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summary

Interpretable models are essential in many machine learning applications, particularly in domains where
transparency and trust are critical. Decision trees are a popular interpretable model, but their structure
often leads to repeated identical subtrees and data fragmentation, which can result in large, overfit
models with poor generalization. Decision diagrams could offer a more compact and less fragmented
alternative by allowing sharing parts of the diagram, but constructing decision diagrams is computation-
ally challenging and has seen limited practical adoption.

This thesis introduces a novel local search-based algorithm for learning binary decision diagrams for
classification. Our approach finds a middle ground between early greedy methods and exact optimiza-
tion techniques, enabling scalable construction of compact and accurate diagrams. We define a local
search approach with several move operators and explore multiple metaheuristics, identifying hill climb-
ing with information gain-based initialization as the most effective strategy. We refer to this method as
Decision Diagram Local Search (DDLS).

We evaluate DDLS on 57 real-world datasets from the UCI repository and 480 synthetic datasets gen-
erated from known diagrams. Our method achieves competitive or superior accuracy compared to
state-of-the-art decision tree and diagram methods on real-world datasets, while producing small mod-
els with lower fragmentation. Though challenges remain, especially on complex synthetic datasets,
our results suggest that DDLS, and decision diagrams in general, hold significant untapped potential
as interpretable classifiers.
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Introduction

Classification is an important part of machine learning and artificial intelligence, and is used in many dif-
ferent fields such as medicine, finance, and engineering. In diagnosing diseases, detecting fraudulent
activities, or predicting customer preferences, classifiers play a critical role in the decision-making pro-
cesses by enabling the automated categorization of data into labels. The success of these applications
depends greatly on different factors like the accuracy, efficiency, and interpretability of the classifiers
used.

Among the different types of classifiers, interpretable models such as decision trees are highly valued.
These models show their decision-making process in a transparent way, making it easy for users to
understand how decisions were made and therefore trust the predictions. Additionally, decision tree-
based methods are still able to outperform deep learning methods when it comes to tabular data [13,
30]. However, decision trees are not without limitations. One such limitation is that trees struggle to rep-
resent disjoint concepts like XOR without duplicating identical subtrees, which significantly increases
the overall size of the tree. This leads to problems such as the replication problem, where the same
subtree can be found multiple times within the decision tree. Another consequence of this is the frag-
mentation problem, in which the continuous splitting of the data causes the number of examples for
nodes deep in the tree to decrease, making it difficult to create accurate splits [23, 31]. These problems
can often lead to unnecessarily large decision trees that might not be able to perform well on unseen
data.

Decision diagrams provide an alternative that addresses many of these limitations. Similar to decision
trees, decision diagrams are represented as directed acyclic graphs (DAG), where nodes and edges
encode the decisions that can be made. However, unlike decision trees, diagrams allow multiple nodes
to point to the same child. This structure allows for the sharing of nodes across different parts of the
graph, which can help prevent the replication problem. By avoiding the replication problem, the diagram
does not have to grow exponentially with depth, which further helps in preventing the fragmentation
problem [23]. An example of this is shown in Example 1. This compact structure aligns well with the
principles of the minimum description length (MDL) [28], which states that the best description of a
dataset is the description with the shortest total encoding. Additionally, the MDL directly correlates with
the posterior probability of a dataset [12]. These advantages make decision diagrams theoretically
well-suited for classification tasks, especially in applications where it is important to have a small model
and good generalizability.

Historically, decision diagrams have seen limited use in classification. Early attempts, of which many
used a greedy approach, explored their potential but were hindered by the inherent difficulty of learning
decision diagrams that come from having to decide both splits and node merges. Recent advances
have revisited this area, with new studies proposing exact methods for constructing optimal decision
diagrams using mixed-integer linear programming (MILP) and satisfiability solvers (SAT) [4, 11, 14, 29].
These approaches are able to construct decision diagrams that are optimal in terms of accuracy on the
training data, given some limitations on the size or depth of the diagram. Additionally, when compared
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Figure 1.1: A decision tree (a) and decision diagram (b) representing the same classification logic. Each decision node
displays the number of data samples that pass through it.

to decision trees, several studies find that the resulting decision diagrams show a higher test accuracy
compared to decision trees, showing their potential as compact and accurate classifiers [11, 14, 29].
However, these methods struggle with scalability and quickly become computationally infeasible as the
problem size increases. Consequently, decision diagrams have not yet gained widespread adoption
for large-scale classification tasks, leaving decision trees as the preferred interpretable model.

Example1. Given adataset of 50 samples, the goal is to classify any sample in the dataset as high risk
when they are either a male over the age of 60, or any individual who both smokes and is overweight.
Figure 1.1 shows an example of how both a decision tree and a decision diagram representing this
problem could look like. The number of data samples passing through each node is also displayed in
the figure for each decision node. As shown, representing this problem in a tree structure leads to a
large subtree being replicated, resulting in a significantly larger final tree compared to the more compact
decision diagram. This replication not only increases the size of the decision tree but also fragments the
data considerably, as the replicated subtrees divide the dataset into smaller subsets. For example, the
smallest number of samples passing through any decision node in the decision diagram is 16, whereas
this is only four in the decision tree. Basing a decision rule on just four samples is less reliable and may
not accurately represent the underlying data, highlighting the advantages of the decision diagram’s
compact structure.

Since both the early greedy approaches and the more recent optimal methods have significant down-
sides, this thesis proposes a novel local search algorithm that aims to find a middle ground between
these approaches. Inspired by previous research [10], which uses local search for optimizing decision
trees, we apply a similar concept to decision diagrams. Instead of attempting to construct globally opti-
mal diagrams, which is currently a computationally intractable problem for large datasets, we design a
local search algorithm that iteratively improves a diagram by making local changes. This approach aims
to find a decision diagram that is close to the global optimum, without being hindered by the scalability
issues that the MILP and SAT-based approaches have.

The results demonstrate that our approach achieves performance that is comparable to or better than
state-of-the-art methods on real-world datasets, while producing compact models and scalable runtime.
Additionally, we show that our method, and decision diagrams in general, exhibit reduced fragmentation
compared to decision trees. We also identify a limitation of our approach on complex synthetic datasets
and provide an initial analysis of how these can be overcome. Overall, our findings highlight the broader
potential of decision diagrams as a promising direction for interpretable machine learning research.

The main contributions of this thesis are as follows:

1. We propose a novel local search-based algorithm for constructing and optimizing decision dia-
grams.



2. We conduct a comprehensive empirical evaluation of our local search algorithm, and compare
its performance and scalability against state-of-the-art classifiers based on decision trees and
decision diagrams.

3. We investigate the practical advantages of decision diagrams over decision trees to assess their
effectiveness in real-world datasets and synthetic datasets.

The remainder of this paper is organized as follows. In Section 2, we discuss related work and the
historical context of decision diagrams. Section 3 discusses the preliminaries and provides a formal
problem definition, after which Section 4 describes our proposed method in detail. Section 5 presents
experimental results and analysis. Finally, Section 6 concludes with a discussion and future work.



Related Work

During the early development of decision diagrams, several algorithms were proposed for their construc-
tion [16, 20, 22, 23, 25]. Most early methods were based on heuristics, starting with the construction
of a decision tree followed by greedily merging nodes to create a decision diagram. Despite the simi-
larities between decision trees and diagrams, training and optimizing decision diagrams is significantly
more challenging due to the large search space for the structure of the diagram, in contrast to the fixed
structure of decision trees. These characteristics have made it difficult to efficiently create decision di-
agrams compared to decision trees. As a result, decision diagrams have not achieved the widespread
adoption that decision trees have.

2.1. Heuristic Decision Diagram Methods

One of the earliest methods for constructing decision diagrams, proposed by Mahoney and Mooney,
involved identifying related subtrees in a decision tree and merging them to form a decision diagram [20].
However, they found limited success, as they found their approach to have poor generalizability and
to be too computationally expensive. Oliver attempts to fix this problem by using a greedy bottom-up
construction algorithm guided by the Minimum Message Length (MML) [23]. In each iteration, candidate
splits are defined by individual leaf nodes, while candidate merges are determined by leaf pairs. The
MML evaluates these potential modifications and selects the one resulting in the greatest improvement
in message length. If the modification reduces the diagram’s message length, it is applied. They
reported improved classification performance over decision trees on simpler problems. However, later
studies found the method ineffective for more complex cases, where the algorithm tended to make
premature merges [22].

A more recent study introduces a non-greedy Tree in Tree (TnT) approach for constructing decision
diagrams [33]. Inspired by concepts like Network in Network [17] and oblique trees [5], this method
operates in two phases. In the growing phase, a node is replaced with a micro decision tree that uses
multiple splits, allowing for more accurate decision-making. In the merging phase, the micro decision
tree is integrated back into the original model, possibly resulting in a decision diagram. The process
starts with a single leaf node and alternates between the growth and merging phases until a number of
iterations is reached. Their results demonstrate that the TnT algorithm produces smaller models with
higher accuracy, both as standalone classifiers and as part of ensemble learners. TnT has linear time
complexity with respect to the number of nodes, which allows it to scale effectively to large datasets,
such as MNIST [8], while maintaining a good performance. One drawback of this method is that the
depth can be significantly larger compared to CART [3], resulting in an increased inference time.

Yet another paper suggests the use of an evolutionary algorithm (EA) to construct decision diagrams
[19]. This method introduces a novel diagram structure that incorporates multiple root nodes and uses
a majority voting mechanism through transient terminal nodes. The classification starts from one of the
root nodes and follows the diagram until a transient terminal node is reached, at which point a vote is
cast for the class of the node. These transient terminal nodes are connected to non-terminal nodes,
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allowing the classification process to continue and repeat until a fixed number of votes is reached.
The evolutionary algorithm drives the generation of these diagrams, using operations like selection,
crossover, and mutation to optimize accuracy. Initial results suggest improved performance compared
to standard decision trees on a small number of datasets. However, further analysis is needed to fully
evaluate the efficacy of this approach. Moreover, the use of a voting mechanism introduces complexity
that can reduce the interpretability of the created diagrams.

2.2. Optimal Decision Diagram Methods

An alternative approach that has recently gained attention focuses on optimal methods for construct-
ing decision diagrams. One such approach involves using a SAT-based model to find the optimal
diagram [4]. This study introduces a SAT-based method for deriving the smallest Reduced Ordered Bi-
nary Decision Diagram (ROBDD) consistent with the given training data. It uses an iterative procedure
where the SAT model acts as an oracle. At each iteration, a SAT problem is constructed that checks
whether there exists a ROBDD of a given size N that is consistent with the data until the smallest
solution is found. It further explores a heuristic approach for deriving suboptimal ROBDDs based on
techniques used for logic synthesis. Results show that the SAT-based approach produces diagrams up
to five times smaller than those generated using their heuristic method, with improved accuracy on un-
seen data. The results highlight the limited scalability of the model, as the datasets used for evaluation
were limited to fewer than 100 samples.

Another approach for optimal ROBDD construction utilizes a MaxSAT model. One study proposes a
MaxSAT model to learn the diagram that minimizes the classification error through soft clauses for
the classification constraints while limiting the number of features used in the diagram [14]. The SAT
encoding consists of a part for selecting features of the dataset into a feature ordering and a part for
generating a truth table that classifies all data samples correctly using the selected feature ordering.
A ROBDD can then be generated using this truth table. Because the depth of the ROBDD is limited
by the number of features selected by the model, this limits the depth of the ROBDD found. This is
in contrast to [4], which only limits the size of the ROBDD and does not place any restrictions on the
depth. The resulting ROBDD is further refined by merging compatible subtrees to address fragmenta-
tion. Experimental results show that their method achieves competitive prediction accuracy on unseen
data with significantly smaller model sizes compared to decision trees of the same depth created using
MaxSAT.

Both of these models are designed for datasets with binary features and classes. Addressing this
limitation, Shati, Cohen, and Mcllraith [29] extend the MaxSAT approach by allowing multi-class classi-
fication and by directly encoding numerical features. They propose two methods for creating decision
diagrams. In the first approach, the model learns an ordered decision tree which can be reduced to a
decision diagram by merging and replacing nodes. Alternatively, the second method uses a technique
similar to the TnT model, as it embeds inner decision trees within decision nodes to determine branch-
ing. Once a satisfying solution is found, the tree with inner trees is converted into a decision diagram.
Results show significant accuracy and runtime improvements over [14], and were most noticeable in
datasets with highly numerical features. They furthermore show that using inner trees within decision
nodes allows for more expressiveness with a lower computational cost. Similar to previous methods,
however, the datasets used in this study were relatively small, with the largest containing fewer than
2,000 samples.

A different perspective is offered by an MILP-based approach for training optimal decision diagrams
[11], which also supports multi-class classification and continuous features. It introduces a two-step
search strategy in which an initial decision diagram is generated using a greedy approach in the first
step. In the second step, MILP is used to find the optimal decision diagram, using the initial decision
diagram for guidance in the branch-and-bound search strategy. Similar to our proposed method, this
approach requires an initial skeleton that specifies the number of nodes in each layer such that any
solution is contained within the skeleton. Results demonstrate that this model produces smaller and
more accurate models than optimal decision trees, particularly when multi-dimensional splits are used.
However, their algorithm was only able to find the optimal decision diagram in 32% of all runs within the
600-second time limit and was able to consistently improve upon the initial heuristic solution for 33%
of the evaluated datasets. Furthermore, the algorithm was only able to consistently improve upon the



2.3. Decision Tree Local Search 6

Binary  Continuous Binary Multi- Large

Year Authors Method  Optimal
features features classes class dataset
2016 Mabu et al. EA v v v
2021 Zhu et al. nT v v v v v
2021 Cabodietal. SAT v v v
2022 Huetal. MaxSAT v v v
2023 Shati et al. MaxSAT v v N v v
2023 Florio et al. MILP v v v N v

Table 2.1: Overview of key capabilities across different decision diagram construction methods. The columns indicate whether
each method: 1) finds the optimal solutions 2) supports binary features; 3) supports continuous features; 4) supports binary
classification; 5) supports multiclass classification; and 6) is scalable to datasets with more than 5,000 instances.

heuristic solution for data with binary classes, showing the limitations of this approach. An overview of
all discussed methods can be found in Table 2.1

2.3. Decision Tree Local Search

Our proposed method uses a local search approach using ideas inspired by a local search algorithm
for learning decision trees [10]. Traditional decision tree construction methods often rely on greedy
heuristics, building the tree one locally optimal split at a time. However, these local decisions can
result in a final tree that is far from the global optimum. The proposed local search method improves
upon this by iteratively and efficiently refining multiple trees until no further improvements are found.
They demonstrate that this approach can produce decision trees that significantly outperform classical
construction methods such as CART. Furthermore, the resulting decision trees show a performance
comparable to random forests and boosted trees, while retaining the interpretability of a single tree.
Inspired by this work, our method applies similar concepts to decision diagrams. We focus on optimizing
decision diagrams by locally adjusting nodes and edges in order to find solutions close to the global
optimum.



Preliminaries

This section provides the necessary background on supervised classification and decision trees, intro-
duces the notation and formal definition of decision diagrams, and presents the problem formulation. It
also explains the principles of local search and its associated metaheuristics, along with an overview
of the framework used for the implementation.

3.1. Supervised Classification

Supervised classification starts with a labeled training dataset X = {(x;,¢;)}" ,, where each x; € R?
is the feature vector representing the i-th sample with p features, and ¢; € {0,1,...,k — 1} is the
corresponding class label. The number of distinct classes is denoted by k, where & > 2. The goal of
supervised classification is to learn a classification function & : R? — {0,1,...,k — 1}, such that h(z;)
accurately predicts the class label ¢; for each input z;.

3.2. Decision Trees for Classification

A decision tree is a supervised machine learning model commonly used for classification and regression
tasks. In classification, a decision tree partitions the input space into regions associated with different
class labels by recursively splitting the dataset based on feature values. Each internal node represents
a decision rule on a single feature, and each path from the root to a leaf defines a sequence of decisions
that leads to the class prediction. The goal at each split is to maximize the purity of the resulting child
nodes, which are typically calculated using criteria such as the Gini impurity or information gain. A
sample is classified by traversing the tree from the root to a leaf according to its feature values. The
overall objective is to construct a tree that can effectively separate the different classes, resulting in a
high prediction accuracy.

3.2.1. Learning Decision Trees

To construct a decision tree, a splitting criterion evaluates the quality of potential splits at each internal
node. One common metric that is used in decision tree algorithms such as ID3 and C4.5 is information
gain (IG) [26, 27]. Information gain is a concept from information theory that is used to reason about
the amount of information gained about a random variable from observing another random variable. In
the context of decision trees, the information gain is used as a method to measures the reduction in
impurity resulting from a split. Given a dataset X, splitting it on a feature f with threshold 0 creates two
subsets, X and Xi. The information gain is then defined as:

| XR|

H(X.)+ X|H(XR)> )

| X1 |

IG(X, f,0) = H(X) — ( X

with H (X)) being the entropy of a given dataset X calculated using:
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k—1
HX)=-> (

c=!

%Z 1(c; = C)) log, (Tll Lci = C)> ’
1

i=1 =

A higher information gain indicates a better split. Starting from a single root node, algorithms like ID3
work by calculating the information gain for every possible split and selecting the feature and threshold
that maximize the information gain. This is recursively repeated on the created subsets until some
stopping criteria are met. Leaf nodes are then labeled with the most common class of the samples in
the corresponding subset. The Classification and Regression Trees (CART) algorithm uses a similar
approach for constructing decision trees except that it uses Gini impurity for selecting the optimal split.
Many algorithms such as CART apply pruning after creating the initial tree, which decreases the size
of the tree by removing nodes and aims to improve the generalizability of the decision tree.

3.3. Binary Decision Diagrams for Classification

A binary decision diagram is a generalization of a decision tree, designed to model the classification task
more flexibly by allowing nodes to have multiple parents. Formally, a decision diagram is represented
as a directed acyclic graph (DAG) D = (V, E), where:

» Vis the set of nodes, and £ C V x V is the set of directed edges.

* Internal nodes v € Vinernar € V' are associated with decision functions d, : R? — {ce:(v),
Cright (V) }, Where ¢+ (v) and cpign:(v) correspond to the left and right child of v, respectively.

* Leaf nodes Vs C V represent terminal states and are labeled with aclass c € {0,1,...,k — 1}.

* An edge ¢ = (v,v’) € E connects a node v to one of its children v/, determined by the decision
function d,.

Such a binary decision diagram can be used to represent the mapping » : R? — {0,1,...,k—1} in order
to predict the class label of a sample (z;,¢;) € X. Given a sample = € R?, represented by its feature
vector, the label can be predicted by traversing the decision diagram. Starting from the root node, the
diagram evaluates the decision function d,(z) at each internal node v to determine which outgoing
edge to follow. The traversal proceeds through the diagram until a leaf node is reached. Once a leaf
node is reached, the class label associated with the leaf is returned as the predicted class for .

3.4. Problem Definition

The primary objective is, for a given dataset X, to construct a binary decision diagram D = (V, E) that
accurately learns the mapping ~ : R? — {0,1,...,k — 1}, and minimizes the objective function L. This
objective function attempts to balance the accuracy and the size of the model, and will be defined in
Section 4. By balancing the training accuracy and the complexity, we aim to capture the underlying
structure of the data and avoid overfitting on the training set.

Constructing an optimal decision diagram presents several challenges. Although binary decision dia-
grams offer advantages over decision trees, such as compactness and shared substructures, these
benefits come at the cost of a much larger, and more complex search space of potential graph struc-
tures, making optimization computationally expensive. Consequently, the design of our approach must
take into account both the quality of the resulting diagram and the computational efficiency of the opti-
mization process.

3.5. Local Search

Local search is a heuristic optimization method aimed at finding the most optimal solution within a
search space S, where each element s € S represents a candidate solution, or state. It is particularly
effective for solving combinatorial optimization problems where an exact solution might be hard to obtain
due to the problem’s complexity. The quality of a solution is evaluated using a loss function £L(s), which
the algorithm seeks to minimize. Formally, the goal is to find an optimal state s* € S such that

s* = argmin £L(s)
ses
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The algorithm begins from an initial state and iteratively explores neighboring solutions by applying
small changes, called moves, to the current solution. These moves define the neighborhood A/ (s) of a
state s, given by:

N(s) ={s" € §| s’ is reachable from s by a single move}.

At each iteration, the local search algorithm evaluates the neighbors s’ € N (s) and typically selects
a neighbor that reduces the loss. This way, the local search explores the search space by moving
between neighboring solutions. This process continues until certain stopping criteria, such as a number
of iterations without an improvement, are met. Local search is an anytime algorithm, meaning that it
can return a valid solution at any point during its execution, with the solution quality typically improving
the longer the algorithm runs

Local search can be categorized into various techniques depending on how the neighbors are selected
and the stopping criteria. However, it typically struggles with finding globally optimal solutions because
it can become stuck in a local optimum, where the current solution is better than direct neighbors,
but worse compared to other regions in the search space. Local search therefore does not provide a
guarantee that any given solution is optimal.

3.5.1. Metaheuristics

To address this limitation, more advanced strategies called metaheuristics are used. Metaheuristics are
higher-level strategies that are designed to explore a large search space efficiently and guide a search
algorithm towards a global optimal solution. They are generally not problem-specific and are flexible
in tackling a variety of different optimization tasks. Metaheuristics are often employed when classical
optimization techniques are not able to provide efficient solutions due to the size and complexity of the
problem space. The following section introduces several widely used metaheuristics that are applied
in this thesis.

Hill climbing Let s € S denote the current state of the decision diagram, and let A'(s) C S be the
set of neighboring states reachable from s via a single move. Starting from an initial state s,
the algorithm iteratively explores the neighborhood N (s;) at iteration ¢ by randomly sampling a
neighbor s’ € N(s;). If the new cost L(s') < L(s;), the move is accepted and the algorithm
proceeds to the new state s;; 1 = s’; otherwise, the algorithm remains in the current state. The
process continues until a certain number of iterations without improvements occurs or a maximum
number of iterations is reached.

Algorithm 1 Hill Climbing (HC)

Input: Initial state sq, maximum iterations N, , maximum idle iterations Nige
Output: Best state found spest
S < So
Spest <= S0
for iteration i = 1 to N do
Sample a neighbor s’ € N(s)
if £(s') < L(s) then
548
if £(s) < L(spest) then
10: Spest < S
1: end if
12: end if
13: if no improvement for Niqe iterations then
14: break
15: end if
16: end for
17: return spest

NSO R WON 2
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Hill climbing is one of the simplest metaheuristics for local search. Unlike more advanced meta-
heuristic, standard hill climbing does not have any way of escaping local optima. It strictly accepts
only moves that improve the objective function, which makes it prone to becoming trapped in sub-
optimal solutions. There are, however, variants of the hill climbing algorithm such as stochastic
hill climbing and random restart hill climbing that can help overcome this problem by introducing
randomness. The exact algorithm for hill climbing can be found in Algorithm 1.

Simulated annealing Simulated annealing is a stochastic optimization algorithm that extends hill climb-

ing by allowing occasional uphill moves to escape local minima. Let s; € S be the current state at
iteration ¢, and let £(s) denote the cost function. At each step, a neighbor s’ € A/(s;) is sampled
at random. The new state is accepted with probability:

P . 1 if £(s") < L(s4),
(50 =) = exp (,M) if L(s") > L(s¢),

T,
where T; > 0 is a temperature parameter controlling the acceptance of worse solutions. The
temperature T; decreases over time according to a cooling schedule. A commonly used schedule
is exponential decay:
Tiy1=q- 1Ty,

where ¢ € (0,1) is the cooling rate. This process continues for a fixed number of iterations or until
the temperature has reached a specified value close to zero.

The algorithm balances exploration and exploitation, where during the early iterations, it explores
widely, accepting not only improving solutions, but also accepting solutions with a worse objective
value. During later iterations, the algorithm focuses on fine-tuning the solution in order to find
a solution close to the global optimum. The full algorithm for simulated annealing is shown in
Algorithm 2.

Algorithm 2 Simulated Annealing

13:
14:
15:
16:
17:
18:
19:

: Input: Initial state s, initial temperature Ty, cooling rate ¢, minimum temperature Tp,i,, maximum

iterations v
: Output: Best state found spest
S < So
Sbest <= S0
T+ Ty
140
: while T' > Tin and i < N do
Sample a neighbor s’ € N(s)
Compute cost difference A = L(s') — L(s)
if A < 0 or Uniform(0,1) < exp(—A/T) then
s+ s
if £(s) < L(spest) then
Spest <— S
end if
end if
T<+q-T
14 1+1
end while
return spegt

Iterated Local Search Iterated Local Search (ILS) tries to escape local optima by introducing pertur-

bations. The algorithm begins by finding a locally optimal solution using a local search algorithm
such as the hill climbing algorithm. Once a local optimum is reached, the solution is perturbed to
create a new starting point, and the local search is applied again. This process is repeated iter-
atively, enabling the algorithm to explore parts of the search space that it might not have visited
without the perturbation. Finding an effective perturbation algorithm is critical to the success of



3.6. EasyLocal++ 11

ILS. A perturbation that is too small risks returning to the same local optimum, while one that is
too large effectively reduces the method to a random restart, negating the benefits of the solution
that was already found.

3.6. EasyLocal++

For the implementation of the local search algorithm, we use the EasylLocal++ framework [9]. Easy-
Local++ has been an effective optimization tool for over 25 years across various domains, including
timetabling, rostering, scheduling, and logistics [6]. It has shown to be able to produce state-of-the-art
results in benchmarks and competitions, including a second-place ranking in the ITC-2021 competition,
demonstrating its effectiveness and reliability.

EasylLocal++ is an object-oriented framework aimed at simplifying the development and analysis of lo-
cal search algorithms. It offers a collection of abstract classes and interfaces that contain the essential
components of local search and their extensions, such as tabu search and simulated annealing, by
modularizing the algorithmic structure. This approach enables users to focus on problem-specific ele-
ments, such as the definition of the states and moves, while making use of reusable components for the
invariant parts of the algorithm. This structure, along with built-in debugging tools and support for batch
experiments, makes EasylLocal++ particularly effective for implementing these kinds of problems.



Method

This chapter presents a two-phase local search approach for constructing decision diagrams for clas-
sification. In the initialization phase, we first create a fixed, layered DAG structure without assigned
features or thresholds, selecting from predefined architectures, as shown in Figure 4.1. Each structure
specifies the number of layers and maximum nodes per layer, allowing for flexible diagram depth. The
empty decision diagram is initialized using random initialization, or initialization using information gain.
In the local search phase, we optimize the initialized diagram by changing the feature and threshold of
decision nodes and by moving the edges between layers. Using a cost function that makes use of both
the training accuracy and the size of the diagram, the output of the procedure is a decision diagram
optimized for the training data, while the regularization prevents the model from overfitting.

4.1. Diagram Initialization

Before starting the local search phase, we create an initial diagram used as a starting point for the local
search during the initialization phase.

4.1.1. Decision Diagram Structural Templates

The initialization phase starts by selecting a skeleton for the decision diagram, which specifies the
overall structure that will be used as a starting point. A skeleton is defined by a number of layers, where
each layer contains a specified number of decision nodes. The diagrams we use have a strictly layered
structure, where, except for the nodes in the final layer, every node in layer d is connected exclusively
to nodes in the subsequent layer d + 1. Since our local search optimization does not allow adding
additional nodes, the selection of this skeleton is important. Figure 4.1 shows the skeleton templates
that we use in our approach. These templates make it easy to adjust the depth of the diagram without
needing to increase its width, allowing for smaller models compared to tree structures. Additionally, they
can easily be extended to include additional templates. Besides the skeletons shown in Figure 4.1, we
also test our approach on a tree structure.

b A B0 R
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1 Il L] v \'

Figure 4.1: The five different structural templates for decision diagrams used in our approach.
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A notable aspect of our approach is that our decision diagrams do not explicitly use leaf nodes. Instead,
the outgoing edges from the nodes in the final layer of the decision diagram are directly responsible
for classifying the samples that reach them, using majority voting. This design choice simplifies the
structure, since leaf nodes are not essential in decision diagrams and can always be reduced to the
number of classes in the dataset. By only focusing on decision nodes, we make it easier to reason
about the model’s complexity, especially regarding its size. However, for clarity and interpretability, we
still include leaf nodes in visualizations of the diagrams.

4.1.2. Initialization of Decision Functions

After selecting the structure of the decision diagram, each internal node must be assigned an initial
decision function. This function determines how samples are routed at that node. For a given node
v € V, we associate a feature index f(v) € {1,...,p} and a threshold value §(v) € R. For our approach,
we define the decision function at node v as:

d (1’ _ cleft(v), ifl‘f(v) Se(v),
Y cright(v), otherwise,

where z € R? is the input feature vector, (., is the value of feature f(v) for z, and cicy¢(v), crigni(v) € V
are the children of node v. We consider two strategies for initializing the decision functions:

Random Initialization. For each decision node v, we pick a feature f(v) uniformly at random from
the feature set {1,...,p}, and a threshold 6(v) by randomly selecting a value of feature f(v) from
the training data. This results in a random assignment of decision functions throughout the diagram,
serving as a simple baseline from which we can start the local search. While this random initialization
does not produce high-quality solutions on its own, it provides a starting solution for the local search
optimization phase.

Information Gain Initialization. For each node v in breadth-first search order, we use the data to
choose a split that maximizes information gain. Since the diagram is a DAG, a node v can have multiple
parents, so we combine all incoming samples into a dataset called D,. We then select the feature f*
and threshold 6* that maximize the information gain on D,. For each feature, we consider all unique
candidate thresholds, and compute the information gain of each potential split. Since the children of
D, can also have incoming data from other parents, we use D, ., () and D, , () to denote the data
in its children coming from other parents combined with the data coming from v with the current feature
and threshold. We then set (f(v),6(v)) = (f*,0*), assigning the best split to node v. This process is
shown in Algorithm 3 below.

4.2. Diagram Local Search Optimization

After the diagram has been initialized, we have the initial solution where each node has a decision
function defined. We then continue to phase two in which we refine this solution using local search.

4.2.1. Solution Representation
Let V be the set of nodes in the decision diagram. We represent a solution by a state .S, which is a
mapping:

S:VoFxOxVxV,
where s € S is a candidate solution and S(v) = (f(v),8(v), cieft(v), crignt(v)). Here, f(v) is the chosen
feature at node v, §(v) is the threshold, and ciert(v), crignt(v) are the left and right children of v. By design,
edges always go from layer d to d + 1. The neighborhood N (s) of a state s € S is the set of states
obtained by applying a single move to s, which are defined in Section 4.2.3. We search this space with
local moves that change the decision function for one node or redirect one edge.

4.2.2. Cost Function
The local search is guided by a cost function that balances the training accuracy with model complexity,
thereby promoting generalization and preventing overfitting. We define £(D, X) to be the total cost of a
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Algorithm 3 Diagram Initialization Using Information Gain

1: Input: Diagram D(V, E), training data X
22D, .+ X
3: for each v € V in BFS order do

4: H, < Entropy(D,)
5; if D, = () then
6: f) + —o0
7 else
8: IG* + —0
9: for each f € F do
10: f)« f
1: for every possible threshold 6 for feature f do
12: O(v) « 0
13: Hiepi = Entropy(De,,;,(v))
14: Hyight < Entropy(DCMght(v)
15: Wieft Deref )]
‘Dcleft('”)‘+|Dcr7ﬂgh,t(”)‘
16: Wright < ‘Dcright("’)l
regh |Dclc‘ft(’”)‘+|Dcright(’u)‘
17: 1G + H’u - (wleft ' Hleft + Wright * Hright)
18: if IG > IG* then
19: IG* «+ IG
20: e f
21: 0* <~ 0
22: end if
23: end for
24: fv) « f*
25: 0(v) « 0*
26: end for
27: end if
28: end for

decision diagram D on a dataset X. This cost combines the misclassification loss with a regularization
term that penalizes the number of activated decision nodes. The cost function is given by:

1
L(D,X)= ZL(D, X) + a - complexity(D)

where L(D, X) is the number of misclassified samples in X using diagram D, and L is the baseline
classification error obtained by predicting the majority class for all inputs, which makes the effect of
the regularization part independent of the dataset size. The parameter o > 0 controls the trade-off
between classification accuracy and model complexity. The term complexity(D) counts the number of
active decision nodes in D, excluding any that have been deactivated. This formulation encourages
the search process to produce smaller and more interpretable diagrams without sacrificing accuracy.

4.2.3. Move Operators
We define four types of moves, each modifying one node or one of its edges in the diagram:

1. Random feature and threshold: This move works by first selecting a decision node v uniformly
at random. Then, a feature f(v) is assigned by drawing uniformly from the entire set of features
F. After selecting the feature, the threshold 6(v) is set by randomly sampling from the values of
that feature in the training data.

The purpose of this move is to promote exploration within the search space. By introducing
randomness into the decision functions, it helps the algorithm escape local optima and explore
diverse solutions. This is particularly useful in metaheuristics like simulated annealing, where
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accepting worse solutions occasionally can help find better overall results in the long run.

. Locally optimal threshold given random feature: In this move, a decision node v is again
selected uniformly at random, and a feature f(v) is chosen randomly from F. However, instead
of assigning a random threshold, the threshold 6* is chosen to minimize the cost function for the
given node and feature.

To efficiently determine 6*, the data is pre-sorted by the selected feature. By scanning through
the candidate thresholds in sorted order, the cost function can be incrementally updated at each
potential split without recalculating from scratch. Starting from —oo, which directs all samples to
the left child, the threshold moves stepwise through data points, enabling fast evaluation of the
optimal split. The algorithm used for this is shown in Algorithm 4.

This move is focused on exploitation, as it refines the decision diagram by finding the locally opti-
mal threshold for a given feature, contrasting with the previous move’s emphasis on exploration.

Globally optimal threshold: This move performs a more exhaustive search for improvements
by finding the threshold that reduces the cost the most, across all nodes in the diagram. It sys-
tematically evaluates all features f € F and their corresponding candidate thresholds 6 for every
node v € V to find the split that achieves the lowest cost according to the cost function.

The threshold search for each feature follows the efficient procedure described previously. This
move aims to identify the globally optimal split at the node, making it useful for fine-tuning the
model when close to an optimum. However, this also results in a large computational cost, espe-
cially on large datasets with many features.

Edge redirecting: This move allows structural changes within the decision diagram. It begins by
selecting a node v from non-final layers and then randomly choosing one of its outgoing edges.
The selected edge is then reassigned to point to a random node in the next layer, with the restric-
tion that it cannot point to the same node as its other outgoing edge.

Algorithm 4 Algorithm for finding the optimal threshold in linear time

1:

22:
23:
24:

QO OoNa RN

Input: Current state s € S, and node to optimize v with f(v) = f and 6(v) = —oo; a mapping
classCounts from final-layer edges to class-wise sample counts; the cost of the current diagram
startCost; the current diagram accuracy start Acc; and the data samples reaching node v, sorted
by feature to optimize f, dataset D,,.

i COStpest —— startCost
2 0%+ 6(v)
: fori =0to |D,| do

finalEdge < classifyLeft(D,v,x;) > Get final-layer edge when z; is directed to v’s left child
classCounts(final Edge) < classCount(final Edge) — 1

finalEdge < classifyRight(D,v, x;) > Get final edge when z; is directed to v’s right child
classCounts(final Edge) < classCount(final Edge) + 1

if i < |D,| —1then
9(’(}) — ﬂEz‘Jr;Ui-H
else
0(v) < o
end if

cost + compCost(s, classCounts) > Compute new cost using s and classCounts
if cost < costpest N x; # ;41 then
COStpest < cost
0* + 6(v)
end if
end for
return 6*
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By redirecting edges, this move enables the model to explore alternative diagram topologies.
Adjusting the connections can help the decision diagram better capture data patterns and improve
overall performance.

Each move generates a neighboring state by modifying either the feature or threshold of a single node,
or by redirecting one of its edges. Together, these moves enable fine-tuning of the decision functions
and structure within the diagram template.

An important consideration is how to select which move to apply during the search process. Since differ-
ent moves contribute differently, with some promoting exploration and others focusing on exploitation, it
is important to strike a balance between these two aspects. To achieve this, we employ a neighborhood
search strategy that assigns specific probabilities to each move type. By tuning these probabilities, we
can control how often each move is selected, enabling the search to explore new regions of the solution
space while still focusing on improvements in promising areas. This should help the algorithm avoid
premature convergence on local minima and improve the chances of finding high-quality solutions.

4.2.4. Local Search Metaheuristics

For both hill climbing and simulated annealing, we use the default implementations provided by Ea-
syLocal++, as described in Section 3. In contrast, the implementation of Iterated Local Search (ILS)
requires additional customization, which we describe in detail below:

Iterated Local Search ILS alternates between local search and a perturbation in order to escape
local minima and explore different regions of the search space. In our case, we use hill climbing as
the local search. Once hill climbing converges, a perturbation step is applied to modify the current
solution. This perturbation randomly selects a fixed number of decision nodes and reassigns each of
them a new feature and threshold, sampled from the dataset. The modified solution then serves as the
starting point for the next round of hill climbing, allowing the algorithm to potentially escape suboptimal
areas and continue improving. The full algorithm can be seen in Algorithm 5 and Algorithm 6.

4.2.5. Node Deactivation and Pruning

A distinctive feature of our method is the concept of node deactivation, which allows the model to effec-
tively remove internal decision nodes during the local search without actually modifying the structure
of the diagram. Specifically, we consider a node v to be deactivated when its threshold is set to an
extreme value, either #(v) = 400 or 6(v) = —oo. In such cases, the decision at node v becomes
trivial, routing all incoming samples exclusively to one of its children. This essentially makes the node
equivalent to a passthrough.

We formally mark these nodes as deactivated, and importantly, they are excluded from the model’s
size when computing the complexity penalty in the objective function. This mechanism enables a form
of soft regularization. Rather than explicitly removing nodes, which would complicate the structure and

Algorithm 5 Iterated Local Search (ILS)

: Input: Initial state sy, number of iterations N, perturbation strength p

: Output: Best state found spest

: s < HillClimb(s)

Sbest < S

: for iterationi =0to NV do

5 < Perturb(s, p)

s" « HillClimb(3)

if £(s") < L(spest) then
Spest < &

end if

54§

: end for

: return spest

QU ONO R LN 2

= A A -
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Algorithm 6 Perturb(s, p)

Noa kw2

Input: State s, number of nodes to perturb p
Output: Perturbed state s
S+ s
Randomly select p decision nodes {vi,vs,...,v,} CV
: for each selected node v; do
Choose a feature f ~ Uniform(F)
Sample a threshold 6 from the observed values of feature f
Set decision function d,, (z) = Clest(v) iy §.9
‘ vright(v) otherwise
: end for
: return s

the optimization process, our method allows the search to implicitly simplify the model by deactivating
nodes that do not contribute meaningful decisions.

Once the local search is concluded, we perform a pruning step to clean up the diagram. Each deac-
tivated node v is removed from the graph, and its parents are reconnected directly to its only active
child. This results in a cleaner, more compact decision diagram. An example of this pruning process is
shown in Figure 4.2. As in the original model, class labels are determined by the outgoing edges of the
final-layer nodes. The figure depicts leaf nodes for illustration purposes only. In practice, classification
is handled directly via the final-layer edges.

[2086, 13.54] X6 <= 0.045
. [2086, 1364]
AN
[2059, 819] [27, 545] y
: 5

PN X26 <= 0.0 Xz24 <= 0.385
E‘z’(');; ;’9] EDISD [27, 545] [2059, 819]

K PN Ay

o <=0 | [ xo=0 ’ Xor <= 0.385

5 = Xa7 <= -0 l '0 O 1 i
[12, 0] Xs2 <= 0.01
/ / / / - [15, 545] [12, 0] (1344, 807] [715, 12]
A KN . A -

X3 <=0
[15, 545]

4[0, 0] [15, 545] [2059, 819]

‘a_
Xas <= -00 xs2 <= 0.011 X33 <= -00 Xg <= -0 .
[0, 0] [1344, 807] [15, 545 [727, 12] 4
/ : k g ([1282, 328]) ([62, 479])
(a) Before pruning (b) After pruning

Figure 4.2: Example of pruning deactivated nodes from a decision diagram. Each node contains the decision function and the

number of nodes per class reaching that node. The color indicates the purity of the node.



Experimental Results

In this section, we present a comprehensive experimental evaluation of our proposed method to assess
its performance, interpretability, and practical applicability. The evaluation is structured around the
following key research questions:

1.

5.1

What are the most effective configurations for our method, and to what extent does the
choice of initialization influence final performance?

We find that information gain-based initialization significantly improves test accuracy across all
metaheuristics, with hill climbing combined with information gain yielding the best performance
overall.

How closely can our method approximate the optimal decision diagrams produced by an
exact solver, and how does this relate to generalization on unseen data?

Our method reaches near-optimal training accuracy on the datasets where the MILP approach
successfully found the optimal solution, while also achieving higher test accuracy in most cases.

How does our approach compare to state-of-the-art methods for learning decision trees
and decision diagrams, in terms of both accuracy and interpretability?

Our method demonstrates performance comparable to, or better than state-of-the-art interpretable
approaches, achieving the best average rank and highest average test accuracy. Moreover, it
consistently produces compact models while maintaining lower fragmentation.

What are the advantages of using decision diagrams in our method compared to using
tree-based structures, in terms of performance and interpretability?

Our decision diagram-based approach significantly outperforms its tree-based counterpart in
terms of test accuracy. While the resulting diagrams tend to be somewhat deeper than the trees,
they show substantially less fragmentation.

How does our method perform on synthetic data generated from decision diagrams, and
how is this affected by changes in dataset characteristics and noise levels?

Surprisingly, DDLS underperforms on the synthetically generated datasets, possibly due to the
high complexity of the datasets. We test a random restart approach and show that this improves
the performance.

How does the computational efficiency of our method scale with dataset size?
Although slower than the other heuristic methods, DDLS scales effectively to large datasets and
remains significantly more efficient than exact solvers.

Experiment Setup

To thoroughly evaluate our method, we conducted experiments on a diverse collection of 57 datasets
sourced from the UCI Machine Learning Repository [15]. These datasets span a wide range of do-
mains and vary significantly in complexity, providing a robust basis for our comparisons. The number
of samples per dataset ranges from 47 to over 45,000, covering both small-scale and large-scale sce-

18
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Dataset n P k Dataset n P k
acute-inflam-nephritis 120 6 2 iris 150 4 3
acute-inflam-urinary 120 6 2 magic-telescope 19020 10 2
balance-scale 625 4 3 mammographic-mass 830 10 2
bank-marketing 45211 16 2 monks1 556 11 2
banknote-auth 1372 4 2 monks2 601 11 2
blood-transfusion 748 4 2 monks3 554 11 2
breast-cancer-diag 569 30 2 optical-recognition 5620 64 10
breast-cancer-prog 194 33 2 ozone-eighthr 1847 72 2
breast-cancer-wisc 699 9 2 ozone-onehr 1848 72 2
car-evaluation 1728 15 4 parkinsons 195 22 2
chess-kr-vs-kp 3196 37 2 pima-indians-diabetes 768 8 2
climate-simulation 540 18 2 planning-relax 182 12 2
congressional-voting 435 16 2 gsar-biodegradation 1055 41 2
connect-mines-rocks 208 60 2 seeds 210 7 3
connectionist-vowel 990 10 M seismic-bumps 2584 20 2
contraceptive-method 1473 11 3 soybean-small 47 35 4
credit-approval 653 37 2 spambase 4601 57 2
cylinder-bands 277 484 2 spect-heart 267 22 2
dermatology 366 34 6 spectf-heart 267 44 2
dry-bean-dataset 13611 16 7 statlog-german-credit 1000 48 2
echocardiogram 61 9 2 statlog-landsat-sat 6435 36 6
fertility-diagnosis 100 12 2 teaching-assistant 151 52 3
habermans-survival 306 3 2 thoracic-surgery 470 24 2
hayes-roth 160 4 3 thyroid-ann 3772 21 3
heart-disease-cleveland 297 18 5 thyroid-new 215 5 3
hepatitis 80 19 2 tic-tac-toe 958 18 2
image-segmentation 2310 18 7 wall-following-robot-2 5456 2 4
indian-liver-patient 579 10 2 wine 178 13 3
ionosphere 351 33 2

Table 5.1: The 57 UCI Datasets used during the experiments, with the number of samples n, features p, and classes k per
dataset.

narios. In addition, the datasets show considerable variation in the number of features (ranging from
two to 484 features) and the number of target classes (from binary classification up to 11 classes). This
diversity ensures our evaluation reflects a wide range of real-world scenarios. A detailed summary of
all datasets used, including the number of samples, features, and classes, is provided in Table 5.1.
Unless otherwise specified, we use five-fold cross-validation for datasets with over 100 samples and
ten-fold cross-validation for datasets with fewer than 100 samples, to minimize variance. From the
training set, 25% of the data is reserved as a validation set for hyperparameter tuning. Once tuning is
complete, the model is retrained on the full training set using the hyperparameters that achieved the
highest validation accuracy.

Besides the real-world datasets, we also evaluate our method using synthetic data. This allows us
to precisely control the characteristics of the dataset, such as the number of samples, features, and
classes, as well as the degree of noise introduced in both features and class labels. We generate a total
of 480 synthetic datasets based on a procedure similar to the methods described by Dunn [10], and van
der Linden et al. [18]. Each dataset is derived from one of six base decision diagrams constructed using
skeletons |, Ill, and V, for both depth five and depth ten, in order to model different complexity levels.
For every internal node in the diagram, we randomly select a feature and a corresponding threshold
6 ~ [0,1]. The final edges are labeled from left to right, with class labels assigned in a round-robin
fashion to achieve a balanced class distribution. We ensure that every leaf node is reached by at least
five samples to maintain meaningful class representation.

To create synthetic training sets, we uniformly sample n instances from [0, 1]?, where p is the number
of features. Feature noise is introduced by adding a perturbation sampled uniformly from the interval
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[—g, g]? to each feature vector, where g is the feature noise strength. Each sample is labeled using the
ground truth diagram, after which class noise is applied by flipping labels with a given probability.

For each configuration, we generate five different training and test datasets to account for variance.
Corresponding test sets are constructed with size n = complexity(D) - (p — 1) - 500, where D is
the decision diagram used to label the data, ensuring sufficient coverage. The default configura-
tion uses 1,000 training samples, five features, two classes, and no noise. We systematically vary
one factor at a time to analyze its effect, testing across multiple settings for the number of instances
(n = 250, 500, 1000, 5000), features (p = 2,5, 15,25), and classes (k = 2,4, 6, 8). For feature noise, we
test four levels (g = 0,0.2,0.6, 1), and for class noise we test noise rates of 0%, 20%, 40%, and 50%.

To assess whether observed performance differences are statistically significant, we use two approaches.
For pairwise comparisons, we apply the Wilcoxon signed-rank test alongside Akinshin’s Gamma, a
rank-based effect size measure indicating the magnitude and direction of differences [32]. For multiple
method comparisons, we use the Nemenyi critical distance (CD) test when the Friedman test indi-
cates global significant difference [1, 21]. This non-parametric test is designed for comparing multiple
methods across multiple datasets and is based on average ranks rather than raw performance values,
making it a robust method for measuring significance. Two methods are considered significantly differ-
ent if the difference in their average ranks exceeds the critical distance. For both methods, we use a
significance level of a = 0.05. Both the Wilcoxon signed-rank test and the Nemenyi critical distance
rank test are recommended for fair, statistically sound classifier evaluation [7], and form the basis of
our analysis.

All experiments were conducted on an HP ZBook Studio G5 equipped with an Intel Core i7-8750H CPU
(2.2 GHz, 6 cores) and 16 GB of RAM.

5.2. Method Configuration and Performance Analysis

We first describe how we configured the different settings of our approach, after which we analyze the
impact of the different metaheuristics and initialization methods.

5.2.1. Hyperparameter Tuning

We begin by evaluating how different metaheuristics and initialization methods affect the performance
of our approach using the UCI datasets. As previously mentioned, 25% of each training set is reserved
as a validation set for hyperparameter tuning. Some hyperparameters are general and apply across
all methods, while others are specific to particular metaheuristics. Due to the nature of some of these
parameters, we use Bayesian optimization with a limit of 30 evaluations to tune our hyperparameters.

Three general hyperparameters are tuned for every metaheuristic: 1) the diagram structural template,
selected from the five possible structures described in Section 4; 2) the depth d of the diagram, con-
strained to integer values within the range 1 < d < 10, thereby limiting the maximum depth of the final
diagram; and 3) the regularization parameter «, which is searched over the interval [107%,0.1] using a
log-uniform distribution. Below, we provide details on how the metaheuristic-specific hyperparameters
are tuned or fixed for each metaheuristic.

Hill Climbing Hill climbing requires one additional hyperparameter, which we fix to a constant value:
the maximum number of idle iterations. This parameter determines how many consecutive iterations
without improvement in the objective function are allowed before termination. We set this limit to 10,000,
based on the observation that further improvements become unlikely after such an extended period
without progress. Given that the maximum number of decision nodes in our diagrams is 63, this iter-
ation limit makes it likely that all move operations have been applied multiple times to each node. If
no improvement has been found after this extensive search, it is reasonable to assume that further
progress is unlikely.

Simulated Annealing Simulated annealing introduces several hyperparameters that we tune. The
first is the initial temperature T;, which controls the level of exploration in the early search phase. We
constrain this value to the range 60 < T, < 100. The second is the cooling rate ¢, which determines
how rapidly the temperature decays during the search. We restrict it to 0.8 < ¢ < 0.995, balancing
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exploration and convergence speed. The algorithm terminates once the temperature drops below a
fixed minimum threshold, which we set to 0.0001 in all experiments.

Iterated Local Search For iterated local search, we tune the number of repetitions, limiting the num-
ber between two and five to balance exploration, while allowing sufficient time for optimization. The
total number of allowed iterations is divided evenly among the repetitions. For example, if the overall it-
eration budget is 50,000 and two repetitions are used, each repetition is allowed up to 25,000 iterations.
Too few repetitions may limit exploration and increase the risk of getting stuck in local optima, while
too many reduce the effectiveness of each individual search phase. At the start of each repetition, the
current solution is perturbed by randomly selecting a subset of decision nodes and reassigning their
feature and threshold values randomly, as described in Section 4.2.4. The number of perturbed nodes
is treated as a tunable parameter, selected from the range two to ten.

In addition to the hyperparameters tuned during search, we fix several general parameters: namely,
the maximum number of local search iterations and the selection probabilities for each move. To deter-
mine suitable move probabilities, we included them in the Bayesian optimization process along with the
other hyperparameters, using a fixed budget of 20,000 iterations. We then ran these experiments for all
metaheuristics using random initialization on the 57 UCI datasets. The resulting distributions are shown
in Figure 5.1. Based on these results, we set the move probabilities to 0.35 for the random threshold
move, 0.6 for the optimal threshold move, and 0.05 for the edge move. This configuration aims to
balance exploration and exploitation while minimizing structural changes. Limiting edge modifications
helps preserve structural stability and prevents unnecessary overhead near convergence, where most
moves redirecting an edge have likely already been explored. Notably, the exhaustive move that iter-
ates over all nodes and features to find the globally best split is not included in this figure. This move
proved to be too computationally expensive without yielding noticeable performance gains and was
therefore excluded.

Having established these selection probabilities, we then focused on determining an appropriate max-
imum number of iterations, which is a critical hyperparameter for each metaheuristic. Using the fixed
move selection probabilities, we varied the iteration limit and evaluated the training accuracy, test ac-
curacy, and diagram size. For each dataset, these metrics were normalized relative to their optimal
values and aggregated as percentages over the range of iterations. The results, shown in Figure 5.2,
indicate that after approximately 50,000 iterations, test accuracy plateaus and further training may lead
to overfitting. We therefore set the maximum number of iterations to 50,000.

Lastly, Figure 5.2 shows that diagram size decreases rapidly in early iterations, likely because disabling
nodes is the optimal move at that time, which could possibly hinder the discovery of optimal solutions. To
mitigate this, we experimented with gradually increasing the regularization parameter « during training.
However, we did not find noticeable improvements using this approach.
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\ /\ Optimal Threshold
- \\ 1 Edge Move
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Figure 5.1: Distribution of move type frequencies across all metaheuristics on the 57 UCI datasets. Random Threshold refers

to the move selecting a random node, feature, and threshold. Optimal Threshold refers to the move that selects a random node

and feature, and selects the locally optimal threshold. Edge Move refers to the move selecting a node and redirecting one of its
outgoing edges to a random node in the next layer.
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Figure 5.2: Comparison of normalized training accuracy, test accuracy, and diagram size as a function of the maximum
number of iterations for each metaheuristic: Hill Climbing (HC), Simulated Annealing (SA), and lterated Local Search (ILS),
using random initialization. Error bars represent 95% confidence intervals across the evaluated datasets.
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Figure 5.3: Performance evaluation of the test accuracy for different metaheuristics and initialization methods for the 57 UCI
datasets. The tested methods are Hill Climbing (HC), Simulated Annealing (SA), and lterated Local Search (ILS). Using both
random initialization and initialization using information gain (I1G).

5.2.2. Performance Comparison of Metaheuristics and Initialization Methods
We conducted experiments on 57 datasets from the UCI repository and present the results in Fig-
ure 5.3. The figure displays the outcomes of the Nemenyi critical difference test alongside the average
test accuracy for each metaheuristic, comparing both random and information gain (IG) initialization
strategies.

The results clearly demonstrate that, across all metaheuristics, initializing the decision diagram using
information gain consistently leads to a large improvement in test accuracy. This emphasizes the im-
portance of starting from a strong initial solution, suggesting that the quality of the initial diagram has
a lasting impact on the outcome of the optimization process. We also observe that the relative perfor-
mance ranking of the metaheuristics remains consistent across initialization strategies, suggesting that
the local search phase contributes a roughly uniform improvement relative to the quality of the initial
solution.

Among the metaheuristics evaluated, hill climbing with information gain initialization (HC (IG)) emerges
as the most effective approach, achieving the highest average rank and the best overall test accuracy
across the benchmark datasets. In contrast, simulated annealing with random initialization (SA) per-
forms the worst on average, indicating that its probabilistic exploration strategy may be less effective
in this context. One possible reason why ILS (IG) performs worse than HC (IG) is that it may require
more uninterrupted iterations to reach a high-quality solution. As shown in Figure 5.2, test accuracy for
hill climbing continues to improve between 20,000 and 50,000 iterations. Since ILS splits this budget
across multiple repetitions, each interrupted by random perturbations, it may struggle to make the final
refinements needed for optimal performance. Given these results, we select the hill climbing method
with information gain initialization as our primary algorithm for further experiments. To simplify discus-
sion throughout the remainder of this thesis, we refer to this configuration as Decision Diagram Local
Search (DDLS).
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Dataset n DDLS MILP Dataset n DDLS MILP
acute-inflam-nephritis 120 100 100 iris 150 100 100
acute-inflam-urinary 120 100 100 soybean-small 47 100 100
echocardiogram 61 100 100 thyroid-new 215 99.9 100
hepatitis 80 100 100 wine 178 100 100

Table 5.2: Comparison of training accuracy (%) between DDLS and MILP on the 8 UCI datasets where MILP found a provably
optimal solution within a 20-minute timeout. Both methods use the same decision diagram structure (Structure Il, depth five)
with univariate splits and zero regularization. DDLS achieves near-optimal accuracy, closely matching MILP’s performance.

5.3. Comparison Against Optimal Decision Diagrams

To assess how closely DDLS can approximate the diagrams found by exact methods, we begin by
comparing the training accuracy of our method, DDLS, with an exact Mixed Integer Linear Programming
(MILP) approach for decision diagrams under identical conditions [11]. Specifically, both methods are
evaluated using the same decision diagram structure and objective function. Additionally, we evaluate
out-of-sample performance while allowing hyperparameter tuning.

5.3.1. Comparing Training Accuracy

To evaluate how close DDLS can approximate the optimal decision diagrams produced by MILP, we
compare both methods under identical conditions. Specifically, both methods are limited to using struc-
ture Il with a depth of five, and we set the regularization parameter to zero for both methods. This
ensures that both methods use the same objective function, which now focuses only on minimizing the
number of misclassifications. To maintain comparability, and since we aim to produce interpretable de-
cision diagrams, we configure MILP to use only univariate splits. We evaluate the performance across
all 57 UCI datasets, using the full dataset (100%) for training and a timeout of 20 minutes per run.

MILP failed to improve upon its initial heuristic solution in 49 out of the 57 datasets within the timeout. As
we are interested in assessing how close DDLS gets to the true optimum, we report results only for the
eight datasets where MILP successfully found a provably optimal solution. The results are presented
in Table 5.2. As shown, DDLS matches MILP’s training accuracy on most datasets, with MILP slightly
outperforming DDLS in only one case. This indicates that DDLS is effective at reaching near-optimal
solutions. It is, however, worth noting that these datasets are relatively simple, with few instances and
fairly low dimensionality, and therefore may not be fully representative of the performance on more
complex, larger datasets.

5.3.2. Comparing Test Accuracy and Runtime

In addition to training accuracy, we also assess generalization performance by evaluating test accuracy
on the same eight datasets. Unlike the training setup, test evaluation requires hyperparameter tuning.
For MILP, we tune the regularization parameter «, which controls the trade-off between accuracy and
model simplicity. Following the original study, we consider « € {0.01,0.1,0.2,0.5, 1}. MILP also requires

Dataset Test Accuracy (%) Runtime (s)
DDLS MILP DDLS MILP
acute-inflam-nephritis ~ 98.7 99.2 <1 <1
acute-inflam-urinary 100 100 <1 1
echocardiogram 96.9 95.0 <1 <1
hepatitis 86.5 82.5 <1 310
iris 94.7 91.7 <1 275
soybean-small 97.5 97.8 <1 <1
thyroid-new 96.3 91.9 <1 546
wine 93.0 91.1 <1 261

Table 5.3: Comparison of average test accuracy and runtime between DDLS and MILP on the eight UCI datasets where MILP
found provably optimal solutions. DDLS achieves higher test accuracy on most datasets with significantly lower runtime,
demonstrating its efficiency and generalization performance. Bold values indicate the better result between the two methods for
each metric.
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a predefined skeleton that specifies the number of nodes per layer. For this, we use the skeletons from
their work: (1-2—4-8), (1-2-4-4-4), (1-2-3-3-3-3-3), and (1-2—2—-2-2—-2-2-2), where each number
indicates how many nodes are in that layer. To ensure a fair comparison, we enforce a maximum of 15
decision nodes for DDLS as well. As before, we apply a 20-minute timeout per run for MILP.

Table 5.3 compares the test accuracy and runtime of DDLS and MILP on the eight UCI datasets where
MILP successfully found provably optimal solutions. The results reveal that DDLS outperforms or
matches MILP on six out of eight datasets in terms of test accuracy. Interestingly, this suggests that the
optimal solution obtained by MILP does not necessarily guarantee better generalization. One possible
explanation lies in the way both method tune their hyperparameters. DDLS allows for more possible
structures and is also more flexible in tuning the regularization parameter, in contrast to the MILP ap-
proach which only evaluates five possible values for «. The Wilcoxon signed-rank test confirms that this
difference is statistically significant (p = 0.031), with DDLS exhibiting a higher average test accuracy
with a small effect size (y = —0.36).

In addition to accuracy, Table 5.3 reports runtime comparisons. Despite the relative simplicity of the
datasets, with the largest containing only 214 samples, MILP frequently requires several minutes to
complete, whereas DDLS consistently finishes in under one second. This substantial difference high-
lights the efficiency and scalability advantages of our method. Due to its limited scalability, we do not
include MILP in any further comparisons.

5.4. Comparison Against State-of-the-Art Methods

In this section, we evaluate our algorithm against several state-of-the-art methods using the 57 datasets
from the UCI repository. We assess both predictive performance and interpretability metrics, such as
model size, to provide a comprehensive comparison. This evaluation helps determine not only how well
our method performs on real-world data, but also whether it maintains the interpretability that makes
decision diagrams appealing for machine learning.

5.4.1. Methods and Hyperparameter Tuning

We compare our method against four different approaches: 1) the TnT approach; 2) CART with cost-
complexity pruning; 3) CART with cost-complexity pruning limited to a maximum depth of six; and 4)
Interpretable Al (IAl) [10], a local search model for decision trees that inspired this research. For both
IAI and the depth-limited CART, we set the maximum depth to six, which corresponds to the maximum
number of decision nodes allowed by our method’s largest possible structure, structure IV of depth ten,
ensuring a fair comparison.

All of these methods require some form of hyperparameter tuning in order to produce the diagrams
or trees. We follow the experimental setup described in Section 5.1. Below, we explain how we tune
hyperparameters for each method:

TnT The TnT model requires tuning of a regularization parameter «. Following the approach in their
original paper, we sample 30 values of a equally spaced on a logarithmic scale between 5 x 107
and 0.1. We fix the number of merging phases N; = 2 and growing phases N, = 5, as specified
in their experiments. Each configuration is trained on the training set, and the best « is selected
based on validation accuracy. The best « is then used to train on the entire training set, after
which we use the test set to measure test accuracy.

CART For CART, we use cost-complexity pruning to tune the regularization parameter « using the
validation accuracy. This procedure generates a sequence of subtrees by progressively pruning
branches that offer the least improvement in the cost-complexity criterion, which balances model
accuracy with tree complexity. We use the best « to retrain on the full training set and report
accuracy on the test set.

CART (D=6) This variant follows the same procedure as standard CART, using cost-complexity pruning
to tune «, but limits the maximum tree depth to six.

1Al For IAl, hyperparameters are optimized using the method’s built-in tuning routine. It uses grid
search and a validation set for finding the best depth and tunes « during training. The maxi-
mum tree depth is limited to six to ensure comparability with other methods. Once the best « is
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(a) Nemenyi critical distance ranking test. (b) Average test accuracy of each method.

Figure 5.4: Test accuracy comparison across 57 UCI datasets for different methods.

identified, the model is retrained on the full training set using the found parameters, and the test
accuracy is reported on the test set.

5.4.2. Model Performance Analysis

The test accuracy results are presented in Figure 5.4, where (a) displays the Nemenyi critical distance
ranking test, and (b) shows the average test accuracy for each method. As illustrated, DDLS achieves
the best overall performance, ranks best in the Nemenyi test and also achieves the highest average
test accuracy. In contrast, CART (D=6) performs the worst, with both the highest rank and the lowest
accuracy, and is significantly outperformed by all methods except the CART baseline without a depth
limit. Among the remaining methods, TnT ranks second, followed closely by IAl.

Although the Nemenyi test does not indicate a statistically significant difference between DDLS and
TnT, IAl, or CART, pairwise comparisons using Wilcoxon signed-rank tests reveal that DDLS achieves
significantly higher test accuracy than Al (p = 0.044, v = —0.036). However, the effect size is negligible,
suggesting that the practical differences are small despite being statistically significant.

A notable observation is the significant performance gap between the two CART variants. We can see
that CART struggles with achieving high test accuracy when restricting the maximum size of the tree.
In contrast, both DDLS and IAl, despite being subject to the same size constraints, maintain a strong
performance under limited model capacity.

5.4.3. Model Complexity and Interpretability Analysis

Beyond test accuracy, we are also interested in evaluating the interpretability and structural properties
of the trees and diagrams generated by the different methods. Our goal is to gain deeper insight into
the types of structures produced by our approach, how they compare to those created by other decision
tree and decision diagram methods, and how these structural differences influence both interpretability
and performance. To this end, we consider several key metrics, which are explained below:

Number of decision nodes The first metric is the number of decision nodes in the tree or diagram.
Previous research has demonstrated that the size of decision trees plays a significant role in determin-
ing how interpretable it is [24], and may also indicate better generalization by reducing fragmentation.
We focus exclusively on decision nodes rather than leaf nodes, because decision diagrams can merge
leaf nodes to match the number of classes, which would make direct comparisons with trees unfair.

Average support per node Second, we analyze the degree of fragmentation in the structure. To
quantify this, we use the statistical support per decision node, which is defined as the percentage
of training samples that reach a given decision node. By averaging this value across all decision
nodes, we obtain an overall measure of fragmentation, where a higher average support suggests lower
fragmentation. This metric allows us to assess how fragmented the models produced by each method
are and whether decision diagrams actually reduce fragmentation compared to decision trees.
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Figure 5.5: Comparison of the number of decision nodes for different methods for the 57 UCI datasets.

Depth and question length Finally, previous studies have demonstrated that the depth of a decision
model is a key factor in its interpretability, with shallower models generally being more interpretable [24].
For this reason, we examine the depth and the question length of the models. The depth corresponds
to the longest path from the root to a leaf node, while the question length is defined as the average
number of decision nodes visited by a sample before reaching a leaf. Unlike depth, question length
incorporates the frequency of sample paths and provides a more representative view of the average
complexity of the classification process.

Figure 5.5 presents both the Nemenyi critical distance ranking test and the average values for the
number of decision nodes for each method. We see that IAl significantly outperforms the other meth-
ods in terms of size, achieving both the best rank and the lowest average number of decision nodes.
Following IAl are CART (D=6), and DDLS. We also notice that, since neither TnT nor CART imposes
constraints on model size, their average number of decision nodes is considerably higher compared to
the methods that are limited in the number of decision nodes.

The Nemenyi critical distance ranking test shows that the models produced by DDLS are not signifi-
cantly smaller than those generated by the other methods. In fact, DDLS exhibits comparable perfor-
mance to CART (D=6) in terms of both average rank and the average number of decision nodes. This
goes against the expectation that the diagrams produced by DDLS would be smaller than the deci-
sion trees created by other methods. A similar pattern is observed for TnT, which not only produces
relatively large models but also performs worse than most other methods.

From Figure 5.6, we observe the average depth and average question length for all methods. These
results align more closely with expectations. Both decision diagram models, DDLS and TnT, exhibit
relatively high depth and question length. This behavior is expected, as decision diagrams do not
need to grow as wide as decision trees and can instead go deeper. This is especially the case for
our method where the width of the possible structures is fairly limited. To preserve expressiveness
under such limitations, the models must grow deeper, resulting in increased depth and question length.

Depth
Question Length

J 0 B
DDLS TnT 1Al CART CART (D=6) DDLS TnT 1Al CART CART (D=6)
Method Method
(a) Average depth for each method. (b) Average question length of each method.

Figure 5.6: Comparison of the depth and question length for different methods for the 57 UCI datasets.
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Figure 5.7: Fragmentation analysis of the models produced by each method. (a) Shows the average statistical support per
decision node, where higher values indicate less fragmentation. (b) Displays the relationship between average support per
node and model size.

CART also exhibits a relatively high average depth, which may be attributed to outlier cases where it
generates particularly large trees. In contrast, IAl demonstrates the most compact structure, achieving
the lowest values in both average depth and question length, suggesting more interpretable models.

Finally, we analyze the degree of fragmentation across the different methods. The results are pre-
sented in Figure 5.7. The average statistical support per decision node is shown in (a), where higher
values indicate lower fragmentation. Both DDLS and TnT show relatively high average support, sug-
gesting they experience less fragmentation than other methods. This is particularly notable given that
these methods also tend to produce larger models than CART (D=6). Despite the increased size, the
decision diagrams generated by DDLS and TnT maintain a higher average support per node, likely be-
cause they grow deeper rather than wider. By leveraging the structural flexibility of decision diagrams
to combine rather than exclusively split data, they can expand in size without introducing excessive frag-
mentation. We also observe that |IAl achieves the highest average support overall, indicating the lowest
fragmentation. This aligns with previous observations that IAl produces the smallest and shallowest
trees.

Since fragmentation is inherently related to model size, (b) presents a more size-independent view by
plotting average support per decision node against the number of decision nodes. For each dataset
and run, we scatter the average support per node over the number of decision nodes in the resulting
model. We then apply a locally weighted scatterplot smoothing (LOWESS) curve to reveal trends in
fragmentation relative to model size [2].

From this plot, it becomes clear that both DDLS and TnT consistently have higher average support
across varying model sizes, indicating that they produce less fragmented models even as their size
increases. For example, a diagram generated by DDLS with 40 decision nodes can exhibit similar
average support to a decision tree from other methods with only 25 nodes. This highlights the ability of
decision diagrams to scale in size while limiting the amount of fragmentation. In contrast, the decision
tree methods exhibit comparable levels of fragmentation for a given model size, suggesting that the
tree structure makes it more difficult to manage fragmentation as the number of nodes increases.

5.4.4. Trade-Offs Between Model Size and Predictive Performance

Lastly, we analyze how the size of the models produced by each method compares to that of DDLS,
and how this affects the test accuracy. For this, we calculate the average number of decision nodes
and the average test accuracy per dataset for each method, and plot them against the corresponding
values of DDLS. In these scatter plots, shown in Figure 5.8, each point represents a dataset, with the
y-axis showing the average size of DDLS and the x-axis the average size of the comparison method.
The color of each point indicates which method achieved higher average test accuracy on that dataset,
or shows gray when both methods performed similarly. This visualization allows us to examine the
relationship between model size and predictive performance across different datasets.
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Figure 5.8: Comparison of the average number of decision nodes between DDLS and each competing method across the 57
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nodes) of DDLS and the compared method. Points are colored according to which method achieved higher average test
accuracy on that dataset and are colored gray when the difference in test accuracy is smaller than 1%.

From the plots, we observe that in all cases, except for CART (D=6), when the comparison method
produces larger models, DDLS yields more compact diagrams. However, it appears that as the size
of the competing models increases, DDLS struggles to match their accuracy. One reason for this
is the structural limitation in the current implementation of DDLS. For instance, with structure IV and
a maximum depth of ten, our method can produce at most 20 distinct leaf nodes. This becomes a
constraint in datasets with many classes, such as the connectionist-vowel dataset, which contains
11 classes. In such cases, DDLS may not be able to produce models with the width necessary to
achieve high accuracy. Additionally, as the diagram grows, the optimization process may become
more challenging due to the interconnected nature of the diagram structure, making it harder to find
effective improvements.

Another observation is that, for datasets where IAl produces small models (fewer than ten decision
nodes), DDLS tends to generate comparatively larger diagrams. Despite this, DDLS often achieves
higher accuracy in these small-model scenarios, suggesting that it makes effective use of the additional
decision nodes. A similar, but less noticeable pattern can be seen for the other methods.

5.5. DDLS With Tree Structure

To better understand the specific advantages offered by decision diagrams, we compare the standard
DDLS approach with a restricted variant that is constrained to operate exclusively on decision tree
structures, called DDLS (Tree). In this restricted version, a tree skeleton is used as a template, and the
move that redirects edges to arbitrary nodes in the subsequent layer is disabled. As a result, the model
remains a proper decision tree, although it is still optimized using the same local search framework.
This comparison allows us to assess whether the added flexibility of decision diagrams yields actual
benefits, or whether comparable performance can be achieved using standard trees. If the restricted
tree-based version performs similarly to the full DDLS, it may suggest that the search procedure itself
is the main driver of performance.

We follow the same experimental setup as previously described, using the 57 UCI datasets. Since this
comparison is based on tree structures rather than decision diagrams, we no longer need to select from
the structural templates, and this parameter is therefore excluded from hyperparameter tuning. The
maximum depth is limited between one and six to match the maximum number of decision nodes for
both methods. All other hyperparameters remain unchanged.

Number of Average support .
0,
Method Test accuracy (%) decision nodes per decision node (%) Depth  Question length
DDLS (Tree) 82.9 10.9 44.6 41 3.0
DDLS 83.7 12.5 46.3 5.6 4.0

Table 5.4: Comparison of DDLS with its tree-based variant DDLS (Tree) in terms of average test accuracy, model size,
fragmentation, depth, and question length. Averages are computed across the 57 UCI datasets. Bold values indicate the better
result for each metric.
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5.5.1. Comparing DDLS (Tree) and DDLS

We begin by examining how the test accuracy of our method changes when using decision trees instead
of decision diagrams. The results are presented in Table 5.4. On average, the test accuracy of DDLS
is slightly higher than that of DDLS (Tree). A Wilcoxon signed-rank test confirms that this difference is
statistically significant (p = 0.029), although with small effect size (v = —0.120). These results indicate
that decision diagrams provide a modest but consistent performance advantage over decision trees,
suggesting that the improvement stems not only from the effectiveness of our local search strategy, but
also from the added expressiveness and flexibility offered by decision diagrams.

In terms of model size, measured by the number of decision nodes, we observe that tree-based models
are significantly smaller than their diagram-based counterparts. As shown in Table 5.4, DDLS (Tree)
achieves a lower average number of decision nodes. This difference is statistically significant according
to the Wilcoxon signed-rank test (p = 0.006), though the effect size remains small (y = —0.114). These
findings are consistent with earlier results, such as those observed for IAl, which also produces more
compact models than DDLS.

The depth and question length similarly align with the characteristics of tree-based models. Both the
depth and question length are lower for DDLS (Tree), reflecting the shallower nature of decision trees.

We further examine fragmentation and test accuracy in relation to model size in Figure 5.9. The results
in (a) show that DDLS exhibits less fragmentation compared to DDLS (Tree), consistent with the trends
observed in earlier comparisons with other decision tree methods. Unlike previous comparisons, how-
ever, DDLS does not appear to produce smaller models when DDLS (Tree) generates larger trees, as
can be seenin (b). Instead, DDLS consistently results in larger models than DDLS (Tree). Despite this,
the increased size seems to contribute positively to performance, as DDLS generally achieves higher
test accuracy across most cases, suggesting that the additional complexity leads to more expressive
and effective models.

5.5.2. Comparing DDLS (Tree) and IAI

Our algorithm was inspired by IAl and shares several key characteristics. Both methods employ a local
search approach and include a similar move that finds the optimal threshold for a given decision node.
Furthermore, out of the various decision tree models considered in this work, IAl has demonstrated the
strongest performance across datasets. To assess how closely our DDLS (Tree) approach aligns with

Number of Average support .
0,
Method Test accuracy (%) decision nodes  per decision node (%) Depth  Question length
DDLS (Tree) 82.9 10.9 446 41 3.0
IAl 83.3 10.2 56.2 238 25

Table 5.5: Comparison of DDLS (Tree) and IAl in terms of average test accuracy, model size, fragmentation, depth, and
question length. Averages are computed across the 57 UCI datasets. Bold values indicate the better result for each metric.
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Figure 5.10: Comparison of fragmentation and model size between DDLS (Tree) and IAl. (a) Average support per decision
node as a function of model size, showing fragmentation. (b) Comparing model sizes, with colors representing which method
attains higher test accuracy, or equal when the difference in test accuracy is smaller than 1%

IAl's performance, we conduct a direct comparison between the two methods.

Table 5.5 presents several key metrics for both methods. The results show that DDLS (Tree) and 1Al
achieve comparable test accuracy and a similar number of decision nodes, with Al exhibiting a slight
advantage in both. This is supported by the Wilcoxon signed-rank test, which finds no statistically
significant differences between the two methods for either the test accuracy or the number of decision
nodes.

However, when examining model depth and question length, IAl produces significantly shallower trees
with shorter question lengths than DDLS (Tree). This difference may be due to IAl's specific hyperpa-
rameter tuning strategy and its use of cost-complexity pruning.

We further analyze fragmentation relative to model size in Figure 5.9. Plot (a) shows that fragmentation
levels are very similar between the two methods as the number of decision nodes increases, consistent
with other tree-based methods.

In plot (b), which compares model sizes and test accuracy, a pattern similar to the comparison between
IAl and DDLS can be seen. When IAl produces smaller models (fewer than ten decision nodes), DDLS
(Tree) tends to produce slightly larger models that achieve higher test accuracy. Conversely, as the
number of nodes increases for IAl, DDLS (Tree) generates smaller models but often loses in terms of
test accuracy.

5.6. Synthetic Data Experiments

In addition to the 57 UCI datasets, we evaluated our approach on synthetic datasets generated fol-
lowing the procedure described in Section 5.1. By default, these datasets contain five features, two
classes, 1,000 samples, and no noise. We systematically vary one parameter at a time, namely the
number of features, classes, samples, or the level of class and feature noise, and observe the result-
ing changes in accuracy, model size, and fragmentation. These experiments provide insight into our
method’s robustness and performance across different data characteristics. The results are summa-
rized in Figure 5.11.

5.6.1. Effect of Data Characteristics on Accuracy

Since the synthetic datasets are generated using decision diagrams templates as ground truth, we ex-
pected our DDLS method, capable of representing such diagrams exactly, to perform well. Surprisingly,
DDLS often underperforms compared to other methods, including tree-based approaches like CART
and IAl, and even compared to our own DDLS (Tree) variant using tree structures instead of diagrams.
In particular, 1Al and TnT consistently achieve the highest test accuracy across most synthetic config-
urations. This result is counterintuitive, given that DDLS is theoretically capable of exactly recovering
the ground truth model used to generate the data.
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Figure 5.11: Performance of different methods on synthetic datasets across three metrics: test accuracy (top row), number of
decision nodes (second row), fragmentation measured by average support per node (third row), and training accuracy (bottom
row). Each column varies one of five dataset characteristics: number of features, number of classes, number of samples,
feature noise, and class noise, while keeping the others fixed. This setup isolates the impact of each factor on model behavior.
Confidence intervals are omitted for clarity and visibility.
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Some decline in performance was expected for DDLS in settings with a large number of classes, since
DDLS is constrained in the number of leaf nodes it can produce. As the number of classes increases,
the model struggles to separate all outputs within its limited width. However, we can also see that when
increasing the number of features or the number of samples, DDLS consistently performs the worst out
of all the methods. The only exceptions are when we have increased class or feature noise, for which
DDLS seems to perform relatively better as the noise increases.

Furthermore, the training accuracy reveals a similar pattern, both DDLS and DDLS (Tree) consistently
exhibit the lowest performance, with DDLS (Tree) performing slightly better. This suggests that both
methods are likely underfitting to the training data. A plausible explanation is that the datasets are too
complex for these models to learn consistently. Many of the original diagrams used to generate the
datasets are large and contain complex dependencies, which may be difficult to recover by DDLS and
DDLS (Tree). We have already observed that performance tends to decline as the size of diagram
increases. Additionally, because trees have independent branches and are generally easier to learn
than decision diagrams, this may explain the slight performance advantage of DDLS (Tree) over DDLS
on both training and test accuracy.

5.6.2. Effect of Data Characteristics on Size and Fragmentation

When examining model size, we again observe that IAl consistently produces the most compact models.
This is followed by DDLS, DDLS (Tree), and CART (D=6), all of which yield models of comparable size.
In contrast, CART and TnT tend to produce significantly larger models.

In terms of fragmentation, DDLS consistently achieves a high average support per decision node, indi-
cating a low degree of fragmentation. This aligns with our earlier findings that DDLS produced models
with low fragmentation. However, in this synthetic setting, this reduced fragmentation does not appear
to translate into higher test accuracy.

5.6.3. Improving DDLS with Random Restarts

As previously noted, the training accuracy of DDLS is also worse than all methods in most cases,
indicating that it is likely underfitting to the training data. Two possible explanations for this behavior
are: 1) the regularization parameter o may be too large, discouraging model complexity; or 2) due to
the complexity of the dataset, the algorithm may struggle to consistently find high-quality solutions due
to the randomness in its search process.

To address these issues, we introduce two modifications. First, we expand the range of the regular-
ization parameter « to [10712,0.1], allowing for weaker regularization and greater flexibility in model
complexity. Second, we incorporate random restarts to improve solution quality. Specifically, after
tuning hyperparameters using the same procedure as before (now with the extended « range), we ini-
tialize DDLS (Restart) once using information gain and perform 50 independent local search runs. In
each run, we set the maximum number of idle iterations at 1,000, resulting in 50 candidate solutions.
We then select the decision diagram with the lowest cost among them. This approach reduces the
chance of selecting a diagram where the algorithm converged to a poor local optimum and increases
the likelihood of discovering a high-quality solution.

The results, shown in Figure 5.11, demonstrate that DDLS (Restart) substantially outperforms the stan-
dard version of DDLS in both training and test accuracy. In many cases, it approaches or even matches
the performance of 1Al, though this comes at the cost of slightly larger models and increased fragmen-
tation. These findings suggest that the complexity of the synthetic datasets makes it difficult for a single
run of local search to consistently find strong solutions. By performing multiple independent runs and
selecting the best result, random restarts reduce the likelihood of settling on a solution that became
trapped in a poor local optimum early in the search. In contrast, such restarts might have been less
important on real-world datasets, due to the lower complexity. For synthetic diagrams with intricate
dependencies, however, random restarts clearly provide a substantial benefit.

5.7. Scalability

Since one of our primary goals is to develop an algorithm that scales effectively to larger datasets,
we also evaluate the runtime performance of each method. We exclude the MILP-based approach
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Figure 5.12: Runtime comparison of our method against baseline approaches on (a) real-world UCI datasets using cumulative
runtime and (b) synthetic datasets with varying sample sizes. Error bars represent 95% confidence intervals

from this comparison, as it struggles to solve problems with more than 200 samples within a 20-minute
timeout, making it unsuitable for larger-scale experiments.

We assessed runtime in two ways: by cumulating the average runtime of each dataset across 57 UCI
datasets and by observing runtime behavior on synthetic datasets of varying sizes. The results are
presented in Figure 5.12.

In Figure 5.12 (a), which shows results on the UCI datasets, both versions of CART are noticeably the
fastest. DDLS and IAl exhibit the slowest runtimes, while TnT’s runtime falls between these two groups.
As expected, methods based on local search tend to be slower due to their more complex optimization
procedures.

Figure 5.12 (b) displays average runtimes on synthetic datasets as the number of samples increases.
For this experiment, we use the largest available structure for each method and disable regularization.
While DDLS is the slowest among the compared methods, it still scales effectively, maintaining tractable
runtimes even on datasets with up to 200,000 samples. This demonstrates that despite its higher
computational cost, DDLS remains far more scalable than exact methods and is viable for large-scale
applications.



Conclusion

In this thesis, we introduced Decision Diagram Local Search (DDLS), a novel local search algorithm
for learning decision diagrams. DDLS aims to bridge the gap between fast, greedy methods for con-
structing decision diagrams, which often yield suboptimal solutions, and exact optimization techniques
that are computationally expensive and scale poorly. Our approach uses a fixed diagram structure
and a local search to efficiently explore the space of interpretable models. Through extensive exper-
imentation, we demonstrate that DDLS is able to find near-optimal solutions for small datasets, while
significantly improving the runtime compared to exact methods. When benchmarked against state-of-
the-art decision diagram and decision tree models on 57 real-world UCI datasets, DDLS outperforms all
methods in terms of accuracy while maintaining a compact model size. The results showed that while
our diagrams are typically deeper, they suffer less from fragmentation, even as their size increases.

A limitation of DDLS becomes apparent in experiments on synthetic datasets generated from decision
diagrams, where it underperforms relative to other methods. We observe that DDLS tends to underfit
the training data, likely due to getting stuck in local optima caused by the complexity of these datasets.
Preliminary experiments incorporating random restarts, where we run DDLS multiple times and select
the candidate with the lowest cost, have already demonstrated significant improvements in both training
and test accuracy. Future research could further investigate this strategy, improving it and exploring its
potential in combination with other metaheuristics, such as simulated annealing. Additionally, subse-
quent work might consider moving beyond fixed structural templates by initializing DDLS with a decision
tree structure, from which every possible diagram can be created.

These initial results are promising and suggest that DDLS, and decision diagrams in general, have
considerable untapped potential. With continued refinement, it may become an even more powerful
and flexible tool for learning interpretable models, capable of performing well on both real-world and
complex synthetic settings.
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Dataset DDLS DDLS (Tree) TnT CART CART (D=6) IAl
acute-inflammations-nephritis  100.0 100.0 99.2 100.0 100.0 100.0
acute-inflammations-urinary 100.0 100.0 100.0 100.0 100.0 100.0
balance-scale 79.9 79.0 78.4 77.0 750 79.2
bank-marketing 90.0 90.1 90.3 90.2 89.9 90.2
banknote-authentication 98.7 97.5 989 98.7 98.5 98.3
blood-transfusion-service 77.5 781 79.0 75.9 759 78.2
breast-cancer-diagnostic 93.8 944 919 93.0 93.0 944
breast-cancer-prognostic 73.5 67.3 727 73.2 732 753
breast-cancer-wisconsin 96.2 93.9 94.0 93.4 93.7 95.0
car-evaluation 85.8 84.1 97.5 93.5 84.7 859
chess-kr-vs-kp 94.3 96.2 99.6 99.4 93.6 96.7
climate-simulation-crashes 90.6 889 904 90.4 90.7 915
congressional-voting 96.0 96.3 95.2 94.0 940 947
connectionist-mines-vs-rocks 80.0 72.7 70.2 71.6 711 77.4
connectionist-vowel 50.6 65.5 76.2 76.4 514  58.5
contraceptive-method-choice 54.9 547 53.0 56.2 56.4 55.6
credit-approval 86.8 87.2 84.8 85.0 844 85.1
cylinder-bands 74.6 65.7 67.5 66.4 63.5 69.7
dermatology 96.2 96.0 95.6 95.4 948 951
dry-bean-dataset 90.7 89.7 91.3 91.1 89.6 90.8
echocardiogram 97.5 95.8 96.8 96.8 96.8 96.8
fertility-diagnosis 84.8 78.7 83.0 81.0 80.0 88.0
habermans-survival 73.5 69.3 716 70.3 713 729
hayes-roth 79.0 80.8 81.2 83.8 844 76.9
heart-disease-cleveland 57.9 520 49.2 51.9 498 559
hepatitis 89.0 83.3 78.8 77.5 775 81.2
image-segmentation 95.6 94.7 959 94.9 909 954
indian-liver-patient 69.2 69.7 70.5 70.6 700 718
ionosphere 92.0 92.8 89.7 88.0 889 90.6
iris 96.8 95.6 947 95.3 953 940
magic-gamma-telescope 84.0 84.1 854 84.9 83.7 848
mammographic-mass 83.1 83.8 83.0 81.2 81.2 82.7
monks1 50.8 520 511 51.1 448 511
monks2 54.3 547 63.2 54.4 54,7  53.9
monks3 48.7 427 486 50.4 453 487
optical-recognition 81.9 85.1 90.8 90.1 771 86.3
ozone-eighthr 94.3 92.7 929 92.7 927 931
ozone-onehr 96.2 955 96.5 96.7 96.7 96.4
parkinsons 93.5 89.8 85.1 86.2 86.2 89.7
pima-indians-diabetes 76.9 76.2 73.9 73.4 724 759
planning-relax 71.3 725 714 67.6 66.0 714
gsar-biodegradation 83.0 82.2 82.9 82.0 81.7 829
seeds 91.2 969 924 91.9 919 91.0
seismic-bumps 93.3 934 934 93.0 93.0 933
soybean-small 100.0 100.0 97.8 95.6 956 97.8
spambase 92.3 91.7 919 91.6 90.8 917
spect-heart 68.7 746 73.0 70.4 704 73.8
spectf-heart 80.6 776  79.0 78.3 794 794
statlog-german-credit 71.7 755 716 72.6 723 715
statlog-landsat-satellite 85.5 845 875 86.2 839 855
teaching-assistant-evaluation 51.8 456  58.2 58.9 411 47.6
thoracic-surgery 86.2 81.9 84.3 83.2 823 851
thyroid-ann 99.9 99.8 99.8 99.7 99.7 99.7
thyroid-new 95.1 95.1 94.9 92.6 926 944
tic-tac-toe 914 939 941 95.0 93.1 92.6
wall-following-robot-2 100.0 100.0 100.0 100.0 100.0 100.0
wine 95.0 956 877 89.3 89.3 944

Table A.1: Complete overview of the test accuracy (%) for different methods on all 57 UCI datasets.
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