performs poor. Therefore, we include var-
ious computational enhancements in our BD algorithm for the MESDP. We first introduce the
computational enhancements that were considered, and subsequently formally introduce a BD
algorithm for the MESDP.

76 6. Decomposition methods

Computational enhancements for the Benders decomposition of the MESDP

Disaggregation Multi-period network designs often have a structure that lends itself nicely
for a disaggregated decomposition. For BD specifically, many examples can be thought of in
which the “flow” subproblems in different time periods do not depend on each other and can
all be solved individually. For the MESDP, although this is a multi-period network problem, this
is not exactly the case, as flow can travel between time periods through the use of storage. It
is however possible to decompose the subproblems into a series of |𝑇| subproblems, since
the flow in each time period only depends on the previous time periods. Using this fact, we
can decompose polyhedron (6.10b) - (6.13i) of the Benders subproblem (6.11) into |𝑇| “sub”-
polyhedra as follows:

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ − ∑
{፣∶(።,፣)∈ፄ}

𝑥።፣፭ + 𝑆።፭ −𝑊ፈፍ
።፭ +𝑊ፎፔፓ

።፭ = 𝑏።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇Ꭱ (6.13a)

𝑆።፭ ≤∑
፬

(𝑢፬፭ ⋅
፭

∑
፪ኻ

�̄�፬።፪) + 𝑔።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇Ꭱ (6.13b)

𝑥።፣፭ ≤ 𝑢።፣ ⋅
፭

∑
፪ኻ

�̄�።፣፪ , ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑡 ∈ 𝑇Ꭱ (6.13c)

𝑥።፣፭ ≤ℳ�̄�።፣፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇Ꭱ (6.13d)

𝑥።፣፭ ≤ℳ(1 − �̄�፣።፭), ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇Ꭱ (6.13e)

𝑊ፈፍ
።፭ ≤ 𝑢፤ ⋅

፭

∑
፪ኻ

�̄�ፖ።፪ −
፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ 𝑉፤ , ∀𝑙, 𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇Ꭱ (6.13f)

𝑊ፎፔፓ
።፭ ≤ 𝜉፤ ⋅

፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ 𝑉፤ , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇Ꭱ (6.13g)

𝑥።፣፭ = 𝑥።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇Ꭱ (6.13h)

𝑥።፣፭ , 𝑆።፭ , 𝑊ፈፍ
።፭ , 𝑊ፎፔፓ

።፭ ∈ ℝዄ, ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇Ꭱ , (6.13i)

where for each 𝜏 ∈ 𝑇 we have 𝑇Ꭱ = {𝑡 ∶ 𝑡 ≤ 𝜏, 𝑡 ∈ 𝑇}, i.e., 𝑇Ꭱ consists of 𝜏 and all the time pe-
riods before 𝜏. For the corresponding disaggregated dual sub problems we replace 𝑇 in (6.11)
with 𝑇Ꭱ .

As mentioned before, checking whether a Benders subproblem is feasible for the given capac-
ities (�̄�, �̄�) corresponds to checking whether a feasible flow exists in the time-expanded graph
𝐺ፓ. When we decompose the subproblem into |𝑇| smaller subproblems, we should therefore
check whether a feasible flow exists in each time-expanded graph 𝐺ፓᒙ (Figure 6.1).

6.1. Benders decomposition 77

(a) The time expanded graph for ፓᑥ

(b) The time expanded graph for ፓᑥᎼᎳ

(c) The time expanded graph for ፓᑥᎼᎴ

Figure 6.1: Decomposition of the Benders subproblem corresponds to solving a flow feasibily problem for each
time-expanded graph.

In each iteration of the BD, all |𝑇| subproblems are considered and violated cuts are generated
from each of them. Computational experiments showed that the disaggregated formulation
is strongly preferred of the aggregated version for the MESDP, as the disaggregated cuts are
significantly tighter. For the remainder of this chapter, we will therefore consider the disaggre-
gated version.

Benders within a branch and cut framework Even with the disaggregated BD, computational
experiments showed that the classical BD algorithm converged rather slowly. The callback
version outperformed the classical algorithm and is therefore preferred for the MESDP.

Initial cuts To start with a good set of initial cuts for the master problem, we propose to do
the following:

• include a set of valid inequalities, consisting of:

– the valid inequalities (5.10), (5.17), (5.19), from Chapter 5;

– an additional set of valid inequalities;

• run the Benders two phase method, i.e., solve the LP relaxation of the MESDP using BD
first to generate a set of initial Benders cuts.

The additional set of VI consists of constraints that are redundant for the original MESDP,
but tighten the initial feasible space of the Benders master problems through additional con-
straints on the 𝑧 variables. In the regular formulation of the MESDP, the 𝑧 variables are con-
strained by the values of the flow variables. As they are not present in the Benders master

78 6. Decomposition methods

problem, it is useful to pose some extra constraints on 𝑧, to decrease the solution space for
the integer variables. To this end, we propose to add the following inequalities to the initial
Benders master problem of the MESDP:

∑
።∈ፕ

፭ᑞᑒᑩ

∑
Ꭱ፭

∑
፬

𝑢፬ ⋅
Ꭱ

∑
፪ኻ

𝑧፬።፪ +∑
፤∈ፊ

∑
።∈ፕᑜ

𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤ ⋅
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ ≥ ∑
።∈ፕ

፭ᑞᑒᑩ

∑
Ꭱ፭

(𝑏።ᎡΜ።
− 𝑔።Ꭱ), ∀𝑡 ∈ 𝑇 (6.14)

and

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑢፣።፭ ⋅
፭

∑
፪ኻ

𝑧፣።፪ +∑
፬

𝑢፬ ⋅
፭

∑
፪ኻ

𝑧፬።፪ + 𝜉ኼ፤ ⋅ 𝜂፤ ⋅ 𝑢፤ ⋅
፭ዅኻ

∑
፪ኻ

𝑧ፖ።፪ + 𝑔።፭ ≥ 𝑏።፭ ,

∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇.

(6.15)

Note that these are valid (and redundant) for the original formulation of the MESDP.

6.2. Lagrangean Relaxation 79

A BD algorithm for the MESDP

We propose to iteratively solve the master- and subproblems with Algorithm 2:

Algorithm 2: Benders algorithm for the MESDP
PHASE 1
Solve the LP relaxation of initial master problem (6.9)
Let (�̄�, �̄�) denote the optimal solution
for a certain number of iterations do

for 𝜏 ∈ 𝑇 do
Check whether subproblem 𝜏 (6.13) is feasible for (�̄�, �̄�)
if Subproblem 𝜏 is infeasible then

Add cut (6.12) to the master problem
end

end
Solve the updated relaxed master problem { (6.9) | 𝑐𝑢𝑡𝑠}
Let (�̄�, �̄�) denote the optimal solution to the master problem
if objective has not improved for a number of iterations or max iterations reached then

exit algorithm
else

end
PHASE 2
Let 𝑐𝑢𝑡𝑠 denote the set of cuts generated in PHASE 1.
Optimize the (integer) initial master problem { (6.9) | 𝑐𝑢𝑡𝑠}
if found new incumbent solution then

Let (�̄�, �̄�) denote the incumbent solution
for 𝜏 ∈ 𝑇 do

Check whether subproblem 𝜏 (6.13) is feasible for (�̄�, �̄�)
if Subproblem 𝜏 is infeasible then

Add lazy constraint (6.12) to the master problem
end

end
else

end

6.2. Lagrangean Relaxation
Lagrangean relaxation (LR) is based on the notion of complicating constraints. In network op-
timization problems, LR has many applications. The class of networks with side constraints
(for instance certain relationships between several of the arcs in a network) is a good candi-
date for LR. Also for network design problems with integer values, LR is a commonly applied
solution approach. The reason for this is that LR is attractive for solving MILPs where the gap
between the LP-relaxation and the integer programming value is large, and this is often the
case for the MILP formulation of network design problems (Magnanti et al., 1991). In this sec-

80 6. Decomposition methods

tion, we first introduce some general theory regarding LR. Second, we propose a way in which
LR can be used to find good lower bounds for the MESDP.

6.2.1. Theory
To illustrate the LR method in a general way, suppose that we have the following optimization
model, where 𝑥 is a vector of decision variables.

Minimize

𝑧∗ = 𝑐ፓ𝑥 (6.16a)

subject to

𝐴𝑥 = 𝑏 (6.16b)

𝑥 ∈ 𝑋 (6.16c)

In model (6.16), there is a linear objective function and a set of explicit linear constraints (6.16b).
In addition, decision variables 𝑥 lie in a given constraint set 𝑋 (6.16c).

The LR method relaxes certain constraints by bringing them into the objective function with
associated Lagrange multipliers 𝜇. We then find the following problem:

Minimize

𝑐ፓ𝑥 + 𝜇(𝐴𝑥 − 𝑏) (6.17a)

subject to

𝑥 ∈ 𝑋 (6.17b)

The resulting problem (6.17) is referred to as a Lagrangean relaxation or a Lagrangean sub-
problem of the original problem. We refer to

𝐿(𝜇) =min{𝑐ፓ𝑥 + 𝜇(𝐴𝑥 − 𝑏) ∶ 𝑥 ∈ 𝑋} (6.18)

as the Lagrangean function. We can state the following about the Lagrangean function (Ahuja
et al., 1993):

6.2. Lagrangean Relaxation 81

Lemma 2 (Lagrangean Bounding Principle). For any vector 𝜇 of the Lagrangean multipliers, the
value 𝐿(𝜇) of the Lagrangean function is a lower bound on the optimal objective function value
𝑧∗ of problem (6.16).

Proof. For the proof we refer to Ahuja et al. (1993).

To find the best lower bound on the objective value of the original problem (6.16), it is neces-
sary to solve the Lagrangean multiplier problem:

𝐿∗(𝜇) =max
᎙
𝐿(𝜇) (6.19)

When relaxing inequality constraints instead of equality constraints (𝐴𝑥 ≤ 𝑏 in constraint
(6.16b)), the Lagrange multiplier problem becomes

𝐿∗ =max
᎙ጿኺ

𝐿(𝜇). (6.20)

The Lagrangean multiplier problem (6.20) is often solved through the use of the subgradient
method, due to its convergence properties and because it is easily implemented and works for
many types of problems (Bertsekas, 1998).

6.2.2. The subgradient method
The subgradient method is an adaptation of the gradient method in which gradients are re-
placed by subgradients (Fisher, 2004). Given an initial value 𝜇ኺ of a Lagrange multiplier, a se-
quence of {𝜇፤} is generated by

𝜇፤ዄኻ = 𝜇፤ + 𝑡፤(𝐴𝑥፤ − 𝑏),

where 𝑥፤ is an optimal solution to 𝐿(𝜇፤) and 𝑡፤ is a positive scalar step size. A theoretical re-
sult on the convergence of the subgradient method is that 𝐿(𝜇፤) → 𝐿∗ if 𝑡፤ → 0 and ∑፤።ኺ 𝑡፤ →
∞. The step size that is most commonly applied in practice is

𝑡፤ = 𝛽፤(𝑍∗ − 𝐿(𝜇፤))
‖𝑔፤‖ኼ ,

where 𝛽፤ is a scalar satisfying 0 < 𝛽፤ ≤ 2 and 𝑍∗ is an upper bound on 𝐿∗, which is often ob-
tained by applying a heuristic method to the original problem (6.16), and 𝑔፤ = 𝐴𝑥፤ − 𝑏 (the
“size” of the violation in the current solution). For more information on the subgradient method
and the derivation of good step sizes, we refer to Held et al. (1974). Often, initially 𝛽ኺ = 2,
and gets halved whenever 𝐿(𝜇፤) fails to increase for a certain number of iterations. A large
body of empirical findings justify this choice for the 𝛽፤ , but it might not always be the best op-
tion (Fisher, 2004). When a feasible solution to the original problem is found in a Lagrangean

82 6. Decomposition methods

problem that is smaller than the current 𝑍∗, then 𝑍∗ gets updated. The subgradient method is
usually terminated after a certain number of iterations.

6.2.3. Lagrangean relaxation for the MESDP
For the MESDP, there are multiple candidate constraints to be relaxed in a LR. First, it is pos-
sible to apply a so-called knapsack relaxation (Gendron, 2011), by relaxing flow conservation
constraints (3.1a) in the original formulation of the MESDP. Second, a shortest path relaxation
can be applied, in which all constraints linking the flow-and design variables are relaxed, i.e.,
constraints (3.1b), (3.1d), (3.1f), (3.1g) and (3.1k). Both of these strategies might result in a
tight lower bound obtained from the LR, but we choose to only investigate the latter here, as
this strategy seems most promising based on research into similar problems.

A LR of the MESDP, with Lagrangean multipliers 𝜆 is therefore given by

Minimize

𝐿(𝜆) =∑
፭∈ፓ
(∑
(።,፣)∈ፄ

𝑧።፣፭ ⋅ 𝑐።፣፭ +∑
።∈ፕ
(∑
፬∈ፒ
𝑧፬።፭ ⋅ 𝑐፬፭ +∑

፤∈ፊ
𝑧ፖ።፭ ⋅ 𝑐ፖ፭))+

∑
።∈ፕ
∑
፭∈ፓ
𝜆ኻ።፭ ⋅ (𝑆።፭ −∑

፬

(𝑢፬፭ ⋅
፭

∑
፪ኻ

𝑧፬።፪) + 𝑔።፭) + ∑
(።,፣)∈ፄ

∑
፭∈ፓ
𝜆ኼ።፣፭ ⋅ (𝑥።፣፭ − 𝑢።፣ ⋅

፭

∑
፪ኻ

𝑧።፣፪)+

∑
(።,፣)∈ፄᑅ

∑
፭∈ፓ
𝜆ኽ።፣፭ ⋅ (𝑥።፣፭ −ℳ𝛾።፣፭) + ∑

(።,፣)∈ፄᑅ
∑
፭∈ፓ
𝜆ኾ።፣፭ ⋅ (𝑥።፣፭ −ℳ(1 − 𝛾፣።፭))+

∑
።∈⋃ᑜ∈ᑂ ፕᑜ

∑
፭∈ፓ
𝜆።፭ ⋅ (𝑊ፈፍ

።፭ − 𝑢፤ ⋅
፭

∑
፪ኻ

𝑧ፖ።፪ −
፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪))

(6.21a)

subject to

∑
{፣∶(፣,።)∈ፄ}

𝜇፣። ⋅ 𝑥፣።፭ − ∑
{፣∶(።,፣)∈ፄ}

𝑥።፣፭ + 𝑆።፭ −𝑊ፈፍ
።፭ +𝑊ፎፔፓ

።፭ = 𝑏።፭ , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.21b)

𝑧፬።፭ = 0, if 𝑖 ∉ 𝑉፞ ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.21c)

𝑧።፣፭ = 𝑧፣።፭ , ∀(𝑖, 𝑗) ∈ 𝐸ፍ , ∀𝑡 ∈ 𝑇 (6.21d)

𝑧።፣፭ = 𝑧።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (6.21e)

𝑥።፣፭ = 𝑥።፡፭ , ∀(𝑖, 𝑗), (𝑖, ℎ) ∈ 𝐸ፂ ∶ 𝑖 ∈ 𝑉፠ , ∀𝑡 ∈ 𝑇 (6.21f)

𝑊ፎፔፓ
።፭ ≤ 𝜉፤ ⋅

፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ 𝑊ፈፍ
።፪ ⋅ 𝜂፭ዅ፪፤ −𝑊ፎፔፓ

።፪), ∀𝑖 ∈ ⋃
፤∈ፊ

𝑉፤ , ∀𝑡 ∈ 𝑇 (6.21g)

𝑧።፣፭ , 𝑧፬።፭ , 𝑧፤።፭ ∈ ℤዄ, 𝑥።፣፭ , 𝑆።፭ , 𝑊ፈፍ
።፭ , 𝑊ፎፔፓ

።፭ ∈ ℝዄ, 𝛾።፣፭ ∈ {0, 1}, (6.21h)

6.2. Lagrangean Relaxation 83

For given multipliers 𝜆ኻ, 𝜆ኼ, 𝜆ኽ, 𝜆ኾ, and 𝜆, problem (6.21) is significantly easier to solve than
the original formulation (3.2) of the MESDP. By penalizing continuous variables 𝑆, 𝑥,𝑊ፈፍ in
the objective function (6.21a) and noting that these variables correspond to flow in the time-
expanded graph 𝐺ፓ , we have formulated a variation of a minimum cost flow problem in prob-
lem (6.21).

The corresponding Lagrange multiplier problem is

max
᎘ጿኺ

𝐿(𝜆). (6.22)

The solution to this maximization problem provides the best choice for multipliers 𝜆, i.e., those
that result in the best lower bound for the MESDP. We propose a subgradient method to solve
(6.22) for the MESDP.

When applying the subgradient method to problem (6.21), we alternately solve it for a set of
fixed multipliers 𝜆, and subsequently update the multipliers using the algorithmic procedures
of the subgradient method.

Often in LR, the multipliers are all set equal to zero in the first iteration. For the MESDP, we
choose to also apply this strategy.

84 6. Decomposition methods

We propose the following algorithm for solving the Lagrange multiplier problem of the MESDP.

Algorithm 3: A subgradient method for solving the Lagrange multiplier problem of the
MESDP
Input: An upper bound 𝑍∗ on the MESDP (3.2).
Initialize 𝜆ኺ = 0, 𝛽ኺ ∶= 2 and 𝐿፞፬፭ ∶= −∞
for 𝑝 ∶= 0, 1,⋯ do

calculate 𝑓፩ as in (6.23)

𝑡፩ ∶= 𝛽፩(𝑍∗ − 𝐿(𝜆፩))
‖𝑓፩‖ኼ

𝜆፩ዄኻ =max{𝜆፩ + 𝑡፩ ⋅ 𝑓፩, 0}
if ‖𝜆፩ዄኻ − 𝜆፩‖ < 𝜖 then

Stop
end
𝐿፞፬፭ =max(𝐿፞፬፭ , 𝐿(𝜆፩))
if 𝑍∗ < 𝐿(𝜆፩) and 𝐿(𝜆፩) is feasible then

𝑍∗ ∶= 𝐿(𝜆፩)
end
if no progress in more than P iterations then

𝛽፩ዄኻ ∶= 𝛽፩ ⋅ ኻኼ
else

𝛽፩ዄኻ ∶= 𝛽፩
end
𝑝 ∶= 𝑝 + 1

end
return 𝐿፞፬፭

Where, in each iteration 𝑝, we have

𝑓፩ ∶=∑
።∈ፕ

∑
፭∈ፓ
((𝑆።፭)፩ −∑

፬

(𝑢፬፭ ⋅
፭

∑
፪ኻ

(𝑧፬።፪)፩) + 𝑔።፭) + ∑
(።,፣)∈ፄ

∑
፭∈ፓ

(𝑥፩።፣፭ − 𝑢።፣ ⋅
፭

∑
፪ኻ

𝑧፩።፣፪)+

∑
(።,፣)∈ፄᑅ

∑
፭∈ፓ

(𝑥፩።፣፭ −ℳ𝛾፩።፣፭) + ∑
(።,፣)∈ፄᑅ

∑
፭∈ፓ

(𝑥፩።፣፭ −ℳ(1 − 𝛾፩፣።፭))+

∑
።∈⋃ᑜ∈ᑂ ፕᑜ

∑
፭∈ፓ

((𝑊ፈፍ
።፭)፩ − 𝑢፤ ⋅

፭

∑
፪ኻ

(𝑧ፖ።፪)፩ −
፭ዅኻ

∑
፪ኻ

(𝜉፤ ⋅ (𝑊ፈፍ
።፪)፩ ⋅ 𝜂

፭ዅ፪
፤ − (𝑊ፎፔፓ

።፪)፩))

(6.23)

The upper bound 𝑍∗ can be found using heuristic methods. In our algorithm, we find an upper
bound 𝑍∗ by letting the solver make the few first iterations of the branch and bound procedure
for the original problem and then use the found incumbent solution.

Lagrangean relaxation is often incorporated into a heuristic. In such a heuristic, the solution

6.2. Lagrangean Relaxation 85

to the LR problem is attempted to be transformed into a feasible solution for the original prob-
lem. In this way, LR can be used to generate upper bounds for the original problem, by post-
processing a solution to the LR.

In this research, we only apply LR to find lower bounds for the MESDP. We compare the lower
bounds computed through this method with the lower bounds computed by the LP relaxation
in Chapter 7. Should, through this method, tighter lower bounds be generated (in an easy way),
then incorporating LR into the branch and bound method of the original problem (instead of LP
relaxations) is an interesting option for the MESDP.

7
Computational results

In this chapter, we provide results of experiments with the different solution methods. First,
we introduce the case study for which we conduct the experiments. Second, we illustrate how
experiments with smaller instances of a base case provide us with insights in potential bottle-
necks for the solver. Based on these, we generate a set of instances. Third, we provide results
of the experiments with the solver’s branch and cut method, both with parameter tuning as in-
troduced in Chapter 4 and the addition of valid inequalities as introduced in Chapter 5. Lastly,
we provide results of the experiments with the two decomposition methods, as introduced in
Chapter 6, and compare these to the default branch and bound solver.

For all of the following experiments, we have coded the algorithms in Python 3.7.6. and imple-
mented the model in Pyomo 5.7.0 , a Pythonic framework for formulating optimization mod-
els. Problem instances are solved with the commercial MIP solver Gurobi 8.1.1. The experi-
ments are run on a laptop with Intel® Core™ i7-8650U CPU @ 1.90 GHz Processor with 16,0 GB
RAM memory.

7.1. Casy study
Data from the city of Eindhoven is used throughout this research for the time period 2018-
2050. With time steps of two years, a demand profile is generated for 110 locations in the city,
corresponding to the 110 gas access points in Eindhoven. In each year and at each location,
the demand has to be fulfilled for electricity, gas and heat. Based on the ambitious climate tar-
gets of the city of Eindhoven, future energy scenarios have been created. Costs and capacities
of the different assets are generated based on different national and international databases
(Van Beuzekom et al., 2020). By clustering these 110 locations, we create smaller instances of
28 and 7 locations. Proportional to these smaller instance sizes, we adjust the data of the de-
mand profiles, supply, and asset costs and capacities. In these experiments, we focus mainly
on solving problem instances of the MESDP with 7 and 28 locations. These locations roughly
correspond to the city’s districts and neighborhoods, respectively. In addition, for each so-
lution method, we conducted an experiment with a single problem instance of the 110 node
case.

The base case Data input for the base case is provided by Van Beuzekom (2020) and consists

87

88 7. Computational results

of costs, capacities and technological efficiencies of the different assets, the demand of each
location for each energy carrier in each time period, gas supply in each time period, a discount-
and technological development rate, the conversion rates, loss factors of storage and losses
over distance. Three sizes of the same base case are considered: the 7-, 28- and 110 node
case, with accordingly scaled input data.

A set of problem instances As mentioned in Section 4.2, in order to assess the quality of the
solution methods, a set of problem instances with variations on the base case should be gen-
erated. We generate this set of instances based on empirical results (Section 7.2).

In addition to these “empirically” generated instances, we generate an instance that takes into
account the current gas- and electricity network. For this, we have conducted a detailed analy-
sis of the energy infrastructure in the city of Eindhoven, using open data from Enexis (2019),
GeoPandas version 0.7.0, the Python package for working with geospatial data, and QGIS
Desktop version 3.10.2, an open source geographic information system. The findings are then
translated to a starting network for the 7- and 28-location case, respectively. This represents a
“free” network at 𝑡 = −1. By including this network at 𝑡 = −1, we do not exclude the model’s
possibility to increase the capacity of the starting network at 𝑡 = 0 (and in the time periods
that follow) 1. As an example for the electricity network: Figure 7.1 is a graphical representa-
tion of the (medium-pressure) electricity network in Eindhoven, together with the coordinates
of the 28 nodes. By examining this network in detail, we can decide which electricity edges in
graph 𝐺ፓ should be part of a starting solution for the 28-node case.

7.2. Experiments with the Gurobi solver
This section provides the results of experiments with Gurobi’s branch and cut algorithm. We
perform the empirical study as introduced in Chapter 4, and subsequently investigate the ef-
fect of adding the valid inequalities. First, we examine the solver’s output for a few small in-
stances of the base case, i.e., containing less locations and/or time periods. By examining the
output of these experiments, we tend to find out whether the solver has problems, and if so
identify their cause(s). Based on these findings, we generate a set of problem instances with
a variety of (pre-estimated) “easy” and “difficult” properties. With this set of instances, we run
the parameter tuning experiments as introduced in Chapter 7.2.2 and the experiments with VI
as introduced in Chapter 5.

Experiments with smaller instances We reduce the size of the regular instance by decreas-
ing the number of locations and the number of time periods respectively. Without changing
any other parameters, we have implemented instances of the base case with 7 locations while
varying the number of time steps from 1 to 17, and using 17 time steps while varying the num-
ber of locations from 1 to 7. In these experiments, the measure of efficiency that we used
was the time to solve to optimality. For cases with less time periods, we noticed the follow-
1It should be noted that, when modeled accurately, the network in the first time step is sufficient to meet all demand
in the first time period and that the model should only build new assets if that is efficient for future time periods - we
can (hopefully) assume that the current network in the city of Eindhoven should suffice to fulfill the demand in 2018,
the first time period.

7.2. Experiments with the Gurobi solver 89

Figure 7.1: The current electricity network in the city of Eindhoven and the loca-
tions of the 28 nodes. By translating this network, as well as the ga network and
the location of some existing storage-, supply- and conversion assets to a starting
network for the MESDP, we can consider a Brownfield case.

ing: when the number of time steps is less than 12, the algorithm finds an optimal solution in
less than 300 seconds. When the number of time steps is 12 or higher, the model cannot solve
optimally within a reasonable amount of time anymore (even after letting the solver run for
multiple days!). We can point out why this is the case by inspecting the solutions and the input
data: after 11 time steps, the gas supply in the model is not sufficient to fulfill the future gas
demand of the locations. To fulfill this future demand, the model should invest in either gas
storage or power-to-gas units. In experiments with less time steps, it is probably quickly found
that these investments should not be made, as they are not required: the way that we modeled
gas supply allows it to be fed into the model “for free”. Although the instances with 11 and 12
time steps do not seem very different at first sight, the latter one is more complicated for the
solver due to a difficult trade-off that the smaller cases do not have. When running instances
with 17 time periods but less locations, we saw a similar pattern: when the gas supply was not
sufficient for each time period, the solver would not solve to optimality anymore.

Running experiments with the smaller cases provided us with some insight in the predictability
of running times for solving the MESDP:

• Difficult trade-offs seem to have a larger influence on the solver than merely the problem
sizes. Therefore, for our experiments, problem sizes are not very useful for predicting
running times;

• When certain difficult trade-offs for the solver can be figured out beforehand (for in-
stance, the required investments to fulfill gas demand), one should account for the pos-

90 7. Computational results

sibility that the solver will not solve to optimality within a reasonable time limit, as these
trade-offs have a highly complicating effect on the solver.

(a) The case with 11 time steps.
This instance solved to optimality in less than 300

seconds. In this instance, it is not required to invest in
storage assets.

(b) The case with 12 time steps.
This instance did not solve to optimality after two days
of running. In this instance, the model is “forced” to

invest in storage assets.

Figure 7.2: Investments made over time for the regular instance with 7 locations and 11 and 12 time steps,
respectively

We want to highlight here that the latter is in line with our complexity analysis: as the strong
NP-hardness of the MESDP is caused by the possibility of loading different assets on the same
arc (see Chapter 3), we can expect that forcing investments in a larger variety of assets (ver-
sus cases where some assets, such as storage, can be discarded) is challenging for the solver.

Experiments with constraint elimination By running experiments with the regular instance
of the MESDP with the exclusion of some constraints from the model (3.1), we investigate
whether it might be possible to highlight the “most difficult” constraints. For this, we have con-
sidered the following variations:

• Move the capacity factor 𝑢 from constraints (3.1b), (3.1d) and (3.1k) to the objective
function (3.1). This results in a different step cost function, and could possibly be ben-
eficial for the solver.

• Exclude the possibility of building storage, i.e., remove the𝑊 variables from the mass
balance constraint (3.1a) and remove storage constraints (3.1k) and (3.1l).

• Set all the conversion-, loss- and storage factors (𝜇።፣ , 𝜂፤ and 𝜉፤) equal to 1.

• Remove the constraints representing the equal amount of heat- and electricity supplied
by the CHP units, i.e., constraints (3.1h) and(3.1i).

Eliminating the above constraints alternately did not have a significant effect on the efficiency
of the solver. In fact, in some cases, removing one of the above constraints actually increased
the time that the solver required to solve an instance. Highlighting the most difficult constraints
can apparently not be done in such a straightforward manner and it requires, at the least, a
more extensive experiment than this one. In addition to this, we are mainly interested in apply-
ing the model with all of the constraints as listed in Chapter 3 and might get more insight in
that specific problem by comparing different instances under the complete set of constraints.

7.2. Experiments with the Gurobi solver 91

Investigating in more detail the influence of the constraints on the solver’s efficiency therefore
lies beyond the scope of this research.

Constructing the set of test instances We now generate instances for the remainder of this
study. As we have a bit more insight in properties of instances that have an impact on the dif-
ficulty, we try to create a diverse set of instances with respect to these properties, while we try
to avoid bias and above all generate realistic instances2. For instance, by having more knowl-
edge on which trade-offs have a large influence on the solver, we change the data input of
some instances in such a way that we expect these trade-offs to be easier or more difficult
(for instance, by smaller differences in the price or capacity of different assets). We also vary
the demand profiles and the gas supply, as these are expected to have a large influence on the
solutions, and look into instances with more restrictions on building assets. Lastly, we also
examine results when the current network that we derived before is taken into account.

We then arrive at the set of instances that is provided in Table 7.1.

Instance Name Difference with regular instance

Regular instance 7reg, 28reg -

Instance with demand variation 1 7dem1, 28dem1 Demand is the same for each energy carrier

Instance with demand variation 2 7dem2, 28dem2 Demand is the same in each time period

Instance with cost/capacity variation 7cc, 28cc P2G and heat network and -storage are cheaper

Instance with gas supply variation 7gas, 28gas Less gas supply over the whole time period

Instance with updated data 7ud, 28ud Smaller CHP units, restrictions on building supply, gas supply in less locations

Instance with Brownfield data 7bf, 28bf A start network (at t= -1) is taken into account

Table 7.1: Variations on the regular instance with 7 or 28 locations and 17 time periods

We realize that we might still be limited in assessing implementations based solely on this test
set: it is not a particularly large test set, which makes it difficult to generalize our findings, and
the set might not be representative for other cities, as it only uses (slightly adjusted) data of
the city of Eindhoven. Still, we think that for our purpose in this research, i.e., highlighting diffi-
cult parts of the MESDP and potentially improving parameter settings of the solver and/or find
other good solution methods, this test set should suffice due to the variety in its input data.

7.2.1. Experiments with default settings
In the first empirical experiment we intend to:

1. find out which parts of the model are difficult for the solver by running various instances
with default settings

Inspecting the results of implementations with smaller instances and less constraints allowed
us to create a diverse set of test instances in the previous section. We now assess the perfor-
mance of the solver on this set of instances, based on various measures of efficiency.

Time to optimality For all of the instances in Table 7.1, we found that the solver cannot solve
2We emphasize again that we are most interested in using the MESDP for solving practical problem cases, and there-
fore, we do not investigate instances that have highly unlikely input data with respect to the energy scenarios.

92 7. Computational results

the problem optimally within multiple hours of running. We tried whether optimality would be
achieved within several days for a subset of instances, but we were not able to solve a sin-
gle case from this subset to provable optimality. To handle the assessment of the set of in-
stances, we therefore focus on finding solutions of an acceptable quality, i.e., focus on solving
the problem with a small optimality gap.

For the 28-location case, even solving the LP relaxation is challenging, requiring over one hour
for some of the instances. For this reason, we change the method with which the problem in
the root node is solved for the larger cases.

Solving the root node problem We conduct experiments with Gurobi’s primal simplex method,
dual simplex method and barrier method for solving the root node problem for the set of in-
stances in Table 7.1. Figure 7.3 provides a visualization of these results. It turns out that switch-
ing to the barrier method for the 28-location cases has a significant effect on the time required
to solve the LP relaxation (and hence, on the total solution time). For the 7-location case, al-
though the impact of switching between different solution methods was less significant (they
all required less than 1 or 2 seconds for each instance), the barrier method also appeared to
be slightly faster. Therefore, for the remainder of this research, we solve the problem in the
root node using the barrier method for all of the experiments.

Figure 7.3: Average amount of time required for solving the LP relaxation in the
root node using the primal/dual simplex method and the barrier method, taken
over all instances in Table 7.1.

Time to solve to a fixed gap To get more insight in the time the solver requires to come up
with good quality solutions, we have let the solver run until a solution with an optimality gap
of less than 7% was found. We found that the solver, in almost all cases, quickly arrives at this
point. We see something different happening when we set the fixed gap to 2.5%, as this re-
quires significantly more time in most cases. Table 7.2 provides an overview of the wall clock
time after which the solver is able to reach a gap of 7% and 2.5%.

7.2. Experiments with the Gurobi solver 93

Solving to a gap of <7% Solving to a gap of <2.5%

instance nodes explored performed iterations time nodes explored performed iterations time

7reg 96 77398 16.21 21755 5973316 1073.48

7dem1 1 18833 4.48 1 28836 8.36

7dem2 1 12562 2.54 1 17311 4.33

7cc 1001 384639 106.71 108880* 58061968* 7200.09*

7gas 1 11980 1.93 112 40697 10.78

7ud 1 19024 3.9 1185 191279 57.08

7bf 108 44860 10.21 324796 24970327 2472.27

28reg 1 320378 1054.82 1* 1801477* 7200.08*

28dem1 1 33659 36.8 1 416104 1961.35

28dem2 1 9123 46.44 1 1183994 6212.60

28cc 1 841818 3625.18 1* 1599912* 7200.04*

28gas 1 5913 17.56 1 122943 205.75

28ud 1 35492 29.22 1 191604 233.29

28bf 1 195443 440.14 1 195443 460.85

Table 7.2: Time required to solve with optimality gaps of 7% and 2.5% . Also provided are the number of explored
nodes and the number of performed simplex iterations at these respective times. For these experiments, we have
set a time limit of 7200s. Results with an asterisks did not reach a gap of 2.5% within this time limit.

Investigating the output of the solver in more detail, it appears that after a while there is al-
most always very little progress in the best bound and no progress at all in the incumbent, re-
sulting in an optimality gap that decreases extremely slowly. Table 7.3 provides the output log
of a case where we let the solver run for over twelve hours. These kind of logs could indicate
a lack of progress in the best node, a pattern that we see occurring after a while in all of the in-
stances. In the next section, we apply different methods that could improve the progress in the
best node.

94 7. Computational results

Nodes Current Node Objective Bounds Work

Expl Unexpl Obj Depth IntInf Incumbent BestBd Gap It/Node Time

0 0 5.914400E+07 0 52 4.245500E+08 5.914400E+07 86.10% - 0s

H 0 0 8.825821E+07 5.914400E+07 33.00% - 0s

H 0 0 7.502687E+07 5.914400E+07 21.20% - 0s

0 0 6.490200E+07 0 123 7.502700E+07 6.490200E+07 13.50% - 1s

0 0 6.513700E+07 0 153 7.502700E+07 6.513700E+07 13.20% - 1s

0 0 6.513700E+07 0 153 7.502700E+07 6.513700E+07 13.20% - 1s

0 0 6.526100E+07 0 133 7.502700E+07 6.526100E+07 13.00% - 1s

0 0 6.527700E+07 0 149 7.502700E+07 6.527700E+07 13.00% - 2s

0 0 6.527700E+07 0 152 7.502700E+07 6.527700E+07 13.00% - 2s

0 0 6.541100E+07 0 144 7.502700E+07 6.541100E+07 12.80% - 2s

0 0 6.541300E+07 0 144 7.502700E+07 6.541300E+07 12.80% - 2s

0 0 6.557700E+07 0 138 7.502700E+07 6.557700E+07 12.60% - 2s

H 0 0 7.222468E+07 6.557700E+07 9.20% - 2s

…

68948 35268 6.733000E+07 56 94 6.989000E+07 6.707100E+07 4.03% 243 2863s

69190 35448 cutoff 60 6.989000E+07 6.707200E+07 4.03% 243 2871s

69456 35573 cutoff 79 6.989000E+07 6.707300E+07 4.03% 242 2878s

69652 35685 cutoff 89 6.989000E+07 6.707400E+07 4.03% 242 2884s

69887 35822 6.881900E+07 63 74 6.989000E+07 6.707500E+07 4.03% 242 2892s

H 70051 35502 6.985568E+07 6.707500E+07 3.98% 242 2892s

70203 35616 6.867000E+07 62 56 6.985600E+07 6.707700E+07 3.98% 241 2900s

70368 35718 6.849600E+07 67 80 6.985600E+07 6.707800E+07 3.98% 241 2909s

…

1450021 632647 6.914200E+07 54 58 6.985600E+07 6.850300E+07 1.94% 165 44174s

1450241 632715 cutoff 70 6.985600E+07 6.850400E+07 1.94% 165 44183s

1450508 632786 cutoff 102 6.985600E+07 6.850400E+07 1.94% 165 44193s

1450683 632826 cutoff 65 6.985600E+07 6.850400E+07 1.94% 165 44204s

1450913 632919 6.908400E+07 77 44 6.985600E+07 6.850400E+07 1.93% 165 44215s

1451142 633029 cutoff 60 6.985600E+07 6.850400E+07 1.93% 165 44225s

Table 7.3: Output log for the regular instance with 7 locations and 12 time periods. After 2900 seconds, the value of
the incumbent objective bound (bold) remains the same and there is very slow progress in the best lower bound.

7.2. Experiments with the Gurobi solver 95

7.2.2. Experiments with parameter variations and valid inequalities
Before arriving at the main results of the experiments with the Gurobi solver under the param-
eter variations and the implementation of valid inequalities (VI), we must first motivate the
choices we made during the implementation.

Implementing valid inequalities As mentioned in Chapter 5, there are multiple ways in which
VI can be implemented in a MIP solver. To find out which is the best, we run a few experiments
with VI on a smaller test case, on which we shall base our strategy for the experiments with
the entire test set. To examine which is the best way for the entire set of test cases, is a point
for further research.

For implementing the VI, we test the following options on the test case:

• No VI;

• Implementing the VI a priori (as regular constraints);

• Implementing the VI through callback functions 3 ;

• Implementing the VI a priori as lazy constraints 4.

The results of these experiments are provided in Table 7.4.

Optimality after Nodes explored Gap

Default settings No VI 140.66 16474 -

VI a priori as regular constraints - 1736 8.88%

VI added as cuts through callback 306.50 seconds 1371 -

VI a priori as lazy constraints 53.80 seconds 6303 -

Solver heuristics and cuts off No VI - 298970 4.45%

VI a priori as regular constraints 225808 4.99%

VI added as cuts through callback - 1638 16.73%

VI a priori as lazy constraints - 476372 4.47%

Table 7.4: Results for the test case, 7reg with 5 locations and 13 time periods, after 350s of running. To get more
insight into the effect of the VI, we have also run an experiment with the solver cuts and heuristics off.

It follows from Table 7.4 that implementing the VI a priori as lazy constraints is the preferred
strategy, as the solver finds the optimal solution within a significantly shorter amount of time
than when VI are not implemented. For the remainder of this research, we refer to this strategy
when we mention the implementation of the VI.

Comparative experimentation We now provide the results of the experiments with the de-
fault method (i.e., the solver’s default parameter settings), the four parameter variations as
3It is important to note that we apply the callback functions in every node here, which might not be the most practical
way, as the processing time of each node increases heavily. An alternative would be to only apply it for the first few
nodes, or only every ፤ nodes for a chosen number ፤. However, we do not consider this in this research.

4As mentioned in Chapter 5, for the lazy constraint strategy, we should implement the VI as aggressive lazy con-
straints. In that way, they are added to the model when they are violated in the LP relaxations of the branch and
bound method. Note that VI, by definition, are not violated in integer feasible solutions, which is why this is neces-
sary.

96 7. Computational results

introduced in Chapter 5 and the valid inequalities, respectively. These experiments are all con-
ducted for each of the 14 instances in Table 7.1 and for a single instance of the 110 node
case, resulting in a total of 6 ⋅ 15 = 90 experiments. In each these experiments, we let the
solver run for 7200 seconds and we solve the LP relaxation in the root node using the barrier
method.

Table 7.5 provides an overview of the various measures of efficiency for the experiments with
parameter variation and VI. In the table, “default” refers to Gurobi’s default settings; “very strong
cuts” refers to setting the Gurobi parameter Cuts = 3; “strong flow cover cuts” refers to set-
ting the Gurobi parameter FlowCoverCuts = 2; “focus on best bound” refers to setting the
Gurobi parameter MIPFocus =3; “strong branching” refers to setting the Gurobi parameter
VarBranch= 3; and “VI” refers to our implementation of the valid inequalities from Chapter
5. The measures of efficiency explored in this table are the best optimality gap, the gap inte-
gral value, the best incumbent value, the number of nodes explored, the total number of iter-
ations and the average amount of iterations per node, all upon termination of the algorithm.
To provide insights into the entire solution process, we provide visualizations of the evolution
of the lower- and upper bound and the gap function for each of the experiments in the table.
We choose to highlight the evolution of the bounds and the gap function for two remarkable
instances here, and refer to Appendix A for visualizations of all the experiments in Table 7.5.
To this end, Figure 7.4 and Figure 7.6 illustrate the evolution of the lower bounds and the gap
functions of the experiments with the cc28, dem27 and dem228 case, respectively.

instance method
measure of efficiency

gap gap integral best incumbent nodes explored total iterations iterations / node

reg7

default 0.0201 179.2224 120180000 172470 63296490 367

very strong cuts 0.0194 165.1325 120140000 86183 33266638 386

strong flow cover cuts 0.0192 157.6974 120230000 146344 36439656 249

focus on best bound 0.0218 171.244 120580000 79398 41048766 517

strong branching 0.0205 160.7598 120090000 17927 4463823 249

VI 0.0143 117.0956 119960000 190637 77779896 408

reg28

default 0.0635 491.5493 135440000 - - -

very strong cuts 0.018 225.159 129230000 344 1433104 4166

strong flow cover cuts 0.0235 307.9116 129916300 491 2591007 5277

focus on best bound 0.0235 242.9735 130066400 195 834015 4277

strong branching 0.0635 494.6315 135440000 - - -

VI 0.0223 247.5892 129716400 1086 3991050 3675

ud7

default 0.0181 161.6179 121980000 145028 51339912 354

very strong cuts 0.0218 165.0604 122210000 170211 65531235 385

strong flow cover cuts 0.0184 151.6874 121990000 247174 70691764 286

focus on best bound 0.0175 141.7685 122180000 107758 48275584 448

strong branching 0.0214 161.2256 122070000 28703 6372066 222

7.2. Experiments with the Gurobi solver 97

VI 0.0173 131.6593 123630000 298691 90204682 302

ud28

default 0.0221 213.2727 130100000 1134 3861270 3405

very strong cuts 0.0196 243.4107 129790000 3252 4627596 1423

strong flow cover cuts 0.0258 279.4356 130620000 566 2335882 4127

focus on best bound 0.0215 299.1863 130193700 357 862155 2415

strong branching 0.0278 226.5813 130930000 258 1097532 4254

VI 0.0105 107.6149 133880000 3605 4070045 1129

gas7

default 0.0116 94.7764 387580000 183265 54063175 295

very strong cuts 0.0147 106.6992 388770000 223344 69013296 309

strong flow cover cuts 0.013 96.5711 388050000 140437 51680816 368

focus on best bound 0.0159 116.0008 389400000 192116 62053468 323

strong branching 0.0121 102.8963 387780000 34639 4606987 133

VI 0.0128 95.3993 387940000 195516 75860208 388

gas28

default 0.0084 77.0103 385100000 2920 3906960 1338

very strong cuts 0.0074 72.1316 384720000 1590 4044960 2544

strong flow cover cuts 0.0056 69.987 384060000 2217 4265508 1924

focus on best bound 0.0095 80.7574 385560000 1498 3282118 2191

strong branching 0.0098 84.7147 385730000 504 1143072 2268

VI 0.008 75.6933 385080000 5211 5455917 1047

dem17

default 0.013 105.7939 260080000 149208 45060816 302

very strong cuts 0.0164 123.0294 260770000 111586 38385584 344

strong flow cover cuts 0.0118 99.459 259650000 146618 42519220 290

focus on best bound 0.015 113.0677 260440000 87176 38531792 442

strong branching 0.0142 108.3681 260030000 13602 3441306 253

VI 0.0118 93.9412 259840000 229405 70656740 308

dem128

default 0.0221 213.2727 248800000 1134 3861270 3405

very strong cuts 0.0196 243.4107 249450000 3252 4627596 1423

strong flow cover cuts 0.0258 279.4356 249710000 566 2335882 4127

focus on best bound 0.0215 299.1863 248287200 357 862155 2415

strong branching 0.0278 226.5813 248840000 258 1097532 4254

VI 0.0142 121.9495 249240000 894 3449052 3858

dem27

default 0.0083 70.5892 453190000 146242 46212472 316

very strong cuts 0.0111 81.4799 454380000 133367 60681985 455

strong flow cover cuts 0.009 68.9056 453610000 157990 51504740 326

focus on best bound 0.0109 80.4669 454360000 160800 49687200 309

strong branching 0.0115 85.2057 454400000 17205 4989450 290

VI 0.008 63.8902 453110000 149392 63192816 423

dem228

default 0.0169 171.5848 455170000 - - -

very strong cuts 0.0207 152.4659 456800000 - - -

98 7. Computational results

strong flow cover cuts 0.0344 248.0402 462930000 - - -

focus on best bound 0.0154 157.3556 454570000 3 22314 7438

strong branching 0.0169 173.7692 455170000 - - -

VI 0.0234 188.6067 458110000 1 7835 7835

cc7

default 0.0506 379.6645 102420000 153555 58197345 379

very strong cuts 0.0544 403.2511 102720000 116470 60680870 521

strong flow cover cuts 0.0525 393.463 102660000 141323 61051536 432

focus on best bound 0.0528 391.8599 102590000 119652 56356092 471

strong branching 0.0469 353.8059 101700000 16912 7813344 462

VI 0.0372 298.1962 101240000 149018 55434696 372

cc28

default 0.0515 3096.721 110030000 - - -

very strong cuts 0.073 636.7262 112630000 - - -

strong flow cover cuts 0.0414 484.2601 108910000 - - -

focus on best bound 0.079 691.3855 113460000 - - -

strong branching 0.0516 3170.866 110030000 - - -

VI 0.0572 356.1199 110730000 - - -

bf7

default 0.0225 165.1889 96568000 916504 57556451 62.8

very strong cuts 0.0239 175.618 96707000 755132 71057921 94.1

strong flow cover cuts 0.0222 163.0133 96614000 1355035 64906177 47.9

focus on best bound 0.0226 166.8726 96613000 712904 53253929 74.7

strong branching 0.0222 167.966 96576000 89072 7312811 82.1

VI 0.022 162.8896 96568000 886765 57373696 64.7

bf28

default 0.0069 116.7492 119710000 5448 1786944 328

very strong cuts 0.0067 73.4735 119590000 3677 3110742 846

strong flow cover cuts 0.0072 70.8367 119750000 5306 2032198 383

focus on best bound 0.0079 79.6414 119660000 3805 4714395 1239

strong branching 0.0033 50.0915 120050000 535 613110 1146

VI 0.0069 90.0359 119720000 9937 7343443 739

reg110

default 0.112 837.51 147100000 350 389900 1114

very strong cuts 0.108 641.796 146470000 0 - -

strong flow cover cuts* 0.0748 692.3828 141320000 615 586095 953

focus on best bound* 0.103 445.988 145760000 1 14013 14013

strong branching 0.0898 796.0312 143640000 57 115767 2031

VI* 0.142 872.033 152630000 23 182988 7956

Table 7.5: Results for the implementations with parameter variations and the addition of valid inequalities, respec-
tively. The best incumbent values for each instance are bold. In instances with an asterisks the solver ran out of mem-
ory before reaching the time limit.

7.2. Experiments with the Gurobi solver 99

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure 7.4: Graphs corresponding to the evolution of the bounds for the instance of cc28 and their
corresponding gap functions

100 7. Computational results

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure 7.5: Graphs corresponding to the evolution of the bounds for the instance of dem27 and their
corresponding gap functions

7.2. Experiments with the Gurobi solver 101

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure 7.6: Graphs corresponding to the evolution of the bounds for the instance of dem228 and their
corresponding gap functions

Main findings

When assessing the effectiveness of algorithms, there is always a danger of over-generalizing
the results. Our main findings are all based on the experiments that terminated after 7200 sec-
onds. Our ability to generalize these findings is therefore limited, as we do not know the actual
optimal objectives for the experiments. We therefore emphasize that any statements regard-
ing the effectiveness of the investigated methods describe their effectiveness within the time
limit. In addition, some parameters, such as the best incumbent value and the best optimality
gap, are found in the last time period. Marking a method as “best” based solely on such mea-
sures, might not be a good idea. Consider for instance the evolution of the bounds of 28cc, as
illustrated in Figure 7.4. If the time limit would have been set to 100 seconds, then the default

102 7. Computational results

method would have a very large optimality gap, whereas it has the second-best gap upon ter-
mination of the algorithm. The MIP focus parameter setting, on the other hand, has a smaller
gap at 100 seconds, but a much larger gap upon termination of the algorithm. In cases where
the solver is only allowed to run for a short amount of time (<1000 seconds), the preferred pa-
rameter settings might differ from the ones that we introduce here. In our comparison of the
results, we explicitly focus on the performance of the methods within the time limit of 7200
seconds.

We now provide some remarkable findings from Table 7.5.

General performance First and foremost, what stands out in in the table is that the Gurobi
solver generally seems to perform quite well (both with and without parameter variations and
VI) for the investigated set of problem instances within the time limit of 7200 seconds, result-
ing in an average optimality gap of 2.84% over all cases and an average gap of 2.29% for the
set of 7- and 28-node cases. This motivates the use of the Gurobi solver for solving practical
problem instances of the MESDP.

Another remarkable finding is that, in many of the experiments, no significant differences were
found between the best incumbent values of the different methods. For all of the experiments
with valid inequalities and parameter settings variations, it holds that in 61 of the 75 exper-
iments the best incumbent value deviated less than 1% of the best incumbent value of the
default method. The biggest derivation of the incumbent values is found within the 28reg
problem instance, where the cuts-, flow cover cuts- and bound focus parameter and the VI all
outperformed the default method, resulting in incumbent values that are respectively 4.59%,
4.08%, 3.97%, 4.23% lower than the incumbent value of the default.

Comparing instances When comparing the same instances for different sizes, we see that the
solver often finds small gaps for both the 7- and 28- node variations within the time limit. The
gap integrals however do differ significantly, as the solver often finds a good optimality gap
for the 7 node cases within only a few seconds, whereas the convergence of the gap in the 28
node cases is much slower. This phenomenon is illustrated for the dem27 and dem228 case
in Figure 7.5 and 7.6. We see similar behaviour for the other cases, as illustrated in the figures
in Appendix A. The large gap integral for the 28 node cases is caused by the poor quality of
the feasible solutions, as the lower bound function of the 28 node cases does increase at a
higher rate. The better lower bound function for the 28 node cases can be explained by the
quality of the LP relaxations: the finer network has tighter LP relaxations and hence, tighter
lower bounds.

Brownfield One of the research sub-questions was whether the addition of a current network
would have a positive effect on the solver. To this end, we compare the optimality gaps of the
different methods applied to the regular case, both with (“brownfield”) and without (“green-
field”) a starting network. The results are provided in Table 7.6. These show that for the 7
node case, the gaps for the brownfield case are not better than those for the greenfield case.
For the 28 node case however, the optimality gaps under brownfield are significantly smaller
for all methods, suggesting that a starting network makes it much simpler to solve the model

7.2. Experiments with the Gurobi solver 103

size method greenfield brownfield

7 nodes default 2.01% 2.25%

cuts 1.94% 2.39%

FCC 1.92% 2.22%

MIPfocus 2.18% 2.26%

varbranch 2.05% 2.22%

user cuts 1.43% 2.20%

28 nodes default 6.35% 0.69%

cuts 1.80% 0.67%

FCC 2.35% 0.72%

MIPfocus 2.35% 0.79%

varbranch 6.35% 0.33%

user cuts 2.23% 0.69%

Table 7.6: The optimality gaps of the different methods applied to the regular case with greenfield and
brownfield data

for the finer networks. The smaller degrees of freedom of the starting network combined with
the tight LP relaxations for the 28-node cases result in an efficient solution procedure. This
implies that brownfield data possibly has a positive effect on the solver, especially in the finer
networks. However, as we only investigate the effect of brownfield data for a single case, cau-
tion must be applied in drawing broad conclusions.

Trade-offs Apart from the 110 node case, the instances 7cc and 28cc are the most difficult
problem instances, resulting in the largest gap and gap integrals over all. These instances
model a situation in which the prices for assets lie closer together than in other instances. We
therefore observe that a difficult trade-off between building different assets is a good predictor
of the difficulty of an instance.

Useful tricks We observe that in some experiments, the solver found good solutions without
exploring any nodes in the branch and bound tree. We assume that the model therefore ben-
efits significantly from many of Gurobi’s additional tricks, such as the presolve methods and
cutting planes.

Overall performance To assess which method performs best overall, we examine the follow-
ing measures of efficiency in more detail for the experiments in Table 7.5: the optimality gap,
gap integral and incumbent values. The combination of these measures of efficiency provides
insight a good base to compare the different methods on (Maher et al., 2019). Tables 7.7 and
7.8 summarize the results of these 90 experiments. In Table 7.7, the total number of instances
for which each method outperformed the others based on these methods is given. Consider-
ing only the “winner” of each experiment is however not very insightful, as we are mainly inter-
ested in each method’s performance over the entire set of instances. Therefore, in Table 7.8,
the average values of the gap, gap integral and incumbent over all of the experiments is given
for each method. This is also visualized in Figure 7.7.

104 7. Computational results

Best gap Best gap integral Best incumbent

default 1 1 3

very strong cuts 1 2 4

strong flow cover cuts 3 1 3

focus on best bound 1 0 1

strong branching 1 1 0

VI 7 9 3

Table 7.7: The number of instances in which each method resulted in the best gap, the best gap integral value
and the best incumbent value after 7200 seconds of running.

Average gap Average gap integral Average incumbent

default 2.98% 424.97 2.10317E+08

very strong cuts 2.90 % 233.92 2.10314E+08

strong flow cover cuts 2.56 % 237.54 2.10062E+08

focus on best bound 2.92 % 231.85 2.10375E+08

strong branching 2.93 % 424.23 2.10304E+08

VI 2.72% 201.51 2.10817E+08

Table 7.8: Average values of the best gap, the best gap integral value and incumbent for each method after 7200
seconds.

(a) Best incumbent value (b) Best gap integral

(c) Best gap

Figure 7.7: Average values over the set of instances of the best incumbent value, best gap integral and best
gaps. The bars denote the average for each method, and the dotted line denotes the average over all methods.

7.3. Decomposition methods 105

The results of Table 7.7 and Table 7.8 show that, over all, the cut-based parameters and the
valid inequalities perform best. The flow cover cuts resulted in the best average incumbent
over all experiments. In addition, for the most difficult instances, cc28 and reg110, we observe
in Table 7.5 that the flow cover cuts parameter settings outperformed the other methods and
improved the default method with 1.02% and 3.93%, respectively.

To also examine the performance of the methods on the smaller and larger cases, respec-
tively, we categorize the results by their size in Table 7.9 and Table 7.10. The 110 node case
has a large effect on the overall performance of the methods and it is therefore also inter-
esting to compare the performance without this particular difficult case. For instance, the VI
method appears much better without considering its bad performance for the 110 node case
(for which the PC ran out of memory before reaching the time limit). As demonstrated in Ta-
ble 7.10, the VI outperform other methods on all three measures of efficiency for each of the
28-node cases and on the best gap and best gap integral in the 7-node case.

Best gap Best gap integral Best incumbent

default 2.06% 165.2647429 2.2029E+08

strong cuts 2.31% 174.3243571 2.2081E+08

strong flow cover cuts 2.09% 161.5424 2.2040E+08

best bound focus 2.24% 168.7543429 2.2088E+08

strong branching 2.13% 162.8896286 2.2038E+08

VI 1.76% 137.5816286 2.2033E+08

Table 7.9: Average values of the best gap, the best gap integral value and incumbent for each method after 7200
seconds of running for experiments for the set of 7 node cases

Best gap Best gap integral Best incumbent

default 2.73% 625.7371143 2.0938E+08

strong cuts 2.36% 235.2539429 2.0894E+08

strong flow cover cuts 2.34% 248.5581143 2.0954E+08

best bound focus 2.55% 264.3551429 2.0910E+08

strong branching 2.87% 632.4621571 2.0975E+08

VI 1.98% 157.3768714 2.0851E+08

Table 7.10: Average values of the best gap, the best gap integral value and incumbent for each method after
7200 seconds of running for experiments for the set of 28 node cases

For a graphical representation of a 7-, 28- and 110-node network that were generated by the
solver in one of the experiments, we refer to Figure A.21, A.22 and A.23, respectively.

7.3. Decomposition methods
In this section, we provide the results of the Benders decomposition (BD) and Lagrangean re-
laxation (LR) method for the MESDP, respectively.

7.3.1. Benders decomposition
We implemented the BD method according to Algorithm 2. First, we solve the PHASE 1 prob-
lem. Because the computing times for the PHASE 1 problem were quite extensive, we decided

106 7. Computational results

to set a maximum of 100 iterations for the for loop in PHASE 1 and terminate it once the ob-
jective has not improved for 30 iterations. Second, we solve the PHASE 2 problem, letting
the solver run for a maximum of 7200 seconds. The results of these experiments for the set
of 14 instances is provided in Table 7.11. The evolution of the corresponding lower bounds
that were generated during PHASE 2 are visualized in Appendix A. For the 110 node case, the
solver ran out of memory before completing PHASE 1.

Instance Number of active Benders cuts Total iterations Nodes explored Best bound Best incumbent Gap

reg7 3268 33234 8357 1.09E+08 - -

reg28 238 2912 27 6.66E+07 - -

ud7 2662 26311 5111 1.06E+08 - -

ud28 357 3410 1 6.30E+07 - -

gas7 4327 21140 4302 3.695206E+08 4.3694571E+08 15.43%

gas28 255 2665 39 3.54E+08 - -

dem17 1615 28307 4905 243644445.8 - -

dem128 340 2177 1 217262166.0 - -

dem27 3946 40945 4.446179E+08 5.62E+08 20.90%

dem228 272 3808 299 4.17E+08 - -

cc7 2992 27724 3846 9.19E+07 - -

cc28 340 3148 1 8.07E+07 - -

bf7 250 15232 3333 8.94E+07 - -

bf28 544 2251 1 9.53E+07 - -

Table 7.11: Results for the Benders decomposition algorithm for the set of instances

Our implementation of the BD algorithm turns out to be disappointingly slow. In only two ex-
periments it succeeded in finding an incumbent value. Also, in all of the experiments, the best
obtained lower bound deviated significantly from the best lower bound that was obtained by
the solver’s default branch-and-cut method.

We believe that a large part of the computing times for both of the BD can be accounted for
by the time it takes for the algorithm to initialize and solve the models in each iteration. For
BD, each time the solver finds a new incumbent, 17 (the number of time periods) disaggre-
gated Benders sub-problems have to be initialized and solved to optimality. Although these
problems could all be solved in a few seconds, this is overall still a time-consuming process.
Specifically, it appears the solver takes a significant amount of time for the initialization phase.
Coding the decomposition method in a different way, in which the solver can adjust model pa-
rameters instead of initializing an entire model in each iteration, might provide better results.
We were restricted to the use of Pyomo in this research, and found that it was unfortunately
not possible to implement BD without the full initialization of the submodels in each iteration.

Increasing the runtime for the BD as implemented here is not desirable, as the processing time
of each node in the BD increases with the number of generated cuts (and this processing time
is already quite excessive upon termination of the algorithm). A better strategy for improving
the BD would be the implementation of additional computational enhancements, such as a
tighter cut selection or a better initialized relaxation. In addition, the lack of optimality cuts in
our problem might make BD as a solution method less attractive, as feasibility cuts are less

7.4. Summary 107

instance best LR bound best lower bound default

reg7 3.26E+06 1.18E+08

ud7 1.49E+06 1.20E+08

gas7 1.05E+07 3.83E+08

dem17 3.80E+06 2.57E+08

dem27 1.00E+07 4.49E+08

cc7 1.32E+06 9.72E+07

bf7 5.762E05.2241 9.32E+07

Table 7.12: The best lower bound derived by the Lagrangean relaxation versus the best lower bound derived by
the default method for the 7 node instances.

effective in improving the bound than optimality cuts. So unless it is possible to derive tighter
feasibility cuts, BD might not be an efficient method for solving the MESDP.

7.3.2. Lagrangean relaxation
We implemented the Lagrangean relaxation method according to Algorithm 3. We let the for
loop continue for 1000 iterations and terminate when ‖𝜆፩ዄኻ − 𝜆፩‖ < 1𝐸ዅዀ or when a time
limit of 7200 seconds is reached. The upper bound 𝑍∗ is derived by taking a known incumbent
value for the problem instance, generated by letting running the solver for the original formula-
tion for a few seconds. For the 28- node cases, the for loop terminated in only a few iterations,
due to memory issues. Therefore the results pertaining to the 28-node cases will not be fully
representative and will not be further investigated.

The results of the best bounds obtained by the Lagrangean relaxation method for the set of
7-node instances are provided in Table 7.12. In this table, we compare this lower bound to the
best bound found through applying the default method to the original formulation.

Due to the very slow convergence of the LR function, as can be seen in the graphs in Appendix
A, the LR method as we implemented it here is not useful.

The subgradient method has to initialize and solve a model in each iteration. As mentioned
before, this takes quite some time and might (partly) cause the slow convergence of the LR
function. Coding the algorithm in a different way might solve this. In addition, the convergence
of the subgradient method of the LR might be improved by adjusting some of its parameters,
or starting with a different incumbent value.

7.4. Summary
For the MESDP, the branch and cut algorithm of the MIP solver Gurobi was efficient for solving
the set of problem instances. To optimize its performance, the following improvements had
the best overall performance:

• Solve the initial LP relaxation using the solver’s barrier method and;

• Implement the valid inequalities a priori as lazy constraints, or;

108 7. Computational results

• Force the solver to generate more flow cover cuts.

Combinations of optimal parameter settings and valid inequalities might be efficient, but have
not been tested in this research.

The Benders decomposition method and Lagrangean relaxation method as implemented in
Algorithm 2 and Algorithm 3 respectively, both did not seem efficient for solving the MESDP.

We have not investigated all the ways in which the BD and the LR method could be improved
for the MESDP. As we only implemented a rather basic version of both of these algorithms, the
question whether these decomposition methods are efficient for solving the MESDP remains
open.

8
Conclusions and recommendations

In this chapter, we conclude our research by answering the main research question and we
provide a direction for future research.

8.1. Conclusions
In this thesis, we investigated the MESDP, a model that optimizes the design of a multi-energy
network. As explained in Chapter 3.1, the goal of the model is to compute the optimal design
investment plan for the energy system of the studied city, Eindhoven.

In Chapter 3 we introduced a network flow-based formulation for the MESDP and proved that
it is strongly NP-hard. Most interested in practical applications of the model, we investigated
the efficiency of a state-of-the-art MIP solver for solving the MESDP for a set of instances in
Chaper 7. In addition, we developed two decomposition methods to examine whether either of
these would provide a good strategy for solving the MESDP.

We now answer the main research question.

What are good solution methods for optimizing the design of multi-energy systems, using the
developed model?

There are many possible strategies for solving (fixed charge) network design problems that
are similar to the MESDP (Chapter 2). In this report, we focused on branch and bound meth-
ods with model-specific parameter settings and the addition of valid inequalities, as well as
decomposition methods. In Chapter 3, we proved that the MESDP is strongly NP-hard, imply-
ing that it is (theoretically) highly difficult to solve. From a practical viewpoint, it appeared that
state-of-the-art MIP solvers are able to solve large-sized instances of the MESDP to small op-
timality gaps. Implementing model-specific valid inequalities as well as forcing the solver to
apply more flow cover cuts both had a positive impact on the solver. Lastly, the influence of
taking into account brownfield data was particularly striking for the larger cases, implying that
a starting network can significantly improve the quality of the solution for finer networks. Con-
sidering the fact that finer networks are able to model the real-life case more accurately, this
fact is of interest for practitioners who are more interested in network expansion/brownfield
optimization problems as opposed to greenfield network design problems.

109

110 8. Conclusions and recommendations

8.2. Recommendations
As the theory of multi-energy systems is still rather new, there is much to explore in this field.
From a network optimization perspective specifically, we believe that there is also much to
explore in solving (variations of) the MESDP. We provide some ideas for future research, based
on findings from this report.

In Chapter 7, we found that the MIP solver steadily provided good solutions for our set of in-
stances. Because the MIP solver performed well for practical instances, we propose to con-
tinue the investigation into ways in which the MESDP can be solved more efficiently, using a
state-of-the-art solver. We investigated the effect of parameter tuning and valid inequalities.
Although there was some improvement, we were still not able to solve the larger cases to opti-
mality. It would be interesting to find out whether this is achievable, possibly with a tighter (or
different) formulation.

Unfortunately, we were not able to produce efficient decomposition algorithms for the MESDP
in this report. Considering the decomposable structure of the MESDP, we still believe that de-
composition methods could be effective. Therefore, we propose research in ways that the de-
composition methods might be applied to the MESDP in an efficient manner, for instance with
additional computational enhancements or with a different decomposition strategy. For La-
grangean relaxation, for instance, other relaxed constraints might result in better lower bounds.
Also, the implementation of these algorithms in the Python API as opposed to Pyomo might
be efficient.

One of the key findings in Chapter 7, were the good lower bound functions for the larger cases
and the near-optimality solutions for the 28- node brownfield case. Experiments with heuristic
methods could provide better upper bounds, that, combined with the good lower bound func-
tions, might result in better solutions. Therefore, heuristic methods might be interesting for the
MESDP.

Lastly, We hypothesize that the addition of a current network is beneficial for solving the model,
and therefore suggest further experiments with more brownfield cases. Considering the com-
putational benefits from adding a brownfield network, as well as the large amount of brown-
field optimization problems that arise from the Energy Transition, these findings motivate a di-
rection for future research on the MESDP/multi-energy systems optimization that incorporate
current networks.

Bibliography

Adams, R. N. and Laughton, M. A. (1974). Optimal planning of power networks using mixed-
integer programming. PROC. IEE, 121(2).

Ahuja, R., Magnantl, T. L., and Orlin, J. B. (1993). Network flows Theory, algorithms and applic-
tions.

Balakrishnan, A., Li, G., and Mirchandani, P. (2017). Optimal network design with end-to-end
service requirements. Operations Research, 65(3):729–750.

Barahona, F. (1996). Network Design Using Cut Inequalities. Siam J. Optimization, 6(3):823–
837.

Bernard Fortz and Enrico Gorgone (2012). A Lagrangian Heuristic Algorithm for the Time-
Dependent Combined Network Design and Routing Problem. Networks, 60(1):45–58.

Bertsekas, D. P. (1998). Network Optimization: Continuous and Discrete Models. Athena Scien-
tific, Belmont, Massachusetts.

Bertsimas, D. and Tsitsiklis, J. (1998). Introduction to Linear Optimization. Athena Scientific.

Bruckner, T., Bashmakov, I. A., Mulugetta, Y., Chum, H., de la Vega Navarro, A., Edmonds, J.,
Faaij A., Fungtammasan B., Garg A., Hertwich E., Honnery, D., Infield, D., Kainuma, M., Khen-
nas, S., Kim, S., Nimir, H. B., Riahi, K., Strachan, N., Wiser, R., and Zhang, X. (2014). Energy
systems. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Casisi, M., Pinamonti, P., and Reini, M. (2009). Optimal lay-out and operation of combined heat
& power (CHP) distributed generation systems. Energy, 34(12):2175–2183.

Chang, M. S. (2014). A scenario-based mixed integer linear programming model for composite
power system expansion planning with greenhouse gas emission controls. Clean Technolo-
gies and Environmental Policy, 16(6):1001–1014.

Chang, S.-G. and Gavish, B. (1995a). Lower Bounding Procedures for Multiperiod Telecommu-
nications Network Expansion Problems. Operations Research, 43(1):43–57.

Chang, S.-G. and Gavish, B. (1995b). Lower Bounding Procedures for Multiperiod Telecommu-
nications Network Expansion Problems. Operations Research, 43(1):43–57.

Conejo, A. J., Castillo, E., and García-bertrand, R. M. R. (2006). Decomposition Techniques in
Mathematical Programming.

111

112 Bibliography

Costa, A. M. (2005). A survey on benders decomposition applied to fixed-charge network de-
sign problems. Computers and Operations Research, 32(6):1429–1450.

Dutta, A. and Lim, J.-i. (1992). A Multiperiod Capacity Planning Model for Backbone Computer
Communication Networks. (January 2020).

Enexis (2019). Enexis Netbeheer Open data.

European Commission (2015). The Paris Protocol – A blueprint for tackling global climate
change beyond 2020. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PAR-
LIAMENT AND THE COUNCIL.

Fisher, M. L. (2004). The lagrangian relaxation method for solving integer programming prob-
lems. Management Science, 50(12 SUPPL.):1861–1874.

Fragkos, I., Jans, R., and Cordeau, J. F. (2017). The Multi-Period Multi-Commodity Network
Design Problem. CIRRELT-2017-63, (October).

Gabrel, V., Knippel, A., and Minoux, M. (1999). Exact solution of multicommodity network opti-
mization problems with general step cost functions. Operations Research Letters, 25(1):15–
23.

Gabrielli, P., Gazzani, M., Martelli, E., and Mazzotti, M. (2018). Optimal design of multi-energy
systems with seasonal storage. Applied Energy, 219(October 2017):408–424.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman.

Gascon, V., Benchakroun, A., and Ferland, J. (1993). Electricity Distribution Planning Model: A
Network Design Approach For Solving The Master Problem Of The Benders Decomposition
Method. INFOR: Information Systems and Operational Research, 31(3):205–220.

Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., and Fröhlich, K. (2007). Energy
hubs for the future. IEEE Power and Energy Magazine, 5(1):24–30.

Gendron, B. (2011). Decomposition methods for network design. Procedia - Social and Behav-
ioral Sciences, 20:31–37.

Gendron, B. and Crainic, T. G. (1998). Multicommodity Capacitated Network Design.

Geoffrion, A. M. (1972). Generalized Benders Decomposition. Journal of Optimization Theory
and Applications, 10(4):1162–1175.

Gurobi Optimization Inc. (2017). Algorithms I-Basics.

Gurobi Optimization Inc. (2019). Gurobi Optimizer Reference Manual. Www.Gurobi.Com, 6:572.

Held, M., Wolfe, P., and Crowder, H. P. (1974). Validation of subgradient optimization. Mathe-
matical Programming, 6(1):62–88.

Bibliography 113

Holmberg, K. and Yuan, D. (1998). A Lagrangean approach to network design problems. Inter-
national Transactions in Operational Research, 5(6):529–539.

Holmberg, K. and Yuan, D. (2000). A Lagrangian Heuristic Based Branch-and-Bound Approach
for the Capacitated Network Design Problem. Operations Research, 48(3):461–481.

Hugo, A., Rutter, P., Pistikopoulos, S., Amorelli, A., and Zoia, G. (2005). Hydrogen infrastruc-
ture strategic planning using multi-objective optimization. International Journal of Hydrogen
Energy, 30(15):1523–1534.

IEA (2019). IEA Sankey Diagram.

Kallrath, J. (2008). Modeling Difficult Optimization Problems. Floudas C., Pardalos P. (eds)
Encyclopedia of Optimization.

Karp, R. M. (1975). On the Computational Complexity of Combinatorial Problems. Networks,
5:45–68.

Klotz, E. and Newman, A. (2013). Practical Guidelines for Solving Difficult Mixed Integer Linear
Programs. Surveys in Operations Research and Management Science, 18(1-2):18–32.

Kroposki, B., Garrett, B., Macmillan, S., Rice, B., Komomua, C., Malley, M. O., Zimmerle, D., and
Kroposki, B. (2012). Energy Systems Integration A Convergence of Ideas A Convergence of
Ideas. University college Dublin, (July 2012):1–9.

Kubat, P. and Smith, J. M. G. (2001). A multi-period network design problem for cellular
telecommunication systems. European Journal of Operational Research, 134(2):439–456.

Lawler, E. L. and Wood, D. E. (1966). Branch-and-Bound Methods : A Survey. 14(4):699–719.

Magnanti, T. L., Mirchandani, P., and Vachani, R. (1991). Modeling and Solving the Capacitated
Network Loading Problem. OR 239-91, (January).

Magnanti, T. L., Mirchandani, P., and Vachani, R. (1993). The convex hull of two core capaci-
tated network design problems. Mathematical Programming, 60(1-3):233–250.

Magnanti, T. L. and Wong, R. T. (1984). Network Design and Transportation Planning: Models
and Algorithms. Transportation Science, 18(1):1–55.

Maher, S. J., Ralphs, T. K., and Shinano, Y. (2019). Assessing the Effectiveness of (Parallel)
Branch-and-bound Algorithms. pages 1–49.

Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation
models. Energy, 65:1–17.

Mancarella, P., Andersson, G., Peças-Lopes, J. A., and Bell, K. R. (2016). Modelling of inte-
grated multi-energy systems: Drivers, requirements, and opportunities. 19th Power Systems
Computation Conference, PSCC 2016, (October 2017).

114 Bibliography

Matuschke, J., Skutella, M., Peis, B., and McCormick, T. (2014). Network flows and network
design in theory and practice. (February).

McDaniel, D. and Devine, M. (1977). A Modified Benders’ Partitioning Algorithm for Mixed Inte-
ger Programming. Management Science, 24(3).

Minoux, M. (1987). Network synthesis and dynamic network optimization. North-Holland Math-
ematics Studies, 132(C):283–323.

Omu, A., Choudhary, R., and Boies, A. (2013). Distributed energy resource system optimisation
using mixed integer linear programming. Energy Policy, 61:249–266.

Orlin, J. and Nasrabadi, E. (2013). 15.053 Optimization Methods in Management Science.
Massachusetts Institute of Technology: MIT OpenCourseWare. https://ocw.mit.edu.

Pearce, R. H. and Forbes, M. (2018). Disaggregated Benders decomposition and branch-and-
cut for solving the budget-constrained dynamic uncapacitated facility location and network
design problem. European Journal of Operational Research, 270(1):78–88.

Pearce, R. H. and Hons, B. S. (2019). Towards a general formulation of lazy constraints.

Pinedo, M. L. (2016). Scheduling Theory, Algorithms, and Systems. Springer, 5 edition.

Quelhas, A., Gil, E., McCalley, J. D., and Ryan, S. M. (2007). A multiperiod generalized network
flow model of the U.S. integrated energy system: Part I - Model description. IEEE Transac-
tions on Power Systems, 22(2):829–836.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The Benders decomposition
algorithm: A literature review. European Journal of Operational Research, 259(3):801–817.

Ruth, M. F. and Kroposki, B. (2014). Energy Systems Integration : An Evolving Energy
Paradigm. The Electricity Journal, (January 2018).

Samsatli, S. and Samsatli, N. J. (2018). A general mixed integer linear programming model for
the design and operation of integrated urban energy systems. Journal of Cleaner Production,
191:458–479.

van Beuzekom, I., Gibescu, M., Pinson, P., and Slootweg, J. G. (2017). Optimal planning of inte-
grated multi-energy systems. 2017 IEEE Manchester PowerTech, Powertech 2017, 1.

Van Beuzekom, I., Mazairac, L. A. J., Gibescu, M., and Slootweg, J. G. (2016). Optimal Design
and Operation of an Integrated Multi- Energy System for Smart Cities. 2016 IEEE Interna-
tional Energy Conference (ENERGYCON).

Van Beuzekom, I., Member, S., Nijhuis, M., Member, S., Hodge, B., Member, S., Pinson, P., Mem-
ber, S., and Slootweg, J. G. (2020). Optimal Planning of Integrated Electricity , Gas and Heat
Systems : a Multigrid Approach.

Bibliography 115

Wakui, T., Kinoshita, T., and Yokoyama, R. (2014). A mixed-integer linear programming ap-
proach for cogeneration-based residential energy supply networks with power and heat in-
terchanges. Energy, 68:29–46.

Weber, C. and Shah, N. (2011). Optimisation based design of a district energy system for an
eco-town in the United Kingdom. Energy, 36(2):1292–1308.

Winston, W. L. and Goldber, J. B. (2004). Operations research. Brooks/Cole, 4 edition.

Wouters, C., Fraga, E. S., and James, A. M. (2015). An energy integrated, multi-microgrid, MILP
(mixed-integer linear programming) approach for residential distributed energy system plan-
ning - A South Australian case-study. Energy, 85:30–44.

A
Additional figures

This chapter provides visualizations of all of the experiments as conducted in Chapter 7.

117

118 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.1: Graphs corresponding to the evolution of the bounds for the instance of reg7 and their
corresponding gap functions

119

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.2: Graphs corresponding to the evolution of the bounds for the instance of reg28 and their
corresponding gap functions

120 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.3: Graphs corresponding to the evolution of the bounds for the instance of ud7 and their corresponding
gap functions

121

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.4: Graphs corresponding to the evolution of the bounds for the instance of ud28 and their
corresponding gap functions

122 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.5: Graphs corresponding to the evolution of the bounds for the instance of gas7 and their
corresponding gap functions

123

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.6: Graphs corresponding to the evolution of the bounds for the instance of gas28 and their
corresponding gap functions

124 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.7: Graphs corresponding to the evolution of the bounds for the instance of dem17 and their
corresponding gap functions

125

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.8: Graphs corresponding to the evolution of the bounds for the instance of dem128 and their
corresponding gap functions

126 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.9: Graphs corresponding to the evolution of the bounds for the instance of dem27 and their
corresponding gap functions

127

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.10: Graphs corresponding to the evolution of the bounds for the instance of dem228 and their
corresponding gap functions

128 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.11: Graphs corresponding to the evolution of the bounds for the instance of cc7 and their
corresponding gap functions

129

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.12: Graphs corresponding to the evolution of the bounds for the instance of cc28 and their
corresponding gap functions

130 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.13: Graphs corresponding to the evolution of the bounds for the instance of bf7 and their
corresponding gap functions

131

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.14: Graphs corresponding to the evolution of the bounds for the instance of bf28 and their
corresponding gap functions

132 A. Additional figures

(a) reg7 (b) reg28

(c) ud7 (d) ud28

(e) gas7 (f) gas28

(g) dem17 (h) dem128

133

(i) dem27 (j) dem228

(k) cc7 (l) cc28

(m) bf7 (n) bf28

Figure A.15: Graphs corresponding to the evolution of the bounds for the set of instances when the valid inequalities
are applied (and the solvers settings are set to default)

134 A. Additional figures

(a) reg7 (b) reg28

(c) ud7 (d) ud28

(e) gas7 (f) gas28

(g) dem17 (h) dem128

135

(i) dem27 (j) dem228

(k) cc7 (l) cc28

(m) bf7 (n) bf28

Figure A.16: Graphs corresponding to the evolution of the gap functions for the set of instances when the valid in-
equalities are applied (and the solvers settings are set to default)

136 A. Additional figures

(a) Very aggressive cuts (b) Aggressive flow cover cuts

(c) Default settings (d) MIP focus on best bound

(e) Strong branching (f) Gap functions

Figure A.17: Graphs corresponding to the evolution of the bounds for the instance of reg110 and their
corresponding gap functions

(a) gap ratio of instance reg110 with valid inequalities (b) bound evolutions of instance reg110 with valid
inequalities

137

??

(a) reg7 (b) reg28

(c) ud7 (d) ud28

(e) gas7 (f) gas28

(g) dem17 (h) dem128

138 A. Additional figures

(i) dem27 (j) dem228

(k) cc7 (l) cc28

(m) bf7 (n) bf28

Figure A.19: Graphs corresponding to the evolution of lower bounds in the BD algorithm, plotted against the lower
bound that was found in the last iteration of the regular branch and bound algorithm for the original problem

139

(a) reg7 (b) cc7

(c) dem17 (d) dem27

(e) gas7 (f) bf7

(g) ud7

Figure A.20: Evolution of the Lagrangean Relaxation function for the 7 node instances

140 A. Additional figures

Figure A.21: A network generated for a 7 node instance

141

Figure A.22: A network generated for a 28 node instance

142 A. Additional figures

Figure A.23: A network generated for a 110 node instance

	Introduction
	Research motivation
	Research objective and questions
	Relevance

	Background
	Multi-energy systens
	Network flow and design
	The minimum cost flow model
	Network design problems

	Solution Methods
	Branch and bound methods
	Decomposition methods

	Complexity classes

	The Multi-Energy System Design Problem
	Model description
	Model formulation
	Problem characteristics
	Computational complexity of the MESDP

	Empirical Research
	Background
	Theoretical vs. empirical research
	Assessing implementations
	MIP solvers

	Experiments
	Experiments with default settings
	Experiments with parameter tuning

	Valid inequalities
	Theory
	Valid inequalities for the MESDP
	Implementation

	Decomposition methods
	Benders decomposition
	Classical Benders decomposition
	Improving the Benders decomposition method
	Benders decomposition for the MESDP

	Lagrangean Relaxation
	Theory
	The subgradient method
	Lagrangean relaxation for the MESDP

	Computational results
	Casy study
	Experiments with the Gurobi solver
	Experiments with default settings
	Experiments with parameter variations and valid inequalities

	Decomposition methods
	Benders decomposition
	Lagrangean relaxation

	Summary

	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography
	Additional figures

