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Abstract

A time series is a series of data points indexed in time order. It can represent real world
processes, such as demand for groceries, electricity usage and stock prices. Machine Learning
(ML) models that accurately forecast these processes enable improved decision-making for
reducing waste and increasing efficiency. Previous research has produced an enormous number
of ML model classes, each well-performing on a different forecasting task domain, and each
written in their paradigm’s mathematical language.

For a new forecasting task in business, the job of data scientists is to select, tune and evaluate
some existing ML models. Because data scientists are scarce and expensive, many resources
are spent on replacing this human job with an automated approach, referred to as AutoML.
In current practice, the many existing ML models are used by tuning some of them and
combining their separate forecasts. An alternative is using them by merging their intrinsic
components, and tuning them all together to find a single hybrid ML model with better
performance. This is possible if the ambiguous language between forecasting paradigms is
consolidated into a unifying framework.

The first aim of this research is to introduce this framework, and thereby replacing the human
job with a computational job. The complete list of instructions to create a hybrid ML model
- data cleaning excluded - is presented in parameter format: a superparameter configuration.
Its components are feature engineering, training set formation and hypothesis training. An
example shows how superparameters from different paradigms can constitute a hybrid model.
The computational job is presented as superoptimization: optimizing the superparameters
for performance, applied to the task at hand. The problem of superoptimization is that it
requires too much runtime on a computer.

The second aim of this research is to reduce the runtime of the computational job, by learning
from previous tasks. This research proposes metafeatures for warmstarted Bayesian optimiza-
tion. It suggests promising hypothesis training superparameters (complexity and overfitting),
from previous tasks similar in size and input richness. The computational complexity re-
duction by 50% in the experiment, with respect to both a naïve and (proposed) coldstart
benchmark method, provides evidence for the potential of the proposed method. The weight
of evidence for the metafeatures is increased, by maintained performance improvement when
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the method is badly tuned. The open-source Python package warmstart is published as a
foundation for future experiments that focus on the other superparameter components, in the
pursuit of an AutoML for hybrid forecasting models.
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Chapter 1

Introduction

1-1 Context

Who benefits most from Machine Learning (ML) forecasting algorithms? There are countless
organizations that want to know the future value of a process for their decisions. How much
should the intensive care of a hospital scale up their capacity, to meet the future number of
COVID-19 patients and save lives? In which stocks should a trading agency invest, to profit
from the prospective increase of stock prices? How much fruit should a grocery store buy,
to match the future demand and prevent wastage? These questions form only the tip of the
iceberg of the applications of the forecasting research domain, that focuses on predicting the
future value of a process.

1-1-1 How a forecasting model is made

If the historical values of the process are stored in a time series, a ML forecasting model can
learn from the past to predict the future value of a process. The shared setting for forecasting
tasks is that there is access to the predicted time series (endogenous series), and optionally,
time series that are related to the predicted signal (exogenous series). An example of this
setting is visualized in Figure 1-1.
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2 Introduction

Figure 1-1: An example forecast setting with endogenous and exogenous data. The
forecast is made at the first hour of January 1st.

The research community has produced an enormous set of forecasting models. The perfor-
mance of a forecasting model is measured from the forecast errors over a historical test period.
As it depends on the forecasting task at hand which forecasting model yields good forecasting
performance, the job is to find the right forecasting model. This job, currently performed by
humans, is an iterative process of choosing a model, evaluating its performance and choosing
a new one, until the human is satisfied with the best found performance. An example of this
iterative job is visualized in Figure 1-2.

Figure 1-2: Performance visualization of iteratively suggesting model options for a fore-
casting task. The forecasting accuracy per iteration is measured in Mean Absolute Error (MAE).
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1-1 Context 3

1-1-2 Automated Machine Learning

In the current state of practice, the job of choosing and evaluating a forecasting model for
new unseen forecasting tasks requires humans with education in programming, forecasting,
ML and statistics, also referred to as forecasting data scientists. Because the salaries of
these gatekeepers of the technology are high, obtaining a forecasting model that creates
value in an application is expensive. The knowledge produced by the forecasting research
community therefore tends to be used for economically profitable forecasting applications of
big businesses. This tendency is enforced by the increasing complexity of the job of choosing
a model, because the ML research community is expanding its model set at a rapid pace.

In the ML research domain of classification and regression tasks, a new emerging field is re-
placing the human with a computer, referred to as Automated Machine Learning (AutoML).
It defines the creation and evaluation of an ML model as an objective function, to be op-
timized by an algorithm. Algorithms are proposed to reduce the computational complexity
and improve best-found model performance of the job. How the model’s performance is eval-
uated can be seen in Figure 1-2. Black-box optimization algorithms, for example Bayesian
optimization [1] and genetic optimization [2] learn from previous evaluations of the objective
function for the task at hand. The newest subdomain in AutoML, metalearning, focuses on
optimization algorithms that learn from the completed job on previous tasks[3, 4, 5].

1-1-3 State of research in forecasting

The M competitions[6, 7, 8, 9] aim to test the performance of forecasting models in an objective
and unbiased way. Despite their extensive ability to learn from history, new sophisticated ML
forecasting models have not outperformed simple classical models [8]. The most recent M
competition [9] however, was won by a forecasting model[10] that incorporates the intrinsic
components of a classical and ML model. Founder of the M competitions, Makridakis, argues
that ”the logical way forward is the utilization of hybrid and combination methods”[9].

1-1-4 Ideological goal

As there are many forecasting subdomains, their respective models are written in different
mathematical languages. What is missing, is a unifying parametrization of hybrid models,
applicable to the AutoML framework. This research pursuits the ideological goal

to democratize machine learning for any forecasting task, and converge models across
paradigms, by replacing expensive data scientists with a computer, that optimizes over

cross-paradigm forecasting model components.

This goal is relevant, because hybrid models can improve the forecasting performance for many
applications, and an automated approach make well-performing forecasting models accessible
to less affluent organizations.
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1-2 Objectives, scope and structure

1-2-1 Thesis objectives and scope

To address the ideological goal, this research indentifies three main objectives. Each objective
seeks to solve a corresponding problem. The first problem is that combining forecasting model
components of classical forecasting and supervised ML is difficult, because the paradigms
speak a different mathematical language. The objective is to:

Objective (1): Merge the classical time series forecasting and supervised ML
framework into a parametrization of creating and evaluating hybrids.

This parametrization, referred to as superparameter evaluation in this research, makes it
easier for humans to understand how to define hybrid forecasting models. It also enables the
AutoML framework to be applied to a hybrid forecasting model domain.

The second problem is that the complexity and size of a cross-paradigm forecasting model
component set, represented by the parametrization, is too big for a human to consider. The
objective is to:

Objective (2): Replace the human job of finding a well-performing modeling
option with a computational job, by applying the AutoML framework to the
parametrization.

As opposed to the limited human capacity, computational capacity is scalable and research
is constantly improving computational efficiency. The impact of replacing a human with a
computer is that the job becomes more feasible. It also makes the job less expensive, as salaries
for data scientists are high. The objective is limited to black-box optimization algorithms
and warmstarting. The computational job, which is the AutoML framework applied to the
parametrization (superparameter evaluation), is referred to as superoptimization in this
research. It is limited to black-box optimization and warmstarting.

The third problem is that existing optimization algorithms that optimize over the parametriza-
tion of cross-paradigm forecasting model components require too much runtime. The objective
is to:

Objective (3): Reduce the runtime of the computational job, by learning from
previous tasks.

The impact of achieving this objective is that performing the job becomes more feasible.
This research focuses on warmstarting[11], a metalearning method developed in the context
of classification tasks. The method imitates the approach of a human: when a new task is
at hand, the method finds the most similar previous tasks, uses their best modeling options
as starting point, and continues the job from there. Similarity is measured according to
metafeatures, a mathematical characterizations of a task, for example the size of the task’s
dataset. The approach only works if the defined metafeatures correlate with forecasting
models which yield good performance. This research generates new knowledge by synthesizing
two metafeatures, and providing empirical evidence that they increase the performance of the
warmstarting method.
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1-2-2 Thesis structure

Chapter 2 presents superparameter evaluation, the parametrization that merges classical time
series forecasting and supervised ML models. In chapter 3, the job of a human forecaster is
replaced with a computational job, referred to as superoptimization, by applying the AutoML
framework to the parametrization. The proposed method to reduce the runtime of the com-
putational job by learning from previous tasks, is explained in chapter 4. Chapter 5 discusses
the design choices for the experiment. The results of the experiment are presented in chapter
6. Finally, chapter 7 and 8 present the discussion, the conclusions, and suggestions for future
research.
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Chapter 2

Superparameter evaluation

This research presents a framework for parametrizing hybrid models from the classical fore-
casting and supervised Machine Learning (ML) paradigm, for the objective to:

Objective (1): Merge the classical time series forecasting and supervised ML
framework into a parametrization of creating and evaluating hybrids.

The parametrization is referred to as superparameter evaluation I(p, t). The list of instruc-
tions p, produces a forecasting model f , for the forecasting task at hand t. The forecasting
model f is then evaluated, to return the performance index lte. The inputs and outputs of
this process are illustrated in Figure 2-1. In the human job of finding a p with a small lte
(Figure 3-1). It is used as the objective function, to be minimized.

p lte

Superparameter evaluation I

train testt f

Figure 2-1: The process of superparameter evaluation. Calculating the performance index
lte of the suggested superparameter configuration p for task t, consists of training a forecasting
model f and evaluating it.

Firstly, section 2-1 explains the function of a forecasting model f , with a simple example.
Then, section 2-2 formalizes the forecasting task t. Section 2-3 explains what a superparameter
configuration p is, the superparameter space it is drawn from, and how it produces f . Section
2-4 explains how the performance index of f for t is measured, and presents a summary of the
entire process. Finally, section 2-5 discusses the improvements of the proposed standardization
of forecasting model production.
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8 Superparameter evaluation

2-1 Forecasting model

A forecasting model uses time series data. A time series is a set of repeated observations
through time of the same variable[12]. An example is the daily number of apples sold by your
local grocery store. We write a time series as

x = {x1, x2, ...xT } or x = {xt}, t = 1, 2, ...T, (2-1)

where xt is the variable at time t and the current time is T . Business decisions can be
improved by knowing what the future values of certain time series are, e.g. shortage of apples
in a grocery store can be prevented by buying the right amount on forehand. A dataset m
can consist of multiple time series. We define the forecasted time series as the endogenous
series y, for example the daily apple sales of your local grocery store. We define other time
series in m, related to y as the exogenous series v, for example the precipitation forecast. A
forecasting model f

f : X→ Y, (2-2)

predicts a future value of the endogenous series y ∈ Y, by analyzing a selection of the currently
available observations in y and v, denoted as xT ∈ X. We define the number of time steps to
predict into the future as forecast horizon c. A prediction ŷT at prediction base time T for
forecast horizon c, is denoted by

ŷT = f(xT ) ≈ yT +c, (2-3)

the actual value of the predicted observation at time step T is denoted by

ȳT = yT +c, (2-4)

and the forecast error,

εT = ŷT − ȳT , (2-5)

is the difference between the prediction and the actual value. An example forecasting task
t is forecasting the next day’s apple sales y, illustrated in Figure 2-2. For prediction, we
use historical values of y and precipitation forecasts v, because people may postpone their
grocery store trip to the next day when it’s raining. Every day a prediction for the next day
is made, with a one-step shifted prediction base time T and input configuration xT . The
example forecasting model f is

f(xT ) = ŷT = 0.2 · yT−1 + 0.9 · yT − 0.4 · vT − 0.1 · vT +1 + 0.1. (2-6)
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2-2 Forecasting task 9

yT−2

vT−2

yT−1

vT−1

yT

vT

yT +1

vT +1

yT−3yT−4...

vT−3vT−4...

va
ria

bl
es

time T

c
available
observation

unavailable
observation

predicted
observation

xT : selected input
observations at T

Legend

yT +2

vT +2

Figure 2-2: The input/output setting at prediction time T of an example one-step-ahead
(c = 1) forecasting model. The input data xT in blue is a selection of the available data points
in green, which consists of the endogenous series y and one exogenous series v. The unavailable
observation of interest yT+1, illustrated in red, is predicted by the forecasting model’s output ŷT .

2-2 Forecasting task

A forecasting task t is described by its dataset and forecasting scenario. The datasetm, which
is provided by the client, is the stored history of the endogenous (and optionally exogenous)
series, respectively y and v. The forecasting scenario, to be defined by the client, has the
following components:

• The data availability, a declaration of the data points available at time T , as illus-
trated in an example in Figure 2-4. This is a constraint for input selection.

• The forecast horizon c ∈ Z, which is the number of time steps, relative to T , to
predict into the future.

• A test set size nte ∈ Z, the number of prediction base times T to use for reliable
testing1 of f . The data corresponding to these steps is taken apart as test set, before
training.

• The test loss function lte ∈ Lte : Ynte × Ynte → R+, a way of calculating the perfor-
mance index, given the actuals and predictions for the test set.

1testing is explained in 2-4
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10 Superparameter evaluation

available
observation

unavailable at T

ŷT +c: predicted
observation

Legend

yT−1 yT +1yT yT +2

vT−1 vT +1vT vT +2

T

...

...

time

va
ria

bl
es yT−2

vT−2

c

apples sold

precipitation

Figure 2-3: Simple example forecasting task: apple sales. This is the basic intuitive example
that further sections will refer to. A grocery store wants to know how many apples will be sold
tomorrow (forecast horizon c = 1), to determine how many apples to buy from its supplier. At
every prediction time T , the available inputs for the forecast model are the apple sales numbers per
day y and the millimeters of precipitation up until the day of forecasting v. The grocery store is
convinced of the accuracy of the forecasting model, if its test loss function (mean absolute error),
yields a low score over a test period of one year (nte = 365). The grocery provides a dataset
m, consisting of four years of daily measurements of the apple sales numbers and precipitation
measurements.

The data availability and forecast horizon of a more complex forecasting task example is given
in Figure 2-4.

yT−4 yT−2yT−3 yT−1 yT +1yT yT +2 yT +4yT +3

v1
T−4 v1

T−2v1
T−3 v1

T−1 v1
T +1v1

T v1
T +2 v1

T +4v1
T +3

v2
T−4 v2

T−2v2
T−3 v2

T−1 v2
T +1v2

T v2
T +2 v2

T +4v2
T +3

v3
T−4 v3

T−2v3
T−3 v3

T−1 v3
T +1v3

T v3
T +2 v3

T +4v3
T +3

T

c

...

...

...

...

available
observation

unavailable
observation at T

ŷT +c: predicted
observation

Legend

time

va
ria

bl
es

Figure 2-4: Complex example forecasting task. In this example the forecast horizon is four
time steps, there is an exogenous series v1 of which the observations until prediction base time
T are available, another exogenous series v2 of which observations are available four time steps
into the future (for example a forecast of millimeters precipitation), and a third exogenous series
v3 of which the observations become available with a lag of two (for example due to database
latency).

A task t comes from a structured space, the task space T , as summarized in Figure 2-5. This
comprehensive mathematical characterization enables measuring the similarity between two
forecasting tasks.
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Task space T
task t: forecast scenario ∪ dataset
dataset m = (y ∪ v) ∈M

y: endogenous series ∈ Rny

v: exogenous series ∈ Rb·nv

n: time series length
b: number of exogenous sources

forecast scenario
c: forecast horizon
nte: test set size
Lte: test loss function
data availability

t

Figure 2-5: The elements of the task space. This is the first building block for the proposed
framework in Figure 3-5.

2-3 Superparameters

A superparameter configuration p is the complete hierarchic list of (human) instructions,
denoted as parameters of the process If(xT )(p) of producing a forecasting model f(xT ),

{If(xT )(p) : T→ f(xT ), ∀p}, (2-7)

and p,

p =


pxT

ptr

pH

, (2-8)

is divided in instructions for feature engineering pxT , composing a training set ptr and hy-
pothesis training pH. Formalizing the human instructions as a parameter type in stead of
a functional, enables leveraging hierarchy during optimization over p’s domain. Figure 2-6
illustrates how p and t are used to create f .

Master of Science Thesis J. Swart



12 Superparameter evaluation

Splitting TrainingXtr ∪ Y tr

p

pH

f(xT )

ptr

Feature
engineering

pxT

X ∪ Y

t
ntec m

Figure 2-6: The process If(xT ) of using the instructions in p to make forecasting model
f(xT ). The instructions in feature engineering pxT are used to define the model input xT , relative
to T . The instructions for forming a training set are denoted as ptr. The instructions for the
hypothesis class choice and the corresponding instructions for retrieving its optimized parameters
are denoted as pH, and the process results in a forecasting model f(xT ).

Firstly pxT , ptr and pH and their part of If(xT )(p) are explained. Then the space from which
p is drawn, the superparameter space P, is further explained. Finally, the improvement of
this formulation is argumented.

2-3-1 Feature engineering

Feature engineering is the process IxT ,

IxT (pxT ) : M× Z→ Xns ∪ Yns , ∀pxT , (2-9)

which retrieves input and output samples X ∪Y from a given dataset m and forecast horizon
c, by following the feature engineering instructions in pxT . Every sample corresponds with a
prediction base time T , and ns is the number of samples. The process consists of series trans-
formation, input selection and sample collection. Series transformation is the transformation
of the available observations in the endogenous and exogenous series to create additional
predictive exogenous series (hidden states). From all available observations and series trans-
formations at T , a selection is made for input vector xT . The final feature engineering step
is to create the sample set X ∪ Y , a collection of xT ∪ ȳT for every T in m. The process is
illustrated in Figure 2-7.
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ŷT +c: predicted
observation

xT : input selection

Legend

time

va
ria

bl
es

yT−1 yT +1yT yT +2

v1
T−1 v1

T +1v1
T v1

T +2

T

...

...

time

va
ria

bl
es seriestransform

available
transformed
observation

Figure 2-7: The feature engineering process IxT , for a single T , creating an example input
vector xT . The process starts in the left figure, with the endogenous and exogenous series, for
example the series in the simple example in figure 2-3. The series can be transformed to obtain
additional predictive inputs. For example, v2 can be the one-day-ahead precipitation forecast,
and v3 can be the day number of the week. Finally, a subset of the available observations is
selected as input vector xT . Promising example transformations stem from the classical time
series forecasting paradigm, that adds hidden states representing the time series’ level, seasonality
or forecasting error.

Many model components from the classical forecasting paradigm can be incorporated as trans-
formations. Some examples are the forecast error of the previous time step, the seasonality
(’MA’ and ’S’ in SARIMA[13]), and the modes of a CEEMDAN decomposition[14][15]. Ex-
amples of domain specific transformations are the 20-day moving average of a stock price for
a stock price forecasting task [16], and the one-day-ahead precipitation forecasts for the apple
sales task. An example of pxT , corresponding to Figure 2-7, is

pxT :


y : {−1, 0}
v1 : {0}
predict(v1) : {1}
day of week(y) : {1}

,

where the first column represents the (transformed) time series, and the second column rep-
resents the selected subset of input lags. This example results in the following samples,

xT =


yT−1
yT

v1
0

predict(v1
T +1)

day_of_week(yT +1)

 , ȳT = yT +c,

and the sample set X ∪ Y , consisting of a collection of the samples for every T , is illustrated
in Figure 2-8.
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prediction base time T

y1

x1

predicted observation y

input vector xT

yns−1y2

x2

...

...

yns

xnsxns−1

Figure 2-8: The output of feature engineering process: the sample series X ∪ Y . The
sample series contains the input vector xT and the actual value of the predicted observation ȳT
(as label) for every prediction base time T in dataset m. For the apple sales task of Figure 2-3,
an example xT is marked in blue in Figure 2-7.

2-3-2 Splitting

Splitting is the process Itr,

Itr(ptr) : Xns ∪ Yns × Z→ (Xntr ∪ Yntr ), (Xnte ∪ Ynte), ∀ptr (2-10)

which uses the sample set X ∪ Y to retrieve a training set Xtr ∪ Ytr and test set Xte ∪ Yte, by
using the test set size nte (defined in task t, see section 2-5) and the training set instructions
ptr. Firstly, the samples corresponding to the nte last prediction base times are removed from
X∪Y to form the test set. The remaining samples are used to form the training set, following
the instructions of ptr. An example for ptr is

ptr : all, (2-11)

of which the splitting process is illustrated in Figure 2-9.

prediction base time T

predicted observation y

input vector xT

Training set Xtr ∪ Ytr Test set Xte ∪ Yte

yns−nte

nte

yns−nte+1y1 y2 yns−1 yns
... ...

xns−nte xns−nte+1x1 x2 xns−1 xns... ...

ns − nte

Figure 2-9: Splitting process example Itr, creating a test set and training set from the
sample series. Firstly the test set Xte∪Yte of size nte is removed from the sample series X ∪Y .
Given the remaining samples, ptr instructs how to form the training set. For the apple sales
example, nte = 365 samples form the test set. When ptr of equation 2-11 is applied (using the
example pxT in Figure 2-7), the training set consists of 728 samples.
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2-3 Superparameters 15

Note that the abstract formulation in equation 2-10 allows for more complex training set
instructions. Examples are selecting a subset of the remaining samples and extending the
samples with samples from similar datasets[17] or samples with added noise[18].

2-3-3 Hypothesis training

We define hypothesis training as the process IH,

IH(pH) : Xntr ∪ Yntr → f(xT ), ∀pH, (2-12)

which retrieves a forecasting model f(xT ) from training set Xtr∪Ytr, by using the hypothesis
instructions pH. The process consists of hypothesis formation and training. A subset of the
superparameters in pH represents the type of relation to be learned between xT and ȳT . This
is the hypothesis class H,

H : {h(w) : X→ Y, for some w}, (2-13)

where w is the parameter vector to be optimized during training. The better the hypothesis
class corresponds with the type of relation between the input and predicted variable, the
higher the forecasting model’s performance can get. An example H is linear regression[19],
which for equation 2-6 corresponds to

h(w) = w1 · yT−1 + w2 · yT + w3 · vT + w4 · vT +1 + w5, w =


w1
w2
w3
w4
w5

 ,xT =


yT−1
yT

vT

vT +1
w5


The remaining subset of superparameters in pH are the training instructions. The objective
of training,

min
h∈H

ntr∑
i=1
Ltr(h(xtr

i ), ytr
i ), (2-14)

is to optimize parameter vector w, to obtain h(w) ∈ H, which predicts the training set’s
samples most accurately. The training loss function Ltr,

Ltr : Yntr × Yntr → R+, (2-15)

is a training instruction in pH defining how to calculate the performance from a set of predic-
tions Ŷ and actuals Y during training. The training optimization algorithm Atr is a training
instruction in pH, defining the sequential process for optimizing equation 2-14, for example
Stochastic Gradient Descent (SGD)[20] algorithms. An example Ltr is the Mean Squared
Error (MSE)[21],
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16 Superparameter evaluation

Ltr(Ŷ , Y ) = 1
ntr

ntr∑
i=1

(ŷi − yi)2, (2-16)

a loss function that penalizes large errors heavily. The training process results in a forecasting
model

f(xT ) = h(w∗). (2-17)

An example pH is

pH : linear :
{
Ltr : MSE
Atr : SGD

, (2-18)

which is the conjunction of the simple examples in this section. More complex examples can
be drawn from the neural networks (NN)[22] domain. An example pH for a NN is

pH : NN :



H :
{

width : 4
activation : ReLU

}
,

{
width : 6
activation : ReLU

}

Lte : MSE

Atr : RMSprop :



learning rate : 0.001
rho : 0.9
epsilon : None
decay : 0.0
batch size : 50
epochs : 100
kernel initializer : {uniform,uniform}

,

which illustrates a pH in a hypothesis training domain2 where lower level parameters have to be
set to satisfy equation 2-12. In current literature, these hypothesis training superparameters
are referred to as hyperparameters.

Models from the classical forecasting paradigm use the simple method of linear regression
for this hypothesis training component. The ML community has recently produced many
sophisticated models that can replace linear regression, using this framework.

2the example domain includes mini-batch gradient descent (RMSprop)[23] as training optimization algo-
rithm Atr
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2-3 Superparameters 17

2-3-4 Superparameter space

The superparameter space P is the set from which p is drawn. This research attempts to
structure this space, to enable optimizing over it. An example for p,

p =



pxT :


y : {−1, 0}
v1 : {0}
predict(v1) : {1}
day of week(y) : {1}

ptr : all

pH : linear :
{
Ltr : MSE
Atr : GD

,

is the merge of the partial examples in previous sections. It is a member of a search space S,
the set of considered p’s. For a human this is the set of p’s in its knowledge, for a computer this
is the set of p’s in the implementation. An example S, which includes a feature engineering
search space in the SARIMAX model domain, and a hypothesis training search space in the
Random Forest3[24] domain, is

S =



pxT :


y : {lags ⊂ {lag ∈ Z, −2 ≤ lag ≤ 0}}
v1 : {lags ⊂ {lag ∈ Z, −2 ≤ lag ≤ 0}}
predict(v1) : {lags ⊂ {lag ∈ Z, −1 ≤ lag ≤ 1}}
day of week(y) : {lags ⊂ {lag ∈ Z, −1 ≤ lag ≤ 1}}

ptr : {ntr = 1000 · dntr , dntr ∈ Z, 10 ≤ dntr ≤ 15}

pH :



# linear :
{
Ltr : {MSE,MAE}
Atr : GD

# DTA :


Ltr : MSE

Atr : RF :
{
{mdepth ∈ Z, 5 ≤ mdepth ≤ 10}
{nest = 10dnest , dnest ∈ Z, 1 ≤ dnest ≤ 3}

,

(2-19)

in which all available choices are represented as sets of variables in a multidimensional space.
This space consists of integer and categorical variables. The #-symbol represents the con-
ditional nature of a choice, making the lower level variables redundant when the variable is

3DTA stands for Decision Tree Average, the hypothesis class applicable to the Random Forest optimization
algorithm
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not selected. Note that in the feature engineering part, not one but a subset of lags can be
selected. The search space S is a subset of the superparameter space P,

P =


PxT , IxT (pxT ) : M× Z→ Xns ∪ Yns , ∀pxT⊂ PxT

Ptr, Itr(ptr) : Xns ∪ Yns × Z→ (Xntr ∪ Yntr ), (Xnte ∪ Ynte), ∀ptr ∈ Ptr

PH, IH(pH) : (Xntr ∪ Yntr )→ h(w∗), ∀pH ∈ PH

(2-20)

the space of all p’s that can possibly be suggested. In words, it is limited to fit parameters of
functionals that

• transform a time series (in IxT ),

• select a time series element, given a reference index (in IxT ),

• select and/or create labeled samples (Itr),

• are a supervised ML model (I).

It is an infinitely large space, it contains different types of dimensions and has infinitely
many conditional subspaces. Understanding the hierarchy of P is important for research
in optimization algorithms4 in its space. The definition of P divides the job of a human
into implementation of parametrized functionals, and tuning their parameters for a specific
forecasting task.

Applied in practice, the search space S represents the superparameter configuration set appli-
cable to the implemented functionals, to be optimized by a human or optimization algorithm.
In a business, specialized in forecasting, the implementation design of superparameter evalu-
ation I and corresponding search space S should contain all well-performing superparameter
configurations p for the task set within the real world application domain of its focus. As new
well-performing forecasting models are discovered by research, the business absorbs the new
knowledge by implementing their intrinsic components (the explained functionals) in I.

S

Superparameter space P

Model creation instructions for:
PxT : feature engineering
Ps: training set
PH: hypothesis training

search space S ⊂ P

Figure 2-10: The elements of the superparameter space.

4optimization algorithms applied to superparameter evaluation are referred to as superoptimization algo-
rithms in this research, as explained in chapter 3
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2-4 Performance index 19

2-4 Performance index

The performance index lte is a scalar accuracy score of the produced forecasting model f(x) =
h(w∗), which is retrieved using the task’s test set Xte ∪ Yte and test loss function Lte. Firstly
the model makes predictions Ŷte ∈ Ynte for the sample inputs in the test set Xte. The test
loss function Lte : Ynte × Ynte → R+ then compares Ŷte with the actuals Yte and maps them
to a positive scalar, which is the final output of the superparameter evaluation process. An
example Lte is the Mean Absolute Percentage Error (MAPE)[25],

Lte(Ŷte, Yte) = 1
nte

nte∑
i=1

∣∣∣∣∣Yte,i − Ŷte,i

Yte,i

∣∣∣∣∣ , (2-21)

where every step i is a shift in the prediction base time. There are countless metrics proposed
in literature[26, 27, 28, 21], all of which apply to different risk scenario’s of a task, making it
a characteristic of the task.

The superparameter evaluation process I can be concisely presented as

I : T× S→ R+, (2-22)

and the complete process is illustrated in detail in Figure 2-11.

t

Splitting
Hypothesis
training Testing

Xtr ∪ Ytr

nte

p

pH

h (w∗)

ptr

Feature
engineering

pxT

c m

X ∪ Y

Xte ∪ Yte Lte

Superparameter evaluation I

lte

Figure 2-11: The superparameter evaluation process in detail. Given a superparameter
configuration p ∈ S and forecasting task t, this evaluation process produces a forecasting model
f = h(w∗) and returns its performance index lte. The process consists of four steps. Step (1),
section 2-3-1: feature engineering is performed to obtain sample set X ∪ Y (). Step (2), section
2-3-2: splitting divides X∪Y up in test set Xte∪Yte and training set Xtr∪Ytr. Step (3), section
2-3-3: hypothesis training uses the training set to optimize the parameters of a hypothesis class,
to obtain forecasting model f = h(w∗). Step (4): testing calculates the performance index lte
from the forecasting errors on the test set. This performance index is the output of the process.

The simple building block of superparameter evaluation is illustrated in Figure 2-12.
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Superparameter evaluation I
I := T× S 7→ R+

lte: performance index ∈ R+
t

p lte

Figure 2-12: Superparameter evaluation building block.

2-5 Comparison with current practice

The first objective of this research,

Objective (1): Merge the classical time series forecasting and supervised ML
framework into a parametrization of creating and evaluating hybrids,

is achieved by presenting a framework for parametrizing hybrid models from the classical
forecasting and supervised ML paradigm. This section discusses its difference with the state
of practice.

In current research, the job of model creation is explained using the term ’hyperparameters’[29].
They are defined as the parameters of a learning algorithm, which uses a dataset to create
a model, and they have to be tuned to minimize a loss function. The format of a hyperpa-
rameter configuration is defined as an unstructured tuple, and no effort is made to further
define the contents of a hyperparameter configuration. No notion is made on whether the
term ‘hyperparameter’ includes or excludes feature engineering processes. This research re-
jects the vague term ‘hyperparameter’ that often causes ambiguity, and introduces the terms
superparameter p, and forecasting task t. The proposed surrounding theory is a compact
writing and implementation standardization for creating cross-paradigm models, applied to
forecasting5.

2-5-1 Completeness for full automation

The first difference of the term superparameter with respect to the term hyperparameter, is
that it is explicitly defined as the complete set of instructions necessary for model creation.
Likewise, the forecasting task t is defined in a complete sense. Because of this completeness,
full automation of the human forecaster’s job is enabled.

2-5-2 Cross-paradigm forecasting models

The second difference between the terms superparameter and hyperparameter, is that the
dimensions in the superparameter space are hierarchized into feature engineering, training set
formation an hypothesis training. This hierarchy enables creating search spaces that include
cross-paradigm superparameter configurations, including the classical time series forecasting

5using some simplifications in the definitions (excluding the time component of the framework), the theory
can be applied to the supervised ML framework
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and ML regression paradigm. The hierarchy also reduces the number of dimensions of S, and
therefore the computational complexity of finding p∗(t).

variables

time

variables

time

Classical time series forecasting Machine learning regression

variables

time

Combination

Figure 2-13: Principal forecast direction of classical time series forecasting (left), machine learn-
ing regression (center) and a combination of the two (right)

Classical time series forecasting mainly focuses on learning autoregressive patterns of univari-
ate time series[30, 26, 31, 12, 32, 33, 34, 35]. The principal learning direction is illustrated
in the left of Figure 2-13. In sophisticated classical models exogenous input time series are
sometimes also leveraged[13], but they are always extensions on univariate forecasting models.
The principal learning direction of ML regression is illustrated in the middle of Figure 2-13.
It focuses on learning the relation between a target value and other variables, without a focus
on autoregressiveness. This approach has been highly successful for learning time invariant
tasks. This core difference in the approach to creating a model, lends itself for the classical
forecasting community to take over the term hyperparameter as ’a parameter that needs to
be set before training’. An example result of this way of thinking is the following notation of
an example cross-paradigm S,

S =



# ARIMA :

order :


{p ∈ Z, 1 ≤ p ≤ 5}
d : 0
{q ∈ Z, 0 ≤ q ≤ 5}

# RF :



pxT :
{
y : {lag order : dy ∈ Z, −4 ≤ dy ≤ 0}
y− pred(y) : {lag order : dy−pred(y) ∈ Z, −4 ≤ dy−pred(y) ≤ 0}

ptr : all
Ltr : MSE

Atr : RF :
{
{mdepth ∈ Z, 5 ≤ mdepth ≤ 10}
{nest = 10dnest , dnest ∈ Z, 1 ≤ dnest ≤ 3}

,

(2-23)

where the ARMA model originates from classical time series forecasting, and Random Forest
(RF) from ML regression. The domain S contains six dimensions. Note that so-called ‘hy-
perparameters’ of an ARMA model actually instruct which lags of which (transformed) series
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are included for a linear regression model. If we hierarchize S according to the proposed defi-
nition of a superparameter configuration, we are forced to mathematically unpack the ARMA
model. The correct way to write S of the example in equation 2-23 is

S =



pxT :
{
y : {lag order : dy ∈ Z, −4 ≤ dy ≤ 0}
y− pred(y) : {lag order : dy−pred(y) ∈ Z, −4 ≤ dy−pred(y) ≤ 0}

ptr : all

pH :



# linear :
{
Ltr : MSE
Atr : GD

# DTA :


Ltr : MSE

Atr : RF :
{
{mdepth ∈ Z, 5 ≤ mdepth ≤ 10}
{nest = 10dnest , dnest ∈ Z, 1 ≤ dnest ≤ 3}

,

(2-24)

which contains the same exact model configurations, but has only four dimensions. This
reduces the computational complexity of finding p∗ in S. This example shows the possible
combination of the carefully selected feature engineering instructions from the classical fore-
casting paradigm, with the more sophisticated hypothesis classes and training optimisation
algorithms of the ML regression paradigm, which is very promising. This is only an example.
We can put many forecasting model components into this hierarchy. The classical forecasting
paradigm’s models (e.g. SARIMAX[13]) can be rewritten as a set in pxT . Neural networks
and decision trees can be included in pH. Time series decomposition methods, for example
CEEMDAN decomposition[15], can be included as feature transformation in pxT . Which
models fit in the standardization is a matter of future exploration. The contributed theoret-
ical standardization acts as an enabler to merge the learnings in forecasting from different
paradigms.

2-5-3 Basis for learning from previous tasks

Learning from previous tasks is predicting p∗, using the characteristics of t. This is an
ambitious goal, because collecting a sample set of previous tasks is very costly, the relation
between t and p∗ is highly complex, and the range S is complex and high dimensional. The
first improvement of the theory is that it reduces the number of dimensions of S, as explained
in equation 2-24, which is a simplification.

Current researches in AutoML[11, 29, 36, 37] define ’some permutations in modeling’ as a
hyperparameter search space, and show the performance of their proposed algorithms over
this domain. The second improvement of the proposed theory for learning from previous
tasks, is hierarchy in t and p∗(t) that divides up their complex relation into more manageable
chunks. Generalizable relations can be found between between specific parts of the hierarchy
in t and p∗(t). This improves the degree to which AutoML researches can be built on each
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other. Example hypothetical relations are the correlation of input measurements and the
predicted measurement, in relation to feature selection superparameters in SxT , and the size
of the dataset m in relation to the number of parameters in the hypothesis class of SH.

2-5-4 Extension to multivariate inputs

Research in forecasting focuses mainly on univariate models[38, 6, 7, 8], or extensions of
these. The increasing amount of data in the real world has led to more exogenous time series
in the scenario of forecasting tasks, but a formalization of the problem setting is missing in
literature. The formalization of superparameter evaluation fills this gap, by being applicable
to multivariate time series. Exogenous time series can simply be included in the ’available
observations’. In the feature engineering search space component, the transformations from
the classical forecasting paradigm can be applied to the exogenous series. An increased length
of input vector xT (and a larger length of time series in the dataset m) increases the accuracy
potential of ML models that are complex. They can be incorporated in the hypothesis training
search space component.

Combining model components from different paradigms and including exogenous series is
promising for forecasting tasks with big datasets. However, the superparameter evaluation
function is very expensive in these settings, and the size of the search space is very big. How
can one find a superparameter configuration that yields good performance on a forecasting
task at hand?
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Chapter 3

Superoptimization

The previous chapter, a framework for parametrizing the creation and evaluation process of
hybrid forecasting models is presented as superparameter evaluation. The next objective is
to:

Objective (2): Replace the human job of finding a well-performing modeling
option with a computational job, by applying the AutoML framework to the
parametrization.

In current practice, a human has the job to choose superparameter configuration p ∈ S, the
complete list of instructions for creating a forecasting model, for the task at hand. Search
space S is the set of p’s considered. The objective in this choice is to minimize the superpa-
rameter evaluation I(p, t) for the task at hand t. The human approach is to start evaluating
a set of promising p’s, denoted as p0 ⊂ S, inferred from its experience in previous tasks T∗.
Then the human performs an iterative job of suggesting promising p’s for evaluation, based
on previous evaluations, until satisfaction. Finally, the best-performing p for t, denoted as
p∗(t), is used for production. The human job is illustrated in Figure 3-1.
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t

p∗(t)
Human
job

pk lte,k

Previous
tasks

T∗

p0

Superparameter
evaluation

t

Figure 3-1: The human job of finding a well-performing superparameter configuration
p∗(t) for the forecasting task t at hand. Firstly note that the model options in the knowledge
of a human can be expressed as a search space S, containing p’s. When a new task is at hand,
for example the apple sales example in Figure 2-3, the human firstly looks at the previous task
set T∗ to find similar tasks. Example similar tasks are apple sales tasks from other stores, or
other fruit sales tasks. Their well-performing superparameter configurations p∗(tprev) are used
as (promising) initial suggestions pk=0 for superparameter evaluation on the task at hand. Using
the performance index lte,k of previous iterations k, the human gets an idea of where the high
performing regions of p are. Then an iterative process starts, of which the current iteration is
denoted as k. During iteration k, the human suggests pk and updates its ideas on high performing
regions using the corresponding lte,k. Iterations are repeated until the human is satisfied, and the
best-so-far superparameter configuration p∗(t) is used for production.

This job is mathematically represented as

min
p

I(p, t)
s.t. p ∈ S ⊂ P,

(3-1)

and we define it as superoptimization. This research replaces the human job with a super-
optimization algorithm As. It iteratively suggests p ∈ S for superparameter evaluation. The
search space S is the set of considered superparameter configurations. In business S con-
sists of the forecast model components incorporated in the implementation. The set S is a
subset of P, a nonconvex, multidimensional, mixed-type and conditional set of all possible
superparameter configurations, as defined in equation 2-20. The evaluation function I(p, t)
is computationally expensive (it contains an optimization), and has no derivative available.
The goal of superoptimization is two-fold:

• Find a p ∈ S that minimizes I(p, t) for a given t, denoted as p∗(t).

• Minimize the computational resources for finding p∗(t).

The performance of a superoptimization algorithm is displayed by plotting the best-so-far
found performance index lte, against the computational resources, as illustrated in Figure 1-
2. Section 3-1 explains As, and how to learn from previous evaluations. Section 3-2 explains
how to learn from previous tasks.
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3-1 Superoptimization algorithm

The superoptimization algorithm As replaces the human job of iteratively suggesting promis-
ing p’s, by looking at which p’s yielded a good or bad performance index in the evaluation
history E. The job of As is illustrated in Figure 3-2.

Superoptimization algorithm As

1. for p in p0 do

evaluate I(p, t)
2. for k ← [ 1 to kmax do

pk ←[Ws(Ek−1)
evaluate I(pk, t)

3. return p∗(t)←[ min
p∈Ek

I(p, t)

p: superparameter configuration ∈ S

Ek: history ∈
(
S ∪ R+

)Z
= GZ

Superparameter evaluation I
I = T× S → R+

lte: performance index ∈ R+
t

pk lte,k

S

p∗(t)

p0

iteration k

Figure 3-2: Superoptimization algorithm. When a new forecasting task t is at hand, for
example the apple sales task in Figure 2-3, the superoptimization algorithm As searches for a
well-performing superparameter configuration p∗(t) in the search space S. Note that after every
evaluation the result {pk ∪ lte,k} of iteration k is stored in the evaluation history E, so we have
version Ek for iteration k. The superoptimization algorithm starts out by evaluating an initial set
of p’s, denoted as p0. In the case that p0 is not inferred from previous tasks, p0 is randomly
drawn from S. After this initialization, the function Ws suggests a promising p ∈ S, based on
Ek−1. When the maximum number of iterations kmax is reached, the best-so-far superparameter
configuration is outputted as p∗(t).

As explained in section 1, the increase of the amount of data has gone hand in hand with popu-
larity of more complex regression models in the Machine Learning (ML) regression paradigm.
These models commonly have an increased amount of superparameters in pH in combination
with computationally complex evaluation functions[29], making the reduction of CPU cycles
by As a popular research topic[36]. The algorithms that tackle this problem differ in sugges-
tion function Ws. This section discusses the two main classes of algorithms in section 3-1-1
and section 3-1-2.

3-1-1 Sequential model-based optimization algorithms

Recently a lot of studies have focused on the traditional black-box optimization method
Sequential Model Based Optimization (SMBO)[36]. The intuition behind this approach is that
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suggestion function Ws makes an informed decision, based upon the entire set of previous
evaluations Ek, by exploiting area’s of good performance and exploring area’s where few
samples have been evaluated. In SMBO, Ws consists of training a surrogate model M and
retrieving a suggested pk from thisM . The model is trained on Ek−1, and functions as a cheap
surrogate of the expensive objective function I. The model M then suggests some p’s and
selects the p that optimizes an acquisition function. SMBO approaches differ in hypothesis
class for M and acquisition function. An example SMBO algorithm is SMAC[39], which uses
a Random Forest as surrogate model.

3-1-2 Population-based optimization algorithms

Another class of algorithms for superoptimization is the Population-based Optimization Al-
gorithm (POA)[40]. The core difference with SMBO is that Ws only uses the part of Ek−1
with a good performance index lte, referred to as the population. The suggestion function
uses the current population to infer a new suggested batch of p’s from for evaluation. An
example is the evolutionary algorithm[41], which uses selection, recombination and mutation
to evolve the search towards superparameter regions of high accuracy.

The bottleneck for these algorithms, is that for every new task, superoptimization starts from
scratch, with a randomly drawn p0.

3-2 Metalearning

In the human process of superoptimization, as illustrated in Figure 3-1, the forecaster finds
a previous task t that is highly similar and uses its best performing superparameter config-
uration(s) p∗(tprev) as a promising starting point. This job is replaced by a computational
process called metalearning, as illustrated in Figure 3-3. It uses the set of previous tasks T∗
to retrieve a promising initialization batch, also referred to as a warmstart[3] p0. The warm-
start p0 is fed into superoptimization algorithm As, to improve the optimization of equation
3-1. The components of the metalearning process are the metafeature encoder We, the set of
completed tasks T∗, and the metalearner Wm.
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Superoptimization algorithm As

p0

Metalearner Wm

Wm : Rnm × D→ Sb

p0: warmstart ∈ Sb

nw: warmstart size

Metafeature encoder We

We : T→ Rnm

f : metafeatures ∈ Rnm

nm: number of metafeatures

f

t

Previous task space D
T∗: previous task set ∈ Knt = D
E∗: completed task ∈

(
GZ ∪ Rnm

)
= K

nt: number of previous tasks

T∗

Figure 3-3: Metalearning. When a new forecasting task t is at hand, for example the apple sales
task in Figure 2-3, We computes a metafeature vector f from the dataset, as a low-dimensional
characteristic representation. The metalearner Wm then uses f to find similar previous tasks in
the previous task set T∗ , to suggests a promising set of p’s to initialize As with, also referred to
as the warmstart p0. As explained in Figure 3-2, the superoptimization algorithm As evaluates
p0, and then proceeds with its own iterative process.

The metafeature encoder We,

We : T→ Rnm , (3-2)

maps the task at hand t ∈ T, to a vector f ∈ Rnm of metafeatures, where nm is the number of
metafeatures. A metafeature is a measure that characterizes t. Complementary to the forecast
scenario characteristics explained in section 2-2, statistical measures[4] can be calculated from
m, to obtain a lower dimensional representation of m for in f. Some examples are the length
of the time series in m and the correlation between lags of (transformed) time series and the
target.

Completed tasks are stored in the previous task set T∗,

T∗ ∈ Knt = D, (3-3)

which is a set of completed tasks, where a completed task E∗,

E∗ ∈ (GZ ∪ Rnm) = K, (3-4)

is defined as a conjunction of the evaluation history Ekmax ∈ GZ and metafeatures f ∈ Rnm

of a previous task.

The metalearner Wm,

Wm : Rnm × D→ Sb, (3-5)

retrieves a warmstart p0 ⊂ S for the superoptimization of t, using f and T∗. The number of
p’s in p0 is denoted by b. This approach naturally imitates a data scientist, who starts super-
optimization using knowledge from previous tasks. The goal is to suggest a warmstart with
well-performing superparameter configurations, to start out as close as possible to the optimal
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solution and thereby spare computational resources. Two examples for the metalearner Wm

are demonstrated in [11]. The K-Nearest Neighbors algorithm and the Random Forest (RF)
algorithm are used to find the task in previous task set T∗ most similar to t, and their b best
performing p’s are fed into As as warmstart p0. Experiments in metalearning have some big
challenges[?]:

• defining metafeatures that correlate with p∗ ∈ S for any t,

• composing a previous task set T∗ for an experiment. If the tasks in T∗ are too similar,
superoptimization becomes a trivial process, as they share the same p∗. If the tasks in
T∗ are too dissimilar, cross-learning is ineffective. It is impossible to know the degree
of similarity, before implementation and execution of an experiment. Experiments in
metalearning characterize as both implementationally and computationally expensive.

3-3 AutoML framework applied to superparameter evaluation

The second aim of this research is to apply the AutoML framework to superparameter eval-
uation, to replace the human job of finding an well-performing forecasting modeling option,
with a computational job. The task is defined as superoptimization, as presented in equation
3-1. It is performed by the superoptimization algorithm As. In Figure 3-4, the automatic
approach in (b) illustrates how the superoptimization algorithm replaces the job of the human
forecaster (also see Figure 3-1) in (a), which learns from previous evaluations on the task at
hand. The bottleneck in the automatic approach is that its naïve approach to a new task
is computationally complex, because it does not learn from previous tasks. This research
proposes learning from previous forecasting tasks T∗. The metalearner suggests a warmstart
p0, consisting of p’s that performed well on similar previous tasks.
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Superparameter
evaluation
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Figure 3-4: The human approach, versus the automatic approach, versus the AutoML
framework that learns from previous tasks. The human approach (a) is explained in Figure 3-
1. In the automatic approach (b), the human job of learning from previous evaluations on the
task at hand is replaced by the superoptimization algorithm. In the approach that learns from
previous tasks (c), the human job of learning from previous tasks T∗ to suggest a warmstart p0,
is replaced by the metalearner.

In Figure 3-5, the proposed framework for learning from previous forecasting tasks is illus-
trated in detail. At the top of each block in the diagram a referral is made to the section it
is introduced in. The approach contains five steps:

1. The task at hand t is fed into the metafeature encoderWe, which maps it to the feature
vector f, a lower dimensional representation of t.

2. The task at hand is compared to the previous tasks T∗, to produce a promising warm-
start p0 ⊂ S.

3. The superoptimization algorithm As is initialized with p0 and search space S. The
superparameter evaluation function I is initialized with t.

4. Running As, which firstly evaluates p0 and then iteratively evaluates promising p’s, by
learning from evaluation history Ek.

5. When the maximum number of iterations kmax is reached, the best performing super-
parameter configuration p∗(t) is selected for production.

In the real world, completed tasks can be stored to gradually build out the previous task set,
to improve the performance of As.
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S

t

pk lte,k

Superparameter evaluation I (2)
I = S ×M→ R+

lte: performance index ∈ R+

train evaluate

p∗(t)

Task space T (2-2)
task t ∈ T, contains:
dataset m = (y ∪ v) ∈ M

y: endogenous series ∈ Rny

v: exogenous series ∈ Rb·nv

n: number of samples in series
b: number of exogenous sources

forecast scenario
c: forecast horizon
nte: test set size
Lte: test loss function
data availability

Superparameter space P (2-3-4)
Model creation instructions for:

PxT : feature engineering
Ps: training set
PH: hypothesis training

search space S ⊂ P

Superoptimization algorithm As (3-2)
1. for p in p0 do

evaluate I(p, t)
2. for k ←[ 1 to kmax do

pk ←[Ws(Ek−1)
evaluate I(pk, t)

3. return p∗(t)←[ min
p∈Ek

I(p, t)

p: superparameter configuration ∈ S

Ek: history ∈
(
S ∪ R+

)Z
= GZ

p0

Metalearner Wm (3-3)
Wm : Rnm × D→ Sb

p0: warmstart ⊂ S

b: warmstart size

Metafeature encoder We (3-3)
We : T→ Rnm

f : metafeatures ∈ Rnm

nm: number of metafeatures

f

Previous task space D (3-3)
T∗: previous task set ∈ Knt = D

E∗: completed task ∈
(
GZ ∪ Rnm

)
= K

nt: number of previous tasks

T∗

t

iteration k
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Figure 3-5: AutoML framework applied to superparameter evaluation, in detail. Note
that at the top of each block, there is a reference to the section with a detailed explanation. A
superparameter configuration p ∈ P is the complete list of instructions to produce a forecasting
model f(x). This explanation follows the steps, indicated by the yellow circles. In (1) the task t
at hand, for example the apple sales task in Figure 2-3, is fed into the metafeature encoder We,
which maps it to a metafeature vector f, which characterizes it. Then in (2), f is compared with
the tasks in the previous task set T∗, to obtain superparameter configurations that have yielded a
good performance index lte,k for similar previous tasks. We refer to this output as the warmstart
p0 ⊂ S ⊂ P. Step (3) is the initialization of the superoptimization process, performed by the
superoptimization algorithm As. The task is fed into the superparameter evaluation function I,
which contains the training and evaluation process, given p ∈ S. The search space S is the domain
of forecasting model creation instructions, for example the one in equation 2-19, and initializes
As. The warmstart p0 is also fed into As. Then in (4) the superoptimization is performed,
to obtain a p with a minimized lte: firstly the p’s in p0 are evaluated, and then the iterative
process of As starts. The dashed lines represent iteration k of this process, in which the history
of evaluations Ek−1 is used by a suggestion functionWs to suggest a promising pk for evaluation.
This process ends when the maximum number of iterations kmax is reached. Finally, in (5) the
best-found superparameter configuration p∗(t) is outputted to use in production.
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Chapter 4

Proposed method

The creation and evaluation process, applicable to a large set of hybrid forecasting models for
a new task at hand, is standardized to superparameter evaluation I(p, t) (chapter 2). Given
a task t, it takes a superparameter configuration1 p as input, and retrieves its performance
index lte as output. The AutoML framework is incorporated around this process (chapter 3)
to define the superoptimization job of obtaining a well-performing forecasting model p∗(t).
The job can be performed by any algorithm that minimizes I(p, t) with respect to p ∈ S2.
As existing algorithms require too much runtime for this computational job, this research
proposes a method for the objective to

(Objective 3) Reduce the runtime of the computational job, by learning from
previous tasks.

4-1 Motivation

Existing algorithms learn from previous evaluations on the task at hand, as illustrated in
Figure 3-4(b). A new method[11], referred to as warmstarting, also incorporates learnings
from previous tasks, as illustrated in Figure 3-4(c). When a new task is at hand, it finds
the previous task most similar (w.r.t. their metafeatures) in the previous task set T∗, and
suggest its best performing superparameter configuration as an initialization batch to the
superoptimization algorithm. The research applies the method to classification tasks, and it
uses 46 metafeatures on a previous task set of 57 tasks. The method has proven to work from
a functional perspective. The paper however leaves the process of finding the metafeatures
unexplained, and therefore its implications on overfitting, which is concerning in a context of
only 57 tasks. On top of that, the method should have been better benchmarked, as explained
in 5-1. This means that the metalearner might not work on tasks outside of the included
previous task set. The generalizability of the conclusion on whether the right metafeatures
are used is therefore questionable. Without an experiment that maximizes the weight of the

1the complete list of instructions for a hybrid model to be set before training and evaluation
2search space S is the considered set of superparameter configurations, for example equation 2-24
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evidence that a set of metafeatures has a relation with good performing parts in the search
space S, the method is just a complex functionality, inapplicable to the real world.
This research aims to provide evidence for which metafeatures should be used in warmstarting,
for the above mentioned objective. The motivations in formulation of the proposed method
are therefore:

• propose few metafeatures,

• that have a justifiable relation with a demarcated subset of superparameters,

• apply a simple metalearner.

4-2 Hypothesis

The proposed metafeatures (in metafeature encoder We) are size and feature richness. The
demarcated subset of the superparameters is the hypothesis training superparameters pH.
The metalearner Wm calculates similarity using the L1-norm. They are explained in section
4-3 and 4-4. The idea is that the size and feature richness in the training set of a task t, have a
relation with the good performing superparameters for hypothesis training p∗tr(t). This gives
rise to the hypothesis that:
(Hypothesis) Runtime of superoptimizing hypothesis training superparameters
reduces, if size and input richness are metafeatures in warmstarting.
The demarcation of the hypothesis is illustrated in Figure 4-1.

Task’s
metafeatures

p∗(t)

p∗xT

p∗tr

p∗H

?

?

?

f

Well-performing
Superparameters

size

input richness

Figure 4-1: Experiment hypothesis demarcation. This research demarcates to finding
metafeatures that have a relation with well-performing hypothesis training superparameter con-
figurations pH. Future research is to be done on finding metafeatures that have a relation with
the other components of a superparameter configuration.

4-3 Metafeature encoder

The metafeature encoder We,

We : T→ Rnm , (4-1)
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maps the task t to a vector of metafeatures f, as explained in section 3-2. This experiment’s
metafeatures and their substantiated hypothetical relations with well performing parts of the
search space are:

• Size: the number of samples in the training set ntr is hypothesized to indicate well-
performing regions of complexity superparameters. When a model has a higher degree of
complexity, it has a larger parameter vector w to train (the training process is explained
in section 2-12). The metafeature hypothesis is that more samples are needed when more
parameters have to be trained. An example is the number of trees superparameter, as
explained in Appendix A, which has to be set higher when more training samples are
used.

• Input richness: an estimation of how predictive the inputs in xT are for the predicted
variable y, is hypothesized to indicate well-performing regions of overfitting superpa-
rameters. When the input richness is low, there is a high amount of noise, which means
that the forecasting model benefits from a higher degree of protective measures against
overfitting. An example is the minimum child weight superparameter, as explained in
Appendix A, which would have to be set higher when inputs contain more noise, in
order to average a prediction over a higher number of input samples.

Other hypothesis training classes from the Machine Learning (ML) paradigm (for example
neural networks) also have superparameters that either set the model complexity or the
degree of overfitting, just like XGBoost. It is therefore plausible that conclusions on these
hypotheses generalize outside of this experiment’s search space. The hypothesized relation
between metafeatures and well-performing regions in the search space is illustrated in Figure 4-
2.

min_child_weight

subsample

max_depth

learning_rate

num_trees

overfitting
hyperparameters

complexity
hyperparameters

size

feature richness

Figure 4-2: Metafeature relations

Input richness is measured by decorrelating the inputs, and accumulating their univariate
feature importance with respect to the target. The way of measuring univariate feature
importance is Spearman’s rank correlation3 [42],

rs,j = 1−
6
∑
d2

i,j

n3 − n
and f =

∑
j

rs,j (4-2)

3it corresponds best with XGBoost’s binning nature, and XGBoost is the search space of the experiment
setting.
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where di,j is the difference of the rank between the target and feature j of observation i
and n is the number of observations. The rank correlation of all features are summated to
obtain a scalar, characterizing feature richness. Note that this method has some limitations.
Firstly, the feature interdependencies are not incorporated. Secondly, the interactions with
the hypothesis class are not included in this measure.

4-4 Metalearner

The metalearner Wm,

Wm : Rnm × D→ Sb, (4-3)

maps the metafeatures f and the previous task set T∗ to a warmstart p0 ⊂ S, a promising set
of superparameter configurations p0 to initialize the Bayesian optimization with. Analogous
to the metafeature encoder, this research deviates from previous studies [11, 43] which use a
complex metalearner, by choosing a simple one, in order to prevent overfitting on meta level.
The chosen simple metalearner calculates the L1-norm between the metafeatures of the task
at hand and previous tasks,

d(ti, tj) = ||f(ti), f(tj)||1, (4-4)

to rank previous tasks in D on similarity. The r best performing configurations of the k most
similar datasets are collected, of which the b most occurring configurations constitute p0. The
parameters r, k and b, also referred to as metaparameters, are the only parameters that are
manually set in the proposed method. They are adjusted only slightly to obtain meaningful
results, while preventing overfitting on the previous task set.
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Chapter 5

Experiment

In the experiment, the proposed method performs superoptimization, given a task at hand.
This job is performed for multiple tasks. The experiment setting is defined to answer the
hypothesis:
(Hypothesis) Runtime of superoptimizing hypothesis training superparameters
reduces, if size and input richness are metafeatures in warmstarting.

Benchmark methods perform the same job, to compare the performances of the methods. The
benchmarks are explained in 5-1, the set of tasks is explained in section 5-2, and the search
space is explained in section 5-3. The superoptimization algorithm is defined in ??. Finally,
the experiment execution is explained in section 5-5, including the published open-source
Python package warmstart, which provides an implementational basis for future research in
metalearning.

5-1 Benchmarks

The proposed method is benchmarked against three algorithms.

Benchmark algorithm 1: Random Search

The first benchmark algorithm is Random Search[37], whose suggestion function Ws suggest
random samples from the search space.

Benchmark algorithm 2: naïve

In this benchmark algorithm, the warmstart p0 of the proposed method is replaced with a
random start.
This benchmark is used by [11] to compare their metalearning method with, while it does not
provide insight on whether the metalearning method is learning from previous tasks. Even if
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the metalearner is well-designed, it could be outperformed by the naive approach, when the
previous task set is too small or the tasks in the previous task set are too different. On the
other hand, if the metalearner is ill-designed, it could still outperform the naive approach,
when the search space is too wide. In other words, a superparameter configuration suggested
from ány previous task could be helpful, no matter the similarity of the previous task. This
insight is of crucial importance in drawing conclusions from the results of a metalearning
experiment, and has gotten no attention in previous work.

Benchmark algorithm 3: Coldstarted

This research proposes a coldstart as a benchmark algorithm for metalearning, as illustrated
in Figure 5-1. The coldstart uses the same metalearning method, but as opposed to the
most similar previous tasks, the least similar previous tasks are selected to suggest p0 ⊂ S.
By comparison with this benchmark, more reliable conclusions on the defined experiment
hypothesis can be drawn.

Input richness

Size

Input richness

Size

Input richness

Size task at hand

Legend:

selected task

set of tasks

Warmstarted ColdstartedPrevious task set

Figure 5-1: Task selected from previous task set T∗ to suggest initialization batch p0 from
(see figure Figure 3-4), for the warmstart method and coldstart benchmark. Selecting the
most similar previous task to suggest its best superparameter configuration to the task at hand,
referred to as warmstart, should outperform its reversed method of selecting the least similar
previous task, referred to as coldstart.

5-2 Forecasting task set

This section explains the set of forecasting tasks, used in the experiment. The forecasting
tasks of interest characterize as follows:

• The dataset m contains a large number of indices n for which measurements are stored.

• The dataset m contains exogenous time series v.

• The endogenous series y of the dataset m represents a complex process, of which the
forecasting can benefit from complex forecasting models.

At the time of writing, no public benchmark set of forecasting, matching the criteria is
available. The internship company generously provides a dataset of 16 forecasting tasks as a
public benchmark dataset. The tasks have the following characteristics:
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5-2 Forecasting task set 39

• The dataset contains measurements of a complex process in the trading industry, of
which the forecasting can benefit from complex forecasting models.

• The dataset contains one endogenous series y and one exogenous series v with three
years of hourly measurements.

• The exogenous measurements are available up until T + 1.

• The time series in m have no level, which means they fluctuate around 0.

The tasks are grouped into two different processes that differ in input richness, so 8 tasks per
process. Every task is then also divided into one with a big dataset, and one with a small
dataset (by cutting a part off the data). This means there are 4 groups of 8 tasks, and a
total of 32 tasks, as shown in Figure 5-2. This setting is chosen, because in this task set there
are very similar tasks and very dissimilar tasks. If the experiment’s hypothesis is true, the
chances are high that the results can conclude so.

Input richness

Size

8760

17520

0.05 0.15

8 tasks
Legend:

Figure 5-2: The groups of tasks in the experiment are divided into 4 groups of different
size and input richness.

The shared forecasting scenario of tasks in the previous task set is illustrated in Figure 5-3.

yT−2

vT−2

yT−1

vT−1

yT

vT

yT +1

vT +1

yT−3yT−4...

vT−3vT−4...
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time T
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available
observation

unavailable
observation

predicted
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Legend

yT +2

vT +2

Figure 5-3: The forecast horizon and data availability of the previous task set. The
forecast horizon c = 1, and the exogenous measurements are available up until T + 1.

The test loss function is the mean squared error[21],

Master of Science Thesis J. Swart



40 Experiment

Lte(Ŷte, Yte) = 1
nte

nte∑
i=1

∣∣∣Yte,i − Ŷte,i

∣∣∣ , (5-1)

on a test set of 3
4 years (nte = 6570). This research uses a simple, intuïtive and general test

loss function, because the choice for the right test loss function is specific for the use case
of a forecasting task, and this outside the research scope. Superoptimization overfitting is
evaluated on a crossvalidation set of 1

4 years (ncv = 2190).

5-3 Search space

This section motivates the demarcation of the search space for the experiment. The consid-
erations in this demarcation process are defined as follows:

1. relevance: the search space should result in a well-performing forecasting model for
every task in the previous task set.

2. feasibility: the experiment resulting from the search space should not demand a too
high computational complexity.

3. generalizability: conclusions from the experiment on this search space should be
plausible to generalize to other search spaces and forecasting tasks, and therefore develop
AutoML for forecasting in a general sense.

In subsection 5-3-1 the fixed feature engineering instructions are explained, in subsection 5-3-2
the fixed training set instructions are specified, and subsection 5-3-3 explains the hypothesis
training search space on which the experiment focuses. Finally, in 5-3-4 the complete search
space is presented.

5-3-1 Feature engineering

The experiment’s feature engineering instruction set in SxT contains a single member. The
index of y is transformed to time series, representing the hour of day, the day number of
the week, the day number of the year, and a categorical variable representing whether the
day is a holiday. The observations of the predicted index are selected to form input vector
xT . A relatively small number of inputs is chosen, taking into account the feasibility of the
experiment. While this is a rigorous simplification of the superparameter space, it is plausible
that the conclusions on the metalearning specific hypothesis in section [?] generalize to other
feature engineering instructions. The feature engineering instructions in SxT are written
according to section 2-3-1 as
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SxT =



y : {}
v1 : {1}
hour of day(y) : {1}
day of week(y) : {1}
day of year(y) : {1}
holiday(y) : {1}

,

and is illustrated in Figure 5-4.
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Figure 5-4: The fixed feature engineering process IxT for creating input vector xT at T .

5-3-2 Splitting

The training set formation instruction is to, after the reduction of the test and crossvalidation
samples, simply select all remaining samples as training set Xtr ∪Ytr. The single member Str,
writting according to section 2-3-2, is

Str = {all}.

It is also plausible that the conclusions on the metalearning specific hypothesis in section [?]
generalize to other training set formation instructions.

5-3-3 Hypothesis training

The hypothesis training search space SH of the experiment is in the domain of XGBoost,
originating from the Machine Learning (ML) paradigm. The motivation for this choice is
that:
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• it has proven to yield an excellent performance on a very broad range of tasks[?], which
makes it a relevant and generalizable domain of interest.

• the numerical method and implementation is known for its low computational complex-
ity with respect to the achieved performance[?].

XGBoost is the optimization of a Decision Tree Summation (DTS) as hypothesis class H,
performed by the Newton Boosting algorithm as training algorithm Atr, with respect to
a specific regularized loss function as training loss function Ltr. It is explained in detail
in Appendix A. XGBoost’s superparameters can be divided into complexity and overfitting
superparameters. The superparameters that are related to the model complexity are the
number of trees, the maximum tree depth, and the learning rate. The superparameters that
determine the protection against overfitting in Ltr and Atr are γ, subsample, column sample
per tree and regalizer α. There are no publications on how to set the superparameters. By
reading blog posts and manual analysis, this research defines the following SH of interest
for the task domain, written according the superparameter standardization rules of equation
2-20:

SH = pH : DTS :



H :


num_trees : {dnt ∈ Z, 1 ≤ dnt ≤ 800}
max_depth : {dmd ∈ Z, 1 ≤ dmd ≤ 40}
min_child_weight : {dmcw ∈ Z, 1 ≤ dmcw ≤ 30}

Ltr : regularized loss :
{
γ : {dγ = 10λγ , λγ ∈ R, 0 ≤ λγ ≤ 1}
α : {dα = 10λα , λα ∈ R,−4 ≤ λα ≤ 2}

Atr : Newton Boosting :


learning_rate : {dlr = 10λlr , λlr ∈ R,−6 ≤ λlr ≤ 0}
subsample : {ds ∈ R, 0.5 ≤ ds ≤ 1.0}
colsample_by_tree : {dcbt ∈ R, 0.5 ≤ dcbt ≤ 1.0}

,

This research is focused on proposing a metalearning method that improves a superoptimiza-
tion algorithm for this component of the superparameter space.

5-3-4 Complete search space

The complete initial search space is written as follows:
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S =



pxT :



y : {}
v1 : {1}
hour of day(y) : {1}
day of week(y) : {1}
day of year(y) : {1}
holiday(y) : {1}

ptr : all

pH : DTS :



H :


num_trees : {dnt ∈ Z, 1 ≤ dnt ≤ 800}
max_depth : {dmd ∈ Z, 1 ≤ dmd ≤ 40}
min_child_weight : {dmcw ∈ Z, 1 ≤ dmcw ≤ 30}

Ltr : regularized loss :
{
γ : {dγ = 10λγ , λγ ∈ R, 0 ≤ λγ ≤ 1}
α : {dα = 10λα , λα ∈ R,−4 ≤ λα ≤ 2}

Atr : Newton Boosting :


learning_rate : {dlr = 10λlr , λlr ∈ R,−6 ≤ λlr ≤ 0}
subsample : {ds ∈ R, 0.5 ≤ ds ≤ 1.0}
colsample_by_tree : {dcbt ∈ R, 0.5 ≤ dcbt ≤ 1.0}

5-4 Superoptimization algorithm

As superoptimization algorithm As (explained in section 3-1), the experiment uses Bayesian
optimization, more specifically the Tree Parzen Estimator (TPE) algorithm[36]. It falls under
the Sequential Model Based Optimization (SMBO) domain, as explained in section 3-1-1. The
motivations for choosing TPE are that

• the algorithm has recently had a lot of attention from the ML community for ’hyper-
parameter’ optimization, making it a relevant benchmark.

• the algorithm can benefit from metalearning, because of its tendency to exploit spaces
of well performance and to explore unknown spaces.

• the open source implementation hyperopt is compatible with conditional search spaces,
and it is compatible with warmstarting (see section 3-2), which gives the possibility to
feed in p0 ⊂ S for initial evaluation.

In Appendix B the exact suggestion function Ws of the algorithm is explained in detail, but
the intuïtive explanation is as follows:

1. Make two Gaussian Mixture Models, using evaluation history Ek, for the probability for
p of either being in ’the good group’ or the ’bad group’, in terms of their performance
index lte.
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2. Retrieve some samples from ’the good group’ distribution.

3. For suggestion output, select one of these samples, which has a high probability of being
in ’the good group’, whilst having a low probability of being in ’the bad group’.

In the default setting of hyperopt’s implementation, before suggesting pk at every iteration
k, a ’naïve’ initial set p0 of 20 randomly drawn p’s is evaluated. The metafeature encoder
and metalearner replaces this with a warmstart p0.

5-5 Experiment execution

This section explains the execution of the experiment, which is summarized in Figure 5-
5. Section 5-5-1 explains how statistical significance of the results is achieved, which raises
the issue of a too high computational complexity. In section 5-5-2 and 5-5-3 the method
for reducing the computational complexity is discussed. Finally, this research introduces an
open-source Python package for metalearning experiments in section 5-5-4.
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Figure 5-5: Experiment summary, showing the proposed method, the task domain and
the search space. This figure summarizes the experiment, in the structure of Figure 3-3. Note
that at the top of each block, there is a reference to the section with a detailed explanation and
motivation of the design choice. The task contains 2 or 3 years of hourly endogenous time series
and b = 1 exogenous time series (so n ∈ {17520, 26280}). The forecast scenario is predicting
c = 1 step ahead, and the predictions will be tested by the MAE on a left out test set of nte = 6570
samples, and ncv = 2190 samples are held apart as crossvalidation set. In the first step, the task
t is fed into the metafeature encoder We, which calculates the metafeatures ’size’ and ’input
richness’. The metalearner Wm then retrieves the best superparameter configurations for the
most similar datasets p0. The superoptimization process is then initialized. The warmstart p0
and search space, which is in the XGBoost domain, initializes the superoptimization algorithm As.
Superparameter evaluation I is initialized with t. In the fourth step, As evaluates p0, and then
the Tree Parzen Estimator iteratively suggests promising p’s for evaluation. Finally the process
outputs the best found p as p∗(t).

5-5-1 Statistical significance

The Tree Parzen Estimator is a stochastic procedure, because candidates for the EI-criterium
are drawn from l(p), which is a Gaussian Mixture Model. Furthermore, the naive approach
has the stochastic component of a set of randomly drawn p0 ⊂ S. We therefore perform 10
duplicates of the Bayesian optimization on a dataset and take the average of the results.

For the warmstarted approach we perform a 32-fold leave-one-out procedure, where one task
is treated as the new unseen task, while the other 31 tasks and their best superparame-
ter configurations p∗(t) are included in the previous task set T∗. At every iteration in the
superoptimization, the compared approaches are ranked according to their performance in-
dex. Finally the ranks are averaged over all experiment duplicates and folds. Rank as a
performance metric loses information of the degree to which an approach is better, but this
metric is chosen because there are no metrics that correctly scale amongst multiple datasets.
This even counts for the mean absolute scaled error (MASE)[25], which is dependent on the
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predictability of a time series.

5-5-2 Result recycling

A practical constraint in the experiment is that an iteration in superoptimization contains a
very computationally expensive superparameter evaluation. For this reason, trying out only
a single set of metafeatures could result in a week of computations, while it is desirable to
experiment on multiple permutations of the metalearning method. Result recycling solves
this problem, dividing the experiment in an expensive offline and cheap online phase. During
the offline phase the search space is discretized into a grid of superparameter configurations
(instead of a continuous space). Superparameter evaluation is run for the 138.240 options
in the task and search space (32 t’s, 4320 p’s as explained in 5-5-3), and stored in a lookup
table. The grid search yields a walltime of 45 days for a 2.7 GHz i7 processor. An optimally
parallellized implementation resulted in a computation time of 4.5 days. During the online
phase the performance index lte of a superparameter configuration p is retrieved by means of
the lookup table, significantly speeding up the experiment. In this way, the superparameter
evaluations are recycled.

5-5-3 Search space cropping

Before performing the experiment, the search space S defined in 5-3-4 has been cropped
to a smaller one. Search space cropping has reduced the computational complexity of the
experiment by +/-1000 times1, while improving relevance of the conclusions. This section
explains why S has been cropped, how it has been cropped, and what the resulting S is, used
in the experiment.

In AutoML research, there is no standard way of demarcating a relevant search space S. If
none of the tasks in the previous task set yield good performance on a part of S, we refer to
this part as an irrelevant part of S. Including irrelevant parts in S imposes some problems:

• A naive algorithm will be outperformed by a badly warmstarted algorithm (e.g. cold-
started), as illustrated in Figure 5-6. If a naive initialization p0 draws random config-
urations from a search space S including many irrelevant configurations, the approach
would even be outperformed by the best configurations of the least similar previous
task.

• A bigger search space S increases the computational complexity of an already expensive
experiment.

Cropping the search space therefore makes the experiment more feasible, and makes its con-
clusions more relevant.

1assuming an equal discretization of the superparameters for the uncropped search space
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configuration1

configuration 2 configuration 2

optimum for this dataset
other optima in metadataset
coldstarted search
naive search
reduced search space
wide search space

Legend

Figure 5-6: Intuïtive illustration of an uncropped (left) and cropped (right) search space S,
showing how a badly warmstarted superoptimization algorithm (e.g. coldstarted search)
outperforms a naive algorithm, when S is not cropped. In an uncropped S, the coldstarted
search, starting at the optimum of the least similar task, has a shorter trajectory to the optimum
than the naive search. The comparison is unfair without cropping S.

The search space is cropped according to the following steps (read Appendix C for the exact
process):

1. Exclude superparameter spans in S that (almost) never yield good performance.

2. Exclude superparameters in S with negligible sensitivity to the performance index lte.

3. Define the search space discretization, such that it is feasible to perform the offline phase
of the experiment, as explained in 5-5-2.

The resulting search space S, used for the experiment is

S =



pxT :



y : {}
v1 : {1}
hour of day(y) : {1}
day of week(y) : {1}
day of year(y) : {1}
holiday(y) : {1}

ptr : all

pH : DTS :



H :


num_trees : {span : [100, 800], scale : lin, values : 6}
max_depth : {span : [5, 20], scale : lin, values : 8}
min_child_weight : {span : [5, 40], scale : lin, values : 3}

Ltr : regularized loss :
{
γ : 0
α : 0

Atr : Newton Boosting :


learning_rate : {span : [−2.5,−0.5], scale : log, values : 10}
subsample : {span : [0.5, 1], scale : lin, values : 3}
colsample_by_tree : 1
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5-5-4 Metalearning package

This research introduces a python package for experiments in warmstarting. The implemen-
tation provides the infrastructure of Figure 3-5, and is written according to Google’s Python
documentation style. A user can define their own experiment setting: an objective function,
a set of tasks, and a search space. The user can propose their own metafeatures to construct
warmstarted Bayesian optimization, and evaluate it together with the explained benchmarks,
in a duplicated leave-one-out procedure. The package contains visualizers to compare the
methods. The quickstart user example is attached as Appendix D.
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Chapter 6

Results

The previous chapters introduced the proposed metafeatures for the warmstarting method
(chapter 4), and the experiment (chapter 5) that aims to provide evidence for the hypothesis:

(Hypothesis) Runtime of superoptimizing hypothesis training superparameters
reduces, if size and input richness are metafeatures in warmstarting.

The visualization of the results is introduced by showing the superoptimization performance
on separate tasks in section 6-1. The heuristic method of setting the metaparameters of the
metalearner, and their impact on superoptimization performance is visualized in section 6-2.
The results of the central experiment of this thesis are then presented in section 6-3.

6-1 Performance on single tasks

To provide an intuition on how the method is compared to the benchmarks, Figure 6-1
visualizes the results comparing the methods on three separate forecasting tasks. The best
Mean Absolute Error so far is shown for random search, naive Bayesian optimization and
warmstarted Bayesian optimization. The methods are evaluated for 50 iterations and the
results are averaged over five duplicate experiments. The metalearner uses the r = 5 best
configurations, of the k = 5 most similar datasets and selects the b = 5 most occurring
superparameter configurations.
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Figure 6-1: Comparison of the methods for three separate forecasting tasks. The best-so-
far performance index lte (in Mean Absolute Error) of the four methods is plotted per iteration.
The metaparameters of the warmstarted and coldstarted method are r = 5, k = 5 and b = 5.

The visualized results only aim to provide insight on how the methods are compared in section
6-3, and do not meet criteria of statistical significance for conclusions on the hypothesis.
It does draw attention to the fact that the relative performance of the methods is highly
dependent on the task at hand.

6-2 Metaparameters

Before running the experiment, the following metaparameters of the metalearner have to be
set::

• k: number of most similar samples selected.

• r: number of best performing superparameter configurations p selected per selected
sample.

• b: number of most occurring superparameter configurations p selected, to constitute p0.

Figure 6-2 shows the performance of different settings of k and r, with a fixed k = 5. It is
evaluated according the 32-fold leave-one-out procedure with 5 duplicates, as explained in
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section 5-5-1. Using the result recycling procedure as defined in section 5-5-2 it took 6 hours
to compute this on a 1,6 GHz Dual-Core Intel Core i5 processor.

Figure 6-2: Superoptimization performance of the proposed warmstarting method on
32 tasks for different metaparameter settings, denoted as Warmstarted(k,r), using a 5
duplicated 32-fold leave-one-out procedure. The number of most similar samples selected
is k, and the number of selected superparameter configurations per sample is r. The number
of most occurring superparameter configurations, selected as warmstart, is fixed to b = 5. The
procedure is explained in section 5-5-1.

The metaparameter settings (k,r) can roughly be divided into three groups, based on perfor-
mance:

1. good performance: (10,5)

2. average performance: (5,5), (5,20), (10,20), (15,5), (15,20), (32,5), (32,20)

3. bad performance: (10,5)

Warmstarter(10, 5) will be referred to as the well tuned warmstart, and Warmstarter(5, 5)
will be referred to as the badly tuned warmstart.

6-3 Experiment results

The results of the experiment are visualized in this section.
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6-3-1 Performance versus iterations

The performance of the well-tuned warmstart is compared in Figure 6-3 against the bench-
marks, explained in section 5-1. A 32-fold leave-one-out result recycling procedure with ten
duplicates (as explained in sections 5-5-1 and 5-5-2) is performed in three hours on a 1,6 GHz
i5 processor.

Figure 6-3: The performance of the well-tuned proposed warmstart, compared with the
benchmarks. The methods perform superoptimization for a forecasting task at hand. At every
iteration they are ranked according to their best-so-far performance index. A lower rank means
better performance. The results are averaged over all forecasting tasks and 10 duplicates.

The main observations are that:

Observation (1): The proposed warmstart method outperforms the coldstart benchmark.

Observation (2): The coldstart benchmark outperforms the naive benchmark during the first
iterations.

6-3-2 Runtime

Figure 6-4 shows the number of iterations it takes for the compared methods to achieve the
same best-so-far performance as random start’s 100th iteration.
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Figure 6-4: The number of iterations until the same performance is reached as random
search in the 100th iteration.

In comparison to random search, warmstarted search decreases the number of search iterations
by 65% on average. This is an improvement of 50% compared to naïve search. Coldstarted
search performs approximately as good as random search from this perspective. Also note
the gap after the initialization batch of five iterations of the warm- and coldstart.
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Chapter 7

Discussion

The results of the experiment are visualized in the previous section. Given

Observation (1): The proposed warmstart method outperforms the coldstart benchmark,

this section discusses whether the hypothesis

(Hypothesis) runtime of superoptimizing hypothesis training superparameters
reduces, if size and input richness are metafeatures in warmstarting,

can be confirmed. In this consideration, the relevance of proposing the coldstart benchmark
that led to

Observation (2): The coldstart benchmark outperforms the naive benchmark during the first
iterations,

is discussed. The observations are discussed for conclusions for inside the experiment setting,
and outside of the setting.

7-1 Inside the experiment setting

Firstly the underlying assumptions for the hypothesis are tested visually. Then the implica-
tions of tuning the metaparameters are discussed, and the individial contribution of the two
metafeatures.

7-1-1 Underlying assumptions of hypothesis

The underlying assumptions of the hypothesis, explained in section 4-3, are that

• the metafeature size correlates with well-performing regions of complexity superparam-
eters,
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• the metafeature input richness correlates with well-performing regions of overfitting
superparameters.

In 7-2 the metafeatures of all the task set are plotted against their best-found superparameters,
to visually inspect whether the assumed correlations are present.
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Figure 7-1: The best-found configurations per superparameter, plotted against metafea-
tures for all 32 tasks. The data comes from the offline phase of the experiment, as explained
in section 5-5-2.

Figure 7-2
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A couple of assumptions are confirmed, as a higher dataset size correlates with a higher best
value for maximum depth and number of trees, as expected. On the other hand, a lower
feature richness unexpectedly correlates to a smaller best-found minimum child weight and
higher subsample. The expected versus the actual correlation is summarized in table 7-1.

Table 7-1: Expected versus actual relation between good superparameters and metafeatures,
concluded visually from Figure 7-2.

Superparameter Expected if
size is higher

Actual relation
in experiment Confirmed?

max depth higher higher yes
learning rate lower - no
number of trees higher higher yes

Superparameter
Expected if
feature richness
is higher

Actual relation
in experiment Confirmed?

max depth lower higher no
min child weight lower - no
subsample higher lower no

Two of the six assumptions are confirmed, so the evidence of observation (1) is not given
weight, by this visual inspection. Visual inspection has limitations, as the eye only sees
monotonic and linear correlation, no nonlinear and interdependent correlations. Observation
(1) could be attributed to interdependent relations between the well performing superparam-
eter settings, leveraged by the warmstart.

7-1-2 Implications of tuning the metaparameters

The metaparameters of the warmstart have only been tuned slightly. Careful assessment of
overfitting the task set is still necessary, as the previous task set is very small, similar to other
researches in Automated Machine Learning (AutoML)[11]. For this end, the performance of
the badly tuned warmstart, is visualized in Figure 7-3.
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Figure 7-3: The performance of the badly tuned proposed warmstart, compared with the
benchmarks. The methods perform superoptimization for a forecasting task at hand. At every
iteration they are ranked according to their best-so-far performance index. A lower rank means
better performance. The results are averaged over all forecasting tasks and 3 duplicates.

Even if the warmstart method is badly tuned, it outperforms the coldstart benchmark. Ap-
pendix E shows that this is consistent with the results for the metaparameter settings with
average performance. The relevance of observation (1) is given extra weight. Furthermore,
the coldstart benchmark outperforms the naïve benchmark in the first iterations. This gives
extra weight to observation (2). Even the worst warmstarting method can outperform the
naive benchmark, as explained in section 5-1. It therefore proves that a comparison with
a naïve method is insufficient for making the conclusion that a warmstart is learning from
previous tasks. This research proposes coldstart benchmarking to fill this gap.

7-1-3 Separate metafeatures

A separate assessment of the two metafeatures is needed, to determine whether they both
have a contribution in warmstarting. Figure 7-4 visualizes the results of using the separate
metafeatres, using the badly tuned warmstart.
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Figure 7-4: The performance of the badly tuned proposed warmstart, for the individual
metafeatures, compared with the benchmarks. The methods perform superoptimization for
a forecasting task at hand. At every iteration they are ranked according to their best-so-far
performance index. A lower rank means better performance. The results are averaged over all
forecasting tasks and 3 duplicates.

The warmstart outperforms the coldstart benchmark for both metafeatures. For input rich-
ness, the warmstart outperforms the benchmark to a higher degree than for size. The results
show that both metafeatures contribute to the performance improvement of observation (1).
In the experiment with size as metafeature, it is notable that the naïve benchmark outper-
forms both methods between iteration 5 and 50.

7-2 Outside the experiment

If the hypothesis is confirmed in the experiment setting, does the conclusion hold outside of
the experiment setting? For this question, the quality of the hypothesis and the experiment
setting is discussed.

7-2-1 Hypothesis quality

As mentioned, the underlying assumptions of the hypothesis are that:

• the metafeature size correlates with well-performing regions of complexity superparam-
eters,

• the metafeature input richness correlates with well-performing regions of overfitting
superparameters.

The overlap in the superparameter categorization is discussed firstly, then the metafeature
input richness is discussed, and finally the metafeature size is discussed.

Complexity superparameters determine the number of parameters in the hypothesis class to
be optimized. Some examples are the number of trees in XGBoost, or the number of hidden
layers in Neural Networks. Overfitting superparameters determine the degree to which a
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Machine Learning (ML) model applies protective measures against modeling the noise in
a training set. Some examples are subsample in XGBoost, and the regularization rate in
Neural Networks. Although existing ML models have superparameters for either complexity
or overfitting, there is an overlap between the two. The similarity is that they both affect the
number of parameters of a trained model, but they do it in a different way. It is hard to define
metafeatures that capture this nuanced different way of affecting the number of parameters.
It is therefore arguable that size and input richness are too limited to capture this difference.

The proposed metafeature feature richness is an estimation of the amount of noise in the
dataset. Noise is the term for the fluctuations in the input data of the training set, that
do not carry useful information for the output. A fluctuation carries useful information,
if the assumed hypothesis class fits the type of correlation between the input and output.
The type of correlations that fit the ML models of interest (for objective 1) are specific
complex nonlinearities. Feature richness only estimates simple nonlinearities (Spearman’s
correlation), and is therefore a very limited estimation of the noise. Because of this limitation
the metafeature might not generalize outside of the experiment setting.

The proposed metafeature size is the number of samples in the training set. In the experiment,
the samples have the same length of the input vector. Outside of the experiment, input
vectors can have a different length. This could affect what the good regions of the complexity
superparameters, as more data points means that more parameters can be optimized. The
length of the input vector as metafeature is not investigated in this experiment.

7-2-2 Experiment setting

The construction of an experiment setting is discussed in this section. Firstly the task set is
discussed, and then the search space.

Due to computational constraints, the experiment setting includes only few forecasting tasks.
A task set of 32 tasks is used, which can be divided into four groups of similar size and feature
richness. It is applicable to the warmstart’s hypothesis. Selecting the most similar dataset is
made easy, and the focus is drawn to the superoptimization performance of the method. The
experiment setting is similar to the real world, to the degree that the tasks are datasets in
financial trading. The limitation is that in the real world, forecasting tasks are not grouped,
but their size and input richness varies largely on a continuous scale. The forecasting tasks
also vary on other characteristics, excluded in this experiment. It is interesting to test whether
the hypothesis holds in the real world setting.

The search space was limited to the hypothesis training superparameters of XGBoost. More
valuable conclusions on the hypothesis could have been applied, if a ML model was chosen
that has less overlapping superparameters for complexity and overfitting. Generalizability
of the results to other search spaces is substantiable, because many other ML models have
superparameters that set complexity and overfitting.
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Chapter 8

Conclusion

Exploring hybrid Machine Learning (ML) forecasting models is highly promising for improving
forecasting performance in numerous applications. A definition of the hybrid model space,
with intrinsically incorporated model components from different paradigms, was missing. As
the hybrid model space is very big, the job of exploring its full potential requires too much
effort for a data scientist. Replacing the human that performs this job with a computer
is a promising approach, especially given the recent developments in Automated Machine
Learning (AutoML) research. The approach is even more relevant, because reducing the
costs of the job by replacing expensive data scientists, makes the prospective technology
accessible to smaller and less economically driven organizations. This research pursuited the
ideological goal

to democratize ML for any forecasting task, and converge models across paradigms, by
replacing expensive data scientists with a computer, that optimizes over cross-paradigm

forecasting model components.

The first objective of this research is reached by contribution (1): superparameter evaluation,
a framework for parametrizing the creation and evaluation process of a hybrid forecasting
model. On top of the examples in the SARIMAX, Neural Networks and Decision Tree model
domain, it can merge any intrinsic component into the hybrid model, if it is rewritable to
the defined format. The complete list of instructions for creating a hybrid model in param-
eter format is a superparameter configuration. Given a task at hand, a human can input a
superparameter configuration to superparameter evaluation, which returns a corresponding
performance index.

Then, this research incorporated existing AutoML literature, to replace the human job by a
computational job, to reach the second research objective. The computational job is referred
to superoptimization, which treats superparameter evaluation an objective function to be
minimized. Given a new unseen forecasting task, the warmstart method chooses the most
similar tasks, measured using metafeatures, from a set of previous tasks. The warmstart’s
metalearner then suggests the best performing superparameter configurations of the most
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similar tasks, to be firstly evaluated. After this, a black-box optimization algorithm proceeds
optimizing superparameter evaluation, by learning from previous evaluations on the task at
hand.
Even for existing algorithms in AutoML, the set of superparameter configurations to consider
(the search space), characterizes as too large and complex. The third research objective was
to reduce the runtime of the computational job, by learning from previous tasks. Previous
work that introduced the warmstart method[11] was analyzed critically. It was argumented
that the small size of the previous task set, in combination with the unexplained method of
defining a big set of metafeatures, raises the concern of overfitting the previous task set. The
benchmarking method was also questioned. In order for the warmstarting method to be more
than a function, inapplicable to the real world, it needs evidence that there are metafeatures
that make the metalearner learn from previous tasks. This research proposed two simple
metafeatures for the warmstart method, size and input richness, and aimed to contribute
evidence for the hypothesis that:
(Hypothesis) Runtime of superoptimizing hypothesis training superparameters1
reduces, when size and input richness are metafeatures in warmstarting.
The underlying assumptions are that the size of a training set correlate with well-performing
settings of superparameters related to model complexity, and that input richness correlates
with well-performing settings of superparameters related to measures against overfitting. The
hypothesis was tested in an experiment setting of 32 forecasting tasks. As the tasks have either
a high or low value for size and input richness, the tasks are divided into 4 groups of 8 tasks.
The search space of the experiment consists of the hypothesis training superparameters1 of
XGBoost.
The first conclusion from the results applies to the method of benchmarking: Contribution
(2): the knowledge that no conclusion can be made on whether the warmstart is learning
from previous tasks, if it is compared with the naïve benchmark. The coldstart benchmark is
proposed as the alternative benchmark. The proof by falsification is as follows: if the warmstart
method outperforms the coldstart method, this is evidence that the metalearner is learning
to suggest well-performing superparameter configurations from the previous task set. It is
also evidence that the reversed method, the coldstart method, is learning to suggest badly-
performing superparameter configurations from the previous task set. Results show that the
coldstart method can outperform the naïve method, while the warmstart outperforms the
coldstart (Observation (2)). Any ’warmstart’ method proposed in literature, only shown to
outperform the naïve benchmark, could therefore be learning to suggest badly-performing
superparameters.
The experiment results showed that a reduction of 50% of computational resources is achieved
with respect to the coldstart and naïve benchmark. Outperforming the coldstart method
maintains, even if the warmstart is badly tuned. Furthermore, the results showed that both
metafeatures can contribute separately to the performance improvement of superoptimization.
These observations led to contribution (3): evidence for the reduction of runtime of superop-
timizing hypothesis training superparameters, when size and input richness are metafeatures
in warmstarting The evidence is mild, because the previous task set in the experiment was
very small. This research does classify the positive results as evidence, instead of positive
results due to overfitting the task set, because:

1the hypothesis training superparameters correspond with hyperparameters in the supervised ML framework
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• the proposed metafeatures were synthesized by using logic,

• the chances of overfitting were reduced as much as possible, by using a simple warmstart
method, and testing the results on the badly tuned warmstart,

• reliable benchmarking, due to contribution (2).

This research finally provides contribution (4): the Python package warmstart. The package
provides the implementation for future research on metafeatures for the warmstart method.

To conclude, the ideological goal is to democratize promising hybrid ML forecasting mod-
els. The approach is to replace the data scientist with a computer, that optimizes over
cross-paradigm forecasting model components. This research contributed a framework for
parametrizing the creation and evaluation process of a hybrid forecasting model. Because the
set of hybrid forecasting models is very large, the human job of selecting one, is replaced with
an optimization algorithm, by incorporating the AutoML framework. Acknowledging that
the optimization also requires too much runtime from a computer, this research has focused
on reducing the runtime of the warmstart method. The usefulness of the existing benchmark
was falsified, and the coldstart benchmark was proposed as an alternative. The research
then proposed metafeatures for hypothesis training superparameters, which corresponds with
hyperparameters in the ML framework. The experiment focused on preventing overfitting
on the task set, which led to the confirmation of the hypothesis, that the method improves
superoptimization performance.

8-1 Future work

This section suggests potential future work, building on the outcomes of this research. It is
divided into the future work related to superparameter evaluation, superoptimization, and
warmstarting, and applies to both business and research. The suggestions related to super-
parameter evaluation are:

• Expand the framework to fit models that contain unsupervised temporal layers, such as
RNN, DeepAR, and WaveNet.

• Use the framework to more easily design new hybrid models for a given forecasting task.

• For forecasting businesses: use superparameter evaluation as implementation blueprint,
to incrementally add model components for performance improvements for customers.

A couple of suggestions apply to the superoptimization job:

• An example superoptimization algorithm specifically for superoptimization: compose a
search space with SARIMA in the feature engineering superparameters. Include linear
regression, XGBoost and Neural Networks in the hypothesis training superparameters.
Train a model that predicts the computational runtime, given a superparameter config-
uration. Apply Bayesian optimization to the search space, but with a weighted penalty
of the predicted computational runtime. During superoptimization, slowly reduce the
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weight of this penalty. The assumption is that in this method, Bayesian optimization
will use the cheap evaluations to find good feature engineering superparameter config-
urations, and then after that the other superparameters are set.

• Experiment with a warmstarted Bayesian prior, instead of a warmstarted set of initial
configurations.

• For a forecasting business with many customer in the same forecasting task domain:
Define a small hybrid search space and perform superoptimization to automatically find
a hybrid model for production.

• combine warmstart with a black-box optimization algorithm, that is parallellizable.

• a different approach to the computational complexity, is to implement superoptimization
as a quantum optimization.

• in the context of superoptimization, the prevention of overfitting gets more and more
important. Investigate

Finally, the suggestions related to warmstarting are:

• find more metafeatures, applicable to the hypothesis training superparameters. An
example is the length of the input vector. Different ways of measuring feature richness
would also be an interesting approach, to make the metalearner learn the nuanced
difference between setting the complexity and overfitting superparemeters.

• collect better evidence for this research’s hypothesis, by composing a very big set of tasks
with more variation in size and input richness, and testing the proposed warmstart in
that setting.

• find metafeatures for the other components of superparameter evaluation, feature engi-
neering and splitting.
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XGBoost

XGBoost is a regression model from the machine learning community, using decision trees,
a simple model of logical operators (splits), splitting input data into buckets. The predicted
value is the leaf weight. An example decision tree for grocery apple sales would be as follows:
if it is not weekend and the predicted hour is after 5 pm, the predicted amount of sold apples
is 25 during that hour.

A popular method to boost performance of simple models - also referred to as weak learners
f - is ensemble learning. Using multiple - K - weak learners for a single prediction. The
random forest model is an example where the predicted value is the mean of the decision tree
predictions. XGBoost uses another type of ensemble learning, namely adaptive boosting,

ŷi =
K∑

k=1
fk(xi), fk ∈ F , (A-1)

where the predictions of the weak learners are summated. Every weak learner - in this case
tree - is sequentially trained on the residuals of its previous weak learners. First the global
process of building trees is explained, then we will zoom in on how splits are made.

The algorithm starts by predicting the mean, after which the tree building process starts
to create trees that explain deviations from the mean. A tree is built by greedily making
the best splits, according to an objective function, which is explained later. The model
stops splitting when one of the stopping criteria is met, defined by the manually determined
hyperparameters. Hyperparameter max depth determines the maximum amount of logical
operators before a prediction. Hyperparameter min child weight is an integer value that
forces splitting to stop, at a minimum amount of samples in the training set that reaches the
leaf. Figure A-1 provides an example, where in tree 1 at data samples I2, I5, the tree stops
splitting because of reaching the minimum child weight. In tree 2 at data samples I3, I5, I6,
the tree stops splitting because of reaching the maximum depth.
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day of week < 6

hour of day < 17 hr

tree 1 = f1 tree 2 = f2

Yes No

Yes No
I2, I5

I4, I6 I1, I3

rain < 1 mm

holiday?

Yes No

Yes No
I1, I4

I3, I5, I6

I2

-18 +25 +7 -15 +7 +3

max depth = 2

min child
weight = 2

num trees = 2

leaf weights w

Figure A-1: XGBoost example

After making the splits, the pruning process iteratively erases leafs, whose splits contribute
negatively to the objective function.
When a tree is built and pruned, the leaf weight predictions are multiplied by the hyperpa-
rameter learning rate, a real valued number between zero and one. This shrinkage gives
room to future trees to impact the total prediction and slows down the learning process. The
next tree(s) are iteratively built using the residuals of its previous tree(s), until the maximum
number of trees is reached, manually defined by the hyperparameter num trees.
Splits are made by using the following regularized objective function,

L =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk)

where Ω(f) = γT + 1
2α||w||

2,

(A-2)

to find the best feature and best value to split on. As loss function l(ŷi, yi) we use squared
error (ŷi − yi)2. The regularization loss Ω is calculated from the tree structure of the weak
learners f . The loss consists of a penalty for the number of leafs T scaled by hyperparameter
gamma γ and a penalty for the magnitude of the leaf weights w, scaled by hyperparameter
α. Overfitting is furthermore counteracted by hyperparameters subsample and colsample
by tree, scalar values between zero and one, which randomly reduce the instances and
features respectively per tree. The optimization algorithm uses Newton boosting to evaluate
all possible splits over all possible features to select the best split, as explained in the next
section. The XGBoost implementation introduces a cache aware parallellized method for split
finding, that leverages all the computational resources to minimize computation time.
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A-1 Newton Boosting

XGBoost uses adaptive boosting,

ŷi =
K∑

k=1
fk(xi), fk ∈ F , (A-3)

where every consecutive weak learner f predicts the residuals of its former weak learners. The
number of weak learners is denoted as K. The set of weak learners F included are decision
trees,

F = {f(x) = wq(x)}(q : R 7→ T,w ∈ RT ), (A-4)

where q is the function of operators applied to the features of a data sample x, leading to a
prediction, defined as the leaf weight w. Splits in the trees are constructed greedily according
to the regularized objective function,

L =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk)

where Ω(f) = γT + 1
2α||w||

2,

(A-5)

in which the loss function l(ŷi, yi) penalizes error between prediction and actuals. The reg-
ularization loss Ω penalizes model complexity and thus reduces overfitting, penalizing the
amount of leaves, weighted by hyperparameter γ, and penalizing the magnitude of the weights,
weighted by hyperparameter α. For regression often the squared error,

l(ŷi, yi) = (yi − ŷi)2 (A-6)

is used as loss function. As multiple trees are consecutively built, we have an objective
function specific for every tree,

L(t) =
n∑

i=1
l(yi, ŷ

(t−1)
i + ft(xi)) + Ω(ft). (A-7)

Using the second-order Taylor expansion,

f(x+ ∆x) ' f(x) + f ′(x)∆x+ 1
2f
′′(x)∆x2, (A-8)

we can rewrite (A-7) to a Taylor approximation,

L(t) '
n∑

i=1
[l(yi, ŷ

(t−1)
i ) + gift(xi) + 1

2hif
2
t (xi)] + Ω(ft)

where gi = δŷ(t−1) l(yi, ŷ
(t−1)) and hi = δ2

ŷ(t−1) l(yi, ŷ
(t−1)),

n (A-9)

and when filling in the squared error as objective function we find that gi = 2(yi − ŷt−1
i ) and

hi = −2. When we remove the constant terms in (A-9),

L̃(t) =
n∑

i=1
[gift(xi) + 1

2hif
2
t (xi)] + Ω(ft), (A-10)
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and expand Ω as defined in (A-5) and rewrite the equation to have the leaves in the outer
loop of the summation

L(t) =
n∑

i=1
[gift(xi) + 1

2hif
2
t (xi)] + γT + 1

2α
T∑

j=1
w2

j

=
T∑

j=1
[(
∑
i∈Ij

gi)wj + 1
2(
∑
i∈Ij

hi + α)w2
j ] + γT,

(A-11)

we derive an analytical expression for the optimal weight of a leaf,

w∗j = −
∑

i∈Ij
gi∑

i∈Ij
hi + α

(A-12)

in the case of squared error objective function this optimal weight is

w∗j =
∑

i∈Ij
(yi − ŷt−1

i )∑
i∈Ij

(1 + 1
2α)

. (A-13)

The objective function for optimally chosen weights,

L(t)(q) = −1
2

T∑
j=1

(
∑

i∈Ij
gi)2∑

i∈Ij
hi + α

+ γT (A-14)

is used to choose the best split. During tree pruning the gain of a split,

Gain = 1
2

[
(
∑

i∈Ij,L
gi)2∑

i∈Ij,L
hi + α

+
(
∑

i∈Ij,R
gi)2∑

i∈Ij,R
hi + α

−
(
∑

i∈Ij
gi)2∑

i∈Ij
hi + α

]
− γ (A-15)

is computed to derive whether a split has positive effect on the regularized function.
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Appendix B

Tree Parzen Estimator

Bayesian optimization makes a model p(ltest|p), using priors, the scale of the hyperparameter
spaces. Every iteration k it performs Bayesian posterior updating using evaluation history

{pj ∪ ltest,j}, j = 0, 1, ..., k, (B-1)

and uses an acquisition function to suggest a promising pk+1. Tree Parzen Estimator (TPE)
is a Bayesian optimization algorithm that models Pr(lte|p) indirectly by modeling Pr(p|lte)
and Pr(lte). Pr(p|lte) is modeled separately per dimension in the search space as

Pr(p1|lte) =
{
l(p1), if lte < l∗te
g(p1), if lte ≥ l∗te,

(B-2)

where p1 is the configuration in a single dimension in S. The previous evaluations are thus
divided into a set of best p1’s and a set of poor p1’s. Both sets are fitted to a Gaussian Mixture
Model, where every evaluation represents the mean of a Gaussian that has a variance equal to
the greater of the distance between the left or right neighboring sample. The parameters of
the Gaussian Mixture Models are fitted through maximum likelihood estimation. Hyperopt
defines the threshold l∗te as some heuristic quantile. The acquisition function is the Expected
Improvement,

EIl∗te
(p1) :=

∫ ∞
−∞

max(l∗te − lte, 0)pM (lte|p1)dlte (B-3)

which, according to [36], can be rewritten to the maximization objective,

max
p1

l(p1)
g(p1) , (B-4)

and the candidates for this maximization are samples drawn from l(p1). Figure B-1 provides
an intuitive example, showing that this procedure suggests p1 ∈ S of which there is a high
expectancy of being in the set of good p1’s, while having a low expectancy of being in the set
of poor p1’s.
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Figure B-1: Calculation of a candidate with best Expected Improvement
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Appendix C

Search space cropping

We start out with the broad search space of Table C-1. The following steps will narrow it
this space to a relevant and computationally viable search space.

Table C-1: Initial search space

Superparameter Span Scale
num trees 1 - 800 linear
learning rate (-6) - 0 log
max depth 1 - 40 linear
min child weight 1 - 30 linear
gamma 0 - 1 log
subsample 0.5 - 1 linear
colsample by tree 0.5 - 1 linear
reg alpha (-4) - 2 log

The first step is to find the tightest relevant superparameter spans. A random search of 500
iterations over a randomly drawn quarter of the 32 datasets is performed. Figure C-1 shows
the distribution of the 5 best superparameters on each task. Spans that are never optimal
are excluded from the search space.

Master of Science Thesis J. Swart



74 Search space cropping

Figure C-1: Superparameter optimality (5 best iterations or 20 best iterations

The next step in cropping the search space is to exclude superparameters that have negligible
effect on the forecasting model performance. A one dimensional grid search is performed for
the superparameter of interest around the optimal superparameter setting from the previous
experiment. In Figure C-2 the ratio of mean absolute errors with respect to the optimal p’s
mean absolute errors are plotted and we define the ratio as superparameter sensitivity. This
is repeated for 8 randomly drawn datasets. Gamma and colsample by tree turn out to have
no significant impact on performance and are therefore excluded from the search space.

Figure C-2: Superparameter sensitivity, update since the scale are not nice

In order to apply result recycling, as explained in section 5-5-2, the search space is discretized
to make it suitable for a grid search. We define a higher granularity for superparameters
with higher sensitivity to performance. Using a computational complexity estimator, the
granularity per superparameter is defined, resulting in the cropped search space of Table C-2.
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Table C-2: Cropped search space

Superparameter Span Scale Values
num trees 100 - 800 linear 6
max depth 5 - 20 linear 8
learning rate (-2.5) - (-0.5) log 10
subsample 0.5 - 1 linear 3
min child weight 5 - 40 linear 3
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Appendix D

Metalearning Python package

This research introduces a python package for metalearning. It performs experiments compar-
ing search strategies such as warmstarted Bayesian optimization, following the formalization
of Figure 3-5. We provide a quick-start user example of the experiment of this specific re-
search.

Environment setup

Start by cloning the Github repository (https://github.com/JeroenSwart/autoxgb) and in-
stalling Jupyter Lab, an extensible environment for interactive and reproducible computing.
The README file gives a walk-through for setting up the virtual environment and creating
an ipython kernel, from which to launch a Jupyter Lab notebook. Firstly the classes are
imported from the library.

1 # Import external libraries
2 import pickle
3
4 # Import internal metalearning libraries
5 from src. experimenting . hopt_experiment import HoptExperiment
6 from src. metalearning . metadata import MetaDataset
7 from src. metalearning . warmstarter import Warmstarter
8 from src. pipeline_optimization . bayesian_hopt import BayesianHopt
9 from src.utils. metafeature_utils import size , cumac
10
11 # Import thesis specific objective and search space
12 from src.utils. thesis_utils import thesis_lookup_objective ,

thesis_search_space

Definitions

A note on the definitions used in the code:
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• MetaSample = task

• MetaDataset = previous task set T∗

• Pipeline configuration = superparameter configuration

• Pipeline optimization = superoptimization

• Search strategy = superoptimization algorithm

Fixed experiment setting

We then define the fixed setting of the experiment. A metasample is instantiated with an
identifier string, the training dataset, the test dataset and results (a pandas dataframe of
pipeline configurations and resulting performance indices). In this example pickle loads pre-
stored instances of metasamples. A metadataset is instantiated with a list of metasamples
and a list of metafeature functions, mappings from a dataset to a metafeature. Futhermore
the identifier of target datasets, the search space and the objective, which is the mapping
from pipeline configuration to the performance index, are defined. The maximum number of
iterations for the pipeline optimizations is specified in max_evals, the number of duplicates
is defined and the size of the initialization batch is defined in n_init_configs.

1 # Initialize metadataset and calculate metafeatures
2 metadataset_sample_names = !ls ../../data/ metadata / interim
3 metasamples = [ pickle .load(open(’../../ data/ metadata / interim /’ + sample_name ,"

rb")) for sample_name in
metadataset_sample_names ]

4 metadataset = MetaDataset ( metasamples , metafeature_functions =[size , cumac])
5 objective = thesis_lookup_objective
6 search_space = thesis_search_space ()
7 target_ids = [ metasample . identifier for metasample in metadataset . metasamples ]
8
9 # Experiment practicalities
10 max_evals = 50
11 duplicates = 2
12 n_init_configs = 5

Variable experiment setting

The variable experiment setting defines the compared search strategies. Since the current im-
plementation integrates with the open-source library hyperopt, search strategies are limited to
Bayesian optimization (BayesianHopt), which is instantiated with an identifier, search space,
objective and a maximum number of iterations. A naive Bayesian hyperoptimization has an
initial set of random configurations, defined by nr_random_starts. The search strategy is a
random search if nr_random_starts is set equal to max_evals.
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1 # initialize search strategies
2 rand = BayesianHopt (
3 identifier =’Random search ’,
4 search_space = search_space ,
5 objective =objective ,
6 max_evals =max_evals ,
7 nr_random_starts = max_evals
8 )
9 naive = BayesianHopt (
10 identifier =’Naive Bayesian optimization ’,
11 search_space = search_space ,
12 objective =objective ,
13 max_evals =max_evals ,
14 nr_random_starts = n_init_configs
15 )

The Bayesian hyperoptimization can be given a warmstarter object, instantiated with the de-
fined metadataset, the number of most similar samples and the number of best configurations
per sample and the number of suggested initialization configurations.

1 warm = BayesianHopt (
2 identifier =’Warmstarted Bayesian optimization ’,
3 search_space = search_space ,
4 objective =objective ,
5 max_evals =max_evals ,
6 warmstarter = Warmstarter ( metadataset , n_init_configs = n_init_configs ,

n_sim_samples =5, n_best_per_sample =
5)

7 )
8 cold = BayesianHopt (
9 identifier =’Coldstarted Bayesian optimization ’,
10 search_space = search_space ,
11 objective =objective ,
12 max_evals =max_evals ,
13 warmstarter = Warmstarter ( metadataset , n_init_configs = n_init_configs ,

n_sim_samples =5, n_best_per_sample =
5, cold=True),

14 )

The experiment is then instantiated by giving it the Bayesian hyperoptimizations and the
number of duplicates to average over.

1 # initialize hyperoptimization experiment
2 hopt_exp = HoptExperiment (
3 hopts=[rand , naive , warm , cold],
4 duplicates =duplicates ,
5 objective =objective ,
6 metadataset = metadataset
7 )
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Results

Experiment results in a dataframe are added as an attribute by calling the run function on
the pipeline optimization experiment.

1 hopt_exp . run_hopt_experiment ( target_ids )

Several visualizers show the experiment results, for example the averaged performance over
duplicates so far, with respect to the amount of iterations of the search strategy, as shown in
Figure D-1.

1 hopt_exp . visualize_avg_performance ( target_ids [12])

Figure D-1: Example of visualizer: average performance per iteration on one dataset

The library provides a base implementation to build more sophisticated features on as research
in metalearning progresses.
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Appendix E

Other badly tuned warmstarts

Figure E-1: The performance of the badly tuned proposed warmstart, compared with the
benchmarks. The metaparameter settings (k,r) are given in the titles. The methods perform
superoptimization for a forecasting task at hand. At every iteration they are ranked according
to their best-so-far performance index. A lower rank means better performance. The results are
averaged over all forecasting tasks and 3 duplicates.
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Glossary

List of Acronyms

SMBO Sequential Model Based Optimization
TPE Tree Parzen Estimator
ML Machine Learning
POA Population-based Optimization Algorithm
AutoML Automated Machine Learning
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