
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Linear Clustering
Process on Networks
Beichen Wang

Linear Clustering
Process on Networks

by

Beichen Wang
to obtain the degree of Master of Science

in Electrical Engineering
Track Wireless Communication and Sensing

at the Delft University of Technology,
to be defended publicly on Tuesday August 29th, 2023 at 10:00 AM.

Student number: 5307171
Project duration: November, 2022 – August, 2023
Thesis committee: Prof. dr. ir. P.F.A. Van Mieghem, TU Delft, chair

Dr. J.L.A. (Johan) Dubbeldam, TU Delft
Ivan Jokić, TU Delft

Supervisors: Prof. dr. ir. P.F.A. Van Mieghem, TU Delft, thesis advisor
Ivan Jokić, TU Delft, daily supervisor

Cover: Designed by rawpixel.com / Freepik

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

With this thesis, “Linear Clustering Process on Networks”, I complete the Master of Science degree in
Electrical Engineering at Delft University of Technology. This thesis has been carried out at the Network
Architectures and Services (NAS) group.

I wish to extend my deepest gratitude to my daily supervisor Ivan Jokić and thesis advisor Prof. dr.
ir. P.F.A. Van Mieghem, whose unwavering guidance, insightful feedback, and dedication have been
instrumental in shaping this work. Your expertise and encouragement have illuminated my path and
transformed challenges into opportunities for growth.

The collaborative spirit of NAS group has provided an inspiring environment for intellectual ex-
change. Your discussions and perspectives during mid-term review have been invaluable in refining
my ideas and methodology. Meanwhile, I would like to thank Dr. J.L.A. (Johan) Dubbeldam for being
a member of my thesis committee.

In the backdrop of this academic endeavor, the steadfast support of my parents, spouse, and friends
has been an unending source of motivation. Your unwavering belief in my abilities and your understand-
ing of the sacrifices required for this pursuit have beenmy pillars of strength. To my beloved wife Jingxin
Zhang, your patience, encouragement, and love have been my constant companions throughout this
journey.

Beichen Wang
Delft, August 2023

iii

Abstract

Community detection and graph partitioning have seamlessly integrated themselves into the fabric of
network science by providing valuable insights into the structure, function, and dynamics of complex
networks. In this thesis, a comprehensive performance comparison of the recently introduced Linear
Clustering Process (LCP) is carried out against well-established clustering algorithms from literature.
We evaluate its effectiveness using synthetic benchmarks commonly employed in the field, as well
as real-world networks with both known and unknown community structures. Through our analysis,
we reveal that the Linear Clustering Process consistently yields superior community partitions with
optimized modularity when the clusters are well-defined compared to the majority of the assessed
algorithms. Meanwhile, remarkably, this improved performance is achieved while maintaining compu-
tational complexity comparable to the simplest existing clustering algorithms. Furthermore, this thesis
also provides an empirical approach for enhancing the performance of a variant of Linear Clustering
Process on power-law networks.

v

Contents

Preface iii

Abstract v

1 Introduction 1
1.1 Motivations . 1
1.2 Objectives and Contributions . 2
1.3 Thesis Outline . 2

2 Graph or Network Clustering 5
2.1 Clustering Performance . 5

2.1.1 Modularity . 5
2.1.2 Normalized Mutual Information . 6
2.1.3 Element-centric Similarity . 6

2.2 Benchmarks . 6
2.2.1 Stochastic Block Model . 6
2.2.2 LFR Benchmark . 7

2.3 Random Network Models . 7
2.3.1 Erdős-Rényi Model . 7
2.3.2 Barabási-Albert Model . 8
2.3.3 Watts-Strogatz Model . 8

3 Linear Clustering Process 11
3.1 Linear Clustering Process (LCP) on a Network . 11

3.1.1 From node-level governing equation to the network level 11
3.1.2 Time-dependence of the LCP . 12
3.1.3 Community detection based on the eigenvector y2 13
3.1.4 Weakening strength of inter-cluster forces . 13

3.2 LCP for a known number of communities . 14
3.3 Non-backtracking variant of LCP . 14

4 Considered Clustering Algorithms 19
4.1 Modularity-based Methods . 19

4.1.1 Newman Method . 19
4.1.2 Louvain Method . 20
4.1.3 Leiden Method . 20

4.2 Spectral Methods . 21
4.2.1 Non-backtracking Method . 21
4.2.2 Modularity Eigengap . 21

4.3 Local Dominance . 21

5 Results 23
5.1 Computational complexity . 23
5.2 SBM Benchmark . 23

5.2.1 SSBM network with small number of clusters . 23
5.2.2 SSBM network with large number of clusters . 27

5.3 LFR Benchmark . 29
5.4 Random network models . 32
5.5 Real-world networks . 34

5.5.1 Real-world networks without ground-truth communities 34
5.5.2 Real-world networks with ground-truth communities 35

vii

viii Contents

6 Conclusions and Future Work 39
6.1 Conclusions . 39
6.2 Future Work . 39

References 41

A Nomenclature 43
A.1 List of Abbreviations . 43
A.2 List of Notations . 43

B Source Code 47
B.1 Linear Clustering Process . 47

B.1.1 Original LCP . 47
B.1.2 LCP for a known number of communities . 52
B.1.3 Non-backtracking variant of LCP . 56

B.2 Newman Method . 56
B.3 Louvain Method . 57
B.4 Leiden Method . 59
B.5 Non-backtracking Method . 61
B.6 Modularity Eigengap . 62
B.7 Local Dominance . 62

1
Introduction

Networks pervade many disciplines, encompassing a broad range of contexts from social and informa-
tion networks to biological and transportation systems [1], [2]. A network comprises the fundamental
structure, determined by a graph, alongside the dynamic processes occurring within the network, as
delineated by a collection of governing equations. A graph is a mathematical and conceptual repre-
sentation of a collection of objects, often referred to as nodes or vertices, and the relationships or
connections between these objects, represented by edges or links. Graphs can be used to model a
wide range of real-world phenomena and structures and provide a way to analyze and understand
the patterns of relationships between different entities. A dynamic process on a network refers to a
phenomenon, activity, or change that takes place over time within the context of a graph structure. In
other words, it’s a process that evolves or unfolds based on interactions, relationships, or connections
between nodes and links in the network.

In these complex networks, the elucidation of how entities interact and connect with each other is
crucial for a comprehensive understanding of the system’s overall behavior. One of the most prominent
and challenging tasks in network analysis is the identification of communities, or clusters, representing
groups of nodes with the majority of links connecting nodes within the same cluster, while only a few
links join nodes from different clusters [3]. This task, known as community detection or graph partition-
ing, has been the focus of a substantial body of research, primarily due to its profound implications in
various fields [3], [4].

1.1. Motivations
A reliable community detection algorithm should be able to identify “good” partitions [3]. Consequently,
the implementation of a dependable quantitative criterion can be instrumental, and at times even in-
dispensable, in distinguishing between “good” and “bad” clusterings and enhancing the algorithm’s
capacity to produce high-quality partitions. Newman and Girvan pioneered a quality function known
as modularity [5], which subsequently inspired a series of optimization algorithms [6]. Building on this
concept, Blondel et al. introduced the Louvain method [7], a heuristic approach based on modularity
optimization. This method was lauded for its computational efficiency and was considered one of the
best-performing algorithms of its time [8]. More recently, the Leiden method [9] has emerged as an
enhancement to the Louvain method, designed to address some of its known limitations [9] and thereby
yield higher-quality community partitions.

Spectral clustering is another widely adopted technique for community detection within a network.
Essentially, this method leverages the information contained in the spectrum (eigenvalues) of the matrix
representation of the network to assign nodes into clusters. Krzakala et al. [10] observed that the vast
majority of eigenvalues from the non-backtracking matrix reside within a circle, centered at the origin of
a complex plane and delineated by the square root of the largest eigenvalue as its radius. Remarkably,
the quantity of eigenvalues positioned outside this circle correlates with the number of clusters. Another
concept, known as the modularity eigengap [11], involves calculating the eigenvalues of the modularity
matrix [6]. Each cluster is believed to correspond to a substantial eigenvalue, which markedly stands
out from the remaining eigenvalues. Consequently, the number of clusters equates to the index of the

1

2 Chapter 1. Introduction

smaller eigenvalue at the point where the disparity between two adjacent eigenvalues reaches a peak,
provided all eigenvalues are organized in descending order.

Recently, Shang et al. further contributed to this evolving field by proposing the Local Dominance
algorithm [12]. This innovative approach aims to unearth the hidden hierarchy within networks by
harnessing local information. Evidence indicates that the Local Dominance algorithm outperforms the
Louvain method when applied to the implicated real-world networks.

Jokić and Van Mieghem proposed a novel approach [13], the Linear Clustering Process (LCP)
on networks for community detection. This algorithm involves clustering by moving nodes in one-
dimensional space through the use of attractive and repulsive forces. And in the same paper [13],
the LCP was proven to outperform existing algorithms while maintaining similar computational com-
plexity in a limited number of tests. Meanwhile, there are two derived variants of the proposed LCP
algorithm. The first variation incorporates the actual number of clusters as an input parameter, aim-
ing to enhance the precision and quality of community partitions. The second variation modifies the
non-backtracking algorithm by substituting its original matrix with the one crafted within the LCP algo-
rithm. This approach is designed to parallel the performance of the original non-backtracking method,
providing similar efficiency and results.

1.2. Objectives and Contributions
This thesis aims to demonstrate a more extensive evaluation of LCP’s performance. We firstly im-
plement the symmetric Stochastic Block Model [14] (SBM). This model generates networks in which
the clusters have the same size and the nodes have a Poisson degree distribution. Then, we further
reproduce the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [15] that generates networks with
imbalanced communities and power-law degree distribution, which more closely resembles real-world
networks. When assessing community partitions, we utilize the Element-Centric Similarity [16] (ECS)
measure to provide a fairer evaluation, given the inherent bias of Normalized Mutual Information [17]
[18] (NMI). Furthermore, we also equip all spectral methods with the capability to generate commu-
nity partitions using K-means clustering, thus ensuring a more comprehensive and fair comparison.
Despite being subjected to rigorous testing conditions, the LCP consistently showcases its superior
performance. It excels in optimizing modularity, and its ability to partition communities is particularly
remarkable when dealing with well-defined clusters.

Furthermore, our simulations suggest that the aforementioned second variant of the LCP algorithm
exhibits performance almost equivalent to the non-backtracking method when applied to random net-
works. However, its efficacy drastically diminishes when operating on power-law networks. To address
this limitation, we propose a dynamic adjustment strategy for the hyperparameter, determined by the
power-law exponent of the degree distribution of the network. This adaptation significantly enhances
the performance of the LCP variant, aligning it closely with the performance of the non-backtracking
method when applied to power-law networks.

1.3. Thesis Outline
This thesis is organized as follows:

• In Chapter 2, we first provide a concise overview of fundamental graph theory and clustering
concepts. And then we introduce the performance metrics used in this thesis, which include
modularity, NMI, and ECS, along with various synthetic benchmarks, including the SBM and LFR
benchmark.

• In Chapter 3, we offer a comprehensive overview of the LCP algorithm and two derived variants
of LCP are introduced.

• In Chapter 4, we give succinct descriptions of all other clustering algorithms considered, including
modularity-based methods such as the Louvain, Leiden, and Newman methods; spetral methods
such as non-backtracking and modularity eigengap; and a hierarchical method called Local Dom-
inance.

• In Chapter 5, we perform a comparative analysis, first showing the computational complexity of all
algorithms and then comparing the performance of the LCP with all other algorithms considered
on several synthetic benchmarks and real-world networks.

1.3. Thesis Outline 3

• In Chapter 6, we wrap up the paper, summarizing our findings and their implications, as well as
discussing possible future work.

2
Graph or Network Clustering

A network or a graph G (N ,L) contains a set of nodes N and a set of links L, where the number of
nodes N = |N | and the number of links L = |L|. A graph can be defined by an N × N adjacency
matrix A. The nodes of the graph are depicted by the rows and columns of the adjacency matrix. If
a link exists between the node i and node j, then the entry in the matrix aij = 1; otherwise, the entry
aij = 0. Then, the N × 1 degree vector d can be calculated as d = A · u, where u is the N × 1 all-one
vector. And the N ×N degree diagonal matrix ∆ is defined as ∆ = diag (d).

The set of neighboring nodes of node i is denoted by Ni = {k | aik = 1, k ∈ N}. So the degree of
node i can also be derived by the cardinal number of this set, say di = |Ni|. Ni ∩Nj denotes the set of
common neighbors of node i and node j, while the set of neighbors that are not shared by these two
nodes is Ni \ Nj . Therefore, the degree of node i is also equivalent to the summation of the number
of shared and distinct neighbors between nodes i and j:

di = |Ni ∩Nj |+ |Ni \ Nj | . (2.1)

2.1. Clustering Performance
2.1.1. Modularity
Newman and Girvan [5] introduced the concept of modularity to facilitate network partitioning. The mod-
ularity measure, denoted as m in equation (2.2), quantifies the difference between the actual number
of links between nodes belonging to the same community and the expected number of such links in a
randomly connected network. The equation is given by:

m =
1

2L
·

N∑
i=1

N∑
j=1

(
aij −

di · dj
2L

)
· 1{i and j ∈ same cluster}, (2.2)

where 1x is an indicator function that equals 1 if statement x is true, and 0 otherwise. The modularity
value, m, approaching 0 indicates that the estimated partition is as good as a random one. Conversely,
a modularity value close to 1 suggests a clear partitioning of the network into distinct clusters. It is im-
portant to note that optimizing modularity is NP-complete [19], and approximations have been proposed
[20]. By defining the N ×N cluster matrix C as:

Cij =

{
1 if nodes i and j belong to the same cluster
0 otherwise,

(2.3)

the equation (2.2) can also be rewritten as a quadratic form:

m =
1

2L
· uT ·

(
A ◦ C − 1

2L
·
(
d · dT

)
◦ C
)
· u, (2.4)

where the symbol ◦ represents the Hadamard product [21]. The number of clusters in the network is
denoted as c and the c× 1 vector n =

[
n1 n2 . . . nc

]
, with ni representing the number of nodes in

cluster i, specifies the size of each cluster.

5

6 Chapter 2. Graph or Network Clustering

2.1.2. Normalized Mutual Information
Danon et al. [17] introduced the normalized mutual information (NMI) metric as a means of comparing
partitions in network analysis. The metric relies on a confusion matrix, denoted as F , which represents
the correspondence between the original communities and the estimated clusters. The ij-th element
Fij in the confusion matrix indicates the number of nodes belonging to both the true community i and
the estimated community j. The normalized mutual information metric, denoted as In(P0, Pe), between
the known partition P0 and the estimated partition Pe is defined in [17] as:

In(P0, Pe) =

−2
c0∑
i=1

ce∑
j=1

Fij log
(

FijN
Fi.F.j

)
c0∑
i=1

Fi. log
(
Fi.

N

)
+

ce∑
j=1

F.j log
(

F.j

N

) , (2.5)

where c0 represents the number of known clusters, ce represents the number of estimated clusters, Fi.

denotes the sum of the i-th row in F , and F.j denotes the sum of the j-th column. The NMI metric takes
a value of 1 when two partitions are identical, and tends towards 0 when the partitions are indepen-
dent. The NMI measure has been widely employed in evaluating the performance of various clustering
algorithms [3] and continues to be a valuable tool in network analysis.

2.1.3. Element-centric Similarity
Gates et al. [16] introduced the Element-centric Similarity (ECS) metric to tackle the biases inherent
in existing clustering comparison measures. The authors highlight that such biases are pervasive in
popular metrics. For instance, when comparing the similarity between two clusterings, one is typically
fixed as the ground truth while the number of clusters in the other is increased. As a consequence, the
NMI value rises, whereas the ECS value declines. This indicates that NMI exhibits a bias towards a
greater number of clusters, whereas ECS remains unbiased in this regard.

The process of ECS commences by computing the “personalized PageRank” or “random walk with
restart” pij , incorporating all possible paths between elements to derive the equilibrium distribution for
a personalized diffusion process on the graph:

pij = (αecs/ |cβ |) + (1− δij)(1− αecs))δβγ , (2.6)

where δ is the Kronecker delta function, element vi is in cluster cγ , and element vj is in cluster cβ . And
|cβ | denotes the cluster size of cβ . 1.0− αecs represents the restart probability, where αecs = 0.9.

With the personalized PageRank pij , we can further calculate the element-wise similarity of an
element vi in two clusterings A and B,

Si(A,B) = 1.0− 1

2αecs

N∑
j=1

∣∣pAij − pBij
∣∣ . (2.7)

Finally, the ECS score S(A,B) of two clusterings A and B is the average of Si(A,B),

S(A,B) = 1

N

N∑
i=1

Si(A,B). (2.8)

The closer the value of ECS is to 1, the more similar the two clusterings are, while the closer the value
of ECS is to 0, the more dissimilar the two clusterings are.

Furthermore, it is noteworthy that the complete version of ECS possesses the capability to as-
sess both overlapping clustering and hierarchical clustering. However, within the scope of this thesis,
all utilized algorithms, benchmarks, and real-world networks exclusively pertain to classic community
problem: where each node is singularly allocated to a lone community. As such, our reimplementation
of ECS focuses solely on this facet of its functionality.

2.2. Benchmarks
2.2.1. Stochastic Block Model
The clustering methods employed in this thesis will be firstly benchmarked using random graphs gener-
ated by the Stochastic Block Model (SBM), which was proposed by Holland [14]. The SBM generates

2.3. Random Network Models 7

a random graph with a community structure, where the presence of a link between two nodes depends
on whether they belong to the same cluster or not, and the probability of the link varies accordingly.
This thesis specifically focuses on the symmetric stochastic block model (SSBM), which involves defin-
ing only two distinct probabilities for link existence. If two nodes belong to the same cluster, they
are connected by a link with a probability of pin. Otherwise, a direct link exists between them with a
probability of pout. Communities are formed when the link density within clusters is greater than the
inter-community link probability, i.e., when pin > pout. Additionally, the clusters are constrained to have
the same size, denoted by ni = N/c, where i ∈ 1, 2, . . . , c. This constraint ensures that the expected
degree is equal for all nodes, regardless of their cluster membership. The expected degree E[D] is
given by the equation:

E[D] =
bin + (c− 1) · bout

c
. (2.9)

In this thesis, we consider a sparse and assortative variant of the SSBM. The terms sparse and assor-
tative imply that the link probabilities, pin = bin/N and pout = bout/N , are defined based on positive
constants bin and bout, which remain fixed as the network size N approaches infinity. Decelle et al.
[22, 23] discovered that when the difference between bin and bout surpasses a detectability threshold,
represented by the equation:

bin − bout > c ·
√
E[D], (2.10)

it becomes theoretically possible to accurately identify the cluster membership of nodes. Conversely, if
the difference between bin and bout falls below this threshold, the network’s community structure cannot
be distinguished from randomness. This threshold (2.10) represents a critical transition point between
the undetectable and theoretically detectable regimes of the SSBM.

2.2.2. LFR Benchmark
Lancichinetti et al. [15] proposed the LFR benchmark as an alternative to SSBM graphs, aiming to
generate more realistic random graphs that incorporate inherent community structures. Unlike SSBM
graphs, where all nodes have the same expected degree, the authors argue that real-world networks of-
ten exhibit heterogeneous degree distributions. Moreover, the tails of these distributions are frequently
characterized by power laws [24]. In contrast, the LFR benchmark takes into account the observed
properties of real-world networks, where community size distributions often follow heavy-tailed distribu-
tions [25]. This benchmark produces graphs with the following characteristics:

• Each node’s degree is sampled from a power law distribution with an exponent determined by
the input parameter γ;

• The size of each community is sampled from a power law distribution with an exponent determined
by the input parameter βlfr;

• A fraction 1− µ of the links of each node are assigned as intra-community links.

In addition to the parameters mentioned above, the LFR benchmark requires inputs for the network
size N , the average degree dav, and the number of communities c.

2.3. Random Network Models
2.3.1. Erdős-Rényi Model
The Erdős-Rényi (ER) model [26] is a fundamental model in the field of network theory. There are two
variants of this model: the G(N,L) model and the G(N, pER) model.

For the G(N,L) model, a graph is generated by choosing at random from all possible graphs con-
sisting of N nodes and L links. Essentially, this model begins with N isolated nodes and proceeds
to add L links at random, ensuring the avoidance of duplicating links between the same pair of nodes.
TheG(N, pER)model builds a graph withN nodes, where the probability pER determines whether each
pair of nodes is connected by an link. The decision to create an link between each pair of nodes is
taken independently. In our simulations, we implement the G(N, pER) model.

It should be noted that the Erdős-Rényi model falls short in replicating all features of real-world net-
works. For instance, many real-world networks exhibit a higher clustering coefficient, which suggests a
pronounced tendency for nodes within the graph to form clusters, and a power-law degree distribution.

8 Chapter 2. Graph or Network Clustering

These are properties that are not typically observed in Erdős-Rényi networks [27]. To better repre-
sent these characteristics, more complex models, such as the Barabási-Albert (BA) model, have been
developed.

2.3.2. Barabási-Albert Model
The Barabási-Albert (BA) model [28] is a model of network growth. This model specifically aims to
generate random scale-free networks, which are characterized by node degrees (the number of links
incident to a node) that follow a power-law distribution. A key feature of scale-free networks is that
there are a few nodes that have a significantly higher number of connections compared to others, often
referred to as ”hubs”.

The main characteristic of Barabási-Albert model is called preferential attachment, which means
that new nodes are more likely to connect to nodes that already have many connections. This ”rich-get-
richer” phenomenon leads to the power-law degree distribution that characterizes scale-free networks.

Here is a detailed description of the BA model’s steps:

• Begin with a small number m0 of nodes, usually m0 > 1, which are connected in some arbitrary
manner;

• At each time step, add a new node with mBA ≤ m0 links that connect the new node to mBA

existing nodes;
• The probability pi that the new node will connect to node i depends on the degree di of node i,
such that pi = di/

∑
jdj . That is, the more connections node i has, the more likely it is to receive

more connections.

These steps are repeated until the network reaches the desired size. The resulting network has
a scale-free degree distribution, meaning that the fraction P (d) of nodes in the network having d con-
nections to other nodes goes for large values of d as P (d) ∝ d−γ , where γ is a constant whose value
typically lies in the range 2 < γ < 3.

While the Barabási-Albert model succeeds in explaining the presence of hubs and the power-law
degree distribution in many real-world networks, Barabási-Albert model does not capture all aspects of
real-world network structure. For example, it does not account for the high clustering coefficient seen
in many real-world networks. Networks possessing such a property are accurately represented by the
Watts-Strogatz model.

2.3.3. Watts-Strogatz Model
The Watts-Strogatz (WS) model [29] is a stochastic graph generation model that yields graphs charac-
terized by small-world properties, encompassing short average path lengths and high clustering. It was
designed to mimic the properties of many real-world networks, which are neither completely regular nor
completely random.

The Watts-Strogatz model is based on the idea of ”rewiring” a regular lattice. Here are the steps of
constructing a Watts-Strogatz network:

• Start with a regular lattice: A graph of N nodes is created where each node is connected to
its kWS nearest neighbors (kWS/2 on each side, assuming periodic boundary conditions which
makes the lattice a ring);

• Rewiring process: For every link in the network, rewire the target node with probability pWS .
Rewiring works as follows: for a selected link, change one of its nodes (keeping the source node)
to a node chosen uniformly at random over the entire ring, with duplicate links disallowed.

The rewiring probability pWS is a key parameter of the Watts-Strogatz model. Depending on the
parameter pWS value, Watts-Strogatz model generates different types of graph topologies:

• When pWS = 0, the model starts as a regular graph with high clustering and large characteristic
path length;

• When pWS = 1, the model becomes a random graph, similar to an Erdős-Rényi graph, having a
low clustering coefficient and small characteristic path length;

• For 0 < pWS < 1, the model exhibits small-world properties, with a relatively high clustering
coefficient and small characteristic path length.

2.3. Random Network Models 9

It is important to note that the Watts-Strogatz model does not generate scale-free networks, which
is a common property of many real-world networks, as it lacks a power-law degree distribution.

3
Linear Clustering Process

In [13], Jokic and Van Mieghem proposed a linear process consisting of attractive and repulsive forces
between nodes of a network, which can be utilized to estimate partitions.

3.1. Linear Clustering Process (LCP) on a Network
3.1.1. From node-level governing equation to the network level
In the graph G, every node i is allocated a position xi[k] on a linear axis, which corresponds to a one-
dimensional space, at a specific, discrete point in time, denoted as k. LCP consists of two opposite
and simultaneous forces that change nodal position in time:

• Attraction: Adjacent nodes that have a lot of common neighbors are drawn towards each other
with a force that is proportional to the quantity of shared neighbors. In particular, the attractive
force between node i and its neighboring node j is proportional to α · (|Nj ∩Ni|+ 1), where α is
the attraction strength and Nj ∩Ni denotes the set of common neighbors of node i and node j;

• Repulsion: Adjacent nodes are repulsed with a force proportional to the number of neighbours
they do not share. In particular, the repulsive force between node i and its neighboring node j is
proportional to δ · (|Nj \ Ni| − 1), where δ is the repulsive strength and Nj \Ni denotes the set of
neighbors of node j that do not belong to node i, accounted for the direct link between node i and
node j, that is contained in the above set. To obtain symmetric repulsion force between node i
and node j, when these nodes are interchanged, the repulsion force is defined to be proportional
to δ · (|Nj \ Ni|+ |Ni \ Nj | − 2).

Therefore, the governing equation at position xi[k] of node i at discrete time k is

xi[k+1] = xi[k]+
∑
j∈Ni

(
α · (|Nj ∩Ni|+ 1)

djdi
−

1
2 · δ · (|Nj \ Ni|+ |Ni \ Nj | − 2)

djdi

)
·
(
xj [k]−xi[k]

)
(3.1)

The node-level governing equation of LCP could be further transformed to the network level and
rewritten to a matrix form. The discrete time process (3.1) satisfies the following linear matrix difference
equation, as derived in [13, Theorem 1]

x[k + 1] = (I +W − diag (W · u)) · x[k], (3.2)

where the N × 1 all-one vector is notated as u, the N × N identity matrix is denoted by I, while the
N ×N topology-based matrix W is defined as

W = (α+ δ)∆−1 ·
(
A ◦A2 +A

)
·∆−1 − 1

2
· δ
(
∆−1 ·A+A ·∆−1

)
(3.3)

The attractive force between two adjacent nodes is always of higher strength than the repulsive
force, preserving the system’s stability. The bounds of the attraction α and repulsion δ strengths are
demonstrated in [13, p. 5] to preserve the stability of the LCP process. However, the dominance of
attraction forces governs the LCP process eventually to a trivial steady state, where each node occupies
the same position, as derived in [13, p. 4].

11

12 Chapter 3. Linear Clustering Process

3.1.2. Time-dependence of the LCP
The explicit solution of the equation (3.2) is

x[k] = (I +W − diag (W · u))k x[0] (3.4)

where the k-th component of the initial position vector is (x[0])k = k.
The convergence of the linear discrete-time system described in (3.2) to a steady-state is achievable

only when the matrix (I +W − diag (W · u)) possesses eigenvalues with absolute values smaller than
1, and the largest eigenvalue is exactly 1. This implies that the requirement for achieving a steady state
is the alignment of all nodes to the same position. However, when we closely examine the governing
equation (3.1), the steady-state solution seems trivial. This is because the sum cancels out, and the
definition of steady state states that x[k + 1] = x[k], a condition that holds true for any discrete-time
independent vector. Therefore, the matrix equation (3.2) can be written as

x[k + 1]− x[k] = (W − diag (W · u)) · (x[k]− u)

The eigenvalue decomposition of the N ×N governing matrix W − diag (W · u) can be written as

W − diag (W · u) = Y diag(β)Y T (3.5)

where the N × 1 eigenvalue vector β = (β1, β2, · · · , βN) with β1 ≥ β2 ≥ · · · ≥ βN and Y is the N ×N
orthogonal eigenvector matrix with the eigenvectors y1, y2, · · · , yN in the columns obeying Y TY =
Y Y T = I. Since β1 = 0 and y1 = u/

√
N , it holds for k > 1 that uT yk = 0, which implies that the sum

of the components of eigenvector yk for k > 1 is zero. The position vector in (3.4) is rewritten as

x[k] = Y diag(1 + β)kY Tx[0] =

N∑
j=1

(1 + βj)
kyj
(
yTj x[0]

)
Therefore, we arrive at

x[k]− uTx[0]√
N

u =

N∑
j=2

(1 + βj)
k(yTj x[0]) yj (3.6)

As elucidated earlier, the left-hand side represents a translated position vector and holds no signif-
icant influence over the clustering process from a physical standpoint. Since −1 < βj < 0 for j > 1,
equation (3.6) demonstrates that, for k → ∞, the right-hand side approaches zero, rendering the
steady-state solution evidently unremarkable in the context of the clustering process. This allows us to
rewrite (3.6) as

x[k]− uTx[0]√
N

u = (1 + β2)
k

(
(yT2 x[0]) y2 +

N∑
j=3

(
1 + βj

1 + β2

)k

(yTj x[0]) yj

)
. (3.7)

Since β1 = 0 and −1 < βj < 0 for j > 1, |1 + β2| > |1 + β3| holds. Therefore, we observe that

x[k]− uT x[0]√
N

u

(1 + β2)k (yT2 x[0])
= y2 +O

(
1 + β3

1 + β2

)k

, (3.8)

The left-hand side of (3.8), representing a shifted or normalized position vector, gravitates toward the
second eigenvector y2, accompanied by an exponentially diminishing error as k increases. However,
this only holds true for sufficiently large, but not excessively large, values of k. Thus, the information
used for clustering the graph is provided by this scaled and shifted position vector.

A block diagonal structure of the N × N adjacency matrix A can be found by sorting the N × 1
eigenvector y2, in ascending or descending order. This sorting process leads to a graph relabeling,
where each node is assigned a new label based on its position in the sorted eigenvector, denoted as ŷ2.
Consequently, the original two-dimensional clustering problem is transformed into a one-dimensional
problem. In this new formulation, we either group nodes with similar values in ŷ2 to form communities,
or we determine the community boundaries by optimizing a quality function, such as modularity. The
LCP method makes use of modularity for this purpose. And the next section describes this process in
detail.

3.1. Linear Clustering Process (LCP) on a Network 13

3.1.3. Community detection based on the eigenvector y2
The dynamic interaction between attractive and repulsive forces among nodes propels the nodal posi-
tions over discrete time steps k, guiding them toward a trivial steady state lim

k→∞
x[k] = u. Concurrently,

the scaled and shifted position vector, denoted as x[k], gradually converges over time towards the
second-largest eigenvector, y2, characterized by an exponentially diminishing margin of error.

Through the sorting of eigenvectors from y2 to ŷ2, the y2 components undergo reordering, thereby
unveiling a block diagonal structure of the adjacency matrix A upon the nodes’ consequent relabeling
within the network. Therefore, a N ×N permutation matrix R could be defined in a way the following
equation and inequality hold:

ŷ2 = R · y2,
ˆ(y2)i = (y2)ri ≤

ˆ(y2)j = (y2)rj , i < j,
(3.9)

where the N × 1 ranking vector r = R · w and w = [1, 2, . . . , N]. And ri denotes the ranking of node
i in the eigenvector y2. Then, the N × N relabeled adjacency matrix Â, the N × 1 relabeled degree
vector d̂ of G, and the N × 1 sorted eigenvector ŷ2 can be further defined by the permutation matrix R
as follows: 

Â = RT ·A ·R
d̂ = R · d
ŷ2 = R · y2.

(3.10)

Clusters form among groups of nodes exhibiting relatively minor discrepancies in the eigenvector
y2 components, yet substantial distinctions compared to other network nodes. Consequently, the chal-
lenge of community detection transitions into the task of identifying contiguous ranges of comparable
values within the sorted eigenvector ŷ2.

The eigenvector y2 serves as a continuous gauge of the similarity between the neighboring nodes
of two given nodes. Clusters are estimated for a node ranking r derived from sorted eigenvector y2
through recursive optimization of the modularity m. In the first iteration, all possible partitions of the
network into two clusters are examined and their modularity computed. The partition that yields the
highest modularity is selected. In the second iteration, the same procedure is repeated for each sub-
graph, and the best partitions into two clusters are found. Once the best partitions for both sub-graphs
are determined, they are adopted if the modularity of the generated partition surpasses the modularity
of a parent cluster from the previous iteration. The recursive process is halted when there can be no
further improvement in the modularity. The pseudo-code for this recursive algorithm is in the Appendix
F of [13].

3.1.4. Weakening strength of inter-cluster forces
The metric definition of nodal positions within LCP stands as a remarkable attribute, enabling diverse
clustering methodologies. The extent of positioning disparity between any two nodes, whether adja-
cent or not, serves as an indication of their potential cluster membership. Furthermore, this position
metric facilitates the categorization of links into intra- and inter-community distinctions. The iterative
linear clustering process (3.1) involves successive iterations in which inter-community link weights are
identified and scaled.

The attraction and repulsive forces manifest as linear functions relative to the positional disparity
between neighboring nodes. While this linearity promotes analytical rigor and simplification, it also in-
troduces complexities. As nodes become more distantly positioned, the intensities of both attractive
and repulsive forces amplify. Conversely, as neighboring nodes draw closer along a line, the forces
diminish, ultimately reaching zero as nodes converge. Additionally, the attractive force between neigh-
boring nodes consistently outweighs the repulsive force, leading the process toward a trivial steady
state.

Non-linearity in forces can be progressively infused into the linear clustering process through in-
cremental scaling of inter-community link weights across iterations. This deliberate reduction in force
strength between nodes from distinct clusters effectively dampens the impact of inter-community links,
based on the partition delineated in prior iterations.

In particular, the difference | (y2)i − (y2)j | in eigenvector component y2 between nodes i and j
signifies the resemblance between their respective neighboring nodes. A normalizedmetric for gauging

14 Chapter 3. Linear Clustering Process

dissimilarity in adjacent nodes i and j involves assessing the difference (|ri − rj |) in their rankings within
the sorted eigenvector ŷ2. Consequently, connections linking nodes exhibiting the most significant
ranking disparities are apt to be inter-community links. The N × N scaling matrix S is defined as
follows:

sij =

{
1, if |rj − ri| < θr

υ, otherwise ,
(3.11)

where the ij-th element equals 1 if the absolute value of the ranking difference between nodes i and
j is lower than the threshold θr, otherwise is equal to a small positive value 0 ≤ υ ≤ 1. Based on this
scaling matrix S, the governing equation in (3.2) can be updated as follows:

x[k + 1] =
(
I + W̃ − diag

(
W̃ · u

))
· x[k],

where W̃ = S ◦ W . The clustering process in (3.2) is solely affected by the scaling of link weights in
(3.11), as stipulated in the aforementioned equation. Nonetheless, in each iteration, modularity-based
community detection works with the N × N adjacency matrix A. As a result, the process is aided by
the implementation of weight scaling for inter-community connections in the network to enhance the
distinction between clusters (i.e. ultimately leading to improved relabeling in (3.10)). This is achieved
without altering the adjacency matrix A and, consequently, without causing any adverse impact on the
optimization of modularitym, which is introduced by the algorithm in the Appendix F of [13]. The quality
of the identified graph partition is significantly enhanced by the scaling of link weights between clusters.

3.2. LCP for a known number of communities
The aforementioned algorithm for recursively optimizing modularity can also be applied to graph par-
titioning with a known number of communities c. In this scenario, the recursive procedure outlined is
halted not when the modularity can no longer be improved, but at iteration (log2 c+1). In every iteration,
the partition with the highest modularity is accepted, regardless of whether it is negative.

As a consequence, 2c estimated clusters are obtained using the 2c × 2c aggregated modularity
matrix Mc:

(Mc)gh =
∑

i∈g,j∈h

(
Â− 1

2L
· d̂ · d̂T

)
ij

, (3.12)

where g, h ∈ {1, 2, . . . , 2c} denote estimated clusters. The capability to merge adjacent clusters is facil-
itated by the aggregated modularity matrix Mc, with the aim of achieving c communities in an iterative
manner. The (2c − 1 × 1) vector ν is observed, where νg = (Mc)g,g+1. The merging of two adjacent
clusters that minimally impacts the modularity index m is determined by identifying the maximum ele-
ment of ν. By iteratively performing this process c times, the graph partition in c clusters is ultimately
achieved. This variant is denoted as LCPc.

The above method can be termed as a priori LCPc, given that the algorithm possesses awareness
of the real number of clusters from the beginning and in each iteration. Furthermore, an attempt was
made with a posteriori LCPc, wherein the original LCP remains unaltered, and only an iteration that
achieves the desired clustering in the final step is selected. In cases where multiple iterations attain
the target cluster number, the one exhibiting the highest modularity is chosen; if no such iterations
exist, the iteration with the utmost modularity across all iterations is selected. Subsequent to testing, it
was observed that this approach does not yield any discernible distinction from the original LCP across
various benchmarks, leading to the decision to discard this approach.

3.3. Non-backtracking variant of LCP
Angel et al. [30] shows another approach of computing the eigenvalues of non-backtracking matrix,
which will be explained in Section 4.2.1. Instead of directly decomposing the 2L×2L non-backtracking
matrix B, these 2N non-trivial eigenvalues are also contained in the decomposed 2N × 2N matrix B∗:

B∗ =

[
A I −∆
I O

]
, (3.13)

3.3. Non-backtracking variant of LCP 15

where O denotes the N ×N all-zero matrix. This B∗ matrix can be rewritten as:

B∗ =

[
I + (A−∆) + (∆− I) −(∆− I)

I O

]
(3.14)

Therefore, this matrix can be viewed as a state-space matrix for a process happening within a net-
work, mirroring the LCP process we described in equation 3.2. In this process, the final N states are
responsible for holding the delayed values of the initial N states. The matrix B∗ establishes a set of
N second-order differential equations. The governing equation that dictates the position of node i is
defined by

xi[k + 1] = xi[k] +
∑
j∈Ni

(xj [k]− xi[k]) + (di − 1) · (xi[k]− xi[k − 1]), (3.15)

where the second term can be considered as a uniform attractive force between neighboring nodes,
whereas in LCP, the intensity of the attractive force is dependent on the number of common neighbors
between two adjacent nodes. Meanwhile, LCP also suggests a repulsive force between adjacent nodes,
equation 3.15 describes node i as being pushed away from its former position xi[k] in the direction of
its most recent position change xi[k]− xi[k − 1].

Therefore, corresponding to B∗, 2N × 2N matrix W ∗ can be defined as:

W ∗ =

[
I + α · (A ◦A2 +A− diag((A ◦A2 +A) · u) + (∆− I) −(∆− I)

I O

]
(3.16)

where attractive force is retained according to but repulsive force is discarded by letting δ = 0. The
remaining part aligns with the principles of the non-backtracking clustering method. The number of
clusters c is determined by counting the number of real eigenvalues in W ∗ that exceed the square root
of the largest real eigenvalue.

This variant is denoted as LCPn and we test it on several benchmarks, random network models and
real-world networks. Specific results and analysis are presented in Chapter 5. The positive aspect is
that the algorithm performs almost identically to non-backtracking on the Stochastic Block Model and
random network models, which proves the success of the algorithm design. However, the algorithm
performs poorly on power-law networks, such as the LFR benchmark and some of real-world networks
as shown in Figure 3.1. After analysis and testing, it was found that for power-law networks, the attrac-
tion strength α has a significant impact on the performance of the algorithm. Previously we fix α = 0.95,
mainly because an α close to 1 helps maximize the difference between the second largest eigenvalue
β2 and the third largest eigenvalue β3 of theN×N matrixW−diag(W ·u). Therefore, for the power-law
network, we adopt the strategy of dynamically adjusting the value of α, which is described below.

For a power-law network, its degree distribution should conform

P (d) ∝ 1

dγ
, (3.17)

where P (d) denotes the probability that the node has degree d and γ is a positive real number. In
our case, we treat networks with γ greater than 1 as power-law networks [31], because the degree
distribution of some random model networks may also have positive γ values, but they are hardly
greater than 1. Thus, when we have a power-law network, we can thereby calculate its γ based on its
degree distribution.

Firstly take the logarithm of both sides of the equation (3.17), we have

logP (d) = −γ · log d (3.18)
Here we obtain a linear equation and we can then perform a linear fit using the degrees of the nodes and
their corresponding probabilities. The probability density function fD(d) of the power-law distribution
[32] is as follows:

fD(d) = cp · d−γ , (3.19)

where cp = (γ − 1) · d(γ−1)
min denotes the normalization constant. For a given network, we utilize the

N × 1 degree vector d to estimate the corresponding power-law exponent γ, which helps determining
whether a network is a power-law network and how ”skew” the degree distribution is. In particular, the
power-law exponent γ determines the shape of the distribution [31], [33]:

16 Chapter 3. Linear Clustering Process

Figure 3.1: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 5 clusters. The graphs are generated using parameters

γ = 2 and βlfr = 3 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual
Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

• A smaller power-law exponent indicates a heavy-tailed distribution. This means that there are
more highly connected nodes (or “hubs”) in the network. These networks are sometimes de-
scribed as “scale-free” because their degree distributions are the same at all scales. In other
words, the proportion of nodes with a certain number of links remains constant, regardless of the
total number of links;

• A larger power-law exponent indicates a lighter-tailed distribution. This means that the network
has fewer highly connected nodes. As the power-law exponent increases, the distribution be-
comes more similar to an exponential distribution, which has fewer hubs and is less skewed.

Therefore, based on this characteristic, we consider that as γ increases, the value of the α should
also increase, since its network properties will be closer to a random network rather than a power-law
network. We use LFR benchmark to generate networks with different γ to find the relationship between
γ and α, by changing α and testing on networks with fixed γ to find the γ value that can make the
algorithm perform optimally, and finally we summarize our findings as the following function:

α =

{
0.3× γ − 0.1 if 1 < γ ≤ 3.5

0.95 otherwise,
(3.20)

Here we set an upper bound α = 0.95 and the relationship between γ and γ for 1 < γ ≤ 3.5 is derived
from a linear fit to the results of the above experiments. According to Figure 3.1, with the strategy of
dynamically adjusting the value of γ, the performance of LCPn improves significantly from that with
fixed α, but is clearly still inferior to that of non-backtracking.

It is worth pointing out that our strategy is not some optimal solution but only an empirical one. We
still do not have a clear explanation for why the performance of LCPn differs so much from that of
non-backtracking in power-law networks, even after adopting the above strategy. In addition, since γ

3.3. Non-backtracking variant of LCP 17

is a simple linear fit to the degree distribution of the power-law network, it is difficult to reflect the full
characteristics of the corresponding network, which leads to the fact that the strategy of inferring α
from γ is unlikely to be the optimal solution. Therefore, the reasons for the declining performance of
spectral methods including LCPn, non-backtracking, and eigengap on power-law networks still need
further investigation.

4
Considered Clustering Algorithms

4.1. Modularity-based Methods
The subsequent three algorithms are categorized as modularity-based methods, indicating their pur-
suit of the optimal community partition through modularity optimization. It is essential to underscore,
however, that the Louvain and Leiden methods employ quality functions that may not strictly adhere
to the concept of modularity. For instance, Traag et al. highlight the Constant Potts Model (CPM) [9]
[34] as an alternative quality function that mitigates the resolution limitations to a certain extent when
contrasted with modularity.

4.1.1. Newman Method
Newman introduced a clustering algorithm based on modularity optimization [6]. The algorithm begins
by estimating the bisection of a graph, aiming to generate the highest modularity valuem using Equation
(2.2), which can be expressed as:

m =
1

4L
yT ·M · y, (4.1)

where, the N × 1 vector y represents the cluster membership of each node, with values of either 1 or
−1. The N × N modularity matrix M = A − 1

2L · d · dT can be decomposed into its eigenvalues and
eigenvectors as:

M =

N∑
i=1

ζi · zi · zTi , (4.2)

where, the N × 1 eigenvector zi corresponds to the i-th eigenvalue ζi. The vector y =
∑N

j=1(z
T
j · y) · zj

can be expressed as a linear combination of the eigenvectors {zi}1≤i≤N , transforming Equation (4.1)
into:

m =
1

4L

N∑
i=1

ζi · (zTj · y)2. (4.3)

To maximize the modularity m, Newman proposed setting yi = 1 if (z1)i > 0, otherwise yi = −1.
This procedure is repeated in subsequent iterations by dividing the graph into two partitions based on
spectral properties. However, considering only the block sub-matrix of M corresponding to the cluster
g in the next iteration would ignore inter-community links. Instead, for the estimated cluster g, the
modularity matrix Mg is updated using:

Mg = mij −

∑
k∈g

mik

 · δij , (4.4)

Here, the Kronecker delta δij is 1 if i = j, and 0 otherwise. The algorithm terminates when further
improvement in modularity m is no longer possible.

19

20 Chapter 4. Considered Clustering Algorithms

4.1.2. Louvain Method
The Louvain method, proposed by Blondel et al. [7], is a powerful yet straightforward heuristic clus-
tering algorithm. This method employs an iterative and unsupervised two-step procedure to optimize
modularity, denoted as m. The algorithm starts by assigning each node in a directed graph G with an
N ×N weighted adjacency matrix Ã to its own distinct community. This forms the initial partition of the
network.

In the first stage, the algorithm evaluates the change in graph modularity m if node i were to be
assigned to the community of its neighboring node j ∈ Ni. The modularity gain ∆m resulting from
assigning node i to community h of adjacent node j is defined in [7] as follows:

∆m =

(∑
in +2

∑
l:Clj=1 Ãil

2L
−
(∑

tot +di
2L

)2
)

−

(∑
in

2L
−
(∑

tot
2L

)2

−
(

di
2L

)2
)
, (4.5)

where
∑

in represents the sum of the weights of intra-community links in community h, and
∑

tot denotes
the sum of the weights of all links in G incident to any node in community h.

During each iteration, the algorithm assesses whether moving node i to a neighboring community
would result in a higher modularity value. If such a move is found, the node is moved to the community
that provides the maximum modularity gain. If all computed gains ∆m are either negative or smaller
than a predefined small positive threshold value, node i remains in its original community. The first
stage concludes when modularity m can no longer be increased by re-assigning nodes to neighboring
communities. After completing a pass over all nodes, the algorithm compresses the network bymerging
communities that are connected by a single link, effectively creating a new, consolidated node for each
merged community.

In the second stage of each iteration, the weighted graph obtained from the first stage is transformed
into a new weighted graph, where each node represents a community. The link weight between two
nodes h and g is equal to the sum of weights of all links between communities h and g in the graph
obtained from the first stage. Moreover, the weight of a self-loop of node g in the new graph equals the
sum of weights of all intra-community links in cluster g of the graph from the previous stage. This new
graph is then fed into the first stage for the next iteration. The algorithm terminates when modularity m
can no longer be increased. The time complexity of the Louvain method is linear with the number of
links O(L) for sparse graphs [7].

4.1.3. Leiden Method
Although the Louvain method is widely used in clustering algorithms, it has a drawback of identifying
poorly connected or disconnected communities. This limitation was first identified by Traag et al., who
introduced the Leiden algorithm as an improvement to the Louvain method in their work [9]. The Leiden
algorithm aims to estimate graph partitions while ensuring the creation of connected communities. The
Leiden algorithm involves three iterative steps:

• Local moving of nodes: This step is an enhanced version of the first step in the Louvain algo-
rithm, described in Equation (4.5). While the Louvain algorithm randomly visits each node until
modularity can no longer be improved by moving a node to a different community, the Leiden
algorithm only visits nodes whose adjacent nodes have been relocated. This is achieved by plac-
ing nodes in a queue and iteratively checking if the cluster membership of a node can be updated
to enhance the quality function. When a node is moved to another community, its neighbors from
other communities are placed in the queue;

• Refinement of the partition: In this step, each node is initially assigned its own community. Nodes
are merged locally, meaning only within communities estimated in the previous stage. Two nodes
within the same community are merged only if both nodes are well connected to the community
from the previous stage. At the end of the refinement stage, partitions from the first stage are
often split into multiple communities;

• Aggregation of the network: This step involves aggregating the network based on the refined
partition obtained from the previous stage, similar to the second stage of the Louvain algorithm.

The Leiden algorithm achieves faster clustering compared to the Louvain algorithm while generally
providing improved partitions [9].

4.2. Spectral Methods 21

4.2. Spectral Methods
The following two algorithms are known as spectral methods. Neither of these algorithms possesses
the inherent capacity for community partition. Given the community partitioning ability demonstrated by
all the other algorithms and the resulting coherence in subsequent simulations, we resort to employing
k-means clustering for community partitioning. In particular, these algorithms produce the number of
clusters within the network. Leveraging this number along with the eigenvectors of the representation
matrix of the network as inputs for the k-means clustering process, the resulting output furnishes the
community partition for each node.

4.2.1. Non-backtracking Method
The non-backtracking matrix B is based on the concept of non-backtracking walks on a network G,
which are walks where one does not immediately ”reverse” along a link just traversed. In particular, a
non-backtracking matrix B starts by creating a list of directed links for an undirected network, which
means replacing every link with two directed links going in opposite directions. Therefore, for an undi-
rected network G(N ,L), the corresponding directed network is constructed with 2L links. Then, the
2L× 2L non-backtracking matrix B is defined by:

B(u→v),(w→z) =

{
1 if v = w and u ̸= z

0 otherwise,
(4.6)

where v, w, z ∈ N .
Krzakala et al. [10] proposed a spectral method for clustering networks based on non-backtracking

matrix. The non-backtracking matrix B, being asymmetric, typically has complex eigenvalues. In the
complex plane, most of these eigenvalues are located within a bulk whose center is the origin and
whose radius is the square root of the largest real eigenvalue. Therefore, they estimated the number
of clusters within G corresponds to the quantity of real eigenvalues that lie outside this bulk. The
computational complexity of non-backtracking method is O(L3), mainly for eigenvalue decomposition.
And this complexity has the opportunity to be reduced to O(N3) [11].

4.2.2. Modularity Eigengap
Besides modularity as a quality function, Newman [6] also defined a N × N real symmetric matrix M
with elements

Mij = Aij −
didj
2L

(4.7)

which called the modularity matrix. The estimation of the number of clusters c is determined by the
maximum eigengap of the modularity matrixM , following the same process described for the adjacency
matrixA. The eigenvalues of the modularity matrixM can firstly be sorted in descending order λ1(M) ≥
λ2(M) ≥ · · · ≥ λN (M). Hence, it can be observed that the eigenvalues of the modularity matrix M
and the adjacency matrix A are interlaced [11]:

λ1(A) ≥ λ1(M) ≥ λ1(A) ≥ λ2(M) ≥ · · · ≥ λ1(A) ≥ λN (M) (4.8)

Finally, the number of clusters c could be estimated by

c = argmax
i

(λi−1(M)− λi(M)), i = 2, . . . , N (4.9)

where λi−1(M)−λi(M) denotes the difference of two consecutive eigenvalues of modularity matrixM
and estimated number of clusters c is equal to the index number of smaller eigenvalue in the maximum
eigengap.

4.3. Local Dominance
Shang et al. proposed the Local Dominance [12] algorithm, designed to reveal the hidden hierarchy
in the network by utilizing local information. Local Dominance starts with calculating the degree of
each node. For a given node, a link pointing to an adjacent node will be established if the following
criteria are met: the degree of the adjacent node is greater than or equal to the original node, and the
degree of the adjacent node is the largest among all neighbors. Loops are not permitted in this process,

22 Chapter 4. Considered Clustering Algorithms

meaning that if a link already exists between two nodes, a second link in the opposite direction cannot
be established.

Upon traversing all nodes, if any nodes possess multiple outgoing links, one is randomly preserved.
Consequently, the algorithm transforms the initial network into a collection of tree structures, with each
tree’s root node referred to as the local leader and the leaf nodes as followers. In the context of Local
Dominance, each tree represents a community. The total number of communities corresponds to the
quantity of local leaders, and a local leader, along with their followers, constitutes the members of a
community.

The time complexity of Local Dominance algorithm is linear in the number of links O(L) [12], which
could be one of the fastest community detection algorithms.

5
Results

5.1. Computational complexity
Table 5.1 shows the computational complexity of considered clustering algorithms:

Clustering Algorithm Computational Complexity

Louvain1 O(L)
Leiden O(L)
Local Dominance O(L)
LCP O(N · L)
LCPc O(N · L)
LCPn O(N3)
Newman O(N3)
Non-backtracking O(N3)
Eigengap O(N3)

Table 5.1: Computational Complexity of considered clustering algorithms

The Louvain method is known for its efficient clustering performance, requiring minimal computa-
tional complexity. Studies have demonstrated that its time complexity is linear with the number of links
L for sparse graphs. An improved version of Louvain, called the Leiden method, achieves compa-
rable complexity when performing community partitioning. On the other hand, the Local Dominance
approach utilizes local information to estimate communities in a graph, resulting also in computational
complexity that scales linearly with the number of links. In contrast, our LCP demands greater com-
putational effort for estimating partitions. The computational complexity of LCP, as described in [13],
scales linearly with the product of the number of nodes N and the number of links L. However, LCPc,
a variant of our LCP where the number of communities c is provided as input, exhibits comparable
computational complexity. Furthermore, our LCPn variant employs eigenvectors of the corresponding
governing matrix to estimate communities. This approach requires computational effort that scales with
the cube of the network size, denoted as O(N3). This computational complexity also applies to any
spectral clustering method, which is necessary for performing spectral decomposition.

5.2. SBM Benchmark
5.2.1. SSBM network with small number of clusters
SSBM network with c = 2 clusters
Figure 5.1 illustrates the clustering performance of the LCP algorithm and other methods considered
in this thesis. Regarding the estimation of the number of communities c (top-left figure), the non-
backtracking (NBT) method and the equivalent version of LCP (i.e. LCPn, see Section 3.3) demon-
strate superior performance, converging to two clusters for values of bin − bout above the detectability

1Time complexity in case of sparse graphs.

23

24 Chapter 5. Results

threshold. The eigengap method follows closely, achieving convergence to the exact number of clus-
ters for higher values of bin − bout, while estimating more than c = 2 communities in the undetectable
regime. In terms of precision in estimating the true number of clusters, LCP ranks fourth and converges
to c = 2 only when the clusters are clearly distinct (i.e., when there is a large difference between bin
and bout), because it optimizes modularity m, as explained in the following paragraph. Although the
Newman method performs the worst when the clusters are indistinguishable, it outperforms Louvain,
Leiden and Local Dominance methods once the communities start to emerge from the randomness in
the SSBM network structure. Louvain and Leiden methods perform similarly on SSBM networks with
c = 2 clusters and converge to the correct number of clusters only in cases when there are almost
no inter-community links. These two algorithms’ tendency to identify a large number of communities
stems from their design, which initializes every node as a separate community. Finally, Local Domi-
nance performs the worst overall, irrespective of the number of inter-community links. In this SSBM
model, the outcomes of Local Dominance exhibit a more robust correlation with the scale of the net-
work. To illustrate, when considering a network comprising 500 nodes as depicted in these figures, the
findings would typically manifest as approximately 20 clusters. Scaling up to 1000 nodes, this cluster
count would elevate to approximately 40, assuming that other intrinsic network parameters, such as
the average node degree, remain unchanged.

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

Figure 5.1: The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in
SSBM graphs with N = 500 nodes, average degree dav = 7 and c = 2 clusters, for different values of parameters bin and

bout. The NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand
side figures, respectively. The vertical dashed line indicates the clustering detectability threshold.

LCP identifies partitions with the highest modularity m overall, as depicted in the upper right-hand
side of Figure 5.1. Even when original clusters are indistinguishable from randomness, LCP identifies
alternative communities by optimizing modularity m. LCPc, a variant of LCP which receives the true
number of communities as input, achieves the original modularity m in the region where communi-
ties are visible. Furthermore, just above the detectability threshold, the modularity achieved by LCPc
exceeds the original modularity m, indicating that alternative partitions with the same number of com-
munities but higher modularity coexist around the threshold! The same argument explains the incorrect
number of clusters c identified by LCP, as the achieved modularity is consistently higher than that of

5.2. SBM Benchmark 25

the original partition. Non-backtracking method and our LCPn achieve modularity m of the planted
partition once they estimate the correct number of clusters c. In contrast, when original communities
are indistinguishable from randomness, these methods fail to reveal any clusters, and thus the result-
ing modularity is zero. For lower values of bin − bout, the Leiden method performs closely to LCP.
At the same time, the performance declines as the number of intra-community links increases com-
pared to other algorithms. Leiden consistently outperforms Louvain, which aligns with the idea of the
Leiden method as an improvement of the Louvain algorithm. As the Newman method converges to
the correct number of clusters c, its modularity increases and tends towards the original modularity
when clusters are visible while identifying alternative partitions with superior modularity when original
clusters are not distinguishable. Finally, Louvain and Local Dominance perform similarly in modularity
when original clusters are not clearly visible, while Louvain estimates better partitions as the number
of inter-community links decreases.

We utilize the NMI measure explained in Section 2.1.2, together with the ECS measure described
in Section 2.1.3, to compare the estimated partitions of each clustering algorithm considered with cor-
responding planted partitions. From the NMI measure presented in the bottom-left part of Figure 5.1,
we observe that the non-backtracking method (NBT) and our LCPn reveal partitions most similar to the
planted partition overall, when they estimate a correct number of clusters. The LCPc variant performs
the best when clusters are visible (i.e. for higher values of bin − bout). However, just above the de-
tectability threshold, LCPc identifies alternative communities with superior modularitym and, thus, less
similar to the planted partition. The Newman method and LCP perform similarly in the region above
the detectability threshold but worse than the eigengap method. At the same time, LCP outperforms
remaining considered algorithms, especially as the number of inter-community links decreases. Leiden
and Louvain perform similarly, with Leiden reproducing original partitions with slightly higher accuracy,
while Local Dominance performs the worst.

The element-centric similarity (ECS) measure, proposed in [16], resolves the bias in the NMI mea-
sure towards large number of clusters. The ECS measure reveals that NBT, our LCPn and LCPc, domi-
nantly outperform other clustering algorithms when identifying partitions in the SSBM network with c = 2
communities, regardless of the number of inter-community links. The ECS measure achieved by LCPc
drops locally above the detectability threshold due to observed alternative partitions, as explained in the
previous paragraph. Eigengap follows the aforementioned algorithms in ECS performance while being
outperformed by our LCP in the case of a relatively low number of inter-community links. Overall, our
LCP predominantly outperforms all non-spectral clustering methods considered. It is worth noting that
LCP performs clustering based on a linear physical process while estimating the borders of clusters by
maximizing modularity. Therefore, the ECS measure clearly indicates that LCP accurately discovers
clusters through its underlying process. Other algorithms perform similarly, whereas Newman outper-
forms the remaining algorithms for the bin − bout values above the detectability threshold. In contrast,
the Leiden and Louvain algorithms dominate once the clusters become more visible.

Upon examining the distinct subfigures in isolation, a comprehensive analysis warrants their col-
lective consideration. Evidently, a strong connection is discernible among the four subfigures. The
behaviour of the algorithms in converging to the real values of the above four metrics is markedly differ-
ent. For number of clusters, algorithms exhibit a progressive alignment with the real number of clusters
as the bin − bout expands, subsequently rendering the clusters more perceptible. In the context of
modularity, this alignment materializes as a gradual trajectory toward and eventual alignment with the
original modularity curve. Conversely, concerning NMI and ECS, this alignment is characterized by a
pronounced leap in proximity to the convergence juncture, i.e., a realm where NMI and ECS values
remarkably enhance within a compact span of the bin − bout.

While disparities persist in the behavioral tendencies of individual algorithms concerning their con-
vergence towards the real values of the aforementioned four metrics, a noteworthy observation arises:
the points of convergence remain uniform. Equally intriguing is the consistency displayed by algorithms
based on similar ideas and techniques in terms of their convergent points. For instance, all three spec-
tral methods converge slightly beyond the detectability threshold, with LCP exhibiting a delayed conver-
gence, while the modularity-based algorithms approach convergence exclusively in scenarios where
inter-community links are nearly absent. It’s crucial to emphasize that across other simulations with
different number of clusters, the coherence among these four subfigures remains unwavering. This
consistency persists even in the face of potential variations in algorithmic performance and the timing
of their individual convergences.

26 Chapter 5. Results

Furthermore, upon comparing ECS curves with NMI in the lower segment of the figure, a distinct
pattern emerges. In the lower right quadrant of the figure, it becomes evident that nearly all algorithms
have an initial value, i.e., their ECS values surpass 0 within the realm situated beneath the detectabil-
ity threshold. Conversely, the NMI values for the corresponding range tend to converge towards a
negligible 0. This phenomenon finds its roots in the inherent nature of ECS. For instance, consider
the curve generated by the non-backtracking approach. Since the number of clusters estimated by
non-backtracking is 1 in the region below the detectability threshold, i.e., the algorithm treats the whole
network as a single cluster. Therefore the value of ECS will be 1/c, where c represents the real value
of the clusters in the network, in this case c = 2. Consequently, both non-backtracking and LCPn algo-
rithms initiate their ECS curve with a value of 0.5. Notably, this stands in stark contrast to NMI, which,
in the same scenario, attains a value of 0.

SSBM network with c = 4 clusters

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

Figure 5.2: The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in
SSBM graphs with N = 500 nodes, average degree dav = 7 and c = 4 clusters, for different values of parameters bin and

bout. The NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand
side figures, respectively. The vertical dashed line indicates the clustering detectability threshold.

Figure 5.2 illustrates the clustering performance of our LCP and other considered clustering algo-
rithms for the SSBM network with c = 4 communities. The rankings of clustering algorithms in accu-
rately estimating the number of clusters remain consistent with those in the case of SSBM graphs hav-
ing c = 2 communities. We observe that each considered clustering algorithm, in the case of SSBM
networks with different bin − bout values below the detectability threshold, tends to reveal the same
number of clusters, regardless of the number of planted communities c. The algorithms, namely eigen-
gap, non-backtracking method, and our LCPn, exhibit the highest precision in estimating the number
of communities, followed by LCP. Newman, Louvain, and Leiden methods demonstrate comparable
performances, eventually converging to the correct value of c, particularly when the number of inter-
community links is relatively low. However, Local dominance erroneously estimates the community
structure irrespective of the number of links connecting nodes from different communities.

5.2. SBM Benchmark 27

Our LCP produces partitions with the highest modularity overall, as depicted in the right-upper part
of Figure 5.2. In this case, knowing the exact number of communities doesn’t benefit LCP from higher
modularity, as can be seen from the modularity performance of LCPc. Just above the detectability
threshold, our LCPc reveals partitions different from the planted one, with the exact number of clusters
but of superior modularity. NBT and our LCPn achieve modularity of the planted partition as their
estimated number of clusters converges to the correct number of communities, outperforming eigengap
consistently when communities are distinguishable from randomness. Leiden and Newman methods
exhibit similar performances, followed by Louvain, while the Local Dominance algorithm performs the
worst.

The lower part of Figure 5.2 illustrates the similarity between the estimated community structure of
each clustering algorithm and the planted partition in the generated SSBM graph, using the NMI (left
lower part) and ECS (right lower part) measures. Based on the NMI and ECS measures, NBT and our
LCPn exhibit the highest similarity to the planted community structure overall for bin−bout values above
the detectability threshold. Their performance is followed by our LCP, which produces partitions signif-
icantly more similar to the original one than the remaining clustering algorithms considered. However,
around and below the detectability threshold, the NMI measure of other clustering algorithms surpasses
that of our LCP. This trend can be attributed to the bias of the NMI measure towards a larger number
of clusters. Louvain, Leiden, Newman, and the Local dominance method estimate more clusters than
our LCP, leading to higher NMI measures for lower values of bin − bout. As explained in Section 2.1.3,
the ECS measure effectively mitigates the inherent bias towards a greater number of communities in
the NMI measure. Consequently, the lower-right section of Figure 5.2 consistently demonstrates the
superiority of our LCP across the entire range of bin − bout values. Moreover, ECS provides us with
valuable insights into the enhancement within LCP when guided by a predetermined number of clus-
ters. The ECS curve corresponding to LCPc consistently maintains a higher position than that of the
standard LCP until the latter approaches convergence with the actual clustering value. As the LCP
gradually converges, the two curves subsequently align in a gradual manner.

5.2.2. SSBM network with large number of clusters
In contrast to the SSBM networks with c = 2 and c = 4 clusters, the modularity of the estimated partition
by each considered algorithm for the range of bin − bout values above the detectability limit are lower
than the modularity m of the planted partition for c = 8, as depicted in the upper right part of Figure
5.3. This trend indicates that, as the number of clusters c increases, the planted partition possesses
the highest modularity among all possible partitions on a given graph.

Regarding SSBM networks featuring 8 clusters, the performance of LCP exhibits a distinct charac-
ter. In the top-left quadrant of Figure 5.3, it is evident that LCP closely approximates the true cluster
value or converges to it consistently throughout. Conversely, in the remaining three quadrants, LCP’s
performance does not exhibit any remarkable tendencies. Generally, we expect algorithms to deliver
consistent performance, implying similarity across various metrics. Specifically, when a clustering algo-
rithm produces a number of clusters that approximates or precisely matches the actual value, we also
anticipate its resultant community partition to exhibit high quality, thereby demonstrating proficiency
across two metrics: NMI and ECS. A good example is that this phenomenon holds significance for
spectral methods, as they solely furnish the cluster value, leaving the task of community partitioning to
k-means clustering.

For LCP in this special scenario, by integrating this insight with other four simulations, we can de-
duce that the ”default” value of output clusters for LCP is 8. In other words, LCP appears to lean towards
presupposing the presence of 8 communities within the network, particularly when the delineation of
communities is less distinct (around and below the detectability threshold). Besides, in the case of
SSBM networks containing 8 or 10 clusters, the algorithms’ performance shows a coherent pattern
similar to that observed in simulations featuring networks with a smaller number of clusters. Never-
theless, it is noteworthy to highlight that the Louvain and Leiden algorithms achieve convergence to
the true value notably sooner than in scenarios featuring a smaller number of clusters. When coupled
with subsequent assessments involving even larger cluster numbers, these two modularity-based algo-
rithms again proved to excel in managing scenarios characterized by cluster numbers that are neither
excessively small nor overly large.

When the number of clusters grows to 20, most algorithms lose their clue about the true clustering
according to Figure 5.5. As can be seen in the upper-left figure, only the three algorithms of the spectral

28 Chapter 5. Results

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

Figure 5.3: The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in
SSBM graphs with N = 500 nodes, average degree dav = 7 and c = 8 clusters, for different values of parameters bin and

bout. The NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand
side figures, respectively. The vertical dashed line indicates the clustering detectability threshold.

methods are able to converge to the true value after the clusters are already very well defined in the
network. Other algorithms, including LCP, fail to converge to real value throughout this simulation, even
when the difference bin − bout is already so large that there are almost no inter-community links in the
network. For modularity-based methods like Louvain and Leiden algorithms and the algorithm involving
modularity such as LCP, poor performance is to be expected when the number of clusters becomes
very large.

As the number of clusters is c = 20, the majority of algorithms appear to falter in discerning the
accurate communities, as depicted in Figure 5.5. Notably, as evident in the upper-left chart, only the
three algorithms based on the spectral method exhibit the capability to converge towards the true value,
even after the network’s clusters are well-defined. Conversely, other algorithms, including LCP, do not
display an immediate propensity for converging to the true value. For methods grounded in modular-
ity, such as the Louvain and Leiden algorithms, as well as the modularity-involved LCP, diminished
performance becomes foreseeable when confronted with a substantially large number of clusters.

Modularity encounters a resolution limit [34], a phenomenon wherein the pursuit of optimizing mod-
ularity within extensive networks often proves inadequate in identifying small communities, even when
their definition is unequivocal. This limitation arises from the fact that clusters characterized by mini-
mal inter-community connections but exhibiting the utmost density of internal links-signifying the most
discernible communities-may merge during modularity optimization, particularly in the context of suffi-
ciently expansive networks [34]. This theory potentially elucidates the collective decline in performance
among algorithms employing modularity in this particular scenario. Nonetheless, it is imperative to ac-
knowledge that nearly all algorithms demonstrate varying degrees of performance degradation. Within
the realm of community detection algorithms, the decrease in performance stemming from an abun-
dance of clusters within a network could indeed signify an intrinsic limitation.

5.3. LFR Benchmark 29

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

Figure 5.4: The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in
SSBM graphs with N = 500 nodes, average degree dav = 7 and c = 10 clusters, for different values of parameters bin and
bout. The NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand

side figures, respectively. The vertical dashed line indicates the clustering detectability threshold.

5.3. LFR Benchmark
The Lancichinetti-Fortunato-Radicchi (LFR) benchmark, proposed in [15], aims to overcome limitations
in the SBM benchmark, including the uniform degree and community size distribution. The LFR bench-
mark incorporates power-law degree distribution and community size distribution inspired by observa-
tions in real-world networks. In this section, we evaluate the performance of our LCP method and other
clustering algorithms under consideration.

Figure 5.6 illustrates the clustering performance of our LCP and other clustering algorithms consid-
ered in a network with N = 500 nodes and c = 5 communities. These communities were generated
using the LFR model with parameters βlfr = 3 and γ = 2. In the top left section of the figure, we
observe that, overall, our LCPn outperforms all other methods in estimating the number of clusters.
When the number of inter-community links is high, the NBT method incorrectly estimates the number
of communities. Nevertheless, once the clusters become clearly visible in the network, NBT provides
the most precise estimate among all the methods considered. Our LCP converges to the correct value
of c for relatively low µ values, while identifying alternative community clusters elsewhere, which have
a higher number of communities. In contrast, the eigengap method exhibits the opposite trend. It suc-
cessfully reveals the true number of communities when there are relatively few connections between
nodes from different clusters. However, as the ratio of inter-community links increases, it converges
to a single community. The Louvain and Leiden methods perform similarly, with Leiden consistently
providing a more accurate estimate of the true number of communities. Interestingly, both approaches
tend to estimate an increasing number of communities as µ increases, until a certain value is reached.
After this point, there is a decreasing trend in estimating c, indicating the presence of alternative com-
munity structures for large values of µ. We will further discuss this trend when analysing the achieved
modularity m. Newman’s method estimates an increasing number of communities as µ increases and
reaches a saturation point around c = 17 for a large ratio of inter-community links. Finally, the Local

30 Chapter 5. Results

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

D
et

ec
ta

bi
lit

y

Li
m

it

Figure 5.5: The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in
SSBM graphs with N = 500 nodes, average degree dav = 7 and c = 20 clusters, for different values of parameters bin and
bout. The NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand

side figures, respectively. The vertical dashed line indicates the clustering detectability threshold.

Dominance method fails to reveal any meaningful community structure across all the considered values
of µ.

From the top-right portion of Figure 5.6, it is evident that our LCP provides the highest overall modu-
larity of the estimated partition. The initial decreasing trend in modularitym indicates the increasing dif-
ficulty of accurately estimating the community structure as the ratio of inter-community links increases.
However, for large values of µ, both our LCP and nearly all other clustering algorithms considered
manage to recover community structures with higher modularity that that of the planted community
structure. This trend clearly demonstrates the emergence of alternative community structures, distinct
from the initially planted one, as µ values increase. When the number of communities is known, our
LCPc performs slightly worse than LCP in terms of modularity but still surpasses the performance of
other considered algorithms. This trend confirms the superiority of our LCP, where the proposed linear
process of relocating nodes on a one-dimensional line successfully reveals communities with excellent
accuracy. Leiden, NBT, Louvain, and Newman follow with comparable modularity performance, while
our LCPn and eigengap exhibit significantly poorer results. Lastly, Local Dominance exhibits very low
modularitym, converging to 0, which aligns with its failure to unveil any meaningful community structure
for the majority of µ values.

From both the recorded NMI (bottom-left) and ECS (bottom-right) similarity measures presented in
Figure 5.6, consistent patterns are observed for all the clustering algorithms considered. Whenever our
LCP accurately estimates the true number of clusters, it exhibits the highest accuracy in recovering the
original partition. However, for higher µ values, LCP starts revealing alternative communities, resulting
in relatively lower values in both similarity measures. On the other hand, NBT demonstrates the slowest
decrease in similarity measures as the ratio of inter-community links increases. Local Dominance
performs the worst, while the remaining approaches achieve comparable results in terms of NMI and
ECS values.

In case of LFR networks with c = 10 communities, the NBT variant of Linear Clustering Process

5.3. LFR Benchmark 31

Figure 5.6: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 5 clusters. The graphs are generated using parameters

γ = 2 and βlfr = 3 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual
Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

(LCPn) performs significantly worse in estimating the number of communities compared to other spec-
tral methods, namely NBT and eigengap. This is illustrated in the upper-left section of Figure 5.7. While
LCP generally provides the most precise estimation of the number of clusters c, it does not necessarily
generate community partitions that closely resemble the original planted partition in this particular case.
This observation is supported by corresponding NMI and ECS similarity measures. As discussed in
Section 2.2.1, for Stochastic Block Model (SSBM) networks, when LCP fails to identify the original par-
tition, it tends to discover 8 communities, even though the true number of clusters is different. This
behaviour persists and becomes more pronounced for larger values of the parameter µ, where LCP
identifies communities that differ from the planted partition but eventually converges to 8 communities,
regardless of the actual number of clusters c. Louvain outperforms both Leiden and Newman method
consistently, while Local Dominance estimates communities with worst precision, and failing to discover
any community for larger values of µ.

Our Linear Clustering Process (LCP) and LCPc yield partitions with the highest modularity overall,
as shown in the upper-right portion of Figure 5.7. The performance of the other clustering methods con-
sidered is comparable to those obtained for LFR networks with c = 5 communities. The lower left (right)
part of Figure 5.7 illustrates the similarity measures NMI (ECS) and demonstrates the dominance of our
LCP within the range of µ values where it accurately estimates the number of communities. However,
for µ values greater than 0.25, the NBT method outperforms our LCP in identifying the correct number
of clusters and, consequently, produces partitions more similar to the planted community structures.

When the cluster count reaches c = 20, as shown in Figure 5.8, all employed algorithms exhibit a
failure to converge towards the real number of clusters. This outcome further solidifies our analysis
in Section 5.2.2, highlighting an inherent constraint wherein algorithmic efficacy deteriorates amidst
a substantial proliferation of clusters within the network. This phenomenon transcends algorithmic
categories; notable examples are modularity optimization algorithms, recognized for their resolution
limitations. Meanwhile, we also note that when c = 20, the eigengap has the most significant perfor-

32 Chapter 5. Results

Figure 5.7: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 10 clusters. The graphs are generated using parameters

γ = 2 and βlfr = 3 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual
Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

mance degradation. It performed slightly better than LCPn and worse than non-backtracking clustering
in prior scenarios. However, in this simulation, it significantly lags behind LCPn, underscoring that the
spectral method is also susceptible to escalating cluster numbers.

In addition to the simulations on the LFR benchmark shown above, we also performed another
set of simulations with γ = 2.5 and βlfr = 2.5 while keeping other parameters consistent. Since
the performance of all considered algorithms on this set of simulations is indistinguishable from the
aforementioned, we refrain from further elaboration and present the results in Figure 5.9, 5.10, and
5.11.

5.4. Random network models
Erdős-Rényi randomgraphs [26] generally lack a clear andwell-defined community structure, as demon-
strated in [35, p. 630] by the average clustering coefficient, a measure of the ratio of the number of
links between a node’s neighbours and the maximum possible number of links. Due to the random
nature of connections between nodes, the links tend to be evenly distributed across the nodes with-
out observable community structure. However, community detection algorithms can still be applied to
uncover potential structures or patterns within these graphs.

The upper-left part of Figure 5.12 illustrates the estimated number of clusters c by LCP and other
considered clustering algorithms on ER graphs withN = 500 nodes and varying link density pER. Apart
from the non-backtracking (NBT) method and our LCPn, which accurately recover the exact number of
communities, the remaining algorithms provide incorrect estimates. LCP and eigengap exhibit similar
performance, while Local Dominance and Newman methods perform comparatively poorer in estimat-
ing the number of communities but with increased precision as the link density pER rises. Notably,
Louvain and Leiden algorithms estimate a higher number of communities, which increases with the link
density pER.

5.4. Random network models 33

Figure 5.8: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 20 clusters. The graphs are generated using parameters

γ = 2 and βlfr = 3 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual
Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

Regarding the achieved modularitym of the estimated partition, our LCP algorithm surpasses other
analysed clustering algorithms for all considered values of link density pER. Newman and Leiden algo-
rithms rank as the second and third best in terms of modularity performance, while Local Dominance
performs the worst. Overall, clustering algorithms reveal a community structure with higher modularity
in sparse ER graphs compared to graphs with higher link density. Although ER graphs, on average,
do not exhibit a community structure, specific instances of the graph may contain more visible clus-
ters. The probability of finding communities in ER graphs is greater when the graph is sparser, as an
increased number of links makes the graph more regular in nature, causing communities to dissipate.

Interestingly, when applied to the Barabási-Albert graphs, the Local Dominance algorithm provides
cluster estimates with a precision closely resembling that of the non-backtracking method (NBT) and
our LCPn, as shown in the upper middle section of Figure 5.12. On the other hand, our LCP algorithm
estimates a significantly lower number of clusters than the other three algorithms, gradually decreasing
the number of discovered clusters as the parameter mBA increases. The Newman method ranks fifth
in the estimated number of communities c, also exhibiting a decrease in the number of communities
as the parameter mBA increases. In contrast, the Louvain and Leiden algorithms, while optimizing
modularitym, estimate an increasing number of clusters c that does not result in the highest modularity
m, as evidenced by the LCP performance in the lower middle section of Figure 5.12. We observe that
Local Dominance and our LCPn achieve the lowest modularity m, followed by NBT and eigengap. As
with ER graphs, our LCP algorithm achieves the highest modularity overall. Newman, Louvain, and
Leiden methods perform similarly in modularity m, which decreases as the parameter mBA of the BA
model increases.

The Watts-Strogatz graph model, proposed in [29], is derived from a regular ring lattice by randomly
rewiring connections while maintaining a fixed number of nodes N and links L. By increasing the
rewiring probability pWS , a small-world phenomenon emerges abruptly, as illustrated by the average

34 Chapter 5. Results

Figure 5.9: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 5 clusters. The graphs are generated using parameters
γ = 2.5 and βlfr = 2.5 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual

Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

shortest path hop count on a logarithmic scale in [29, Figure 2]. However, this phenomenon is not
observed locally, as demonstrated by the clustering coefficient (defined in [35, page 630]). The right-
hand part of Figure 5.12 the number of clusters c (upper figure) and achieved modularity m (lower
figure) of considered clustering algorithms, when applied to the Watts-Strogatz model with N = 500
nodes, using different rewiring probability pWS .

For low values of pWS , the Local Dominance method fails to detect any community structure, re-
sulting in a low modularity value. As the rewiring probability pWS increases, the Local Dominance
method gradually reveals an increasing number of communities with modularity levels comparable to
other algorithms. Surprisingly, the eigengap method underperforms by estimating the highest number
of communities c, thus achieving the lowest modularity m values. Overall, the Louvain and Leiden
methods estimate the lowest number of communities, leading to lower modularity m values than the
remaining methods. Our LCP records fewer communities than the remaining clustering methods while
achieving the highest modularity overall. Finally, we highlight that our LCPn consistently outperforms
the non-backtracking (NBT) method.

5.5. Real-world networks
5.5.1. Real-world networks without ground-truth communities
Table 5.2 provides a summary of the clustering performance of our LCP algorithm and other clustering
algorithms from existing literature on real-world networks where the ground-truth community partition
is unknown. The network sizes range from N = 34 (Karate networks) to N = 1589 (Co-authorship
network). Among the seven networks considered, our LCP algorithm achieves the highest modularity
m in four cases, while it ranks as the second best in the Dolphins and Football networks. In one case,
specifically the Co-authorship network, it ranks as the fourth best algorithm in terms of modularity.

Due to the absence of real community partitions, our analysis was confined to a basic assessment of

5.5. Real-world networks 35

Figure 5.10: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 10 clusters. The graphs are generated using parameters

γ = 2.5 and βlfr = 2.5 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual
Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

algorithmic performance centered around modularity. In the next section we consider several networks
featuring ground-truth communities, mainly social network and citation networks, to do further analysis
of the algorithm’s performance on real-world networks.

5.5.2. Real-world networks with ground-truth communities
In this section, we evaluate the performance of our Linear Clustering Process (LCP) and other cluster-
ing algorithms on real-world networks with known ground-truth community structures. The Email-EU
network comprises N = 1005 nodes and has the highest link density, with a total of L = 25571 links.
This network forms c = 42 communities. Our LCP identifies a partition with the highest modularity,
while the Leiden algorithm estimates more accurately the number of clusters, resulting in a partition
that closely aligns with the ground truth. The Cora network consists of N = 2708 nodes interconnected
by L = 5429 links, forming c = 7 communities. The Leiden algorithm produces a community structure
with the highest modularity, closely followed by our LCP. However, our LCP excels in estimating the
number of communities compared to Leiden. Finally, the Citeseer network exhibits the smallest num-
ber of clusters (c = 6). While the Newman algorithm identifies a partition with the highest modularity,
its estimated number of communities deviates significantly from the correct value.

Based on the results presented in Table 5.3, we note a significant sensitivity of the NMI and ECS
similarity measures to the estimated number of clusters. The NMI measure exhibits a bias towards
partitions with a larger number of communities. Conversely, for the Citeseer network, we observe that
the ECS measure of both the Louvain and eigengap algorithms is similar, despite their substantially
different estimates of the number of clusters. This corroborates that ECS is a fairer metric than NMI for
clustering similarity.

Overall, finding the real number of clusters and ground-truth community partitions present a no-
table challenge for these algorithms since the original modularity of all three networks is relatively low.
While a majority of algorithms, particularly those based on modularity, manage to uncover alternative

36 Chapter 5. Results

Figure 5.11: The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs
with N = 500 nodes, an average degree of dav = 12, comprising c = 20 clusters. The graphs are generated using parameters

γ = 2.5 and βlfr = 2.5 and varying the parameter µ. The lower left and lower right figures display the Normalized Mutual
Information (NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.

Figure 5.12: The estimated number of clusters (upper figures) and estimated modularity (bottom figures) in Erdős-Rényi
random graph (left-hand side) with varying link density pER, Barabási-Albert graph (middle part) with varying parameter mBA,

and Watts-Strogatz graph (right-hand side) with varying rewiring probability pWS . The graphs consist of N = 500 nodes.

5.5. Real-world networks 37

Network N L LCP Louvain Leiden Newman
c m c m c m c m

Karate 34 78 3 0.3922 4 0.3565 4 0.3729 5 0.3776
Dolphins 62 159 4 0.5057 4 0.4536 5 0.5105 6 0.4894
Polbooks 105 441 3 0.5160 4 0.4897 4 0.5026 8 0.4160
Football 115 613 7 0.5894 7 0.5442 7 0.5635 11 0.4623
Facebook 347 2519 8 0.4089 16 0.3726 18 0.3792 23 0.3770
Polblogs 1490 19090 19 0.4224 7 0.3385 11 0.3117 4 0.3459

Co-authorship 1589 2742 40 0.9296 272 0.9423 270 0.9410 28 0.7393

Network N L Local Dom. NBT LCPn Eigengap
c m c m c m c m

Karate 34 78 2 0.3123 2 0.3715 1 0.0000 2 0.2780
Dolphins 62 159 3 0.3620 2 0.3698 2 0.3698 2 0.3115
Polbooks 105 441 2 0.4451 3 0.5085 2 0.4546 2 0.4167
Football 115 613 6 0.3205 10 0.5939 5 0.5522 11 0.5927
Facebook 347 2519 8 0.2067 8 0.3638 7 0.3544 2 0.2836
Polblogs 1490 19090 3 0.2799 8 0.2149 5 0.3480 2 0.2679

Co-authorship 1589 2742 277 0.9431 23 0.5005 17 0.5806 2 0.1288

Table 5.2: Clustering performance of our LCP and considered existing clustering algorithms on real-world networks without
ground-truth communities

partitions boasting superior modularity compared to the original partition, this deficiency is perceptibly
accentuated in the case of LCP. This heightened emphasis on LCP’s limitations is accentuated by
previous simulations that underscored its superior proficiency in optimizing modularity relative to other
algorithms.

Network N L C M LCP Louvain
c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 9 0.3860 0.5466 0.2513 12 0.3795 0.5530 0.2747
Cora 2708 5429 7 0.6401 25 0.7296 0.3138 0.2121 86 0.6775 0.3691 0.2808

Citeseer 3264 9072 6 0.5042 65 0.8027 0.1399 0.0737 394 0.7722 0.3095 0.1878

Network N L C M Leiden Newman
c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 17 0.3745 0.6352 0.3711 14 0.3492 0.5668 0.3003
Cora 2708 5429 7 0.6401 85 0.7403 0.4201 0.2722 68 0.7166 0.4146 0.1896

Citeseer 3264 9072 6 0.5042 395 0.7367 0.3438 0.2064 311 0.8276 0.3307 0.0560

Network N L C M Local Dom. NBT
c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 1 0.0000 0.0000 0.0669 17 0.2792 0.5061 0.2599
Cora 2708 5429 7 0.6401 181 0.6728 0.4271 0.1648 40 0.5000 0.3016 0.1558

Citeseer 3264 9072 6 0.5042 505 0.7691 0.3889 0.0619 17 0.3595 0.1618 0.1594

Network N L C M LCPn Eigengap
c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 2 0.0932 0.2310 0.1211 5 0.2931 0.3538 0.1673
Cora 2708 5429 7 0.6401 39 0.5674 0.3320 0.1943 2 0.1072 0.1599 0.1961

Citeseer 3264 9072 6 0.5042 16 0.4389 0.1573 0.1581 3 0.1583 0.0960 0.1760

Table 5.3: Clustering performance of our LCP and considered existing clustering algorithms on real-world networks with
ground-truth communities

6
Conclusions and Future Work

6.1. Conclusions
In this thesis, we conducted a comprehensive analysis of the clustering efficacy exhibited by the recently
introduced Linear Clustering Process (LCP) on various benchmarks and networks. Our thesis entailed
a comparative assessment of LCP against several well-established clustering algorithms, each em-
ploying distinct techniques for partition estimation, including modularity optimization, spectral methods
and hierarchical method. Our simulation results consistently reveal that, across a range of scenar-
ios involving both synthetic benchmarks and real-world networks, LCP consistently yields high-quality
community partitions while maintaining computational complexity comparable to the simplest existing
clustering algorithms.

Among the considered clustering algorithms, the LCP algorithm consistently demonstrates superior
modularity. When the network exhibits clearly discernible clusters, LCP excels at precisely recovering
partitions that closely mirror the actual clusters. In other words, LCP identifies partitions with high NMI
and ECS measures. Impressively, even in scenarios where clusters are obscured by random patterns,
LCP adeptly identifies alternative clusters that showcase enhanced modularity, albeit with lower NMI
and ECS values.

Moreover, the ECS metric sheds light on how the real number of clusters, when utilized as input,
enhances the quality of LCP’s partitions. Notably, the ECS value of LCPc surpasses that of the origi-
nal LCP when the latter hasn’t yet converged to the actual cluster count. In a variety of cases, LCPn
achieves results on par with the non-backtracking method, with the exception of power-law networks.
This achievement is coupled with a clear and coherent underlying process and rationale. Further-
more, our proposed strategy substantially narrows the performance gap between LCPn and the non-
backtracking method on power-law networks, although a slight disparity persists. This presents a sig-
nificant advancement over the original LCPn approach, highlighting the efficacy of our strategy.

Finally, it’s worth noting that we’ve uncovered intriguing insights beyond just the LCP algorithm.
The Local Dominance algorithm emerges as a standout performer only on a few specific real-world
networks, yet it falters when faced with other network types and synthetic benchmarks. Meanwhile,
spectral methods demonstrate remarkable consistency, particularly in yielding top-tier community par-
titions when able to precisely estimate cluster numbers. Capitalizing on this attribute, they dominate
networks like SSBM and those sharing similar characteristics. There is a slight decline in their effec-
tiveness observed on power-law networks, although the overall performance remains impressive.

Altogether, our findings underscore the remarkable effectiveness of LCP in fostering highly modular
and meaningful community structures across diverse network settings.

6.2. Future Work
Although this thesis addresses some problems, there are still issues that need to be addressed in future
work for both algorithms and simulations.

This thesis offers a possibility to comprehend non-backtracking clustering. As showed earlier, the
LCPn approach demonstrates comparable performance to the non-backtracking method across the
majority of networks. This observation offers a suggestion that the non-backtracking matrix may not

39

40 Chapter 6. Conclusions and Future Work

inherently possess exceptional characteristics. Our grasp of the underlying principles behind non-
backtracking clustering remains limited, primarily based on observational insights. Thus, the identi-
fication of a novel matrix exhibiting analogous behaviors could prove instrumental in elucidating these
principles. Moreover, the discernible performance contrast between LCPn and non-backtracking tech-
niques on power-law networks serves as a promising avenue for deeper insight into the workings of
the non-backtracking method.

As for simulations, exhaustive testing has been conducted, scrutinizing algorithmic performance
across networks encompassing a wide array of distinct features. Notwithstanding these endeavors,
there linger unexplored terrains primed for future investigation. Among these, the exploration of net-
works that deviate from equilibrium, such as imbalanced Stochastic Block Model (SBM) networks, holds
significant promise. Within this thesis, the focus has predominantly rested on Symmetric SBM net-
works, characterized by equitably sized communities. However, the forthcoming inquiry will delve into
the algorithm’s capacity to discern minute clusters within the framework of asymmetrical configurations,
where community sizes vary. A reasonable anticipation is that the efficacy of algorithms grounded in
modularity principles may encounter challenges within such networks compared with SSBM networks,
attributable to the inherent limitations of modularity when grappling with intricate resolutions. Notably,
the LFR benchmark networks considered in this paper also exhibit an inherent imbalance. However,
due to the distinct nature of power-law networks generated by the LFR benchmark as compared to the
SBM network, a direct comparison proves elusive.

Besides, in the realm of network clustering and community detection, traditional machine learning
methods have found extensive application. However, the landscape is evolving with an escalating fas-
cination for the seamless incorporation of deep learning techniques. Among these, the emergence of
deep neural networks, notably graph neural networks (GNNs), has sparked significant interest due to
their remarkable proficiency in deciphering intricate relationships and latent patterns within networks.
The potential gains from this integration are profound, with the tantalizing prospect of elevating com-
munity detection and clustering accuracy to unprecedented levels.

The pursuit of innovation in this field extends to the exploration of hybrid models, constituting a
fusion of time-tested traditional machine learning algorithms and cutting-edge deep learning method-
ologies. This dual-pronged approach holds immense potential, capitalizing on the individual merits of
each paradigm. By amalgamating the interpretability and robustness of traditional methods with the
feature extraction prowess of deep learning, these hybrid models stand poised to unlock enhanced
performance and finer-grained community detection. This confluence is not merely an endeavor to
harness the strengths of diverse techniques; it signifies a strategic endeavor to push the boundaries of
network analysis, fostering a symbiotic relationship between conventional wisdom and modern intelli-
gence. As the research horizon expands, these hybrid paradigms could potentially transcend existing
limitations, fueling a new era of accuracy and insight in network clustering and community detection.

References

[1] Albert-László Barabási. “Network science”. In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 371.1987 (2013), p. 20120375.

[2] Mark Newman. Networks. Oxford university press, 2018.
[3] Santo Fortunato. “Community detection in graphs”. In: Physics reports 486.3-5 (2010), pp. 75–

174.
[4] Satu Elisa Schaeffer. “Graph clustering”. In: Computer Science Review 1.1 (2007), pp. 27–64.

ISSN: 1574-0137. DOI: https://doi.org/10.1016/j.cosrev.2007.05.001. URL: https:
//www.sciencedirect.com/science/article/pii/S1574013707000020.

[5] Mark EJ Newman andMichelle Girvan. “Finding and evaluating community structure in networks”.
In: Physical review E 69.2 (2004), p. 026113.

[6] Mark EJ Newman. “Modularity and community structure in networks”. In: Proceedings of the
national academy of sciences 103.23 (2006), pp. 8577–8582.

[7] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In: Journal of statistical
mechanics: theory and experiment 2008.10 (2008), P10008.

[8] Andrea Lancichinetti and Santo Fortunato. “Community detection algorithms: A comparative anal-
ysis”. In: Phys. Rev. E 80 (5 Nov. 2009), p. 056117. DOI: 10.1103/PhysRevE.80.056117. URL:
https://link.aps.org/doi/10.1103/PhysRevE.80.056117.

[9] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. “From Louvain to Leiden: guaranteeing
well-connected communities”. In: Scientific reports 9.1 (2019), p. 5233.

[10] Florent Krzakala et al. “Spectral redemption in clustering sparse networks”. In: Proceedings of
the National Academy of Sciences 110.52 (2013), pp. 20935–20940. DOI: 10.1073/pnas.131
2486110. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1312486110. URL: https:
//www.pnas.org/doi/abs/10.1073/pnas.1312486110.

[11] Gabriel Budel and Piet Van Mieghem. “Detecting the number of clusters in a network”. In: Journal
of Complex Networks 8.6 (Mar. 2021). cnaa047. ISSN: 2051-1329. DOI: 10.1093/comnet/cn
aa047. eprint: https://academic.oup.com/comnet/article-pdf/8/6/cnaa047/36510011/
cnaa047.pdf. URL: https://doi.org/10.1093/comnet/cnaa047.

[12] Fan Shang et al. “Local dominance unveils clusters in networks”. In: ArXiv abs/2209.15497
(2022).

[13] Ivan Jokić and Piet Van Mieghem. “Linear Clustering Process on Networks”. In: IEEE Transac-
tions on Network Science and Engineering (2023), pp. 1–10. DOI: 10.1109/TNSE.2023.3271360.

[14] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. “Stochastic blockmodels:
First steps”. In: Social networks 5.2 (1983), pp. 109–137.

[15] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. “Benchmark graphs for testing com-
munity detection algorithms”. In: Physical review E 78.4 (2008), p. 046110.

[16] Alexander J Gates et al. “Element-centric clustering comparison unifies overlaps and hierarchy”.
In: Scientific reports 9.1 (2019), p. 8574.

[17] Leon Danon et al. “Comparing community structure identification”. In: Journal of statistical me-
chanics: Theory and experiment 2005.09 (2005), P09008.

[18] Maximilian Jerdee, Alec Kirkley, and M. E. J. Newman.Normalized mutual information is a biased
measure for classification and community detection. 2023. arXiv: 2307.01282 [cs.SI].

[19] Ulrik Brandes et al. “On modularity clustering”. In: IEEE transactions on knowledge and data
engineering 20.2 (2007), pp. 172–188.

41

https://doi.org/https://doi.org/10.1016/j.cosrev.2007.05.001
https://www.sciencedirect.com/science/article/pii/S1574013707000020
https://www.sciencedirect.com/science/article/pii/S1574013707000020
https://doi.org/10.1103/PhysRevE.80.056117
https://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1073/pnas.1312486110
https://www.pnas.org/doi/pdf/10.1073/pnas.1312486110
https://www.pnas.org/doi/abs/10.1073/pnas.1312486110
https://www.pnas.org/doi/abs/10.1073/pnas.1312486110
https://doi.org/10.1093/comnet/cnaa047
https://doi.org/10.1093/comnet/cnaa047
https://academic.oup.com/comnet/article-pdf/8/6/cnaa047/36510011/cnaa047.pdf
https://academic.oup.com/comnet/article-pdf/8/6/cnaa047/36510011/cnaa047.pdf
https://doi.org/10.1093/comnet/cnaa047
https://doi.org/10.1109/TNSE.2023.3271360
https://arxiv.org/abs/2307.01282

42 References

[20] Piet Van Mieghem et al. “Spectral graph analysis of modularity and assortativity”. In: Physical
Review E 82.5 (2010), p. 056113.

[21] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.
[22] Aurelien Decelle et al. “Inference and phase transitions in the detection of modules in sparse

networks”. In: Physical Review Letters 107.6 (2011), p. 065701.
[23] Aurelien Decelle et al. “Asymptotic analysis of the stochastic block model for modular networks

and its algorithmic applications”. In: Physical Review E 84.6 (2011), p. 066106.
[24] Lev Muchnik et al. “Origins of power-law degree distribution in the heterogeneity of human activity

in social networks”. In: Scientific reports 3.1 (2013), p. 1783.
[25] Gergely Palla et al. “Uncovering the overlapping community structure of complex networks in

nature and society”. In: nature 435.7043 (2005), pp. 814–818.
[26] Paul Erdős, Alfréd Rényi, et al. “On the evolution of random graphs”. In: Publ. Math. Inst. Hung.

Acad. Sci 5.1 (1960), pp. 17–60.
[27] Piet van Mieghem. Graph Spectra for Complex Networks. Cambridge University Press, 2010.

DOI: 10.1017/CBO9780511921681.
[28] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”. In: Rev.

Mod. Phys. 74 (1 Jan. 2002), pp. 47–97. DOI: 10.1103/RevModPhys.74.47. URL: https://link.
aps.org/doi/10.1103/RevModPhys.74.47.

[29] Duncan JWatts and Steven H Strogatz. “Collective dynamics of ‘small-world’networks”. In: nature
393.6684 (1998), pp. 440–442.

[30] Omer Angel, Joel Friedman, and Shlomo Hoory. “THE NON-BACKTRACKING SPECTRUM OF
THEUNIVERSALCOVEROFAGRAPH”. In: Transactions of the AmericanMathematical Society
367.6 (2015), pp. 4287–4318.

[31] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law Distributions in Empir-
ical Data”. In: SIAM Review 51.4 (2009), pp. 661–703. DOI: 10.1137/070710111. eprint: https:
//doi.org/10.1137/070710111. URL: https://doi.org/10.1137/070710111.

[32] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. “Power-law distributions in empir-
ical data”. In: SIAM review 51.4 (2009), pp. 661–703.

[33] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random Networks”. In: Sci-
ence 286.5439 (1999), pp. 509–512. DOI: 10.1126/science.286.5439.509. eprint: https:
//www.science.org/doi/pdf/10.1126/science.286.5439.509. URL: https://www.science.
org/doi/abs/10.1126/science.286.5439.509.

[34] J. M. Kumpula et al. “Limited resolution in complex network community detection with Potts model
approach”. In: The European Physical Journal B 56.1 (Mar. 2007), pp. 41–45. ISSN: 1434-6036.
DOI: 10.1140/epjb/e2007-00088-4. URL: https://doi.org/10.1140/epjb/e2007-00088-4.

[35] Piet Van Mieghem. Performance analysis of complex networks and systems. Cambridge Univer-
sity Press, 2014.

https://doi.org/10.1017/CBO9780511921681
https://doi.org/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1126/science.286.5439.509
https://www.science.org/doi/pdf/10.1126/science.286.5439.509
https://www.science.org/doi/pdf/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://doi.org/10.1140/epjb/e2007-00088-4
https://doi.org/10.1140/epjb/e2007-00088-4

A
Nomenclature

A.1. List of Abbreviations

Abbreviation Definition

LCP Linear Clustering Process
NMI Normalized Mutual Information
SBM Stochastic Block Model
SSBM Symmetric Stochastic Block Model
LFR Lancichinetti-Fortunato-Radicchi
ECS Element-Centric Similarity
NBT Non-backtracking
ER Erdős-Rényi
BA Barabási-Albert
WS Watts-Strogatz
LCPc LCP for a known number of communities
LCPn Non-backtracking variant of LCP
CPM Constant Potts Model
GNNs Graph Neural Networks

A.2. List of Notations

Notation Explanation
G Graph
N Set of N nodes of graph G
Ni Set of neighboring nodes of node i
L Set of L links of graph G
N Number of nodes in graph G
L Number of links in graph G
A Adjacency matrix of graph G
a Element of adjacency matrix A
d Degree vector
di Degree of node i
∆ Degree diagonal matrix
u N × 1 all-one vector
m Modularity
C Cluster matrix
c Number of clusters

43

44 Appendix A. Nomenclature

Notation Explanation

ni Number of nodes in cluster i
F Confusion matrix
In(P0, Pe) Normalized mutual information metric
P0 Known partition
Pe Estimated partition
c0 Number of known clusters
ce Number of estimated clusters
pij Personalized PageRank
δ Kronecker delta function
cγ , cβ Cluster
vi, vj Element of corresponding cluster
αecs Restart probability constant
A, B Clustering
S(A,B) Element-centric similarity score
pin, bin Intra-community link probability
pout, bout Inter-community link probability
E[D] Expected degree
γ Power-law exponent of degree distribution
βlfr Power-law exponent of community size distribution
µ Inter-community link probability
dav Average degree
pER Link density
m0 Initial number of nodes
mBA Number of nodes connected by the new node
pi Probability that the new node is connected to node i
P (d) Degree distribution
kWS Number of the nearest neighbors
pWS Rewiring probability
α Attraction strength
δ Repulsion strength
xi[k] Position of node i at time k
k Discrete time
I N ×N identity matrix
W N ×N topology-based matrix
β N × 1 eigenvalue vector
βi Eigenvalue i
Y N ×N orthogonal eigenvector matrix
yi Eigenvector i
ŷi Sorted eigenvector i
r Ranking vector
R Permutation matrix
Â N ×N relabeled adjacency matrix
d̂ N × 1 relabeled degree vector
S N ×N scaling matrix
υ A small positive value
Mc Aggregated modularity matrix
g, h Estimated clusters
ν (2c− 1× 1) vector
νg Element of vector ν
B 2L× 2L non-backtracking matrix
B∗ 2N × 2N matrix
O N ×N all-zero matrix
fD(d) Probability density function of degree d
cp Normalization constant

A.2. List of Notations 45

Notation Explanation

y Cluster membership
M N ×N modularity matrix
zi i-th eigenvector
ζi i-th eigenvalue
Ã N ×N weighted adjacency matrix
∆m Modularity gain∑

in Sum of the weights of intra-community links in community
h∑

tot Sum of the weights of all links in G incident to any node
in community h

λ(A) Eigenvalues of the adjacency matrix A
λ(M) Eigenvalues of the modularity matrix M

B
Source Code

B.1. Linear Clustering Process
B.1.1. Original LCP

1 function [C,c,m] = LCP(A)
2 % This function implements the Linear Clustering Process (LCP), from the
3 % publication
4 N = size(A,1); %

Number of nodes
5 N_pr = 30; %

Number of iterations
6 L_per = 60/N_pr; %

Ratio of links whose weight will be scaled
7 L_rem = linspace(L_per,L_per,N_pr); %

Scaling intensity for links in each iteration
8

9 alpha = 0.95; %
Attraction strength

10 delta = 1e-3; %
Repulsion strength

11

12 A_fm = A; %
Store the adjacency matrix

13

14 Inds = zeros(N,N_pr); %
Initalise the ranking of each node in y_2 per iteration

15 Pos_M = zeros(N,N_pr); %
Initalise the position of each node in y_2 per iteration

16 m_it = zeros(N_pr,1); %
Initalise the modularity in each iteration

17 C_it = zeros(N,N_pr); %
Initalise the number of clusters in each iteration

18 c_it = zeros(N_pr,1); %
Initalise the modularity in each iteration

19

20 W = compute_W(A_fm,N,alpha,delta); %
Compute W matrix (we compute it only once!)

21 counter = 1;
22 while(counter <= N_pr) %

Perform N_pr iterations of LCP
23 A_model = eye(N) + A_fm.*W - diag(A_fm.*W*ones(N,1)); %

Compute state space matrix
24 [ind_r,pos_r,y_2] = compute_y_2(A_model); %

Compute the position vector in the steady state
25 % [ind_r,pos_r,y_2] = compute_y_2_v2(A_model); %

Compute the position vector in the steady state
26 Inds(:,counter) = ind_r; Pos_M(:,counter) = pos_r; %

Store the position of each node per iteration
27 [~,m_it(counter),C_it(:,counter),c_it(counter)] = optimize_m(A(ind_r,ind_r)); %

Identify the clusters, for given position vector

47

48 Appendix B. Source Code

28 % [A_fm,~,~] = scale_links(A_fm,ind_r,L_rem(counter),counter,N_pr,y_2); %
Scale the weights of the identified inter-community links links and recompute the
adjacency matrix

29 C = ones(N,1)*C_it(:,counter)' - C_it(:,counter)*ones(1,N); C = (abs(C) > 0);
30 [A_fm,~,~] = scale_links_v2(A_fm,ind_r,L_rem(counter),counter,N_pr,y_2,C); %

Scale the weights of the identified inter-community links links and recompute the
adjacency matrix

31 counter = counter + 1; %
Update the counter

32 end
33 [val_mod,ind] = max(m_it); %

Adopt the iteration with the highest modularity
34 c = c_it(ind); %

Output the estimated number of clusters
35 m = val_mod; %

Output the estimated modularity
36 C = zeros(N,1);
37 C(Inds(:,ind)) = C_it(:,ind); %

Output the cluster membership function of each node
38

39 return %
Return C and m

40 end
41

42 %% Used sub-functions
43 function [A_new,A_rem,Deg_new] = scale_links(A,ind,trsh,br_it,N_pr,y_2)
44 % Adjacency matrix A provided as input is not relabeled!
45 N = size(A,1); % Network size
46 A_n = A(ind,ind); % Relabeled adjacency

matrix A based on y_2 (eq. 10, page 11)
47 Deg_v = A_n*ones(N,1); % Relabeled degree vector

based on y_2 (eq. 10, page 11)
48 N_rem_1 = ceil(nnz(A)/2*trsh/100); % Number of links, whose

weight to scale wihtin one iteration
49 % Dist_M_1 = (abs(diag(1:N)*A_n - A_n*diag(1:N))).*A_n; % Compute the distance

matrix between any two adjacent nodes (sec 5.1, page 15)
50 Dist_M_1 = (abs(diag(1:N)*A_n - A_n*diag(1:N))).*A_n; % Compute the distance

matrix between any two adjacent nodes (sec 5.1, page 15)
51 A_new = A_n; % Store the adjacency

matrix
52 counter_1 = 1; % Coutner for the number

of links with scaled weight
53 while counter_1 < N_rem_1 % Run the loop until

N_rem links are scaled in weight
54 tr = 1; % Initialise the

indicator function in case the link is found.
55 while (tr) % Run the loop until the

link is removed
56 val = max(Dist_M_1(:)); % Find the maximum

distance value
57 [ind_1,ind_2] = find(Dist_M_1 == val); % Identify the link

connecting two most far away nodes
58 if((Deg_v(ind_1(1))) > 1 && (Deg_v(ind_2(1))) > 1 ...
59 && A_new(ind_1(1),ind_2(1)) == 1) % Check the validity

of a link (i.e. if adjacent nodes have degree > 1)?
60 Dist_M_1(ind_1(1),ind_2(1)) = 0; % Define the distance of

a chosen link as 0, so it is not conisdered anymore
61 Dist_M_1(ind_2(1),ind_1(1)) = 0;
62 counter_1 = counter_1 + 1; tr = 0; % Increment the counter
63 Deg_v(ind_1(1)) = Deg_v(ind_1(1)) - 1; % Update the degree

values for each node
64 Deg_v(ind_2(1)) = Deg_v(ind_2(1)) - 1;
65 A_new(ind_1(1),ind_2(1)) = (0.01/(N_pr))*br_it; % Scale the weight of a

link
66 A_new(ind_2(1),ind_1(1)) = (0.01/(N_pr))*br_it;
67 A_new(ind_1(1),ind_2(1)) = 0; % Scale the weight of a link
68 A_new(ind_2(1),ind_1(1)) = 0;
69 else % This link can not be

removed
70 Dist_M_1(ind_1(1),ind_2(1)) = 0; % Define the distance of

a chosen link as 0, so it is not conisdered anymore

B.1. Linear Clustering Process 49

71 Dist_M_1(ind_2(1),ind_1(1)) = 0;
72 end
73 end
74 end
75 A_new(ind,ind) = A_new;
76 A_rem = (A - A_new);
77 Deg_new = A_new*ones(N,1);
78 % Check if there are zero-degree nodes (testing the code)
79 if(nnz(Deg_new) < N)
80 disp('Number of zero degree nodes:')
81 disp(length(Deg_new) - nnz(Deg_new))
82 plot(sort(Deg_new))
83 error('Something is wrong!!!')
84 end
85 end
86

87 function [A_new,A_rem,Deg_new] = scale_links_v2(A,ind,trsh,br_it,N_pr,y_2,C)
88 % Adjacency matrix A provided as input is not relabeled!
89 N = size(A,1); % Network size
90 A_n = A(ind,ind); % Relabeled adjacency

matrix A based on y_2 (eq. 10, page 11)
91 Deg_v = A_n*ones(N,1); % Relabeled degree vector

based on y_2 (eq. 10, page 11)
92 N_rem_1 = ceil(nnz(A)/2*trsh/100); % Number of links, whose

weight to scale wihtin one iteration
93 Dist_M_1 = (abs(diag(1:N)*A_n - A_n*diag(1:N))).*A_n; % Compute the distance

matrix between any two adjacent nodes (sec 5.1, page 15)
94 % Dist_M_1 = (ones(N) + abs(diag(1:N)*A_n - A_n*diag(1:N))).*A_n.*C; % Compute the distance

matrix between any two adjacent nodes (sec 5.1, page 15)
95 A_new = A_n; % Store the adjacency

matrix
96 counter_1 = 1; % Coutner for the number

of links with scaled weight
97 while counter_1 < N_rem_1 % Run the loop until

N_rem links are scaled in weight
98 tr = 1; % Initialise the

indicator function in case the link is found.
99 while (tr) % Run the loop until the

link is removed
100 Dist_v = Dist_M_1(:); Dist_v = Dist_v(Dist_v > 0);
101 val = max(Dist_v); % Find the maximum distance

value
102 % val = max(Dist_M_1(:)); % Find the

maximum distance value
103 [ind_1,ind_2] = find(Dist_M_1 == val(1)); % Identify the link

connecting two most far away nodes
104 if((Deg_v(ind_1(1))) > 1 && (Deg_v(ind_2(1))) > 1 ...
105 && A_new(ind_1(1),ind_2(1)) == 1) % Check the validity

of a link (i.e. if adjacent nodes have degree > 1)?
106 Dist_M_1(ind_1(1),ind_2(1)) = 0; % Define the distance of

a chosen link as 0, so it is not conisdered anymore
107 Dist_M_1(ind_2(1),ind_1(1)) = 0;
108 counter_1 = counter_1 + 1; tr = 0; % Increment the counter
109 Deg_v(ind_1(1)) = Deg_v(ind_1(1)) - 1; % Update the degree

values for each node
110 Deg_v(ind_2(1)) = Deg_v(ind_2(1)) - 1;
111 A_new(ind_1(1),ind_2(1)) = (0.001/(N_pr))*br_it; % Scale the weight of a

link
112 A_new(ind_2(1),ind_1(1)) = (0.001/(N_pr))*br_it;
113 else % This link can not be

removed
114 Dist_M_1(ind_1(1),ind_2(1)) = 0; % Define the distance of

a chosen link as 0, so it is not conisdered anymore
115 Dist_M_1(ind_2(1),ind_1(1)) = 0;
116 end
117 end
118 end
119 A_new(ind,ind) = A_new;
120 A_rem = (A - A_new);
121 Deg_new = A_new*ones(N,1);
122 % Check if there are zero-degree nodes (testing the code)

50 Appendix B. Source Code

123 if(nnz(Deg_new) < N)
124 disp('Number of zero degree nodes:')
125 disp(length(Deg_new) - nnz(Deg_new))
126 plot(sort(Deg_new))
127 error('Something is wrong!!!')
128 end
129 end
130

131 function [ind_rank,pos_rank,y_2] = compute_y_2(W)
132 [Y,B] = eig(W); % Compute the eigenvalue decomposition of I + W - diag(W*

u)
133 [~,ind_pe] = maxk(diag(B),3); % Identify the three largest eigenvalues
134 y_2 = Y(:,ind_pe(2)); % Store the eigenvector y_2
135 [pos_rank,ind_rank] = sort(y_2); % Compute position and ranking of eacn node in y_2
136 end
137

138 function W = compute_W(A,N,alpha,delta)
139 A_s = zeros(N); %

Initialise A.*A^2
140 for i = 1 : N %

Compute A.*A^2 as in algorithm 2 (page 17)
141 ind_n = find(A(i,:) == 1); % (

pseudocode 2, line 3)
142 for j = 1 : length(ind_n) % (

pseudocode 2, line 3)
143 ind_n_2 = find(A(ind_n(j),:) == 1); ind_p_2 = ind_n_2(ind_n_2 > i); % (

pseudocode 2, line 4)
144 A_s(i,ind_p_2) = A_s(i,ind_p_2) + A(i,ind_p_2).*A(ind_n(j),ind_p_2); % (

pseudocode 2, line 5)
145 end
146 end
147 A_s = A_s + A_s'; %

Compute A.*A^2 (pseudocode 2, line 9)
148 Deg_inv = diag(A*ones(N,1))^-1; %

Compute vector with inverse degrees of each node
149 W = (alpha + delta)*Deg_inv*(A_s + A)*Deg_inv + 0.5*delta*(Deg_inv*A + A*Deg_inv); %

Compute matrix W (Theorem 1, page 6)
150 end
151

152 function [M,m,C_out,N_clusters] = optimize_m(A)
153 % This function computes merger matrix M, number of clusters c and cluster
154 % membership function C
155 N = size(A,1); % Number of nodes N
156 Deg = A*ones(N,1); % Degree vector
157 L_2 = nnz(A); % Twice number of links
158 C = ident_clusters_border(A,N,Deg,L_2,0); % Identify cluster

membership of each node
159 if(isempty(C)) % If there are no

clusters
160 M = 0;m = 0;C_out=ones(N,1);N_clusters = 1;return % Return only one cluster

, with all nodes in it
161 end
162 A_mat = A - (1/nnz(A)).*(Deg*Deg'); % Compute the modularity

matrix A - 1/2L*d*d^T
163 [M,C_out,N_clusters] = compute_M(C,A_mat,A,N); % Compute the modularity

matrix M
164 [M,C_out,N_clusters] = merge_clusters(M,C_out,N_clusters); % optimize partition by

maximising modularity
165 m = compute_modularity_m(A,C_out); % Compute the modularity

for a given partition
166 end
167

168 function C = ident_clusters_border(A,N,Deg,L_2,trsh)
169 % This function implements the algorithm 1 from the LCP paper (page 13)
170 Mod_1 = zeros(N,1); Mod_2 = zeros(N,1); %

Initialise the modularity vectors (pseudocode 1, line 2)
171 Mod_1(1) = -Deg(1)^2/(L_2); Mod_2(N) = -Deg(N)^2/(L_2); %

Store the first value of the modularity vectors (pseudocode 1, line 4-5)
172 A_mat = A - (Deg*Deg')./L_2;
173 for br = 2 : N %

Iteratively compute the modularity of each possible partition (pseudocode 1, lines 7 -

B.1. Linear Clustering Process 51

15)
174 Mod_1(br) = Mod_1(br-1) + 2*sum(A_mat(1:br-1,br)) + A_mat(br,br); %

Update the modularity of each possible bisection (pseudocode 1, line 9,11,13)
175 Mod_2(N-br+1) = Mod_2(N-br+2) + 2*sum(A_mat(N-br+2:N,N-br+1)) + A_mat(N-br+1,N-br+1); %

Update the modularity of each possible bisection (pseudocode 1, line 10,12,14)
176 end
177 [m_max,ind_max] = max(Mod_1+Mod_2); %

Determine the best partition into two clusters (pseudocode 1, line 16)
178 m_max = m_max(1); ind_max = ind_max(1); %

Store the cluster border and the obtained modularity (pseudocode 1, line 16)
179 if(m_max >= trsh && ind_max > 1 && ind_max < N) %

If the new partition improves modularity of the parent cluster, adopt it (pseudocode 1,
line 17)

180 A_1 = A(1:ind_max,1:ind_max); Deg_1 = Deg(1:ind_max); N_1 = ind_max; %
Perform the partition and compute adjacency matrix and degree vector for the first

cluster (pseudocode 1, line 18)
181 A_2 = A(ind_max+1:N,ind_max+1:N); Deg_2 = Deg(ind_max+1:N); N_2 = N - ind_max; %

Perform the partition and compute adjacency matrix and degree vector for the second
cluster (pseudocode 1, line 18)

182 C = [ident_clusters_border(A_1,N_1,Deg_1,L_2,Mod_1(ind_max)),ind_max ,...
183 ind_max + ident_clusters_border(A_2,N_2,Deg_2,L_2,Mod_2(ind_max))]; %

Call the function to check if the obtained two clusters can be further
partitioned (pseudocode 1, line 20)

184 else %
otherwise, adopt only the parent cluster (pseudocode 1, line 21)

185 C = [];
186 end
187 end
188

189 function [M,C_vec,N_cl] = compute_M(C,A_mat,A,N)
190 % This function computes the c x c modularity matrix M and the Nx1 cluster
191 % membership vector C
192 Inv = 1/nnz(A); % 1/2L
193 N_cl = length(C)+1; % Number of clusters
194 C_low = [1,C]; C_upp = [C,N]; C_vec = zeros(N,1); % Explanation
195 for br = 1 : N_cl % Construct cluster membership vector C
196 C_vec(C_low(br):C_upp(br)) = br;
197 end
198 M = zeros(N_cl); % Construct the cluster membership matrix

M
199 for br_1 = 1 : N_cl
200 for br_2 = 1 : br_1
201 M(br_1,br_2) = Inv*sum(sum(A_mat(C_low(br_1):C_upp(br_1),C_low(br_2):C_upp(br_2))));
202 M(br_2,br_1) = M(br_1,br_2);
203 end
204 end
205 end
206

207 function [M,C_vec,N_cl] = merge_clusters(M,C_vec,N_cl)
208 % This function further optimizes the modularity m
209 Off_diag_M = diag(M,1); % Store the elements

above the main diagonal of the modularity matrix M
210 while((max(Off_diag_M) > 0)) % While there is a

positive off-diagonal element in M
211 ind = find(Off_diag_M == max(Off_diag_M)); % Find position of the

largest off-diagonal element in M
212 for br = ind + 1 : N_cl % Since we merge two

clusters, update memebership of all nodes affected
213 C_vec(C_vec == br) = br - 1; % Update the cluster

membership vector C
214 end
215 N_cl = N_cl - 1; % Update number of

clusters
216 M(:,ind) = M(:,ind) + M(:,ind+1); M(:,ind+1) = []; % Update the cluster

membership matrix M
217 M(ind,:) = M(ind,:) + M(ind+1,:); M(ind+1,:) = []; % Update the cluster

membership matrix M
218 Off_diag_M = diag(M,1); % Update the off-diagonal

elements of M
219 end
220 end

52 Appendix B. Source Code

221

222 function Q = compute_modularity_m(A,C)
223 N = size(A,1); Deg = A*ones(N,1);
224 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*C' - C*ones(1,N)) == 0)));
225 end
226

227 function [ind_rank,pos_rank,y_2] = compute_y_2_v2(A_model)
228 N = size(A_model,1);
229 A_m = A_model - 1/N*ones(N);
230 Vec = rand(N,1);
231 ind = 1;
232 cnt = 1;
233 while(ind)
234 cnt = cnt + 1;
235 Vec_est = A_m*Vec;
236 Vec_est = Vec_est./(sqrt(sum(Vec_est.*Vec_est)));
237 if(mean(abs(Vec - Vec_est)) < 1e-5)
238 ind = 0;
239 else
240 Vec = Vec_est;
241 end
242 end
243 [pos_rank,ind_rank] = sort(Vec); % Compute position and ranking of eacn node in y_2
244 y_2 = Vec;
245 end

B.1.2. LCP for a known number of communities
1 function [C,c,m] = LCP_c(A,c)
2 % This function implements the Linear Clustering Process (LCP), from the
3 % publication
4 N = size(A,1); %

Number of nodes
5 N_pr = 40; %

Number of iterations
6 L_per = 60/N_pr; %

Ratio of links whose weight will be scaled
7 L_rem = linspace(L_per,L_per,N_pr); %

Scaling intensity for links in each iteration
8

9 alpha = 0.95; %
Attraction strength

10 delta = 1e-3; %
Repulsion strength

11

12 A_fm = A; %
Store the adjacency matrix

13

14 Inds = zeros(N,N_pr); %
Initalise the ranking of each node in y_2 per iteration

15 Pos_M = zeros(N,N_pr); %
Initalise the position of each node in y_2 per iteration

16 m_it = zeros(N_pr,1); %
Initalise the modularity in each iteration

17 C_it = zeros(N,N_pr); %
Initalise the number of clusters in each iteration

18 c_it = zeros(N_pr,1); %
Initalise the modularity in each iteration

19

20 W = compute_W(A_fm,N,alpha,delta); %
Compute W matrix (we compute it only once!)

21

22 counter = 1;
23 while(counter <= N_pr) %

Perform N_pr iterations of LCP
24 A_model = eye(N) + A_fm.*W - diag(A_fm.*W*ones(N,1)); %

Compute state space matrix % Compute the
position vector in the steady state

25 [ind_r,pos_r,~] = compute_y_2_v2(A_model); %
Compute the position vector in the steady state

B.1. Linear Clustering Process 53

26 Inds(:,counter) = ind_r; Pos_M(:,counter) = pos_r; %
Store the position of each node per iteration

27 [~,m_it(counter),C_it(:,counter),c_it(counter)] = ident_communities_v1_N(A(ind_r,ind_r),c
); % Identify the clusters, for given position vector

28 [A_fm,~,~] = scale_links(A_fm,ind_r,L_rem(counter),counter,N_pr); %
Scale the weights of the identified inter-community links links and recompute the
adjacency matrix

29 counter = counter + 1; %
Update the counter

30 end
31 [val_mod,ind] = max(m_it); %

Adopt the iteration with the highest modularity
32 c = c_it(ind); %

Output the estimated number of clusters
33 m = val_mod; %

Output the estimated modularity
34 C = zeros(N,1);
35 C(Inds(:,ind)) = C_it(:,ind); %

Output the cluster membership function of each node
% Return C

and m
36 end
37

38 %% Used sub-functions
39 function W = compute_W(A,N,alpha,delta)
40 A_s = zeros(N); %

Initialise A.*A^2
41 for i = 1 : N %

Compute A.*A^2 as in algorithm 2 (page 17)
42 ind_n = find(A(i,:) == 1); % (

pseudocode 2, line 3)
43 for j = 1 : length(ind_n) % (

pseudocode 2, line 3)
44 ind_n_2 = find(A(ind_n(j),:) == 1); ind_p_2 = ind_n_2(ind_n_2 > i); % (

pseudocode 2, line 4)
45 A_s(i,ind_p_2) = A_s(i,ind_p_2) + A(i,ind_p_2).*A(ind_n(j),ind_p_2); % (

pseudocode 2, line 5)
46 end
47 end
48 A_s = A_s + A_s'; %

Compute A.*A^2 (pseudocode 2, line 9)
49 Deg_inv = diag(A*ones(N,1))^-1; %

Compute vector with inverse degrees of each node
50 W = (alpha + delta)*Deg_inv*(A_s + A)*Deg_inv - 0.5*delta*(Deg_inv*A + A*Deg_inv); %

Compute matrix W (Theorem 1, page 6)
51 % W = (alpha + 1/(1+alpha)^4)*Deg_inv*(A_s + A)*Deg_inv - 0.5*1/(1+alpha)^4*(Deg_inv*A + A*

Deg_inv); % Compute matrix W (Theorem 1, page 6)
52 end
53

54 function [ind_rank,pos_rank,y_2] = compute_y_2_v2(A_model)
55 N = size(A_model,1);
56 A_m = A_model - 1/N*ones(N);
57 Vec = rand(N,1);
58 ind = 1;
59 cnt = 1;
60 while(ind)
61 cnt = cnt + 1;
62 Vec_est = A_m*Vec;
63 Vec_est = Vec_est./(sqrt(sum(Vec_est.*Vec_est)));
64 if(mean(abs(Vec - Vec_est)) < 1e-5)
65 ind = 0;
66 else
67 Vec = Vec_est;
68 end
69 end
70 [pos_rank,ind_rank] = sort(Vec); % Compute position and ranking of eacn node in y_2
71 y_2 = Vec;
72 end
73

74 function [A_new,A_rem,Deg_new] = scale_links(A,ind,trsh,br_it,N_pr)
75 % Adjacency matrix A provided as input is not relabeled!

54 Appendix B. Source Code

76 N = size(A,1); % Network size
77 A_n = A(ind,ind); % Relabeled adjacency

matrix A based on y_2 (eq. 10, page 11)
78 Deg_v = A_n*ones(N,1); % Relabeled degree vector

based on y_2 (eq. 10, page 11)
79 N_rem_1 = ceil(nnz(A)/2*trsh/100); % Number of links, whose

weight to scale wihtin one iteration
80 Dist_M_1 = (abs(diag(1:N)*A_n - A_n*diag(1:N))).*A_n; % Compute the distance

matrix between any two adjacent nodes (sec 5.1, page 15)
81 A_new = A_n; % Store the adjacency

matrix
82 counter_1 = 1; % Coutner for the number

of links with scaled weight
83 while counter_1 < N_rem_1 % Run the loop until

N_rem links are scaled in weight
84 tr = 1; % Initialise the

indicator function in case the link is found.
85 while (tr) % Run the loop until the

link is removed
86 val = max(Dist_M_1(:)); % Find the maximum

distance value
87 [ind_1,ind_2] = find(Dist_M_1 == val); % Identify the link

connecting two most far away nodes
88 if((Deg_v(ind_1(1))) > 1 && (Deg_v(ind_2(1))) > 1 ...
89 && A_new(ind_1(1),ind_2(1)) == 1) % Check the validity of a

link (i.e. if adjacent nodes have degree > 1)?
90 Dist_M_1(ind_1(1),ind_2(1)) = 0; % Define the distance of

a chosen link as 0, so it is not conisdered anymore
91 Dist_M_1(ind_2(1),ind_1(1)) = 0;
92 counter_1 = counter_1 + 1; tr = 0; % Increment the counter
93 Deg_v(ind_1(1)) = Deg_v(ind_1(1)) - 1; % Update the degree

values for each node
94 Deg_v(ind_2(1)) = Deg_v(ind_2(1)) - 1;
95 A_new(ind_1(1),ind_2(1)) = (0.01/(N_pr))*br_it; % Scale the weight of a

link
96 A_new(ind_2(1),ind_1(1)) = (0.01/(N_pr))*br_it;
97 else % This link can not be

removed
98 Dist_M_1(ind_1(1),ind_2(1)) = 0; % Define the distance of

a chosen link as 0, so it is not conisdered anymore
99 Dist_M_1(ind_2(1),ind_1(1)) = 0;

100 end
101 end
102 end
103 A_new(ind,ind) = A_new;
104 A_rem = (A - A_new);
105 Deg_new = A_new*ones(N,1);
106 % Check if there are zero-degree nodes (testing the code)
107 if(nnz(Deg_new) < N)
108 disp('Number of zero degree nodes:')
109 disp(length(Deg_new) - nnz(Deg_new))
110 plot(sort(Deg_new))
111 error('Something is wrong!!!')
112 end
113 end
114

115 function [M,m,C_out,N_clusters] = ident_communities_v1_N(A,N_cl)
116 % Estimate communities in the network
117 N = size(A,1);
118 Deg = A*ones(N,1);
119 % Step 1: Find cluster borders
120 L_2 = nnz(A);
121 C = ident_clusters_v2_N(A,N,Deg,L_2,1,ceil(log2(N_cl))+1);
122 if(isempty(C))
123 M = 0;m = 0;C_out=ones(N,1);N_clusters = 1;return
124 end
125 A_mat = A - (1/nnz(A)).*(Deg*Deg');
126 %% Step 2: Compute the modularity matrix M
127 [M,C_out,N_clusters] = compute_modularity_matrix_v1(C,A_mat,A,N);
128 %% Step 3: optimize partition by maximising modularity
129 [M,C_out,N_clusters] = optimize_clusters_v1_N(M,C_out,N_clusters,N_cl);

B.1. Linear Clustering Process 55

130 % m = trace(M)
131 m = compute_modularity_v1(A,C_out);
132 end
133

134 function C = ident_clusters_v2_N(A,N,Deg,L_2,br_it,N_it)
135 Mod_1 = zeros(N,1); Mod_2 = zeros(N,1);
136 Mod_1(1) = -Deg(1)^2/(L_2); Mod_2(N) = -Deg(N)^2/(L_2);
137 A_mat = A - (Deg*Deg')./L_2;
138 for br = 2 : N
139 Mod_1(br) = Mod_1(br-1) + 2*sum(A_mat(1:br-1,br)) + A_mat(br,br);
140 Mod_2(N-br+1) = Mod_2(N-br+2) + 2*sum(A_mat(N-br+2:N,N-br+1)) + A_mat(N-br+1,N-br+1);
141 end
142 [m_max,ind_max] = max(Mod_1+Mod_2); % Determine cluster border
143 m_max = m_max(1); ind_max = ind_max(1);
144 if((ind_max == 1 || ind_max == N) && br_it < N_it && N > 2)
145 ind_max = ceil(N/2);
146 A_1 = A(1:ind_max,1:ind_max); Deg_1 = Deg(1:ind_max); N_1 = ind_max;
147 A_2 = A(ind_max+1:N,ind_max+1:N); Deg_2 = Deg(ind_max+1:N); N_2 = N - ind_max;
148 C = [ident_clusters_v2_N(A_1,N_1,Deg_1,L_2,br_it + 1,N_it),ind_max ,...
149 ind_max + ident_clusters_v2_N(A_2,N_2,Deg_2,L_2,br_it + 1,N_it)];
150 elseif(ind_max > 1 && ind_max < N && br_it < N_it && N > 2)% Is there a new cluster border?
151 A_1 = A(1:ind_max,1:ind_max); Deg_1 = Deg(1:ind_max); N_1 = ind_max;
152 A_2 = A(ind_max+1:N,ind_max+1:N); Deg_2 = Deg(ind_max+1:N); N_2 = N - ind_max;
153 C = [ident_clusters_v2_N(A_1,N_1,Deg_1,L_2,br_it + 1,N_it),ind_max ,...
154 ind_max + ident_clusters_v2_N(A_2,N_2,Deg_2,L_2,br_it + 1,N_it)];
155 else
156 C = [];
157 end;end
158

159 function [M,C_vec,N_cl] = compute_modularity_matrix_v1(C,A_mat,A,N)
160 Inv = 1/nnz(A); % 1/2L
161 N_cl = length(C)+1; % Number of clusters
162 C_low = [1,C]; C_upp = [C,N]; C_vec = zeros(N,1);
163 for br = 1 : N_cl % Construct cluster membership vector C
164 C_vec(C_low(br):C_upp(br)) = br;
165 end
166 M = zeros(N_cl); % Construct the cluster membership matrix M
167 for br_1 = 1 : N_cl
168 for br_2 = 1 : br_1
169 M(br_1,br_2) = Inv*sum(sum(A_mat(C_low(br_1):C_upp(br_1),C_low(br_2):C_upp(br_2))));
170 M(br_2,br_1) = M(br_1,br_2);
171 end
172 end
173 end
174

175 function [M,C_vec,N_cl] = optimize_clusters_v1_N(M,C_vec,N_cl,c)
176 Test = diag(M,1);
177 while(length(Test) > c-1) % Find position of the

largest positive off diagonal element of M
178 ind = find(Test == max(Test));
179 for br = ind + 1 : N_cl % Update the cluster

membership vector
180 C_vec(C_vec == br) = br - 1;
181 end
182 N_cl = N_cl - 1; % Update the number of

clusters
183 M(:,ind) = M(:,ind) + M(:,ind+1); M(:,ind+1) = []; % Update the cluster

membership matrix M
184 M(ind,:) = M(ind,:) + M(ind+1,:); M(ind+1,:) = [];
185 Test = diag(M,1); % Update the second

diagonal vector
186 end;end
187

188 function Q = compute_modularity_v1(A,C)
189 N = size(A,1);
190 Deg = A*ones(N,1);
191 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*abs(C)' - C*ones(1,N)) == 0)))

;
192 end

56 Appendix B. Source Code

B.1.3. Non-backtracking variant of LCP
1 function [Comm,N_cl,Q] = Non_back_tracking_LCP(A,N) % LCP-

based non back tracking approach for estimating number of clusters (Section 4.4)
2 Deg = A*ones(N,1); %

Degree vector
3 gamma = fit_powerlaw(Deg); %fit power-law exponent gamma
4 if gamma <= 1 %determine if the network conform power-law
5 alpha = 0.95;
6 elseif gamma <= 3.5
7 alpha = 0.3*gamma - 0.1;
8 else
9 alpha = 0.95;

10 end
11

12 H = [eye(N) + alpha*(A.*A^2+A) - diag(alpha*(A.*A^2+A)*ones(N,1)) - (eye(N) - diag(Deg)), (
eye(N) - diag(Deg)); eye(N), zeros(N)]; % The 2Nx2N matrix in eq. (28), page 15

13 Lambda_H = eigs(H,2*N); %
Compute the eigenvalues of H

14 eig_max = maxk(real(Lambda_H),2); %
Determine the largest eigenvalue

15 N_cl = nnz(intersect(find(real(Lambda_H) > sqrt(eig_max(1))),find(imag(Lambda_H) == 0))); %
Determine the number of real eigenvalues larger that sqrt(lambda_1)

16 [U,~] = eigs(H,N_cl,'la');
17 U = real(U);
18 Comm = kmeans(U(1:N,:),N_cl);
19 Q = compute_modularity(A,Comm);
20 end
21

22 function Q = compute_modularity(A,C)
23 N = size(A,1);
24 Deg = A*ones(N,1);
25 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*abs(C)' - C*ones(1,N)) == 0)))

;
26 end
27

28 function gamma = fit_powerlaw(degree)
29 prob = tabulate(degree);
30 prob(:,2) = [];
31 prob_0 = prob(:,2) == 0;
32 prob(prob_0,:) = [];
33 prob = log(prob);
34 gamma = -polyfit(prob(:,1),prob(:,2),1)*[1 0]';
35 end

B.2. Newman Method
1 function [C_out,N_cl,m] = Newman(A)
2 N = size(A,1);
3 Deg = A*ones(N,1);
4 M = A - (Deg*Deg')./nnz(A);
5 C = ones(N,1);
6 C_out = Newman_ident_cl(C,M,0);
7 m = compute_modularity(A,C_out);
8 uniComm = unique(C_out);
9 for i=1:length(uniComm)

10 C_out(C_out==uniComm(i)) = max(uniComm) +i;
11 end
12 uniComm = unique(C_out);
13 for i=1:length(uniComm)
14 C_out(C_out==uniComm(i)) = i;
15 end
16 N_cl = max(C_out);
17 end
18

19 function C_out = Newman_ident_cl(C,M,tr)
20 C_out = C;
21 [X,L] = eig(M);
22 [val,ind] = max(diag(L));

B.3. Louvain Method 57

23 ind_pos = find(X(:,ind) > 0);
24 ind_neg = find(X(:,ind) < 0);
25

26 if(val <= 0 || isempty(ind_pos) || isempty(ind_neg))
27 return
28 else
29 C_out(ind_pos) = C(ind_pos).*rand();
30 C_out(ind_neg) = C(ind_neg).*rand();
31

32 M_pos = M(ind_pos,ind_pos);
33 M_neg = M(ind_neg,ind_neg);
34

35 m_pos = sum(sum(M_pos));
36 m_neg = sum(sum(M_neg));
37

38 if(m_pos + m_neg <= tr)
39 return
40 else
41 M_pos = M_pos - diag(M_pos*ones(length(ind_pos),1));
42 M_neg = M_neg - diag(M_neg*ones(length(ind_neg),1));
43

44 % C_out(ind_pos) = Newman_ident_cl(C_out(ind_pos),M_pos,m_pos);
45 % C_out(ind_neg) = Newman_ident_cl(C_out(ind_neg),M_neg,m_neg);
46 C_out(ind_pos) = Newman_ident_cl(C_out(ind_pos),M_pos,0);
47 C_out(ind_neg) = Newman_ident_cl(C_out(ind_neg),M_neg,0);
48 end
49 end
50 end
51

52 function Q = compute_modularity(A,C)
53 N = size(A,1);
54 Deg = A*ones(N,1);
55 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*abs(C)' - C*ones(1,N)) == 0)))

;
56 end

B.3. Louvain Method
1 function [C,c,Q] = Louvain(A)
2 A_0 = A; % Store the original adjacency matrix
3 N = size(A,1); % Number of nodes
4 P = 1:N; % Each node is a community
5 Q = compute_modularity(A_0,P); % Compute modularity
6 done = 0; % Indicator for stopping the code
7 it = 1; % Initialise the iteration counter
8

9 while(~done) % Until modulairty m cannot be improved further
10 P = MoveNodes(A,P,Q); % Move nodes to the best community
11 P = simplify_C(P); % Define partition from 1 to c
12 C_st{1,it} = P; % Store the current partition before aggregaton
13 Q = compute_modularity(A,P); % Compute modularity
14 done = (length(unique(P)) == N); % Check if there were no changes
15 if(~done) % In case there were changes
16 [A,P,N] = AggregateGraph(A,P); % Aggregate the graph in c nodes
17 Q = compute_modularity(A,P); % Compute modularity
18 it = it + 1; % Increment the iteration counter
19 end
20 end
21 C = compute_partition(C_st,size(A_0,1));% Compute the final partition
22 c = length(unique(C)); % Compute the number of clusters c
23 Q = compute_modularity(A_0,C); % Compute modularity
24 end
25

26 function P = MoveNodes(A,P,m_old)
27 N = size(A,1);
28 m = m_old;
29 Deg = A*ones(N,1);
30 Q_p = 1/nnz(A).*(A - (1./nnz(A).*Deg*Deg'));
31 while(m >= m_old)

58 Appendix B. Source Code

32 nodes = randperm(N); % Visit nodes at random
33 L_2 = sum(sum(A)); % Sum of all link weights
34 for counter = 1 : N % Go over each node in the

graph
35 ind_neig = intersect(find(P~=P(nodes(counter))),find(A(:,nodes(counter)))); %

Find neighbours of node i
36 Delta_m = zeros(length(ind_neig),1); % Initialise the delta_m

vector of node i
37 for counter_neig = 1 : length(ind_neig) % For each nieghbour j of

node i
38 ind_comm = find(P == P(ind_neig(counter_neig))); % Determine all nodes from

the community of node j
39 Sum_in = sum(sum(A(ind_comm,ind_comm))); % Sum of links within the

community C
40 Sum_tot = 2*sum(sum(A(ind_comm ,:))); % Sum of the weights of links

incident to nodes in community C
41 Sum_C = sum(A(ind_comm,nodes(counter))); % Sum of the weights of links

from node i to nodes in community C
42 d_i = sum(A(:,nodes(counter))); % Sum of the link weights

adjacent to node i
43 Delta_m(counter_neig) = ((Sum_in + 2*Sum_C)/L_2 - ((Sum_tot + d_i)/L_2)^2) - (

Sum_in/L_2 - (Sum_tot/L_2)^2 - (d_i/L_2)^2); % Compute the modularity gain
44 end
45 [ind_val,ind_pos] = max(Delta_m); % Determine the best

community for node i
46 if(ind_val > 0) % If the modularity can be

improved?
47 ind_sub_1 = find(P == P(nodes(counter))); ind_sub_1(ind_sub_1~=nodes(counter));
48 P(nodes(counter)) = P(ind_neig(ind_pos)); % Update the cluster membership

of each node
49 ind_sub_2 = find(P == P(ind_neig(ind_pos))); ind_sub_2(ind_sub_2~=nodes(counter))

;
50 m = m - 2*sum(Q_p(nodes(counter),ind_sub_1)) + 2*sum(Q_p(nodes(counter),ind_sub_2

));
51 end
52 end
53 if(m <= m_old) % If the modularity is not

improved
54 return % Break the while loop
55 end
56 m_old = m; % Update the old modularity
57 end
58 end
59

60 function [A_new,P_new,N_new] = AggregateGraph(A,P) % Aggregate the graph
61 N_new = length(P);
62 A_new = zeros(N_new);
63 P_new = 1 : N_new;
64 for counter_i = 1 : N_new
65 for counter_j = 1 : N_new
66 if(counter_i == counter_j)
67 ind_comm_i = find(P == counter_i);
68 A_new(counter_i,counter_i) = 0.5*sum(sum(A(ind_comm_i,ind_comm_i)));
69 else
70 ind_comm_i = (P == counter_i);
71 ind_comm_j = (P == counter_j);
72 A_new(counter_i,counter_j) = sum(sum(A(ind_comm_i,ind_comm_j)));
73 end
74 end
75 end
76 end
77

78 function Q = compute_modularity(A,C) % Compute modularity of the given partition
79 N = size(A,1);
80 Deg = A*ones(N,1);
81 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*C - C'*ones(1,N)) == 0)));
82 end
83

84 function P = simplify_C(P) % Define clusters from 1 to c
85 P_un = unique(P);
86 for counter = 1 : length(P_un)

B.4. Leiden Method 59

87 ind = (P == P_un(counter));
88 P(ind) = counter;
89 end
90 end
91

92 function C = compute_partition(C_st,N) % Restore the partition from C_st
93 it = length(C_st);
94 C = zeros(1,N);
95 for counter_1 = 1 : N
96 C(counter_1) = C_st{1,1}(counter_1);
97 for counter_2 = 2 : it
98 C(counter_1) = C_st{1,counter_2}(C(counter_1));
99 end

100 end
101 end

B.4. Leiden Method
1 function [Comm,C,Q] = Leiden(A)
2 A_0 = A; % Store the original adjacency matrix
3 N = size(A,1); % Number of nodes
4 P = 1:N; % Each node is a community
5 done = 0; % Indicator for stopping the code
6 it = 1; % Initialise the iteration counter
7

8 while ~done
9 P = MoveNodesFast(A,P);

10 P_refined = RefinePartition(A,P);
11 P = simplify_C(P_refined); % Define partition from 1 to c
12 C_st{1,it} = P; % Store the current partition before aggregaton
13 done = (length(unique(P)) == N); % Check if there were no changes
14 if(~done) % In case there were changes
15 [A,P,N] = AggregateGraph(A,P); % Aggregate the graph in c nodes
16 it = it + 1; % Increment the iteration counter
17 end
18 end
19 Comm = compute_partition(C_st,size(A_0,1));% Compute the final partition
20 C = length(unique(Comm)); % Compute the number of clusters c
21 Q = compute_modularity(A_0,Comm); % Compute modularity
22 end
23

24 function P = MoveNodesFast(A,P)
25 N = size(A,1);
26 queue = randperm(N); % Visit nodes at random
27 L_2 = sum(sum(A)); % Sum of all link weights
28 while ~isempty(queue)
29 node_v = queue(1);
30 queue(1) = [];
31 ind_neig = find(A(:,node_v)); % Find neighbours of node v
32 Delta_m = zeros(length(ind_neig),1); % Initialise the delta_m vector

of node v
33 for counter_neig = 1 : length(ind_neig) % For each nieghbour j of node v
34 ind_comm = find(P == P(ind_neig(counter_neig))); % Determine all nodes from the

community of node j
35 Sum_in = sum(sum(A(ind_comm,ind_comm))); % Sum of links within the

community C
36 Sum_tot = 2*sum(sum(A(ind_comm ,:))); % Sum of the weights of links

incident to nodes in community C
37 Sum_C = sum(A(ind_comm,node_v)); % Sum of the weights of links from node v

to nodes in community C
38 d_i = sum(A(:,node_v)); % Sum of the link weights adjacent to

node v
39 Delta_m(counter_neig) = ((Sum_in + 2*Sum_C)/L_2 - ((Sum_tot + d_i)/L_2)^2) - (Sum_in/

L_2 - (Sum_tot/L_2)^2 - (d_i/L_2)^2); % Compute the modularity gain
40 end
41 [ind_val,ind_pos] = max(Delta_m); % Determine the best community

for node i
42 if ind_val > 0
43 P(node_v) = P(ind_neig(ind_pos)); % Update the cluster membership of each node

60 Appendix B. Source Code

44 end
45 end
46 end
47

48 function P_refined = RefinePartition(A,P)
49 N = size(A,1);
50 P_refined = 1:N;
51 C = unique(P);
52 for i = 1:length(C)
53 S = find(P == C(i));
54 P_refined = MergeNodesSubset(A,P_refined,S,C(i));
55 end
56

57 end
58

59 function P = MergeNodesSubset(A,P,S,C)
60 R = [];
61 gamma = 1/7;
62 for i = 1:length(S)
63 S_v = setdiff(S,S(i));
64 recur_v = sum(A(:,S(i)));
65 recur_S = length(S);
66 E_v_Sv = length(intersect(find(A(:,S(i))), S_v));
67 if E_v_Sv >= gamma * recur_v * (recur_S - recur_v)
68 R = [R S(i)];
69 else
70 P(S(i)) = C;
71 end
72 end
73

74 theta = 1;
75 for i = 1:length(R)
76 T = [];
77 if R(i)==P(R(i))
78 for j = 1:length(S)
79 S_C = setdiff(S,S(j));
80 recur_C = sum(A(:,S(j)));
81 recur_S = length(S);
82 E_C_SC = length(intersect(find(A(:,S(j))), S_C));
83 if E_C_SC >= gamma * recur_C * (recur_S - recur_C)
84 T = [T S(j)];
85 end
86 end
87 L_2 = sum(sum(A));
88 Delta_m = zeros(length(T),1); % Initialise the delta_m vector of

node v
89 for counter_T = 1 : length(T) % For each nieghbour j of node v
90 ind_comm = find(P == P(T(counter_T))); % Determine all nodes from the

community of node j
91 Sum_in = sum(sum(A(ind_comm,ind_comm))); % Sum of links within the

community C
92 Sum_tot = 2*sum(sum(A(ind_comm ,:))); % Sum of the weights of links

incident to nodes in community C
93 Sum_C = sum(A(ind_comm,R(i))); % Sum of the weights of links from node

v to nodes in community C
94 d_i = sum(A(:,R(i))); % Sum of the link weights adjacent to

node v
95 Delta_m(counter_T) = ((Sum_in + 2*Sum_C)/L_2 - ((Sum_tot + d_i)/L_2)^2) - ...
96 (Sum_in/L_2 - (Sum_tot/L_2)^2 - (d_i/L_2)^2); % Compute the modularity gain
97 end
98 if Delta_m > 0
99 Pr_C = exp((1/theta) * Delta_m);

100 Pr_C = Pr_C/sum(Pr_C);
101 Random = randsrc(1,1,[1:length(Pr_C); Pr_C']);
102 P(R(i)) = T(Random);
103 else
104 P(R(i)) = C;
105 end
106 else
107 P(R(i)) = C;
108 end

B.5. Non-backtracking Method 61

109 end
110 end
111

112 function Q = compute_modularity(A,C) % Compute modularity of the given partition
113 N = size(A,1);
114 Deg = A*ones(N,1);
115 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*C - C'*ones(1,N)) == 0)));
116 end
117

118 function [A_new,P_new,N_new] = AggregateGraph(A,P) % Aggregate the graph
119 N_new = length(P);
120 A_new = zeros(N_new);
121 P_new = 1 : N_new;
122 for counter_i = 1 : N_new
123 for counter_j = 1 : N_new
124 if(counter_i == counter_j)
125 ind_comm_i = find(P == counter_i);
126 A_new(counter_i,counter_i) = 0.5*sum(sum(A(ind_comm_i,ind_comm_i)));
127 else
128 ind_comm_i = (P == counter_i);
129 ind_comm_j = (P == counter_j);
130 A_new(counter_i,counter_j) = sum(sum(A(ind_comm_i,ind_comm_j)));
131 end
132 end
133 end
134 end
135

136 function P = simplify_C(P) % Define clusters from 1 to c
137 P_un = unique(P);
138 for counter = 1 : length(P_un)
139 ind = (P == P_un(counter));
140 P(ind) = counter;
141 end
142 end
143

144 function C = compute_partition(C_st,N) % Restore the partition from C_st
145 it = length(C_st);
146 C = zeros(1,N);
147 for counter_1 = 1 : N
148 C(counter_1) = C_st{1,1}(counter_1);
149 for counter_2 = 2 : it
150 C(counter_1) = C_st{1,counter_2}(C(counter_1));
151 end
152 end
153 end

B.5. Non-backtracking Method
1 function [Comm,N_cl,Q] = Non_back_tracking(A,N)
2 B_star = [A, eye(N) - diag(A*ones(N,1));eye(N) zeros(N)]; % Compute the 2N x 2N matrix

B_star in eq. (27), page 14
3 Eigs = eigs(B_star,2*N); % Compute the eigenvalues of

B_star
4 ind = imag(Eigs) == 0; % Identify real eigenvalues
5 N_cl = sum(Eigs(ind) > sqrt(max(Eigs))); % Determine the number of

real eigenvalues larger that sqrt(lambda_1)
6 [U,~] = eigs(B_star,N_cl,'la');
7 U = real(U);
8 Comm = kmeans(U(1:N,:),N_cl);
9 Q = compute_modularity(A,Comm);

10 end
11

12 function Q = compute_modularity(A,C)
13 N = size(A,1);
14 Deg = A*ones(N,1);
15 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*abs(C)' - C*ones(1,N)) == 0)))

;
16 end

62 Appendix B. Source Code

B.6. Modularity Eigengap
1 function [Comm,c,Q] = Eigengap(A)
2 N = size(A,1);
3 Deg = A*ones(N,1);
4 L_2 = sum(sum(A));
5 M = A - Deg*Deg'./L_2;
6 L = eigs(M,N); % Compute eigenvalues of Q
7 Eigs = sort(L,'ascend'); % Sort the eigenvalues of Q
8 Eig_gap = flipud(diff((Eigs)));
9 [~,c] = max(Eig_gap(1:ceil(0.5*N))); % Determine the largest gap

10 c = c + 1;
11 [U,~] = eigs(M,c,'la');
12 Comm = kmeans(U,c);
13 Q = compute_modularity(A,Comm);
14 end
15

16 function Q = compute_modularity(A,C)
17 N = size(A,1);
18 Deg = A*ones(N,1);
19 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*abs(C)' - C*ones(1,N)) == 0)))

;
20 end

B.7. Local Dominance
1 function [Comm,c,Q]=Local_Dominance(A)
2 G = graph(A);
3 D = degree(G);
4 N = size(A,1);
5 diG = [0,0];
6 l = zeros(1,N);
7

8 for i = 1:N
9 Nb = neighbors(G,i); %find neighbors

10 D_Nb = D(Nb); %degree of neighbors
11 max_D_Nb = max(D_Nb); %max degree of neighbors
12 index_D_Nb = []; %index of max
13 for j = 1:length(D_Nb) %return the index, maybe more than 1
14 if D_Nb(j)==max_D_Nb
15 index_D_Nb = [index_D_Nb j];
16 end
17 end
18 max_Nb = Nb(index_D_Nb); %neighbors with max degree
19 for k = 1:length(max_Nb) %build digraph
20 if D(max_Nb(k))>=D(i)&&max(ismember(diG,[max_Nb(k),i],'rows'))==0
21 diG = [diG; [i, max_Nb(k)]];
22 l(i)=1;
23 end
24 end
25 end
26 diG(1,:) = [];
27

28 %remove multiple out-going links
29 uni = unique(diG(:,1));
30 diG_u = [0,0];
31 for i = 1:length(uni)
32 for j = 1:length(diG(:,1))
33 if uni(i) == diG(j,1)
34 diG_u(i,1) = uni(i);
35 diG_u(i,2) = diG(j,2);
36 break
37 end
38 end
39 end
40

41 C = setdiff(linspace(1,N,N),diG_u(:,1)); %local leaders
42 LL_D = D(C);
43 max_LL_D = max(LL_D);

B.7. Local Dominance 63

44 index_LL_D = [];
45 for i = 1:length(LL_D)
46 if LL_D(i)==max_LL_D
47 index_LL_D = [index_LL_D i];
48 end
49 end
50 M = C(index_LL_D); %local leaders with max degree
51

52 %links towards local leader with larger degree and shortest path
53 [~,index_sort] = sort(LL_D);
54 C_sort = C(index_sort);
55 for i = 1:length(C)-length(M)
56 Distance = [];
57 for j = i+1:length(C)
58 [~,dis] = shortestpath(G,C_sort(i),C_sort(j));
59 Distance = [Distance dis];
60 end
61 Dist_flip = fliplr(Distance);
62 [min_Dis,ind_dis_flip] = min(Dist_flip);
63 l(C_sort(i)) = min_Dis;
64 ind_dis = length(Distance)-ind_dis_flip+1;
65 diG_u = [diG_u; [C_sort(i), C_sort(ind_dis+i)]];
66 end
67

68 for i = 1:length(M)
69 l(M(i)) = max(l);
70 end
71

72 D_star = D;
73 D_sorted = sort(D);
74 D_uni = unique(D_sorted);
75 for i = 1:length(D_star)
76 for j = 1:length(D_uni)
77 if D_star(i) == D_uni(j)
78 D_star(i) = j;
79 end
80 end
81 end
82

83 l_star = l.^2;
84

85 for i = 1:length(C)
86 delta(i) = ((l_star(C(i))-min(l_star))/(max(l_star)-min(l_star)))*((D_star(C(i))-min(

D_star))/(max(D_star)-min(D_star)));
87 end
88

89 %assign community labels
90 Comm = [];
91 for i = 1:N
92 if ismember(i,C)
93 Comm(i) = i;
94 else
95 Comm(i) = diG_u(diG_u(:,1)==i,2);
96 end
97 end
98

99 while(~isequal(sort(unique(Comm)),sort(C)))
100 for i = 1:N
101 if ~ismember(Comm(i),C)
102 Comm(i) = diG_u(diG_u(:,1)==Comm(i),2);
103 end
104 end
105 end
106

107 uniComm = unique(Comm);
108 for i=1:length(uniComm)
109 Comm(Comm==uniComm(i)) = max(uniComm) + i;
110 end
111 uniComm = unique(Comm);
112 for i=1:length(uniComm)
113 Comm(Comm==uniComm(i)) = i;

64 Appendix B. Source Code

114 end
115 c = max(Comm);
116 Q = compute_modularity(A,Comm');
117 end
118

119 function Q = compute_modularity(A,C)
120 N = size(A,1);
121 Deg = A*ones(N,1);
122 Q = 1/nnz(A).*sum(sum((A - (1./nnz(A).*Deg*Deg')).*((ones(N,1)*abs(C)' - C*ones(1,N)) == 0)))

;
123 end

	Preface
	Abstract
	Introduction
	Motivations
	Objectives and Contributions
	Thesis Outline

	Graph or Network Clustering
	Clustering Performance
	Modularity
	Normalized Mutual Information
	Element-centric Similarity

	Benchmarks
	Stochastic Block Model
	LFR Benchmark

	Random Network Models
	Erdős-Rényi Model
	Barabási-Albert Model
	Watts-Strogatz Model

	Linear Clustering Process
	Linear Clustering Process (LCP) on a Network
	From node-level governing equation to the network level
	Time-dependence of the LCP
	Community detection based on the eigenvector y2
	Weakening strength of inter-cluster forces

	LCP for a known number of communities
	Non-backtracking variant of LCP

	Considered Clustering Algorithms
	Modularity-based Methods
	Newman Method
	Louvain Method
	Leiden Method

	Spectral Methods
	Non-backtracking Method
	Modularity Eigengap

	Local Dominance

	Results
	Computational complexity
	SBM Benchmark
	SSBM network with small number of clusters
	SSBM network with large number of clusters

	LFR Benchmark
	Random network models
	Real-world networks
	Real-world networks without ground-truth communities
	Real-world networks with ground-truth communities

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Nomenclature
	List of Abbreviations
	List of Notations

	Source Code
	Linear Clustering Process
	Original LCP
	LCP for a known number of communities
	Non-backtracking variant of LCP

	Newman Method
	Louvain Method
	Leiden Method
	Non-backtracking Method
	Modularity Eigengap
	Local Dominance

