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The rising number of students in computer science presents a challenge for ed-
ucators to analyse student work and identify problem areas at scale. Learning ana-
lytics systems often fall short in offering detailed, actionable insights that educators
can use to enhance their teaching. To address this, we propose a system leveraging
Large Language Models to analyse programming submissions and generate action-
able analytics. The study focused on two primary research questions regarding the
accuracy of LLMs in classifying programming submissions and identifying common
issues, and educators’ perceptions of the usefulness of the system. Through a sys-
tem evaluation and focus group, we found that LLMs can analyse SQL assignment
submissions with reasonable accuracy and can identify common issues. Educators
found the insights potentially useful but noted areas for improvement such as the
need for concrete statistics, accurate lists of submissions with specific issues, and
more readable reports. Future research should address these implications for the
system, evaluate the system in other courses with different programming languages,
and involve stakeholders directly related to the course.
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Chapter 1

Introduction

In computer science education, high student enrolment coupled with limited fac-
ulty resources has created significant challenges for educational institutions. The
demand for skilled programmers and the growing interest in computer science has
led to a boom in the number of students pursuing degrees in computer science and
related fields [1]. This growth has outpaced the availability of faculty and teaching
resources [2], necessitating a need for solutions and systems that can support both
students and educators effectively.

Evaluating student performance and providing timely, personalised feedback
are critical aspects of education. In traditional classroom settings, educators can in-
teract directly with their students, providing personal guidance and support. How-
ever, this approach becomes infeasible with growing class sizes. To address this
issue, many automated systems have been developed that support educators with
the large number of students.

Learning Analytics (LA) has emerged as a field of study to address these prob-
lems. Learning analytics is "the measurement, collection, analysis and reporting of
data about learners and their contexts, for purposes of understanding and optimis-
ing learning and the environments in which it occurs" [3]. The goal of LA is to
understand and optimise learning processes and environments. By leveraging data
from sources such as Learning Management Systems (LMS), learning analytics can
provide insights into student performance, learning behaviours, and more. These
insights can guide and inform teachers in improving their course or help them iden-
tify at-risk students.

However, learning analytics faces several challenges in programming education.
Assessing a program is considerably more complex than verifying the functional
correctness and as a result many different tools exist that go beyond this measure
[4]. Program efficiency, behaviour, and readability, among many other features, are
relevant for evaluation. However, these tools often require significant setup for a
course or are not available for wider use, making it difficult to integrate them into
different educational environments [5] [6]. Without assessing and getting feedback
on these relevant features, students do not get a complete assessment of their work.
Additionally, while learning analytics can provide valuable insights, they are often
not actionable. Educators may receive indications of students at-risk by a learning
analytics system, but they lack concrete suggestions for interventions to help these
students or address their issues [7][8].

The recent advancements in artificial intelligence, particularly the rise of Large
Language Models (LLMs) like ChatGPT [9], present a promising opportunity to en-
hance learning analytics in programming education and address these challenges.
Trained on large amounts of data, these models can process and generate human-like
text, while also handling unstructured data such as programming submissions [10].
Research has shown that LLMs can solve a wide range of programming problems
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[11], as well as analysing programs and providing feedback on it [12]. By integrating
LLMs into learning management systems, educators could gain better and more ac-
tionable insights into their students performance, helping them in supporting their
students.

1.1 Objective

This thesis aims to address the challenge of effectively analysing student program-
ming submissions to provide actionable learning analytics in the context of program-
ming education. Specifically, it focuses on the design and evaluation of a system
that uses LLMs to analyse programming submissions, aggregate these analyses, and
generate actionable insights for educators that can support both individual student
learning and overall course improvement.

1.2 Research Questions

The thesis focuses on two key research questions:

• RQ1: How can LLMs be utilised to analyse programming submissions and
provide detailed learning analytics in programming education?

To address this question, a system was designed and evaluated through two
sub-questions:

– Sub-question 1 (RQ1a): How accurately can LLMs classify student pro-
gramming submissions into predefined categories?
This research question seeks to evaluate the performance of LLMs in cat-
egorising student programming submissions into specific categories. By
measuring the accuracy of these classifications, we can determine the ca-
pability of LLMs in providing foundational data that will be subsequently
used to generate learning analytics.

– Sub-question 2 (RQ1b): Can LLMs identify common issues and pat-
terns in student programming submissions, and how reliable are these
identifications?
This question aims to explore the common issues LLMs can find in stu-
dent programming assignments and assess the reliability of these identi-
fications.

• RQ2: How do educators perceive the usefulness of LLM-generated learning
analytics?

This research question explores educators’ perspectives on the usefulness of
LLM-generated learning analytics. By gathering feedback from educators, we
aim to identify the strengths and potential areas for improvement.

1.3 Thesis Outline

The thesis is structured as follows. Chapter 2 provides an overview of the related
work in learning analytics, LLMs, and their applications in education. Chapter 3
details the design and development of our proposed system that generates learn-
ing analytics. In Chapter 4, the system is evaluated based on various performance
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metrics. Chapter 5 presents the findings from a focus group study with educators.
Chapter 6 consolidates the three previous chapters, presents their implications, dis-
cusses the limitations, and suggests directions for future work. Finally, Chapter 7
presents a conclusion to the thesis.
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Chapter 2

Related Work

This chapter reviews relevant literature and research on Learning Analytics and
Large Language Models.

Section 2.1 introduces Learning Analytics, its objectives, and key research themes.
Section 2.2 discusses LLMs, including their capabilities and limitations. Section 2.3
reviews the use of LLMs in education. Finally, Section 2.4 outlines prompt engineer-
ing strategies for effectively using LLMs.

2.1 Learning Analytics

Learning Analytics (LA) is "the measurement, collection, analysis and reporting of
data about learners and their contexts, for purposes of understanding and optimis-
ing learning and the environments in which it occurs" [3]. The goal of LA is to
understand and optimise learning processes and environments.

Clow [13] describes a generic LA cycle with four key steps: identifying learners,
collecting data, generating analytics, and implementing interventions.

The first step in the cycle is identifying learners, which may be students enrolled
in the course in university, learners in a Massive Open Online Course, or others.
The next step is generating and capturing data about or generated by the learners.
This involves gathering data points related to learners and their interactions, which
can include demographic information, online activity, and assessment data. The
third step is processing the collected data into meaningful metrics or analytics that
provide insights into the learning process. This can be done with dashboards, visu-
alisations, comparisons with previous years, and many more ways. The final step
is closing the loop by using these analytics to introduce interventions that improve
the learning experience. This can be done by directly assisting learners, but also in-
directly by for example informing the teacher what to address in future cohorts of a
course. This last step is also said to be the greatest challenge and aspect that should
be addressed more in LA research [7][8].

A systematic meta-review [14] of LA research was conducted in 2019, analysing
901 articles to identify key trends, research gaps, and future directions in the field.
This review categorised LA in four major research topics: prediction of performance,
decision support for teachers and learners, detection of behavioural patterns & learner
modelling, and dropout prediction. Below is a short description of each topic:

• The prediction of performance focuses on developing models that can pre-
dict student performance to help identify students at risk, enabling timely in-
tervention [15]. For example, this was done in a study with data from the
Open University UK, in which AI was used to profile low-engagement stu-
dents based on data from a virtual learning environment [16].
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• The goal of decision support for teachers and learners research is to enable both
teachers and students to make data-driven decisions that enhance the learning
experience and outcomes. Most studies in the review present dashboards as
the form of decision support, making use of input variables such as learning
time, types of learning behaviours, and types of course material accessed.

• To detect behavioural patterns & model learners, clustering is the most com-
mon technique and researchers mostly look at how actively students are par-
ticipating in online learning activities.

• The last major theme is prediction of retention and dropout of students. Most
studies look at the final grade of students as the target variable for these pre-
dictions.

The authors of the review of LA found that the majority of LA publications
were focused on concepts or frameworks and conducting proof-of-concept analy-
ses, rather than performing actual data analysis. For future research in this area,
they recommend that researchers should go beyond merely identifying patterns or
reporting analytic results. Researchers should suggest follow-up actions or interven-
tions that can improve teaching and learning processes.

A review [17] of 24 case studies on learning analytics interventions in higher ed-
ucation revealed several common themes and challenges. They showed that inter-
ventions most frequently focus on increasing students’ study performance, offering
personalised feedback, and improving student retention. The data used in these in-
terventions often include students’ online learning behaviours, study performance,
demographics, and course selection information. The challenges identified in the
studies cover a wide range of aspects. Evaluating or generalising the intervention is
a challenge, and the issue of scalability is apparent for example when there are too
many requests for help from students.

Research on learning dashboards, a ’single display that aggregates different in-
dicators about learners, learning processes, and/or learning contexts into one or
multiple visualisations’ [18], is still relatively recent and exploratory. Existing stud-
ies aim to identify what data is meaningful to different stakeholders and how to
present this data to support their understanding and decision-making processes. In
a recent review on learning dashboards [18], authors found that most studies with
an evaluation component intend to gather feedback to improve the dashboards, fo-
cusing on constructs such as usability, usefulness, and user satisfaction. They found
that the data sources for most dashboards are interaction logs, such as clicks and
interactions within an LMS. The second most common data source are learning arte-
facts used or produced by learners, such as the content of student work. Notably,
only four of the reviewed works use purely text to present data in teacher dash-
boards, with most dashboards utilising bar charts and line graphs. A challenge they
identify is determining the appropriate detail level of information displayed on the
dashboard, to prevent users from becoming overwhelmed or confused by the large
volume of information.

2.1.1 Process Analysis

Learning is a continuously changing process, and aggregating or counting the learner’s
actions is limited in its narrative power [19]. Using analytics of the learning process
to enable timely assessment and support is an ongoing development [19]. Direct
teacher observation into the process of making an assignment is often impractical
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due to the scale of students and data points during the process. To address this, re-
search in this area often utilises process mining and sequence mining to understand
how students approach tasks, making it possible to identify patterns that could be
used for personalised support.

Still, the lack of interventions is a problem as mentioned in one literature review
[19]. They reviewed literature on the use of sequence analysis in learning analytics,
identifying trends, techniques, and applications in educational settings. They ob-
served that only a few reviewed articles introduced interventions based on patterns
observed.

A study by Blikstein [20] demonstrates the feasibility and usefulness of using
learning analytics to identify patterns and trajectories in students’ programming
practices. They use code snapshots to predict academic performance and identify
learning hurdles, but they acknowledge that the required human labelling for a sub-
set of the data to determine similarity between snapshots was laborious. Also, while
they introduce some directions for what can be done based on the findings, they do
not specify detailed interventions.

To track snapshots and collect data, researchers developed an IDE plugin [21].
They presented a toolkit and used it to create a dataset with snapshots of solutions
for assignment tasks. Although the study does not explore use cases more in-depth,
one of the proposed use cases is identifying common errors and providing person-
alised hints.

Analysing snapshots of the code was done in another study [22] aimed to assist
students who make programming errors. While the approach is innovative, it re-
quires constructing a list of typical errors and accompanying Abstract Syntax Tree.
This requirement limits its ease of use and applicability across different tasks and
programming languages.

In a different study [23], snapshot metadata, such as number of attempts, is used
to predict student performance and identifying those in need of support. However,
their system does not provide interventions on what the students should improve,
only indicating that they need more attention.

The previously described works demonstrate innovative approaches to utilising
learner data in programming education to support students, but their methods fail
to provide detailed, actionable interventions or are limited in the generalisability
across programming languages to allow for more widespread use.

2.1.2 Artificial Intelligence in Education

The field of AI in education (AIED) is closely related to LA and has similar goals and
methodologies for enhancing educational outcomes. Assessment and Evaluation
was found to be the most common use of AIED in higher education in a literature
review in 2023 [24]. Its main benefit is reducing the time and effort spent by teachers
on grading students. One example is a system using Dynamic Bayesian Networks
that adapts to learners in formative assessments [25], which can give both the stu-
dent and teachers a better estimate of the student’s progress. AI has also enabled
teachers to provide feedback to students using NLP techniques [26][27].

Intelligent Tutoring Systems (ITS) are also one of the most common applications
of AIED. These systems use data to adapt to each student and provide them with
personalised learning pathways [28].

Profiling and prediction of students’ performance is also a key application of
AIED, as well as applications of AI for the managing of student learning, which
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focuses on supporting educators by providing insights, organisation, and data anal-
ysis to optimise and manage student learning experiences [24].

A recent study [29] uses BERT [30] for grading and classifying student submis-
sions of SQL assignments. The authors fine-tuned BERT on a dataset consisting of
12,899 submissions [31] combined with internal data, splitting it into 70% for training
and 30% for testing. They achieved a high balanced accuracy of 93% in the multi-
class classification task, significantly outperforming the baseline of 37% that uses a
convolutional neural network (CNN) [32].

The authors in the study with BERT use Captum [33] to visualise the importance
of specific elements in the SQL statements that influence the model’s decisions. For
illustration, Figure 2.1 shows the explainability obtained from the BERT model using
the Captum tool in the multiclass classification task, with two examples per class.

FIGURE 2.1: Explainability in the BERT study [29] using the Captum
tool in the multiclass-classification task. The colour-coded parts rep-
resent the positive, neutral, or negative contribution to the classifi-
cation decision, with darker colours showing stronger contributions.

Two examples per class are shown.

The colour-coded parts represent the positive, neutral, or negative contribution
to the classification decision, with darker colours showing stronger contributions.
For example, ’id’ is has a large contribution when classifying a statement as ’cheat-
ing’. While this tool provides insights for explainability, the visualisations are tech-
nical and may not be easily interpreted by all educators which could limit its acces-
sibility and use in educational settings.

BERT was one of the most widely used LLMs before ChatGPT was introduced.
In the next section we take a closer look into LLMs, specifically the GPT versions.

2.2 GPT-4 and Large Language Models

LLMs such as those in the Generative Pre-trained Transformer (GPT) series devel-
oped by OpenAI [34], are known for their ability to process and generate human-
like text, which is based on extensive training on large sets of internet-sourced data.
Introduced in 2023, GPT-4 [35] with its approximately 1 trillion parameters, has
demonstrated an impressive proficiency in language understanding and generation.
Furthermore, GPT-4 was shown to perform well on academic exams and showed
state-of-the-art performance on various academic benchmarks [35].
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A key advancement in the utilisation of LLMs has been their integration into
ChatGPT. Launched in 2022, it allowed the public to experience this technology and
showcase its ability to be utilised in a variety of tasks, for example in education for
explaining concepts, and in creative industries for content creation. Moreover, the
models performed well in code generation and programming tasks, enhancing the
way people develop programs [11].

Despite these advancements, LLMs show inherent limitations that are important
to acknowledge. Like any machine learning model, the data they are trained on can
lead to the replication of unwanted biases present in the training data. Studies have
shown that LLMs present stereotypes and biases, highlighting the need for careful
use in applications where this could pose a risk [36].

Another limitation is the challenge of interpretability and transparency in LLMs.
These models are often described as "black boxes" due to the difficulty in under-
standing how they arrive at certain outputs. This lack of transparency can be prob-
lematic in scenarios where understanding the decision-making process is crucial,
such as in legal, medical applications, and in education. The complexity of these
models also makes it hard to identify the source of errors or biases, making it hard
to improve or correct them [36].

Additionally, LLMs still struggle with factual accuracy and "hallucinations", where
the model confidently presents plausible but incorrect or nonsensical information.
This issue is particularly concerning in applications that require high levels of accu-
racy, such as academic research or learning systems, and raises the need for human
oversight and fact-checking when using LLM outputs in critical applications [36].

2.3 LLMs in Education

The use of LLMs in educational settings has been a topic of interest, as evidenced by
various recent studies discussed in this section.

2.3.1 Grading and Assessment

Researchers have explored the potential of using LLMs for grading and assessment
in educational contexts. Pinto et al. [37] focused on using ChatGPT for grading
open-ended questions in technical training. The findings revealed a high level of
agreement between the evaluations made by ChatGPT and subject matter experts.
The potential of augmenting this process with expert-annotated grading rubrics was
also highlighted, though the study noted its limited scope in question types.

Research detailed in [38] delved into the feasibility of LLM-assisted grading of
handwritten physics solutions, integrating MathPix and GPT-4. This study, using
a synthetic dataset generated by various GPT models, showed high agreement be-
tween LLM-assigned grades and human-assigned grades. However, the authors
emphasised that while LLMs are promising for formative feedback, this approach is
not yet reliable for high-stakes summative assessments, suggesting its best used as
a supportive tool for human graders.

A further study explored ChatGPT’s capabilities (both GPT-3.5 and GPT-4) in
automatically grading a large set of student essays [39]. Here, GPT-4 demonstrated
high accuracy, outperforming previous models, as evidenced by a lower Mean Squared
Error when comparing it to human graders. The study suggested a need for a
broader analysis assessing the effectiveness in other contexts.
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Duolingo conducted research into the application of GPT-4 for the automated
evaluation of discourse coherence in written language [40]. This study showed that
GPT-4 could effectively rate discourse coherence, surpassing traditional NLP met-
rics. It also tested different prompt orders but found no significant difference be-
tween the GPT-4 configurations.

Another paper [41] described the development of an LLM-based software tool
that automates the grading of text-based answers in educational settings. The key
conclusion is the development and validation of the tool that automates and cus-
tomises grading of text-based answers. The results indicated high agreement be-
tween the manual and LLM-based grading. The authors also suggest the possi-
bility of enhanced accuracy by incorporating course materials in the context of the
prompts.

2.3.2 Feedback Generation

A study [42] investigated the utility of GPT-4 in generating feedback directly for
students in programming assignments, focusing on its accuracy in error detection
and its capability to suggest correct functional code. The findings demonstrated a
correctness classification of 84%, compared to 73% with GPT-3.5 on the same dataset
[12]. Additionally, the completeness and accuracy of the feedback from GPT-4 was
reported at 52%, significantly higher than the 31% achieved by GPT-3.5. The authors
concluded that while directly presenting GPT-4 generated feedback to students is
not recommended, the model could be used to assist teaching assistants in their
roles.

In another publication [43], researchers compared ChatGPT’s performance in
providing student feedback with that of human instructors. ChatGPT could gen-
erate detailed feedback that coherently summarised student performance, though it
was less reliable than instructor evaluations. They suggest improving performance
by using few-shot prompting, which is a technique in which the LLM is presented
with a few examples to learn from [44].

In related research [45], researchers introduced a new technique for generating
hints for programming assignments, with a tutor model using GPT-4 and a student
model using GPT-3.5. They use external tools to execute programs and extract use-
ful symbolic information and then supply this information to GPT-4 for enhanced
feedback generation, as well as chain-of-thought prompting [46] to enhance the re-
sponses from the LLM. The study’s limitation, as noted by the authors, is the absence
of real student participants in the experiment, suggesting this as a direction for fu-
ture research.

A study introduced PyFiXV [47], which uses Codex [48], a general-purpose pro-
gramming model, for generating feedback on Python syntax errors. Combining code
correction and explanatory feedback with a validation mechanism showed promise
in real-world datasets. The authors also acknowledged the potential for even better
results with newer models like GPT4, and proposed conducting real-world studies
in classrooms.

Another study [49] evaluated the use of GPT-3.5 for automated feedback gener-
ation in C# programming assignments for Polish computer science students. The
results were positive, with significant improvements in student performance and
positive ratings for the GPT-generated hints. However, concerns were raised about
potential over-reliance on AI feedback, especially for more complex tasks.
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2.3.3 Learning Analytics with LLMs

A recent paper [50] discusses integrating Generative Artificial Intelligence (GenAI),
which includes LLMs, into learning analytics. They examine GenAI’s role in Clow’s
[13] generic LA cycle with four key steps: identifying learners, collecting data, gen-
erating analytics, and implementing interventions.

1. Identifying Learners: As students increasingly use GenAI tools like ChatGPT,
the concept of a "learner" is evolving, requiring a new understanding that fo-
cuses on human-AI collaboration.

2. Collecting Data: GenAI demonstrates potential for capturing unstructured
learner data, as well as generating synthetic data. However, a challenge lies
in identifying if students maintain the autonomy and control over their own
learning [51] as GenAI can conduct various tasks for the learner.

3. Generating Analytics: The authors discuss GenAI’s potential to enhance LA
through the analysis of unstructured data, development of explanatory and
interactive analytics, and the capability to generate multimodal content.

4. Implementing Interventions: The authors identify three key aspects GenAI
can help in this underdeveloped step in LA: personalisation, adaptive support,
and accessibility.

The paper concludes with future research suggestions focusing on hybrid human-
AI learning and discusses ethical considerations for using GenAI in education, such
as data privacy and biases.

In another study [52], the use of LLMs in the context of LA systems was exam-
ined. They investigated the potential of LLMs in generating customised learning
tasks and assessments for a more personalised learning journey. Furthermore, the
study underscores the importance of maintaining educator involvement in the auto-
mated feedback loop, ensuring a balance between AI-generated insights and human
judgement. Additionally, the paper looks at how LLMs can be utilised across dif-
ferent phases of learning, from selecting appropriate materials to providing tailored
feedback based on student outputs.

In conclusion, the studies in this section indicate that in a short time much re-
search has been done towards integrating LLMs in educational settings, indicating
that many researchers see potential in LLMs enhancing education. We briefly men-
tioned prompting, and in the following section, prompt engineering techniques will
be highlighted.

2.4 Prompt Engineering

Prompt engineering is a crucial aspect to maximise the effectiveness of LLMs. The
quality and relevance of the model’s outputs can significantly be enhanced by care-
fully designing and structuring the input prompts. OpenAI [53] provides a detailed
guide on constructing effective prompts to obtain desired outputs. This subsection
will explore the core principles and strategies of prompt engineering, highlighting
the guidelines from OpenAI and other sources [54][55].
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Adopting a Persona

One suggested technique in prompt engineering is to instruct the model to adopt
a specific persona. This can help the LLM select what should be included in the
output and what relevant details to focus on based on the expertise that persona
would have [56]. For example, one can instruct the model to "Act as a university
professor" to elicit responses similar to what they would give.

Using Delimiters

To clearly distinguish between different elements of the prompt, delimiters such as
quotation marks, XML tags, or other separators are recommended.

Summarising Long Documents

For long documents, breaking the document down into smaller sections and sum-
marising each one sequentially can enhance comprehension and output quality. This
also ensure all content fits in the context window of the LLM. LLMs have a context
window, which is a limit to the size of the input and output of an LLM call. This
limit differs per model. For instance, GPT-3.5 has a context window of 16k tokens,
meaning it can handle up to 16,000 tokens in a single prompt interaction. In contrast,
GPT-4 and GPT-4o support a much larger context window of 128k tokens. Tokens
are essentially pieces of words that the model processes. In English, a token can be
as short as a single character or as long as an entire word [57].

Few-Shot Prompting

Another valuable strategy is to provide examples of what the output should look
like. This is referred to as few-shot prompting. Research [58] has shown improved
performance across NLP tasks using this strategy, reducing the need for extensive
fine-tuning or large task-specific datasets. However, this technique can be unstable
as the choice of prompt format, training examples, and order of training examples
can have a significant effect on the accuracy [59].

Chain-of-Thought Prompting

Chain-of-thought prompting is another strategy widely used and mention in litera-
ture. This technique involves breaking down complex tasks into intermediate steps,
similar to showing your work in a math problem before arriving to your final an-
swer. By guiding the model through a sequence of steps or thoughts, it can provide
more accurate answers [46][60]. For example, instead of asking the model directly
for the answer to a complex problem, you can prompt it to outline the steps it would
take to arrive at the final response.

Additionally, OpenAI’s guide [53] suggests using an inner monologue technique
to hide the reasoning process. The idea is to put parts of the output that are meant
to be hidden in a structured format that makes it easy to parse and subsequently
hide from the user. For example, in a tutoring application it is essential to not give
away the answer when trying to provide hints to a student. Using this technique can
prevent this while also ensuring the chain-of-thought technique is used to improve
reasoning.
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Chapter 3

System Design

This chapter details the design of the system developed in this thesis. Section 3.1 out-
lines the system’s objective. Section 3.2 explains the requirements analysis, detailing
key considerations. Section 3.3 provides a comprehensive overview of the system
design, Section 3.4 discusses the data flow, and Section 3.5 shows the prompts used
to instruct the LLM. Section 3.6 describes the user interface design, and lastly, Section
3.7 presents a discussion of the system design.

3.1 Objective of the System

The objective of the system introduced in this thesis is to leverage LLMs to provide
educators detailed learning analytics about the submissions of programming assign-
ments that students make throughout the course. The goal is not to replace educa-
tors, but rather to assist them in their decision-making by analysing large quantities
of data that would otherwise require significant time and effort to analyse in detail.

Specifically, the system aims to:

• Generate reports on common issues or patterns in the student submissions,
across the entire course.

• Generate reports for each assignment, highlighting common issues or patterns
observed. This can inform educators on how to improve the assignment or on
issues that should be addressed in follow-up lessons.

• Generate reports for each student, highlighting common issues or patterns ob-
served. This can inform educators on how to support individual students ef-
fectively.

• Analyse the process of a student making an assignment. By examining the
sequence of submissions made by a student for an assignment, the system can
provide insights into how students approach assignments and the issues they
encounter before arriving at a final submission.

• Suggest interventions: Based on observed patterns, the system should make
suggestion on how to address these issues.

3.2 Requirements Analysis

This section discusses the requirement analysis by detailing the considerations and
resulting requirements.
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3.2.1 Considerations

Based on the objective and literature, we identified key considerations for the system
design.

• Explainability: Trust and transparency in a system are crucial, especially in
educational contexts. As noted by Ribeiro et al., "if the users do not trust a
model or a prediction, they will not use it" [61]. Moreover, when educational
research evidence is framed as AI research, it is deemed less credible compared
to when it is framed within educational psychology or neuroscience [62]. Fur-
thermore, an automated system that provides explanations even when it is
wrong, can increase the likelihood of adoption of the system opposed to a sys-
tem that does not provide explanations [63]. Therefore, the analytics should be
supported by clear reasoning and references to specific submissions and parts
of the submission. More specifically, the system should reference submissions
in which it found a specific observation. The user can then take a closer look
into the submission to verify the findings. Additionally, the system should
provide reasoning within a submission about the observed patterns.

• Accuracy: High accuracy is essential for the system’s effectiveness. State-of-
the-art models should be used to evaluate the potential. We introduce perfor-
mance metrics in Section 4.3 to measure various aspects of the system.

• Flexibility: The system should be flexible enough to adapt to different courses.
While fine-tuning the system for a specific course or dataset could signifi-
cantly enhance performance, it may also limit the system’s generalisability to
other courses. For example, an LMS that supports various types of (program-
ming) assignments across different courses would benefit from a flexible sys-
tem. Such a system can be more easily integrated into other courses without
requiring extensive tailoring or fine-tuning. This adaptability could reduce the
time and effort needed for course-specific modifications and could increase the
likelihood of adoption of the system.

• Actionability: As described in Chapter 2, a challenge identified in LA research
was limited actionability of LA and the lack of interventions that systems can
suggest. Therefore, the system should ensure it provides actionable insights.

• Scalability: The system must be scalable to handle a large number of students
and assignment submissions. It should also be able to analyse programming
submissions that are large in size, meaning it contains many lines. Analyses of
complete projects are out of scope.

• Usability: An intuitive UI is crucial for interacting with the reports. Provid-
ing relevant context with the reports is important to inform the user; therefore,
the assignment reports should be accompanied with the assignment descrip-
tion and model answer. It should also be easy to navigate to submissions for
each assignment, allowing educators to verify the system’s findings. Simi-
larly, student reports should provide quick reference to submissions and the
submissions should be shown along the assignment description and model
answer. Although most learning analytics dashboards have visual elements
as described in Chapter 2, our system is text-based and will not contain any
visualisations.
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3.2.2 Requirements

Based on these considerations, the following requirements were identified:

1. General:

• The system should generate reports on common issues or patterns across
the entire course.

• The system should generate reports for each assignment, highlighting
common issues or patterns observed.

• The system should generate reports for each student, highlighting com-
mon issues or patterns observed.

• The system should generate reports about the process of a student making
a submission.

2. Explainability:

• The system should provide detailed reasoning for its observations.

• It should reference specific submissions where it made an observation.

• It should reference parts of submissions where observations were made.

• Users should be easily able to trace back the analytics to the original sub-
missions for verification.

3. Accuracy:

• The system should achieve high accuracy in identifying issues and pat-
terns in student submissions.

4. Flexibility:

• The system should be easily configurable for different courses and assign-
ment types.

5. Actionability:

• The system should suggest interventions on how to address issues that
students encounter.

6. Scalability:

• The system should handle a large number of submissions.

• The system should handle student submissions that are large in size, such
as assignments with many lines of code.

7. Usability:

• The UI should display assignment descriptions, model answers, and stu-
dent submissions alongside the analytics.

• Navigation should allow users to easily switch between different assign-
ments, students, and submissions.
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3.3 System Design

To identify common issues across submissions, one might initially consider putting
all submissions into a single prompt and letting an LLM analyse them. However,
this approach is not scalable due to the limited context window of LLMs, especially
when dealing with possibly hundreds of submissions.

Therefore we consider a different approach by analysing individual submissions
first, and then aggregating these analyses. This aligns with the recommendations for
prompt engineering in the Related Work chapter (see Section 2.4), where it is advised
to break large tasks into smaller steps. Also, the system requirements we laid out
also require that the system is explainable. The individual analyses could provide
the reasoning for identified issues. Thus, we can tackle the problem of scalability
and explainability with this approach.

Given these considerations, our approach involves the following steps:

1. Individual Analysis: Each submission is analysed individually to identify is-
sues.

2. Aggregation of Analyses: Once all individual submissions have been anal-
ysed, these analyses are aggregated and supplied to the LLM to identify com-
mon patterns and issues across submissions.

3. Report Generation: The LLM generates a report summarising the common
issues identified. For explainability, the LLM should reference the specific sub-
missions where these issues were observed. We facilitate this by including the
submission ID with each analysis, allowing the LLM to reference the corre-
sponding ID in the report.

4. Assignment and Student Reports: To generate reports specific to each assign-
ment and student, we can simply filter the submissions before generating the
reports.

5. Course-Wide Reports: For course-wide reports, the number of analyses can
still be quite large. To manage this, we can again apply the prompt engineering
concept of breaking the task into smaller tasks. The assignment reports that are
created before can be summarised to produce a course-wide report.

To further enhance the system, we considered the analysis of code revisions as a
process. As described in Section 2.1.1, existing efforts leveraging code revisions to
produce insights are often lacking in their actionability. To address this, analysing
code revisions with LLMs could offer a more comprehensive understanding of stu-
dents’ problem-solving processes by generating natural language descriptions of
the code revisions and the progression. This involves adding each revision to the
prompt and clearly indicating the distinction between each.

3.4 Data Flow

This section describes the proposed system in more detail and provides a more com-
plete overview. We discuss the context of the prompts, outline the data flow in the
system, and describe the technologies used in the system’s implementation.
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3.4.1 Context in Prompts

Ensuring sufficient context in the prompts is crucial to obtain relevant and high-
quality responses. The possible context that can be added includes:

• Student Submission: The code that the student submitted.

• Submission History: Revisions and changes made to the submission over
time.

• Assignment Description: Information about the assignment requirements and
objectives.

• Rubric: Criteria used to evaluate the submission.

• Model Answer: The ideal solution or an example solution.

• Outputs from other tools: Results from dynamic analysis tools that test func-
tional correctness using predefined inputs and outputs can be included to give
the LLM a better impression of the solution. Error messages could also be
included such that the LLM can take into account what exactly went wrong.

To enhance the quality and relevance of the suggested interventions, the follow-
ing context can be considered:

• Course Setup: Information about the course structure, such as the presence of
weekly lectures, flipped classroom setups, or an overview of the full assign-
ment setup.

• Learning Goals: To align the suggestions better with goals of the course.

While all these elements can be included in the prompts, our system design will
consider only the data available in the setup of the system evaluation, which will be
detailed in detailed in Chapter 4. The data considered in our system design are the
submission, revision history, assignment description, and model answer.

3.4.2 Overview

The process of analysing student submissions is divided into the following major
steps:

1. For each student submission:

• Retrieve the student’s code submission.

• Retrieve the corresponding assignment description and model answer.

• Retrieve the code revisions for process analysis.

2. Analyse each submission:

• Provide General Analysis:

– Prompt the LLM with the submission, model answer, and assignment
description.

– Save the generated analysis to the database.

• Process Analysis:
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– Prompt the LLM with the revisions, model answer, and assignment
description.

– Save the process analysis to the database.

3. Generate Reports: For both the general and process analysis.

• Individual Reports:

– Retrieve all analyses of the submissions for a specific student.
– Prompt the LLM to summarise the analyses and identify common

trends and issues.

• Assignment Report:

– Retrieve all analyses given for a specific assignment.
– Prompt the LLM to summarise the analyses and identify common

trends and issues.

• Course-wide Trends:

– Retrieve all assignment reports.
– Prompt the LLM to summarise the assignment reports, identifying

common trends and issues.

Figure 3.1 shows a high-level overview of the flow for the general analysis and Fig-
ure 3.2 shows the overview for the process analysis. The process analysis is similar to
the general analysis, with the difference being the prompt and the input of revisions
instead of the final submission.

The primary stage utilises the LLM to conduct an analysis of code submissions,
focusing on two aspects: general feedback and process analysis. For the general
analysis, the LLM conducts an analysis of a submission with respect to the assign-
ment description and model answers. This analysis is open-ended, allowing the
LLM to identify and highlight any relevant issues or noteworthy points without be-
ing specifically instructed on what to look for. The process analysis considers the
revision history of a submission as explained earlier.

Based on the individual submission analyses, reports are generated by the LLM
that provides insights at multiple levels:

• Individual Report: Taking into consideration all the analysis generated for a
specific student.

• Assignment Reports: Focuses on submissions made by all students for one
assignment, identifying common issues and patterns.

• Course-wide Report: Gives an overview of trends and patterns throughout the
course, by analysing all the submissions that were made for each assignment.

3.4.3 Technologies Used

Initially, LangChain [64] was used for two main reasons. Firstly, LangChain offers
the flexibility to use various LLMs, making it easy to switch between different mod-
els. Secondly, it provides functionality to define and extract structured outputs from
the LLM. This is useful, for instance, for separately parsing the grade and feedback
from the LLM’s response.

Over time, we learned to instruct the model to provide JSON responses consis-
tently, enabling us to parse the responses directly. Furthermore, as the reasoning



3.4. Data Flow 19

FIGURE 3.1: High-level overview of the analysis of submissions and
the generation of reports for individuals, assignments, and the entire

course.
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FIGURE 3.2: High-level overview of the process analysis of submis-
sions through the revision history, and the generation of reports for

individuals, assignments, and the entire course.
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capabilities of the LLM are essential to analyse submissions effectively, we decided
to settle for one model and use the state-of-the-art model GPT-4o [65]. Addition-
ally, GPT-4o supports a 128k context window, offering better scalability compared to
GPT-3.5, which has a context window of 16k. Consequently, we decided to simplify
the approach by discontinuing with LangChain and using OpenAI’s API directly.

Python was used to interact with the API and an SQLite database was made to
store the analyses and reports.

3.5 Prompts

In this study, the design of the prompts is important in instructing the LLM to anal-
yse student code submissions effectively. The prompts are designed using prompt
engineering techniques to ensure that the responses provided by the LLM are rel-
evant and of high-quality. This section highlights the three main prompts. Each
prompt contains placeholders that add more context.

3.5.1 Analysis Prompt

This prompt instructs the LLM to give a general analysis of an individual assignment
submission. The prompt strategies used are ’adopting a persona’ and the use of clear
delimiters with XML tags.

In addition to giving a textual description of the analysis, the prompt also in-
cludes instructions to classify the submission. This was necessary as part of the
system evaluation discussed in Chapter 4. Section 4.2.3 elaborates on the prompt
design in the context of the dataset. For the system itself in practice, the classifica-
tion is unnecessary and the ’analysis’ is what is essential to store in the database for
the next step to generate analytics.

You are a teacher grading a student's submission for an SQL assignment.
You are given the assignment description, the student's SQL submission

statement, and a model answer.
Perform an analysis of the student's submission and classify the

submission in one or more of the following categories: '
non_interpretable', 'partially_correct', 'correct', 'cheating'.

cheating: (4) when you suspect cheating or their approach bypasses the
intended logic and problem-solving process. For example, cheating
in an SQL assignment can occur when the student hardcodes specific
values directly into the query, even though these values were not
explicitly mentioned in the assignment.

non_interpretable: the statement is non-executable, containing syntax
errors.

correct: the execution result of the SQL statement is the same as the
expected result.

partially correct: the execution result of statement is different from
the expected result, but the SQL statement can be interpreted,
meaning it is executable.

Follow this Pydantic model to provide your analysis:
class Analysis(BaseModel):

analysis: str = Field(..., description="Step-by-step analysis of
the submission.")
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category: List[ActionChoices] = Field(..., description="Category
of the submission")

class ActionChoices(int):
non_interpretable = 1
partially_correct = 2
correct = 3
cheating = 4

<assignment_description>
{assignment_description}
</assignment_description>

<student_submission>
{student_submission}
</student_submission>

<model_answer>
{model_answer}
</model_answer>

Please output valid JSON.

The Pydantic model part of the prompt in combination with the instruction to
output valid JSON was added to parse the output conveniently. The LLM will then
respond with a JSON object such as the following:

{
"analysis": "The student submission is partially correct. The

solution includes [...]",
"category": [2]

}

We can then easily parse this and save the results in our database.

3.5.2 Process Analysis Prompt

This prompt focuses on the process of the student during the making of the assign-
ment, using the code revisions. Here, we make use of chain-of-thought prompting
by breaking the task into steps. The instructions also mention that the LLM should
not repeat the code revisions in its response to remove redundancy. These revisions
can be displayed in the UI alongside the report.

You are a teacher analyzing a student's work on an assignment.
You are given the assignment description, model solution, and sequence

of submissions made by the student.

<assignment_description>

{assignment_description}

</assignment_description>

<model_solution>
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{model_answer}

</model_solution>

It is important to evaluate the revisions and overall development
process based on the sequence of submissions.

To do this systematically, describe each of the submissions made by the
student with respect to the previous one to describe the process.

Please consider the submissions below and ensure the submissions are
relevant to the assignment description. DO NOT display the
submissions again in your response.

<submission1>

{submission1}

</submission1>

<submission2>

{submission2}

</submission2>

{...}

Guidelines for Analysis:
- Initial Review: Identify the primary issues with each submission

compared to the model solution.
- Progress Evaluation: Note improvements or regressions between

submissions.
- Final Assessment: Provide an overall evaluation of the student's

progress and understanding of the assignment.
Now, analyze the student's submissions accordingly, and do not write

out the full submissions in your reply.

3.5.3 Report Generation Prompt

The following prompt structure was used to generate the assignment, student, and
course reports. It aggregates the individual submission analyses by summarizing
the common challenges, referencing specific submissions, and suggesting interven-
tions to address the issues.

To add the individual analyses into the prompt, the analyses are encoded into
a dictionary where each submission ID serves as the key and the corresponding
analysis as the value. The LLM is then instructed to reference these submission IDs
in its summary to highlight specific observations.

You are given a dictionary containing an analysis for student
submissions. The dictionary has the submission ID as the key and
the analysis as the value.
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{analysis_dictionary}

Identify and summarize the most prevalent issues, challenges, and
submission characteristics highlighted in the analyses.

Give a list of submission IDs where the issues were identified. And
give concrete examples.

Also, highlight anomalies or outliers in the analyses that should be
mentioned to the teacher.

Based on these common themes, suggest targeted interventions or
strategies that teachers can implement to effectively address and
resolve these issues.

3.6 User Interface

A user interface (UI) was developed to help educators in the user study in Chap-
ter 5 easily use and understand the learning analytics generated by the LLMs. The
UI was developed using Streamlit [66], an open-source Python framework that pro-
vided a simple connection with our data. Streamlit was chosen for its simplicity in
creating an interactive and visually appealing web application. Key features of the
UI include:

1. Assignment, Student, and Submission Navigation: Educators can quickly
switch between different assignments, students, and submissions using the
sidebar menu that lists all of them.

2. Submission Viewing: Educators can see the analysis made for each submis-
sions next to the submitted code and model answers, allowing for easy com-
parison and tracing.

It was important to add navigation to submissions so educators can dive deeper
into the submission to observe patterns described by the reports. Figure 3.3 shows
the UI used in the study for showing assignment reports. Appendix A shows exam-
ples of the other pages of the UI.

3.7 Discussion

As discussed earlier, LLMs can suffer from hallucinations, presenting information
as true when it is not. One example of this issue is when the LLM is instructed to
provide statistics. Originally, the prompt contained instructions to give a percentage
of how often an issue was present. It quickly became apparent that these percentages
were not accurate.

To provide accurate statistics, we considered having the LLM classify issues us-
ing specific coded tags. For example, when a submission is inefficient, the LLM
could respond with a tag such as ’inefficient’. We could then count all the submis-
sions with this tag to provide statistics. However, this approach would require pre-
defined tags. The problem with predefined tags is that the LLM might only look for
those specific issues, potentially overlooking other issues present in the submissions
that were not anticipated.
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FIGURE 3.3: User Interface Overview for the Assignment Report

To address this, we considered allowing the LLM to define tags on the spot with-
out predefining them. The problem with this approach is the inconsistency in tag-
ging. For instance, the LLM might tag one submission as ’wrong_variable’ and an-
other as ’variable_wrong’, making it difficult to accurately count them as the same
tag programmatically.

While statistics could enhance the reports, we decided to continue with the ap-
proach explained in this section. Whether there is a need for exact statistics or if a
list of a few examples of submissions is sufficient will become clear in the user study.

This also leads us to a limitation of the requirements analysis, which is the ab-
sence of stakeholder input at this phase. Consulting relevant stakeholders could
have possibly clarified the necessity for exact statistics and introduced other consid-
erations or requirements.

Additionally, integrating this system into existing LMS would be more practical
than using it as a standalone application. Integrating it in an existing system was
not feasible. Instead we present a UI to provide an idea of the user interaction. The
user study with this UI could make clear which design considerations are crucial for
implementation within existing LMS.
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Chapter 4

System Evaluation

In this chapter, we evaluate the system. Section 4.1 states the objective of the eval-
uation. In Section 4.2, we describe the dataset used for evaluation, including the
pre-processing steps taken. Next, Section 4.3 outlines the metrics used to evaluate
various aspects of the system. Section 4.4 presents the results and analysis, dis-
cussing the system’s performance based on the defined metrics and interpreting the
generated reports. Finally, Section 4.5 discusses the findings as a whole, offering
insights into the implications and potential improvements for the system.

4.1 Objective

In this section, we break down the ideal evaluation process and how we actually
evaluated it given our constraints.

First, the accuracy of the analysis made by the LLM for a single submission is
crucial. Ideally, subject matter experts with experience in grading the assignment
would rate the analysis. This process would require extensive manual work, as it
involves detailed assessment by these experts.

For the generated reports, it is essential that the mentioned issues are accurate
and that the submissions are correctly referenced. Ideally, this involves a dataset
where the issues in the submissions are labelled by subject matter experts. However,
labelling such a dataset is laborious and time-consuming.

Besides the accuracy of the system, it is also important to evaluate the system’s
usefulness for educators. Educators should assess whether the system can actually
support their work effectively in a course setting. This involves user evaluations
with the system, possibly over a long period.

However, the ideal situation for this study was not feasible due to limited avail-
ability of appropriate datasets that could also be evaluated by relevant subject mat-
ter experts. Additionally, the manual labelling that would be required posed lim-
itations. Despite efforts to facilitate this methodology, it ultimately proved to be
impractical.

As a result, we adopted the following approach:

• We used a publicly available dataset with individual submissions classified
into categories. The accuracy of these classifications in combination with the
LLM’s analysis leading to the classification provides an indication of the accu-
racy of the analysis, though it is not as comprehensive as an expert evaluation.

• For the reports, we manually verified whether the mentioned issues were ac-
tually present in the referenced submissions.

• For the user evaluation, we refer to Chapter 5.
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4.2 Dataset

In this section, we provide an overview of the dataset used in this thesis. The dataset
includes student submissions to SQL exercises from a university course. The follow-
ing subsections detail the contents of the dataset, the rationale for using this dataset,
and pre-processing steps taken.

4.2.1 Dataset Description

The dataset used in this research came from a study conducted in an undergraduate
Relational Database course at the Australian National University [31]. The data was
collected online over a three-week period beginning on August 10th, 2018, involving
393 students. These students were tasked with completing 15 SQL exercises on an
online assessment platform that provided an SQLite environment in their browsers.
The platform allowed students to submit and execute their SQL statements, provid-
ing feedback when their submissions matched the expected results.

They recorded a total of 12,899 SQL submissions and based on their execution
results they were first classified into three categories. After that, the submissions
classified as ’correct’ were manually analysed to observe if it could be categorised
into a 4th category ’cheating’:

• Non-interpretable: The statement is non-executable.

• Partially Correct: The execution result differs from the expected result, but it
is executable.

• Correct: The execution result matches the expected result.

• Cheating: The submission is an attempt to deceive the system by hardcod-
ing values to produce correct results. For example, selecting a specific ID that
matches the condition of the expected result.

The dataset also contained descriptions of the exercises and model solutions. The
following is an example of an exercise description:

• Consider the given relational database moviedb with this database schema [URL]. Your
task is to answer the following questions using SQL queries. Use a single SQL query
that may contain subqueries. Question: How many persons have never directed any
movies in this database? List the total number of such persons.

4.2.2 Rationale for Dataset Selection

This dataset was selected for two main reasons. The dataset contained program-
ming submissions from multiple students across multiple exercises, enabling us to
create aggregate reports at both the student and exercise levels. This facilitates the
identification of common issues.

Moreover, its labelling of SQL submissions into four categories was important.
This allowed us to evaluate an LLM’s performance in classifying a submission, serv-
ing as an indication of the accuracy in analysing a submission.
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4.2.3 Data Exploration and Pre-Processing

Table 4.1 shows the number of submissions that fall into each of the four categories
along with their respective percentages.

Category Number of Submissions Percentage

Non-interpretable 2134 16.5%
Partially Correct 3630 28.1%
Correct 7122 55.2%
Cheating 13 0.1%

TABLE 4.1: Number of submissions in each category with percent-
ages

Given the large size of the dataset and the manual analysis required by us, we
took the following steps to reduce the size of the dataset:

1. Including ’cheating’ Submissions: We first selected the exercises where all
four categories were present. Since ’cheating’ submissions were rare, only a
few exercises were selected.

2. Difficulty Levels: The exercises had different difficulty levels. Two additional
exercises were selected to include more difficult exercises.

3. Sampling: The dataset was reduced to 500 submissions, maintaining a similar
distribution of categories compared to the full dataset and ensuring that all
’cheating’ submissions were included.

Exercises 1, 3, 5, and 7 were identified as exercises containing all four categories.
Additionally, exercises 9 and 14 were included because they were labelled with dif-
ficulty 4 and 5, whereas exercises 1, 3, 5, and 7 only had difficulties 2 and 3.

Categories in Selected Exercises

Table 4.2 shows the number of submissions that fall into each category for the se-
lected exercises (1, 3, 5, 7, 9, and 14) along with their respective percentages.

Category Number of Submissions Percentage

Non-interpretable 896 17.1%
Partially Correct 1474 28.1%
Correct 2861 54.6%
Cheating 13 0.2%

TABLE 4.2: Number of submissions in each category for selected ex-
ercises with percentages

Sampled Subset

Due to the high number of submissions, we reduced the dataset to 500 submissions.
Table 4.3 shows the distribution of these submissions across the four categories with
percentages.
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Category Number of Submissions Percentage

Non-interpretable 92 18.4%
Partially Correct 137 27.4%
Correct 258 51.6%
Cheating 13 2.6%

TABLE 4.3: Number of submissions in each category for the reduced
dataset with percentages

Table 4.4 shows the number of submissions in each exercise within the reduced
dataset.

Exercise ID 1 3 5 7 9 14

Number of Submissions 132 69 79 68 84 68

TABLE 4.4: Number of submissions in each exercise

Data for Process Analysis

Initially, our primary focus was on the general analysis and generation of reports.
After completing this phase, we realised that the dataset could contain multiple sub-
missions from a single student for a single exercise, which can be seen as a process
when ordering these submissions by time. This was not taken into account in the
general analysis, and therefore data exploration was done again focusing on the
process.

To begin, we plotted a histogram showing the distribution of the total number of
submissions each student made for a single exercise, aggregated across all exercises.
Figure 4.1 illustrates this histogram.

From the histogram, we saw that most students completed an exercise in 1 or 2
submissions. For the purpose of process analysis, we excluded ’processes’ consisting
of only one submission since this would not make sense to evaluate as a process.

Moreover, we aimed to balance the dataset. We did not want to include only pro-
cesses with, for example, just two submissions but also wanted to include processes
with more than ten submissions. This was crucial to determine if the system could
effectively summarise a process with varying submission counts.

Ultimately, we reduced our dataset to a subset that included processes with each
of the number of submissions between 2 and 20 only once. This subset allowed us
to perform a manual analysis on a manageable number of submissions.

Prompt Design

Initial tests indicated that the LLM could detect hardcoded values but classified the
statements as non-interpretable if it also contained syntax errors. To address this,
the LLM was allowed to predict multiple classes for each submission. A heuristic
approach was then applied to refine these predictions: if a statement was classified
as both non-interpretable and cheating, it was classified as cheating. If classified
as non-interpretable and partially correct, the non-interpretable classification was
chosen.

Furthermore, the task description of each exercise in the dataset references a
database schema in an external PDF. However, we decided not to include this schema
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FIGURE 4.1: Distribution of Submissions per Student for a single ex-
ercise.

in the prompt. Instead, the model solution added to the prompt should provide suf-
ficient context about the database schema to evaluate the submission effectively.

For example, consider the following model solution:

SELECT p.id
FROM person p
WHERE p.year_born = (SELECT MAX(year_born)

FROM person
WHERE year_born < (SELECT MAX(year_born)

FROM person));

This solution contains the necessary information about the database tables (’per-
son’) and columns (’id’, ’year_born’).

4.3 Evaluation Methodology

The evaluation methodology for the system first involves assessing the performance
of the underlying LLM in classifying the student submissions in the dataset. To
evaluate the reports, the precision of the referenced submissions in the report is mea-
sured.

4.3.1 Performance Metrics

To assess the performance of the LLM in classifying the submissions into the four
categories, several standard evaluation metrics are employed. These metrics are
Accuracy, Precision, Recall, F1-score, and the balanced accuracy:

Accuracy: This metric measures the overall correctness of the model’s classifica-
tions. It is calculated as the ratio of correctly classified instances to the total number
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of instances.
Accuracy =

Correct Predictions
All Predictions

Precision: Precision measures the accuracy of the model’s positive predictions.
It is important in scenarios where the cost of a false positive is high. It is defined as
the ratio of true positive predictions to the sum of true positive and false positive
predictions.

Precision =
True Positives

True Positives + False Positives
Recall: Recall measures the model’s ability to identify all relevant instances. It

is important in scenarios where missing a positive instance has significant conse-
quences. It is calculated as the ratio of true positive predictions to the sum of true
positive and false negative predictions.

Recall =
True Positives

True Positives + False Negatives

F1-Score: The F1-score is the harmonic mean of precision and recall and balances
both aspects. It is computed as follows:

F1-Score = 2 × Precision × Recall
Precision + Recall

Balanced Accuracy: This metric is useful in multiclass classification when deal-
ing with unbalanced class distributions. It is essentially the average of each class’
Recall scores.

Balanced Accuracy =
1
N

N

∑
i=1

True Positivesi

True Positivesi + False Negativesi

where N is the number of classes.
These metrics are important for understanding the effectiveness of the LLM in

classifying a submission. Calculating the Precision, Recall, and F1-score for each
of the categories helps us identify areas where the model performs well and areas
where the model is not as good.

4.3.2 Precision for Reports

In addition to evaluating the classification performance of the LLM, it is important
to assess the generated reports. The reports generated by the system highlight com-
mon issues and patterns. Ideally, the dataset would be labelled with all issues and
observed patterns in each submissions, but the dataset used in this thesis does not
contain that data. It would also require a lot of time and effort to manually label all
possible issues that can be observed in each submission.

What we instead can measure is the precision of the referenced submissions in
the report. Each report generated by the LLM contains common issues or patterns
that were observed, and the LLM is asked to also reference specific submissions
where it observed these patterns. To verify if these references are accurate and that a
reference is not another example of ’hallucination’ by the LLM, we manually check
the referenced submissions. This involves checking for each referenced submission
if it actually contains the observed issue mentioned in the report.
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Based on the number of correct retrieved references and the number of total re-
trieved references, we can calculate the precision of the generated reports:

Report Precision =
Number of Correct References

Total Number of References Retrieved

4.4 Results and Analysis

In this section, we present and analyse the results of the evaluation. We start by
evaluating the performance metrics of the LLM, including a comparison with other
models. Next, we take a look at the confusion matrices, providing insights on mis-
classifications. The generated reports will then be described along with the metric
we used to evaluate reports.

4.4.1 Performance Metrics

We evaluated the performance on the dataset with both GPT3.5 and GPT-4o models.
The accuracy was 42.6% with the GPT-3.5 model and 64.4% with the GPT-4o model.
Table 4.5 provides a summary of key performance metrics of the GPT-4o model,
including precision, recall, and F1-score for each category, alongside the accuracy.

Category Precision Recall F1-Score

Non-interpretable 0.77 0.88 0.82
Partially correct 0.45 0.75 0.56
Correct 0.84 0.51 0.64
Cheating 0.86 0.46 0.60

Overall Accuracy: 0.64, Balanced Accuracy: 0.65

TABLE 4.5: Performance Metrics Summary of the GPT-4o Model.

The performance metrics indicate that ’non-interpretable’ submissions were iden-
tified quite well, achieving an F1-score of 0.82. However, the F1-scores for other
categories were lower. For ’partially correct’ submissions, the precision was particu-
larly low. In contrast, the precision for ’correct’ and ’cheating’ submissions was quite
high, indicating that when the model predicted a submission as correct or cheating,
it was usually accurate. However, the recall for these categories was lower, indi-
cating that the LLM missed a significant number of actual ’correct’ and ’cheating’
submissions. This suggests that while the LLM is good at identifying true positives
in these categories, it struggles to capture all relevant instances, leading to more false
negatives.

Comparison to BERT

Two studies that were mentioned earlier measured the performance of a convolu-
tional neural network (CNN) [32] and BERT [29] on the same dataset. Table 4.6
shows the accuracy and balanced accuracy. Table 4.7 shows a comparison of the
performance in other metrics, with BERT outperforming both models.

GPT-4o, with an accuracy of 64%, shows similar overall accuracy to the baseline
CNN, which had an accuracy of 66%. However, GPT-4o significantly outperforms
the baseline in terms of balanced accuracy, achieving 65% compared to CNN’s 37%.
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CNN BERT GPT

Accuracy 0.66 0.90 0.64
Balanced Accuracy 0.37 0.93 0.65

TABLE 4.6: Performance Metrics Summary of Different Models.

Class
Being
Evaluated

Evaluation Metrics
Precision Recall F1-score Support

CNN BERT GPT CNN BERT GPT CNN BERT GPT CNN BERT GPT
Non Interpretable 0.26 0.74 0.77 0.09 0.85 0.88 0.13 0.79 0.82 57 20 92
Partially Correct 0.51 0.85 0.45 0.58 0.90 0.75 0.54 0.87 0.56 219 356 137
Correct 0.78 0.95 0.84 0.80 0.91 0.51 0.79 0.93 0.64 393 632 258
Cheating 0.0 1.0 0.86 0.0 1.0 0.46 0.0 1.0 0.60 6 1 13

TABLE 4.7: Classification Performance Analysis with the baseline and
BERT.

This indicates that GPT-4o can handle minority classes much better than the base-
line. It shows that the model is not biased towards the majority classes (’correct’ and
’partially correct’) and that it can identify instances from the minority classes more
accurately.

BERT consistently outperforms CNN and GPT-4o in most classes, achieving the
highest scores in almost all evaluation metrics. The ’non-interpretable’ class presents
an exception, where GPT-4o outperforms BERT.

Furthermore, the support for the ’cheating’ class is notably low for BERT, with
only one occurrence. This means that BERT successfully identified the one instance
of ’cheating’, resulting in perfect scores (1.0) for precision, recall, and F1-score in this
class. However, these high scores are based on a single instance, which limits the
significance and makes it harder to compare the metrics in this class.

4.4.2 Confusion Matrix

A confusion matrix helps us compare the predicted categories with the actual cate-
gories. The confusion matrix for the GPT-4o model is detailed in Table 4.8.

From the confusion matrix, we can see that the majority of misclassifications
(115) were when the actual category was ’correct’ while the LLM predicted ’partially
correct’.

Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 81 11 0 0
Partially correct 8 103 25 1
Correct 11 115 132 0
Cheating 5 2 0 6

TABLE 4.8: Confusion Matrix for the GPT-4o Model Performance on
the SQL Submission Classification.

To further understand the performance, we created confusion matrices for each
of the six exercises in the dataset. These individual matrices could help identify if
there were exercises where the LLM struggled more than others.
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Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 18 2 0 0
Partially correct 1 30 24 0
Correct 0 15 40 0
Cheating 2 0 0 0

TABLE 4.9: Confusion Matrix for Exercise 1 with difficulty 2. (n=132)

Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 16 0 0 0
Partially correct 0 11 0 0
Correct 2 8 24 0
Cheating 3 1 0 4

TABLE 4.10: Confusion Matrix for Exercise 3 with difficulty 3. (n=69)

Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 8 2 0 0
Partially correct 3 6 0 1
Correct 4 44 9 0
Cheating 0 0 0 2

TABLE 4.11: Confusion Matrix for Exercise 5 with difficulty 2. (n=79)

Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 11 1 0 0
Partially correct 2 14 0 0
Correct 2 8 29 0
Cheating 0 1 0 0

TABLE 4.12: Confusion Matrix for Exercise 7 with difficulty 3. (n=68)

Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 9 4 0 0
Partially correct 1 27 0 0
Correct 1 33 9 0
Cheating 0 0 0 0

TABLE 4.13: Confusion Matrix for Exercise 9, with difficulty 4. (n=84)
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Predicted Category

Actual Category Non-interpretable Partially correct Correct Cheating

Non-interpretable 19 2 0 0
Partially correct 1 15 1 0
Correct 2 7 21 0
Cheating 0 0 0 0

TABLE 4.14: Confusion Matrix for Exercise 14, with difficulty 5.
(n=68)

From the confusion matrices and the calculated accuracy for each exercise in
Table 4.15, we can observe that two exercises in particular had notably low accu-
racy. Exercise 5 and 9 demonstrated significantly lower performance compared to
the other exercises, with an accuracy of 0.32 and 0.54 respectively. Therefore, we
took a closer look into the reasoning of the classifications for these two exercises to
understand what led to the misclassifications.

Exercise Accuracy

Exercise 1 0.67
Exercise 3 0.80
Exercise 5 0.32
Exercise 7 0.79
Exercise 9 0.54
Exercise 14 0.81

TABLE 4.15: Accuracy for Each Exercise.

4.4.3 Highlighting Misclassifications

Before arriving at the predicted categories, the model was asked to provide a step-
by-step analysis of the submission and provide reasoning for the classification. We
inspected the reasoning for several misclassified submissions to provide a more nu-
anced assessment of the LLM’s performance.

4.4.3.1 Partially Correct

Most wrongly classified instances were between ’partially correct’ and ’correct’. The
confusion matrices per exercises showed that 2 exercises in particular had a lot of
disagreement. These are Exercise 5 in Table 4.11 and Exercise 9 in Table 4.13. The
description of these exercises are as follows:

• Exercise 5: Your task is to answer the following questions using SQL queries. For
each question, your answer must be a single SQL query that may contain subqueries.
Question: Which movies were written by Kevin Williamson? List the titles and pro-
duction years of these movies.

• Exercise 9: Your task is to answer the following questions using SQL queries. For
each question, your answer must be a single SQL query that may contain subqueries.
Question: How many writer awards have been given to Woody Allen between 1991
and 1995 (inclusive)? List the number of the awards.
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Our analysis of the misclassified submissions revealed some patterns. The LLM
frequently marked submissions as ’partially correct’ due to case sensitivity issues
with the ’LIKE’ operator, even though the database system used in the exercise was
case-insensitive [67]. The LLM did not have this context, so more context about the
SQL environment could have prevented these misclassifications. Similarly, the use
of single quotes versus double quotes also depends on the environment and led to
misclassifications that could have been avoided with more contextual information
about the SQL environment.

Generally, it seemed that the analyses focused too much on comparing student
submissions with the model answer. While student submissions often produced
the correct output, the LLM highlighted that it could be improved compared to the
model answer. For instance, the model solution explicitly specified join conditions
while some submissions did it with a natural join, resulting in ’partially correct’ clas-
sifications when submissions did not follow this approach. In some cases, the LLM
acknowledged that the output was correct but still classified the submission as par-
tially correct due to differences from the model answer. However, the stricter anal-
ysis by the LLM could also be seen as an advantage, since it can identify improve-
ments in correct submissions. The areas for improvement can inform educators on
how the students could improve, possibly leading to better learning outcomes.

There were also some cases where the submission produced the correct output
due to specific entries in the database, but with more entries it would not have pro-
duced the correct output. For instance, in the exercise about finding the number of
awards won by Woody Allen, a submission matched only on the first name ’Woody’,
which would find anyone with the first name ’Woody’. Because there were no other
Woody’s in the database, this submission produced the correct output. However,
if there were another person named Woody, the submission would not produce the
correct output. The LLM misclassified these submissions as ’partially correct’ but
was actually correct in its analysis. This highlights the advantage of the LLM over
automated tests, as the LLM could recognise the underlying issue instead of purely
matching the outputs.

Overall, the majority of misclassifications can be attributed to missing context
about the SQL environment or to an excessive focus on matching the model answer.
To mitigate these issues, the prompts should include the required context and em-
phasise that multiple correct solutions may exist.

4.4.3.2 Cheating Submissions

To understand why the model misclassified several ’cheating’ submissions, we took
a closer look at these predictions and submissions. Our observations indicate that
some submissions in the original dataset were labelled arbitrarily.

Arbitrary Classification

During our review, we identified instances where the classification of submissions
as ’cheating’ seemed arbitrary. This was evident in Exercise 1, where students were
asked to create an SQL statement for the question: "How many writers were born in
1935?". Two submissions in the labelled dataset were marked as ’cheating’, despite
the content suggesting otherwise. The submission in both cases was:

select count(distinct 1935) from writer;

The LLM in this case marked it as ’non-interpretable’ and gave the following
reasoning:
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The student’s submission contains a syntax error and does not correctly
address the problem statement. The query ’select count(distinct 1935)
from writer;’ is syntactically incorrect because it is counting the distinct
value ’1935’ rather than counting the number of writers born in 1935. The
correct approach should involve joining or subquerying the ’person’ and
’writer’ tables to filter writers born in 1935.

In this case, it is arbitrary to say that the student attempted to cheat in this exer-
cise as it seems it was a genuine attempt by the student.

Another arbitrary ’cheating’ classification in the original dataset was for three
submissions by the same student for Exercise 3, in which the question was: "Assume
persons who were born in the same year are the same age and there is only one youngest
person (with no ties/draws) in this database, who is/are the second youngest person(s) in the
database? List the id(s) of the person(s).".

The three submissions by the student were flagged as ’cheating’, presumably
because the student used ’DELETE’ in their query to delete rows in the database.
The LLM marked these submissions as ’non-interpretable’.

DELETE FROM person p
WHERE p.year_born=(SELECT MAX(p.year_born) FROM p)
SELECT id.p
FROM person p
WHERE p.year_born=(SELECT MAX(p.year_of_born)FROM p);

One of the analyses for these submissions was as follows:

The student’s submission contains several issues. Firstly, the DELETE
statement is unnecessary and incorrect for this query as it modifies the
database, which is not required. The intended task is to retrieve data,
not delete it. Secondly, there are syntax errors in the SQL statement. The
subquery references ’p’ without aliasing it correctly and there is a typo
in ’year_of_born’ instead of ’year_born’. The correct approach would
involve using subqueries to find the second highest year of birth without
deleting any data.

In this case it is also arbitrary to say the student attempted to cheat, and one can
argue it was a genuine attempt to solve the exercise.

Remaining Cases

6 out of the 13 cases of ’cheating’ were correctly identified by the LLM, and 5 of the
misclassified cases could be attributed to arbitrary classification as observed in the
subsection before. Upon observing the remaining two cases, we see that the LLM
did mention in the analysis that the students hardcoded specific values without any
indication of those in the exercise description. However, the LLM then failed to
classify it as ’cheating’ and marked it as ’partially correct’ as the submission was
deemed interpretable but not fully correct:

The student’s submission attempts to group persons by their birth year
and then filter for those born in 1988. However, this approach is incor-
rect for several reasons. First, it uses a hardcoded year (1988) instead of
dynamically determining the second youngest person’s birth year. Sec-
ond, the use of GROUP BY and HAVING clauses is inappropriate for
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this problem, as these clauses are used for aggregation and filtering ag-
gregated results, not for finding specific rows based on dynamic condi-
tions. The correct approach involves nested subqueries to first determine
the maximum birth year, then find the second maximum birth year, and
finally select persons born in that year.

Overall, the explanations by the LLM give a different perspective to the classifi-
cations. They showed that there is room for improvement to increase the accuracy
by enhancing the prompts, but also that LLMs can provide explanations that can be
more valuable than a classification.

4.4.4 Generated Reports

In this subsection, we discuss the reports generated by the LLM based on the analy-
sis of student submissions. The reports highlight prevalent issues, challenges, com-
mon patterns, and anomalies identified in the submissions. The reports mention 4
to 6 common issues, 1 to 3 anomalies, and also 4 to 6 suggested interventions. The
reports also reference the IDs of specific submissions as instructed. Figure 4.2 shows
a snippet of the report for Exercise 1, shortened for simplicity.

The report reveals numerous observations that would have required a lot of man-
ual effort to detect. For instance, common pitfalls were identified such as the use of
‘NATURAL JOIN‘, which should generally be avoided. Joining tables was also an
issue as some submissions counted all individuals born in 1935 without filtering
specifically for writers.

Detecting such issues manually in thousands of submissions would be very time-
consuming for an educator unless they specifically searched for these common mis-
takes. Moreover, many automated systems typically do not catch these errors unless
they are explicitly programmed to look for it case-by-case.

The LLM-generated reports not only highlight issues but also provide sugges-
tions to address them. For example, the reports suggest conducting lessons on the
proper use of SQL joins and avoiding NATURAL JOIN, which could lead to unin-
tended results.

The reports for other exercises highlighted similar problems as this report, indi-
cating uses of (NATURAL) JOINs and overly complex queries.

Manual Verification

The LLM was instructed to give specific examples of submissions that illustrated
the observed issues. To assess if the referenced submissions in the reports actually
contained the mentioned observations, we manually checked each referenced sub-
mission in the report in Figure 4.2. Table 4.16 presents the results of this verification
and the calculated precision for each observation of the LLM. The precision was
quite low, with an overall precision of 0.48.
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FIGURE 4.2: Snippet of the Generated Report for Exercise 1. (temper-
ature = 0.7)
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Observation Type Occurrences / References Precision

Incorrect Table Joins or Missing Joins 29/69 0.42
Syntax Errors 5/9 0.56
Logical Errors 20/46 0.43
Efficiency and Optimisation Issues 7/11 0.64
Use of NATURAL JOIN 5/5 1.00
Anomalies/Outliers 3/3 1.00

TABLE 4.16: Results of the manual check and the precision for the
report of Exercise 1. (temperature = 0.7)

Due to the amount of manual labelling required we did not verify whether the
submissions that were not referenced in the report also fell into these categories
highlighted by the LLM. This implies that the recall of the generated reports was
not measured.

Impact of Temperature Setting

The report in Figure 4.2 was generated with GPT-4o, with a temperature setting of
0.7. LLMs generate text by predicting the next token based on a probability distribu-
tion and the temperature setting influences the model’s next token selection process.
If it is low, it will more often pick the most likely next token making it more deter-
ministic, and a higher setting makes it choose less likely tokens more often, allowing
for more creativity.

To reduce the likelihood of incorrect references to submission ID’s, we generated
the report again with a lower temperature setting of 0.2. The results for this report
in terms of the precision of the references can be found in Table 4.17.

Observation Type Occurrences / References Precision

Incorrect Filtering for Writers 8/9 0.89
Syntax Errors 13/13 1.00
Use of Inefficient or Unnecessary Constructs 5/6 0.83
Incorrect Use of JOINs 3/9 0.33
Logical Errors 5/5 1.00
Anomalies or Outliers 4/4 1.00

TABLE 4.17: Results of the manual check and the precision for the
report of Exercise 1. (temperature = 0.2).

As we can see, precision was higher with the lower temperature setting of 0.2.
However, this setting also retrieved fewer submission IDs overall. This is a classic
example of the trade-off between precision and recall: fewer irrelevant IDs were
retrieved, but the retrieved ones were highly accurate.

While we did not measure recall exactly due to the manual labelling required,
the report generated with a higher temperature setting (Table 4.16) showed many
more occurrences. This indicates that while the precision was higher with the lower
temperature, the recall likely decreased as fewer relevant submissions were identi-
fied.

This analysis shows that adjusting the temperature setting can improve the pre-
cision of the identified submission IDs. However, the question still remains whether
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providing a few examples of issues is sufficient, or if educators prefer to see a com-
plete list of all submission IDs where these issues are present. The latter would
require a different approach to the system.

4.4.5 Process Analysis

The process analysis for Exercise 1 and Student 26 is shown in Figure 4.3. This stu-
dent made four submissions for this exercise.

The process analysis details each revision (or in this case, each submission) sep-
arately and then summaries it at the end. It highlights the student’s progress from
using ‘SELECT *‘ to ‘SELECT id‘, but that it also still had the issue that it only selects
one id, even though the exercise requested to list all possible persons.

Other process analyses presented a similar summary but with slight differences
in the structure. For example, some analyses grouped similar revisions instead of
describing them individually, which can be preferable for submissions with a large
number of revisions.

Due to time constraints, we did not manually verify if the described changes
between each revision were accurate. Aggregate reports across students and exer-
cises were also not realised. Still, these analyses were included in the user study in
Chapter 5 to gather opinions on the process analysis feature.

4.4.6 Suggested Interventions

Interventions to address the issues were suggested at the bottom of the reports, but
seemed to be very generic. A better approach might involve first identifying com-
mon issues, and then making a subsequent call to the LLM to obtain interventions
based on those observations. This would align more with prompt engineering tech-
niques, which suggests breaking tasks into smaller steps for better results. To evalu-
ate the interventions properly, we refer to the user study in Chapter 5.

4.4.7 Token Usage

An important aspect of using LLMs is the token usage. It is important to address
this because there are token limits for API calls. Both input and output tokens count
towards this limit. For example, a token limit of 10k would limit the output to 1k
tokens if the API call uses 9k tokens in the message input.

We tracked the token usage of the results in this study. Since we loop over all the
analyses from the submissions, the token count grows with the number of students.
On average, the tokens required for one submission analysis was 630 tokens. In
total, there were roughly 315k tokens for the 500 submissions analysed. Since we
generated reports for each exercise, the tokens are roughly split over 6 exercises
which still fit within the context window of 128k tokens. However, in cases of a
higher number of submissions, this may be exceeded.

To address this, we suggest splitting the number of submissions again into smaller
chunks and then aggregating the reports generated from these chunks. For example,
if there are 1000 submissions, one could divide them into four groups of 250 submis-
sions each. After generating reports for each group, these reports can be combined
into one final report. This method could ensure that token usage remains within the
limits and the report generation process is still possible.
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FIGURE 4.3: Generated Process Analysis for Student 26 in Exercise 1.
We removed the description for the third and fourth submission in

this analysis for brevity.
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4.4.8 BERT Comparison

We compared the performance of GPT-4o in classifying student submissions to the
performance of BERT [29] to assess how well GPT-4o can provide individual analy-
ses that are subsequently used to generate learning analytics.

BERT’s superior performance is likely due to its fine-tuning on the dataset, where
it was trained on 70% of the data and then classified the remaining 30%. In contrast,
we did not fine-tune GPT-4o. As discussed in Chapter 3, our objective was to cre-
ate a system that is flexible and can work well across a variety of courses without
requiring extensive fine-tuning or customisation.

GPT-4o does offer an advantage over BERT in terms of explainability. In the
paper in which BERT was used, the authors used Captum [33] to visualise which
parts of the submission influence the classification. However, these visualisations,
with colour-coded parts (see Figure 2.1), are not always easy to interpret and require
technical understanding that might not be accessible to all educators. In contrast,
GPT-4o can provide a textual explanation for its decisions, making the rationale be-
hind its classifications easier to understand.

Thus, although fine-tuned models could perform better, GPT-4o can perform de-
cently out-of-the-box while also offering advantages in terms of explainability.

4.5 Discussion

4.5.1 Answer to RQ1

RQ1: How can LLMs be utilised to analyse programming submissions and pro-
vide detailed learning analytics in programming education?

We designed a system and formulated two sub-questions to measure the perfor-
mance:

Sub-question 1 (RQ1a): How accurately can LLMs classify student programming
submissions into predefined categories?

Answer: Our findings show that GPT-4o achieved an accuracy of 64% and balanced
accuracy of 65% in classifying SQL submissions in four categories. The balanced
accuracy indicates that GPT-4o handles the class imbalances better than the baseline,
which achieved a balanced accuracy of 37% and accuracy of 66%.

By taking a closer look at the reasoning that the LLM provided for the classifica-
tions, we identified areas for improvement that could lead to a higher accuracy. The
main observation was that the LLM was very strict, requiring submissions to closely
match the model solution even when slight deviations would be acceptable. This
resulted in many ’correct’ submissions being classified as ’partially correct’. How-
ever, this can also be seen as an advantage as this critical look can identify areas for
improvement for the students, which could be useful for the generation of analytics
in the next step in the system. Another observation was that the LLM missed some
context about the specific SQL environment used in the assignments, which it didn’t
receive in the prompt.

Our primary focus is on the analysis leading to the classification, as this analysis
forms the basis for the learning analytics. The classification accuracy serves as an
indicator of the reliability of this analysis. Given the accuracy and accompanying
reasoning, we believe that GPT-4o can offer a good analysis. Moreover, as LLMs can
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only get better, it presents an optimistic prospect for even better performance in the
future.

Sub-question 2 (RQ1b): Can LLMs identify common issues and patterns in stu-
dent programming submissions, and how reliable are these identifications?

Answer: GPT-4o was able to identify several common issues across the submissions
and produced reports that highlighted common issues with references to submis-
sions. Initially, only 48% of the referenced submission IDs had the indicated issue
due to the limitation of LLMs ’hallucinating’ [36]. By adjusting the temperature
parameter of the LLM to generate more deterministic reports, we improved the pre-
cision of the references to 83%. However, this resulted in lower recall, meaning not
all submissions with the identified issue were referenced.

These two sub-questions help us answer RQ1, as this shows that LLMs can be
used to generate analytics through a two-step process. First, LLMs analyse indi-
vidual programming submissions, indicating what is wrong with the submission or
providing areas for improvement. In the subsequent step, these individual analyses
are consolidated into a single prompt in which the LLM is instructed to generate a
report with common issues. The individual analyses can also be used to generate
targeted reports per assignment or student. Additionally, the process of a student
making an assignment can also be analysed and described by the LLM by including
the sequence of submissions in the prompt.

The question still remains if the reports are useful for educators, which we will
discuss in the following chapter.

4.5.2 Limitations

Ideally, a labelled dataset of common issues would be used to evaluate the system
effectively. However, we did not have access to a dataset that describes all potential
issues in an assignment. Manual labelling of such a dataset would also be time-
consuming and would require sufficient expertise to ensure accurate evaluation of
the submissions, which we lacked.

We considered generating a synthetic dataset using LLMs to introduce prede-
fined errors. However, using the same LLM to both generate and detect the same
errors would limit the validity of the evaluation.

A limitation of this study is that the dataset might have been included in the
training data of GPT-4o. Since OpenAI does not disclose the datasets used for train-
ing, it remains unknown if this is true. If it was used in the training, it could affect
the validity of our evaluation since the LLM would have already seen the data.

Another limitation is that the initial prompt describes predefined classes to look
for (cheating, correct, non-interpretable, partially correct), which could restrict the
model’s focus and affects what is eventually presented in the generated reports.
For instance, the complexity of the solution might not have been a primary focus
but could be relevant to observe. However, it is notable that the LLM did consider
complexity in some analyses even though it was not specifically prompted to pay
attention to.

Furthermore, the system’s performance in other courses or type of assignments
is still an open question. Programming assignments in different courses could be
more complex and longer, and the effectiveness of the LLM in identifying issues
could be different.
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Another concern is that the LLM can output texts that are very convincing, even
when they may contain incorrect information. The reports and analyses can influ-
ence decision-making of the educators, and they should therefore always remain
critical when interpreting the information.

Finally, we only manually checked two reports in terms of the precision of the
references submission IDs. This limited sample size restricts the generalisability of
our findings and more reports should be checked to calculate the precision of the
reports. Similarly, the process analyses should have been manually checked for ac-
curacy of describing the process.
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Chapter 5

User Study

This chapter presents the user study that was conducted to gain qualitative insights
for the system. In Section 5.1, we describe the objective of the user study and in
Section 5.2 we describe the methodology, outlining the focus group session. The
discussion points and feedback of the participants are presented in Section 5.3. Sec-
tion 5.4 summarises the common themes that emerged from the feedback. Section 5.5
discusses the implications for the system, outlining specific improvements and ac-
knowledging the study’s limitations.

5.1 Objective

Following the system design and evaluation, the objective of the user study was to
gather qualitative feedback from educators on the functionality and usability of the
system. We aimed to identify areas for improvement for the system and understand
the perceived usefulness of the various generated reports. These insights would be
valuable to improve the system tailored to their needs.

5.2 Methodology

To achieve this, we designed a focus group with Teaching Assistants (TA), the in-
tended users of the system. This section discusses the focus group details, the outline
of the session, and the pilot focus group that was conducted in preparation.

5.2.1 Focus Group

The focus group was designed to gather qualitative feedback from TAs on the var-
ious reports contents and the prototype UI that was developed. This includes the
course report, exercise reports, submission analyses, suggested interventions, pro-
cess analyses, and student analyses. The data that was shown in the system was
from the same dataset used in Chapter 4 from the Relational Database course at the
Australian National University. This dataset contains submissions for exercises in
which the students had to write SQL statements.

The study involved a group of 2 former and 3 current TAs at the Faculty of Elec-
trical Engineering, Mathematics and Computer Science at TU Delft. Ideally, TAs
from the course that was associated with the dataset would be asked to participate,
but this was not feasible since the dataset was from another university. While the
TAs that participated were not involved with the course from the dataset, we be-
lieved that they could still provide valuable feedback due to their experience as a
TA in other programming courses. Furthermore, they all had followed a course in
which they learned SQL, so they were familiar with SQL and the types of exercises.
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5.2.2 Session Outline

The session was divided into two main parts: the introduction and the discussion.
The introduction aimed to familiarise participants with the system, its purpose, and
the dataset that was used. The discussion part was designed to gain detailed feed-
back on various aspects of the system, including the course report, exercise report,
submission analysis, suggested interventions, process analysis, and student report.
Below is the outline of the session. Appendix B provides a more detailed outline
with the questions asked.

Introduction of the session

1. Welcome: Introduction to the session.

2. Overview of the Session: Brief outline of the session’s structure.

3. Overview of the System: Explanation of the system’s purpose in providing
learning analytics to TAs for programming assignments using LLMs, including
a description of how it works and the types of reports generated.

4. Demo of the Prototype: Demonstration of the system’s interface and func-
tionalities, showcasing different reports like student and exercise reports. Ap-
pendix A shows the various pages in the user interface. The student report
page is also shown in Figure 5.1 for convenience.

5. Introductory Question: Participants shared their experience as TAs, focusing
on how they identify common student challenges.

6. Dataset: Explanation of the course context and dataset, including an example
exercise and model solution.

Discussion of the session

Each part of the discussion was intended to last approximately 8 minutes, focusing
on specific aspects of the system. For each part, the prototype of the system was
shown with the generated reports based on the aforementioned dataset, and a ques-
tion was asked about the strengths and weaknesses of the report. The structure is
outlined below:

1. Course Report (8 minutes): Presentation of common issues and challenges
from all course submissions.

2. Exercise Report (8 minutes): Presentation of common issues and challenges
from submissions in specific exercises.

3. Submission Analysis (8 minutes): Analysis of individual submissions.

4. Suggested Interventions (8 minutes): Presentation of suggested interventions
for the course and exercises.

5. Process Analysis (8 minutes): Analysis of the process with varying numbers
of submissions.

6. Student Report (8 minutes): Reports generated based on all submissions made
by a student throughout the course.
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FIGURE 5.1: User Interface Student Overview that was shown in the
focus group.
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5.2.3 Pilot Study

A pilot study was conducted to identify improvements that could be made in the
structure of the session. This study included two student participants and lasted an
hour.

The pilot study revealed that discussions could naturally overlap between dif-
ferent parts of the session outlined in the previous subsection. It was found to be
more effective to allow the conversation to flow naturally rather than strictly ad-
hering to the outline. For example, naturally transitioning from a report to specific
submissions that were listed was allowed since these go hand-in-hand.

Furthermore, although the participants were not TAs, they provided valuable
insights into the tool. Some discussion points and feedback from the pilot study
will be mentioned in the analysis section, as there was a lot of agreement on various
points between the pilot study participants and the actual focus group.

5.3 Analysis of Findings

This section describes the discussions and comments made by the participants. The
focus group session lasted an hour which fell into the outlined time frame we in-
tended.

5.3.1 Experience as a TA

This part of the discussion provided insights into the experiences of the participants
as a TA for the courses they assisted. They revealed some preferences in the way
they work as a TA and shared different perspectives on their roles, highlighting their
challenges and also methods they find most effective or preferable.

One participant mentioned that they have a preference for courses that allow
for the automation of grading or feedback processes. They explained their use of
scripts to scan for specific keywords or to help them fill in a checklist when reviewing
students’ work.

Another participant expressed their preference for project-based courses. They
indicated that they rely on statistics, such as lines of code written per students, to
get an idea of how much students contribute to group projects. They also indicate
that in another course they cared less about statistics and more about discussions
with the students to assess if they know what they are talking about. They also men-
tioned that they do not focus on analysing submissions for courses that don’t have
mandatory assignments, since not many students would make those assignments.

5.3.2 Course Report

In this part of the discussion, participants evaluated the ’Course Report’, which pro-
vides a summary of common challenges and issues identified across all submissions
in the course. Overall, the participants liked that the system could identify com-
mon issues, but they proposed several improvements to make the report more effec-
tive. They wanted more details on the frequency of issues, hyperlinks in the reports,
clearer ranking of issues, expandable sections, and customisability.
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Detail on Issue Frequency

Their first comment they made was the desire for more detailed information on the
frequency of specific issues. It was unclear in how many submissions out of all of
the submissions an issue was identified. They would have preferred exact numbers
or percentages alongside the mentioned issue to gauge how widespread each issue
is. This suggestion was also mentioned by the participants in the pilot study.

Hyperlinks to Submissions

Another suggestion that was stressed in both the pilot and focus group was the
inclusion of hyperlinks to specific submissions where issues were identified. In the
prototype this feature was not realised, but would make it a lot simpler to navigate
to a specific submission.

Ranking of Issues

The ranking of the issues was also discussed and they felt that it was unclear what
the ranking was based on. They mentioned that a ranking based on severity would
help prioritise which issues need immediate attention and which are less critical.
A ranking based on frequency would for example be less significant if the most
common issues are small typos.

Expandable Sections

Furthermore, the participants found that the report was quite overwhelming due
to the amount of text. To make the report less overwhelming, participants recom-
mended using collapsible and expandable sections in the report. The common is-
sues would then be written in a few words, which the user could expand to find
details, examples, and submissions where this issue could be found. When asked
about the submission IDs, they mentioned that they prefer to have a collapsible list
of all relevant submission IDs, instead of only a few examples. The participants also
mentioned that some sort of visuals or graphs would help them get a good overview
more quickly, reducing the feeling of being overwhelmed by the text.

Customisability

Lastly, the participants suggested that the system should allow TAs or teachers to
customise the report based on their specific needs for the course. They could then
choose to focus on certain types of issues.

5.3.3 Exercise Report

Reviewing the exercise reports, the participants mentioned the same improvements
as for the course report, since the reports were similar in structure.

One additional remark was the need for a consistent format of the reports as the
reports were slightly different for each exercise due to the stochastic nature of LLMs.
They did not mention a preference for a specific format, as long as it is consistent. A
more standardised format would make it easier to compare and analyse the reports
across different exercises. The participants of the pilot study also indicated the need
for a consistent format.
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5.3.4 Submission Analysis

During the discussion on the submission analysis, the participants gave feedback to
increase both the readability and the effectiveness. The trust they have in the system
was also briefly discussed.

Structure of Text

Several participants noted that the analysis text provided a lot of text which could
be overwhelming, similar to the previous reports. They suggested a more concise
analysis by presenting the text in bullet points for better readability. A participant
mentioned that a checklist format would be nice so TAs could quickly see if key
criteria for that exercise were met. They suggested that the LLM could generate a
consistent template or rubric, which would then be used to analyse all submissions.

Additionally, they would like to quickly see an indication of how good or bad
the submission was with a numeric score for example. They draw comparisons with
WebLab, a learning management system designed for programming assignments
[68]. In WebLab, TAs can quickly see how well the submission was made by means
of a score based on automated tests.

Suggesting Improvements and Fixes

Participants would also like the idea of the submission analysis not only identifying
errors, but also suggesting improvements and fixes. While the exercise and course
reports do provide suggestions to address common issues, suggestions on an indi-
vidual submission basis would also be beneficial for them if they would have to
assist the student that is stuck on the exercise. They emphasised that the sugges-
tions would need to be specific and provide explanations for why certain fixes are
recommended.

Trust in Generated Analysis

There was a concern from one participant about the accuracy of the analysis gen-
erated by the LLM. They expressed that they were unsure how much they would
trust what is written by the LLM, and would like to have an easy way to verify it.
Another participant asked which LLM was used for the analysis, and after the facili-
tator specified that GPT-4o was used, they said that they would trust the assessment
made by that model.

5.3.5 Suggested Interventions

Participants generally appreciated the inclusion of suggested interventions in the
reports, but they pointed out that some suggestions were too obvious or vague, re-
quiring the need for more specific suggestions.

Specific Feedback and Recommendations

Participants noted that the interventions provided should be more specific to the
course or assignment. For example, instead of a general suggestion like "clarify as-
signment requirements" it would be more helpful to indicate exactly which part of
the assignment requirements were unclear and suggest ways to improve them.
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Another example given that needed to be more specific was one where the sys-
tem recommended to give training on SQL syntax, which was found to be too obvi-
ous. Here the system could suggest specific topics that need to be addressed.

Integration with Course Evaluations

A participant brought up the idea of integrating the suggested interventions with
the outcomes of course evaluations that are conducted at the end of a course. For
example, if the course evaluation indicates that students found that lectures were
not engaging, the system could take this feedback into consideration and suggest
more interactive in-class activities.

Ranking of Suggestions

Similar to the ranking of issues, participants suggested that the interventions could
be ranked by their importance or potential impact. This would help teachers and
TAs prioritise the interventions.

5.3.6 Process Analysis

The process analysis shown to the participants presented the process of a student
making a single exercise. The participants discussed various ways to improve it by
for example considering the process throughout the course instead of the process in
a single exercise. This subsection highlights their perspectives.

Relevance to TA Workflows

There was a short discussion about the relevance of the process analysis at differ-
ent educational levels. One participant thinks that such detailed feedback might be
more useful in a high school setting where students need more guidance. In a mas-
ter’s level course, they find that they generally do not need to dive into each process
in such detail unless specifically requested by the student. Instead, they focus more
on the final submission and overall performance. Additionally, one participant sug-
gested that it could be more useful to show the analysis to the student instead of a
TA, such that the student can reflect on it themselves.

Analysing Processes Differently

One participant suggested a slight enhancement that could be made to better high-
light whether students have learned from their mistakes over time. The system
could analyse whether specific issues identified in earlier exercises are corrected in
later ones, thus providing insights into the student’s learning process. Opposed to
focusing on the process of multiple submissions for a single exercise, this could pro-
vide a more useful analysis.

Format

Similar to the comments made for the other reports, the participants would like to
see improvements in the way the analysis is presented in order to improve read-
ability. They suggested better summarising and highlighting key changes, with an
option to expand for more details. A consistent format for each analysis would also
be more beneficial here. This would make it easier for TAs to quickly assess the
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process without being overwhelmed with too much detail. Graphs or other visual
representations was also mentioned as an improvement that could help get a better
overview and easier understanding.

5.3.7 Student Report

The student reports were similar to other reports and the participants indicated sim-
ilar improvements to those mentioned in the other reports. These feedback com-
ments include a consistent format and expandable sections for a better overview.

5.4 Common Themes

Throughout the focus group, several common themes emerged regarding the par-
ticipants’ feedback and suggestions for improving the system. Overall, they liked
the idea of the system and thought it is a good base, but found that it needed some
improvements to make it more usable for TAs.

5.4.1 Structure of Reports

The need for a standardised format across all reports was a common theme. Par-
ticipants indicated that a consistent structure would make it easier to compare and
analyse information across different exercises and submissions.

Furthermore, they would prefer a more concise presentation of the contents of
the reports where the details are collapsed and able to be expanded when the user
would want to. Bullet points especially would make it more pleasant to read. This
would ensure they are not overwhelmed with a lot of text.

They also indicated the desire for exact numbers or percentages of the prevalence
of issues to get a better impression of the magnitude of observations. Additional
metrics or graphs would also enhance the reports, and when referencing submis-
sions, a hyperlink to the submission would make it a lot more user-friendly.

5.4.2 Ranking

The ranking of both the issues identified and the suggested interventions were un-
clear to the participants. They suggested either making it clear that it is based on
the frequency of the issue identified, or rank it based on the impact or severity of
the issue and suggestion. Another option was to simply use bullet points instead of
numbered lists to indicate there is not a specific ranking, since the numbers implied
they were ranked.

5.5 Discussion

The participants provided a multitude of suggestions to improve the system, focus-
ing mainly on how it is presented to the user. The pilot group had similar sugges-
tions as the focus group regarding the readability of the report.

5.5.1 Implications for the System

We discuss the implications of the feedback from the focus group for the system:
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• Consistent Theme and Expandable Sections:

Determining the level of detail to display in learning analytics dashboards for
different stakeholders is an open issue described by Schwendimann et al. [18]
in their literature review, as users could get overwhelmed by the amount of
information presented to them. The participants in our study highlighted the
need for a consistent theme, bullet points, and expandable sections in the re-
port. This can be achieved by establishing a predefined output structure and
including it in the prompt. However, collapsible and expandable sections are
not included in the syntax for Markdown, which is the format the LLM typi-
cally responds with. Expandable sections could be realised with HTML tags
<details> and <summary>, which some Markdown parsers do allow. Streamlit,
the framework used for the prototype, does support this.

• Hyperlinks:

Adding hyperlinks was not supported by Streamlit, and hence, this feature
was not included. In an LMS like WebLab that does support links, hyperlinks
could be added after generation of the reports by a script that replaces submis-
sion IDs with submission IDs with links.

• Additional Context:

Participants suggested the inclusion of additional context, such as rubrics. In
the System Design chapter this was discussed as something that can be in-
cluded, but the dataset used did not contain a rubric. In courses where rubrics
are available, the analysis prompt can be modified to include this additional
context.

• Customisability:

Participants suggested allowing users to adjust prompts before running anal-
yses, enabling them to specify what the LLM should focus on when analysing
submissions. To implement this, a user interface component can be added,
providing the option to modify the default prompt before running the analy-
ses. To maintain the system’s design consideration of minimising the need for
extensive modifications for each course, this feature should remain optional.

• Trust in the System:

One participant expressed their concern on the trustworthiness of the system’s
analysis. In the system design, we explained how we aim to address this by
instructing the LLM to provide reasoning for each part of the analysis and
report. The comment made by the participant stressed that the observations
made by the LLM should be well-reasoned such that the user could verify it.

• Process Analysis:

Participants noted that they do not typically examine the process behind sub-
missions. While this might indicate that there is no need for such a feature, it
might also indicate that the systems they used as a TA did not facilitate such
analysis properly. This feature, along with the proposed improvements, could
encourage TAs to consider this aspect, ultimately leading to a better learning
experience for students.

• Visualisations:
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Some participants expressed a desire for more visualisations to support the
text. This was also remarked in existing research, where teachers were pre-
sented with dashboards and some would like visuals accompanying the writ-
ten text report [69]. The participants in the focus group did not specify the
exact shape or form visualisations should take. To define these requirements,
further focus groups or interviews with TAs would be necessary.

5.5.2 Answer to RQ2

RQ2: How do educators perceive the usefulness of LLM-generated learning ana-
lytics?

Answer: Teaching assistants that participated in the focus group provided many
suggestions to improve the system, primarily focusing on the presentation of the
learning analytics. The emphasis was on improving the readability of the reports.
They expressed the need for a consistent report structure, bullet points, and expand-
able sections to make the reports less overwhelming. Additionally, some partici-
pants wanted visualisations to complement the reports, making them easier to inter-
pret quickly.

Participants also noted that the suggested interventions were too generic. They
recommended making the suggestions more specific, for example by including in-
formation about the exercise or course setup in the prompt. Overall, the focus group
found that the system could be useful, but indicated various aspects that need to be
improved to enhance the usability of the reports.

5.5.3 Limitations

The focus group did not comment on the quality of the findings presented in the
reports in terms of the relevance of the observations. This is a limitation, but is
understandable since the participants were not involved in the course related to the
dataset and were only presented with the course content right before discussion into
the system. Thus, they could not provide an informed opinion on the quality. Ideally,
the system would be evaluated with TAs from the corresponding dataset or course.

Additionally, the focus group did not include head teachers or professors, who
might have provided different insights and perspectives. Future research should
include interviews with these stakeholders to understand their needs. In retrospect,
such interviews and focus group sessions should also have been conducted before
the system design. However, it might have been challenging to convey the system’s
potential and possible insights without first designing a prototype using actual data.

The size of the focus group was also relatively small, which limits the general-
isability of the findings. The feedback obtained was valuable, but conducting ad-
ditional focus group sessions with other participants could provide a better under-
standing of the system’s strengths and weaknesses. More participants would also
help validate the insights, if they agree on the same suggestions.

Furthermore, the participants did not use the system for an extended period. A
study in which participants would use the system for a long session by themselves
or throughout a course could lead to better qualitative feedback. This would provide
a better understanding of the system’s usefulness in a real educational setting.

Lastly, the use of only one dataset also presents a limitation. The dataset was
specific to a relational database course with relatively short submissions. Courses
with longer and more complex programming submissions might present different
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challenges and subsequently different feedback for the design of the system. Future
research should include datasets from different courses to identify this.
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Chapter 6

Discussion

In this chapter, we synthesise the findings from the previous chapters, discuss the
overall implications, reflect on the main limitations, and propose recommendations
for future work.

6.1 Answer to Research Questions and Implications

We aimed to explore the use of LLMs in analysing programming submissions and
providing learning analytics. We developed a system and focused on two primary
research questions, where RQ1 had two sub-questions:

• RQ1: How can LLMs be utilised to analyse programming submissions and
provide detailed learning analytics in programming education?

– RQ1a: How accurately can LLMs classify student programming sub-
missions into predefined categories?
The results indicated that GPT-4o achieved an accuracy of 64% and bal-
anced accuracy of 65% in classifying submissions in an SQL dataset, sur-
passing the baseline balanced accuracy of 37%. The accompanying anal-
ysis behind these classifications revealed that GPT-4o could be better in-
structed to achieve higher accuracy, but also that the GPT-4o was very
critical, identifying areas for improvement in correct submissions. As the
individual analyses form the basis for generating analytics, the classifi-
cation accuracy serves as an indicator of the reliability of the analyses.
Given the accuracy and accompanying reasoning, we believe that GPT-4o
can offer a good analysis that can be used in aggregated reports. More-
over, as LLMs continue to improve, it presents an optimistic prospect for
even better performance in the future.

– RQ1b: Can LLMs identify common issues and patterns in student pro-
gramming submissions, and how reliable are these identifications?
GPT-4o was able to identify common issues in SQL assignment submis-
sions, which are summarised in reports that contain references to submis-
sions. Initially, the references to specific submissions were imprecise due
to the limitation of LLMs ’hallucinating’ [36]. By adjusting the tempera-
ture parameter of the LLM, precision improved significantly from 48% to
83%. However, this resulted in lower recall, indicating that not all sub-
missions with the identified issues were referenced.

These sub-questions help answer RQ1, as this shows that LLMs can be used to
generate learning analytics through a two-step process. First, the LLM analy-
ses individual programming submissions, indicating what is wrong with the
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submission or providing areas for improvement. In the subsequent step, these
individual analyses can then be consolidated into a single prompt in which
the LLM is instructed to generate a report with common issues. The individ-
ual analyses can also be used to generate targeted reports per assignment or
student. Additionally, the process of a student making an assignment can also
be analysed and described by the LLM by including the sequence of submis-
sions in the prompt.

• RQ2: How do educators perceive the usefulness of LLM-generated learning
analytics?

In the focus group, teaching assistants found the system potentially useful but
emphasised the need for better report readability, structure, and visualisations.
They suggested that reports should include percentages of the prevalence of
issues, along with a complete list of submissions where each issue is present.
Additionally, some participants felt that the suggested interventions were too
generic and could be related more to the exercises or overall course setup.

Based on our system evaluation and user study, we identified a key implication
for the system. While the system was able to identify common issues and reference
submissions with high precision, the evaluation also revealed that many relevant
submissions were not referenced, indicating low recall. Additionally, the user study
highlighted the need for concrete percentages and numbers, along with a complete
list of submissions where specific issues are present. Our current system design
lacked this aspect, and would need to be addressed to enhance the learning analyt-
ics.

Furthermore, the user study highlighted the need to improve the structure and
readability of the analyses and reports. Participants suggested a consistent theme,
bullet points, and expandable sections. This can be achieved by predefining the
output structure in the LLM prompt, ensuring that reports are easier to read and
less overwhelming.

Additionally, the suggested interventions were perceived by some participants
as too generic. To make the suggestions more specific, they should be related more to
the assignment details or to the course setup. This would increase the actionability
of the learning analytics.

6.2 Limitations

Many limitations in each of the three previous chapters were already described. In
this section, we discuss the main limitations.

One of the primary limitations is the challenge associated with finding a suitable
dataset for evaluation. The ideal evaluation requires a dataset of programming sub-
missions that are labelled with the specific issues of the submission. However, access
to these datasets are limited, and manually labelling the data is time-consuming and
also requires relevant expertise.

Another significant limitation is that the user study was not conducted with ed-
ucators who were familiar with the course assignments. The system would be best
evaluated by the educators related to the course from which the data in the system is
derived. In the focus group, the participants provided valuable feedback but could
not comment in-depth on the significance or relevance of the identified issues. Ad-
ditionally, the participants did not use the system over an extended period. A study



6.3. Future Work 61

where participants use the system for a long session by themselves or throughout a
course could lead to better qualitative feedback. A more targeted user study with
both a quantitative and qualitative aspect would also be appropriate to measure the
usefulness of the system.

Lastly, the study was conducted only with a dataset of SQL assignments and
submissions. These SQL submissions are relatively short compared to other pro-
gramming assignments in different courses with different programming languages.
The effectiveness of the system in identifying issues in larger submissions and across
various programming languages remains uncertain.

6.3 Future Work

Based on the discussion and limitations, we make the following recommendations
for practical implementation and further research:

To address the concerns about accurate statistics and references to submission,
we propose a solution where a second pass over the submissions is done. After
identifying 5 (or more) common issues in the submissions as we currently do in the
system, the LLM could be instructed to create unique tags for these issues. In the
second pass, the LLM would then be instructed to indicate whether each of the 5
issues is present in each submission. For example, the LLM would evaluate each
submission and mark each issue as true or false:

Submission Issue 1 Issue 2 Issue 3 Issue 4 Issue 5

Submission 1 True False True False True
Submission 2 False True False True False
Submission 3 True True False False True
Submission 4 False False True True False

TABLE 6.1: Example of Second Pass Analysis for Common Issues.

We can then programmatically count occurrences, calculate statistics, and keep
track of which submissions had which issues. In the user interface, these can then be,
for example, shown next to the reports. As discussed in Chapter 3, predefining these
tags ourselves could limit what the LLM would look for, potentially overlooking
issues that were not anticipated. In this proposed solution, that problem is mitigated
by allowing the LLM to dynamically generate tags based on the issues it identifies
in the submissions.

While this could improve the system, future studies could also directly focus on
evaluating the system with educators who are directly related to the courses from
which the data is derived. These educators can provide more in-depth feedback on
the significance and relevance of the identified issues in the reports. Conducting
studies where participants use the system for a longer period would also provide
valuable insights into its usefulness.

Furthermore, to ensure the system’s generalisability it is important to conduct
studies with different programming assignments and languages. This includes eval-
uating the system with larger and more complex programming tasks and submis-
sions. If research shows that the system performs effectively across various pro-
gramming languages and more extensive assignments, it can be a helpful addition
to existing learning management systems that handle these different assignments in
one system.
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Chapter 7

Conclusion

This thesis aimed to addressed the gap in the field of programming education con-
cerning the potential use of LLMs in generating learning analytics. While many
learning analytics systems exist, they often lack the capability to provide actionable
insights. Therefore, we designed a system leveraging LLMs, where submissions are
first individually analysed, and the analyses are subsequently aggregated to identify
common issues. Through a system evaluation and user study, this thesis demon-
strated the potential of the system in supporting educators with learning analytics.
Specifically, our findings indicate that LLMs can analyse submissions for SQL as-
signments with a reasonable degree of accuracy and can identify common issues.
Educators found these insights potentially useful but identified aspects in the re-
ports that should be refined.

The study is limited by its reliance on a dataset from a single course, the lack
of input from stakeholders familiar with that course, and the absence of a study in
which educators use the system over a longer period. Despite these limitations, this
thesis provides a solid foundation and useful insights for future work in using LLMs
for learning analytics.

To enhance the system further, we recommend investigating methods to generate
accurate statistics and complete references to submissions in reports, addressing the
requests of participants in the user study. Future research should involve educators
who are familiar with the course content to provide more targeted feedback and
evaluate the system’s usefulness over a longer period. Additionally, investigating
the system’s effectiveness with different programming languages and more complex
assignments will help determine the system’s generalisability.
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Appendix A

User Interface

FIGURE A.1: User Interface Main Overview
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FIGURE A.2: User Interface Course Overview

FIGURE A.3: User Interface Assignment Overview
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FIGURE A.4: User Interface Student Overview
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FIGURE A.5: User Interface Submission Details
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Appendix B

Focus Group Session Outline

B.1 Introduction (10 minutes)

1. Welcome: The session began with a an introduction of what this session was
about.

2. Overview of the Session: A brief overview of the session’s structure was pro-
vided to set expectations.

3. Overview of the System: An introduction to the system was presented, ex-
plaining its purpose in providing learning analytics to TAs for programming
assignments using LLMs. A short description of how the system works was
also given to explain how it makes use of LLMs. The types of reports were also
mentioned.

4. Demo of the Prototype: A quick demonstration of the prototype was con-
ducted to familiarise participants with the system’s interface and functionali-
ties. This demo showcased the user interface and the types of reports gener-
ated, showing the different reports like student and exercise reports.

5. Introductory Question: Participants were asked about their experience as TAs,
specifically focusing on if and how they identify common struggles and chal-
lenges among students in the courses they assisted. This question aimed to
understand their background.

6. Dataset: Before starting with the discussion, the context of the course and the
dataset used for the system was explained. An example exercise was shown
along with the model solution to familiarise participants with the type of exer-
cises and content they would see in the system.

B.2 Discussion (48 minutes)

Each part of the discussion was intended to last approximately 8 minutes, focusing
on specific aspects of the system. For each part, the prototype of the system was
shown with the generated reports based on the aforementioned dataset, and a ques-
tion was asked about the strengths and weaknesses of the report. The structure is
outline below, also indicating the reason why these questions were asked.

1. Course Report (8 minutes):

The course report was shown that present the common issues and challenges
from all submissions made in the course.
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Question: What are the strengths and weaknesses of the course report? Are
you missing anything?

Why: To understand the participants’ views on the overall usefulness of the
course report, and to identify any improvements that could be made, for ex-
ample in the way it is presented.

2. Exercise Report (8 minutes):

Multiple exercise reports were shown that present the common issues and
challenges from all the submissions in the respective exercise.

Question: What are the strengths and weaknesses of the exercise report? Would
you prefer seeing all related submission IDs or just examples?

Why: This was asked to again understand the participants’ views on the over-
all usefulness of the reports, and to identify any improvements that could be
made. The question about the submission IDs arose from the system evalua-
tion, in which we described the problem of submission IDs being referenced
that were not relevant.

3. Submission Analysis (8 minutes):

Multiple submissions were shown with the analysis generated for those sub-
missions.

Question: What are the strengths and weaknesses of the individual submis-
sion analysis?

Why: To understand the participant’s views on the analysis made by the LLM
on the individual submissions.

4. Suggested Interventions (8 minutes):

The suggested interventions were shown for the full course and a few exer-
cises.

Question: What are the strengths and weaknesses of the suggested interven-
tions?

Why: This was asked to gather the participants’ opinions on the suggested in-
terventions to determine their practicality and usefulness in addressing com-
mon issues identified in student submissions.

5. Process Analysis (8 minutes):

Multiple analyses were shown, each with a varying number of submissions
that were made. E.g. some analyses included the process based on only 2
submissions that the student needed to make, and some included more than
10 submissions throughout the making of 1 exercise.

Question: What are the strengths and weaknesses of the process analysis? Do
you think it would be useful?

Why: This was evaluated to understand what they think of the report and
understand its potential in tracking and analysing the process of a student
making an exercise, identifying where they struggled.

6. Student Report (8 minutes):

Multiple reports were shown with the report generated based on all the sub-
missions a student made throughout the course.
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Question: What are the strengths and weaknesses of the student reports? Do
you think it would be useful?

Why: This question aimed to gather feedback on the student report’s perceived
usefulness and effectiveness in providing an overview of a student’s perfor-
mance across multiple exercises.
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