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ALTERNATIVE RECIPROCITY RELATIONS FOR THE READ FLUX IN MAGNETIC RECORDING THEORY
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Abstract

With the aid of reciprocity relations relating a
magnetic (scalar or vector) potential and one of the
magnetic field quantities (magnetic flux density or
magnetic field strength), alternative expressions for
the read flux of a magnetic recording head are derived.
They express the read flux of the head as a weighted
product, over the front plane of the head, of its write
field and certain field quantities that are related to
the recordeq pattern of magnetization.

Introduction

In the present paper some expressions are derived that
yield alternatives to the usual expression [1]-[3] for
the magnetic flux linked to the read coil of a magnetic
recording head when a magnetization pattern recorded in
a certain medium is present in front of the head. They
express this read flux in terms of a surface integral
over the boundary surface of a certain domain in the
interior of which the- recorded pattern of magnetization
is present. One of the quantities entering into the
surface integral is either a magnetic (vector or
scalar) potential or a magnetic field quantity
assocliated with the head's write field. Correspondingly
the other one is either a magnetic field quantity or a
magnetic {vector or scalar) potential that has the
recorded magnetization pattern as its source. The
quantities associated with the head's write field are
the ones, that are caused by a unit current in the
head's coil while the magnetically permeable matter in
front of the head is present.

We restrict ourselves to media that are linear,
time-~invariant, isotropic, and instantaneously and
locally reacting in their magnetic behavior. Conducting
media are excluded, so all quantities in the
configuration have the same time dependence. No
specific assumptions are made to the type of inductive
head or to the spatial distribution of the
magnetization pattern.

In this way four novel expressions are obtained.
They can be of practical importance in those cases when
the magnetic potential or the magnetic field quantity
associated with the head's write field can be measured
on the boundary surface of the relevant domain (for
example in the front plane of the head).

General Reciprocity Relations

Reciprocity theorems interrelate in a certain manner
two admissible "states" that can be present in one and
the same domain in space. Let D be an arbitrary bounded
domain interior to the bounded closed surface 3D and
let n be the unit vector along the normal to 9D,
pointing away from D. The magnetic field equations in
this domain D are, upon employing, as customary in
magnetic recording theory, the quasi-static
approximation of the electromagnetic field equations,

¥ x Hr,t) = J(r.t), m

¥ x E(r,t) = - 3,B(r,t), (2
while .

B(r,t) = uglH(r,t) + M(r,t)1. (3)

The magnetization is separated into a field-dependent
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induced part M, and a field-independent permanent part

M :

i

-p

M=M +M. ()]

The media that we consider have a scalar, field-
independent susceptibility x(r), so

M (r,t) = w(r)H(r,t). (5)

At surfaces where this susceptibility changes
abruptly, the tangential components of the electric and
magnetic field strength are continuous, and the normal
component of the magnetic flux density as well.

The electromagnetic state in the configuration has
been reached by starting from a situation where no
field is present, and sources have been switched on at
the instant t=t0 in the finite past. We define the

vector potential A as

t
Alr,t) = ~ j E(r,t) dr. (6)
£
Substitution of (6) in (2) leads to
B(r,t) = ¥V x A(r,t). ) (7
In any subdomain free of electric current, (1) reduces
to ¥V x ﬂ(z,t) = 0, and in these domains a scalar
magnetic potential ¥ can be introduced such that
H(r,t) = ~ 9¥(r,t). (8)

The field quantities in the domain D in the two

"admissible states "a" and "b" in the reciprocity

relations are denoted by the superscripts a and b,

b
respectively. The expression Ve (A x Hb ~ A'x ) can

then with the aid of (1), (3) and (7), be rewritten as

- 4% g v A%, (9

_ b .a
'Voﬂ ﬂp

b a b

provided that the condition H -g? H"-M; is imposed

(i.e., x (r) = K (r))
Integration of (9) over the domain D and appllcation of
Gauss’ divergence theorem lead to

= [ C P - a%egP o B2en® 4 AP gP)av. (10)
rep O P T T = =

Equation (10) is the global form of a reciprocity
relation for domain D.

Similarly, ménipulatlon of the expression !-(Yagb -

nga) leads with the aid of (3)—(5),(8) and application
to a current—free subdomain to
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- f n-(v%8° - v°8%) aa
r&ad

=y [ (52-M0 - 5Py av. an
Olg~- " = P

Equation (11) constitutes the global form of another
reciprocity relation which holds for a current—free
domain D.

In the reciprocity relation as expressed in (10) the
volume integrals containing the electric current
densities can be further reduced in case the currents
flow in a thin-wire loop C. By using the relation

Jd dv =1 1 ds, (12)
where I denotes the electric current in the loop, 1 is
the unit vector along the tangent to the center line of
C, and dV is an elementary part of the loop with arc
length ds along its center line. Since in the quasi-
static approximation I does not vary along the wire, we
have

I (- ﬂa'ﬂb . gb-ga)dv
red
b} . E a b
=—I§1~_Ads+l§l°_ﬁ\ds. (13)
C C

Let S denote any bounded two-sided surface that has C
as boundary curve and let v be the unit vector' along
the normal to S such that and 1 form a right-handed
system. The magnetic flux passing through the loop C
is then defined by

3
¢

% = [ n-B da, (1)
res

which can be expressed in terms of A (ef. (7)) as

o=j E-ngdA=§1-Ads. (15)
rés ¢

The magnetic flux ¢ is further related to the
electromotive force e induced along the oriented closed
contour C (ef. (6)) through '

e = é 1+ Eds =~ 3_¢. (16)
- t

Taking (13) ~ (15) into account, the reciprocity
theorem (10), applied to the domain interior to 3D,
leads to

a.b b.a [ b .a a b
1" ~ 1% = (p H'eM" ~ p H «M~ )dV
réb o= -p o= ~r
- f n-(a% % B0 - A%« pHa ()
reabD

Until so far, the domain D, the boundary conditions on
9D and the states "a" and "b" are arbitrary.
The usual expression follows from applying (17) to

the domain interior to a large sphere SA of radius A

and center at the origin of the chosen coordinate
system. The contribution from SA vanishes in the limit

A +» =, since

J n-(a% x H° ~ A% x H*)dA = Order (™3
r'eSA
as & » =, (18)
In this limit we obtain
031% - oP1% - I (wHPM? ~ u #2eu® )av, (19)
rep O P 0T 7P

where the right-hand side contains the permanent part
of the magnetization only. The application of (19) to

the entire R3 with state "a", an "auxiliary" state
characterized by 1% # 0, g: = 0, and state "b", the
"reading" state denoted by the superscript R,
characterized by Ib =0, Eg = !Z. where Mg is the
permanently recorded magnetization pattern, leads to

Wf = f ueh®Mt v, (20)
réD P

Here, Dp denotes the domain occupied by the permanent
magnetization 5p, I the current in the coil, ¢ the flux

linked to the coil and Ea = _I-_la/la a time—~independent
configurational quantity characteristic for the head’s
performance [2]. The use of lower case letters in the
remaining text for quantities describing state "a"

means that they are taken for Ia = 1. The absence of
retardation and dispersion in the configuration makes

that ﬂa and 12 have the same time dependence, so the
lower case quantities are time-independent and describe
a magnetostatic field.

Alternative Expressions for the Read Flux with the
Magnetic Vector Potential

We now apply (17) to bounded domains and consider
the case where on the boundary BD+ of a bounded domain

D+ that completely contains the permanent magnetization
distribution, additional boundary conditions are

invoked. The domaln D+ may also contain induced
i

magnetization occupying a subdomain D

.0 (w0) /
Ty x medium of infinite
=== permeability
@
i core
coit
state "a” state "b”

Fig. 1. The location of the domain and the two
states for an alternative reciprocity
relation.

The domain outside D' is denoted by D~ (Fig. 1). State




"a" is taken to be the situation in which gz = 0, while
ﬂa is the magnetic field strength due to a current 12
in the ceil of the reproduce head that is located in
domain D~. For the latter state no specific boundary

+
conditions on 3D are invoked, so the conditions of
continuity of the tangential components of A and H hold

+
across 9D . State "b" is characterized by Hg = ﬂg, in

which 52 is the recorded magnetization pattern; ﬁg is

present in the domain D+. Further, we subject the field

in state "b" to the boundary condition n x Eb =0 on
+ . .

aD , where n is the unit vector along the outward

+
normal to 3D . With ga = Ea/la as configurational
guantity, substitution of the assumptions for the
states "a" and "b" in (10) leads to

R a _ a_R
, (A" x h%)aA = [ R G 21

'[ reap rep”

However, on account of (20) the right~hand side of (21)

equals OR and hence

of = [ , no(a® « n®)aa. (22)
reasb

In (22), n x AR is the tangential component of the

magnetic vector potential of the magnetic field in D+,
that is caused by the permanent magnetization Eg in the
read situation, but is now subject to the condition n x
ﬂb =0 on aD'. The latter field can be envisaged as the

one that would be present in the domain D+, if inD a
medium of infinite permeability were present.

Similarly, we obtain for the same domain D+, with
the same characterization of state "a", but now for the

state "b" subject to the boundary condition n x £b= 0
on 3D+, a different expression for ¢R (Fig. 2). With Ea
= i\a/Ia as configurational quantity, substitution of

medium of infinite
conductivity

core

coil

state "a" state “b”

Fig. 2. The location of the domain and the two
states for an alternative reciprocity
relation.
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the assumptions for states "a" and "b" in (10) leads to

2'(ER x ga)dA = [ + uo

n?Mav, (23)
reb P

[ re’
However, on account. of (20) we have

R

¢ = , e« atan, )

[rGBD

in which, n x ER

+
field strength of the magnetic field on 3D , that is
caused by the permanent magnetization ﬁg in the read

is the tangential part of the magnetic

b
situation, but is now subject to the condition n x A=
0 on '’ (i.e. n x gb =0 on 3D"). The latter field can

+
be envisaged as the one that would be present in D , if

in D a medium of infinite conductivity were present.

In the expressions (22) and (24) for the read flux
the vector potential A is explicitly present. To obtain
a value for the read flux from these alternative
expressions a value for this vector potential is
required. Now, the vector potential is, when it
satisfies the above stated conditions, determined up to
the gradient of a scalar function of position. In the
alternative expressions for the read flux ((22) and
(24)) the vector potential may vary with the gradient
of a scalar potential without affecting the result.
Taking in (22) e.g.

A= A"+ V4, (25)

in which ¢ is a scalar potential, we obtain for the
read flux

R I (7 T
reap
' [ + ne (76" x h¥)da. (26)
reah

The last integral can be rewrittén as

J . E.(Z¢R N na)dA - [ . ne(¥ x ¢Rﬁé)dA
redDd 63D
27
~[ L mdE e ntan,
read

Now both integrals on the right-hand side of (27)

vanish. The first one due to the fact that aD+ is a
closed surface where application of Stokes' theorem to
parts of it leads to cancellation 6f the results. The

second one gives no contribution, because ¥V x Qa =0 in

D+. In the same way. it can be shown that (24) is not
affected by this change in the vector potential.

In cases of practicgl interest, D+ is chosen to be

the half-space D= {re R3; y > 0} in front of the
head's front plane. Then the expressions for the fields
to be calculated in the "reading" state R with boundary

conditions on 8D+ (i.e. now, y = 0) can be obtained
explicitly with the aid of the method of images.
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Alternative Expressions for the Read Flux with the
Magnetic Scalar Potential

Again the bounded domain D+, that contains the
permanent magnetization distribution, is considered. As
this domain is a current—free one, we can also employ
the magnetic scalar potential in it. Applying (11) to

D+ with the same characterization of states "a" and "b"

(Fig. 1), but with the additional boundary condition
nx H° =0 on 2" and using (20) leads to

of - - f , nevB" an, (28)
r&ad

in which Q-ERis the normal component of the magnetic
flux density of the magnetic field caused by the

+
permanent magnetization Eg in the read situation in D

under the boundary condition that Wb
w.
Similarly, we obtain with the boundary condition g-§b=0

on aD+ (Fig. 2) the result

is constant on

of - f n-b® aa, (29)
re&aD

in which TR is the scalar potential of the magnetic

field, that is caused by the permanent magnetization ﬁg
in the read situation, but is subject to the condition

+
3-§P=0 on 3D . The field in the reading state in (28)
can as in (22) be envisaged as the one that would be

present in D+ if in D  a medium of infinite
permeability were present, while this field in (29) can

+
be envisaged as the one that would be present in D if

in D a medium of infinite conductivity were present.

In the expressions (28) and (29) for the read flux
the scalar potential Y is explicitly present. This
scalar potential is with the prescribed boundary
conditions determined up to an additive constant. In
the expressions (28) and (29) for the read flux the
scalar potential may vary with a constant without
affecting the result.

In the practical case that D+ is chosen to be the

half-space D+=[£ 5] R3; y>0} in front of the head's
front plane the read flux in expression (28) can
directly be interpreted as the integral over the head's
front plane of the magnetic flux density emanating from
the magnetization pattern weighted by the scalar
potential characteristic for the magnetic head [4].

Conelusion

Starting from the general reciprocity relations for a
bounded domalin several equivalent forms of the
reciprocity theorem of magnetic recording theory are
presented. By an appropriate choice of the domain and
of the boundary conditions to which the magnetic
potentials and/or the magnetic field quantities are
subjected these equivalent forms follow from the
general reciprocity relations for the bounded domain.
These relations hold for any distribution of
magnetization in space and time in a bounded domain.
The application of the reciprocity relation to an
unbounded domain leads to the usual expression for the
read flux which consists of a volume integral, whereas
the application to an appropriate bounded domain leads
to an expression for the read flux consisting of a

surface integral. The results obtained in [4] have been
extended and generalized. In [4] only the expression

(28) was obtained for the special case of domain D+ as
the half-space in front of the head. Since all
expressions are equivalent, conclusions can be reached
with any of the expressions. However, the quantities
occurring in the expressions and the domains ‘over which
one has to integrate differ. Depending on the purpose
of the analysis, one expression will be more convenient
to analyze and thus give more insight than another one.
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