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Mathematical structures in Group 
Decision-Making on Resource 
Allocation Distributions
Noah e. Friedkin  1, Anton V. proskurnikov  2,3, Wenjun Mei  4 & Francesco Bullo  5

Optimal decisions on the distribution of finite resources are explicitly structured by mathematical 
models that specify relevant variables, constraints, and objectives. Here we report analysis and 
evidence that implicit mathematical structures are also involved in group decision-making on resource 
allocation distributions under conditions of uncertainty that disallow formal optimization. A group’s 
array of initial distribution preferences automatically sets up a geometric decision space of alternative 
resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the 
heterogeneity of the group’s initial preferences on a suitable distribution. A model of opinion formation 
based on weighted averaging predicts a distribution that is a feasible point in the group’s implicit initial 
decision space.

Resource allocation decisions occur in every institutional sector of society; for example, in government, edu-
cation, health care, commerce, philanthropic, and military organizations among others. The decisions may be 
routine slow-paced incremental updates of a resource distribution1,2, or nonroutine fast-paced responses to unex-
pected opportunities or problems. They may involve allocations of money, persons, or materials. Although allo-
cation decisions are sometimes directly determined by the votes of a society’s citizens3, the more usual basis are 
small collaborative groups that have been assembled within organizations to deal with particular types of tasks. 
In such groups, there are two classic modes of decision-making. If the decision-making group agrees on a set of 
quantifiable task variables, constraints, and objectives, then an optimum resource distribution may be obtained 
algorithmically4–8. The alternative mode is to seek a satisfactory consensus distribution from group discussion. 
Herbert Simon’s9,10 Nobel Prize work on optimum versus satisfactory decisions pointed to two fundamental fea-
tures of these modes. (i) Both typically involve a bounded rationality in which the decision space of all possible 
distributions is not considered, but instead are constrained to a subspace of possibilities. (ii) Neither one is objec-
tively superior to the other. Decisions are either obtained by “finding optimum solutions for a simplified world” 
(for example, a world in which distributive justice values and social friction costs are ignored) or by “finding satis-
factory solutions for a more realistic world”10. If the choice is to formulate an optimization model, then concerns 
related to realism prompt an effort to quantify a multi-objective definition of a problem that might be solved. If 
the choice is to base a decision on group discussion, then the effort is oriented toward reaching a consensus on 
an allocation distribution. Consensus is implicated in both modes. If a group is involved in defining an optimi-
zation model, then reaching consensus on its definition (variables, constraints, and objectives) is the precursor 
of its solution. Flawed decisions may be generated by an unrealistic optimization model or by an informal social 
process of group deliberation11–14. Successful decisions may be generated by both. There is mounting evidence 
that groups may collectively encode, store, and retrieve knowledge and, thus, usefully exploit the distributed 
memories and acquired skills relevant to group decision-making15–19. We advance this line of research on group 
decision-making with evidence that points to a natural form of bounded rationality that is related to formal opti-
mization procedures.

If reaching consensus is a desirable feature of resource allocation decisions, then the network science on opin-
ion dynamics may advance our understanding of how groups reach consensus or fail to do so, and why they have 
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settled on a particular problem definition or a resource distribution. The development of networked models 
of opinion dynamics is now an active interdisciplinary field of research20–23 attracting scientists from sociol-
ogy, mathematics, engineering, physics, and computer science. In general, these models describe a dynamical 
interpersonal influence system on n individuals that is based on three constructs: (i) An array of n initial opin-
ions, which can be scalar or multi-dimensional24–29. (ii) An influence network of n individuals that is a directed 
weighted graph, where the value wij > 0 of arc i → j stands for the influence weight allocated by individual i to 
individual j. (iii) An interpersonal influence mechanism unfolding on the network that specifies how individuals 
are updating their opinions. The seminal model of the field is the French-Harary-DeGroot system30–32

∑+ = ∀ = … ∀ = …=x k w x k i n k( 1) ( ), 1, , , 0, 1, 2, (1)i j
n

ij j1

With weights wij ∈ [0, 1] and ∑ == w 1j
n

ij1  ∀i, the model stipulates a mechanism of iterative weighted averaging 
of the opinions32. Each positive weight wij > 0 corresponds to the direct influence of individual j’s opinion on 
individual i, and to the directed ⟶i j

wij
 arc in an influence network of n individuals. Individuals in this network 

may have loops →
>

i i
w 0ii , corresponding to self-weights. When wij = 1, the opinion of j determines the opinion of i 

at the next period. When wij = 0, the opinion of j ≠ i has no direct influence on the opinion of i, but j may have 
indirect influence (for example, ⟶ ⟶i k j

w wik kj
) through other individuals’ opinions. The model is consistent with 

the formation of consensus on any of the initial opinions or a compromise that is not any of the initial positions. 
The system is consistent with failures to reach consensus, however, it predicts consensus in any network that has 
at least one globally reachable node (an individual influencing, directly or indirectly, all other individuals) and 
satisfies some aperiodicity conditions, e.g. wii > 0∀i. The Friedkin-Johnsen26,27,33 generalization of this model 
allows for individuals with ongoing attachments to their initial opinions,

∑+ = + − ∀ = … = …=x k a w x k a x i n k( 1) ( ) (1 ) (0) 1, , , 0, 1, 2, , (2)i ii j
n

ij j ii i1

where aii = 1 − wii ∀i. Besides the Friedkin-Johnsen model, other weighted averaging mechanisms have been 
proposed, allowing opinion-dependent weights wij and other nonlinear structures21,34,35. We work with the 
Friedkin-Johnsen model for several reasons. First, its generalization has been extensively analyzed with proofs 
of properties and its robustness to relaxations of assumptions36–38. Second, its predictions have been empiri-
cally evaluated on small groups with complete and incomplete (constrained) communication networks on 
one-dimensional judgment and truth statement issues18,27,33,39–41. Third, the model’s parameters wij can be meas-
ured in experiments without special procedures of identification (parameter fitting). In this paper, we evaluate 
the applicability of the Friedkin-Johnsen model from Eq. 2 to opinion dynamics on multidimensional resource 
allocation opinion arrays.

The resource allocation opinion we investigate is a multi-dimensional position xi = (xi1, xi2, …, xim), i = 1, 2, … 
n, that is, a vector of values describing i’s preference on the distribution of a supply of s units of a resource among 
m options

+ + … + = > ≥ ∀ = … = … .x x x s x i n j m0, 0 1, 2, , 1, , (3)i i im ij1 2

The n individuals’ initial distribution preferences xi(0), i = 1, 2, … n, may differ, and the group may or not 
reach a consensus on a distribution. This generic Eq. 3 class of resource allocation issues locates opinions on a 
hyperplane in m-dimensional Euclidean space. Figure 1 illustrates: (A) If m = 3, then Eq. 3 defines a triangular 
plane, and (B) the group’s extremal (min-max) initial opinion values on each of the 3 dimensions of the allocation 
cut a polygonal decision space on the plane. In higher dimensional decision making, the min-max constraints 
imposed by the initial positions and the Eq. 3 constraint, describe a bounded convex polytope. In other words, 
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Figure 1. Group generated informal polytope of possible 3-dimensional resource distributions. (A) Eq. 3 
with m = 3 and s = 100 defines a triangular plane, and (B) the group’s extremal min-max initial distribution 
preferences on each j = 1, 2, 3 cut a polyhedral decision space. The triangular plane (blue) and the set of cuts 
(red) on it are automatic implicit features of the group’s co-orientation to a resource distribution and its 
members’ extremal initial min-max preferences on each dimension.
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whenever a group is deliberating on how to distribute a supply s of a resource among m options, a polytopic deci-
sion space is automatically implicated and defined (implicitly) by the group’s extremal min-max preferences. In 
optimization models, such polytopes are explicitly constructed by a single individual or group to define a multi-
dimensional space of feasible distributions. In optimization, a distribution is sought that maximizes (minimizes) 
the value of an explicit objective function. In informal group decision making, opinion dynamics generate a 
satisfactory settled upon distribution. If the opinion dynamics is based on weighted averaging influence, then the 
settled upon distribution will be one of the positions in the group’s implicit polytope decision space. Whether such 
outcomes are a reliable feature of groups’ resource allocation decisions is the subject of this article. Findings from 
experiments on groups of human subjects are reported on a set of resource allocation issues to which Eq. 3 applies. 
The experiments begin with a simple optimization problem and progressively relax the formal constraints typi-
cally involved in an optimization model. Our findings evaluate the extent to which individuals’ post-discussion 
settled distribution preferences are constrained by their group’s informal (implicit) automatic polytopes, and the 
extent to which the Eq. 2 weighted averaging mechanism predicts their settled opinions.

Results
Findings are reported from five experiments on resource allocation issues. Experiment 1 is a problem on opti-
mum allocation of funds to three categories of work on a device with the objective of maximizing the device 
performance. This problem is a particular case of linear programming4–8 with given quantifiable objectives and 
given constraints, that is,

+ + … +
≤ ≤ ≤ ≤ … ≤ ≤ + + … =

c x c x c x
a l x u l x u l x u b x x x s

maximize , ,
subject to ( ) , , , ; ( ) , , (4)

m m

m m m m

1 1 2 2

1 1 1 2 2 2 1 2

where s > 0 and (cj, lj, uj), j = 1, …, m, are known values.
Experiment 2 relaxes the condition of a given objective function. With given constraints (a-b), the task is to 

attempt to reach consensus on a distribution that satisfies the constraints. Experiment 3 relaxes the condition of 
a given quantifiable objective and a given (a) set of constraints. The task is to reach a consensus on a set of con-
straints (a) and then to reach a consensus on a distribution that satisfies all the constraints (a-b). Experiments 
4–5 relax the condition of a given quantifiable objective and a set of given or demanded explicit constraints (a). 
The task is to reach consensus on a distribution that satisfies (b). From the data on experiments 2–5, we evaluate 
the extent to which individuals’ post-discussion settled distribution preferences are constrained by their group’s 
informal (implicit) automatic polytopes. Note that in experiment 2, where explicit constraints are given, the 
group’s implicit polytope (defined by the initial positions) may be a subspace of the explicitly given decision space 
(defined by the inequalities (a)). We also evaluate the extent to which the Eq. 2 weighting averaging mechanism 
predicts subjects’ settled distribution preferences and opinion changes. A group’s predicted final opinion(s) are 
obtained from the matrix equation corresponding to the system of the Eq. 2 scalar equations

+ = + − = …k k kX AWX I A X( 1) ( ) ( ) (0), 0, 1, , (5)

where the X(⋅) matrices are the n × m arrays of the group’s evolving preferences on a satisfactory distribution, 
W = (wij) is the matrix of influence weights, and A = diag (a11, …, ann) is an n × n diagonal matrix with entries 
aii = 1 − wii ∀i (the off-diagonal entries are zeros). The predicted final opinions X̂ = X(∞) are given by equilibrium 
equation of the dynamical system

= + − ⇔ =

= − − .−

ˆ ˆ ˆX AWX I A X X VX
V I AW I A

( ) (0) (0)
( ) ( ) (6)1

where V = (vij) is a row-stochastic matrix (that is, 0 ≤ vij ≤ 1 ∀ij, ∑ == v 1j
n

ij1  ∀i) whose vij entries give the total 
(direct and indirect) influence of j’s initial opinions on i’s equilibrium opinions. The predicted net opinion 
changes are given by

− = −ˆ ˆX X A WX X(0) [ (0)] (7)

Eq. 5 is in the class of linear discrete-time dynamical system models with time-invariant {A, W, X(0)} con-
structs. Recall that A is determined by the main diagonal wii values of W. Laboratory experiments on human 
subjects allow a measure of its multidimensional X(0) array of individual initial opinions, and a measure of the 
group’s influence matrix W. No parameter estimation (optimizing the fit of predictions) is involved. The dynami-
cal system determines the V that transforms the group’s multidimensional X(0) array of individual initial opinions 
to a multidimensional X̂ = X(∞) array of settled opinions. To evaluate the correspondence of observed and pre-
dicted final opinions and opinion changes, the criterion is the strength of the linear correspondence of the stacked 
observed and predicted final opinions or opinion changes. For X(0) with multiple columns x1, …, xm, the same 
predictions are generated either with X(k + 1) = AWX(k) + (I − A)X(0) or xj(k + 1) = AWxj(k) + (I − A)xj(0), 
j = 1, …, m. For this reason, we can work with the “column vectorizations” of opinion matrices X, stacking the 
columns of observed and predicted settled opinions or opinion changes on top of one another. Prediction errors 
must arise either from construct measure errors or misspecification of the influence mechanism. Note that 
the model’s influence network is defined by the assumed mechanism. The influence network of the group on a 
specific issue is a cognitive structure assembled by the weights involved in each individual’s weighted-averaging 
information-integration and update activity.
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See Materials and Methods for a description of the subject pools, experimental design, and measurement 
models. See Supplementary Materials on properties of the Eq. 5 weighted averaging model, and its generalization 
to multiple or multidimensional issues.

Experiment 1. An optimization problem was posed to 104 subjects nested 30 groups with 3–4 members:

 You are a contractor who has received $10 M dollars to build a device. Your group has been assembled to make 
a decision on how to allocate this money to three categories of work on the device (Category X, Category Y, 
and Category Z). You must decide on what fraction of the $10 M to allocate to each category, say x = 0.10 to 
Category X, y = 0.10 to Category Y, and z = 0.80 to Category Z. These fractions (x + y + z) must sum to 1, so 
that all of the $10 M is spent. But it matters what fractions you decide upon. Given $10 M that we have to work 
with, we know that the level of the device’s performance is determined as follows: 1.25x + 1.50 y + 1.75z. There 
are, however, constraints on the values of x, y, and z: x must be at least 0.45 and at most 0.65, y must be at least 
0.10 and at most 0.35, and z must be at least 0.20 and at most 0.35. Given these constraints, we need you to 
determine what fractions x, y, and, z will give us the highest device performance level.

The optimization problem is to maximize a device-performance function 1.25x1 + 1.50x2 + 1.75x3 under the 
condition of given constraints (0.45 ≤ x1 ≤ 0.65, 0.10 ≤ x2 ≤ 0.35, 0.20 ≤ x3 ≤ 0.35) and x1 + x2 + x3 = 1. This prob-
lem is a particular instance of a linear programming model of Eq. 4. A substantial fraction (34.6%) of the 104 indi-
viduals’ initial solutions were incorrect. Consensus was reached in 27 groups, all of which settled on the correct 
solution. Group discussion markedly reduced the hazard rate of incorrect solutions. More complex optimization 
problems usually are impossible to solve by hand.

Experiments 2–3. Experiments 2–3 are motivated by Stigler’s42 seminal article on optimal decisions in 
which he used a diet problem as an illustration and remarked on the difficulties involved in securing the givens 
required to solve the problem. In his effort to specify its required known values, he was confronted with what he 
described as “the almost infinite complexity of a refined and accurate assessment of nutritive value of a diet.” We 
posed two diets problems. (1) Subjects privately recorded their initial positions on the problem. (2) A group dis-
cussion was then opened with the instruction: “Discuss the problem with the other members of your group. The 
goal is to reach an agreement. However, the conversation that you will have may or may not lead you to alter your 
initial answer, and you may not come to an agreement as a group.”

Experiment 2. This experiment relaxes the assumption of a quantifiable objective:

 Your group is planning to sail from California to Hawaii. Storage space is limited, so careful planning is required. 
All food brought aboard the boat must be essential to maintain the health and morale of the group, and acceptable 
to everyone. We need foods that provide Carbohydrates, Protein, and Fat all which contribute to our daily caloric 
intake, which must be at least 2,000 calories. Our body needs carbohydrates, protein and fats to fuel its physical 
activity and metabolic needs. The Food and Nutrition Board of the Institute of Medicine (IOM) provides a range 
of your total caloric intake that is acceptable for each nutrient. The IOM Acceptable Macronutrient Distribution 
Range (AMDR) is: 45–65% Carbohydrates, 10–35% Protein, and 20–35% Fat. Any blend (which must sum to 
100%) that falls within the IOM’s AMDR will ensure adequate nutrition. What is your preferred blend?

This consensus formation problem was posed to 80 individuals nested in 23 groups with 3–4 members. An 
ideal distribution was sought under the condition of given min-max constraints on the permissible values of 
a 3-dimensional x1 + x2 + x3 = 100 resource allocation issue. The given min-max constraints (45 ≤ x1 ≤ 65, 
10 ≤ x2 ≤ 35, 20 ≤ x3 ≤ 35) set up a low volume polyhedron decision space. Figure 2(A) shows that these given 
constraints on individuals’ initial positions define a decision subspace (red) of the triangular (blue) space. All 
groups shared this same (red) low volume decision space. This common decision space is subject to reduc-
tion in different ways by different groups’ min-max initial ideal positions on each dimension of the issue. (B) 
The displayed (blue) points are the final positions of the 80 group members. A consensus on an ideal distri-
bution was reached in 17 of the 23 groups, and 72 (90%) of the 80 individuals’ final positions are located on 
their group’s informal decision spaces. The linear correspondence (correlation coefficient ρ) of observed and 
weighting-averaging predicted final positions is ρ = 0.978, p < 0.0001(t-test), n = 240. The linear correspondence 
observed and weighting-averaging predicted opinion changes is ρ = 0.829, p < 0.0001, n = 240.

Experiment 3. This experiment relaxes both the assumption of a quantifiable objective and given constraints. 
The problem specification involves a two-part social process in which individuals (i) enter into a group discussion 
with heterogeneous initial positions on their preferred min-max constraints and their preferred ideal positions, 
(ii) attempt to reach consensus on a set of constraints, and (iii) attempt to reach consensus on an ideal position 
that satisfies their agreed upon constraints.

 There are 4 food groups from which we can get our essential nutrients: Fruits (e.g., Apples, Apricots, 
Blueberries, Peaches, Pineapple, Nuts), Vegetables (e.g., Broccoli, Carrots, Corn, Potatoes, Spinach, Peas, 
Beans), Grains (e.g., Rice, Pasta, Biscuits, Oatmeal, Cereal, Tortillas, Grits), and Meats (e.g., Beef, Turkey, 
Chicken, Fish). There are no strict guidelines on the minimum and maximum percentages of a daily diet of 
these food groups. What is your recommendation on the minimum and maximum percent of our total food 
consumption that should be based on (1) Fruits or Vegetables, (2) Grains, and (3) Meats? What are your “ideal 
percentages” (which must sum to 100%) in your preferred “At Least to At Most” ranges?”
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This consensus formation problem was posed to 80 individuals nested in 23 groups with 3–4 members (the 
same individuals who were involved in Experiment 2). The geometric features of the two-part process are illus-
trated in Fig. 3 on one group of 3 individuals in our data. Figure 3(A) shows that the 3 individuals have different 
initial positions on constraints, which correspond to alternative idiosyncratic box decision spaces (blue, red, 
yellow). A consensus was reached on min-max constraints, and this agreement set up the green Fig. 3(B) con-
straints box. The Fig. 3(C) polyhedron is the implicit group-specific decision space within the group’s agreed 
upon constraints box that is cut by the group’s min-max initial ideal positions on each dimension of the resource 
distribution. The group failed to reach consensus on an ideal distribution. Two of the individuals agreed on an 
ideal position and the third individual dissented. Both final positions are in the group’s implicit polyhedral deci-
sion space. For each of the 23 groups, there is an associated group-specific geometry in which groups succeed or 
fail to reach consensus on constraints or ideal positions. In Part 1 of the experiment on constraints, 68 (85.0%) 
of the 80 individuals’ final positions on 6 constraint values are on the implicit decision spaces generated by the 
group’s min-max initial values on constraints. In Part 2 of the experiment on ideal positions, 74 (92.5%) of the 
80 individuals’ final positions are on the decision spaces generated by their group’s min-max initial values on 
an ideal positions. In these data, reaching a consensus on constraints is independent of reaching consensus on 
an ideal position (Fisher’s exact test p > 0.05). In Part 1 of the experiment on constraints, the correspondence 
observed and predicted final positions is ρ = 0.884, p < 0.0001, n = 480, and the correspondence of observed and 
predicted position changes is ρ = 0.774, p < 0.0001, n = 480. In Part 2 of the experiment on ideal positions, the 
correspondence of observed and predicted final positions is ρ = 0.879, p < 0.0001, n = 240, and the correspond-
ence of observed and predicted opinion changes is ρ = 0.847, p < 0.0001, n = 240.

Experiments 4–5. These experiments completely relax the condition of any given or demanded explicit con-
straints. Two consensus formation problems were posed to 118 individuals nested in 34 groups with 3–4 mem-
bers. Experiment 4 deals with a 3-dimensional distribution issue, and Experiment 5 deals with a 4-dimensional 
distribution issue

 Experiment 4. A large number of positions (permissions to recruit new faculty) are available to allocate to the 
departments of economics, political science, and sociology. A committee has been formed to provide a recom-
mendation on the allocations, and you are a member of this committee. These positions could be distributed 
in any way among 3 departments. What percentage of these positions should be allocated to each department? 
These 3 numbers must sum to 100%. All departments must be allocated some positions. An even distribution 
of the positions (1/3, 1/3, 1/3) × 100% is possible but unlikely to be adopted.
 Experiment 5. If you were a State Legislator what would be your opinion on the percentage of state tax rev-
enues that should be allocated to each the following categories: (i) Spending on Education, (ii) Spending 
on State Employee Wages, Health Care, and Pensions, (iii) Spending on State Physical Infrastructure 
Improvements, and (iv) All Other Categories (Welfare, Other Costs of Government, Etc.)? These percentages 
must sum to 100%.

In Experiment 4, a consensus was reached in 28 groups, and 105 (89.0%) of the 118 individuals’ final posi-
tions are located in the groups’ decision spaces. The correspondence of observed and predicted final opinions is 
ρ = 0.790, p < 0.0001, n = 354, and the correspondence of observed and predicted opinion changes is ρ = 0.806, 
p < 0.0001, n = 354. In Experiment 5, a consensus was reached in 31 groups, and 101 (85.6%) of the 118 indi-
viduals’ final positions are located in their groups’ decision spaces. The correspondence of observed and pre-
dicted final positions is ρ = 0.953, p < 0.0001, n = 472, and the correspondence of observed and predicted opinion 
changes is ρ = 0.814, p < 0.0001, n = 472.
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Figure 2. Relaxing the assumption of an explicit objective. An ideal distribution is sought under the condition 
of given min-max constraints on the permissible values of a 3-dimensional (x1, x2, x3) resource allocation 
issue. (A) With the given min-max constraints (45 ≤ x1 ≤ 65, 10 ≤ x2 ≤ 35, 20 ≤ x3 ≤ 35) a low volume (red) 
polyhedron decision space is set up that is common to all groups. This common decision space is subject to 
reduction in different ways by different groups’ min-max initial positions on each dimension of the issue. (B) 
The displayed (blue) points are the final positions of the 80 group members.
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Discussion
We summarize our conclusions, and elaborate their implications, as follows. There are natural mathematical 
structures in group decision-making on resource distributions. (i) Geometric decision spaces are automatically 
generated in groups with heterogeneous initial positions on how a finite number of units of a resource should 
be distributed among options. The automatic construction of these decision spaces is a realization of a bounded 
rationality that sets up a circumscribed subspace of feasible resource distributions within the space of all pos-
sible distributions. A group with low variance initial allocation preferences will generate a smaller subspace of 
feasible distributions than a group with heterogeneous initial preferences. The decision space associated with a 
group’s array of initial positions can only include all possible distributions if it includes a set of individuals with an 
exhaustive set of possible extremal initial allocation positions. We note that the framework of formal optimization 
also has the feature of bounded rationality when it includes agreed upon min-max constraints on the amounts of 
a resource that may be allocated to each option. (ii) The quantitative values of individuals’ initial opinions become 
visible to other group members only if they are displayed by the individuals who hold them. The geometry of the 
implicit decision space polytope is quite complicated, and the individuals can hardly conceive it without special 
software. Yet, we find that in the absence of given or demanded explicit constraints, as in experiments 4–5, indi-
viduals’ settled final distribution opinions are usually located in the implicit group-specific subspace generated 
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Figure 3. The geometric objects related to a two-part task of reaching consensus on constraints and an ideal 
position. (A) Three individuals in this group have different initial positions on constraints, which correspond to 
alternative idiosyncratic box decision spaces (blue, red, yellow), and they have different ideal initial positions in 
their idiosyncratic decision spaces. (B) A consensus was reached on min-max constraints, and this agreement 
sets up the green constraints box. (C) The group-specific decision space within the group’s agreed upon 
constraints box that is a polyhedron cut by the group’s min-max initial ideal positions on each dimension of the 
resource distribution. The group failed to reach consensus on an ideal position. Two individuals agreed on a 
final position, different from the third individual’s final position.
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by their members’ initial min-max opinions on the amounts of a resource that should be allocated to each option. 
Remarkably, in these data, this tendency is not substantially lower than that observed in experiments 2–3, where 
there were given or demanded constraints. (iii) Our findings on the predictions of the Friedkin-Johnsen model 
suggest that groups’ final distribution opinions are usually constrained to their group-specific decision spaces 
because individuals update their opinions on the basis of a weighted averaging of their own and others’ dis-
played opinions. If all initial opinions are displayed, then weighted averaging, whether in the form specified by 
Friedkin-Johnsen or other forms, will not generate positions that are outside the convex hull of a group’s initial 
opinion array. Weighted averaging is consistent with opinion changes to extremal positions that are on vertices 
of the convex hull of initial opinions. The development of predictive generalized models, which allow opinion 
changes to positions outside the convex hull of initial opinions, is a topic of interest in the network science field on 
opinion dynamics. It is an open question whether such out-of-bounds events can be predicted.

The broad implication of the above is that, in these data, decision-making groups do not appear to be systems 
of bewildering confusion or disorder. A network science on small group decision-making appears surprisingly 
feasible. There are two main limitations of our results and interpretations. (i) Our experiments have not dealt with 
decision-making groups in field settings, where influence systems are subject to exogenous disturbances. (ii) Our 
measure of the influence network of a group is obtained from individuals’ post discussion reports of the extent 
to which their opinions were influenced by the opinions of other group members and the relative weights of each 
group member on their opinions. Addressing this limitation requires the development of technology that can 
process conversations and extract the relative weights that are the components of a weighted averaging update 
mechanism. Addressing these limitations toward a robust mathematical model of groups’ resource distribution 
decisions would allow model-based analysis of the implications of properties of groups’ initial opinion arrays, the 
distributed knowledge among group members, and the topologies of groups’ influence networks. A key motiva-
tion for such research is that models of optimal decisions begin with the definition of set of quantifiable givens 
(variables, constraints, and objectives) without specifying how these givens are obtained. Often, depending on 
the complexity of a problem, a collaborative group is involved in determining their definitions as prelude to an 
algorithmically obtained solution. Whether machine learning algorithmic definitions of optimization problems 
should replace human group definitions of optimization problems is an open question, particularly in the case 
of complex multi-objective problems that are attentive to the sort of qualitative concerns (distributive justice 
values and social costs) mentioned in our introduction. Elaborating the antecedents of the givens of optimization 
problems, and advancing knowledge on when formal optimization should or should not be relied upon, thus  
appear as central concerns.

Materials and Methods
The University of California, Santa Barbara Institutional Review Board approved the study, and all sub-
jects provided written informed consent. The subjects were recruited from the undergraduate subject pool of 
the Department of Psychological & Brain Sciences. All research was performed in accordance with relevant 
guidelines/regulations.

Design and Measures. The data on the five experiments were obtained from three disjoint samples of sub-
jects. Each group of 3–4 subjects were seated at a large table. No experimental manipulations or deceptions were 
involved. A problem was posed to the group. (1) Subjects privately recorded their initial positions on the problem. 
(2) A group discussion was then opened with the instruction: “Discuss the problem with the other members of 
your group. The goal is to reach an agreement. However, the conversation that you will have may or may not lead 
you to alter your initial answer, and you may not come to an agreement as a group.” (3) Upon concluding the dis-
cussion, subjects privately recorded their final position on the problem and their distribution of weights to other 
group members. On the latter, they were instructed as follows: “Imagine that you have been given a total of 100 
chips. Distribute these chips to indicate the relative importance of each member to determining your own final 
answer on this problem. The number of chips that you allocate to a particular member should indicate the extent 
to which that member provided information that you personally found useful and caused you to modify your 
approach to the problem. The number of chips that you allocate to yourself should indicate the extent to which 
your final answer was not affected by the conversation. If the conversation had no influence on you, then put 100 
beside your own sign (name). If the conversation caused you to abandon your approach to the problem, then put 
0 beside your own sign, and allocate all the chips to one or more of the other members. If you did not entirely 
abandon your own approach to the problem, then put a number greater than 0 beside your sign and allocate the 
remainder to one or more others.” Subjective self-reported weights are as close as we currently can get to the con-
struct definition of the cognitive algebra involved in individuals’ opinion revisions. (4) The experiment was then 
concluded or another issue was posed to the same group. A group had up to 30 minutes to respond to each issue. 
Thus, the design provides (i) a measure of individuals’ independent initial opinions, that is the n × m matrix X(0), 
(ii) a measure of their settled final opinions, that is the n × m matrix X(∞), and (ii) a measure of the weights in 
the convex combination mechanism by which each individual is integrating information on other individuals’ 
displayed opinions, that is, the matrix W.

Statistical Analysis. The evaluative issue is whether individuals’ observed changes of opinion and settled 
opinions are consistent with the assumption of a weighted averaging mechanism of opinion updating. Observed 
opinion changes have signs and magnitudes. Evidence of a weak linear correspondence of predicted and observed 
opinion changes would erode the hypothesis of any natural meshing of a group decision space and a weighted 
averaging mechanism of opinion updating that operates to constrain revised opinions to positions located in the 
decision space. Such a mechanism would explain why final opinions are usually located in the convex hulls of 
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groups’ initial opinion arrays. Given measures of a group’s X(0) and W, there are no model-intrinsic unknown 
parameters that require statistical estimation. Hence, no parameter estimation (optimizing the fit of predictions) 
is involved. Predicted opinion changes and settled opinions are obtained deterministically from the Eq. 5 dynam-
ical system. Prediction errors have two sources (construct measure error or misspecification of the influence 
mechanism) in groups that are not subject to exogenous disturbances during the influence process. The statistical 
analysis is oriented to the question of whether the observed final opinions and opinion changes are consistent 
with the assumption of a convex combination mechanism that constrains revised opinion to the convex hull of a 
group’s initial opinion array. We use the direction and magnitude of the correlation coefficient ρ, and its statistical 
significance, to evaluate this question.

Data Availability
All data used in this analysis are available from the corresponding author on reasonable request.
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