

Delft University of Technology

Supervised deep learning in computational finance

Liu, S.

DOI
10.4233/uuid:5966c116-1108-4ecf-8f86-3d8348a3504a
Publication date
2021
Document Version
Final published version
Citation (APA)
Liu, S. (2021). Supervised deep learning in computational finance. [Dissertation (TU Delft), Delft University
of Technology]. https://doi.org/10.4233/uuid:5966c116-1108-4ecf-8f86-3d8348a3504a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:5966c116-1108-4ecf-8f86-3d8348a3504a
https://doi.org/10.4233/uuid:5966c116-1108-4ecf-8f86-3d8348a3504a

SUPERVISED DEEP LEARNING IN
COMPUTATIONAL FINANCE

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T. H. J. J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Monday 1 February 2021 at 10:00 o’clock

by

Shuaiqiang LIU

Master of Science in Applied Mathematics,
Northwestern Polytechnical University, Xi’an, China

born in Handan, Hebei Province, China

This dissertation has been approved by the promotor:
Prof. dr. ir. C. W. Oosterlee

Composition of the doctoral committee:

Rector Magnificus chairman
Prof. dr. ir. C. W. Oosterlee Delft University of Technology, promotor
Prof. dr. P. Cirillo University of Nicosia, Cyprus, co-promotor

Independent members:
Prof. dr. I. Kyriakou City, University of London (UCL), United Kingdom
Prof. dr. J. Liang Tongji University, Shanghai, China
Prof. dr. ir. A. W. Heemink Delft University of Technology, the Netherlands
Prof. dr. ir. C. Vuik Delft University of Technology, the Netherlands

Other members:
Prof. dr. ir. S. M. Bohté CWI, Amsterdam, the Netherlands

Supervised Deep Learning in Computational Finance.

Dissertation at Delft University of Technology.

This research was supported by the China Scholarship Council (CSC).

Copyright © 2020 by S. Liu
All rights reserved.

ISBN 978-94-6384-191-7
Printed by Ridderprint in the Netherlands.
An electronic version of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

SUMMARY

Mathematical modeling and numerical methods play a key role in the field of
quantitative finance, for example, for financial derivative pricing and for risk
management purposes. Asset models of increasing complexity, like stochastic
volatility models (local stochastic volatility, rough volatility based on fractional
Brownian motion) require advanced, efficient numerical techniques to bring them
successfully into practice. When computations take too long, an involved as-
set model is not a feasible option as practical considerations demand a balance
between the model’s accuracy and the time it takes to compute prices and risk
management measures. In the big data era, typical basic computational tasks
in the financial industry are often involved and computationally intensive due
to the large volumes of financial data that are generated nowadays. Besides the
traditional numerical methods in financial derivatives pricing in quantitative fi-
nance (like partial differential equation (PDE) discretization and solution meth-
ods, Fourier methods, Monte Carlo simulation), recently deep machine learn-
ing techniques have emerged as powerful numerical approximation techniques
within scientific computing. Following the so-called Universal Approximation
Theory, we will employ deep neural networks for financial computations, ei-
ther to speed up the solution processes or to solve highly complicated, high-
dimensional, problems in finance. Particularly, we will employ supervised ma-
chine learning techniques, based on intensive learning of so-called labeled in-
formation (input-output relations, where sets of parameters form the input to a
neural network, and the output to be learned is a solution to a financial problem).

This thesis thus deals with supervised machine learning for different tasks
in quantitative finance, and is composed of the following chapters. In Chapter 2,
we provide an efficient approximation technique by means of an Artificial Neural
Network (ANN), especially for the valuation of options under involved or time-
consuming asset price models. This chapter includes a description of ANNs,
from the viewpoint of its function approximation capabilities, as well as the gen-
eral procedure of developing a data-driven numerical solver. The ANN approach
is evaluated by using the analytical European option price solution of the Black-
Scholes equation as a benchmark, before addressing the computation of implied
volatilities and European option pricing under the Heston stochastic volatility
asset price model, for which a closed-form solution does not exist. Instead of
directly approximating the pricing function itself, we use a gradient-squashing

iii

iv SUMMARY

technique to overcome the issue of reduced accuracy by the ANN when approx-
imating a function with a steep-gradient (i.e. when approximating the inverse
function for the implied volatility). By decoupling in an offline (i.e. training) and
online (i.e. prediction) stage, the ANN computing time for solving parametric
asset models reduces by orders of magnitude in the online prediction stage.

Subsequently, we deal with financial model calibration, which typically gives
rise to a non-convex optimization problem, requiring more intensive computa-
tions. In Chapter 3, we develop a generic, efficient and robust calibration frame-
work, which we call Calibration Neural Network (CaNN), to estimate model pa-
rameters, particularly for high-dimensional models. As both training the ANNs
and calibrating the asset models boil down to optimization problems, we inte-
grate three separate ANN phases (training, prediction and calibration) to form
the two-staged CaNN as a machine learning platform. In the first stage, an ANN
is trained, based on a predefined lablled data set to approximate the valuation
function of a given option pricing model. In the second stage, the trained ANN is
utilized in a backward manner to estimate the model parameters that need to be
calibrated based on observed market option prices. Traditionally, a speed bot-
tleneck occurs when a global optimization technique during calibration is em-
ployed to avoid getting stuck in local minima. The CaNN which is based on a
group-based global optimization technique (Differential Evolution) overcomes
the bottleneck, because the evaluation of the ANN function to price an option is
extremely fast. In this thesis, we apply the CaNN to calibrate the Heston stochas-
tic volatility model and the Bates stochastic volatility with jumps model, in which
there are five and eight parameters to calibrate, respectively. The numerical re-
sults show that even without pre-defined educated initial guesses for these pa-
rameters, the CaNN can swiftly find the optimal values of the parameters.

In Chapter 4, based on the methods and results from Chapters 2 and 3, an
ANN-based method is developed to extract implied information from American
options. As is well-known, early-exercise features of Bermudan and American
options cause numerical issues when inverting the pricing model. For example,
the inverse function for the (Black-Scholes) implied volatility does not exist be-
cause the first derivative of the option price with respect to the volatility, which is
named Vega, is equal to zero in the early-exercise region. In this chapter, we also
consider some more extreme option pricing situations, that is, we will encounter
multiple early-exercise regions which may appear due to negative interest rates.
To determine the American option implied volatility, the inverse option pricing
function is approximated by means of an artificial neural network on the effec-
tive computational domain, which is determined in the off-line stage, thanks to
the decoupling of the ANN training and prediction phases. When the implied
dividend yield also needs to be determined, the CaNN from the previous chapter

SUMMARY v

is again employed to estimate simultaneously two different pieces of implied in-
formation from the American options (i.e., the implied volatility and the implied
dividend yield). Here we generalize the CaNN by using the forward pass to ap-
proximate a pair of American option prices (the American call and put prices).
The numerical results suggest that the proposed approach gives us an efficient
numerical technique to extract implied information from American options.

Finally, from the PDE-based problems (the option pricing PDEs) in the ear-
lier chapters, we move to another class of equations, the Stochastic Differential
Equations (SDEs). Chapter 5 is dedicated to an accurate numerical scheme to
perform a large time step Monte Carlo simulation, the Seven-League SDE dis-
cretization scheme. This SDE discretization is based on a polynomial chaos ex-
pansion method, on the basis of accurately determined stochastic collocation
(SC) points. The basic idea is to train an ANN to learn these SC points, which
is followed by constructing the corresponding conditional transition probabil-
ity function and generating the required Monte Carlo paths on the basis of large
time steps. An error analysis confirms that we can achieve accurate SDE solu-
tions in the sense of the strong convergence properties. With a method variant
called the compression-decompression collocation and interpolation technique,
we can further reduce the number of neural network functions to be called, so
that computational speed of the overall method is enhanced. Numerical exper-
iments show that the novel scheme achieves a high-quality strong convergence
error and outperforms some classical numerical methods. We present some ap-
plications in financial option valuation. This big time step SDE discretization
scheme can be generalized to solving SDEs in other application areas as well.

Summarizing, we develop supervised deep learning techniques as numerical
approximation techniques to address some numerical issues in computational
finance. Efficient, robust and accurate numerical results are presented.

SAMENVATTING

Wiskundige modellen en numerieke methoden spelen een sleutelrol op het ge-
bied van kwantitatieve financiḧele wiskunde, bijvoorbeeld voor de prijsstelling
van financiële derivaten en voor risicomanagementdoeleinden. Activamodel-
len met toenemende complexiteit, zoals stochastische volatiliteit aandeelmo-
dellen (lokale stochastische volatiliteit, ruwe volatiliteit gebaseerd op fractionele
Brownse beweging), vereisen geavanceerde, efficiënte numerieke technieken om
ze met succes in de praktijk te brengen. Wanneer berekeningen te lang duren,
is een geavanceerd aandelenmodel geen haalbare optie, aangezien praktische
overwegingen een evenwicht vereisen tussen de nauwkeurigheid van het mo-
del en de tijd die het kost om prijzen en risicobeheersmaatregelen te bereke-
nen. In het big-data tijdperk worden typische basistaken in de financïle sector
vaak rekenintensief vanwege de grote hoeveelheden financiële gegevens die te-
genwoordig worden gegenereerd. Naast de traditionele numerieke methoden
voor de prijsstelling van financïle derivaten in kwantitatieve financiële wiskunde
(zoals partiële differentiaalvergelijking (PDE) discretisatie en oplossingsmetho-
den, Fourier-methoden, Monte Carlo-simulatie), zijn de laatste tijd technieken
voor diepgaand machinaal leren naar voren gekomen als krachtige numerieke
benaderingstechnieken. Gebaseerd op de zogenaamde Universele Benaderings-
theorie kunnen we diepe neurale netwerken gebruiken voor financiële bereke-
ningen, hetzij om oplossingsprocessen te versnellen ofwel om zeer gecompli-
ceerde, hoogdimensionale problemen in de financiële wereld op te lossen. We
zullen in het bijzonder gebruik maken van supervisie-gebaseerde machine leer-
technieken, op basis van intensief leren van zogenaamde gelabelde informatie
(input-output relaties, waarbij parametersets de input vormen naar een neuraal
netwerk, en de output die wordt geleerd is een oplossing voor een financieel pro-
bleem).

Dit proefschrift behandelt dus supervised machine learning voor verschil-
lende taken in kwantitatieve financiële wiskunde, en is samengesteld uit de vol-
gende hoofdstukken. In Hoofdstuk 2 bieden we een efficiënte benaderingstech-
niek aan met behulp van een Artificial Neural Network (ANN), vooral voor de
waardering van opties onder betrokken of tijdrovende aandeelprijsmodellen. Dit
hoofdstuk bevat een beschrijving van ANNs, vanuit het oogpunt van hun func-
tiebenaderingsmogelijkheden, evenals de algemene procedure voor het ontwik-
kelen van een datagestuurde numerieke oplosmethode. De ANN-benadering

vii

viii SAMENVATTING

wordt geëvalueerd door de analytische Europese optieprijsoplossing van de Black-
Scholes-vergelijking als benchmark te gebruiken, en ook de berekeningen van de
impliciete volatiliteit en de Europese optieprijzen onder het Heston stochasti-
sche volatiliteitsmodel, waarvoor een gesloten formulier oplossing niet bestaat,
worden uitgevoerd.

In plaats van de prijsfunctie zelf rechtstreeks te benaderen, gebruiken we een
gradiënt-reductie-techniek om het probleem van verminderde nauwkeurigheid
door de ANN bij het benaderen van een functie met een steile gradiënt (d.w.z.
bij het benaderen van de inverse functie voor de impliciete volatiliteit) te onder-
vangen. Door ontkoppeling in een ANN offline (d.w.z. training) en online (d.w.z.
voorspelling) fase, vermindert de ANN-rekentijd voor het oplossen van parame-
trische aandeelprijsmodellen met ordes van grootte in de online fase. Vervolgens
behandelen we de kalibratie van financiële modellen, wat doorgaans aanleiding
geeft tot een niet-convex optimalisatieprobleem, dat intensievere berekeningen
vereist. In Hoofdstuk 3 ontwikkelen we een generiek, efficiënt en robuust kali-
bratiekader, dat we Calibration Neural Network (CaNN) noemen, om modelpara-
meters te schatten, met name voor hoog-dimensionale modellen. Omdat zowel
het trainen van de ANNs als ook het kalibreren van de aandeelprijsmodellen be-
schreven wordt door optimalisatieproblemen, integreren we drie afzonderlijke
ANN-fasen (training, voorspelling en kalibratie) om het twee-traps CaNN te vor-
men als een machine-leerplatform. In de eerste fase wordt de ANN getraind op
basis van een vooraf gedefiniëerde dataset om de waarderingsfunctie van een be-
paald optieprijsmodel te benaderen. In de tweede fase wordt de getrainde ANN
achterwaarts gebruikt om de modelparameters te schatten die moeten worden
gekalibreerd op basis van waargenomen marktoptieprijzen. Traditioneel treedt
een rekentijdprobleem op wanneer een globale optimalisatietechniek tijdens de
kalibratie wordt gebruikt om te voorkomen dat het algoritme vastloopt in lokale
minima. De CaNN, die is gebaseerd op een op groep gebaseerde globale op-
timalisatietechniek (Differential Evolution), ondervangt die bottleneck, omdat
de evaluatie van de ANN-functie om een optie te prijzen extreem snel is. In dit
proefschrift passen we de CaNN toe om het Heston stochastische volatiliteits-
model en het Bates stochastische volatiliteit met sprongen model te kalibreren,
waarin er respectievelijk vijf en acht parameters te kalibreren zijn. De nume-
rieke resultaten laten zien dat zelfs zonder vooraf gedefiniëerde, slimme initiële
inschattingen voor deze parameters, de CaNN snel de optimale waarden van de
parameters kan vinden.

In Hoofdstuk 4 wordt op basis van de methoden en resultaten uit de Hoofd-
stukken 2 en 3 een op ANN gebaseerde methode ontwikkeld om impliciete in-
formatie uit Amerikaanse opties te extraheren. Zoals bekend, veroorzaken de
vroege uitoefening van Bermudaanse en Amerikaanse opties numerieke proble-

SAMENVATTING ix

men bij het inverteren van het optieprijsmodel. De inverse functie voor de (Black-
Scholes) geïmpliceerde volatiliteit bestaat bijvoorbeeld niet wanneer de eerste
afgeleide van de optieprijs naar de volatiliteit, die Vega wordt genoemd, gelijk is
aan nul, in het gebied met vroege optieuitoefening. In dit hoofdstuk bekijken
we ook enkele extremere prijssituaties voor opties, dat wil zeggen dat we meer-
dere regio’s met vroege uitoefening tegenkomen die op kunnen treden als gevolg
van negatieve rentetarieven. Om de impliciete volatiliteit van de Amerikaanse
optie te bepalen, wordt de functie van de inverse prijsbepaling van opties bena-
derd door middel van een kunstmatig neuraal netwerk op het effectieve reken-
domein, dat wordt bepaald in de off-line fase, dankzij de ontkoppeling van de
ANN trainings- en voorspellingsfasen. Wanneer het impliciete dividendrende-
ment moet worden bepaald, wordt de CaNN uit het vorige hoofdstuk opnieuw
gebruikt om gelijktijdig twee verschillende soorten impliciete informatie uit de
Amerikaanse opties te bepalen (d.w.z. de impliciete volatiliteit en het impli-
ciete dividendrendement). Hier generaliseren we de CaNN door de eerste fase
te gebruiken om twee Amerikaanse optieprijzen (de Amerikaanse call- en put-
prijzen) tegelijkertijd te benaderen. De numerieke resultaten suggereren dat de
voorgestelde benadering ons een efficiënte numerieke techniek geeft om impli-
ciete informatie uit Amerikaanse opties te extraheren.

Ten slotte gaan we van de op PDV gebaseerde problemen (voornamelijk PDVs
voor optieprijzen) in de eerdere hoofdstukken naar een andere klasse van verge-
lijkingen, de stochastische differentiaalvergelijkingen (SDVs). Hoofdstuk 5 is ge-
wijd aan een nauwkeurig numeriek schema voor het uitvoeren van een grote tijd-
stap Monte Carlo simulatie in de tijd, het zeven-mijls SDV-discretisatieschema.
Deze SDV-discretisatie is gebaseerd op een polynoom-chaos-expansiemethode,
op basis van nauwkeurig bepaalde stochastische collocatie (SC) punten. Het ba-
sisidee is om een neuraal netwerk te trainen om deze SC-punten te leren, waarna
de bijbehorende conditionele traditionele kansdichtheidsfunctie wordt gecon-
strueerd en de vereiste Monte Carlo-paden worden gegenereerd op basis van
grote tijdsstappen. Een foutenanalyse bevestigt dat we tot nauwkeurige SDV-
oplossingen kunnen komen in de zin van de sterke convergentie-eigenschappen.
Met een variant die de compressie-decompressie-collocatie- en interpolatietech-
niek wordt genoemd, kunnen we het aantal aan te roepen neurale netwerkfunc-
ties verder verminderen, zodat de rekensnelheid van de algehele methode wordt
verhoogd. Numerieke experimenten tonen aan dat het nieuwe schema een con-
vergentiefout van hoge kwaliteit behaalt en beter presteert dan sommige klas-
sieke numerieke methoden. We presenteren enkele toepassingen in de waarde-
ring van financiële opties. Dit SVE-discretisatieschema met grote stappen kan
echter worden gegeneraliseerd naar het oplossen van SDV’s in andere toepas-
singsgebieden.

x SAMENVATTING

Samenvattend ontwikkelen we supervised deep learning-technieken als nu-
merieke benaderingstechnieken om numerieke problemen in computationele
financiḧele wiskunde aan te pakken. Er worden efficiënte, robuuste en nauw-
keurige numerieke resultaten gepresenteerd.

CONTENTS

Summary iii

Samenvatting vii

1 Introduction 1
1.1 Machine learning in finance. 1

1.1.1 Financial options . 2
1.1.2 Implied information . 2

1.2 Supervised learning . 3
1.3 Outline of this dissertation . 4

2 Pricing options and computing implied volatilities 7
2.1 Introduction . 7
2.2 Option pricing and asset models . 9

2.2.1 The Black-Scholes PDE. 10
2.2.2 Implied volatility . 10
2.2.3 The Heston model . 11
2.2.4 Numerical methods for implied volatility. 13
2.2.5 COS method for pricing options. 14

2.3 Methodology . 16
2.3.1 Artificial Neural Networks . 16
2.3.2 Hyper-Parameters optimization 20
2.3.3 Learning rates. 22

2.4 Numerical results. 23
2.4.1 Details of the data set. 25
2.4.2 Black-Scholes model . 26
2.4.3 Implied volatility . 27
2.4.4 Heston model for option Prices 30

2.5 Conclusion . 33

3 Calibration Neural Networks 37
3.1 Introduction . 37
3.2 Financial model calibration . 40

3.2.1 Asset pricing models . 40
3.2.2 The calibration procedure . 41

xi

xii CONTENTS

3.2.3 Choices within calibration 42
3.3 An ANN-based approach to calibration 44

3.3.1 Artificial Neural Networks . 44
3.3.2 The forward pass: learning the solution with ANNs 44
3.3.3 The backward pass: calibration using ANNs 46
3.3.4 Numerical optimization . 47

3.4 Numerical results. 51
3.4.1 Parameter sensitivities for Heston model 51
3.4.2 The forward pass . 55
3.4.3 The backward pass . 58
3.4.4 The Bates model . 63

3.5 Conclusion . 65

4 Extracting implied information from American options 69
4.1 Introduction . 70
4.2 American options . 72

4.2.1 Problem formulation . 72
4.2.2 The put-call symmetry . 74
4.2.3 Implied volatility and dividend yield 75

4.3 Pricing American options by the COS method 81
4.3.1 Pricing Bermudan options . 82
4.3.2 Pricing American options . 84

4.4 Methodology . 85
4.4.1 Artificial Neural Networks . 85
4.4.2 ANN for implied volatility . 85
4.4.3 Determining implied dividend and implied volatility 88
4.4.4 The ANN configuration . 90

4.5 Numerical results. 90
4.5.1 Computing implied volatility 91
4.5.2 Computing implied information 93

4.6 Conclusion . 96

5 The Seven-League scheme 99
5.1 Introduction . 99
5.2 Stochastic differential equations and stochastic collocation 101

5.2.1 SDE basics. 102
5.2.2 Stochastic collocation method 104

5.3 Methodology . 105
5.3.1 Data-driven numerical schemes 106
5.3.2 The Seven-League scheme. 107
5.3.3 The Artificial Neural Network 109

CONTENTS xiii

5.4 An efficient large time step scheme: Compression-Decompression
Variant . 111
5.4.1 CDC variant . 112
5.4.2 Interpolation techniques. 115
5.4.3 Path-wise sensitivity . 116

5.5 Numerical experiments . 117
5.5.1 ANN training details . 118
5.5.2 Error analysis, the Lagrangian case 119
5.5.3 Path-wise error convergence. 124
5.5.4 Applications in finance. 126

5.6 Conclusion . 132

6 Conclusions and Outlook 135
6.1 Conclusions. 135
6.2 Outlook . 136

References 139
References . 139

Curriculum Vitæ 153

List of Publications 155

List of Presentations 157

Acknowledgements 159

1
INTRODUCTION

1.1. MACHINE LEARNING IN FINANCE
With numerous successful applications in computer vision and natural language
processing, Artificial Intelligence (AI) has been boosting and reshaping also fi-
nancial engineering and services [1], with applications including high frequency
trading, fraud detection, robo-advisory [2] and so on. As an example, during the
COVID-19 pandemic situation, the social distancing measure prohibited meet-
ing a financial advisor in person as much as possible. Robo-advisors (not nec-
essarily mechanical robots) for portfolio management, which are composed of
efficient algorithms to calibrate and to compose a financial portfolio in order to
meet the desired reward goals and risk tolerances (e.g., given the retirement age,
income, etc) of a customer, are employed, reducing the number of human advi-
sors.

A corner stone of modern AI [3] is found in the Artificial Neural Networks
(ANNs), that were put forward already in the early 1940s [4] as a computational
model to mimic the human neural network system. There are many reasons why
these networks have become so successful this decade, for instance, the rapid
increase of computational power, due to the increasing performance of Graphics
Processing Units (GPUs) and Tensor Processing Units (TPU), the simple opera-
tions within a neuron, the rapid development of variants due to computer sci-
ence expertise (e.g., Recurrent NN or Convolutional NN to handle complex data
structures), the parallel processing of hidden parameters, or their strong expres-
sivity (e.g. by assembling neurons or layers) and ability to approximate highly
nonlinear functions.

Computational finance is an important branch of finance, based on numer-
ical mathematics methods and computer science paradigms to address the val-

1

1

2 1. INTRODUCTION

uation of financial derivatives, risk management computations, and so on. A
tremendous number of financial quantities (e.g., financial derivative prices, their
sensitivities, etc) have to be calculated in the financial industry every day, thus
a central request in computational finance is to develop fast, robust and effi-
cient numerical algorithms. Besides the classical numerical techniques (e.g., fi-
nite difference discretizations of partial differential equations, Fourier methods
to approximate occurring conditional expectations, Monte Carlo simulation), re-
cently the ANNs are also emerging as powerful numerical tools within scientific
computing.

For this reason, deep learning is introduced as a new paradigm, to either
speed up solution processes (high speed) or solve highly complicated (e.g., high-
dimension) problems. This dissertation is concerned with supervised deep learn-
ing in computational finance, in particular with so-called deep neural networks
as powerful numerical tools within scientific computing. On the one hand, ANNs
can sometimes augment the classical numerical methods, speeding up certain
subtasks in a large computation, on the other hand ANNs sometimes replace
complete numerical computations. Potential applications do not only occur in
financial engineering, but also in financial services. For example, the calibration
of financial asset models would require extremely fast model parameter fitting
techniques, considering the real-time interaction and the rapidly changing mar-
ket. In this PhD dissertation, we propose a highly efficient, and robust, neural
network-based calibration framework (Calibration Neural Network) in Chapter
3.

1.1.1. FINANCIAL OPTIONS

Financial options are frequently traded in the market. As a financial derivative,
the option’s holder is given a right, but not an obligation, to trade (i.e., buy or
sell) an underlying asset (e.g., equities, bonds, foreign currencies, etc) at a pre-
determined price over a specified time period, for instance, call or put options.
There are various types of options, like European-style, American-style, Asian-
style and so on. The well-known Black-Scholes equation gives a fair option value,
assuming the underlying asset price follows Geometrical Brownian Motion. The
advanced option pricing models include the Heston model, the Bates model and
even the rough Heston model (with volatility dynamics being fractal Brownian
motion), so on. However, those models require more intensive computation.

1.1.2. IMPLIED INFORMATION

The variance, i.e. volatility, of the asset price movement is an essential factor
of determining an option’s price. Different from historical volatility (computed

1.2. SUPERVISED LEARNING

1

3

spot/strike price

0.85 0.9 0.95 1 1.05 1.1 1.15

im
p
lie

d
 v

o
la

ti
lit

y

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

time=0.5

time=0.8

time=1.0

time=1.5

time=2.0

Figure 1.1: Implied volatility patterns.

from past known prices), implied volatility (computed from the observed op-
tion prices) reflects the future uncertainty (a forward-looking measure) of the
underlying asset price. However, the implied volatility is not constant, either over
time to maturity or strike prices. For example, the patterns, like implied volatility
smile or skew in Figure 1.1, often present in the financial market, resulting from
the heavy tailed distributions of the underlying asset price. In practice, people
may prefer implied volatility to the ’real’ option price. Thus computing implied
volatility is a fundamental task in the financial engineering. Basically, calculat-
ing implied volatility can be viewed as a simplified calibration problem, that is,
from an observed option price to the corresponding volatility using the Black-
Scholes equation. In addition, implied dividend yield may also be an informative
quantity for practitioners. When people are inverting option pricing models (in-
cluding extracting multiple implied information, estimating model parameters)
based on the market quotes, a fast calibration procedure is required to quickly
capture the market dynamic.

In this book, we will take advantage of deep neural networks in a supervised-
learning fashion to accelerate the computation of financial models and take a
step forward to bring into production those models which were too slow to im-
plement in practice.

1.2. SUPERVISED LEARNING
In general, present-day machine learning techniques fall essentially into one of
three categories, i.e., supervised learning, unsupervised learning or reinforce-

1

4 1. INTRODUCTION

ment learning. The different types of machine learning paradigms are used for
different purposes. For example, supervised learning is typically employed for
classification or regression tasks, unsupervised learning is used for clustering or
for generative models, while reinforcement learning is able to perform a series of
actions to maximize a certain target variable. In reality, a combination of these
methods may even be needed to solve practical problems.

Supervised learning aims to find the mapping function given a ground truth
of pairs of input and output quantities. Regarding ANNs, the universal approx-
imation theorem (UAT) gives evidence that any continuous function can be ap-
proximated to any desired precision with the proper choice of ANN components,
numbers of neurons and number of layers within ANNs.

The UAT can be presented in two ways, by means of an arbitrary width (an
unlimited number of artificial neurons), in a shallow structure [5], or by an arbi-
trary depth (meaning an unlimited number of hidden layers, each consisting of a
limited number of neurons) [6]. The above two UATs guarantee the construction
of ANNs to accurately approximate a wide range of linear and nonlinear func-
tions, however, they do not provide details about the way to achieve such a robust
ANN construction. The training of ANNs used to suffer from all sorts of conver-
gence problems, hampering the quality of function approximation. Issues like
vanishing gradients in certain hidden layers, getting stuck in local optima, high-
dimensional optimization landscape, over-fitting due to too many ANN param-
eters, lack of computation power had an enormous effect. Recent advances in
the development of the new generation of ANNs (e.g. with a dropout function-
ality, back-propagation methodology to optimize the parameters, convolutions
to avoid over-fitting, residual-based ANNs) enabled a robust and efficient train-
ing of present-day deep neural networks, possibly with very many hidden lay-
ers [7]. Furthermore, in many occasions, deep neural networks have given con-
vincing evidence of their ability to approximate complex and highly nonlinear
functions [8].

1.3. OUTLINE OF THIS DISSERTATION
We start with computing option prices using neural networks, then develop an
ANN-based calibration framework to swiftly calibrate various option pricing mod-
els. Furthermore, we also address large time step Monte Carlo simulations of
stochastic differential equations, which are widely used to describe the uncer-
tainty in finance.

More specifically, this dissertation is subdivided into six chapters. The first
chapter introduces generally machine learning in finance. The second chapter
presents a data-driven neural network approach to price option prices, including
multi-dimensional models. The third chapter is related to financial model cali-

1.3. OUTLINE OF THIS DISSERTATION

1

5

bration. This means solving an inverse problem, given financial option values,
to determine the corresponding asset model parameters, which is addressed by
a newly developed ANN methodology, which we call the Calibration Neural Net-
work (CaNN). The fourth chapter deals with extracting implied information from
so-called American-style options, with early-exercise features, using the CaNN.
The fifth chapter develops a novel numerical scheme to discretize stochastic dif-
ferential equations (SDEs) on the basis of a large time step, and still obtain a
highly accurate solution. It is well-known that SDEs are widely used to describe
asset models in finance.

2
PRICING OPTIONS AND

COMPUTING IMPLIED VOLATILITIES

This chapter introduces a data-driven approach, by means of an Artificial Neural
Network (ANN), to value financial options and to calculate implied volatilities
with the aim of accelerating the corresponding numerical methods. With ANNs
being universal function approximators, this method trains an optimized ANN
on a data set generated by a sophisticated financial model, and runs the trained
ANN as an agent of the original solver in a fast and efficient way. We test this
approach on three different types of solvers, including the analytic solution for the
Black-Scholes equation, the COS method for the Heston stochastic volatility model
and Brent’s iterative root-finding method for the calculation of implied volatilities.
The numerical results show that the ANN solver can reduce the computing time
significantly.

2.1. INTRODUCTION
In computational finance, numerical methods are commonly used for the val-
uation of financial derivatives and also in modern risk management. Generally
speaking, advanced financial asset models are able to capture nonlinear features
that are observed in the financial markets. However, these asset price models are
often multi-dimensional, and, as a consequence, do not give rise to closed-form
solutions for option values.

Different numerical methods have therefore been developed to solve the cor-
responding option pricing partial differential equation (PDE) problems, e.g. fi-

This chapter is based on the article ’Pricing options and computing implied volatilities using Neu-
ral Networks’, published in Risks, 2019, 7(1):16.

7

2

8 2. PRICING MODELS

nite differences, Fourier methods and Monte Carlo simulation. In the context of
financial derivative pricing, there is a stage in which the asset model needs to be
calibrated to market data. In other words, the open parameters in the asset price
model need to be fitted. This is typically not done by historical asset prices, but
by means of option prices, i.e., by matching the market prices of heavily traded
options to the option prices from the mathematical model, under the so-called
risk-neutral probability measure. In the case of model calibration, thousands
of option prices need to be determined in order to fit these asset parameters.
However, due to the requirement of a highly efficient computation, certain high
quality asset models are discarded. Efficient numerical computation is also in-
creasingly important in financial risk management, especially when we deal with
real-time risk management (e.g., high frequency trading) or counterparty credit
risk issues, where a trade-off between efficiency and accuracy seems often in-
evitable.

Artificial neural networks (ANNs) with multiple hidden layers have become
successful machine learning methods to extract features and detect patterns from
large data sets. There are different neural network variants for particular tasks,
for example, convolutional neural networks for image recognition [9] and recur-
rent neural networks for time series analysis [10]. It is well-known that ANNs can
approximate nonlinear functions [11], [12], [5], and can thus be used to approx-
imate solutions to PDEs [13], [14]. Recent advances in data science have shown
that by using deep learning techniques even highly nonlinear multi-dimensional
functions can be accurately represented [3]. Essentially, ANNs can be used as
powerful universal function approximators without assuming any mathematical
form for the functional relationship between the input variables and the output.
Moreover, ANNs easily allow for parallel processing to speed up evaluations, es-
pecially on Graphics Processing Units (GPUs) or even Tensor Processing Units
(TPUs) [15].

We aim to take advantage of a classical ANN to speed up option valuation by
learning the results of an option pricing method. From a computational point of
view, the ANN does not suffer much from the dimensionality of a PDE. An “ANN
solver” is typically decomposed into two separate phases, a training phase and a
test (or prediction) phase. During the training phase, the ANN “learns” the PDE
solver, by means of the data set generated by the sophisticated models and cor-
responding numerical solvers. This stage is usually time consuming, however, it
can be done off-line. During the test phase, the trained model can be employed
to approximate the solution on-line. The ANN solution can typically be com-
puted as a set of matrix multiplications, which can be implemented in parallel
and highly efficiently. As a result, the trained ANN delivers financial derivative
prices, or other quantities, efficiently, and the on-line time for accurate option

2.2. OPTION PRICING AND ASSET MODELS

2

9

pricing may be reduced, especially for involved asset price models. We will show
in this chapter that this data-driven approach is highly promising.

The proposed approach in this chapter attempts to accelerate the pricing of
European options under a unified data-driven ANN framework. ANNs have been
used in option pricing for some decades already. There are basically two direc-
tions. One is that based on observed market option prices and the underlying
asset values, ANN-based regression techniques have been applied to fit a model-
free, non-parametric pricing function, see, for example, [16–19]. Furthermore,
the authors of [20, 21] designed special kernel functions to incorporate prior fi-
nancial knowledge into the neural network while forecasting option prices.

Another direction is to improve the performance of model-based pricing by
means of ANNs. The interest in accelerating classical PDE solvers via ANNs is
rapidly growing. The papers [22–24] take advantage of reinforcement learning
to speed up solving high-dimensional stochastic differential equations. The au-
thor of [25] proposes an optimization algorithm, the so-called stochastic gradi-
ent descent in continuous time, combined with a deep neural network to price
high-dimensional American options. In [26] the pricing performance of financial
models is enhanced by non-parametric learning approaches that deal with a sys-
tematic bias of pricing errors. Of course, this trend takes place not only in com-
putational finance, but also in other engineering fields where PDEs play a key
role, like computational fluid dynamics, see [14, 27–29]. The work in this chap-
ter belongs to this latter direction. Here, we use traditional solvers to generate
artificial data, then we train the ANN to learn the solution for different problem
parameters. Compared to [13] or [14], our data-driven approach finds, next to
the solutions of the option pricing PDEs, the implicit relation between variables
and a specific parameter (i.e., the implied volatility).

This chapter is organized as follows. In Section 2.2, two fundamental op-
tion pricing models, the Black-Scholes and the Heston stochastic volatility PDEs,
are briefly introduced. In addition to European option pricing, we also ana-
lyze robustness issues of root-finding methods to compute the so-called implied
volatility. In Section 2.3, the employed ANN is presented with suitable hyper-
parameters. After training the ANN to learn the results of the financial models
for different problem parameters, numerical ANN results with the correspond-
ing errors are presented in Section 2.4.

2.2. OPTION PRICING AND ASSET MODELS
In this section, two asset models are briefly presented, the geometric Brownian
motion (GBM) asset model, which gives rise to the Black-Scholes option pric-
ing PDE, and the Heston stochastic volatility asset model, leading to the Heston
PDE. We also discuss the concept of implied volatility. We will use European op-

2

10 2. PRICING MODELS

tion contracts as the examples, however, other types of options can be taken into
consideration in a similar way.

2.2.1. THE BLACK-SCHOLES PDE
A first model for asset prices is GBM,

dS(t) =µS(t)d t +p
νS(t)dWs(t),S(t0) = S0 > 0, (2.1)

where S is the price of an non-dividend paying asset, and W s is a Wiener process,
with t being the time, µ the drift parameter, and ν the variance parameter. The
volatility parameter is σ=p

ν. Under a risk-neutral measure (i.e. r := µ, where r
is the risk-free interest rate), a European option contract on the underlying stock
price can be valued via the Black-Scholes PDE, which can be derived from Itô’s
Lemma under a replicating portfolio approach or via the martingale approach.
Denoting the option price by V (t ,S), the Black-Scholes equation reads,

∂V

∂t
+ 1

2
σ2S2 ∂

2V

∂S2 + r S
∂V

∂S
− r V = 0, (2.2)

with time t until to maturity T , and r the risk-free interest rate. The PDE is ac-
companied by a final condition representing the specific payoff, for example, the
European call option payoff at time T ,

V (t = T,S) = max(S(T)−K ,0), (2.3)

where K is the option’s strike price. See standard textbooks for more information
about the basics in financial mathematics.

An analytic solution to (2.2), (4.19) exists for European plain vanilla options,
i.e.,

V C
eu(t ,S) = SN (d1)−K e−rτN (d2), (2.4a)

d1 = log(S/K)+ (r −0.5σ2)τ

σ
p
τ

, d2 = d1 −σ
p
τ, (2.4b)

where τ := T − t represents time to maturity, V C
eu(t ,S) is the European call option

value at time t for stock value S, with N (·) being the cumulative function of the
standard normal distribution. This solution procedure (2.4) is denoted by V (·) =
BS(·).

2.2.2. IMPLIED VOLATILITY
Implied volatility is considered an important quantity in finance. Given an ob-
served market option price V mkt , the Black-Scholes implied volatility σ∗ can be

2.2. OPTION PRICING AND ASSET MODELS

2

11

determined by solving BS(σ∗;S,K ,τ,r) = V mkt . The monotonicity of the Black-
Scholes equation with respect to the volatility guarantees the existence of σ∗ ∈
[0,+∞]. We can write the implied volatility as an implicit formula,

σ∗(K ,T) = BS−1(V mkt ;S,K ,τ,r), (2.5)

where BS−1 denotes the inverse Black-Scholes function. Moreover, by adopting
moneyness, m = S(t)

K , and time to maturity, τ= T −t , one can express the implied
volatility as σ∗(m,τ), see [30].

For simplicity, we denote here σ∗(m,τ) by σ∗. An analytic solution for Equa-
tion (2.5) does not exist. The value of σ∗ is determined by means of a numeri-
cal iterative technique, since Equation (2.5) can be converted into a root-finding
problem,

g (σ∗) = BS(S,τ,K ,r,σ∗)−V mkt (S,τ;K ,r) = 0. (2.6)

2.2.3. THE HESTON MODEL
One of the limitations of using the Black-Scholes model is the assumption of a
constant volatilityσ in (2.2), (2.4). A major modeling step away from the assump-
tion of constant volatility in asset pricing, was made by modeling the volatil-
ity/variance as a diffusion process. The resulting models are the stochastic volatil-
ity (SV) models. The idea to model volatility as a random variable is confirmed by
practical financial data which indicates the variable and unpredictable nature of
the stock price’s volatility. The most significant argument to consider the volatil-
ity to be stochastic is the implied volatility smile/skew, which is present in the
financial market data, and can be accurately recovered by SV models, especially
for options with a medium to long time to the maturity date T . With an addi-
tional stochastic process, which is correlated with the asset price process S(t),
we deal with a system of SDEs, for which option valuation is more computation-
ally expensive than for a scalar asset price process.

The most popular SV model is the Heston model [31], for which the system
of stochastic equations under the risk-neural measure reads,

dS(t) = r S(t)d t +
√
ν(t)S(t)dWs(t), S(t0) = S0 > 0, (2.7a)

dν(t) = κ(ν̄−ν(t))d t +γ
√
ν(t)dWν(t), ν(t0) = ν0 > 0, (2.7b)

dWs(t)dWν(t) = ρd t , (2.7c)

with ν(t) the instantaneous variance, and Ws(t),Wν(t) are two Wiener processes
with correlation coefficient ρ. The second equation in (2.7) models a mean re-
version process for the variance, with the parameters, r the risk-free interest rate,

2

12 2. PRICING MODELS

ν̄ the long term variance, κ the reversion speed; γ is the volatility of the variance,
determining the volatility of ν(t). There is an additional parameter ν0, the t0-
value of the variance.

By the martingale approach, we arrive at the following multi-dimensional
Heston option pricing PDE,

∂V

∂t
+ r S

∂V

∂S
+κ(ν̄−ν)

∂V

∂ν
+ 1

2
νS2 ∂

2V

∂S2

+ ργSν
∂2V

∂S∂ν
+ 1

2
γ2ν

∂2V

∂ν2 − r V = 0, (2.8)

with the given terminal condition V (T,S,ν;T,K), where V =V (t ,S,ν;T,K) is the
option price at time t .

The typically observed implied volatility shapes in the market, e.g. smile or
skew, can be reproduced by varying the above parameters {κ,ρ,γ,ν0, ν̄}. In gen-
eral, the parameter γ impacts the kurtosis of the asset return distribution, and
the coefficient ρ controls its asymmetry. The Heston model does not have ana-
lytic solutions, and is thus solved numerically.

Numerical methods in option pricing generally fall into three categories, fi-
nite differences (FD), Monte Carlo (MC) simulation and numerical integration
methods. Finite differences for the PDE problem are often used for free bound-
ary problems, as they occur when valuing American options, or for certain exotic
options like barrier options. Meanwhile, the derivatives of the option prices (the
so-called option Greeks) are accurately computed with finite differences.

Monte Carlo simulation and numerical integration rely on the Feyman-Kac
Theorem, which essentially states that (European) option values can be written
as discounted expected values of the option’s payoff function at the terminal time
T , under the risk-neutral measure. Monte Carlo methods are often employed
in this context for the valuation of path-dependent high-dimensional options,
and also for the computation of all sorts of valuation adjustments in modern
risk management. However, Monte Carlo methods are typically somewhat slow
to converge, and particularly in the context of model calibration this can be an
issue.

The numerical integration methods are also based on the Feyman-Kac The-
orem. The preferred way to employ them is to first transform to the Fourier do-
main. The availability of the asset price’s characteristic function is a pre-requisite
to using Fourier techniques. One of the efficient techniques in this context is
the COS method [32], which utilizes Fourier-cosine series expansions to approx-
imate the asset price’s probability density function, but is based on the character-
istic function. The COS method can be used to compute European option values
under the Heston model highly efficiently. However, for many different, modern

2.2. OPTION PRICING AND ASSET MODELS

2

13

asset models the characteristic function is typically not available. We will use the
Heston model with the COS method here during the training of the Heston-ANN,
so that training time is still relatively small.

2.2.4. NUMERICAL METHODS FOR IMPLIED VOLATILITY
Focussing on the implied volatility σ∗, there are several iterative numerical tech-
niques to solve (2.6), for example, the Newton-Raphson method, the bisection
method or the Brent method. The Newton-Raphson iteration reads,

σ∗
k+1 =σ∗

k −
V (σ∗

k)−V mkt

g ′(σ∗
k)

, k = 0, (2.9)

Starting with an initial guess, σ∗
0 , the approximate solutions, σ∗

k+1, k = 0, . . .,
iteratively improve, until a certain criterion is satisfied. The first derivative of
Black-Scholes option value with respect to the volatility, named the option’s Vega,
in the denominator of (2.9) can be obtained analytically for European options.

0 1 2 3 4 5 6 7 8 9 10

Volatility

0

0.2

0.4

0.6

0.8

1

1.2

1.4

O
p

ti
o

n
 P

ri
c
e

Moneyness =1.30

Moneyness =1.20

Moneyness =1.10

Moneyness =1.00

Moneyness =0.90

Moneyness =0.80

Moneyness =0.70

(a) Option price vs. volatility

Moneyness

0 0.5 1 1.5 2 2.5

V
e
g

a

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ATMITM OTM

(b) Vega vs. Moneyness.

Figure 2.1: Vega tends to be zero in certain regions of deep ITM or OTM options. (a) Option price
vs. volatility; (b) Vega vs. Moneyness.

However, the Newton-Raphson method may fail to converge, either when the
Vega is extremely small or when the convergence stalls. The Black-Scholes equa-
tion monotonically maps an unbounded interval σ ∈ [0,+∞) to a finite range
V (t ,S) ∈ [0,S(t)−K e−rτ], as illustrated in Figure 2.1a . As a result, near-flat func-
tion forms appear in certain σ-regions, especially when the option is either deep
in-the-money (ITM) or deep out-the-money (OTM). For example, Figure 2.1b
shows that the option’s Vega can be very close to zero in the regions with small
or large volatilities of deep ITM or OTM options, although its value is relatively
large in the at-the money (ATM) region.

There exist some techniques to remedy this problem in the iterative process.
A possible robust root-finding algorithm for solving this problem is to employ
a hybrid of the Newton-Raphson and the bisection methods. In addition, the

2

14 2. PRICING MODELS

author of [33] proposed to select a suitable initial value at the beginning of the
iteration to avoid divergence.

Alternatively, a closed-form expression can be derived to approximate the
implied volatility of a financial option in certain parameter ranges, see [34–36].
Such methods are based on a Taylor series expansion and the analytical solution
of the European-style option-pricing model. One of the drawbacks, however, is
that the derived formulas perform well only near at-the-money (ATM), but give
rise to inaccurate implied volatility for deep ITM/OTM options.

In the next subsection, we will introduce a derivative-free, robust and effi-
cient algorithm to find the implied volatility.

BRENT’S METHOD FOR IMPLIED VOLATILITY

As a derivative-free, robust and efficient algorithm, Brent’s method [37] com-
bines bisection, inverse quadratic interpolation and the secant method. In order
to determine the next iterant, an inverse quadratic interpolation employs three
prior points (i.e., iterants) to fit an inverse quadratic function, which resembles
the gradient of Newton’s method, i.e.

σk+1 =
σk g (σk−1)g (σk−2)

(g (σ(k))− g (σk−1))(g (σk)− g (σk−2))

+ σk−1g (σk−2)g (σk)

(g (σk−1)− g (σk−2))(g (σk−1)− g (σk))

+ σk−2g (σk−1)g (σk)

(g (σk−2)− g (σk−1))(g (σk−2)− g (σk))
.

(2.10)

When two consecutive approximations are identical, for example, σk =σk−1,
the quadratic interpolation is replaced by an approximation based on the secant
method,

σk+1 =σk−1 − g (σk−1)
σk−1 −σk−2

g (σk−1)− g (σk−2)
. (2.11)

Here, Brent’s method is used to compute the BS implied volatility related to
the Heston option prices in Section 2.4.4. We will develop an ANN to approxi-
mate the implicit function relating the volatility to the option price.

2.2.5. COS METHOD FOR PRICING OPTIONS
In this section, a brief description of the COS method to compute European-style
option prices is presented, with the aim of generating the simulation data sets
needed in Chapters 2 and 3. An advanced variant for calculating American-style
option prices will be introduced in Chapter 4.

2.2. OPTION PRICING AND ASSET MODELS

2

15

Based on the Feynman-Kac Theorem, the solution of the governing option
valuation PDEs (for example, for the Heston stochastic volatility PDE) is given by
the risk-neutral valuation formula,

V (t0, x,ν) = e−r∆t
∫ ∞

−∞
V (T, y,ν) f (y |x)d y,

where V (t , x,ν) is the option value, and x, y are increasing functions of the un-
derlying at t0 and T , respectively, and ν is the asset’s variance. To arrive at the
COS formula for European option valuation, we need to truncate the integration
range, so that

V (t0, x,ν) ≈ e−r∆t
∫ b

a
V (T, y,ν) f (y |x)d y, (2.12)

with |∫R f (y |x)d y −∫ b
a f (y |x)d y | < T OL.

The probability density function of the underlying price, under the risk-neutral
pricing measure, is then approximated by means of the corresponding character-
istic function, however, with a truncated Fourier cosine expansion, as follows,

f (y |x) ≈ 2

b −a

NCOS−1∑′
k=0

Re

{
f̂

(
kπ

b −a
; x

)
exp

(
−i

akπ

b −a

)}
cos

(
kπ

y −a

b −a

)
, (2.13)

where NCOS represents the number of cosine terms, and Re {·} stands for taking
the real part of the expression in the brackets. The function f̂ (ω; x) is the charac-
teristic function of f (y |x), which is defined as

f̂ (ω; x) = E(e iωy |x). (2.14)

The prime at the sum symbol in (2.13) indicates that the first term in the cosine
expansion should be multiplied by one-half. Replacing f (y |x) by its approxi-
mation (2.13) in (2.12) and interchanging the integration and summation opera-
tions, based on Fubini’s Theorem, gives us the COS method to approximate the
value of a European option:

V (t0, x,ν) = e−r∆t
NCOS−1∑′

k=0
Re

{
f̂

(
kπ

b −a
; x

)
e−i kπ a

b−a

}
Hk , (2.15)

where

Hk = 2

b −a

∫ b

a
V (T, y,ν)cos

(
kπ

y −a

b −a

)
d y, (2.16)

represent the Fourier cosine coefficients of H(t , y) = V (T, y,ν), which are avail-
able in closed-form for several European-style option payoff functions. The size
of the integration interval [a,b] can be determined by a rule of thumb, as follows,

[a,b] :=
[
ξ1 −LCOS

√
ξ2 +

√
ξ4,ξ1 +LCOS

√
ξ2 +

√
ξ4

]
, (2.17)

2

16 2. PRICING MODELS

where ξn are the n-th cumulants, and LCOS > 0 is a user-defined parameter for
the interval size. The COS method exhibits an exponential convergence rate for
those processes whose transitional probability density function, f (y |x) ∈ C∞,
and (a,b) ⊂R. More details can be found in the paper [38].

Equation (2.15) can now be directly applied to calculate the value of Euro-
pean options. It also forms the basis for the pricing of Bermudan options, as
explained in Chapter 4.

2.3. METHODOLOGY
In this section, we present a neural network to approximate a function for fi-
nancial models. The procedure comprises two main components, the generator
to create the financial data for training the model and the predictor (the ANN)
to approximate the option prices based on the trained model. The data-driven
framework consists of the following steps,

Algorithm 1 Model framework

– Generate the sample data points for input parameters,

– Calculate the corresponding output (option price or implied volatility) to

form a complete data set with inputs and outputs,

– Split the above data set into a training and a test part,

– Train the ANN on the training data set,

– Evaluate the ANN on the test data set,

– Replace the original solver by the trained ANN in applications.

2.3.1. ARTIFICIAL NEURAL NETWORKS
ANNs generally constitute three levels of components, i.e., neurons, layers and
the architecture, from bottom to top. The architecture is determined by a com-
bination of different layers, that are made up of numerous artificial neurons. A
neuron, which involves learnable weights and biases, is the fundamental unit of
ANNs. By connecting the neurons of adjacent layers, output signals of a previous
layer enter a next layer as input signal. By stacking layers on top of each other,
signals travel from the input layer through the hidden layers to the output layer
potentially through cyclic or recurrent connections, and the ANN builds a map-
ping among input-output pairs.

As shown in Figure 2.2a, an artificial neuron basically consists of the follow-
ing three consecutive operations:

2.3. METHODOLOGY

2

17

1. Calculation of a summation of weighted inputs,

2. Addition of a bias to the summation,

3. Computation of the output by means of a transfer function.

The basic ANN is the multi-layer perceptron (MLP), which can be written
mathematically as a composite function,

Ĥ(x́|Θ̂) = ĥL A (...ĥ2(ĥ1(x́; θ̂1); θ̂2); ...θ̂L A), (2.18)

where x́ = (x1, x2, . . . , xn) stands for the input variables, and L A is the number of
hidden layers, and θ̂i = (wi ,bi), with wi being a weight matrix and bi being a bias
vector. Meanwhile, ĥ(·) represents the function corresponding to a hidden layer.
For simplicity, in this book, the mapping function may be expressed as follows,

y(x́) = Ĥ(x́|Θ̂). (2.19)

(a) A neuron (b) An example of MLP

Figure 2.2: Illustration of an MLP configuration. (a) A neuron; (b) An example of MLP.

Let z(`)
j denote the value of the j -th neuron in the `-th layer, then the corre-

sponding layer function reads,

z(`)
j =ϕ(`)

(∑
i

w (`)
i j z(`−1)

i +b(`)
j

)
, (2.20)

where z(`−1)
i is the output value of the i -th neuron in the (`−1)-th layer and ϕ(·)

is an activation function, with w (`)
i j ∈ w`, b(`)

j ∈ b`. In other words, the hidden

layer function ĥ` applies the weights and biases to the inputs and directs the

2

18 2. PRICING MODELS

summation through an activation function ϕ(`)(·) as the output of ĥ`. When ` =
0, z(0) = x is the input layer; When ` = L A , z(L A) = y is the output layer; Otherwise,
z(`) represents an intermediate variable. The activation function ϕ(·) adds non-
linearity to the system, for example, the following activation functions may be
employed,

• Relu, ϕ(x) = max(x,0),

• Sigmoid, ϕ(x) = 1
1+e−x ,

• Leaky ReLu, ϕ(x) = max(x, ax), 0 < a < 1;

see [3] for more activation functions. An MLP with “one-hidden-layer” is shown
in Figure 2.2b, and Equation (2.21) presents its mathematical formula,y =ϕ(2)

(∑
j w (2)

j z(1)
j +b(2)

)
z(1)

j =ϕ(1)
(∑

i w (1)
i j xi +b(1)

j

)
.

(2.21)

According to the Universal Approximation Theorem [11], a single-hidden-
layer ANN with a sufficient number of neurons can approximate any continu-
ous function. The distance between two functions is measured by the norm of a
function || · ||,

D(F̂ (x́), Ĥ(x́)) = ||F̂ (x́)− Ĥ(x́)||, x́ ∈ Ώ (2.22)

where Ώ is the definition domain, and F̂ (x́) stands for the objective function, and
Ĥ(x́) for the neural network approximated function. For example, the p-norm in
the domain Ώ reads,

D(F̂ (x́), Ĥ(x́)) = ||F̂ (x́)− Ĥ(x́|Θ̂)||p = p

√∫
Ώ
|F̂ (x́)− Ĥ(x́|Θ̂)|p d x́,

where 1 ≤ p <∞. We choose p=2 to evaluate the averaged accuracy, which cor-
responds to the root mean squared error (RMSE) and can be easily converted to
the popular error MSE (mean squared error). Within supervised learning, the
loss function L(·) is equivalent to the above distance,

L(Θ̂) := D(F̂ (x́), Ĥ(x́|Θ̂)). (2.23)

The discrete form of the loss function (2.23) is widely used in practice. Sup-
pose, in the domain Ώ, there is a collection of data points {x́k }, k = 1, . . . , MD , and
their corresponding function value {ýk := F̂ (x́k)}, which form a vector of input-
output pairs (X́, Ý) = {(x́k , ýk)}k=1,...,MD . The training process aims to learn the
optimal weights and biases in Equation (2.19) to make the loss function as small

2.3. METHODOLOGY

2

19

as possible. For example, when p = 2, the above process can be formulated as an
optimization problem,

argmin
Θ̂

L(Θ̂|(X́, Ý)) ≈ argmin
Θ̂

√√√√ 1

MD

MD∑
k=1

(
ýk − Ĥ(x́k |Θ̂)

)2
, (2.24)

given the known input-output pairs (X́, Ý) and a loss function L(Θ̂). When the
training data set (X́, Ý) can define the true function on the domain Ώ, ANNs with
sufficiently many neurons can approximate this function in a certain norm, e.g.,
the l2-norm.

Quantitative theoretical error bounds for deep ANNs to approximate any func-
tion are not yet available. For continuous functions, in the case of a single hidden
layer, the number of neurons should grow exponentially with the input dimen-
sionality [39]. In the case of two hidden layers, the number of neurons should
grow polynomially. The authors in [40] proved that any continuous function de-
fined on the unit hypercube C [0,1]d can be uniformly approximated to arbitrary
precision by a two hidden layer MLP, with 3d and 6d +3 neurons in the first and
second hidden layer, respectively. In [41] the error bounds for approximating
smooth functions by ANNs with adaptive depth architectures are presented. The
theory gets complicated when the ANN structure goes deeper, however, these
deep neural networks have recently significantly increased the power of ANNs,
see, for example the Residual Neural Networks [6].

Several back-propagation gradient descent methods have been successfully
applied to optimize the system (2.24), for instance, Stochastic Gradient Descent
(SGD) [42]. These optimization algorithms start with initial values and move in
the direction in which the loss function decreases significantly. The formulas for
updating the parameters read,

w ← w−η(i) ∂L
∂w ,

b ← b−η(i)∂L
∂b ,

i = 0,1,2, ...,

(2.25)

where η is a learning rate, which may vary during the iterations. The learning
rate plays an important role during the training, as a “large” learning rate value
causes the ANN’s convergence to oscillate, whereas a small one results in ANNs
learning slowly, and even getting trapped in local optima regions. An adaptive
learning rate is often preferred, and more details will be given in Section 2.3.3.

In practice, the gradients are computed over mini-batches because of com-
puter memory limitations. Instead of all input samples, a portion is randomly

2

20 2. PRICING MODELS

selected within each iteration to calculate an approximation of the gradient of
the objective function. The size of the mini-batch is used to determine the por-
tion. Due to the architecture of the GPUs, batch sizes of powers of two can be
efficiently implemented. Several variants of SGD have been developed in the
past decades, e.g., RMSprop and Adam [43], where the latter method handles
an optimization problem adaptively by adjusting the involved parameters over
time.

2.3.2. HYPER-PARAMETERS OPTIMIZATION
Training deep neural networks involves numerous choices for the commonly
called “ANN hyper-parameters”. These include the number of layers, neurons,
and the specific activation function. Determining the depth (the number of hid-
den layers) and the width (the number of neurons) of the ANN is a challenging
problem.

We experimentally find that an MLP architecture with four hidden layers has
an optimal capacity of approximating option pricing formulas of our current in-
terest. Built on a four hidden layer architecture, the other hyper-parameters
are optimized also by using machine learning [44]. There are different tech-
niques to implement the automatic search. In a grid search technique, all can-
didate parameters are systematically parameterized on a pre-defined grid, and
all possible candidates are explored in a brute-force way. The authors of [45]
concluded that random search is more efficient for hyper-parameters optimiza-
tion. Recently, Bayesian hyper-parameter optimization [46] has been developed
to efficiently reduce the computational cost by navigating through the hyper-
parameters space. However, it is difficult to outperform random search in com-
bination with certain expert knowledge.

Neural networks may not necessarily converge to a global minimum. How-
ever, using a proper random initialization may help the model with suitable ini-
tial values. Batch normalization scales the output of a layer by subtracting the
batch mean and dividing by the batch standard deviation. This can speed up the
training of the neural network. The batch size indicates the number of samples
that enter the model to update the learnable parameters within one iteration. A
dropout operation selects a random set of neurons and deactivates them, which
forces the network to learn more robust features. The dropout rate refers to the
proportion of the deactivated neurons in a layer.

There are two stages to complete the hyper-parameter optimization. During
the model selection process, over-fitting can be reduced by adopting the k-fold
cross validation as follows.

In the first stage, we employ random search combined with a 3-fold cross
validation to find initial hyper-parameter configurations for the neural network.

2.3. METHODOLOGY

2

21

Algorithm 2 k-fold cross validation

–Split the training data set into k different subsets,

–Select one set as the validation data set,

–Train the model on the remaining k-1 subsets,

–Calculate the metric by evaluating the trained model on the validation part,

–Continue the above steps by exploring all subsets,

–Calculate the final metric which is averaged over k cases,

–Explore the next set of hyper-parameters,

–Rank the candidates according to their averaged metric.

Table 2.1: The setting of random search for hyper-parameters optimization

Parameters Options or Range
Activation ReLu, tanh, sigmoid

Dropout rate [0.0, 0.2]
Neurons [200, 600]

Initialization uniform, glorot_uniform, he_uniform
Batch normalization yes, no

Optimizer SGD, RMSprop, Adam
Batch size [256, 3000]

As shown in Table 2.1, each model is trained 200 epochs using MSE as the loss
metric. An epoch is the moment when the model has processed the whole train-
ing data set. It is found that the prediction accuracy increases with the training
data set size (more related details will be discussed in Section 2.4.1). Therefore,
the random search is implemented on a small data set, which is then followed by
training the selected ANN on larger data sets in the next stage.

In the second stage, we further enhance the top 5 network configurations by
averaging the different values, to yield the final ANN model, as listed in Table 3.2.
As Table 3.2 shows, the optimal parameter values, neurons and batch size, do not
lie at the boundaries of the search space (except for the drop out rate). Compared
to the Sigmoid activation function, ReLu is more likely to give rise to a better con-
vergence (e.g. overcome the vanishing gradient in a deep neural network). As an
extension to SGD, the Adam optimizer can handle an optimization problem in a
more robust way. However, batch normalization and drop-out did not improve
the model accuracy in this regression problem, and one possible reason for this is

2

22 2. PRICING MODELS

Table 2.2: The selected model after the random search

Parameters Options
Hidden layers 4

Neurons(each layer) 400
Activation ReLu

Dropout rate 0.0
Batch-normalization No

Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

that the output value is sensitive to the input parameters, which is different from
sparse features in an image (where these operations usually work very well). Sub-
sequently, we train the selected network on the whole (training and validation)
data set, to obtain the final weights. This procedure resulted in an ANN with
sufficient accuracy to approximate the financial option values.

2.3.3. LEARNING RATES

The learning rate, one of the key hyper-parameters, represents the rate at which
the weights are updated each iteration. A large learning rate leads to fluctuations
around a local minimum, and sometimes even to divergence. Small learning
rates may cause an inefficiently slow training stage. It is common practice to
start with a large learning rate and then gradually decrease it until a well-trained
model has resulted. There are different ways to vary the learning rate during
training, e.g. by step-wise annealing, exponential decay, cosine annealing, see
[47] for a cyclical learning rate (CLR) and [48] for the stochastic descent gradient
restart (SDGR). The basic idea of CLR and SDGR is that at certain points of the
training stage, a relatively large learning rate may move the weights from their
current values, by which ANNs may leave a local optimum and converge to a
better one.

We employ the method proposed in [47] to determine the learning rate. The
method is based on the insight of how the averaged training loss varies over dif-
ferent learning rates, by starting with a small learning rate and increasing it pro-
gressively in the first few iterations. By monitoring the loss function against the
learning rate, it is shown in Figure 2.3 that the loss stabilizes when the learn-
ing rate is small, then drops rapidly and finally oscillates and diverges when the
learning rate is too large. The optimal learning rate lies here between 10−5 and

2.4. NUMERICAL RESULTS

2

23

Figure 2.3: Average training loss against varying learning rates.

10−3, where the slope is the steepest and the training loss reduces quickly. There-
fore, the learning rate in CLR is reduced from 10−3 to 10−5 in our experiments.

We present, as an example, the results of the training stage of the ANN solver
for the Heston model option prices to compare three different learning rate sched-
ules. Figure 2.4 demonstrates that the training error and the validation error
agree well and that over-fitting does not occur when using these schedules. As
shown in Figure 2.5, in this case a decay rate-based schedule outperforms the
CLR with the same learning rate bounds, although with the CLR the differences
between training and validation losses are smaller. This is contrary to the con-
clusion in [47], but their network included batch normalization and L2 regular-
ization. For the tests in this chapter, we will employ the CLR to find the optimal
range of learning rates, which is then applied in the DecayLR schedule to train
the ANNs.

2.4. NUMERICAL RESULTS

We show the performance of the ANNs for solving the financial models, based on
the following accuracy metrics (which forms the basis for the training),

MSE = 1

n

∑
(yi − ŷi)2, (2.26)

where n is the number of involved data points, and yi stands for the actual value,
and ŷi for the ANN predicted value. The MSE is used as the loss function in (2.23)
to update the weights, and different metrics are employed to evaluate the se-

2

24 2. PRICING MODELS

0 500 1000 1500 2000 2500 3000
Epoch

−18

−16

−14

−12

−10

−8

lo
g(
M
SE

)
model loss

DecayLR-validation
DecayLR-training

(a)

0 500 1000 1500 2000 2500 3000
Epoch

−16

−14

−12

−10

−8

lo
g(
M
SE

)

model loss
CLR-validation
CLR-training

(b)

Figure 2.4: The history of training and validation losses for the Heston model. (a) Losses with
decaying learning rates; (b) Losses with cyclical learning rates.

0 500 1000 1500 2000 2500 3000
Epoch

−18

−16

−14

−12

−10

−8

lo
g(

M
SE

)

The his ory of raining loss
Cons an LR
Decay LR
Cyclical LR

Figure 2.5: Different learning rate schedules for training ANNs on Heston model.

lected ANN. For completeness, we also report the other well-known metrics,

RMSE =
p

MSE, (2.27a)

MAE = 1

n

∑ |yi − ŷi |, (2.27b)

MAPE = 1

n

∑ |yi − ŷi |
yi

. (2.27c)

2.4. NUMERICAL RESULTS

2

25

We start with the Black-Scholes model which gives us closed-form option
prices, that are learned by the ANN. We also train the ANN to learn the implied
volatility, based on the iterative root-finding Brent method. Finally, the ANN
learns the results obtained by the COS method to solve the Heston model with
several different parameters.

2.4.1. DETAILS OF THE DATA SET
Like with any data-driven approach, the quality of a data set has a significant
impact on the performance of the resulting model. Theoretically, an arbitrary
number of samples can be generated since the mathematical model is known. In
reality, a sampling technique with good space-filling properties should be prefer-
able. Latin hypercube sampling (LHS) [49] is able to generate random samples of
the parameter values from a multidimensional distribution, resulting in a better
representation of the parameter space. When the sample data set for the input
parameters is available, we select the appropriate numerical methods to gener-
ate the training results. For the Black-Scholes model, the option prices are ob-
tained by the closed-form formula. For the Heston model, the prices are calcu-
lated by the COS method with a robust COS method version. With the Heston
prices determined, Brent’s method will be used to find the corresponding im-
plied volatility. The whole data set is randomly divided into two groups, 90% will
be the training and 10% the test set.

Table 2.3: The different sizes of training data set when training the ANN

Case 0 1 2 3 4 5 6
Training size (×24300) 1/8 1/4 1/2 1 2 4 8

In order to investigate the relation between the prediction accuracy and the
size of the training set, we increase the number of training samples from 1

8 to 8
times the baseline set, as shown in Table 2.3. Meanwhile, the test data is kept
unchanged. The example here is learning the implied volatility. We first train the
ANN for each data set by using a decaying learning rate, as described in Section
2.3.3, and repeat the training stage for each case 5 times with different random
seeds and average the model performance. As shown in Figure 2.6, with an in-
creasing data size, the prediction accuracy increases and the corresponding vari-
ance, indicated by the error bar, decreases. So, we employ random search for
the hyper-parameters on a small-sized data set, and train the selected ANN on a
large data set. The schedule of decaying learning rates is as discussed in Section
2.3.3. The training and validation losses remain close, which indicates that there

2

26 2. PRICING MODELS

is no over-fitting.

−1 0 1 2 3 4 5 6
case

−16

−15

−14

−13

−12

−11

−10

lo
g(
M
SE

)

Testing
Training

99.86

99.88

99.90

99.92

99.94

99.96

99.98

100.00

R
2 (
%
)

R2 on test

Figure 2.6: R2 and MSE vs. size of the training set. The figure shows improvement in the loss,
which is an indicator of the model performance.

2.4.2. BLACK-SCHOLES MODEL

Focusing on European call options, we generate 1,000,000 random samples for
the input parameters, see Table 2.4. We calculate the corresponding European
option prices V (t ,S) of Equation (2.2) with the solution in (2.4). As a result, each
sample contains five variables {S0/K ,τ,r,σ,V /K }. The training samples are fed
into the ANN, where the input includes {S0/K ,τ,r,σ}, and the output is the scaled
option price V /K .

Table 2.4: Wide and narrow Black-Scholes parameter ranges

BS-ANN Parameters Wide Range Narrow Range Unit

Input

Stock price(S0/K) [0.4, 1.6] [0.5, 1.5] -
Time to Maturity(τ) [0.2, 1.1] [0.3, 0.95] year

Risk free rate(r) [0.02, 0.1] [0.03, 0.08] -
Volatility(σ) [0.01, 1.0] [0.02, 0.9] -

Output Call price(V /K) (0.0, 0.9) (0.0, 0.73) -

2.4. NUMERICAL RESULTS

2

27

We distinguish, during the evaluation of the ANN, two different test data sets,
i.e., a wide test set and a slightly more narrow test set. The reason is that we
observe that often the ANN approximations in the areas very close to parame-
ter domain boundaries may give rise to somewhat larger approximation errors,
and the predicted values in the middle part are of higher accuracy. We wish to
alleviate this boundary-related issue.

The wide test data set is based on the same parameter ranges as the training
data set. As shown in Table 2.5, the root averaged mean-squared error (RMSE) is
around 9×10−5, which is an indication that the average pricing error is 0.009%
of the strike price. Figure 2.7a shows the histogram of prediction errors, where it
can be seen that the error approximately exhibits a normal distribution, and the
maximum absolute error is around 0.06%.

Table 2.5: BS-ANN performance on the test data set.

BS-ANN MSE RMSE MAE MAPE
Training-wide 8.04×10−9 8.97×10−5 6.73×10−5 3.75×10−4

Testing-wide 8.21×10−9 9.06×10−5 6.79×10−5 3.79×10−4

Testing-narrow 7.00×10−9 8.37×10−5 6.49×10−5 3.75×10−4

The narrow test set is based on a somewhat more narrow parameter range
than the training data set. As Table 2.5 shows, when the range of parameters in
the test set is smaller than the training data set, ANN’s test performance slightly
improves. Figure 2.7 shows that the largest deviation becomes smaller, being less
than 0.04%. The goodness of fit R2-criterion measures the distance between the
actual values and the predicted ones. There is no significant difference in R2 in
both cases.

Overall, it seems a good practice to train the ANN on a (slightly too) wide data
set, when the parameter range of interest is somewhat smaller.

2.4.3. IMPLIED VOLATILITY
The aim here is to learn the implicit relationship between implied volatilities and
option prices, which is guided by Equation (2.5). The option Vega can become ar-
bitrarily small, which may give rise to a steep gradient problem in the ANN con-
text. It is well-known that an ANN may generate significant prediction errors in
regions with large gradients. We therefore propose a gradient-squash approach
to handle this issue.

First of all, each option price can be split into a so-called intrinsic value and
a time value, and we subtract the intrinsic value, as follows,

2

28 2. PRICING MODELS

−0.0006 −0.0004 −0.0002 0.0000 0.0002 0.0004 0.0006
diff

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
De

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Di
st
rib

ut
io
n

(a)

−0.0004 −0.0003 −0.0002 −0.0001 0.0000 0.0001 0.0002 0.0003
diff

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0

Di
st
rib

ut
io
n

(b)

Figure 2.7: BS-ANN performance. (a) Error distribution on the wide test data set; (b) Error distri-
bution on the narrow test data set.

Ṽ :=V (t ,S)−max(S(t)−K e−rτ,0),

where Ṽ is the option time value. Please note that this change only applies to ITM
options, since the OTM intrinsic option value is equal to zero. The proposed ap-
proach to overcome approximation issues is to reduce the gradient’s steepness by
furthermore working under a log-transformation of the option value. The result-
ing input is then given by {log(Ṽ /K),S0/K ,r,τ}. The adapted gradient approach
increases the prediction accuracy significantly, as we will see below.

MODEL PERFORMANCE

In this case, the data samples can be created in a forward stage, i.e., we will work
with the Black-Scholes solution (instead of the root-finding method) to generate
the training data set. Given σ, τ, K , r and S, the generator, i.e., the Black-Scholes
formula, gives us the option price V (t0,S0) = BS(S0,K ,τ,r,σ). For the data collec-
tion {V ,S0,K ,τ,r,σ}, we then take the inputσ as the implied volatilityσ∗ ≡σ and
place it as the output of the ANN. Meanwhile, the other variables {V ,S0,K ,τ,r }
will become the input of the ANN, followed by the log-transformation log(Ṽ /K).
In addition, we do not take into consideration the samples whose time values are
extremely small, like those for which Ṽ < 10−7.

Two implied volatility ANN (IV-ANN) solvers are trained based on the dataset
of Table 2.6. After that, Table 2.7 compares the performance of the ANN with
the scaled and original (unscaled) input, where it is clear that scaling improves
the ANN performance significantly. Figure 2.8 shows the out-of-sample per-
formance of the trained ANN on the scaled inputs. The error distribution also

2.4. NUMERICAL RESULTS

2

29

Table 2.6: Parameter range of data set.

IV-ANN Parameters Range Unit

Input

Stock price (S0/K) [0.5, 1.4] -
Time to maturity (τ) [0.05, 1.0] year

Risk-free rate (r) [0.0, 0.1] -
Scaled time value (log(Ṽ /K)) [-16.12, -0.94] -

Output Volatility (σ) (0.05, 1.0) -

approximately follows a normal distribution, where the maximum deviation is
around 6 ·10−4, and most of implied volatilities equal their true values.

Table 2.7: Out-of-Sample ANN performance comparison.

IV-ANN MSE MAE MAPE R2

Input: m, τ, r , V /K
Output: σ∗ 6.36 ×10−4 1.24 ×10−2 7.67 ×10−2 0.97510

Input: m, τ, r , log (Ṽ /K)
Output: σ∗ 1.55 ×10−8 9.73 ×10−5 2.11 ×10−3 0.9999998

(a)

−0.0006 −0.0004 −0.0002 0.0000 0.0002 0.0004 0.0006
diff

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0
Di
st
rib

ut
io
n

(b)

Figure 2.8: Out-of-Sample IV-ANN performance on the scaled input. (a) Comparison of implied
volatilities; (b) The error distribution.

2

30 2. PRICING MODELS

COMPARISON OF ROOT-FINDING METHODS

We compare the performance of five different implied-volatility-finding meth-
ods, including IV-ANN, Newton-Raphson, Brent, the secant and the bisection
methods, in terms of run-time on a CPU and on a GPU. For this purpose, we
compute 20,000 European call options for which all numerical methods can find
the implied volatility. The σ-value range for bisection and for Brent’s method is
set to [0,1.1], and the initial guesses for the Newton-Raphson and secant method
are σ∗

0 = 0.5. The true volatility varies in the range [0.01,0.99], with the parame-
ters, r = 0, T = 0.5, K = 1.0, S0 = 1.0.

Table 2.8 shows that Brent’s method is the fastest among the robust iterative
methods (without requiring domain knowledge to select a suitable initial value).
From a statistical point-of-view, the ANN solver gives rise to an acceptable av-
eraged error MAE ≈ 10−4, and, importantly, its computation is faster by a factor
100 on a GPU and 10 on a CPU, as compared to the Newton-Raphson iteration.
By the GPU architecture, the ANN processes the input ’in batch mode’, calculat-
ing several implied volatilities simultaneously, which is the reason for the much
higher speed. Besides, the acceleration on the CPU is also obvious, as only matrix
multiplications or inner products are required.

Table 2.8: Performance comparison: CPU (Intel i5, 3.33GHz with cache size 4MB) and
GPU(NVIDIA Tesla P100).

Method GPU (seconds) CPU (seconds) Robustness
Newton-Raphson 19.68 23.06 No

Brent 52.08 60.67 Yes
Secant 88.73 103.76 No

Bi-section 337.94 390.91 Yes
IV-ANN 0.20 1.90 Yes

2.4.4. HESTON MODEL FOR OPTION PRICES
The Heston option prices are computed by means of the COS method in this sec-
tion. The solution to the Heston model also can be obtained by other numerical
techniques, like PDEs discretization or Monte Carlo methods. The COS method
has been proved to guarantee a high accuracy with less computational expense.

According to the given ranges of Heston parameters in Table 2.9, for the COS
method, the integration interval is based on LCOS = 50, with the number of Fourier
cosine terms in the expansion being NCOS = 1500. The prices of deep OTM Euro-
pean call options are calculated using the put-call parity, as the COS method call

2.4. NUMERICAL RESULTS

2

31

Table 2.9: The Heston parameter ranges for traing the ANN

ANN Parameters Range Method

Input

Moneyness, m = S0/K (0.6, 1.4) LHS
Time to maturity, τ (0.1, 1.4)(year) LHS

Risk free rate, r (0.0%, 10%) LHS
Correlation, ρ (−0.95, 0.0) LHS

Reversion speed, κ (0.0, 2.0) LHS
Long average variance, ν̄ (0.0, 0.5) LHS
Volatility of volatility, γ (0.0, 0.5) LHS

Initial variance, ν0 (0.05, 0.5) LHS
Output European call price, V (0, 0.67) COS

Table 2.10: The trained Heston-ANN performance

Heston-ANN MSE MAE MAPE R2

Training 1.34×10−8 8.92×10−5 5.66×10−4 0.9999994
Testing 1.65×10−8 9.51×10−5 6.27×10−4 0.9999993

(a)

−0.0010 −0.0005 0.0000 0.0005 0.0010
diff

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

De
ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Di
st
rib

ut
io
n

(b)

Figure 2.9: Out-of-sample Heston-ANN performance. (a) COS vs. Heston-ANN prices; (b) The
error distribution.

prices that are close to zero may be inaccurate due to truncation errors. In Table
2.9, we list the range of the six Heston input parameters (r , ρ, κ, ν̄, γ, ν0) as well as
the two option contract-related parameters (τ, m), with a fixed strike price, K =

2

32 2. PRICING MODELS

1. We generate around one million data points by means of the Latin hypercube
sampling, using 10% as testing, 10% as validation and 80% as the training data
set. After 3000 epochs with a decaying learning rate schedule, as shown in Ta-
ble 2.10, the Heston-ANN solver has been well trained, avoiding over-fitting and
approximating the prices accurately. Although the number of input parameters
is doubled as compared to the Black-Scholes model, the Heston-ANN accuracy
is also highly satisfactory and the error pattern is similar to that of the BS-ANN
solver, see Figure 2.9.

HESTON MODEL AND IMPLIED VOLATILITY

We design two experiments to illustrate the ANN’s ability of computing the im-
plied volatility based on the Heston option prices. In the first experiment, the
ground truth for the implied volatility is generated by means of two steps. Given
the Heston input parameters, we first use the COS method to compute the op-
tion prices, after which we use Brent’s method to compute the Black-Scholes im-
plied volatility σ∗. The machine learning approach is also based on two steps, as
shown in Figure 2.10. First of all, the Heston-ANN is used to compute the option
prices, and, subsequently, we use IV-ANN to compute the corresponding implied
volatilities. We compare these two approaches in Figure 2.10.

Please note that the ANN solver performs best in the middle of all param-
eter ranges, and tends to become worse at the domain boundaries. We there-
fore first choose the range of moneyness m ∈ [0.7,1.3] and the time to maturity
τ ∈ [0.3,1.1]. Table 2.11 shows the overall performance of the ANN. As the IV-
ANN takes the output of the Heston-ANN as the input, the accumulated error
reduces the overall accuracy slightly. However, the root averaged mean error is
still small, RMSE≈ 7 ·10−4. Then we reduce the range of the parameters, as listed
in the third row of Table 2.11, and find that the prediction accuracy increases with
the parameter ranges shrinking. Comparing the results in Figure 2.11 and Table
2.11, the goodness of fit as well as the error distribution improve with the slightly
smaller parameter range, which is similar to our findings for the BS-ANN solver.

Figure 2.10: Two approaches of computing implied volatility for Heston model.

2.5. CONCLUSION

2

33

Table 2.11: Out-of-sample performance of the Heston-ANN plus the IV-ANN.

Heston-ANN & IV-ANN RMSE MAE MAPE R2

Case 1:
τ ∈ [0.3,1.1], m ∈ [0.7,1.3]

7.12 ×10−4 4.19 ×10−4 1.46 ×10−3 0.999966

Case 2:
τ ∈ [0.4,1.0], m ∈ [0.75,1.25]

5.53 ×10−4 3.89 ×10−4 1.14 ×10−3 0.999980

−0.003 −0.002 −0.001 0.000 0.001 0.002 0.003
diff

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

De
ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Di
st
rib

ut
io
n

(a)

−0.003 −0.002 −0.001 0.000 0.001 0.002 0.003
diff

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

De
ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Di
st
rib

ut
io
n

(b)

Figure 2.11: The error distribution of the implied volatility: The combined Heston-ANN and IV-
ANN techniques for implied volatility. (a) Case 1: The error distribution; (b) Case 2: The error
distribution.

Another experiment is to show that the IV-ANN can generate a complete im-
plied volatility surface for the Heston model. With the following Heston param-
eters (an example to generate a smile surface), ρ = −0.05, κ = 1.5, γ = 0.3, v̄ = 0.1,
v0 = 0.1 and r = 0.02, we calculate the option prices by the COS method for the
moneyness m ∈ [0.7,1.3] and time to maturity τ ∈ [0.5,1.0]. The implied volatility
surface approximated by means of the IV-ANN is shown in Figure 2.12a, and Fig-
ure 2.12b shows that the maximum deviation between the ground-truth and the
predicted values is no more than 4×10−4.

Concluding, the ANN can approximate the Heston option prices as well as
the implied volatilities accurately. The characteristic function of the financial
model is not required during the test phase of the ANN.

2.5. CONCLUSION
In this chapter we have proposed an ANN approach to reduce the computing
time of pricing financial options, especially for high-dimensional financial mod-

2

34 2. PRICING MODELS

Moneyness
0.8

0.9
1.0

1.1
1.2

Time to maturity

0.5

0.6

0.7

0.8

0.9

1.0

0.311

0.312

0.313

0.314

0.315

0.316

0.317

0.318

Implied volatility(IV-ANN)

(a) (b)

Figure 2.12: (a) Heston implied volatility surface generated by IV-ANN. (b) Heston implied volatil-
ity difference between Brent’s method and IV-ANN.

els. We test the ANN approach on three different solvers, including the closed-
form solution for the Black-Scholes equation, the COS method for the Heston
model and Brent’s root-finding method for the implied volatilities. Our numer-
ical results show that the ANN can compute option prices and implied volatil-
ities efficiently and accurately in a robust way. This means, particularly for as-
set price processes leading to much more time-consuming computations, that
we are able to provide a highly efficient approximation technique by means of
the ANN. Although the off-line training will take longer then, the on-line predic-
tion will be fast. Moreover, parallel computing allows the ANN solver to process
derivative contracts “in batch mode” (i.e., dealing with many observed market
option prices simultaneously during calibration), and this property boosts the
computational speed by a factor of around 100 on GPUs over the original solver
in the present case. We have shown that the boundaries of parameter values
have an impact when applying the ANN solver. It is recommended to train the
ANN on a data set with somewhat wider ranges than the values of interest. Re-
garding high-dimensional asset models, as long as the option values can be ob-
tained by any numerical solver (Fourier technique, finite differences or Monte
Carlo method), we may speed up the calculation by employing a trained ANN.

Although we focus on European call options in this work, it should be pos-
sible to extend the approach to pricing more complex options, like American,
Bermuda or exotic options (see also Chapter 4). This chapter’s work initially
demonstrates the feasibility of learning a data-driven solver to speed up solv-
ing parametric financial models. The model accuracy can be further improved,

2.5. CONCLUSION

2

35

for example, by using deeper neural networks, more complex NN architectures.
The solver’s speed may also improve, for example, by designing a more shallow
neural network, extracting insight from the complex network [50].

Furthermore, the option Greeks, representing the sensitivity of option prices
with respect to the market or model parameters, are important in practice (i.e.,
for hedging purposes). As ANNs approximate the solution to the financial PDEs,
the related derivatives can also be recovered from the trained ANN. There are
several ways to calculate Greeks from the ANN solver. A straightforward way is
to extract the gradient information directly from the ANN, since the approxima-
tion function in Equation (2.25) is known analytically. Alternatively, a trained
ANN may be interpreted as an implicit function, where Auto-Differentiation [51]
can help to calculate the derivatives accurately. In Chapter 4, we will combine
these two neural networks, the Heston-ANN and the IV-ANN, into a single neu-
ral network, which makes it more efficient while computing the implied volatility
surface during the calibration of the Heston model.

3
A NEURAL NETWORK-BASED

FRAMEWORK FOR FINANCIAL

MODEL CALIBRATION

A data-driven approach called CaNN (Calibration Neural Network) is proposed to
calibrate financial asset price models using an Artificial Neural Network (ANN).
Determining optimal values of the model parameters is formulated as training
hidden neurons within a machine learning framework, based on available finan-
cial option prices. The framework consists of two parts: a forward pass in which
we train the weights of the ANN off-line, valuing options under many different
asset model parameter settings; and a backward pass, in which we evaluate the
trained ANN-solver on-line, aiming to find the weights of the neurons in the in-
put layer. The rapid on-line learning of implied volatility by ANNs, in combina-
tion with the use of an adapted parallel global optimization method, tackles the
computation bottleneck and provides a fast and reliable technique for calibrat-
ing model parameters while avoiding, as much as possible, getting stuck in local
minima. Numerical experiments confirm that this machine-learning framework
can be employed to calibrate parameters of two-dimensional stochastic volatility
models efficiently and accurately.

3.1. INTRODUCTION
Model calibration can be formulated as an inverse problem, where, based on ob-
served output results, the input parameters need to be inferred. Previous work

This chapter is based on the article ’A neural network-based framework for financial model cali-
bration’, published in Journal of Mathematics in Industry, 2019, 9(9).

37

3

38 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

on solving inverse problems includes research on adjoint optimization meth-
ods [52, 53], Bayesian methods [54, 55], and sparsity regularization [56].

In a financial context, e.g., in the pricing and risk management of finan-
cial derivative contracts, asset model calibration means recovering the model
parameters of the underlying stochastic differential equations (SDEs) from ob-
served market data. In other words, in the case of stocks and financial options,
the calibration aims to determine the stock model parameters such that heav-
ily traded, liquid option prices can be recovered by the mathematical model.
The calibrated asset models are subsequently used to either determine a suit-
able price for over-the-counter (OTC) exotic financial derivatives products, or
for hedging and risk management purposes.

Calibrating financial models is a critical task within finance, and may need to
be performed numerous times every day. Relevant issues in this context include
accuracy, speed and robustness of the calibration. Real-time pricing and risk
management require a fast and accurate calibration process. Repeatedly com-
puting the values using mathematical models and at the same time fitting the
parameters may be a computationally heavy burden, especially when dealing
with multi-dimensional asset price models.

The calibration problem is not necessarily a convex optimization problem,
and it often gives rise to multiple local minima. For example, the authors in
[57] vary two parameters of the Heston model (keeping the other parameters un-
changed), and find that the objective function exhibits multiple local minima.
Also in [58] it is stated that multiple local minimal are common for calibration in
the foreign exchange or commodities markets. A local optimization technique is
generally relatively cheap and fast, but a key factor is to choose an accurate initial
guess. Otherwise, it may fail to converge and get stuck in a local minimum. To
address robustness, global optimizers are becoming popular to calibrate finan-
cial models, like Differential Evolution (DE) [59], Particle Swarm optimization
and Simulated Annealing, as their convergence does not depend on specific ini-
tial values. Parallel computing may help to reduce the computing time of global
calibration problems.

A generic, robust calibration framework may be based on a global optimiza-
tion technique in combination with a highly efficient pricing method, in a paral-
lel computing environment. To meet these requirements, we will employ the
machine learning technology and develop an artificial neural network (ANN)
method for a generic calibration framework. The basic idea of our approach is
to connect model calibration with machine learning from an optimization point
of view. Estimating the model parameters is converted into finding the values of
the ANN’s hidden units, so that the network output matches the observed option
prices or volatility.

3.1. INTRODUCTION

3

39

The proposed ANN-based framework comprises three phases, i.e., training,
prediction and calibration. During the training phase, the hidden layer param-
eters of the ANNs are optimized by means of supervised learning. This training
phase builds a mapping between the model parameters and the output of inter-
est. During the prediction phase, the hidden layers are kept unchanged (frozen)
to compute the output quantities (e.g., option prices) given various input param-
eters of the asset price model. The prediction phase can also be used to evaluate
the model performance (namely testing). Together these steps are called the for-
ward pass. Finally, during the calibration phase, given the observed output data
(e.g., market option prices), the original input layer becomes a learnable layer
again, whereas all previously learned hidden layers are kept fixed. This latter
stage, which is also called the backward pass, inverts the already trained neural
network conditional on certain known input. The overall calibration framework
we name CaNN (Calibration Neural Network) here. The CaNN establishes a con-
nection between machine learning and model calibration.

There are several interesting aspects to the proposed approach. First of all,
the machine learning approach may significantly accelerate classical option pric-
ing techniques, particularly when involved asset price models are of interest.
Recently there has been increasing interest in applying machine-learning tech-
niques for fast pricing and calibration, see [60–66]. For example, the paper [62]
used Gaussian process regression methods for derivative pricing. Other work,
including this chapter, employs artificial neural networks to learn the solution of
the financial SDE system [60, 63, 66], that do not suffer much from the curse of
dimensionality.

Secondly, the CaNN is a generic ANN-based framework, and views the three
phases, training/prediction/calibration, as a whole, the difference between them
being just to change the learnable units. Furthermore, the proposed ANN ap-
proach can handle a flexible number of input market data. In other papers, like
[65], [64], the number of input observed samples had to be fixed in order to fit
the employed Convolutional Neural Networks.

Moreover, there is inherent parallelism in our ANN approach, so we will also
take advantage of modern processing units (like GPUs). Unlike the paper [63]
which presented a neural network-based method to calibrate rough volatility
models, our CaNN incorporates a parallel global search method to achieve higher
calibration speed, as calibrating financial models often gives rise to non-convex
optimization problems, for which local optimization algorithms may have con-
vergence issues. As a global searcher, DE has been used to calibrate financial
models [57, 67] and to train neural networks [68], making it also suitable in the
ANN-based calibration framework.

The contributions of the work in this chapter are three-fold. First, we design

3

40 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

a generic ANN-based framework for calibration. Apart from data generators, all
the components and tasks are implemented on a unified computing platform.
Second, a parallel global searcher is adopted based on a population-based opti-
mization algorithm (here DE), an approach that fits well within the ANN-based
calibration framework. Both the forward and backward passes run in parallel,
tackling the computational bottleneck of global optimization and making the
calibration time reasonable, even in the case of employing a large neural net-
work. Third, the key components are robust and stable: using a robust data gen-
erator and the global optimization technique help the ANN-based calibration
method not getting stuck in local minima.

The rest of this chapter is organized as follows. In Section 3.2, the Heston and
Bates stochastic volatility models and their calibration requirements are briefly
introduced. These models will be used in the numerical experiments. In Section
3.3, artificial neural networks are introduced as function approximators, in the
context of parametric financial models. Furthermore, a generic machine learn-
ing framework for model calibration to find the global solution is presented. In
Section 3.4, numerical experiments are presented to demonstrate the perfor-
mance of the proposed calibration framework.

3.2. FINANCIAL MODEL CALIBRATION
We start by explaining the stochastic models for the asset prices, the correspond-
ing partial differential equations for the option valuation and the standard ways
of calibrating these models. The open parameters in these models, that need to
be calibrated with the help of an objective function, are also discussed.

3.2.1. ASSET PRICING MODELS
In the following subsections we present the financial asset pricing models that
will be used in this chapter, the Heston and Bates stochastic volatility models.
European option contracts are used as examples to derive the pricing models,
however, other types of financial derivatives can be taken into consideration in a
similar way.

THE HESTON MODEL

As discussed in Chapter 2, one of the most popular stochastic volatility asset pric-
ing models is the Heston stochastic volatility model [31], see Section 2.2.3 for
more details.

THE BATES MODEL

Next to the Heston model, we will also consider its generalization, the Bates
model [69], by adding jumps to the Heston stock price process. The model is

3.2. FINANCIAL MODEL CALIBRATION

3

41

described by the following system of SDEs:

dS(t)

S(t)
= (

r −λJE[e J −1]
)

d t +
√
ν(t)dWs(t)+ (

e J −1
)

d XP (t), (3.1a)

dν(t) = κ(ν̄−ν(t))d t +γ
√
ν(t)dWν(t), νt0 = ν0, (3.1b)

dWs(t)dWν(t) = ρd t , (3.1c)

with XP (t) a Poisson process with intensity λJ , and J being normally distributed
jump sizes with expectation µJ and variance ν2

J , i.e. J ∼ N (µJ ,ν2
J). The Poisson

process XP (t) is assumed to be independent of the Brownian motions and of the
jump sizes. Clearly, we have three more parameters, λJ , µJ and ν2

J , to calibrate
in this case, in comparison with calibrating the Heston model. The correspond-
ing option pricing equation is a so-called Partial Integro-Differential Equation
(PIDE),

∂V

∂t
+ 1

2
νS2 ∂

2V

∂S2 +ργνS
∂2V

∂S∂ν
+ 1

2
γ2ν

∂2V

∂ν2 + (r − 1

2
ν(t)−λJ (eµJ −1))

∂V

∂S

+κ(ν̄−ν)
∂V

∂ν
− (r +λJ)V +λJ

∫ ∞

0
V (x)P J (x)d x = 0, (3.2)

with the given terminal condition V (T,S,ν;T,K), where P J (x) is the log-normal
probability density function of the jump magnitudes.

Both the Heston and Bates models do not give rise to analytic option value
solutions and the governing P(I)DEs thus have to be solved numerically. There
are several possibilities for this, like by means of finite difference PDE techniques,
Monte Carlo, or numerical integration methods. We will employ a Fourier-type
method, the COS method from [38], to obtain highly accurate option values, for
the details we refer to Section 2.2.5 in Chapter 2. A prerequisite to using Fourier
methods is the availability of the asset price’s characteristic function, which is
available for both Heston and Bates. From the resulting option values, the cor-
responding Black-Scholes’ implied volatilities will be determined by means of a
robust root-finding iteration known as Brent’s method [37].

3.2.2. THE CALIBRATION PROCEDURE
Calibration refers to estimating the model parameters (i.e., the constant coeffi-
cients in the PDEs) given the samples of the market data. The market value of
either option prices or implied volatilities, with moneyness m := S0/K and time
to maturity τ := T −t , is denoted here by Q∗(τ,m), and the corresponding model-
based value is Q(τ,m;Θ), with the parameter vectorΘ ∈Rn , where n denotes the

3

42 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

number of parameters to calibrate. For the Heston model, Θ := [ρ,κ,γ, ν̄,ν0],
while for the Bates model we have,Θ := [ρ,κ,γ, ν̄,ν0,λJ ,µJ ,σJ].

The difference between the observed values and the ones given by the model
is indicated by an error measure,

ei := ||Q(τi ,mi ;Θ)−Q∗(τi ,mi)||, i = 1, ..., N (3.3)

where || · || measures the distance, and N is the number of available calibration
instruments. The total difference is represented by the following target function,

J (Θ) :=
N∑

i=1
ωi ei + λ̄||Θ||, (3.4)

where ωi are the corresponding weights and λ̄ is a regularization parameter.
When ωi = 1

N and λ̄ = 0 with squared errors in Equation (3.4), we obtain a well-
known error measure, the MSE (Mean Squared Error). When people wish to guar-
antee perfect calibration for ATM options (the options are most liquid in the mar-
ket), the corresponding weight valueωi is increased. Usually calibrating financial
models reduces to the following minimization problem,

arg min
Θ∈Rn

J (Θ), (3.5)

which gives us a set of parameter values making the difference between the mar-
ket and the model quantities as small as possible.

The above formula is over-determined in the sense that N > n, i.e., the num-
ber of data samples is larger than the number of to-calibrate parameters. Equa-
tion (3.5) is usually solved iteratively to minimize the residual. Initially, a set
of parameter values is assigned and the corresponding model values are deter-
mined; these values are compared with market data, and the corresponding error
is computed, after which a search direction is determined to find a next param-
eter set. The above steps are repeated until a stopping criterion is met. While
evaluating Equation (3.4), an array of options with different strikes and maturi-
ties needs to be valued thousands of times and therefore this valuation should
be performed highly efficiently. Here, we will employ ANNs that can deal with a
complete array of option prices in parallel.

3.2.3. CHOICES WITHIN CALIBRATION
Typically, the objective function is highly nonlinear and even non-convex, for
example, the authors in [70] discuss the impact of the objective function and the
calibration method for the Heston model. This issue becomes worse when be-
ing faced with a high-dimensional optimization problem. A way to address this

3.2. FINANCIAL MODEL CALIBRATION

3

43

problem is to smooth the objective function and employ traditional local opti-
mization methods. Another difficulty when calibrating the model is that the setΘ
includes multiple parameters that need to be determined, and that these model
parameters are not completely “independent”, for example, the effect of different
parameters on the shape of the implied volatility smile may be quite similar. For
this reason, one may encounter several “local minima” when searching for opti-
mal parameter values. In most cases, a global optimization algorithm should be
preferred during calibration.

Regarding the target objective function, there are two popular choices in the
financial context, namely either based on observed option prices or based on
computed implied volatilities. Option prices can be collected directly from the
market, and implied volatility should be computed based on the collected option
prices. The most common choices without regularization terms thus include,

min
Θ

∑
i

∑
j
ωi , j

(
V ∗

c (T j − t0,S0/Ki)−Vc (T j − t0,S0/Ki ;Θ)
)2 , (3.6)

and

min
Θ

∑
i

∑
j
ωi , j

(
σ∗

i mp (T j − t0,S0/Ki)−σi mp (T j − t0,S0/Ki ;Θ)
)2

, (3.7)

where V ∗
c (T j − t0,S0/Ki) is the call option price for strike Ki and maturity T j

with instantaneous stock price S0 at time t0 as observed in the market; Vc (T j −
t0,S0/Ki ;Θ) is the call option value computed from the model using model pa-
rametersΘ; similarlyσ∗

i mp (·),σi mp (·) are the implied volatilities from the market
and from the Heston/Bates model, respectively; ωi , j is some weighting function.
The notation i and j is to distinguish the two factors impacting the target quan-
tity. A third approach is to calibrate the model to both prices and implied volatil-
ity. For option prices, weighting the target quantity by Vega (the derivative of the
option price with respect to the volatility) is a technique to remedy model risk.
When taking implied volatility into account, a numerical root-finding method
is often employed to invert the Black-Scholes formula in addition to computing
option prices. That is to say, two numerical methods are required, one for pricing
options, the other one for calculating the Black-Scholes implied volatility. Never-
theless, calibrating to an implied volatility surface can help to specify prices of all
vanilla options regardless of their types (e.g., call or put), given the current term
structure of interest rates. This is one of the reasons why the practitioners prefer
implied volatility during calibration. Besides, we will mathematically discuss the
difference between calibrating to option prices and implied volatilities in Sec-
tion 3.4.3. Moreover, it is well known that OTM instruments are liquid or heavily
traded in the market. Calibrating the financial models to OTM instruments is
common practice in reality.

3

44 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

The calibration performance (e.g., speed and accuracy) is also influenced by
the employed method while solving the financial models. An analytic solution is
not necessarily available for the model to be calibrated, and different numerical
methods have therefore been developed to solve the corresponding option pric-
ing models. Alternatively, based on some existing solvers, ANNs can be used as a
numerical method to learn the solution [60].

3.3. AN ANN-BASED APPROACH TO CALIBRATION
This section presents the framework to calibrate a financial model by means of
machine learning. Training the ANNs and calibrating financial models both boil
down to optimization problems, which motivates the present machine learning-
based approach to model calibration.

3.3.1. ARTIFICIAL NEURAL NETWORKS
ANNs are powerful universal function approximators and can be used without
assuming any pre-specified relation between the input and the output. Training
the ANNs is learning the optimal weights and biases in Equation (2.18) to make
the loss function as small as possible. As discussed in Chapter 2, the process of
training neural networks can be formulated as an optimization problem,

argmin
Θ̂

L(Θ̂|(X́, Ý)), (3.8)

given the input-output pairs (X́, Ý) and a user-defined loss function L(Θ̂).
In order to perform the optimization in Equation (3.8), the composite func-

tion from Equation (2.18) is differentiated using the chain rule. The first- and
second-order partial derivatives of the loss function with respect to any weight
w (or bias b) are easily computable; for more details we refer to [71]. This dif-
ferentiation enables us to not only train ANNs with gradient-based methods, but
also the sensitivity of the approximated functions using the trained ANN can be
investigated. For this latter task, the Hessian matrix will be derived in Section
3.4 to study the sensitivity of the objective function with respect to the calibrated
parameters.

3.3.2. THE FORWARD PASS: LEARNING THE SOLUTION WITH

ANNS
The first part of the CaNN, the forward pass, employs an ANN, in the form of an
MLP, to learn the solution generated by different numerical methods and subse-
quently maps the input to the output of interest (i.e., neglecting the intermedi-
ate variables). For example, in order to approximate the Black-Scholes implied

3.3. AN ANN-BASED APPROACH TO CALIBRATION

3

45

volatilities based on the Heston input parameters, two numerical methods are
required, i.e., the COS method to calculate the Heston option prices and Brent’s
root-finding algorithm to determine the corresponding implied volatility, as pre-
sented in Figure 3.1. Using two separate ANNs to map the Heston parameters to
implied volatility has been studied in Chapter 2. In this chapter, we merge these
two ANNs, see Figure 3.1. In other words, the Heston-IV-ANN is used as the for-
ward pass to learn the mapping between the model parameters and the implied
volatility. Note that a similar ANN model will be employed for the Bates model,
however then based on the Bates model parameters.

Figure 3.1: The Heston-implied volatility ANN.

The forward pass consists of training and prediction, and in order to do so
the network architecture and optimization method have to be defined. Gener-
ally, an increasing number of neurons, or a deeper structure, may lead to bet-
ter approximations, but may also result in a computationally heavy optimization
and evaluation of the network. In [8] it is proved that a deep NN can approxi-
mate a function for which a shallow NN may need a very large number of neu-
rons to reach the same accuracy. Different residual neural networks have been
trained and tested as a validation of our work. They may improve the predictive
power while using a similar number of weights as in an MLP, but they typically
take significantly more computing time during the training and testing phases.
Very deep network structures may reduce the parallel efficiency, because the op-
erations within a layer have to wait for the output of previous layers. With the
limitation of computing resources available, a trade-off between ANN’s compu-
tation speed and approximation capacity may be considered.

Many techniques have been put forward to train ANNs, especially for deep
networks. Most of the neural network training relies on gradient-based methods.
A proper random initialization ensures the network to start with suitable initial
weight values. Batch normalization scales the output of a layer by subtracting
the batch mean and dividing it by the batch standard deviation. This can often

3

46 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

speed up the training process. A dropout operation randomly selects a propor-
tion of the neurons and deactivates them, which forces the network to learn more
generalized features and prevents over-fitting. The dropout rate p refers to the
proportion of deactivated neurons in a layer. In the testing phase, in order to take
into account the missing activation during training, each activation in the entire
network is reduced by a factor p. As a consequence, the ANNs prediction slows
down, which has been verified during our numerical experiments on GPUs. We
found that our ANNs model did not encounter over-fitting, not even when us-
ing a zero dropout rate, as long as sufficient training data were provided. In our
neural network we employ the Stochastic Gradient Descent method, as further
described in Section 3.3.4.

3.3.3. THE BACKWARD PASS: CALIBRATION USING ANNS
This section discusses the connection between training the ANN and calibrat-
ing the financial model. First of all, both Equations (3.5) and (3.8) aim at es-
timating a set of parameters to minimize a particular objective function. For
the calibration problem, these are the parameters of the financial model and
the objective function is the error measure between the market quantity and the
model-based quantity. For the neural networks, the parameters correspond to
the learnable weights and biases in the artificial neurons, and the objective func-
tion is the user-defined loss. This connection forms an inspiration for the ma-
chine learning-based approach to calibrate financial models.

As mentioned before, the ANN approach comprises three phases, training,
prediction and calibration. During training, given the input-output pairs and
a loss function as in Equation (3.8), the hidden layers are optimized to deter-
mine the appropriate values of the weights and biases, as shown in Figure 3.2a,
which results in a trained ANN approximating the option solutions of the finan-
cial model (the forward pass, as explained in the previous section).

During the prediction phase, the hidden layers of the trained ANN are fixed
(frozen), and new input parameters enter the ANN to yield the output quanti-
ties of interest. This phase is used to evaluate the performance of the trained
ANN (the so-called model testing) or to accelerate option pricing by replacing
the original solver.

During the calibration phase (or the backward pass), the original input layer
of the ANN is transformed into a learnable layer, while all hidden layers remain
unchanged. These layers are the ANN layers obtained from the forward pass with
the already trained weights, as shown in Figure 3.2b. By providing the output
data, here consisting of market-observed option prices and implied volatilities,
and changing to an objective function for model calibration, see Equation (3.5),
the ANN can be used to find the input values that match the given output. The

3.3. AN ANN-BASED APPROACH TO CALIBRATION

3

47

(a) Training phase (b) Calibration phase

Figure 3.2: The different phases of the ANNs.

task is thus to solve the inverse problem by learning a certain set of input values,
here the model parametersΘ, either for the Heston or Bates model. The option’s
strike price K , as an example, belongs to the input layer, but is not estimated in
this phase. Note that the training phase in the forward pass is time-consuming
but done off-line and only once. The calibration phase is computationally cheap,
and is performed on-line. The calibration phase thus results in model param-
eters that best match the observed market data, provided the model has been
trained sufficiently.

The gradients of the objective function, with respect to the input param-
eters, can be derived based on Formula (2.18). This is useful when employ-
ing gradient-based optimization algorithms to conduct model calibration with
the trained ANNs. Compared to the classical calibration methods, in the ANN-
based approach it is also possible to incorporate the gradient information from
the trained ANNs to compute the search direction (without external numeri-
cal techniques). As mentioned, we focus on a general calibration framework in
which we integrate both gradient-based and gradient-free algorithms. Impor-
tantly, within the proposed calibration framework we may insert any number of
market quotes, without requiring a fixed structure or a grid of input parameters.

3.3.4. NUMERICAL OPTIMIZATION
The optimization method plays a key role in training ANNs and calibrating finan-
cial models, but there are different requirements on the solutions for different
phases. When training the neural network to learn the mapping between input
and output values, we aim for a good performance on a test data set while op-
timizing the model on a training data set (this concept is called generalization).

3

48 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

Calibration is regarded as an optimization problem with only a training data set,
where the objective is to fit the market-observed prices as well as possible. In
this work, the Stochastic Gradient Descent (SGD) is used when training the ANN,
and Differential Evolution is preferred in the phase of calibration to address the
problem of multiple local minima. 1

STOCHASTIC GRADIENT DESCENT

A popular optimizer to train ANNs to learn the mapping function is SGD, as dis-
cussed in Chapter 2. Artificial neural networks contain thousands of weights,
which give rise to a high-dimensional, non-convex optimization problem. The
local minima appear not to be problematic for this involved black-box system,
as long as the cost function reaches a sufficiently low value. The loss function of
training the ANN solver is based on MSE.

DIFFERENTIAL EVOLUTION

Differential Evolution [59] is a population-based, derivative-free optimization al-
gorithm, which does not require any specific initialization. With DE, a global
optimum can be found, even when the objective function is non-convex. The
general form of the DE algorithm usually comprises the following four steps:

1. Initialization: Generate the population with Np individuals and locate each
member with random positions in the search space,

(θ1,θ2, ...,θNp)

2. Mutation: Once initialized, a randomly sampled difference is added to
each individual, named differential mutation,

θ′
i = θa + F̃ · (θb −θc) (3.9)

where i represents the i -th candidate, and the indices a, b, c are randomly
selected from the population with a 6= i . The resulting θ′ is called a mutant.
The differential weight F̃ ∈ [0,∞) determines the step size of the evolution.
Generally, large F values increase the search radius, but may cause DE to
converge slowly. There are several mutation strategies, for example, when
θa is always the best candidate of the previous population, the mutation
strategy is called best1bin, which will be used in the following numerical
experiments; when θa is randomly chosen, it is called rand1bin. After this
step, an intermediary (or donor) population, consisting of Np mutant can-
didates, is generated.

1We have tested SGD during calibration. SGD is faster but may fail in some cases without good
initial guess.

3.3. AN ANN-BASED APPROACH TO CALIBRATION

3

49

3. Crossover: During the crossover stage, mutated candidates that may enter
the next evaluation stage are determined. For each i ∈ {1, . . . , Np }, a uni-
formly distributed random number p̂i ∼U (0,1) is selected. Some samples
are filtered out by setting a user-defined crossover possibility Cr ∈ [0,1],

θ′′
i =

{ θ′
i , if p̂i ≤Cr,
θi , otherwise.

(3.10)

If the probability is greater than Cr , the donor candidate will be discarded.
Increasing Cr allows more mutants to enter the next generation, but at the
expense of population stability. Here, a trial population (θ′′

1 ,θ′′
2 , ...,θ′′

Np
) has

been defined.

4. Selection: Comparing each new trial candidate with the corresponding tar-
get individual on the objective function,

θi ←
{ θ′′

i , if g (θ′′
i) ≤ g (θi),

θi , otherwise,
(3.11)

where g (·) is the user-defined objective function, for example, Formula (3.6)
or (3.7) for model calibration. If the trail individual has improved perfor-
mance, the selected individual is replaced. Otherwise, the offspring indi-
vidual inherits the parameters from its parent. This gives birth to a next
generation population.

The Steps (2)-(4) are repeated until the algorithm converges or until a pre-defined
criterion is satisfied. Adjusting the control parameters may impact the perfor-
mance of DE. For example, a large population size and mutation rate can in-
crease the probability of finding the global minimum. An additional parameter,
convergence tolerance, is used to measure the diversity within a population, and
determines when to stop DE. The control parameters can also change over time,
which is out of our scope here.

ACCELERATION OF CALIBRATION

In this section we develop DE into a parallel version which is beneficial within
the ANNs. Generally, matrix multiplications and element-wise operations in a
neural network can be implemented in parallel to reduce the computing time,
especially when a large number of arguments is involved. As a result, several
components of the calibration procedure can be accelerated. First, for the ANN
solver in the forward pass, all observed market samples can be evaluated at once.
Second, in the selection stage of the DE, an entire population can be treated si-
multaneously. Third, the ANN solver itself is able to run parallelly on any ma-
chine learning platform.

3

50 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

Table 3.1: The setting of DE

Parameter Option
Population size 50

Strategy best1bin
Mutation (0.5, 1.0)

Crossover recombination 0.7
Convergence tolerance 0.01

An example of the parameter settings for DE is shown in Table 3.1 and Fig-
ure 3.3, where the population of one generation comprises 50 vector candidates
for the calibrated parameters (e.g., a vector candidate contains five parameters
to calibrate in the Heston model), and each candidate generates a number of
market samples (here 35, i.e., 7 strike prices K and 5 time points). So, there are
50×35=1650 input samples for the Heston model each generation. Traditionally,
all these input samples (here 1650) are computed individually, except for those
with the same maturity time T . The first speed-up is achieved because 35 sample
output quantities from each parameter candidate can be computed by the ANN
solver at the same time, even if these samples have different maturity times and
strike prices. The second speed-up is based on the parallel DE combined with
the ANN, where all parameter candidates in one generation enter the ANN solver
at once, that is, all 1650 input samples in one generation can be included in the
ANN solver simultaneously, giving 1650 output values (e.g., implied volatilities).
Note that the batch size of the ANN solver should be adapted to the limitations
of the specific processor, here 2048 in our used processor. We find that with the
population size being around 50, the parallel CaNN is at least 10 times faster than
the conventional CaNN, on either a CPU or a GPU. It is believed that a larger pop-
ulation size should lead to a higher parallel computing performance, especially
on a GPU.

Remark. There are basically two error sources in this framework. One is a consis-
tency error which comes from the employed numerical methods to solve the finan-
cial model, and it is found while generating the training data set. The other one is
an optimization error during training and calibration. These errors will influence
the performance of the forward pass.

3.4. NUMERICAL RESULTS

3

51

(a) Conventional DE (b) Parallel DE

Figure 3.3: Illustration of the parallel CaNN version.

3.4. NUMERICAL RESULTS
In this section we show the performance of the proposed CaNN. We begin with
calibrating the Heston model, a special case of the Bates model. Some insights
into the effect of the Heston parameters on the implied volatility are discussed
to give some intuition on the relation, since no explicit mapping between them
exists. Then, the forward pass is presented where an ANN is trained to build
a mapping between the model parameters and implied volatilities. It is also
demonstrated that the trained forward pass can be used as a tool for perform-
ing the sensitivity analysis of the model parameters. After that, we implement
the backward pass of the Heston-CaNN to calibrate the model and evaluate the
CaNN performance. We end this section by considering the calibration of the
Bates model, a model that consists of more parameters than the Heston model,
using the Bates-CaNN.

3.4.1. PARAMETER SENSITIVITIES FOR HESTON MODEL
This section discusses the sensitivity of the implied volatility to the Heston pa-
rameters. This sensitivity analysis can be used to estimate a set of initial parame-
ters, as is used in traditional calibration methods. In our calibration method this
will not be required, however, we can gain some insights in the case of no explicit
formulas.

The typically observed implied volatility shapes in the market, e.g., the im-
plied volatility smile or skew, can be reproduced by varying the above parameters
{κ,ρ,γ,ν0, ν̄}. We will give some intuition about the parameter values and their
impact on the implied volatility shape.

From a PDE viewpoint, the calibration problem consists of finding appropri-
ate values of PDE coefficients {κ,ρ,γ,ν0, ν̄} to make the Heston model reproduce
the observed option/implied volatility data. The authors in [72] reduce the cal-
ibration time by giving smart initial values for asset models, whereas in [73] an

3

52 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

approximation formula for the Heston dynamics was employed to determine a
satisfactory initial set of parameters, followed by a local optimization to reach the
final parameters. The paper [74] derived a Heston model characteristic function
to analytically obtain gradient information of the option prices during the search
for an optimal solution. In Section 3.4.3 we will use the ANN to extract gradient
information of the implied volatility with respect to the Heston parameters.

EFFECT OF INDIVIDUAL PARAMETERS

To analyze the parameter effects numerically, we use the following set of refer-
ence parameters,

T = 2,S0 = 100,κ= 0.1,γ= 0.1, ν̄= 0.1,ρ =−0.75,ν0 = 0.05,r = 0.05.

A numerical study is performed by varying individual parameters while keep-
ing the others fixed. For each parameter set, Heston stochastic volatility option
prices are computed (by means of the numerical solution of the Heston PDE) and
the Black-Scholes implied volatilities are subsequently determined.

Two important parameters that are varied are the correlation parameter ρ
and the volatility-of-variance parameter γ. Figure 3.4 (left side) shows that, when
ρ = 0%, an increasing value ofγ gives a more pronounced implied volatility smile.
A higher volatility-of-variance parameter thus increases the implied volatility cur-
vature. We also see, in Figure 3.4 (right side), that when the correlation between
stock and variance process gets increasingly negative, the slope of the skew in
the implied volatility curve increases. Furthermore, it is found that parameter κ

40 60 80 100 120 140 160 180 200

K

5

10

15

20

25

30

35

40

45

im
pl

ie
d

vo
la

til
ity

 [%
]

Effect of on implied volatility

=0.10

=0.30
=0.50

=0.90

40 60 80 100 120 140 160 180 200

K

16

18

20

22

24

26

28

30

im
pl

ie
d

vo
la

til
ity

 [%
]

Effect of x,v on implied volatility

x,v
=0.00

x,v
=-0.25

x,v
=-0.50

x,v
=-0.90

Figure 3.4: Impact of variation of the Heston parameter γ (left side), and correlation parameter ρ
(right side), on the implied volatility which varies as a function of strike price K .

has a limited effect on the implied volatility smile or skew, up to 1%−2% only. It
determines the speed at which the volatility converges to the long-term volatility
ν̄.

3.4. NUMERICAL RESULTS

3

53

The calibration procedure can be accelerated by a reduction of the set of pa-
rameters to be optimized. By comparing the impact of the speed of mean rever-
sion parameter κ and the curvature parameter γ, it is observed that these two
parameters have a similar effect on the shape of the implied volatility. It is there-
fore common (industrial) practice to prescribe (or fix) one of them. Practitioners
often fix κ and optimize parameter γ, for example κ= 0.5. By this, the optimiza-
tion reduces to four parameters.

Another parameter which may be determined in advance, using heuristics, is
the initial value of the variance process ν0. For maturity time T “close to today”
(i.e., T → 0), one expects the stock price to behave like in the Black-Scholes case.
The impact of a stochastic variance process should reduce to zero, in the limit
T → 0. For options with short maturities, the process may therefore be approxi-
mated by a process of the following form:

dS(t) = r S(t)d t +p
ν0S(t)dWs(t). (3.12)

This suggests that for initial variance ν0 one may use the square of the ATM im-
plied volatility of an option with the shortest maturity, ν0 ≈ σ2

i mp , for T → 0, as
an accurate approximation for the initial guess for the parameter. One may also
use the connection of the Heston dynamics to the Black-Scholes dynamics with
a time-dependent volatility function. In the Heston model we may, for example,
project the variance process onto its expectation, i.e.,

dS(t) = r S(t)d t +E
[√

ν(t)
]

S(t)dWs(t).

By this projection the parameters of the variance process ν(t) may be calibrated
similarly to the case of the time-dependent Black-Scholes model. The Heston
parameters are then determined, such that

σAT M (Ti) =
√∫ Ti

0

(
E
[√

ν(t)
])2

d t ,

where σAT M (Ti) is the ATM implied volatility for maturity Ti .
Another classical calibration technique for the Heston parameters is to use

VIX index market quotes 2. With different market quotes for different strike prices
Ki and for different maturities T j , we may determine the optimal parameters by
solving the following equalities, for all pairs (i , j),

Ki , j = ν̄+ ν0 − ν̄
κ(T j − t0)

(
1−e−κ(Ti−t0)) . (3.13)

2VIX stands for the Chicago Board Options Exchange’s Volatility Index.

3

54 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

When the initial values of the parameters have been determined, one can use the
whole implied volatility surface to determine the optimal model parameters. To
conclude, the number of Heston parameters to be calibrated depends on differ-
ent scenarios. The flexibility of our CaNN is that it can handle varying numbers
of to-calibrate parameters.

EFFECT OF TWO COMBINED PARAMETERS

In this section, two parameters are varied simultaneously in order to understand
the joint impact on the objective function. Figure 3.5a presents the landscape
of the objective function, here the logarithm of the MSE, when varying ν0 and κ
but keeping the other parameters fixed in the Heston model. It is observed that
the valley is narrow in the direction of ν0 but flat in the direction of κ. Several
values of these parameters thus result in similar values of the objective function,
which means that there may be no unique global minimum above a certain er-
ror threshold. Furthermore, for ν̄ and κ we observe also a flat minimum, with
multiple local minima giving rise to similar MSEs, see Figure 3.5b.

(a) ν0 vs. κ (b) ν̄ vs. κ

Figure 3.5: Landscape of the objective function for the implied volatility. The true values are κ∗ =
1.0 and ν∗0 = 0.2 in the left plot, and κ∗ = 1.0 and ν̄∗ = 0.2 in the right plot. There are 35 market
samples. The objective function is MSE. The contour plot is rendered by a log-transformation.

A similar observation holds for κ and γ: small values of κ and large γ values
will, in certain settings, give essentially the same option prices as large values of
κ and small γ values. This may give rise to multiple local minima for the objective
function, as shown in Figure 3.6.

3.4. NUMERICAL RESULTS

3

55

Figure 3.6: The objective function when varying γ and κ. The true values are κ∗ = 1.0 and γ∗ =
0.25.

For higher-dimensional objective functions, the structure becomes even more
complex. This is a preliminary study of the sensitivities, and advanced tools are
required for studying the effect of more than two parameters. We will show that
the ANN can be used to obtain the sensitivities for more than two parameters to
present the bigger picture of the dependencies and sensitivities. For this task the
Hessian matrix of the five Heston parameters will be extracted (see Section 3.4.3).

3.4.2. THE FORWARD PASS
In this section, we discuss the forward pass, i.e., Heston-IV-ANN. A relatively
large neural network is chosen so that in the forward pass the network is over-
parametrized in terms of its expressive power and should be able to fit the pricing
model well enough. This in turn comes at the cost of a more expensive computa-
tion, but provides a suitable forward pass to demonstrate that the parallel back-
ward pass, in Section 3.4.3, can handle computation-intensive model calibration
in a fast way. The selected hyper-parameters are listed in Table 3.2. Please note
that increasing the number of neurons or using a deeper structure may lead to
better approximations, but gives rise to an expensive-to-compute network. With
our computing resources, we choose to employ 200 neurons each hidden layer to

3

56 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

balance the calibration speed and accuracy. We use 4 hidden layers and a linear
output (regression) layer, so that the network contains 122,601 trainable param-
eters. MSE is used as the loss function measure to train the forward pass. The
global structure is depicted in Figure 3.7. More details on the ANN solver can be
found in [60] and in the previous chapter.

Table 3.2: Details and parameters of the selected ANN.

Parameters Options
Hidden layers 4

Neurons(each layer) 200
Activation ReLu

Dropout rate 0.0
Batch-normalization No

Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

Figure 3.7: The structure of the ANN.

As a data-driven method, the samples from the parameter set for which the
ANN is trained are randomly generated for the pricing of European options. The
input contains eight variables, and Table 3.3 presents the range of six Heston
input parameters (r , ρ, κ, ν̄, γ, ν0) as well as two option contract-related param-
eters (τ, m), with a fixed strike price K = 1. There are around one million data
points. The complete data set is randomly divided into three parts, with 10% as
the testing set, 10% as validation and 80% as the training data set.

After sampling the parameters, a robust version of the COS method is used
to determine the option prices under the Heston model numerically. The de-
fault setting with LCOS = 50 and NCOS = 1500 will provide highly accurate option
solutions for most of the samples, but it may end up with insufficient precision

3.4. NUMERICAL RESULTS

3

57

in some extreme parameter cases. In such cases, the integration interval [a,b]
will be enlarged automatically, by increasing LCOS until the lower bound a and
the upper bound b have different signs. Subsequently, the Black-Scholes implied
volatility is calculated by Brent’s method.

The option prices are just intermediate variables during training in the for-
ward pass. The overall Heston-IV-ANN solver does not depend on the type of
European option (e.g., call or put), since during the computation of the Black-
Scholes implied volatilities the European options with identical Heston param-
eters should give rise to the same implied volatilities, independent of call or put
prices. The forward pass can handle both call and put implied volatilities with-
out requiring additional efforts. Here we are using European put options, since
the COS method is more robust for pricing put than call options.

Table 3.3: Sampling range for the Heston parameters; LHS means Latin Hypercube Sampling, COS
stands for the COS method (see Chapter 2), and Brent for the root-finding iteration.

ANN Parameters Value Range Generating Method

ANN Input

Moneyness, m = S0/K [0.6, 1.4] LHS
Time to maturity, τ [0.05, 3.0](year) LHS

Risk free rate, r [0.0%, 5%] LHS
Correlation, ρ [-0.90, 0.0] LHS

Reversion speed, κ (0, 3.0] LHS
Volatility of volatility, γ (0.01, 0.8] LHS

Long average variance, ν̄ (0.01, 0.5] LHS
Initial variance, ν0 (0.05, 0.5] LHS

- European put price, V (0,0.6) COS
ANN Output Black-Scholes IV, σ (0,0.76) Brent

The ANN takes as input parameters (r , ρ, κ, ν̄, γ, ν0, τ, m), and approximates
the Black-Scholes implied volatility σ. As mentioned in Table 3.2, the optimizer
Adam is used to train the ANN on the generated data set. The learning rate is
halved every 500 epochs. The training consists of 8000 epochs, both the training
and validation losses have converged. The performance of the trained model is
shown in Table 4.5.

We observe that the forward pass is able to obtain a very good accuracy and
therefore learns the mapping between model parameters and implied volatility
in a robust and accurate manner. The test performance is very similar to the train
performance, showing that the ANN is able to generalize well.

3

58 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

Table 3.4: The trained forward pass performance. The default float type is float32 on the GPU. The

measures are defined as follows: MSE = 1
n

∑
(yi − ŷi)2,MAE = 1

n
∑ |yi − ŷi |,MAPE = 1

n
∑ |yi−ŷi |

yi
,

where y represents the true value, and ŷ represents the predicted value with n being the number
of samples.

Heston-IV-ANN MSE MAE MAPE R2

Training 8.07×10−8 2.15×10−4 5.83×10−4 0.9999936
Testing 1.23×10−7 2.40×10−4 7.20×10−4 0.9999903

3.4.3. THE BACKWARD PASS
We will perform calibration using the CaNN based on the trained ANN from the
previous section and evaluate its performance. We will work with the full set of
Heston parameters to calibrate, but we will also study the impact of reducing the
number of parameters to calibrate, as discussed in Section 3.4.1.

Figure 3.8: The Calibration Neural Network for the Heston model.

The aim is to check how accurately and efficiently the ANN approach can re-
cover the input values. In order to investigate the performance of the proposed
calibration approach, as shown in Figure 3.8, we generate synthetic samples by
means of Heston-IV/COS-Brent, where the ’true’ values of the parameters are
known in advance. In other words, the parameters used to obtain the IV’s from
the COS-Brent’s method, are now taken as output of the backward pass of the
neural network, with σi mp being the input conditional on (K ,τ,S0,r). Differ-
ent financial models correspond to different CaNNs. Here we distinguish the
Heston-CaNN (based on the Heston model, studied in this section), from the
Bates-CaNN (based on the Bates model, studied in Section 3.4.4).

There are 5×7 = 35 ’observed’ European option prices, that are made up of
European OTM puts and calls. As shown in Table 3.5, the moneyness ranges from
0.85 to 1.15, and the maturity times vary from 0.5 to 2.0. Each implied volatility
surface contains moneyness levels (85%, 90%, 95%, 100%, 110%, 115%) and ma-
turities (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0) with a prescribed risk-free interest rate of
3%. The samples with m < 1 correspond to European call OTM options, while

3.4. NUMERICAL RESULTS

3

59

those ones with m > 1 and m = 1 are OTM and ATM put options, respectively.

Table 3.5: The range of market quotes.

- Parameters Range Samples

Market data

Moneyness, m = S0/K [0.85, 1.15] 5
Time to maturity, τ [0.5, 2.0](year) 7

Risk free rate, r 0.03 Fixed
European call/put price, V /K (0.0, 0.6) -

Black-Scholes Implied Volatility (0.2, 0.5) 35

We use the total squared error measure J (Θ) as the objective function during
the calibration,

J (Θ) =∑
ω

(
σANN

i mp −σ∗
i mp

)2 + λ̄||Θ||, (3.14)

where σANN
i mp is the ANN-model-based value and σ∗

i mp is the observed one. We

give a small penalty parameter λ̄ depending on the dimensionality of the cali-
bration3. The forward pass has been trained with implied volatility as the output
quantity, as described in Section 3.4.1. The parameter settings of the DE opti-
mization is shown in Table 3.1.

CALIBRATION TO HESTON OPTION QUOTES

In this section we focus on two scenarios for the Heston model, calibrating ei-
ther three parameters, with a fixed κ and a known ν0, or calibrating five parame-
ters. In order to create synthetic calibration data, we choose five equally-spaced
points between the lower and upper bound for each parameter, and there are
55 = 3125 combination cases in total, as shown in Table 3.6. For each experi-
ment, five different random seeds of DE are tested, because the DE optimization
involves random operations which may cause the performance to fluctuate. In
addition, all quotes have the equal weight ω= 1 in this section.

First, the scenario of three parameters is studied, fixing κ and ν0 during cal-
ibration. We compare the averaged results by implementing each test case five
times. The wording “function evaluation” refers to how many times the model
has been compared to the observed implied volatility. The population size in the
DE is 15×Nv , that is, 15×3 = 45. With the population ratio increasing further, no
significant benefits were observed. As shown in Table 3.7, the time on the GPU is
around half of that on the CPU.

3When calibrating three parameters, we set λ̄ to zero. When calibrating more than three parame-
ters, λ̄ is a small value 1.0×10−6, which is close to the MSE of the trained ANN. In this case, the
regularization term only has a limited effect on the objective function during calibration.

3

60 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

Table 3.6: Uniformly distributed points between the lower and upper bounds of the Heston pa-
rameters.

parameter lower upper points CaNN search space
ρ -0.75 -0.25 5 [-0.85,-0.05]
ν̄ 0.15 0.35 5 [0.05, 0.45]
γ 0.3 0.5 5 [0.05, 0.75]
ν0 0.15 0.35 5 [0.05, 0.45]
κ 0.5 1.0 5 [0.1, 2.0]

Table 3.7: Averaged performance of the backward pass of the Heston-CaNN, calibrating 3 param-
eters on a CPU (Intel i5, 3.33GHz with cache size 4MB) and on a GPU (NVIDIA Tesla P100), over
3125×5 (random seeds) test cases, where † stands for CaNN estimated value, and ∗ stands for the
true value, with MJ = J (Θ)/N .

Absolute deviation fromΘ∗ Error measure Computational cost

|v̄† − v̄∗| 1.60×10−3 J (Θ) 1.45×10−6 CPU time (seconds) 0.29

|γ† −γ∗| 1.79×10−2 MJ 4.14×10−8 GPU time (seconds) 0.15

|ρ† −ρ∗| 2.44×10−2 Data points 35 Function evaluations 59221

In the case of five parameters (ρ, ν̄,γ,ν0,κ), the calibration problem is more
likely to give rise to a many-to-one problem; that is, many sets of parameter
values may correspond to the same volatility surface. A regularization factor
λ̄= 1.0×10−6 is added to guide CaNN to a set of values for which the sum of their
magnitudes is the smallest among the feasible solutions, as shown in Equation
(3.4). Here the DE population size is 50 = 10×5 parameters. As shown in Table
3.8, the Heston-CaNN finds the values of these parameters in approximately 0.5
seconds on a GPU, with around 20,000 function evaluations. There are several
reasons why the CaNN with DE performs fast and efficiently. First of all, the for-
ward pass runs faster compared to a two-step computation from the Heston pa-
rameters to the implied volatilities, since an iterative root-finding algorithm for
the implied volatility takes some computing time. In addition, the entire group
of observed data can be evaluated at once in the framework. Other benefits come
from the acceleration due to the parallelized DE optimization, where the whole
population is computed simultaneously in the selection stage.

3.4. NUMERICAL RESULTS

3

61

Table 3.8: Performance of Heston-CaNN, calibrating 5 parameters on a GPU, over 3125×5 (random
seeds) test cases.

Absolute deviation fromΘ∗ Error measure Computational cost

|ν†
0 −ν∗0 | 4.39×10−4 J (Θ) 2.52×10−6 CPU time (seconds) 0.85

|ν̄† − ν̄∗| 4.54×10−3 MJ 7.18×10−8 GPU time (seconds) 0.48

|γ† −γ∗| 3.28×10−2 Function evaluations 193249

|ρ† −ρ∗| 4.84×10−2 Data points 35

|κ† −κ∗| 4.88×10−2

SENSITIVITY ANALYSIS BASED ON ANNS

The gradients of the objective function can be extracted from the trained model,
as mentioned in Section 3.3.1. These can be used to gain some insights into the
complex structure of the loss surface and thus into the complexity of the opti-
mization problem for calibration. We use here the Hessian matrix, which de-
scribes the local curvature of the loss function. No explicit formula is available for
the relations the neural network learns between the implied volatilities and the
model parameters, however, it is feasible to extract the Hessian from the trained
ANN, giving insight into this relation and the sensitivities. Table 3.9 shows a Hes-
sian matrix, where the Hessian is defined as ∂yi y j L(Θ), where yi and y j are out-
put of the neural network (y ∈Θ, the to-be calibrated parameters). The Hessian
is computed by differentiating the Heston-IV-ANN loss for computing the Black-
Scholes implied volatility with respect to the Heston parameters on 35 market
data points based on the parameter ranges in Table 3.5. Here the objective func-
tion is the MSE to exclude the effects of a regularization factor.

Table 3.9: A Hessian matrix at the true value setΘ∗.

∂ρ ∂κ ∂γ ∂ν̄ ∂ν0

∂ρ 2.79×10−2 – – – –
∂κ 1.14×10−2 8.20×10−3 – – –
∂γ -2.88×10−2 -1.76×10−2 4.11×10−2 – –
∂ν̄ 7.45×10−2 5.51×10−2 -1.19×10−1 3.76×10−1 –
∂ν0 2.16×10−1 1.27×10−1 -3.10×10−1 8.77×10−1 2.66

We can understand how the parameters affect the loss surface around the
optimum with help of the Hessian matrix, by analyzing the sensitivities of the
implied volatility with respect to the five parameters. Observe that the value of

3

62 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

the Hessian with respect to κ is the smallest among the sensitivities. As shown in
Table 3.9, the ratio between ∂2 J (Θ∗)/∂ν2

0 and ∂2 J (Θ∗)/∂κ2 is around 323, which
suggests that changing 1 unit of ν0 is approximately equivalent to changing 323
units of κ for the objective function. When the Hessian value is small in abso-
lute value, the loss surface at that point exhibits flatness in the corresponding
direction. As visible in Figure 3.5, the ground-truth loss surface gets increas-
ingly stretched along the axis with κ, resulting in a narrow valley with a flat bot-
tom. This also indicates that there is no unique global minimum above a cer-
tain non-zero convergence tolerance, since multiple values of κ would result in
similar values of the loss function. In addition, the convergence performance,
especially for the steepest descent method, depends on the ratio of the small-
est to the largest eigenvalue of the Hessian; this ratio is also known as the con-
dition number in the case of symmetric positive matrices. The ratio between
∂2 J (Θ∗)/∂ν̄2 and ∂2 J (Θ∗)/∂κ2 is around 45, as visible in Figure 3.5b. From the
results in [74], when the target quantity is based on the option prices, this ra-
tio between ∂2 J (Θ∗)/∂ν̄2 and ∂2 J (Θ∗)/∂κ2 is sometimes found to be of order 106,
which makes the calibration problem increasingly complex due to a great dispar-
ity in sensitivity. Calibrating to the implied volatility appears to reduce the ratio
between different Hessian entries compared to the option prices, thus decreas-
ing Hessian’s condition number and resulting in a more efficient and accurate
calibration performance.

Table 3.9 also suggests that the entries |∂2 J (Θ∗)/∂κ2| and |∂2 J (Θ∗)/∂ρ2| are
among the smallest ones around the optimum. These two parameters thus have
the smallest effect on the objective function. Therefore, the DE method can con-
verge to values that are in a wide area of the search space, since these param-
eters do not impact the error measure significantly. A straightforward way to
address this issue is by adding a regularization term to choose a particular solu-
tion, for example, like Equation (3.14). Another way is to take advantage of the
population-based algorithm DE. Since there are several candidates in each gen-
eration, we can select the top few candidates to get an averaged solution when
DE converges. This averaged solution may lead to wider optima and better ro-
bustness. Some recent papers, like [75] have used similar ideas to improve the
generalization of the neural network. The parameter ν0 is the most sensitive one
and it appears to dominate the ANN calibration process. Therefore, the predicted
parameter ν0 is the most precise among all parameters in order to achieve the
desired accuracy.

The above analysis explains the behavior of the absolute deviation of the five
parameters as shown in Table 3.8. The error measure MJ can not drop signif-
icantly below 7.18 × 10−8, as this value is close to the testing accuracy, MSE=
1.23 × 10−7, of the Heston-IV-ANN model. In other words, any further explo-

3.4. NUMERICAL RESULTS

3

63

ration of the DE optimization can not distinguish the parameters impact on the
loss anymore.

3.4.4. THE BATES MODEL
In this section, we compute the option prices using the Bates model. First, we
use Bates to simulate the quotes in the market data and evaluate Heston-CaNN.
Second, we develop Bates-CaNN to generate more complex shapes of implied
volatility curves.

CALIBRATION TO BATES QUOTES

In this section, the Bates model is employed to create the synthetic market data,
in order to generate a more realistic (complex) volatility shape by adding some
’perturbations’ to the previous Heston data. It is then followed by a calibration
based on the Heston model. The aim is to check whether the resulting implied
volatilities can be recovered by the machine learning calibration framework.

So, the observed data set in Table 3.10 is from the Bates option prices. During
the calibration, we will employ the backward pass based on the Heston model to
determine a set of parameter values which approximate the generated implied
volatility function.

There are two sets of experiments, based on either rare jumps or common
jumps in the stock price process. Figure 3.9 compares the implied volatility from
the Bates model (forward) computations and the CaNN-based Heston implied
volatilities. Clearly, when the impact of the jumps is small, the Heston model can
accurately mimic the implied volatility generated by the Bates parameters. In
this case, many different input parameters for the Bates model will give very sim-
ilar implied volatility surfaces. With an increasing jump intensity, the deviation
between the two models can become significant, especially for short maturity
options.

In financial practice, a perfect calibration to the ATM options is often re-
quired. We can enforce this, by increasing the weights of the ATM options in the
objective function. The third figure from Figure 3.9 and Table 3.10 both compare
the differences when the ATM options in the objective function are weighted.
The two curves fit very well ATM, however, in this case the total error increases
with unequal weighting. The results demonstrate the robustness of the CaNN
framework. It is however well-known that the Heston model can not fit short-
maturity market implied volatility very well, and therefore we will also employ a
higher-dimensional model, e.g., calibrating directly the Bates model, which will
be discussed in the next section.

3

64 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

Table 3.10: The Heston parameters are estimated with the CaNN by calibrating to a data set gener-
ated by the Bates model. ’Ground total squared error’ refers to the sum of the differences between
σ∗

i mp andσi mp , whereσi mp is obtained using the COS and Brent methods with already calibrated

Heston parameter values. For a single calibration case, the computing time fluctuates slightly, as
the CPU or GPU performance may be influenced by external factors. Function evaluations should
be a reliable measure to estimate the time.

– Calibration Rare Jump Common Jump Weighting ATM
Parameters Search space Bates Heston Bates Heston Bates Heston

Intensity of jumps, λJ - 0.1 - 1.0 - 1.0 -
Mean of jumps, µJ - 0.1 - 0.1 - 0.1 -

Variance of jumps, ν2
J - 0.12 - 0.12 - 0.12 -

Correlation, ρ [-0.9, 0.0] -0.3 -0.284 -0.3 -0.135 -0.3 -0.164
Reversion speed, κ [0.1, 3.0] 1.0 1.140 1.0 1.050 1.0 1.205

Long variance, ν̄ [0.01, 0.5] 0.1 0.100 0.1 0.120 0.1 0.114
Volatility of volatility, γ [0.01, 0.8] 0.7 0.728 0.7 0.701 0.7 0.604

Initial variance, ν0 [0.01, 0.5] 0.1 0.103 0.1 0.119 0.1 0.115

Function evaluations CaNN - 162890 - 155680 - 258300
Time(seconds) GPU - 0.45 - 0.40 - 0.7

Total Squared Error Ground - 1.38×10−6 - 5.19×10−6 - 5.95×10−5

CALIBRATING THE BATES MODEL

Next we show the ability of Bates-CaNN to calibrate the Bates model parameters.
The Bates model calibration is a higher-dimensional problem, since the Bates
model is based on more parameters than the Heston model. The proposed CaNN
framework is used to calibrate eight parameters in the Bates model, a setting in
which we are dealing with more complex implied volatility surfaces.

Initially, the Bates-IV-ANN forward pass is trained on the training data set
consisting of one million samples that are generated by the Bates model. Com-
pared to the forward pass of the Heston model, merely a different characteristic
function is inserted in the COS method, and three additional model parameters
have been varied. The Bates-CaNN is employed to calibrate the Bates model,
aiming to recover the eight Bates model parameters possibly well. All the sam-
ples have equal weight, and the regularization factor is λ̄= 1.0×10−6.

Table 3.11 shows an example with high intensity, large variance jumps, for
which the Heston model can not capture the corresponding implied volatility ac-
curately. There are still 35 market samples as shown in Table 3.5. Estimating eight
parameters is a challenging task, including very many comparisons between the
model and the market values during calibration.

Figure 3.10 compares the implied volatilities from the synthetic market and
the calibrated Bates model. These volatilities resemble each other very well, even
when the curvature is high with short time to maturity.

3.5. CONCLUSION

3

65

spot/strike price

0.85 0.9 0.95 1 1.05 1.1 1.15

im
p

lie
d

 v
o

la
ti
lit

y

0.27

0.28

0.29

0.3

0.31

0.32

0.33
time=0.5

time=0.8

time=1.0

time=1.5

time=2.0

(a) rare jump, equal weighting

spot/strike price

0.85 0.9 0.95 1 1.05 1.1 1.15

im
p
lie

d
 v

o
la

ti
lit

y

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345
time=0.5

time=0.8

time=1.0

time=1.5

time=2.0

(b) common jump, equal weighting

spot/strike price

0.85 0.9 0.95 1 1.05 1.1 1.15

im
p

lie
d

 v
o

la
ti
lit

y

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345
time=0.5

time=0.8

time=1.0

time=1.5

time=2.0

(c) common jump, ωAT M = 5000

Figure 3.9: Implied volatilities from the ’market’ and calibration. The solid lines represent the
Bates implied volatilities, while the dashed lines are the calibrated Heston-based volatilities. The
impact of weighting ATM options can be seen in the third figure.

3.5. CONCLUSION

In this chapter we proposed a machine learning-based framework to calibrate
pricing models, in particular focusing on the high-dimensional calibration prob-
lems of the Heston and Bates models. The proposed approach has several fa-
vorable features, where an important one is robustness. Without choosing spe-
cific initial values, the DE global optimizer prevents the model calibration getting
stuck in a local minimum.

Fast calibration results from several factors. An ANN is efficient in comput-
ing the output values for a single input setting. When calibrating, the market data
can be computed by ANNs simultaneously. Using DE, during the selection stage,
ANNs can calculate a whole population in each generation at once, in parallel on
a parallel computing architecture. The numerical experiments show that opti-

3

66 3. CANN FOR MULTIPLE DIMENSIONAL PRICING MODELS

Table 3.11: The Bates parameters are estimated with Bates-CaNN, by calibrating to a data set (35
samples) generated by the Bates model. In DE, the random seed is 2 and the population size is
10×Nv = 80.

Parameters CaNN Search space Bates Calibrated
Intensity of jumps, λJ [0, 3.0] 1.0 1.065

Mean of jumps, µJ [0, 0.4] 0.1 0.087
Variance of jumps, ν2

J [0, 0.3] 0.160 0.146

Correlation, ρ [-0.9, 0.0] -0.3 -0.228
Reversion speed, κ [0.1, 3.0] 1.0 0.598

Long average variance, ν̄ [0.01, 0.5] 0.1 0.128
Volatility of volatility, γ [0.01, 0.8] 0.7 0.776

Initial variance, ν0 [0.01, 0.5] 0.1 0.102
Total Squared Error - - 4.95×10−6

Function evaluation - - 842800
Time(seconds) - - 1.8

spot/strike price

0.85 0.9 0.95 1 1.05 1.1 1.15

im
p
lie

d
 v

o
la

ti
lit

y

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

time=0.5

time=0.8

time=1.0

time=1.5

time=2.0

Figure 3.10: The solid lines represent the observed implied volatilities, with the dashed lines being
the model calibrated ones. This plot shows the result with equal weights and λ̄ = 1.0×10−6. The
random seed is 2 during calibration.

mal values can be found within a second even when using a global optimization
algorithm.

3.5. CONCLUSION

3

67

The ANN-based approach provides new tools to gain insight into the cali-
bration problem. We used the Hessian matrix to perform a sensitivity analysis,
where the sensitivities can efficiently be extracted for large numbers of model
parameters. The Hessian matrix also explained why implied volatility, used in
our work, is preferred over option prices, used in previous works, from an opti-
mization perspective.

The calibration framework furthermore is generic, and does neither require
characteristic functions, nor explicit gradients of financial models. The number
of market data or to-calibrate parameters is also flexible. With this framework,
the model can be extended to multiple quantities, e.g., calibrating to both option
prices and implied volatility. To conclude, the ANN combined with DE provides
an efficient and accurate framework for calibrating financial models.

To look forward, the above ANN calibration process does not rely on the qual-
ity of the initial guess. However, because the market does not change dramati-
cally in a short time period, it may make sense to take the last available values
as starting points of the calibration. There are several possible strategies for the
calibration framework in this situation. One is switching to the gradient-based
local optimization algorithms and another one is narrowing the search space of
the DE, which will further reduce the computational time considerably. Further
future improvements include combining gradient-based optimization with the
DE, since the gradient information is readily accessible. It is also feasible to em-
ploy a small neural network to reduce the computing time, like in the paper [63]
which builds a three-hidden-layers ANN and each layer has 30 nodes during the
calibration.

Finally, a follow-up paper recently appeared by researchers from Germany,
see [76], which used our proposed CaNN to calibrate financial models on the
basis of real observed market data, and they achieved highly competitive results.
We also extended the CaNN ourselves to calibrate so-called rough volatility mod-
els, see the MSc thesis [77].

4
EXTRACTING IMPLIED

INFORMATION FROM AMERICAN

OPTIONS

Extracting implied information, like volatility and dividend, from observed op-
tion prices is a challenging task when dealing with American options, because of
the complex-shaped early-exercise regions and the computational costs to solve the
corresponding mathematical problem repeatedly. We will employ a data-driven
machine learning approach to estimate the Black-Scholes implied volatility and
the dividend yield for American options in a fast and robust way. To determine the
implied volatility, the inverse function is approximated by an artificial neural net-
work on the computational domain of interest, which decouples the offline (train-
ing) and online (prediction) stages and thus eliminates the need for an iterative
process. In the case of unknown dividend yield, we formulate the inverse problem
as a calibration problem and determine simultaneously the implied volatility and
dividend yield. For this, a generic and robust calibration framework, CaNN as in-
troduced in Chapter 3, is used to estimate multiple parameters. It is shown that
machine learning can be used as an efficient numerical technique to extract im-
plied information from American options, particularly when considering multiple
early-exercise points due to negative interest rates.

This chapter is based on the article ’On a neural network to extract implied information from
American options’, submitted for publication.

69

4

70 4. CANN FOR AMERICAN OPTIONS

4.1. INTRODUCTION
So-called implied financial information, which is obtained from financial deriva-
tives prices, is useful information for risk management, for the valuation of other
financial derivatives, for hedging, and forecasting [78, 79]. Different from histori-
cal volatility (which is computed from past known asset prices), implied volatility
(which is computed from the market option prices) reflects the market implied
uncertainty in the underlying asset prices. Similarly, implied dividend can be
seen as a measure which indicates how much market participants expect an as-
set price will be reduced under the so-called pricing, or risk-neutral, measure.
Compared to implied volatility, the implied dividend is typically a relatively weak
signal, but there are several applications for the implied dividend information.
An accurate implied dividend yield may result in accurate theoretical option val-
ues, Greeks and implied volatilities. One may choose a specific trading strategy
according to the difference between the market implied and announced actual
dividends, see [80]. The authors in [79, 81, 82] give evidence for the fact that im-
plied dividends are a significant factor for forecasting actual dividend changes.
In other words, implied dividend is shown to have important predictive power
compared to historical dividends.

American options, i.e. options with early-exercise features, are commonly
traded. The underlying asset may be any financial asset, such as currencies,
commodities, bonds, stocks, and so on. With American options, the holder has
the right (but not the obligation) to exercise the contract at any time before the
contract’s expiry, whereas a European option can only be exercised at the ex-
piry time. Computing the implied volatility and implied divided from observed
European option prices has often been addressed in the literature, for example,
in [34–36, 80]. The computation of American option prices is generally more ex-
pensive than pricing European options, because of early-exercise features. De-
riving the implied information from American option values is therefore also a
more challenging task [83–86].

There are different ways to compute implied information. For European op-
tions, a closed-form expression may be derived, for example, to approximate the
implied volatility in certain parameter ranges, see [34–36]. Such expressions are
typically based on a Taylor series expansion and on the analytical solution of the
European option pricing model. One of the drawbacks, however, is that the re-
sulting formulas are only accurate near ATM, and may give rise to inaccurate
implied volatility values for deep ITM and OTM options. To estimate the implied
dividend, a popular way is by means of the put-call parity, which holds, how-
ever, only for European options, and is not valid for American options due to the
early-exercise premium [80, 81]. A second approach is by formulating the com-
putation of the implied information as a minimization problem, which is then

4.1. INTRODUCTION

4

71

based on an iterative search technique. Traditionally, this methodology requires
the repeated solution of the American option pricing problem before reaching
the stop criterion. Under a minimization framework, there are essentially two
popular approaches of determining the American option implied volatility. The
first one is by means of a de-Americanization technique, which translates an
American option price into the corresponding European prices [83, 84, 87]. Sig-
nificant pricing errors may arise due to inaccurate incorporation of the early-
exercise premium. The higher the early-exercise premium, typically the larger
the error can get. Taking dividends into consideration may further increase the
error of the de-Americanization technique. A second approach is to conduct a di-
rect calibration of the American pricing model, see [83, 85, 86, 88, 89]. Unlike the
European options, the derivative of the option value with respect to the volatil-
ity does not have a closed-form expression in the case of American options. In
addition, other complicating factors, such as a negative interest rate [90], may
lead to a complex-shaped early-exercise region (e.g. we may encounter different
continuation regions)[91].

Recently, artificial neural networks have been emerging as advanced com-
putational techniques to obtain solutions to possibly complicated problems in
computational finance, for example, in [22, 92–96]. We refer to [97] for a review.
Nowadays, deep neural networks are also used to speed up the computation of
prices and sensitivities of American options, see [98–101]. To date, those neu-
ral network-based algorithms have not been computationally efficient to enable
fast American option model calibration.

In order to accelerate the time-consuming solution of the American option
pricing model, we can take advantage of supervised learning of ANNs. Train-
ing ANNs to learn the implied information from observed option prices is non-
trivial. For example, the steep gradient of implied volatility with respect to the
option price may cause inaccurate ANN results [92]. Moreover, in the early-
exercise region, the American option price and the volatility are not bijective,
as the gradient of the option price with respect to volatility, Vega, equals zero in
the early-exercise region. A robust, global optimization plays an important role
when exploring the solution space. Consequently, the ANN efficiency may suf-
fer due to the global optimization. In Chapter 3 we proposed a neural network-
based calibration framework, i.e., the Calibration Neural Network (CaNN), to ad-
dress the speed issue of model calibration with a global optimization algorithm.
A recent study [76] shows that the CaNN can achieve a competitive performance
when dealing with real market data. Usually, however, the implied dividend yield
is also unknown, so that there are two open implied model parameters to deter-
mine, see for example, [102, 103].

In this work, we will employ the CaNN to extract implied information from

4

72 4. CANN FOR AMERICAN OPTIONS

American option prices. Negative interest rates as well as a negative dividend
yield are taken into consideration to cover a broad variety of market conditions.
We thus propose a data-driven machine learning method to address the Ameri-
can option implied information. More specifically, the proposed CaNN is com-
posed of three components, an efficient option pricing method, a global opti-
mization technique and an implementation which runs efficiently on a parallel
computing platform. There are two separate stages in CaNN, the forward pass to
learn the pricing model and the backward pass to estimate the model parame-
ters. Here the forward pass of CaNN will give us two output quantities, American
put and call prices, which originate from one ANN. When a dividend yield is al-
ready known, the ANN simplifies as it can be used to computing the American
option implied volatility by directly approximating the inverse function. In such
case, an iterative numerical method is not needed.

The remainder of this chapter is organized as follows. In Section 4.2, the
mathematical American option pricing models are introduced. Furthermore, in
Section 4.2.3, the implied volatility and implied dividend yield from American
options are discussed. In Section 4.4, we describe the data-driven ANN to extract
implied information from American options. When a dividend yield is known,
the CaNN simplifies as it can be used to computing the American option implied
volatility by directly approximating the inverse function. In such case, an itera-
tive numerical method is not needed. When the dividend yield is known, we can
use the ANN to approximate the inverse function. In other cases, the CaNN is
employed to determine both the implied dividend and implied volatility. In Sec-
tion 4.5, numerical experiments are presented to demonstrate the performance
of the proposed methods.

4.2. AMERICAN OPTIONS
In this section we will discuss the mathematical model used to price the Ameri-
can options, and the implied information in market option prices.

4.2.1. PROBLEM FORMULATION
Although other pricing models would easily fit into our framework, for clarity we
will concentrate on the Black-Scholes pricing framework. The underlying asset
price thus follows a Geometric Brownian Motion (GBM) process, under the risk-
neutral measure,

dS(t) = (r −q)S(t)d t +σS(t)dW (t), S(0) = S0, (4.1)

where S(t) is the underlying spot price at time t , and σ is the volatility param-
eter and W (t) a Wiener process under the risk-neutral measure, S0 the starting

4.2. AMERICAN OPTIONS

4

73

point at time t = 0. The two parameters r and q can be interpreted in different
ways. For example, r and q are the risk-less interest rate and dividend yield, re-
spectively, for stocks. In the context of currencies, r and q may be two different
interest rates, and q would represent the cost of carry in the case of commodities.
In this chapter, we stay with a stock option description, for convenience, but we
will also discuss q < 0, which is found in commodity modeling. With a risk-less
asset B(t),

dB(t) = r B(t)d t , (4.2)

the arbitrage-free value of an American option at time t is given by

Vam(t ,S) = sup
u∈[0,T]

E
Q
t [e−r (T−t)H(K ,S(u))|S(u)], (4.3)

where H(·) is the payoff function, with strike price K ; EQt represents the expec-
tation under the risk-neutral measure Q, with T being the maturity time. An
optimal exercise boundary S∗

t ≡ S∗(t), which depends on the time to maturity
T − t , divides the domain into early-exercise (stopping) regions Ωs and contin-
uation (or holding) regions Ωh . In general, early-exercise will be triggered when
the discounted expected value drops below the value of exercising the option.

As an American option can be exercised anytime before the expiry time, a
corresponding early-exercise premium should be added to the European option
counterpart. For example, an American put option [104] can be decomposed
into the corresponding European put price and the early-exercise premium, i.e.,

V P
am(t ,S) = EQt [e−r (T−t) max(K −S(T),0)]+

∫ T

t
E
Q
u [(r K −qS(u))1{S(u)∈Ωs }]du,

(4.4)
where Ωs represents the stopping region, and the whole domain is Ω =Ωs +Ωh

with Ωh being the holding region. The first term in Equation (4.4) is indeed
equivalent to the European Black-Scholes put solution. The above problem can
be formulated as a Black-Scholes inequality, on a domainΩwith a free boundary
S∗

t . At the free boundary, we have,

Vam(t ,S∗
t) = H(K ,S∗

t),
∂Vam

∂S
=α, (4.5)

where α = 1 for American calls, α = −1 for American puts, and S(t)∗ is the as-
set price for which the option value equals the payoff function. For American
put options, the payoff function equals H(K ,S(t)) = max(K −S(t),0). The above
conditions at the free boundary can be used to distinguish continuation from
stopping regions, and we will use these conditions in Section 4.4.2. In this chap-
ter, the American Black-Scholes solution and corresponding pricing model are
denoted by Vam = BSam(σ,S,K , t ,T,r, q,α), with the time to maturity τ := T − t .

4

74 4. CANN FOR AMERICAN OPTIONS

4.2.2. THE PUT-CALL SYMMETRY
The put-call symmetry relation holds for both European options and American
options, and is given by,

V P (t ,S;K ,T,σ,r, q) =V C (t ,K ;S,T,σ, q,r). (4.6)

The above relation allows us to value a call or put option by means of its coun-
terpart, where the role of stock and cash values is interchanged. By swapping
the strike with the spot price and the interest rate with the dividend yield, an
American call value equals the corresponding American put. The relationship
is also valid under negative discount rates [91]. Because with Equation (4.6) we
can get two option prices from one computation, only one function evaluation
is required to compute American call and put prices. We will focus on American
put options in the following sections, and compute American call options using
the put-call symmetry relation.

There are two types of computational regions when dealing with American
options, the continuation (or holding) and the early-exercise (or stopping) re-
gion. The continuation region boundaries are not known a-priori. Figure 4.1
illustrates the difference between European and American Black-Scholes option
solutions, with two sets of parameters. The American put option price, in the
case of no dividend payment, should not be less than the put payoff, while the
value of a European put option may be less than the payoff before expiry. In Fig-
ure 4.1, there only appears one early-exercise point.

stock/strike

0 0.5 1 1.5 2

O
p
ti
o
n
 p

ri
c
e

0

0.2

0.4

0.6

0.8

1

1.2
Call payoff

American Call

European Call

Put payoff

American Put

European Put

(a) r > q

stock/strike

0 0.5 1 1.5 2

O
p
ti
o
n
 p

ri
c
e

0

0.2

0.4

0.6

0.8

1

1.2
Call payoff

American Call

European Call

Put payoff

American Put

European Put

(b) r < q

Figure 4.1: Left: American vs. European Black-Scholes put and call option prices (r > q): r = 0.10,
q = 0.04. Right: American vs. European Black-Scholes put and call option prices (r < q): r = 0.04,
q = 0.10. The option values are at initial time t = 0.0, with the expiry time T = 1.5, volatilityσ= 0.4.

However, two continuation regions may arise, when both the interest rate
and dividend yield become negative [91, 105] in the case of American options.

4.2. AMERICAN OPTIONS

4

75

Figure 4.2 presents an American put solution with two early-exercise points, so
that the continuation regions are discontinuous. There are several reasons why
we consider a negative dividend yield in our pricing model. The interest rate
may be negative in practice. When we use the put-call symmetry to compute
American calls by means of puts (the counterpart), we switch the interest rate
and the dividend yield in the pricing equation. For that reason, the dividend yield
may also be negative in the corresponding formula. An American Black-Scholes
model is also used in foreign exchange or commodity markets, where negative q
may be interpreted from an economic point-of-view.

Stock price

0 0.5 1 1.5 2

O
p
ti
o
n
 p

ri
c
e

0

0.2

0.4

0.6

0.8

1

1.2
Pay off

European Put

American Put

Figure 4.2: The setting: r =−0.01, q =−0.06, σ= 0.2, T = 20, K = 1.0. The option value in the solid
black line hits the payoff function twice. The stopping region is between the two early-exercise
points.

4.2.3. IMPLIED VOLATILITY AND DIVIDEND YIELD
The information implied in option prices provides participants’ expectations about
future market conditions. We will discuss the implied volatility and implied div-
idend yield.

IMPLIED VOLATILITY

Implied volatility represents a specific measure of the future uncertainty from
the market point of view. Mathematically, the implied volatility of an option is
the level of volatility which, when inserted in the (Black-Scholes) pricing model,
makes the market and model prices match. In that sense, the implied volatil-
ity computed from market option prices is viewed as an indication for the look-

4

76 4. CANN FOR AMERICAN OPTIONS

forward uncertainty of the underlying asset prices as estimated by market par-
ticipants.

Computing the implied volatility can be formulated as an inverse problem.
The American option’s implied volatility is then written as,

σ∗ = BS−1
am(V mkt

am ;S,K , t ,T,r, q,α), (4.7)

where BS−1
am(·) denotes the inversion of the American Black-Scholes pricing prob-

lem, and V mkt
am is an American option price observed in the market, with S being

the underlying asset spot price at time t .
One often solves the implied volatility problem by means of a nonlinear root-

finding method, and employs an iterative algorithm to obtain its solution. Given
an American option market price, the implied volatilityσ∗ is determined by solv-
ing the following

V mkt
am −BSam(σ∗;S,K , t ,T,r, q,α) = 0. (4.8)

Existence of σ∗ can be guaranteed by the monotonicity of the Black-Scholes
equation with respect to the volatility in the holding region. Unlike for Euro-
pean options, a closed-from expression for the derivative of the American option
value with respect to the volatility is not available. Various solutions have been
proposed to solve the implied volatility of American options, see, for example,
[83, 85, 86, 88]. As stated in [86], these solutions may have difficulties especially
with deep in-the-money options. One of the reasons is that option prices are
insensitive to the underlying volatility deep in the money. Gradient-free meth-
ods, like bisection, do not rely on gradient information, but they may converge
slowly because of the stopping regions. An important aspect when extracting
the implied volatility is that the derivative of the option price with respect to the
volatility, the option’s Vega, becomes zero in the stopping region for American
call and put options. It is well-known that,

|∆| = |∂Vam

∂S
| = 1, Vega = ∂Vam

∂σ
= 0. (4.9)

In other words, the American option prices do not depend on the volatility in the
stopping regions. As shown in Figure 4.3, Vega is positive in the holding region
and zero in the stopping region. Consequently,

∂σ

∂Vam
= 1

Vega
→∞.

When we invert the American Black-Scholes pricing problem in the stopping re-
gions, there is no unique solution for the implied volatility. Therefore, the defini-
tion domain of Formula (4.7) should be the continuation region.

4.2. AMERICAN OPTIONS

4

77

Remark. When gradient-based minimization algorithms (e.g. Newton’s method)
are used to extract implied information, an initial guess for the solution has to be
specified. An inappropriate starting point may cause the algorithm to fall into a
“different” continuation region from the “envisioned” region. Special rules have
to be designed to help the algorithm reach the “correct” continuation region and
explore the solution space. This makes it challenging to define a suitable starting
point for the minimization algorithm when inverting the pricing model.

stock/strike
0 0.5 1 1.5 2

V
e

g
a

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

stopping region holding region

Figure 4.3: The Vega for American puts in different regions. The strike price is K = 1.0.

In our approach, we will use the ANNs to approximate the inverse function of
Formula (4.7) on the continuation region, without relying on any iterative tech-
nique, which will be explained in Section 4.4.2.

IMPLIED DIVIDEND

Many companies pay a share of the stock value to the share holder on the ex-
dividend date, which causes the stock price to drop. The option prices are also
impacted by the changes in the underlying stock price. Generally, option prices
may rise (in the case of the put) or drop (the call) slightly due to the dividend
payment. This dividend is called the actual dividend (denoted by δ), while im-
plied dividend reflects how the market anticipates future dividend payments of
stocks. It is extracted from option prices, and thus a quantity under the risk-
neutral measure.

The difference between actual dividends and implied dividends is similar to
that between historical and implied volatility. The two parameters reflect differ-
ent market aspects. An implied dividend may be modeled by means of multiple
components, for example,

q = εr +δ+b, (4.10)

4

78 4. CANN FOR AMERICAN OPTIONS

where εr reflects the difference between the employed and the market interest
rate, δ the historical dividend and b the borrowing costs of the underlying asset.
Some companies do not pay dividends, but the corresponding options still imply
a non-zero dividend, which may reflect the borrowing level of the stock, see [80].
The borrowing costs are seen as a factor that influences the implied dividend as
a function of the time or the strike price.

Our approach is to estimate implied dividend and implied volatility at the
same time, assuming the implied dividend is not constant over strike prices [89].
In the case of European stock options, the implied dividend can be estimated by
the put-call parity relation [80],

V C
eu(t ,S)−V P

eu(t ,S) = S(t)e−qτ−K e−rτ, (4.11)

so that,

q =−1

τ
log(

V C
eu −V P

eu +K e−rτ

S(t)
). (4.12)

For American options, the put-call parity does not hold. In certain works [80,
81] the authors employ Formula (4.12) to roughly estimate the implied dividend
yield for American options. Obviously, this may result in inaccuracies when the
put-call parity deviation gets large.

In order to eliminate this error, the authors in [106] take the early-exercise
premium (EEP) into account for American options. For example, V C

am = V C
eu +

∆V C and V P
am = V P

eu +∆V P , where ∆V C and ∆V P stand for the American call
and put early-exercise premiums, respectively. Given the early-exercise premi-
ums ∆V C and ∆V P , Equation (4.11) can be used to calculate the implied divi-
dend yield from the American option prices. A requirement is that the American
and European options are available, under the same parameter set. It is however
usually not easily possible to deduce the early-exercise premiums from market
option prices.

Next we will numerically investigate how early-exercise premiums affect the
put-call parity. As mentioned, the American option price can be viewed as the
sum of two components, the corresponding European option price and the early-
exercise premium. Let f (S(u);S(t)) be the transition density function of S(u)
conditional on S(t) for u ≥ t . Then, Equation (4.4) can be rewritten as follows [107],

V P
am(t ,S) =e−r (T−t)

∫ K

0
(K −S(T)) f (S(T);S(t))dS(T)

+
∫ T

t
e−r (u−t)

∫
Ωs

(r K −qS(u)) f (S(u);S(t))dS(u)du

=V P
eu(t ,S)+∆V P ,

(4.13)

4.2. AMERICAN OPTIONS

4

79

with constant r and q , and where Ωs is the stopping region. If the holder of an
American put chooses to exercise the put option in the case of S(u) being in the
stopping region, he/she would gain interest r K d t from the cash received, and
lose dividend qS(t)d t from selling the asset. Similarly, the American call price is
made up of two components,

V C
am(t ,S) =e−r (T−t)

∫ ∞

K
(S(T)−K) f (S(T);S(t))dS(T)

+
∫ T

t
e−r (u−t)

∫
Ωs

(qS(u)− r K) f (S(u);S(t))dS(u)du

=V C
eu(t ,S)+∆V C .

(4.14)

Equations (4.13) and (4.14) can be substituted into the European put-call par-
ity,

(V C
am −∆V C)− (V P

am −∆V P) = S(t)e−qτ−K e−rτ,

and the deviation from the put-call parity is found to be,

∆V C −∆V P =V C
am −V P

am −S(t)e−qτ+K e−rτ. (4.15)

We can measure the “deviation” from the European put-call parity relation by
EED := ∆V C −∆V P , i.e., the difference between two EEPs. The larger the devi-
ation, the more the American and European implied dividend yields will differ.
For European options, EED = 0.

We can assess the corresponding early-exercise premium by calculating the
difference between the European and American option prices. In the following
figures, we will demonstrate how the early-exercise premiums vary with respect
to the following factors, maturity time T (Fig. 4.4a), difference between interest
rate and dividend yield r −q (Fig. 4.4b), volatility σ (Fig. 4.4c). Roughly speaking,
the absolute deviation is monotonically increasing when an option goes deeper
into the money (OTM or ITM), based on Figure 4.4. Therefore, significant errors
may occur when using the European put-call parity to compute the implied div-
idends from American options.

Remark. The early-exercise premium is not observable for most underlying secu-
rities, unless both American and European options with the same strike price and
time to maturity are available. Empirical studies have been conducted to analyze
how the EEP varies in the market using regression techniques, like in [108]. The
basic idea is to fit a function for the EEP and other observed factors, i.e.

EEP =β0 +β1(r −q)+β2(T − t)+β3(S/K)+β4(σt−1)+ε

4

80 4. CANN FOR AMERICAN OPTIONS

stock/strike

0.5 1 1.5 2

 ∆
V

C
-
∆

V
P

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
T=1.0

T=1.4

T=1.8

T=2.2

(a)

stock/strike

0.4 0.6 0.8 1 1.2 1.4 1.6

 ∆
V

C
-
∆

V
P

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
r-q=6%

r-q=3%

r-q=0%

r-q=-3%

r-q=-6%

(b)

stock/strike

0.4 0.6 0.8 1 1.2 1.4 1.6

 ∆
V

C
-
∆

V
P

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0
σ=0.2

σ=0.4

σ=0.6

σ=0.8

(c)

Figure 4.4: Left: EED versus the ratio of stock over strike price for different maturities T , with
σ = 0.4, r = 0.1, q = 0.05, K = 1.0. Middle: EED versus the ratio of stock over strike price for
different values r − q , with T = 1.0, r = 0.1, σ = 0.4, K = 1.0. Right: EED versus the ratio of stock
over strike price for different volatilities σ, with T = 1.0, r = 0.1, q = 0.04, K = 1.0.

In the Swedish equity market, for example, the early-exercise premiums for Amer-
ican puts are empirically found to be positive [109], increasing with option mon-
eyness, and decreasing with time to maturity and the underlying asset’s volatility.
For American-style currency options, it was observed [110] that the early-exercise
premiums equal approximately 5% for puts and 4.6% for calls. Our numerical
results coincide with these empirical studies of EEP.

We will employ a model-based approach, i.e., the American option Black-
Scholes pricing model, including a dividend yield, is inverted in order to extract
the implied dividend. American options can be priced as follows,

{
V C

am = BSam(σ∗, q∗;S0,K , t = 0,T,r,α= 1),

V P
am = BSam(σ∗, q∗;S0,K , t = 0,T,r,α=−1),

(4.16)

where, BSam is the corresponding pricing model. Assuming the implied volatility
and the implied dividend are the same for calls and puts with the same param-
eter set K , S0, τ and r , there appears to be a unique solution of the system with
two equations and two unknowns. However, this is not always the case, as op-
tion prices do not depend on the volatility in the stopping regions. The system of
equations (4.16) is usually formulated as a minimization problem and a numer-
ical optimization algorithm is employed to search the solution space. Note that
a local search based optimization method will most likely not converge when
traversing those early-exercise regions. For that reason, a global searcher is pre-
ferred.

4.3. PRICING AMERICAN OPTIONS BY THE COS METHOD

4

81

4.3. PRICING AMERICAN OPTIONS BY THE COS METHOD
In this section, we explain the pricing of American options by means of the COS
method, which forms the basis for the data set that the ANN should learn. First
a brief introduction on using the COS method to price American options [111]
is given, based on the derivation of pricing European options in Section 2.2.5 of
Chapter 2. Then we generalize the above COS method to deal with two separate
early-exercise points, which is encountered when pricing American options with
negative interest rates.

As aforementioned, the COS method is an efficient numerical technique and
provides the derivative information (i.e. the Greeks) essentially without any addi-
tional costs. A popular way to approximate the American option value is solving
a small series of Bermudan options with different numbers of exercises oppor-
tunities, and subsequently applying an extrapolation technique based on these
obtained option prices. In other words, for the valuation of American options,
we can use a series of Bermudan options with an increasing number of exercise
opportunities to approximate the limit. Thus the basic procedure includes com-
puting Bermudan options using COS under the Black-Scholes framework, fol-
lowed by employing a four-point Richardson extrapolation to compute the price
of the American options.

We start with a Bermudan option, where the holder has the right to exercise
the contract at pre-specified dates before maturity. With t0 being initial time,
we assume there are M pre-specified exercise dates, and have {t1, · · · , tM } as the
collection of all exercise dates. The regular time interval reads ∆t := (tm − tm−1),
t0 < t1 < ·· · < tM = T . With the help of the risk-neutral valuation, we arrive at the
pricing formula for a Bermudan option with M exercise dates, for m = M , M −
1, . . . ,2: {

c(tm−1, x) = e−r∆t
∫
RV (tm , y) f (y |x)d y,

Vber (tm−1, x) = max(h(tm−1, x),c(tm−1, x)) ,
(4.17)

followed by

Vber (t0, x) = e−r∆t
∫
R

V (t1, y) f (y |x)d y. (4.18)

where f (·) is the conditional density function, and the state variables x and y are
the log-prices and separately defined as

x := log(S(tm−1)/K) and y := log(S(tm)/K),

where S(tm) stands for the stock price at time tm , and K for the strike price. Func-
tions V (t , x), c(t , x) and h(t , x) represent the option value, the continuation value

4

82 4. CANN FOR AMERICAN OPTIONS

and the log-price payoff at time t , respectively, for example,

h(T, x) = max[αK (ex −1),0], α=
{

1 for a call,
−1 for a put.

(4.19)

4.3.1. PRICING BERMUDAN OPTIONS
The COS method is generally based on employing a Fourier cosine expansion to
approximate the density function on a truncated domain [a,b],

f (y |x) ≈ 2

b −a

NCOS−1∑′
j=0

ℜ
(

f̂ (∆t ,
jπ

b −a
)exp(−i

akπ

b −a
)

)
cos(kπ

y −a

b −a
), (4.20)

where f̂ (u; x, t) represents the characteristic function of the log-asset price, x :=
log(S(t)/K), and the notation

∑′
means that the first term in the summation is

weighted by one-half.
With the center of the interval x0 := log(S0/K), the integration range, [a,b], is

defined as follows,

[a,b] :=
[

(ξ1 +x0)−LCOS

√
ξ2, (ξ1 +x0)+LCOS

√
ξ2

]
(4.21)

where LCOS is a user-defined parameter to achieve a certain integration accu-
racy, and parameters ξi represent the corresponding cumulants of the underly-
ing stochastic process, see [111].

We define the following formula,

φ(t ,u) := f̂ (u; x = 0, t). (4.22)

For the Black-Scholes dynamics in Formula (4.1) under the log-asset price, we
have

φ(t ,u) = e i ut (r−q− 1
2σ

2)− 1
2σ

2u2t ,

ξ1 = (r −q − 1

2
σ2)t , ξ2 = 1

2
σ2t , ξ4 = 0.

The continuation value in (4.17), which resembles a European option be-
tween two consecutive exercise dates, can be computed through the COS for-
mula,

c(tm−1, x) = e−r∆t
NCOS−1∑′

k=0
ℜ

(
φ

(
∆t ,

kπ

b −a

)
e i kπ x−a

b−a

)
Vk (tm), (4.23)

where N is the number of Fourier cosine items. The Vk (tm) terms are the so-
called option coefficients, to be computed depending on the early-exercise re-
gion.

4.3. PRICING AMERICAN OPTIONS BY THE COS METHOD

4

83

An early-exercise point, x∗
m , at time tm , is a point where the continuation

value equals the payoff, i.e. c(tm , x∗
m) = H(tm , x∗

m). We will first derive the in-
duction formula for Vk (t1) for a single early-exercise point, and then extend it to
the case of two early-exercise points. The early-exercise point is determined by
means of a root-finding algorithm, for example, Newton’s method. With x∗

m , the
option coefficients Vk (tm) can be split into two components: One on the interval
[a, x∗

m] and the other on (x∗
m ,b] (i.e. on the holding or stopping region),

Vk (tm) =
{

C̃k (tm , a, x∗
m)+G̃k (x∗

m ,b), for a call,

G̃k (a, x∗
m)+ C̃k (tm , x∗

m ,b), for a put,
(4.24)

for m = M −1, M −2, · · · ,1. When tm = tM at the terminal time,

Vk (tM) =
{

G̃k (0,b), for a call,

G̃k (a,0), for a put.
(4.25)

With the COS method, we have

G̃k (x1, x2) := 2

b −a

∫ x2

x1

h(tm , x)cos
(
kπ

x −a

b −a

)
d x, (4.26)

and

C̃k (tm , x1, x2) := 2

b −a

∫ x2

x1

c(tm , x)cos
(
kπ

x −a

b −a

)
d x, (4.27)

for k = 0,1, · · · , N−1 and m = 1,2, · · · , M . There are analytic solutions for G̃k (x1, x2)
in (4.26), since the payoff function h(tm , x) is known. The terms C̃k (tm , x1, x2) can
be computed in O(N log2 N) operations under the Black-Scholes dynamics.

At times tm , m = 1,2, · · · , M , from Equations (4.17) and (4.23), we obtain an
approximation for c(x, tm). Afterwards, c(tm , x) is inserted into (4.27). Inter-
changing summation and integration gives the following formula,

C̃k (tm , x1, x2) := e−r∆t
NCOS−1∑′

j=0
ℜ

(
φ

(
∆t ,

jπ

b −a

)
V j (tm+1) · H̃k, j (x1, x2)

)
, (4.28)

where H̃k, j (x1, x2) is computed in the following integrals,

H̃k, j (x1, x2) = 2

b −a

∫ x2

x1

e i jπ x−a
b−a cos(kπ

x −a

b −a
)d x.

With the help of basic calculus, the term H̃k, j (x1, x2) can be further divided into
two parts,

H̃k, j (x1, x2) =− i

π
(H̃ s

k, j (x1, x2)+ H̃ c
k, j (x1, x2)).

4

84 4. CANN FOR AMERICAN OPTIONS

Because H̃ s
k, j (x1, x2) = H̃ s

k+1, j+1(x1, x2) and H̃ c
k, j (x1, x2) = H̃ c

k+1, j−1(x1, x2), we

get a Toeplitz and Hankel structure in matrices H̃s and H̃c , respectively. There-
fore the Fast Fourier Transform can be employed for highly efficient matrix-vector
multiplication, and the resulting computational complexity of C̃k (x1, x2, tm) is re-
duced to O(N log2 N). In addition, the Greeks of American Black-Scholes option
prices can be easily approximated based on Equation (4.23), for example,

Vega ≈ ∂c(tm−1, x)

∂σ
= e−r∆t

NCOS−1∑′
k=0

ℜ
∂φ

(
∆t , kπ

b−a

)
∂σ

e i kπ x−a
b−a

Vk (tm), (4.29)

Here we generalize this Bermudan COS method to deal with two early-exercise
points. Suppose there are at most two early-exercise points x∗

m1 < x∗
m2 at time tm .

Thus, we have three intervals while computing Vk (tm), that is, [a, x∗
m1], [x∗

m1, x∗
m2],

and [x∗
m2,b]. Taking a Bermudan put as an example, the option value is

Vk (tm) = C̃ (1)
k (tm , a, x∗

m1)+G̃k (x∗
m1, x∗

m2)+ C̃ (2)
k (tm , x∗

m2,b), (4.30)

for m = M −1, M −2, ...,1 and Vk (tM) = G̃k (a,0) when tm = tM . There are two con-
tinuation values C̃ (1)

k and C̃ (2)
K correspondingly, which are computed by Equa-

tion (4.28). In such case, two roots x∗
m1 and x∗

m2 are computed, with different,
smartly selected, starting points for the Newton’s method.

4.3.2. PRICING AMERICAN OPTIONS
The extrapolation-based pricing method with the COS computations for Bermu-
dan options to price American options has been described in [112], and a brief
description is given in this section.

Let Vber (M) denote the value of a Bermudan option with M exercise dates,
considering maturity T and∆t = T /M which is a time interval between two con-
secutive exercise dates, the American option value Vam can be approximated by
applying the following 4-point Richardson extrapolation scheme,

Vam(`) ≈ `

21

(
64Vber (2`+3)−56Vber (2`+2)+14Vber (2`+1)−Vber (2`)

)
, (4.31)

where parameter ` ∈N+ determines the number of the exercise dates considered
for each Bermudan option involved.

Remark. The binomial trees technique is also a suitable candidate for American
option valuation, since it can accurately deal with two early-exercise points when
pricing American options. However, the COS method provides faster computation
and the Greeks come with no extra cost.

4.4. METHODOLOGY

4

85

4.4. METHODOLOGY
Artificial neural networks, ANNs, have been used to approximate the solution of
European option pricing models, for instance, under the Black-Scholes and He-
ston models in Chapter 2. Here, we will use the ANN to address the numerical
solution of American options, and in particular use it for computing the implied
information. For the inverse problem, when there is one parameter to calibrate,
we can employ the ANN to build a mapping from the observed market data to the
target parameter (as a unique mapping). When there are multiple parameters to
calibrate, like the implied volatility and the implied dividend, the CaNN (Calibra-
tion Neural Network) [94] is more flexible to handle the minimization problem.
The former case can be viewed as a simplified CaNN which approximates a single
model parameter.

4.4.1. ARTIFICIAL NEURAL NETWORKS
It is well-known that neural networks are powerful function approximators, and
more details can be found in Section 2.3.1 in Chapter 2. In the previous chapters,
the ANN function is used to approximate a single variable. Actually an ANN can
have multiple outputs provided the same input, which means we can approxi-
mate a pair of American call/put option prices at the same time. Next, we will
discuss how the ANNs are used to approximate the inverse or pricing functions.

4.4.2. ANN FOR IMPLIED VOLATILITY
When we focus solely on extracting the implied volatility, the basic technique is
to employ the ANN to approximate the inverse function of the American Black-
Scholes model on a suitable effective definition domainΩh ,

σ∗ = BS−1
am(V mkt

am ;S,K , t ,T,r, q,α)

≈ NN(V mkt
am ;S,K , t ,T,r, q,α), [V ,S,K , t ,T,r, q] ∈Ωh . (4.32)

The ANN is trained based on the above known model variables, which are ob-
servable in the market, to approximate the unique target variable σ∗.

DEFINITION DOMAIN SELECTION

The continuation regions are not known initially or are so complicated that there
is no analytic formula to describe them. However, the counterpart, the early-
exercise regions, can be found implicitly in a data-driven approach. In our method
we wish to only train the neural network on the points in the continuation re-
gion. Overall, our aim is to find the inverse function of the American-style pricing
model on the continuation region, represented by the shaded domain in Figure

4

86 4. CANN FOR AMERICAN OPTIONS

4.5. There is an off-line stage, where the continuation regions are being deter-
mined, and an on-line stage where we use the problem parameters to compute
the implied volatility. We build the mapping function via the ANN in the “irreg-
ular” continuation region. The resulting trained ANN solver is typically much
faster to determine the implied volatility than an iterative numerical solver.

First, random parameter values are generated as ANN samples in the entire
input domain Ω, followed by detecting the parameter samples that are in the
early-exercise regionΩs according to Equation (4.5).

Second, we use a robust version of the COS method [112] to calculate Amer-
ican option values while generating the data set during the off-line ANN stage.
With a variety of asset and option parameters, we need to make sure that the
COS pricing technique is robust, i.e., it should work under all occurring param-
eter sets. This might imply a large integration domain within the COS method,
and a relatively large number of Fourier terms in the cosine expansion. We gen-
eralized the COS method to deal with two separate early-exercise regions, which
is encountered when pricing American options with negative interest rate. More
details can be found in Section 4.3.

Third, we obtain the approximate continuation region,Ωh =Ω−Ωs , as shown
in Figure 4.5. There are two indicators to detect the samples in the early-exercise
region, the difference between the option value and the payoff, and the option’s
sensitivity Vega in Equation (4.9). We obtain the approximate continuation re-
gion, Ωh = Ω−Ωs , as shown in Figure 4.5. The procedure requires additional
computations, but these happen in the off-line stage without affecting the on-
line approximation. To control numerical errors, threshold values are prescribed
for the two indicators. A threshold ε1 is set for the difference between the payoff
function value and the generated option value,

Vam(t ,S)−H(K ,S(t)) > ε1. (4.33)

The appropriate training samples for the continuation region are selected based
on Formula (4.33). We also set a threshold ε2 for the value of Vega,

Vega > ε2, (4.34)

with ε1 ∈R+ and ε2 ∈R+. As early-exercise takes place with options that are ITM,
the above two criteria only apply to ITM samples. In principle, Criterion (4.33) is
equivalent to Criterion (4.34), but for robustness reasons, both will be enforced
to mitigate the influence of numerical errors.

Let Ω̂s represent the region where the generated samples do not meet the re-
quirements (4.33) and (4.34), and the remaining region Ω̂h =Ω−Ω̂s . The effective
definition domain is found numerically by takingΩh ≈ Ω̂h .

4.4. METHODOLOGY

4

87

Figure 4.5: Schematic diagram: An example of two continuation regions for an American put. The
shaded area represents the holding region, while the white area represents the stopping region.
There are two isolated continuation regions. Here the strike price is fixed K = 1.

GRADIENT-SQUASHING AND OPTION PRICES

Generally, ANNs are not accurate when functions with steep gradients need to
be approximated. Therefore, we adapt the requested output function. To obtain
the implied volatility from the option prices, we need to employ the gradient-
squashing technique as proposed in [92]. We subtract the intrinsic value from the
American option price to obtain the corresponding time value. A brief derivation
how to compute the intrinsic value of an American option with the dividend yield
is given. Taking the put as an example, recall the put-call parity for European
options,

V C
eu −S(t)e−qτ =V P

eu −K e−rτ.

The following lower bound can then be deduced,

V P
eu(t ,S) =V C

eu(t ,S)+K e−rτ−S(t)e−qτ ≥ K e−rτ−S(t)e−qτ, (4.35)

where the right-hand side is called the European option’s intrinsic value. As an
American option is at least as expensive as its European counterpart, we have

V P
am(t ,S) ≥V P

eu(t ,S) ≥ K e−rτ−S(t)e−qτ. (4.36)

Additionally, American option prices should not be worth less than the pay-off
function at any time, as for example shown in Figure 4.2, and the time value of
an American put is computed by

V̂ P
am =V P

am(t ,S)−max(K −S(t),K e−rτ−S(t)e−qτ,0). (4.37)

4

88 4. CANN FOR AMERICAN OPTIONS

After that, the gradient-squashing technique [92] is applied as follows,

Ṽ P
am = log(V̂ P

am). (4.38)

The gradient-squashing technique for computing implied volatility using the ANNs,
means taking the logarithm of the time value to obtain a quantity that can be well
approximated with ANNs, because its gradient is not too steep to approximate
accurately.

4.4.3. DETERMINING IMPLIED DIVIDEND AND IMPLIED VOLATIL-
ITY

When the American option implied dividend yield is unknown, we will deter-
mine both implied volatility and implied dividend simultaneously by means of
the CaNN calibration methodology. We assume the implied volatility and the im-
plied dividend are identical for American calls and puts with the same K , S0, T , t
and r values, {

V C ,mkt
am −BSam(σ∗, q∗;S0,K , t = 0,T,r,α= 1) = 0,

V P,mkt
am −BSam(σ∗, q∗;S0,K , t = 0,T,r,α=−1) = 0,

(4.39)

so that there are two unknown parameters to calibrate, implied volatility σ∗ and
the implied dividend yield q∗, given a pair of American option prices, V C ,mkt

am and
V P,mkt

am . The above system is reformulated as a minimization problem,

argmin
σ∗∈R+,q∗∈R

(BSam(σ∗, q∗;α= 1)−V C ,mkt
am)2 + (BSam(σ∗, q∗;α=−1)−V P,mkt

am)2.

(4.40)
We adapt a fast, generic and robust calibration framework, the CaNN (Calibra-
tion Neural Networks) developed in [94]. The basic idea of the methodology is
to convert the calibration of model parameters into an estimation of the neural
network’s hidden units. The reason for this is that model calibration and train-
ing ANNs (here supervised learning) can be reduced to solving an optimization
problem according to Formula (4.40) and (2.24) (see Chapter 2). It enables par-
allel GPU computing to speed up the computations, which enables us to employ
a global optimization technique to search the solution space. The gradient-free
optimization algorithm, Differential Evolution, typically does not get stuck in lo-
cal minima or in the stopping region. Another benefit of DE is that it is an inher-
ently parallel technique where populations of possible optimal solutions can be
evaluated simultaneously within the ANN.

There is a calibration (the backward pass) in the CaNN, in addition to the
training and testing stages. The training is to determine suitable weights and

4.4. METHODOLOGY

4

89

biases in the hidden layers to map model input to output, while the calibration
estimates the model input parameters to optimally match a given output. We will
view the different stages as one framework, and just change the learnable units
between the original layers (i.e. the hidden, output and input layers) within the
different stages. More specifically, the CaNN consists of two passes. The for-
ward pass, including the training and testing stages, approximates the American
Black-Scholes prices. We have developed one neural network providing two out-
put values in the forward pass, the American call and the put prices, as illustrated
in Figure 4.6. The backward pass, on the other hand, aims to find the two param-
eters, (σ∗, q∗), to match the two observed American option prices, V P,mkt

am and
V C ,mkt

am , with strike price K , maturity time T , spot price S0, interest rate r .

(a) Training (b) Calibration

Figure 4.6: Left: In the forward pass of the CaNN, the output layer gives us two option prices. Right:
During the calibration, the CaNN estimates the two parameters, implied volatility and implied
dividend, in the original input layer.

This is different from the network in [94], where one neural network corre-
sponds to one output quantity. Therefore Equation (4.40) is written as an objec-
tive function for the model calibration, as follows,

arg min
σ∗,q∗(NN(σ∗, q∗;α= 1)−V C ,mkt

am)2 + (NN(σ∗, q∗;α=−1)−V P,mkt
am)2, (4.41)

where σ∗ ∈ R+, q∗ ∈ R. Formula 4.41 is used as the loss function for the back-
ward pass in the CaNN. The (group-based) DE global optimization can be imple-
mented in an efficient way together with ANNs, see Figure 3.3 in Chapter 3, on a
central processing unit (CPU) or a graphics processing unit (GPU). In such way,
the for-loop is replaced by an efficient matrix multiplication, and searching the
implied information globally can be completed efficiently.

4

90 4. CANN FOR AMERICAN OPTIONS

Remark. Because of a generic calibration framework, the CaNN can easily deal
with more complex situations, for example, the objective function (4.41) including
more than a pair of American price quotes which share the same implied dividend,
for example, as in the work [102].

4.4.4. THE ANN CONFIGURATION

Our chosen ANN architecture in the forward pass constitutes four hidden lay-
ers and two parallel output layers. Some particularly useful operations in deep
neural networks, e.g. dropout and batch normalization, did not bring any signif-
icant benefits to our ANN. The proposed configuration has been demonstrated
to be able to fit the pricing model with acceptable accuracy in [94]. We choose
the activation function Softplus here, i.e.

ϕ(x) = log(1+ex),

where x is the input. The smooth derivative of Softplus fits well to the smooth-
ness of the pricing function, especially in the continuation region. According to
the universal approximation theorem, a one-layer based ANN can be used to ap-
proximate any continuous function to any desired precision, but with the rate
which linearly depends on the number of neurons involved. The depth of the
ANN (i.e. the number of hidden layers) can increase the function’s representa-
tion accuracy exponentially, but deep ANNs are difficult to implement in parallel
(e.g. a current hidden layer has to wait for output signals of a previous one), re-
sulting in long computation time. Considering the approximation power and the
computation efficiency, we choose four hidden layers and 200 neurons in each
layer. Both ANNs in the forward and backward passes of the CaNN will make
use of the hyper-parameters that are shown in Table 4.1. In the backward pass,
the DE algorithm, a gradient-free global optimizer, replaces Adam. These val-
ues have shown to result in a robust neural network which converges well for a
variety of problem parameters.

4.5. NUMERICAL RESULTS

This section presents numerical experiments for using the ANN to extract im-
plied information from American options. We begin with the simplified CaNN,
focusing on the implied volatility, and later employ the CaNN to extract implied
volatility and dividend. Note that we use the COS method described in Sec-
tion 4.3 to compute American option prices for the training data set and for the
simulated market data in this section.

4.5. NUMERICAL RESULTS

4

91

Table 4.1: The ANN configuration.

Hyper-parameters Options
Hidden layers 4

Neurons (each layer) 200
Activation Softplus

Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

4.5.1. COMPUTING IMPLIED VOLATILITY
In this section, we approximate only implied volatility. We use one forward pass
to approximate the inverse function, from an American option price to its corre-
sponding implied volatility assuming the other parameters to be known.

Without loss of generality, we use a fixed spot price S0 = 1.0. Then, the input
for the ANN is made up of five parameters {log(V̂ P

am),K ,r, q,τ}. The two thresh-
olds in Equations (4.33) and (4.34) are ε1 = 0.0001 and ε2 = 0.001 for the data set.

Table 4.2: Train dataset for American options under the Black-Scholes model; The spot price S0 = 1
is fixed. Here we use τ instead of the two variables T and t = 0. The upper bound of American put
price is 1.2. LHS stands for Latin Hypercube Sampling.

ANN Parameters Value range Employed method

ANN Input

Strike, K [0.6, 1.4] LHS
Time value, log(V̂ P

am) (−11.51,−0.24) COS
Time to maturity, τ [0.05, 3.0] LHS

Interest rate, r [-0.05, 0.1] LHS
Dividend yield, q [-0.05, 0.1] LHS

ANN output Implied volatility, σ∗ (0.01,1.05) LHS

The ANN is trained with American put options to learn the weights of the
ANN-based solver for the computation of the implied volatility from American
options. Similarly to Chapters 2 and 3, the following measures are used,

MSE = 1

n

n∑
i=1

(yi − ŷi)2, MAE = 1

n

n∑
i=1

|yi − ŷi |, MAPE = 1

n

n∑
i=1

|yi − ŷi |
yi

,

where y represents the true values of American option prices, and ŷ represents
the approximated values, with n being the number of involved samples. Dur-

4

92 4. CANN FOR AMERICAN OPTIONS

ing training, the MSE is used to find the weights and biases, while the other two
measures MAE and MAPE are monitored. The goodness of fit, R2, is also pro-
vided, which describes the closeness between the predicted values and the true
values. By using different measures we evaluate the quality of approximation
from different angles.

After the model input parameters are sampled (here by LHS) over the specific
domain, the COS method is used to solve the corresponding American Black-
Scholes pricing model, resulting in the data collection {S0,K ,τ,r, q,σ,Vam}, where
σ is considered the ground-truth value. Afterwards, the variable σ is placed into
the output layer of the ANN, as the implied volatility σ∗ ≡ σ for the data collec-
tion. Meanwhile, the other variables in the collection are included in the input
layer of the ANN, and more details are in Table 4.2. The validation samples help
avoid over-fitting during training the ANN. The test samples, which the ANN did
not encounter during training, are subsequently used to evaluate the general-
ization performance of the trained ANN. There are around one million samples,
with 80% being used as training, 10% as validation, 10% as test samples. The
learning rate is halved every 400 epochs during training. After 4000 epochs, the
training and validation losses have converged.

Table 4.3 and Figure 4.7 present the performance of the trained ANN. The
test performance is close to the train performance, suggesting that the trained
ANN generalizes well for unseen data, as shown in Table 4.3. The ANN predicted
implied volatility values approximate the true values accurately for both the train
and test datasets, as is indicated by the R2 measure in Figure 4.7. Moreover, the
online prediction stage for the American option implied volatility, requiring only
the evaluation of the trained ANN, is much faster than traditional iterative root-
finding algorithms.

It is observed that the trained model performance tends to decrease when the
pricing model parameters gets close to the upper or lower bounds of the values
in Table 4.2. In other words, outliers are most likely to appear near the boundary.
Thus the training data set is recommended to have a wider parameter range than
the test range of interest.

Table 4.3: Multiple measures are used to evaluate the performance.

- MSE MAE MAPE R2

Training 4.33 ·10−7 2.44·10−4 1.11·10−3 0.999994
Testing 4.60·10−7 2.51·10−4 1.15·10−3 0.999993

4.5. NUMERICAL RESULTS

4

93

(a) Training (b) Testing

Figure 4.7: Predicted versus ground-truth implied volatility value on the test data set. Here the
actual values are prescribed. Left: R2=0.999994; Right: R2=0.999993

4.5.2. COMPUTING IMPLIED INFORMATION
Next we will approximate the implied volatility and the implied dividend yield
simultaneously from the observed American option prices using the CaNN. The
CaNN is based on a forward and a backward pass, that are implemented in a
sequential way.

Here we extend the original CaNN by using one forward pass to approximate
two American option prices, a put and a call value. The input for the neural
network in the forward pass consists of (S0,K ,r, q,σ,τ), and the output compro-
mises a pair of American prices, that is (Ṽ P

am ,Ṽ C
am). As the neural network gives

us two output variables, the loss function of the forward pass includes two com-
ponents,

MSE = 1

2n

n∑
i=1

{(Ṽ P
am,i −V P,mod

am,i)2 + (Ṽ C
am,i −V C ,mod

am,i)2} (4.42)

where V P,mod
am and V C ,mod

am stand for the American put and call prices, respec-
tively, that are generated by the American option Black-Scholes model. This rule
also applies to MAE and MAPE. There are four hidden layers with 200 neurons
each layer, as shown in Table 4.1. The total number of hidden parameters is
122,202, and the loss function, Equation (4.42), is used to update the hidden lay-
ers of the CaNN during the training stage. The training data set is constructed
according to the parameter ranges in Table 4.4, where the COS method is used to
compute American option prices for both the training data set and the simulated
market data. Based on a good training phase, the performance of the CaNN’s
forward pass is presented in Table 4.5. The results, for both calls and puts, are
highly satisfactory, achieving very good levels of precision in all the considered

4

94 4. CANN FOR AMERICAN OPTIONS

measures.

Table 4.4: Training data set for the forward pass. We fix S0 = 1, and sample strike prices K to
generate different moneyness levels. The total number of the data samples is nearly one million,
with 80% training, 10% validation, 10% test samples.

ANN Parameters Value range Method

Forward input

Strike, K [0.45, 1.55] LHS
Time to maturity, τ [0.08, 3.05] LHS

Risk-free rate, r [-0.1, 0.25] LHS
Dividend yield, q [-0.1, 0.25] LHS

Implied volatility, σ (0.01,1.05) LHS

Forward output
American put, V P

am (0,1.8) COS
American call, V C

am (0,1.2) COS

Table 4.5: The performance of the CaNN forward pass with two outputs.

– Option MSE MAE MAPE R2

Training
call 1.40×10−7 3.00×10−4 1.25×10−3 0.9999965
put 2.54×10−7 4.24×10−4 1.64×10−3 0.9999959

Testing
call 1.43×10−7 3.02×10−4 1.27×10−3 0.9999964
put 2.55×10−7 4.26×10−4 1.64×10−3 0.9999959

After performing the forward pass, in the CaNN’s backward (calibration) pass
the implied parameters are determined, in our current setting. Supposing each
option quote in the market includes American call and put prices, the idea be-
hind the backward pass is to determine two parameters (σ∗, q∗) within the Amer-
ican Black-Scholes model to best match the pair of market option prices, given
the interest rate r , maturity time T , strike price K , and spot price S0. The objec-
tive function for the calibration procedure is found in Formula (4.41), which is
equivalent to Criterion (4.42) in the case of n = 1. In practice, the market price is
taken to be the mid-price of the bid and ask prices.

Remark. The objective function, under the CaNN, can also be defined differently
taking into account the bid-ask spread, the Delta (the sensitivity of an option’s
value to the underlying asset price) weighting, and other factors. This is however
out of our scope here.

In order to evaluate the approach, we prescribe model parameters and in-
vestigate how accurately the CaNN can recover them. Table 4.6 presents a set of

4.5. NUMERICAL RESULTS

4

95

examples, including many different scenarios, e.g. ITM and OTM scenario’s, are
considered. The results in Table 4.6 suggest that the CaNN can recover the im-
plied volatility and implied dividend highly accurately from our “artificial mar-
ket option data”. Even when interest rates and dividend yields are negative, the
CaNN recovers the true values without any stalling of the convergence. The
method’s robustness may be attributed to the robust numerical solver generating
accurate option prices for a wide range of model parameters, the designed neu-
ral network providing sufficient approximation capacity, and the gradient-free
optimizer (i.e. DE) to globally search the solution space.

Table 4.6: Examples of using CaNN to extract implied volatility and implied dividend. † represents
the prescribed values, ∗ represents the calibrated values.

K /S0 T r σ† q† C mkt
am P mkt

am σ∗ q∗

1.0 0.5 -0.04 0.1 0.06 0.0146 0.0597 0.099 0.059
1.1 0.5 -0.04 0.2 -0.06 0.0255 0.1181 0.198 -0.061
1.0 0.75 0.0 0.3 -0.02 0.1119 0.0976 0.300 -0.020
1.2 1.0 -0.04 0.4 0.08 0.0603 0.3810 0.40 0.080
0.8 1.0 0.02 0.3 0.02 0.2322 0.03472 0.299 0.020
0.7 1.25 0.0 0.4 -0.04 0.3886 0.0378 0.399 -0.040

For DE, a search interval is required for each parameter, and we provide q ∈
[−0.08,0.1] and σ∗ ∈ (0,1.0). During the mutation operation in DE, the popu-
lation size of each generation is taken as a small number, here 10. We choose
’best1bin’ as the mutation strategy, that is, the best candidate of the previous
generation enters the mutation. During the crossover stage, the crossover possi-
bility is set to 0.7. During the selection stage, all new trial candidates with the ob-
jective function can be processed in parallel, and the DE convergence tolerance
is set to 0.01. As the number of calibration parameters is only two, the compu-
tation time on a CPU is around 0.37 seconds using the sequential DE and is less
than 0.1 second using the parallel version of the DE method.

Furthermore, a systemic test is conducted to assess the averaged performance
over a large number of cases. We generate equally-spaced samples over a certain
interval according to Table 4.7, but remove the samples that are connected to
early-exercise region option prices. The experiment ends up with 9271 test cases.
The results in Table 4.8 suggest that the proposed approach performs very well
under a wide variety of option market conditions at a reduced computational
cost. The calibration speed is due to the efficient forward pass and the parallel,
gradient-free DE optimizer. Basically the forward pass serves as a fast numerical
solver for the American pricing model. Additionally, with two output prices, the

4

96 4. CANN FOR AMERICAN OPTIONS

forward pass requires half of the computation cost.

Table 4.7: The parameter range for the systemic experiment.

Parameter interval step number
σ [0.1, 0.45] 0.05 8
q [-0.06, 0.08] 0.02 8
K [0.7, 1.2] 0.1 6
τ [0.5, 1.5] 0.25 5
r [-0.04, 0.06] 0.02 6

P mkt
am [0.7, 1.2] - 9271

C mkt
am [0.7, 1.2] - 9271

Table 4.8: With a CPU (Intel i5) and a GPU(NVIDIA Tesla P100), the averaged performance of the
CaNN estimating implied volatility and implied dividend based on 9271 different test cases. The
averaged number of function evaluations is 1060.

Absolute deviation Computational cost

|σ† −σ∗| 6.65×10−3 CPU time (seconds) 0.08

|q† −q∗| 8.56×10−4 GPU time (seconds) 0.04

4.6. CONCLUSION
We studied the problem of pricing American options and extended a data-driven
machine learning method to extract the implied volatility and implied dividend
yield from observed market American option prices in a fast and robust way.

For computing the American implied volatility, we explained that the domain
of the inverse function should be equivalent to the continuation regions of the
American options. The ANN-based approach builds an approximating function
and addresses complex boundaries of the definition domain, by means of the
different off-line and on-line stages. More specifically, we used two conditions
to classify the random data samples in the domain in the off-line stage. The
definition domain was represented by data points which lie in the continuation
regions. Subsequently, a neural network was trained on those samples to ap-
proximate the inverse function. This data-driven approach avoids an iterative
algorithm which may suffer from convergence problems. Due to the off-line def-
inition of the domain, our approach also successfully dealt with negative interest

4.6. CONCLUSION

4

97

rates and dividend yields, where two early-exercise regions may appear. In short,
the offline-online decoupling brings much flexibility.

Furthermore, we presented a method for finding simultaneously implied div-
idend and implied volatility from American options using a calibration approach.
The CaNN, which consists of an efficient solver and a fast global optimizer, is
employed to carry out the calibration procedure. As a result, the early-exercise
premiums, which the European option put-call parity relation fails to deal with,
are handled successfully. The parallel global optimizer prevents the CaNN from
stopping in the early-exercise regions and allows to achieve a good quality solu-
tion in a short amount of time. The numerical experiments demonstrate that the
CaNN is able to accurately extract multiple pieces of implied information from
American options. A continuous dividend yield is considered in this chapter, and
it should be feasible to extend the approach to deal with time-dependent or dis-
crete dividends.

5
THE SEVEN-LEAGUE SCHEME

In this chapter 1, we present another application of the supervised learning method-
ology. We propose an accurate data-driven numerical scheme to solve Stochas-
tic Differential Equations (SDEs), by taking large time steps. The SDE discretiza-
tion is built up by means of a polynomial chaos expansion method, on the ba-
sis of accurately determined stochastic collocation (SC) points. By employing an
artificial neural network to learn these SC points, we can perform Monte Carlo
simulations with large time steps. Error analysis confirms that this data-driven
scheme results in accurate SDE solutions in the sense of strong convergence, pro-
vided the learning methodology is robust and accurate. With a variant method
called the compression-decompression collocation and interpolation technique,
we can drastically reduce the number of neural network functions that have to be
learned, so that computational speed is enhanced. Numerical experiments con-
firm a high-quality strong convergence error when using large time steps, and the
novel scheme outperforms some classical numerical SDE discretizations. Some
applications, here in financial option valuation, are also presented.

5.1. INTRODUCTION
The highly successful deep learning paradigm [113] receives a lot of attention
in science and engineering, in many different forms and flavors. As an example
of one such flavor, so-called Physics-Informed Neural Networks (PiNN) in [114],
combining physical and mathematical insights with the machine learning method-
ology, have now successfully entered the classical field of numerically solving or-

This chapter is based on the article ’The Seven-League Scheme: Deep learning for large time step
Monte Carlo simulations of stochastic differential equations’, submitted for publication, 2020.
1Note that, in this chapter we may use the notation different from that of the previous chapters.

99

5

100 5. THE SEVEN-LEAGUE SCHEME

dinary (ODEs) and Partial Differential Equations (PDEs) [22, 115]. Recent progress
includes universal differential equations [116], which incorporates machine-learnable
structures for scientific computing. The specific aim with PiNN is then to either
speed up the solution process or to solve high-dimensional problems that are
not easily handled by the traditional numerical methods. In the spirit of PiNN, in
this chapter we will develop a highly accurate numerical discretization scheme
for stochastic differential equations (SDEs), which is based on taking possibly
large discrete time steps. We “learn” to take large time steps, with the help of the
Stochastic Collocation Monte Carlo sampler (SCMC) proposed by [117], and by
using an artificial neural network (ANN) to approximate target functions [see, for
example, 118].

Stochastic differential equations are widely used to describe uncertain phe-
nomena, in physics, finance, epidemics, amongst others, as a means to model
and quantify uncertainty. This type of differential equation therefore contains
terms that are stochastic processes. As a result, the corresponding solution is
also a stochastic process.

Numerical approximation of the solution to an SDE is unavoidable, as an an-
alytic solution is typically not available. The most commonly known technique
to solve SDEs is based on Monte Carlo (MC) simulation, for which the SDE first
needs to be discretized. Our focus lies on this time discretization, which we de-
velop in a data-driven way.

Basically, there are two ways to measure the convergence rate of discrete so-
lutions to SDEs, by means of the approximation to the sample path or by ap-
proximation to the corresponding distribution. This way, strong and weak con-
vergence of a numerical SDE solution have respectively been defined [see 119].
Weak convergence, the convergence in distributional sense, is often addressed in
the literature. Moment-matching, for example, is a basic technique to improve
weak convergence. Strong, path-wise, convergence is particularly challenging,
and requires accurate conditional distributions. There are natural approaches to
improve strong convergence properties, i.e. by adding higher order terms or by
using finer time grids. However, these are nontrivial and costly, especially when
considering multi-dimensional SDEs.

We aim to develop highly accurate numerical schemes by means of deep
learning, for which the strong error of the discretization does not depend on the
size of the simulation time step. For this, we will employ the SCMC method as an
efficient approach for approximating (conditional) distribution functions. The
distribution function of interest is then expanded as a polynomial in terms of a
random variable which is cheap to sample from at given collocation points, and
interpolation takes place between these points. The resulting big time steps dis-
cretization, in which the SCMC methodology is combined with deep learning, is

5.2. STOCHASTIC DIFFERENTIAL EQUATIONS AND STOCHASTIC COLLOCATION

5

101

called the Seven-League scheme 2, and we abbreviate it by the 7L scheme here.

There are different reasons to learn stochastic collocation points instead of
the sample paths directly. Stochastic collocation points have a specific physical
meaning, which makes the data-driven scheme explainable. More importantly,
Monte Carlo sample paths are random, while collocation points are determinis-
tic (i.e., representing key features of a probability distribution), which simplifies
learning and using neural networks. Moreover, the SCMC methodology enables
us to highly efficiently generate samples from a complex distribution.

We list some related work in the area of using deep learning for discretization
schemes. With the help of learning, the authors of [120], for example, derived
data-driven high-order discretizations for PDEs. When the depth of a neural
network is viewed as a virtual time-wise direction, the dynamics of deep neu-
ral networks can be described by ODEs [121]. The papers [121, 122] developed a
continuous-time generative model to turn a simple distribution into a complex
one, which is then employed to obtain the solution of an SDE in [123]. Generative
Adversarial Networks, GANs [124], have been used to generate high-resolution
images based on low-resolution versions, and this technique has been adopted
within Computational Fluid Dynamics [125], where high-fidelity PDE solutions
have been obtained using GANs. Recently stochastic PDEs have been addressed
using GANs, for example, see [126].

The remainder of this chapter is organized as follows. In Section 5.2, SDEs,
their discretization, stochastic collocation and the connection between SDE dis-
cretizations and the SCMC method are introduced. In Section 5.3, the data-
driven methodology is explained to address large time step simulation, i.e. the
7L scheme, for SDEs. ANNs will be used as function approximators to learn the
stochastic (conditional) collocation points. A brief description of their details is
placed in Section 5.3.3. In Section 5.4, we introduce a decompression-compression
technique to accelerate the computation. This latter efficient variant is named
the 7L-CDC scheme (i.e., seven-league compression-decompression scheme). Sec-
tion 5.5 presents numerical experiments to show the performance of the pro-
posed approach. Furthermore, the corresponding error is analyzed. Section 5.6
concludes.

5.2. STOCHASTIC DIFFERENTIAL EQUATIONS AND STOCHASTIC

COLLOCATION

We first describe the basic, well-known SDE setting, and explain our notation.

2With seven-league boots, we are marching through the time-wise direction, see also https://
en.wikipedia.org/wiki/Seven-league_boot.

https://en.wikipedia.org/wiki/Seven-league_boot.
https://en.wikipedia.org/wiki/Seven-league_boot.

5

102 5. THE SEVEN-LEAGUE SCHEME

5.2.1. SDE BASICS
We work with a real-valued random variable Y (t), defined on the probability
space (Ω,Σ,P) with filtration Ft∈[0,T], sample space Ω, σ-algebra Σ and proba-
bility measure P. For the time evolution of Y (t), consider the generic scalar Itô
SDE,

dY (t) = a(t ,Y (t),θ)dt +b(t ,Y (t),θ)dW (t), 0 ≤ t ≤ T, (5.1)

with the drift term a(t ,Y (t),θ), the diffusion term b(t ,Y (t),θ), model parame-
ters θ, Wiener process W (t), and given initial value Y0 := Y (t = 0). When the
drift and diffusion terms satisfy some regularity conditions (e.g., the global Lip-
schitz continuity [127, p.289]), existence and uniqueness of the solution of (5.1)
are guaranteed. The cumulative distribution function of Y (t), t ∈ [0,T], FY (t)(·),
is available and the corresponding density function, evolving over time, is de-
scribed by the Fokker-Planck equation [128].

With a discretization in time interval [0,T], ti = i · T /N , i = 0, . . . N , with
equidistant time step ∆t = ti+1 − ti , the discrete random variable at time ti is
denoted by Y (ti). Traditional numerical schemes have been designed based on
Itô’s lemma, in a similar fashion as the Taylor expansion is used to discretize de-
terministic ODEs and PDEs. The basic discretization, for each Monte Carlo path,
is the Euler-Maruyama scheme [119], which reads,

Ŷi+1 = Ŷi +a(ti , Ŷi ,θ)∆t +b(ti , Ŷi ,θ)
p
∆t X̂i+1, (5.2)

where Ŷi+1 := Ŷ (ti+1) is a realization (i.e., a number) from random variable Ỹ (ti+1),
which represents the numerical approximation to exact solution Y (ti+1) at time
point ti+1, and a realization X̂i+1 is drawn from the random variable X , which
here follows the standard normal distribution N (0,1). Moreover, Y̌ (ti) (a num-
ber) will be used as the notation for a realization of Y (ti).

In addition, the Milstein discretization [129] reads,

Ŷi+1 = Ŷi+a(ti , Ŷi ,θ)∆t+b(ti , Ŷi ,θ)
p
∆t X̂i+1+1

2
b′(ti , Ŷi ,θ)b(ti , Ŷi ,θ)∆t (X̂ 2

i+1−1),

(5.3)
where b′(ti , ·,θ) represents the derivative with respect to Ŷ of b(·, Ŷ ,θ). When
the drift and diffusion terms are independent of time t , the SDE is called time-
invariant.

Two error convergence criteria are commonly used to measure the SDE dis-
cretization accuracy, that is, the convergence in the weak and strong sense. Strong
convergence, which is of our interest here, is defined as follows.

Definition 1. Let Y (ti) be the exact solution of an SDE at time ti , its discrete ap-
proximation Ỹ (ti) with time step∆t ∈R+ converges in the strong sense, with order

5.2. STOCHASTIC DIFFERENTIAL EQUATIONS AND STOCHASTIC COLLOCATION

5

103

βs ∈R+, if there exists a constant K such that

E|Ỹ (ti)−Y (ti)| ≤ K (∆t)βs . (5.4)

It is well-known that the Euler-Maruyama scheme (5.2) has strong conver-
gence βs = 0.5, while the Milstein scheme (5.3) has βs = 1.0. When deriving high
order schemes for SDEs, the rules of Itô calculus must be respected [119]. As a
result, there will be eight terms in a Taylor SDE scheme with βs = 1.5, and twelve
with βs = 2.0, and the computational complexity increases. As a consequence,
higher order schemes are involved and somewhat expensive. Convergence of
the numerical solution for ∆t → 0 is guaranteed, but the computational costs
increase significantly to achieve accurate solutions.

The generic form of the above mentioned numerical schemes to solve the Itô
SDE is as follows,

Ŷi+1|Ŷi =
m−1∑
j=0

α j X̂ j
i+1, (5.5)

where m represents the number of polynomial terms, the coefficientsα j are pre-
defined and equation-dependent. For example, for the Euler-Maruyama scheme (5.2),
with m = 2, we have {

α0 = Ŷi +a(ti , Ŷi ,θ)∆t ,

α1 = b(ti , Ŷi ,θ)
p
∆t ,

(5.6)

while for the Milstein scheme, with m = 3, it follows that
α0 = Ŷi +a(ti , Ŷi ,θ)∆t + 1

2 b′(ti , Ŷi ,θ)b(ti , Ŷi ,θ),

α1 = b(ti , Ŷi ,θ)
p
∆t ,

α2 = 1
2 b′(ti , Ŷi ,θ)b(ti , Ŷi ,θ).

(5.7)

With these explicit coefficients we arrive at the probability distribution of the
random variable,

Y (ti+1)|Y (ti) ≈ Ỹ (ti+1)|Ỹ (ti)
d=

m−1∑
j=0

α j X j . (5.8)

These discrete SDE schemes are based on a series of transformations of the pre-
vious realization to approximate the conditional distribution,

P
[
Y (t +∆t) < y |Y (t)

]= FY (t+∆t)|Y (t)(y) ≈ FỸ (t+∆t)|Ỹ (t)(y). (5.9)

A numerical scheme is thus essentially based on conditional sampling of Y (t +
∆t)|Y (t). The Euler-Maruyama scheme draws from a normal distribution, with
a specific mean and variance, to approximate the distribution in the next time
point, while the Milstein scheme combines a normal and a chi-squared distribu-
tion. Similarly, we can derive the stochastic collocation methods.

5

104 5. THE SEVEN-LEAGUE SCHEME

5.2.2. STOCHASTIC COLLOCATION METHOD

Let’s assume two random variables, Y and X , where the latter one is cheaper to
sample from (e.g., X is a Gaussian random variable). These two scalar random
variables are connected, via,

FY (Y)
d=U

d= FX (X), (5.10)

where U ∼U ([0,1]) is a uniformly distributed random variable, FY (ȳ) :=P[Y ≤ ȳ]
and FX (x̄) := P[X ≤ x̄] are cumulative distribution functions (CDF). Note that
FX (X) and FY (Y) are random variables following the same uniform distribution.
FY (ȳn) and FX (x̄n) are supposed to be strictly increasing functions, so that the
following inversion holds true,

ȳn = F−1
Y (FX (x̄n)) =: g (x̄n). (5.11)

where ȳn and x̄n are samples (numbers) from Y and X , respectively. The map-
ping function, g (·) = F−1

Y (FX (·)), connects the two random variables and guaran-
tees that FX (x̄n) equals FY (g (x̄n)), in distributional sense and also element-wise.
The mapping function should be approximated, i.e., g (x̄n) ≈ gm(x̄n), by a func-
tion which is cheap. When function gm(·) is available, we may generate “expen-
sive” samples, ȳn from Y , by using the cheaper random samples x̄n from X .

The Stochastic Collocation Monte Carlo method (SCMC) developed in [117]
aims to find an accurate mapping function g (·) in an efficient way. The basic idea
is to employ Equation (5.11) at specific collocation points and approximate the
function g (·) by a suitable monotonic interpolation between these points. This
procedure, see Algorithm I, reduces the number of expensive inversions F−1

Y (·) to
obtain many samples from Y (·).

The SCMC method parameterizes the distribution function by imposing prob-
ability constraints at the given collocation points. Taking the Lagrange interpo-
lation as an example, we can expand function gm(·) in the form of polynomial
chaos,

Y ≈ gm(X) =
m−1∑
j=0

α̂ j X j = α̂0 + α̂1X + ...+ α̂m−1X m−1. (5.12)

Monotonicity of interpolation is an important requirement, particularly when
dealing with peaked probability distributions.

5.3. METHODOLOGY

5

105

Algorithm I: SCMC Method
Taking an interpolation function of degree m −1 (with m ≥ 2, as we need at

least two collocation points), as an example, the following steps need to be
performed:

1. Calculate CDF FX (x j) on the points (x1, x2, ..., xm), that are ob-
tained, for example, from Gauss-Hermite quadrature, giving m pairs
(x j ,FX (x j));

2. Invert the target CDF y j = F−1
Y (FX (x j)), j = 1, . . . ,m, and form m pairs

(x j , y j);

3. Define the interpolation function, y = gm(x), based on these m point
pairs (x j , y j);

4. Obtain sample Ŷ by applying the mapping function Ŷ = gm(X̂), where
sample X̂ is drawn from X .

The Cameron-Martin Theorem [130] states that any distribution can be ap-
proximated by a polynomial chaos approximation based on the normal distribu-
tion, but also other random variables may be used for X (see, for example, [117]).

Clearly, Equation (5.8) can be compared to Equation (5.12), as a discretiza-
tion scheme to approximate the realization in the next time point.

5.3. METHODOLOGY
For our purposes, given Y (t), the conditional variable Y (t +∆t) can be written
as,

Y (t +∆t)|Y (t) ≈ gm(X) =
m−1∑
j=0

α̂ j X j , (5.13)

where the coefficients α̂ j ≡ α̂ j (Ŷi , ti , ti+1,∆t ,θ) are now functions of realization
Ŷi . Equation (5.13), with large m-values, holds for any ∆t , particularly also for
large ∆t . As such the scheme can be interpreted as an almost exact simulation
scheme for an SDE under consideration. By the scheme in (5.13) we can thus take
large time steps in a highly accurate discretisation scheme. More specifically,
a sample from the known distribution X can be mapped onto a corresponding
unique sample of the conditional distribution Y (t +∆t) by the coefficient func-
tions.

There are essentially two possibilities for using an ANN in the framework
of the stochastic collocation method, the first being to directly learn the (time-
dependent) polynomial coefficients, α̂ j , in (5.13), the second to learn the collo-
cation points, y j . The two methods are equivalent mathematically, but the latter,

5

106 5. THE SEVEN-LEAGUE SCHEME

our method of choice, appears more stable and flexible. Here, we explain how
to learn the collocation points, yi , which is then followed by inferring the poly-
nomial coefficients. When the stochastic collocation points at time t +∆t are
known, the coefficients in (5.13) can easily be computed.

An SDE solution is represented by its cumulative distribution at the collo-
cation points, plus a suitable accurate interpolation gm(x). In other words, the
SCMC method forces the distribution functions (the target and the numerical
approximation) to strictly match at the collocation points over time. The collo-
cation points are dynamic and evolve with time.

5.3.1. DATA-DRIVEN NUMERICAL SCHEMES
Calculating the conditional distribution function requires generating samples
conditionally on previous realizations of the stochastic process. Based on a gen-
eral polynomial expression, the conditional sample, in discrete form, is defined
as follows,

Ŷi+1|Ŷi =
m−1∑
j=0

α̂i+1, j
(
Ŷi , ti , ti+1 − ti ,θ

)
X̂ j

i+1, (5.14)

where ∆t = ti+1 − ti , and the coefficients α̂i+1, j are functions of the variables
Ŷi , ti , ti+1 − ti ,θ, for example, see Formulas (5.6) and (5.7).

In the case of a Markov process, the future doesn’t dependent on past val-
ues. Given Ŷ (ti), the random variable Ŷ (ti+1) only depends on the increment
Y (ti+1)−Y (ti). The process has independent increments, and the conditional
distribution at time ti+1 given information up to time ti only depends on the
information at ti .

Similar to these coefficient functions, the m conditional stochastic colloca-
tion points at time ti+1, y j (ti+1)|Ŷi , with j = 0, . . . ,m−1, can be written as a func-
tional relation,

y j (ti+1)|Ŷi = H j
(
Ŷi , ti , ti+1 − ti ,θ

)
. (5.15)

A closed-form expression for function H(·) is generally not available. Find-
ing the conditional collocation points can however be formulated as a regression
problem.

It is well-known that neural networks can be utilized as universal function
approximators [11]. We then generate random data points in the domain of in-
terest and the ANN should “learn the mapping function H j (·)”, in an off-line ANN
training stage. The SCMC method is here used to compute the corresponding
collocation points at each time point, which are then stored to train the ANN, in
a supervised learning fashion (see, for example, [71]).

5.3. METHODOLOGY

5

107

5.3.2. THE SEVEN-LEAGUE SCHEME
Next, we detail the generation of the stochastic collocation points to create the
training data. Consider a stochastic process Y (τ), τ ∈ [0,τmax], where τmax rep-
resents the maximum time horizon for the process that we wish to sample from.
When the analytical solution of the SDE is not available (and we cannot use an
exact simulation scheme with large time steps), a classical numerical scheme will
be employed, based on tiny constant time increments∆τ= τi+1−τi , a discretiza-
tion in the time-wise direction with grid points 0 < τ1 < τ2 < . . . < τN ≤ τmax , to
generate a sufficient number of highly accurate samples at each time point τi ,
to approximate the corresponding cumulative functions highly accurately. With
the obtained samples, we approximate the collocation points, as follows,

ŷ j (τi) = F−1
Ỹ (τi)

(FX (x j)) ≈ F−1
Y (τi)(FX (x j)) (5.16)

where ŷ j (·) represents the approximate collocation points of Y (t) at time τi , and
x j , j = 1, . . . , Ms , are collocation points of variable X . For simplicity, consider X ∼
N (0,1), so that the points x j are known analytically and do not depend on time
point τi . In the case of a normal distribution, these points are known quadrature
points, and tabulated, for example, in [117]. After this first step, we have the set
of collocation points, ŷ j (τi), for i = 1, . . . , N and j = 1, . . . , Ms . Subsequently, the
ŷ j (·) from (5.16) are used as the ground-truth to train the ANN.

In the second step, we determine the conditional collocation points. For each
time step τi and collocation point indexed by j , a nested Monte Carlo simulation
is then performed to generate the conditional samples. Similar to the first step,
we obtain the conditional collocation points from each of these sub-simulations
using (5.16). This yields the following set of Mc conditional collocation points,

ŷk| j (τi+1) := ŷk (τi+1)|ŷ j (τi) = F−1
Ŷ (τi+1)|Ŷ (τi)=ŷ j (τi)

(
FX (xk| j)

)
, (5.17)

where xk| j is a conditional collocation point, and i ∈ {0,1, . . . , N−1}, j ∈ {1, . . . , Ms},
k ∈ {1, . . . , Mc }. Note that, in the case of Markov processes, the above generic pro-
cedure can be simplified by just varying the initial value Y0 instead of running
a nested Monte Carlo simulation. Specifically, we then set Ŷi = Ŷ0, τi = τ0 and
τi+1 = τ0 +∆τ to generate the corresponding conditional collocation points.

The inverse, F−1
Ŷ (τi+1)|Ŷ (τi)

(·), is often not known analytically, and needs to be

derived numerically. An efficient procedure for this is presented in [131]. Of
course, it is well-known that the computation of F−1(p) is equivalent with the
computation of the quantile at level p.

We encounter essentially four types of stochastic collocation (SC) points: x j

are called the original SC points, x̂ j are original conditional collocation points, ỹ j

are the marginal SC points, and ŷk |· are the conditional SC points. For example,

5

108 5. THE SEVEN-LEAGUE SCHEME

ŷk |Ŷi is conditional on a realization Ŷi . When a previous realization happens to
be a collocation point, e.g., Ŷi = ŷ j , we have ŷk| j := ŷk |ŷ j .

When the data generation is completed, the ANNs are trained on the gener-
ated SC points to approximate the function H in (5.15), giving us a learned func-
tion Ĥ . This is called the training phase. With the trained ANNs, we can approx-
imate new collocation points, and develop a numerical solver for SDEs, which
is the Seven-League scheme (7L), see Algorithm II. Figure 5.1 gives a schematic
illustration of Monte Carlo sample paths that are generated by the 7L scheme.

When the approximation errors from ANN and SCMC are negligible, the strong
convergence properties of the 7L scheme are defined, as follows,

E|Ỹ (ti)−Y (ti)| ≤ ε(∆τ) ¿ K (∆t)βs , (5.18)

where time step ∆τ is used to define the ANN training data-set, and the actual
time step ∆t is used for ANN prediction, with ∆τ ¿ ∆t . Based on the trained
7L scheme, the strong error, ε(∆τ), does thus not grow with the actual time step
∆t . Particularly, let’s assume ∆τ = ∆t/κ, for example κ = 100, when employing
the Euler-Maruyama scheme with time step ∆τ during the ANN learning phase,
we expect a strong convergence of O(

p
∆τ), which then equals O(

p
∆t/κ), while

the use of the Milstein scheme during training would result in O(∆t/κ) accuracy.
When κ= 100, the time step during the learning phase is 100 times smaller than
∆t , which has a corresponding effect on the overall scheme’s accuracy in terms
of its strong, path-wise convergence. Moreover, the maximum value of the time
step ∆t in the 7L scheme can be set up to τmax for a Markov process.

Remark (Lagrange interpolation issue). In the case of classical Lagrange inter-
polation, matrix A(xk|i) in Algorithm II (on the next page) would be the Vander-
monde matrix. In that case, it should not get too large, as the matrix would then
suffer from ill-conditioning. However, when employing orthogonal polynomials,
this drawback is removed. More details can be found in [117].

5.3. METHODOLOGY

5

109

Algorithm II: 7L Scheme

1. Offline stage: Train the ANNs to learn the stochastic collocation
points. At this stage, we choose different θ values, simulate corre-
sponding Monte Carlo paths, with small constant time increments
∆τ= τi+1 −τi in [0,τmax], generate the ŷ j and ŷk| j collocation points,
and learn the relation between input and output. So, we actually
“learn” Hk ≈ Ĥk . See Section 5.3.3 for the ANN details.

2. Online stage: Partition time interval [0,T], ti = i ·T /N , i = 0, . . . N , with
equidistant time step∆t = ti+1−ti . Given a sample Ŷi at time ti , com-
pute m collocation points at time ti+1 using

ŷ j (ti+1)|Ŷi = Ĥ j (Ŷi , ti , ti+1 − ti ,θ), j = 1,2, . . . ,m, (5.19)

and form a vector ŷi+1 = (ŷ1(ti+1)|Ŷi , ŷ2(ti+1)|Ŷi , . . . , ŷm(ti+1)|Ŷi).

3. Compute the interpolation function gm(·), or calculate the coeffi-
cients α̂i+1 (if necessary):

A(xk|i+1)α̂i+1 = ŷi+1, (5.20)

see Algorithm I for details on the computation of original colloca-
tion points. We will compare monotonic spline, Chebyshev and the
barycentric formulation of Lagrange interpolation for this purpose.
See Section 5.4.2 for a detailed discussion.

4. Sample from X and obtain a sample in the next time point, Ŷi+1, by
Ŷi+1|Ŷi = gm(X̂i+1), or the coefficient form as follows,

Ŷi+1|Ŷi =
m−1∑
j=0

α̂i+1, j X̂ j
i+1.

5. Return to Step 2 by ti+1 −→ ti , iterate until terminal time T .

6. Repeat this procedure for a number of Monte Carlo paths.

5.3.3. THE ARTIFICIAL NEURAL NETWORK
The ANN to learn the conditional collocation points is detailed in this subsection.
As shown in the previous chapters, neural networks can be utilized as powerful

5

110 5. THE SEVEN-LEAGUE SCHEME

Y(t)

0

10

20

30

Density

0.00

0.05

0.10

0.15

time
Path No.1

Path No.2

ti
ti+1

ti−1
ti

ti+1
ti−1

(a) Sample paths by 7L

time0

5

10

15

20

25

30

35

40

45

Y(
t)

Path No.1

Path No.2

ti ti+1ti−1 ti ti+1ti−1

Co
nd

iti
on

al
 P
DFSC point

(b) The 2D projection

Figure 5.1: Schematic diagram of the 7L scheme. Left: Sample paths generated by 7L. Right: The
2D projection of Figure 5.1a. Here conditional SC points, represented by ■, are conditional on
a previous realization, denoted by F. “Conditional PDF” is the conditional probability density
function, defined by these conditional SC points. The density function, which is not required by
7L, is plotted only for illustration purposes.

functions to approximate a nonlinear relationship. Next we will briefly recall the
derivation of ANNs as function approximates.

A fully connected neural network, without skip connections, can be described
as a composition function, i.e.,

Ĥ(x́|Θ̂) = ĥL A (...ĥ2(ĥ1(x́; θ̂1); θ̂2); ...θ̂L A), (5.21)

where x́ represents the input variables,Θbeing the hidden parameters (i.e. weights
and biases), L A the number of hidden layers. We can expand the hidden param-
eters as,

Θ̂= (θ̂1, θ̂2, . . . , θ̂L A) = (w1,b1,w2,b2, . . . ,wL A ,bL A), (5.22)

where w` and b` represent the weight matrix and the bias vector, respectively, in
the `-th hidden layer.

Each hidden-layer function, ĥ`(·),`= 1,2, . . . ,L A , takes input signals from the
output of a previous layer, computes an inner product of weights and inputs, and
adds a bias. It sends the resulting value in an activation function to generate the
output. Let z(`)

j denote the output of the j -th neuron in the `-th layer. Then,

z(`)
j =ϕ(`)

(∑
i

w (`)
i , j z(`−1)

i +b(`)
j

)
, (5.23)

where w (`)
i , j ∈ w`, b(`)

j ∈ b`, andϕ(`) is a nonlinear transfer function (i.e. activation
function). With a specific configuration, including the architecture, the hidden

5.4. AN EFFICIENT LARGE TIME STEP SCHEME: COMPRESSION-DECOMPRESSION

VARIANT

5

111

parameters, activation functions and other specific operations (e.g., drop out),
the ANN in (5.21) becomes a deterministic, complicated, composite function.

Supervised machine learning [71] is used here to determine the weights and
biases, where the ANN should learn the mapping from a given input to a given
output, so that for a new input, the corresponding output will be accurately ap-
proximated. Such ANN methodology consists of basically two phases. During
the (time-consuming, but off-line) training phase the ANN learns the mapping,
with many in- and output samples, while in the testing phase, the trained model
is used to very rapidly approximate new output values for other parameter sets,
in the on-line stage.

In a supervised learning context, the loss function measures the distance be-
tween the target function and the function implied by the ANN. During the train-
ing phase, there are many known data samples available, which are represented
by input-output pairs (X́, Ý). With a user-defined loss function L(Θ̂), training neu-
ral networks is formulated as

argmin
Θ̂

L(Θ̂|(X́, Ý)), (5.24)

where the hidden parameters are estimated to approximate the function of inter-
est in a certain norm. For example, using the L2-norm, the loss function reads,

L(Θ̂|(X́, Ý)) = ||Ĥ(X́|Θ̂)− Ý)||2. (5.25)

In this chapter, the input, x́, equals {Ŷi , ti , ti+1 − ti ,θ}, and the output, ý, rep-
resents the collocation points ŷi+1, as in Equation (5.19). In the domain of in-
terest Ώ, we have a collection of data points {x́k }, k = 1, . . . , MD , and their cor-
responding collocation points {ýk }, which form a vector of input-output pairs
(X́, Ý) = {(x́k , ýk)}k=1,...,MD . A popular approach for training ANNs is to optimize
the hidden parameters via back-propagation, for instance, using stochastic gra-
dient descent [71].

5.4. AN EFFICIENT LARGE TIME STEP SCHEME: COMPRESSION-
DECOMPRESSION VARIANT

The 7L scheme employs the ANNs to generate the conditional collocation points
for all samples of a previous time point, see Figure 5.1b. The extensive use of
ANNs in the methodology has an impact on the method’s computational com-
plexity.

In order to speed up the data-driven 7L scheme procedure, we introduce
a compression-decompression (CDC) variant, in the on-line validation phase.
Please note that the off-line learning phase is identical for both variants. The so-
called 7L-CDC scheme, to be developed in this section, only uses the ANNs to

5

112 5. THE SEVEN-LEAGUE SCHEME

determine the conditional collocation points for the optimal collocation points
of a previous time point. All other samples will be computed by means of accu-
rate interpolation. The computational complexity is reduced when the chosen
interpolation is computationally cheaper than using ANNs.

By the compression-decompression procedure, Monte Carlo sample paths
based on SDEs can be recovered from a 3D matrix. We then employ the 7L scheme
procedure only to compute the entries of the encoded matrices Ci at time point
ti , which leads to a reduction of the computational cost in many cases.

Next, we will explain the process of recovering the sample paths from a known
matrix C using the decompression method.

5.4.1. CDC VARIANT
With a time discretization {t0, t1, t2, . . . , tN }, we define a three-dimensional matrix
Ĉ = {Ĉ0,Ĉ1, . . . ,ĈN−1}, which consists of N × (Ms + 1)× (Mc + 2) entries in total.
Recall that Ms represents the number of collocation points and Mc the number
of conditional collocation points. Ms and Mc may vary with time points ti (in
case of an adaptive scheme, for example), but we use constant values for Ms and
Mc . For each time point ti , we construct a 2D matrix Ĉi ,

Ĉi =

− − x̂1 x̂2 . . . x̂Mc

x1 ỹ1(ti) ŷ1|1(ti) ŷ2|1(ti) . . . ŷMc |1(ti)
x2 ỹ2(ti) ŷ1|2(ti) ŷ2|2(ti) . . . ŷMc |2(ti)
...

...
...

...
...

...
xMs ỹMs (ti) ŷ1|Ms (ti) ŷ2|Ms (ti) . . . ŷMc |Ms (ti)

(Ms+1)×(Mc+2)

,(5.26)

with xi , i = 1, . . . , Ms , the original SC points, x̂k , k = 1, . . . , Mc , the k-th original
conditional SC points, and the conditional SC points ŷk| j (ti) = ŷk (ti+1)|ŷ j (ti).
We thus represent the conditional SC points, ŷk (ti+1)|ŷ j (ti), by matrix elements
ci , j ,k . The two empty cells in (5.26) are not addressed in the computation. More-
over, at the last time point, tN , ĈN is not needed.

Remark (Time-dependent elements). As the original collocation points, xi and
x̂k , do not depend on time, we can remove the first row and the first column of
matrix Ĉi to obtain a time-dependent version, C = {C0,C1, . . . ,CN−1}, with the fol-
lowing elements,

Ci =

ỹ1(ti) ŷ1|1(ti) ŷ2|1(ti) . . . ŷMc |1(ti)
ỹ2(ti) ŷ1|2(ti) ŷ2|2(ti) . . . ŷMc |2(ti)

...
...

...
...

...
ỹMs (ti) ŷ1|Ms (ti) ŷ2|Ms (ti) . . . ŷMc |Ms (ti)

Ms×(Mc+1)

. (5.27)

5.4. AN EFFICIENT LARGE TIME STEP SCHEME: COMPRESSION-DECOMPRESSION

VARIANT

5

113

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

y
i

0

0.5

1

1.5

2

2.5

3

y
i+

1
|y

i

y
1
|y

i

y
2
|y

i

y
3
|y

i

y
4
|y

i

y
5
|y

i

y
i

(a) Marginal and Cond. SC points

0

1

1.4
1

2

c
o
n
d
it
io

n
a
l
d
e
n
s
it
y

3

1.2 1.5

Y(t
i
) Y(t

i+1
) | Y(t

i
)

4

2

5

1

2.5

(b) Cond. SC points and densities

Figure 5.2: Schematic illustration of matrix C , with five marginal SC points and five conditional SC
points. The conditional SC points are dependent on the realization connected to the correspond-
ing marginal SC point.

An entry in matrix Ĉ can be computed by the trained ANNs, as follows,

ci , j ,k := ŷk| j (ti) = Ĥ (Mc)
k

(
ŷi , j , ti , ti+1 − ti ,θ

)
, (5.28)

using the marginal SC points,

ỹ j (ti) = Ĥ (Ms)
j

(
Y0, t0, ti − t0,θ

)
, (5.29)

where Ĥ (Λ)
j (·), j = 1, . . . ,m, Λ= {Ms , Mc }, represents the ANN function which

approximates the j -th collocation point when Λ = Ms , and the j -th conditional
collocation point whenΛ= Mc . When Mc = Ms , Ĥ (Ms)

j = Ĥ (Mc)
j . Figure 5.2 shows

an example of the distribution of the conditional SC points when Mc = 3 and
Ms = 3. When the matrices have been defined, all sample paths are compressed
into a structured matrix. In other words, matrix Ĉ contains all the information
needed to perform the Monte Carlo simulation of the SDEs, apart from the inter-
polation technique.

The resulting matrix C will be decompressed to generate Monte Carlo sam-
ple paths with the help of an interpolation. The process of decompression is
straightforward given a matrix Ĉ . In addition to the interpolation process gMc (·)
in SCMC (see Equation (5.20)), an interpolation g̃ (·) is needed to compute con-
ditional collocation points for previous realizations, based on the matrix Ĉ .

Suppose a vector of samples Ŷi at time ti , and we wish to generate sam-
ples of Ŷi+1. For a specific sample Ŷ ∗

i , we need to calculate Mc conditional SC
points. To obtain the k-th (1 ≤ k ≤ Mc) conditional SC point, we take marginal

5

114 5. THE SEVEN-LEAGUE SCHEME

1

t

0.50

25

0.05

Y(t)

20
15

10

0.1

5 0

de
ns

ity

0

0.15

0.2

0.25

(a) Paths for marginal SC points

time0

5

10

15

20

25

30

35

40

45

Y(
t)

ti ti+1ti−1 ti ti+1ti−1 ti ti+1ti−1

(b) Sample paths by 7L-CDC

Figure 5.3: Schematic diagram of the 7L-CDC scheme at time ti . Left: Marginal SC points, cor-
responding to Equation (5.29). Right: Sample paths generated by 7L-CDC. The triple {2,1,3}, in
the picture, represents the third conditional SC point, dependent on the first marginal SC point at
time point t2. The above procedure is also applicable to other time points.

collocation points and their k-th conditional collocation points to form Ms pairs
{(ỹ1(ti), ŷk|1(ti)), (ỹ2(ti), ŷk|2(ti)), . . . , (ỹMs , ŷk|Ms (ti))}. This combination gives us
the interpolation function ŷ = ĝ (x̂). Then we can obtain the k-th conditional SC
point of Ŷ ∗

i ,
ŷ∗

k (ti+1)|Ŷ ∗
i = ĝ (Ŷ ∗

i). (5.30)

As a result, for each sample Ŷ ∗
i , we obtain Mc interpolation nodes, that form

a set of pairs,
(
x̂1, ŷ∗

1 (ti+1)|Ŷ ∗
i

)
,
(
x̂2, ŷ∗

2 (ti+1)|Ŷ ∗
i

)
, up to

(
x̂k , ŷ∗

Mc
(ti+1)|Ŷ ∗

i

)
, which

are used to determine the interpolation function gMc (·) required by SCMC. After-
wards, to generate a new sample Ŷ ∗

i+1|Ŷ ∗
i , the mapping function gMc produces a

conditional sample by taking in a random sample from X ,

Ŷ ∗
i+1|Ŷ ∗

i = gMc (X̂i+1).

The choice of the appropriate number of (conditional) collocation points is a
trade-off between the computational cost and the required accuracy. When the
number of collocation points tends to infinity, the 7L-CDC scheme will resemble
the 7L scheme from Section 5.3.1. A schematic picture is presented in Figure 5.3.

Remark (Computation time). During the on-line phase of the method, the total
computation time of the large time step schemes consists of essentially two parts,
calculation of the conditional SC points, and generating random samples by in-
terpolation (the second part). The difference between the 7L and 7L-CDC schemes
is found in the computation of the conditional SC points, the generation of the
samples is identical for both schemes.

5.4. AN EFFICIENT LARGE TIME STEP SCHEME: COMPRESSION-DECOMPRESSION

VARIANT

5

115

In this first part, for the 7L-CDC scheme, the work consists of setting up matrix
C by the ANNs and computing the conditional SC points by the interpolation. In
matrix C , there are Ms×Mc×N elements that are computed by the ANNs, where N
represents the number of time points, Ms the number of collocation points and Mc

the number of conditional collocation points. Based on the Ms collocation points,
the interpolation is based on Mc conditional collocation points for each path. For
the 7L scheme, M × Mc × N elements, where M is the total number of paths, are
computed by the ANNs. The time ratio between the 7L-CDC and 7L schemes is
found as

γ= tI M + tA Ms

tA M
= tI

tA
+ Ms

M
, (5.31)

with tA the computational time of the ANN (i.e., the function Ĥ(·)), tI for the in-
terpolation (i.e., the function ĝ (·) in (5.30)), which is a polynomial function of Ms .
Given the fact that the number of sample paths is typically much larger than the
number of SC points M À Ms ,

γ≈ tI

tA
.

When the employed interpolation is computationally cheaper than the ANNs, γ<
1, so that the 7L-CDC scheme needs fewer computations than the 7L scheme.

5.4.2. INTERPOLATION TECHNIQUES
To define the function gm(x) in (5.13) or ĝ (x) in (5.30), we will compare three
different interpolation techniques.

A bijective mapping function is obtained by the monotonic Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP) [132]. Assuming there are multiple
data points, (xk , yk), using,

hk := xk+1 −xk , dk := yk+1 − yk

xk+1 −xk
,

the derivatives f ′
k at the points xk are computed as a weighted average,

ŵ1 + ŵ2

f ′
k

= ŵ1

dk−1
+ ŵ2

dk
, if dk ·dk−1 > 0,

where ŵ1 := 2hk +hk−1 and ŵ2 := hk +2hk−1. At each data point the first deriva-
tive is guaranteed to be continuous, and a cubic spline is used to interpolate be-
tween the data points. If dk ·dk−1 ≤ 0, then f ′

k = 0. PCHIP requires more com-
putations than a Lagrange interpolation, but it results in a monotonic function
which is generally advantageous.

The convergence of the stochastic collocation method is not really depen-
dent on the monotonicity of the mapping function, so an interpolation based

5

116 5. THE SEVEN-LEAGUE SCHEME

on Lagrange polynomials is possible in practice. The barycentric version of La-
grange interpolation [133], our second interpolation technique, provides a rapid
and stable interpolation scheme, which is applied when using Lagrange interpo-
lation in our numerical experiments. With help of the basic Lagrange interpola-
tion expressions, however, we can conveniently perform theoretical analysis.

The third technique is based on choosing the interpolation points carefully
(e.g., as the Chebyshev zeros) to achieve a stable interpolation. The Chebyshev
interpolation [134] is of the form,

gm(x) =
m−1∑
j=0

α j p j (x) =α0 +α1p1(x)+ ...+αm−1pm−1(x), (5.32)

where pm−1(x) are interpolation basis functions, here Chebyshev orthogonal poly-
nomials, up to degree m − 1. The Chebyshev nodes in the interval [xa , xb] are
computed as,

x̃k = xa +
1+cos(πk

m−1)

2
(xb −xa),k = 0,1, . . . ,m −1.

When the polynomial degree increases, the Chebyshev interpolation retains uni-
form convergence. In financial mathematics, Chebyshev interpolation has been
successfully used, for example, to compute parametric option prices and implied
volatility in [135–137]. When the interpolation points are not Chebyshev nodes
(e.g., Gauss quadrature points), the Chebyshev coefficients can be estimated by
means of a least squares regression, which is also called the Chebyshev fit. In
such case, the coefficients in (5.14) can be explicitly computed, in contrast to
the barycentric Lagrange interpolation. The selection of a suitable interpolation
technique depends on various factors, for instance, speed, monotonicity, avail-
ability of coefficients. These three interpolation methods will be compared in the
numerical section.

5.4.3. PATH-WISE SENSITIVITY
Often in computations with stochastic variables, we wish to determine the deriva-
tives of the variables of interest, the so-called pathwise sensitivities. This is gen-
erally not a trivial exercise in a Monte Carlo setting, see, for example, the dis-
cussions in [138–141]. With our new large time step schemes, we determine
the pathwise sensitivities of the computed stochastic variables in a natural way,
based on the available information in the (conditional) SC points and the inter-
polation. In this section, we derive the pathwise sensitivity of the state variable
Y (t) with respect to model parameters θ.

5.5. NUMERICAL EXPERIMENTS

5

117

The first derivative with respect to parameter θ of the conditional distribu-
tion in Equation (5.13) reads,

∂Y (ti+1)

∂θ
= ∂g (X)

∂θ
≈ ∂

∂θ

(
m∑

j=1
ŷ j (t)p j (X)

)
= ∂

∂θ

(
m∑

j=1
Ĥ j p j (x)

)
=

m∑
j=1

(
∂Ĥ j

∂θ
p j (X)

)
,

(5.33)
where p j (X) are basis functions, which do not depend on the model parameters.

For the derivative
∂Ĥ j

∂θ in (5.33) at time ti , the expression of the ANN (5.21), given
the specific activation function, is available. So, the function Ĥ is analytically

differentiable. As a result,
∂Ĥ j

∂θ can be easily computed, by means of automatic
differentiation in the machine learning framework. Thus, we arrive at the sensi-
tivity of a sample path with respect to model parameters, as follows,

∂Ŷi+1

∂θ
=

m∑
j=1

∂Ĥ j

∂θ
p j (X̂i+1). (5.34)

5.5. NUMERICAL EXPERIMENTS
In this section with numerical experiments we will give evidence of the high qual-
ity of our numerical SDE solver, by analyzing first in detail its components. For
this purpose, we mainly focus on the Geometric Brownian Motion SDE, which
reads,

dY (t) =µY (t)dt +σY (t)dW (t), 0 ≤ t ≤ T. (5.35)

The model parameters are the constant drift and volatility coefficients, i.e., θ =
{µ,σ}, and the initial value is given by Y0. For (5.35) a continuous-time analytic
expression for the asset price at time t is available, i.e.,

Y (t) = Y0e(µ− 1
2σ

2)(t−t0)+σ(W (t)−W (t0)) d= Y0e(µ− 1
2σ

2)(t−t0)+σpt−t0 X , (5.36)

where X ∼ N (0,1), and Y (t) is governed by the lognormal distribution. The
derivative of the stock price with respect to volatilityσ is available in closed form,
and reads,

∂Y (t)

∂σ

d= Y (t)(−σ(t − t0)+√
t − t0X). (5.37)

This expression will be used as the reference value of the sensitivity obtained
from the 7L discretization.

Furthermore, the Ornstein-Uhlenbeck process is explained and also analyzed,
in Subsection 5.5.3. We will employ the large time step discretization, in which
the conditional collocation points are computed by the trained ANN, and com-
pare the results of the novel scheme with those obtained by the Milstein SDE
discretization.

5

118 5. THE SEVEN-LEAGUE SCHEME

5.5.1. ANN TRAINING DETAILS
GBM and the OU process are Markov processes, so the conditional distribution
at time ti+1 given information up to time ti only depends on the information at
time ti . The ANN (5.15) will therefore be used for the conditional collocation
stochastic points, with θ = {µ,σ}, for GBM, and θ = {Y ,σ,λ} for the OU process
(as will be discussed in Subsection 5.5.3).

Regarding the size of the compression-decompression matrix, the more con-
ditional collocation points, the better the accuracy of the 7L-CDC method. A
5x5 matrix size (i.e., five marginal and five conditional SC points) is preferred,
taking into account the computing effort and the accuracy. In [117] it has been
discussed and shown that highly accurate approximations could already be ob-
tained with a small number of collocation points.

As the first method component, we evaluate the quality of the ANN which de-
fines the collocation points, for the GBM dynamics. For this purpose, ML random
points are generated by using Latin Hyper-cube Sampling (LHS) in the domain
of interest for the three parameters (Y0,µ,σ), see Table 5.1. As the second step,
for each point a Monte Carlo method is employed to simulate the discretized
SDE based on the tiny time step ∆τ. We use an Euler-Maruyama time discretiza-
tion for this purpose, with Nτ the number of time points and the time horizon
τmax = Nτ ·∆τ. At each time step, j = 1, ..., Nτ, the conditional distribution func-
tion FY (t j)|Y0,µ,σ(·) is computed, based on the many generated MC paths. This
way, the resulting collocation points for the “big time step”, ∆t = j ·∆τ, are also
obtained, to form the required training data set.

We set τmax = 1.6, Nτ = 500, ML = 160. The amount of training data used is
given by Mtr ai n = ML · Nτ = 80,000 samples in total, which are divided into an
ANN training (90%) and an ANN testing (10%) set.

Table 5.1: Training data, ∆τ= 0.01. Here is an example for training on five SC points.

ANN Parameters Value range Method

input
drift, µ (0.0, 0.10] LHS

volatility, σ [0.05, 0.60] LHS
value, Y0 [0.10, 15.0] LHS

time, τmax (0.0, 1.60] Equidistant
Ĥ1(·) output point, ŷ1 (0.0,25.65) SCMC
Ĥ2(·) output point, ŷ2 (0.0,25.98) SCMC
Ĥ3(·) output point, ŷ3 (0.0,27.84) SCMC
Ĥ4(·) output point, ŷ4 (0.0,54.67) SCMC
Ĥ5(·) output point, ŷ5 (0.0,154.35) SCMC

5.5. NUMERICAL EXPERIMENTS

5

119

The ANN hyper-parameters impact the optimization errors when training
the ANN. The approximation accuracy depends on the width and depth of the
network and on the number of hidden parameters. Deep neural networks have
more powerful expression capabilities than shallow neural networks. We use one
input, one output and four hidden layers. Each hidden layer consists of 50 neu-
rons, with Softplus as the activation function[142]. Before training the ANN, the
hidden parameters are initialized via the Glorot technique [143]. Training goes
in batches. At each iteration, the stochastic gradient based optimizer, Adam[43],
randomly selects a portion of the training samples according to the batch size,
to calculate the gradient for updating the hidden parameters. In an epoch, all
training samples have been processed by the optimizer. The mean squared error,
which measures the distance between the ground-truth and the model values in
supervised learning, is used to update the hidden parameters during training.
The measure MAE (Mean Absolute Error), i.e.,

MAE = 1

MD

∑
j
|y j − ŷ j |,

is also estimated, as the path-wise error of the 7L scheme is related to the max-
imum absolute difference in the approximated collocation points, ŷ j , for which
the relevant derivation can be found in Section 5.5.3.

The training process starts with a relatively large learning rate (i.e 10−3) to
avoid getting stuck in local optima. After 1000 epochs, the learning rate is re-
duced to 10−4, followed by training 500 more epochs, to achieve a steady conver-
gence. Afterwards, the trained ANN is evaluated on the testing data set, with the
results presented in Figure 5.4 (for two of the collocation points) and Table 5.2.
Clearly, the predicted values fit very well with the true values of the stochastic
collocation points. This implies that the trained ANNs reach a highly satisfactory
generalization, and generate accurate and robust approximation results for all
five collocation points.

Table 5.2: The approximation performance on test data set.

SC points ŷ1 ŷ2 ŷ3 ŷ4 ŷ5

R2 0.999891 0.999947 0.999980 0.999892 0.999963
MAE 0.026 0.027 0.021 0.071 0.066

5.5.2. ERROR ANALYSIS, THE LAGRANGIAN CASE
There are essentially two approximation errors in the 7L scheme, a neural net-
work approximation error when generating the collocation points, and an SCMC

5

120 5. THE SEVEN-LEAGUE SCHEME

(a) ŷ2 (b) ŷ4

Figure 5.4: The goodness of fit on test data set. Two scatter plots show the relation between the
predicted values and the ground truth.

error when representing the conditional distribution function.
Considering d inputs, the neural network may approximate any function ζd ,n ,

from the function space C n−1([0,1]d), where the derivatives up to order n −1 are
Lipschitz continuous [144]. The input and output variables can be normalized
to the unit interval [0,1]. With a fixed network architecture during training, the
approximation error can be assessed, as follows.

Theorem 1. From [144]. Given any ε̂ ∈ (0,1), there exists a neural network which
is capable of approximating any function ζd ,n with error ε̂, based on the following
configuration:

• at least piece-wise activation functions,

• at least c̃(ln(1/ε̂)+1) hidden layers and c̃ ε̂−d/n(ln(1/ε̂)+1) weights and com-
putation units, where c̃ := c̃(d ,n) depends on the parameters d and n.

When the architecture is dynamic, the error bound can be further reduced, as
shown in [145] and [144]. One of the assumptions is that the ANNs are sufficiently
trained, so that the optimization error is negligible.

The error from the SCMC methodology was derived in [117]. The optimal
collocation points, xi , i = 1, . . . ,m, correspond to the zeros of an orthogonal poly-
nomial. In the case of Lagrange interpolation, when the collocation method can
be connected to Gauss quadrature, we have∫

R
Ψ(x) fX (x)dx =

m∑
i=1
Ψ(xi)ωi +εm = εm , (5.38)

with Ψ(x) = (
g (x)− gm(x)

)2, the difference between the target and the SC ap-
proximated function, fX (x) the weight function, and ωi the quadrature weights.

5.5. NUMERICAL EXPERIMENTS

5

121

When the Gauss-Hermite quadrature is used with m collocation points. the ap-
proximation error of the CDF can be estimated as,

εm = m!
p
π

2m

Ψ(2m)(ξ1)

(2m)!
, (5.39)

where ξ1 ∈ (−∞,∞) and the distance function

Ψ(x) = (
g (x)− gm(x)

)2 ≈
(

1

m!

∂m g (x)

∂xm

∣∣∣∣
x=ξ2

m∏
k=1

(x −xk)

)2

,

with ξ2 ∈ [x1, xm−1]. In other words, the error of approximating the target CDF
converges exponentially to zero when the number of corresponding collocation
points increases.

At each time point ti , the process Y (ti) is approximated using the collocation
method, by a polynomial gm(X), i.e., in the case of classical Lagrange interpola-
tion, using ` j (x̄) = p j (x̄),

Y (ti) ≈ Ỹ (ti) = gm(X) =
m∑

j=1
y j (ti)` j (X), ` j (x̄) =

m∏
k=1

X −xk

x j −xk
, (5.40)

where the collocation points y j (ti) = F−1
Y (ti)(FX (x j)). Because of the use of an

ANN, the collocation points are not exact, but they are approximated with y j (ti)−
ŷ j (ti) = εA

j , where ŷ j (ti) represents the ANN approximated value. The error asso-

ciated with εA
j can be estimated as in [145]. The impact of εA

j on the obtained out-
put distribution needs to be assessed. Let g̃m denote the approximate function
based on the predicted ANN collocation points ŷ j (ti), and x a random sample
from the standard normal distribution X . The approximation error, in the strong
sense, is given by

E
[|gm(x)− g̃m(x)|] = E

∣∣∣ m∑
j=1

y j (ti)` j (x)−
m∑

j=1
ŷ j (ti)` j (x)

∣∣∣
=

∫
R

∣∣∣ m∑
j=1

y j (ti)` j (x)−
m∑

j=1
ŷ j (ti)` j (x)

∣∣∣ fX (x)dx

=
∫
R

∣∣∣ m∑
j=1

εA
j ` j (x)

∣∣∣ fX (x)dx. (5.41)

Note that the ` j (x) interpolation functions are identical as they depend solely on

5

122 5. THE SEVEN-LEAGUE SCHEME

the x values. We arrive at the following error related to the ANNs,∫
R

∣∣∣ m∑
j=1

εA
j ` j (x)

∣∣∣ fX (x)dx ≤
∫
R

m∑
j=1

max{|εA
1 |, . . . , |εA

m |}` j (x) fX (x)dx

=
∫
R

max{|εA
1 |, . . . , |εA

m |} fX (x)dx

= max{|εA
1 |, . . . , |εA

m |} (5.42)

Considering the error introduced by SCMC in (5.39), the total path wise error
reads

E
[|g (x)− g̃m(x)|] ≤ E

[|g (x)− gm(x)|]+E[|gm(x)− g̃m(x)|]
≤

√
|εm |+max{|εA

1 |, . . . , |εA
m |}. (5.43)

In other words, the expected pathwise error can be bounded by the approxima-
tion CDF error

p|εm | plus the largest difference in the ANN approximated collo-
cation points.

KOLMOGOROV-SMIRNOV TEST

The Kolmogorov-Smirnov test, calculating the supremum of a set of distances, is
used to measure the nonparametric distance between two empirical cumulative
distribution functions. We perform the two-sample Kolmogorov-Smirnov test,
as follows,

K S = sup
z

|FY (z)− F̂Y (z)|,

where F̂Y (·) and FY (·) are two empirical cumulative distribution functions, one
from the 7L-CDC solution and the other one from the reference distribution. We
take the analytic solution of the GBM as the reference distribution.

Remark (Time horizon for 7L-CDC). The information in Table 5.1 is used to train
the mapping function between a realization (including marginal SC points) and
its conditional SC points, via Equation (5.28). For the marginal SC points in Equa-
tion (5.29), however, we need training data up to terminal time T . So, we generate
a second data set in which the time reaches τmax (the terminal time of interest)
and the upper value for Y0 equals 5. The data sets are combined to train the ANNs
for the 7L-CDC methodology.

Figure 5.5 shows the Kolmogorov-Smirnov test at different time points based
on 10000 samples. We focus on the CDC methodology here, and compare the
accuracy with the different interpolation methods in the figure. Clearly, the KS
statistic and also the corresponding P-values for the 7L-CDC schemes are much

5.5. NUMERICAL EXPERIMENTS

5

123

better than those of the Milstein scheme in Figure 5.5. This is an indication
that the CDFs that originate from the 7L-CDC schemes resemble the target CDF
much better, with high confidence. In addition, unlike the Milstein scheme the
7L-CDC schemes exhibit an almost constant difference between the approxi-
mated and target CDFs with increasing time.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time ((t = 0.5Δ

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

KS
 s

ta
tis

tic Mi stein
7L-CDC-PCHIP
7L-CDC-Chebyshev
7L-CDC-Lagrange

(a) KS statistic

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (Δt=0.5Δ

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e Milstein

7L-CDC-PCHIP
7L-CDC-Chebyshev
7L-CDC-Lag ange

(b) P-value

Figure 5.5: The Kolmogorov-Smirnov test: ∆t = 0.5,µ = 0.1,σ = 0.3,Y0 = 1.0, with 10000 samples.
When we have a small KS statistic or a large P-value, the hypothesis that the distributions of the
two sets of random samples are the same can not be rejected.

We will also analyze the costs of the different interpolation methods within
7L-CDC. The two steps which require interpolation are the computation of the
conditional collocation points and the generation of conditional samples. The
computational speed of the 7L-CDC scheme depends on the employed interpo-
lation method, see Table 5.3.

Table 5.3: The CPU running time (seconds) to reach the same accuracy (CPU: E3-1240, 3.40GHz):
simulating 10,000 sample paths until terminal time T = 4.0, based on 5×5 marginal/conditional
SC points. Here, for the 7L scheme, PCHIP is used as the interpolant gm (·) in Step 3 of Algorithm I.

Method /Time (Sec.)
∆t = 1.0 ∆t = 2.0

Create C Decom. C Total Create C Decom. C Total
7L-CDC Barycentric 0.054 4.93 4.98 0.027 2.48 2.51
7L-CDC Chebyshev 0.054 9.78 9.83 0.027 4.93 4.96

7L-CDC PCHIP 0.054 11.39 11.44 0.027 5.73 5.76
7L scheme - - 12.80 - - 6.39

Milstein - - 27.01 - - 27.70

5

124 5. THE SEVEN-LEAGUE SCHEME

To achieve a similar accuracy in the strong sense, the Milstein scheme needs
a much finer time grid, by a factor of κ = ∆t/∆τ. When κ is sufficiently large,
the 7L-CDC scheme outperforms Milstein in terms of both accuracy and speed.
For example, in Table 5.3, κ = 100 when ∆t = 1.0, and κ = 200 when ∆t = 2.0.
In addition, computational time of the new scheme can be further reduced by
parallelization, for example, using Graphics Processing Units (GPUs).

5.5.3. PATH-WISE ERROR CONVERGENCE
In this section, we compare the path-wise errors of our proposed novel discretiza-
tion with those of the classical discretization schemes.

GBM PROCESS

We analyze here the strong convergence properties of the new methodology for
the GBM process. For GBM, the exact path is given by the expression (5.36). The
random number, which is drawn from X ∼ N (0,1), is the same for the exact so-
lution (5.36), the novel schemes (5.14) and the Milstein scheme (5.3). The path-
wise differences between the numerical schemes and the exact simulation are
plotted in Figure 5.6. When∆t = 0.5, the 7L-CDC scheme presents superior paths
as compared to the Milstein scheme, in terms of its path-wise error comparing
to the exact path.

As shown in Figure 5.7, the 7L-CDC scheme gives rise to flat, almost con-
stant, strong and weak error convergence curves for many different ∆t-values,
suggesting a small, constant convergence error even with large time steps ∆t .
The Milstein scheme has the strong order of convergence O(∆t), so that a larger
time step gives rise to a larger error. When the time step becomes small, more
time points are needed to reach a time T , and then the resulting recursive error
of the 7L-CDC scheme increases.

The number of conditional collocation points, by which the conditional dis-
tribution at a next time point is mostly determined, has a significant contribution
to the convergence order of the 7L-CDC scheme. As mentioned, we found em-
pirically that five conditional collocation points are preferable in terms of com-
puting effort versus accuracy. CDC matrix C is then of size N ×5×5, that is, at
each time point, there are five collocation points and each of these has five con-
ditional collocation points.

ORNSTEIN-UHLENBECK PROCESS

Any SDE which can be solved by the Euler-Maruyama discretization can be solved
by our ANN methodology, with improved strong convergence properties. We also
wish to confirm the strong convergence properties for another stochastic process
in this section.

5.5. NUMERICAL EXPERIMENTS

5

125

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

1

2

3

4

5

Y(
t)

Monte Carlo paths
7L-CDC-Lagrange
7L-CDC-PCHIP
Milstein
Exact-GBM

Figure 5.6: Paths generated by 7L-CDC: time step∆t = 0.5, GBM withσ= 0.3, r = 0.1, Y0 = 1.0. The
paths are with Chebyshev interpolation, which are not plotted, are identical to ones from Lagrange
in this case.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Δt

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

er
ro
r

Milstein strong conv.
7L-CDC-PCHIP strong conv.
7L-CDC-Lagrange strong conv.
7L-CDC-Chebyshev strong conv.

(a) Strong convergence

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Δt

0.00

0.02

0.04

0.06

0.08

er
ro

r

Milstein weak conv.
7L-CDC-PCHIP weak conv.
7L-CDC-Lagrange weak conv.
7L-CDC-Chebyshev weak conv.

(b) Weak convergence

Figure 5.7: The strong error is estimated as 1
M

∑ |Y̌k (T)− Ŷk (T)|, see Equation (5.4) and the weak

error by 1
M (

∑
Y̌k (T)−∑

Ŷk (T)), see [140, page 261] for details on the computation of the conver-
gence rate. There are M = 1000 sample paths in total.

The mean reverting Ornstein-Uhlenbeck (OU) process [146] is defined as,

dY (t) =λ(Y (t)−Y)dt +σdW (t), 0 ≤ t ≤ T, (5.44)

with Y the long term mean of Y (t), λ the speed of mean reversion, and σ the
volatility. The initial value is Y0, and the model parameters are θ := {Y ,σ,λ}. Its

5

126 5. THE SEVEN-LEAGUE SCHEME

analytical solution is given by,

Y (t)
d= Y0e−λt +Y (1−e−λt)+σ

√
1−e−2λt

2λ
X , (5.45)

with t0 = 0, X ∼ N (0,1). Equation (5.45) is used to compute the reference value
to the path-wise error and the strong convergence.

We employ the same data-driven procedure as for GBM to discretize and
solve the OU process. In the training phase, the Euler-Maruyama scheme (5.2)
is used to discretize the OU dynamics and generate the data set. Note that the
Milstein and Euler schemes are identical in the case of the OU process. As the
OU process is a Markov process, we again can vary Y0 to find the relation be-
tween the conditional SC points and the marginal SC points (i.e. as in Equa-
tion (5.28)). Similar to Table 5.1, we employ five SC points to learn within the
ANN, with ∆τ = 0.01, τmax = 4.1, Nτ = 500, ML = 410, see Section 5.5.1 for the
details of the training process.

After the training, the obtained ANNs will be applied to solve the OU process
with specific parameters and details of our interest. We provide an example in
Figure 5.8, which confirms that the sample paths generated by 7L-CDC are as
accurate as the exact solution, and the error, in the sense of strong convergence,
stays close to zero even with a large time step.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y(
t)

Monte Carlo paths
7L-CDC
Milstein
Exact-OUP

(a) Path-wise error (∆t = 1.0)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Δt

0.00

0.05

0.10

0.15

0.20

0.25

er
ro
r

MilsteinΔstrongΔconv.
7L-CDCΔΔstrongΔconv.

(b) Strong convergence

Figure 5.8: Paths and strong convergence for the OU process, using λ= 0.5, Y = 1.0, σ= 0.3, Y0 =
1.0. The sample paths with barycentric, Chebyshev and PCHIP interpolation overlap for the 7L-
CDC scheme. There are five marginal and five conditional SC points at each time point.

5.5.4. APPLICATIONS IN FINANCE
The possibility to take large time steps and still get accurate SDE solutions, is cer-
tainly interesting in computational finance, as there are several financial prod-

5.5. NUMERICAL EXPERIMENTS

5

127

ucts that are updated on a daily basis (think of an over-night interest rate), whereas
monitoring of financial contracts and risk management is typically only done on
a weekly, monthly of even yearly basis. In such situations, our novel scheme will
be useful. Research into large time step simulations is state-of-the-art in compu-
tational finance, see the exact (and almost exact) Monte Carlo simulation papers,
like [147, 148] for the SABR and Heston stochastic volatility asset dynamics, re-
spectively.

THE ASIAN OPTIONS

Moreover, the strong convergence property of an SDE discretization is important
in many cases. When valuing so-called path-dependent options, for example,
improved strong convergence enhances the convergence of a Monte Carlo simu-
lation. Options are governed by their pay-off function (i.e. the option value at the
final time of the contract, t = T). Here we consider a path-dependent exotic op-
tion, the so-called European-style Asian option, which has a payoff that is based
on a time-averaged underlying stock price. For example, the pay-off of a fixed
strike Asian option is given by

VA(T) = max(A(T)− K̃ ,0),

where T is the option contract’s expiry time, and K̃ is the predetermined strike
price. Here A(T) denotes the discrete arithmetic average of the stock prices over
Nb monitoring dates {t1, . . . , tk } ∈ [0,T],

A(T) = 1

Nb

Nb∑
k=1

Ŷ (tk),

where Ŷ (tk) is the observed stock price at time tk , 1 ≤ tk ≤ T . Averaging thus
takes place in the time-wise direction, and we consider pricing financial options
based on the discrete arithmetic average of a number of stock prices.

We assume here that the underlying stock price follows Geometric Brownian
motion, as in Equation (5.35), under the risk-neutral measure, meaning µ ≡ r ,
where r is the risk-free interest rate. There is a cash account M(t), governed by
dM(t) = r M(t)dt . The value of European-style Asian option is then given by

VA(t) = e−r (T−t)EQ
[

max(A(T)− K̃ ,0)
∣∣∣F (t)

]
. (5.46)

Because the pay-off is clearly a path-dependent quantity for such options, it is
expected that an improved strong convergence, obtained with the variant 7L-
CDC, will result in superior convergence, as compared to classical numerical dis-
cretization schemes.

5

128 5. THE SEVEN-LEAGUE SCHEME

Table 5.4: Pricing Asian European-style option with a fixed strike price, using Y0 = 1.0, K̃ = Y0,
r = 0.1, T =∆t ×Nb .

method ∆t = 1.0, Nb=4 ∆t = 0.5, Nb=8

σ=0.30
Analytic MC 0.24886257 (0.00%) 0.22403982 (0.00%)
Milstein MC 0.23077000 (7.27%) 0.21558276 (3.77%)

7L-CDC 0.24871446 (0.06%) 0.22404571 (0.00%)

σ=0.40
Analytic MC 0.28515109 (0.00%) 0.25723594 (0.00%)
Milstein MC 0.26394277 (7.44%) 0.24717425 (3.91%)

7L-CDC 0.28482371 (0.11%) 0.25647592 (0.30%)

The relative error is presented, which is defined as

εr el =
∣∣∣V r e f

A (t0)−VA(t0)

V r e f
A (t0)

∣∣∣,
where V r e f

A (t0,S0) is based on the exact GBM Monte Carlo simulation. As shown
in Table 5.4, the 7L-CDC scheme gives highly accurate Asian option prices, com-
pared to the Milstein scheme. As the accuracy of Asian option prices depends
directly on the accuracy of the realized paths, an increasing number of monitor-
ing dates will give rise to higher accuracy by 7L-CDC.

Next, we focus on the Asian option’s sensitivity. The sensitivity of the option
price with respect to volatilityσ is called Vega, which can be computed in a path-
wise fashion [see 149, Chapter 7], as follows,

∂V

∂σ
= e−r T EQ

[
N∑

i=1

∂V (T,Y (ti);σ)

∂Y (ti)

∂Y (ti)

∂σ
|Y0

]
. (5.47)

The chain rule is employed to derive the sensitivity. First of all, we compute the
gradient of the payoff function with respect to the underlying stock price, by

∂V (T,Y (ti))

∂Y (ti)
= 1

N
1A(T)>K̃ . (5.48)

Then, the derivative of the stock price at time ti with respect to the model pa-
rameter, ∂Y (ti)

∂σ , can be found with the trained ANNs, as given by Equation (5.33).
Vega can be estimated by,

∂V

∂σ
≈ e−r T 1

N
EQ

[
N∑

i=1

(
1A(T)>K̃

m−1∑
j=0

∂Ĥ j

∂σ
p j (X)

)
|Y0

]
. (5.49)

5.5. NUMERICAL EXPERIMENTS

5

129

With there are M sample paths, we have,

∂V

∂σ
≈ e−r T 1

M

1

N

[
M∑

k=1

N∑
i=1

(
1A(T)>K̃

m−1∑
j=0

∂Ĥ j

∂σ
p j (X̂k,i+1)

)
|Y0

]
. (5.50)

As the realization Ŷi is a function of the model parameters, at time ti+1, the
derivative with respect to the volatility in Equation (5.34) becomes

∂Ĥ j (Ŷi ,σ)

∂σ
= ∂Ĥ j (σ; Ŷi)

∂σ
+ ∂Ĥ j (Ŷi ;σ)

∂Ŷi

∂Ŷi

∂σ
, (5.51)

where ∂Ŷi
∂σ is known at the previous time point. Like simulating the Monte Carlo

paths, the calculation of this derivative is done iteratively. Figure 5.9a compares
the path-wise sensitivities obtained via Equations (5.37) and (5.51). Clearly, the
path-wise derivative by the 7L scheme is very similar to the analytical solution.
Figure 5.9b confirms that the ANN methodology computes a highly accurate
Asian option Vega by means of the above path-wise sensitivity. Summarizing, the
sensitivity with respect to model parameters can highly accurately be obtained
from the trained ANNs. As the 7L-CDC scheme is composed of marginal and
conditional collocation points, the above procedure of computing the path-wise
sensitivity is also applicable to the variant 7L-CDC, by using the chain rule.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

−2

0

2

4

6

8

10

∂Y(t)
∂σ

7L Scheme
Exact-GBM

(a) Path-wise sensitivity

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Number of paths (x103)

0.2

0.3

0.4

0.5

0.6

0.7

ve
ga

Exact-vega
Exact-GBM
7L Scheme

(b) Path-wise Vega

Figure 5.9: Path-wise estimator of Vega: Exact Vega is calculated by means of the central finite
difference. The parameters are Y0 = 1.0, r = 0.05, K̃ = Y0, σ= 0.3, ∆t = 1.0, Nb = 4, T =∆t ×Nb =
4.0.

BERMUDAN OPTION VALUATION

When dealing with so-called Bermudan options, the option contract holder has
the right (but not the obligation) to exercise the option contract at a finite num-
ber of pre-specified dates up to final time T . At an exercise date, when the holder

5

130 5. THE SEVEN-LEAGUE SCHEME

decides to exercise the Bermudan option, she immediately obtains the current
payoff value of the contract. Alternatively, she may also wait until the next exer-
cise opportunity. The Bermudan option can be exercised at the following set of
exercise dates, {t0, t1, ..., tNb }, with a constant time difference, ∆t = ti − ti−1, for
any 0 < i ≤ Nb .

In this experiment, we compare the performance of the new 7L-CDC dis-
cretization scheme with a classical scheme. Valuation of the Bermudan option
will take place by means of the well-known Longstaff-Schwartz Monte Carlo method
(LSMC) [150], a least squares Monte Carlo method. Here the 7L scheme Longstaff-
Schwartz algorithm is presented in Algorithm III.

The difference between a large time step simulation and a classical simu-
lation, like the Milstein scheme, is that a classical scheme requires additional
time steps to be taken between the early-exercise dates of the Bermudan option,
while with the 7L-CDC scheme, we can perform one-step Monte Carlo simula-
tion without any intermediate grid points between adjacent early-exercise dates.

We also assume here that the underlying stock price follows Geometric Brow-
nian motion, as in Equation (5.35), under the risk-neutral measure, with µ ≡
r . A Bermudan put option, with risk-free interest rate r = 0.1, pay-off function
V (t j) = max(K −Y (t j),0) with strike price K = 1.1 and initial stock price Y0 = 1.0,
is priced based on M = 100,000 Monte Carlo paths. The matrix size within the
7L-CDC scheme is set to Nb ×5×5. The terminal time is T =∆t ×MB with a con-
stant time step ∆t . The random seed is chosen to be zero when drawing random

numbers. We compare the relative errors |V r e f (t)−V (t0)
V r e f (t0)

|, where V r e f (t0) is com-
puted with the help of a Monte Carlo method based on the exact simulation of
GBM (5.36).

As shown in Table 5.5, the option prices based on the 7L-CDC Monte Carlo
simulation are highly satisfactory, and the related error does not increase with
larger time steps∆t . In contrast, a larger time step gives rise to significant pricing
errors, in the case of the Milstein discretization.

5.5. NUMERICAL EXPERIMENTS

5

131

Algorithm III: 7L scheme Longstaff-Schwartz algorithm

1. Divide the time horizon into Nb intervals.

2. Simulate M stock price paths Ŷi , j (0 ≤ i ≤ Nb , 1 ≤ j ≤ M), using the
7L-CDC methodology;

3. Price the Bermudan option by means of the Longstaff-Schwartz
Monte Carlo method:

(a) At terminal time TNb , calculate the payoff V̂Nb , j =V
(
YNb , j

)
for all

paths j , where V (·) is the payoff function.

(b) Perform a backward recursion, from i = Nb −1 until i = 0 as fol-
lows:

(c) Compute the discounted continuation value at time ti , i.e.,

η̂i , j := e−r∆t V̂i+1, j (5.52)

(d) Perform least squares regression at time ti , based on the cross-
sectional information Ŷi , j and η̂i , j to estimate the conditional
expectation function,

η̄i (Ŷ) =
Mk∑
k=1

βk Bk (Ŷ) (5.53)

where Mk is the number of basis functions Bk (S) (polynomial
basis, here, Mk = 3), and the coefficients βk are constant over
different paths j . Note that only in-the-money paths are consid-
ered in Equations (5.52) and (5.53),

(e) For each path j , compare the immediate exercise value V
(
Ŷi , j

)
with the estimated continuation value η̄i

(
Ŷi , j

)
: If V

(
Ŷi , j

)
≥

η̄i

(
Ŷi , j

)
, then V̂i , j =V

(
Ŷi , j

)
; else V̂i , j = η̄i

(
Ŷi , j

)
.

4. Calculate the option price V (t0) at the initial time,

V (t0) = 1

M

M∑
j=1

V̂0, j . (5.54)

Remark. In principle, a sample value Ŷi can be any rational number. So, a path

5

132 5. THE SEVEN-LEAGUE SCHEME

Table 5.5: Bermudan put option prices based on large time step Monte Carlo simulations.

method ∆t = 1.0, Nb=4 ∆t = 0.5, Nb=4 ∆t = 0.5, Nb=8

σ=0.30
Analytic MC 0.15213858(0.00%) 0.14620214(0.00%) 0.16161876(0.00%)
Milstein MC 0.13872771(8.81%) 0.14065252(3.80%) 0.15429369(4.53%)

7L-CDC 0.15234901(0.14%) 0.14648443(0.19%) 0.16196264(0.21%)

σ=0.40
Analytic MC 0.21459038(0.00%) 0.19552454(0.00%) 0.22340304(0.00%)
Milstein MC 0.19598488(8.67%) 0.18790933(3.89%) 0.21297732(4.67%)

7L-CDC 0.21474619(0.07%) 0.19590733(0.20%) 0.22389360(0.22%)

value may reach a larger stock price than the prescribed upper bound in Table 5.1.
The probability of reaching boundaries of the training data set becomes high par-
ticularly when the volatility is large. We call the stock prices outside the training
interval for Y0 outliers. When these outliers are used in the trained ANN, the ap-
proximation accuracy is not guaranteed due to the error in ANN extrapolation.
Outliers did not appear in the experiments of Table 5.5. As a method to avoid the
appearance of outliers, we may scale the asset price, to remove the dependence on
the initial value.

For example, GBM can be scaled, using the change of variables, as follows,

Ȳ (t) = Y (t)

Y (t0)er t .

Using Itô’s lemma, we have a drift-less process,

dȲ (t) = Ȳ (t)σdW,

where the initial value Ȳ0 = 1.0. The following formula returns the original vari-
able,

Y (t) = Ȳ (t)Y (t0)er t .

In such case, scaling guarantees a fixed initial value, for example, Y0 = 1.0.

5.6. CONCLUSION
We develop a data-driven numerical solver for stochastic differential equations,
by which large time step simulations can be carried out accurately in the sense
of strong convergence. With a combination of artificial neural networks and the
stochastic collocation Monte Carlo method, a small number of stochastic collo-
cation points are learned by the ANN to approximate a nonlinear function which
can be used to compute the unknown collocation points. Theoretical analysis
indicates that the numerical error is controllable and does not increase when the
simulation time step increases.

5.6. CONCLUSION

5

133

There are several advantages to the proposed approach. The powerful ex-
pressive ability of neural networks enables the ANNs to accurately approximate
stochastic collocation points. The compression-decompression method reduces
the computational costs, so that the numerical method can be applied in prac-
tice. In finance, the proposed big time step methodology will be highly beneficial
for the generation for path-dependent financial option contracts or in risk man-
agement applications.

The introduced methodology can be extended for solving higher-dimensional
or more involved SDE dynamics. Non-Markovian processes may also be solved
with a large time step by the proposed ANN method, where the conditional collo-
cation points are also dependent on past realizations. Fractional Brownian mo-
tion [151] forms a relevant example, which is used for the simulation of rough
volatility in finance [152]. In such a context, advanced variants of fully connected
neural networks, e.g., recurrent neural networks (RNN) or long short-term mem-
ory (LSTM) networks [see a review in 153], are recommended when approximat-
ing the nonlinear transition probability function, for example, Equation (5.13).

6
CONCLUSIONS AND OUTLOOK

6.1. CONCLUSIONS
In this dissertation, supervised learning techniques have been presented to ad-
dress some computational challenges in the field of quantitative finance, for ex-
ample, regarding option pricing, model calibration and Monte Carlo simulation.
As powerful function approximators, deep neural networks are used to either
enhance the efficiency of some classical numerical methods or to replace the
original numerical method. It is the decoupling of the ANN off-line training and
on-line prediction phases that results in flexible and highly efficient numerical
methods.

In Chapter 2, artificial neural networks were successfully used for the fast
and efficient pricing of financial derivatives and the computation of the implied
volatility. To accurately approximate the inverse function for the implied volatil-
ity by means of the ANNs, steep-gradient approximation issues were handled by
a gradient-squashing technique. The inherent parallel properties of the ANN ap-
proximation increased the computational speed by several orders of magnitude,
as compared to the traditional numerical methods. The proposed guidelines
turned out to be useful for designing, training and testing of neural networks,
and resulted in robust approximations. This chapter demonstrated the feasibil-
ity of learning a deep neural network to quickly solve option pricing problems
based on parametric asset models.

In Chapter 3, we developed the Calibration Neural Network (CaNN) to cali-
brate high-dimensional asset pricing models, based on available option prices,
in a fast and efficient way. The CaNN is formed by a two-stage procedure, which
includes a forward pass for fast option valuation, and a backward pass for the ef-
ficient and robust calibration. The CaNN addressed the drawback of long com-

135

6

136 6. CONCLUSIONS AND OUTLOOK

puting times when a global optimization technique is employed for the opti-
mization of the objective function during calibration. The results of calibrating
the Heston and Bates stochastic volatility models suggested that it takes around
one second to find a global solution on a CPU, and even less time on a GPU.
The methodology is highly promising for practical use in calibration at financial
institutions.

In Chapter 4, we dealt with the implied volatility and implied dividend yield
from American options, where early-exercise features gave rise to numerical is-
sues (e.g., the option Vega is equal to zero in certain regions) when inverting the
American option pricing models. The neural network based method (mainly the
CaNN) can accurately approximate the Black-Scholes implied volatility and the
dividend yield for American options, even when multiple early-exercise regions
appear due to negative interest rates. Because of the decoupling of the train-
ing and predicting phases, we found the effective definition domain during the
off-line phase, using two criteria to ensure properly training of the ANNs. When
determining the implied volatility and dividend yield at the same time, without
getting stuck in the early-exercise regions, the CaNN with the global optimiza-
tion explored the solution space globally in a short time. This showed the ability
of the CaNN to deal with nontrivial cases.

In Chapter 5, large time step discretization Monte Carlo simulations of SDEs
were performed using the 7L scheme. This scheme used the ANNs to learn the
stochastic collocation points, after which the stochastic collocation Monte Carlo
method generated the SDE paths. The related path-wise sensitivity could also be
computed in a convenient and accurate way. Accompanied by theoretical analy-
sis, the numerical error in the sense of strong convergence appeared controllable
and did not grow when the simulation time step increased. Compared to an
analytical solution (here for the Geometry Brownian Motion and the Ornstein-
Uhlenbeck process), the 7L scheme appeared superior to the Euler-Maruyama
and Milstein schemes. In the finance context, the 7L scheme was used for fast
financial derivative pricing, like the valuation of exotic options.

6.2. OUTLOOK
In our current work, the ANNs are trained on a sufficiently large data set gener-
ated by the given model, and those data represent the model constraints in an
implicit way. As an interesting topic, when training the ANNs, the loss function
can incorporate explicit "physical" constraints, e.g., arbitrage-free conditions for
option pricing.

When multiple solutions appear during calibration, an interesting topic is
how to choose a suitable solution, for example, by regularizing the original ob-
jective function. In addition, the Calibration Neural Network could be used to

6.2. OUTLOOK

6

137

obtain a good initial guess for other calibration algorithms.
Regarding the 7L scheme, the parallelization on GPUs may further improve

the computational speed. We also expect the generalisation towards accurate
large time-step discretizations for systems of SDEs, for instance, the Heston or
SABR stochastic volatility model.

As another outlook, Multilevel Monte Carlo (MLMC) methods, as developed
by [154, 155], may achieve a convergence acceleration using our large time step
accurate discretisation schemes. It is well-known that the strong convergence
properties of SDE discretizations impact the efficiency of the MLMC methods.

The combination of differential equations (e.g., ODEs, SDEs) and artificial
neural networks may further improve scientific computing or data-driven math-
ematical modelling. For example, the coefficients of an ODE could be expressed
in the form of a neural network function, so that extra (prior) knowledge would
be enforced into the ANN-and-ODE system, which could approximate a wider
range of functions.

Moreover, next to supervised learning, the other two deep learning method-
ologies, i.e., unsupervised learning and reinforcement learning, also have good
potential, like solving highly complicated models, in computational finance.

REFERENCES

REFERENCES
[1] K. Marko and T. K. Rajesh, Big data and ai strategies: Machine learning and

alternative data approach to investing, J.P. Morgan Securities LLC , 1–280
(2017).

[2] K. Phoon and F. Koh, Robo-Advisors and Wealth Management, The
Journal of Alternative Investments 20, 79–94 (2017), https://jai.pm-
research.com/content/20/3/79.full.pdf .

[3] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436–444
(2015).

[4] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysics 5, 115–133 (1943).

[5] K. Hornik, M. Stinchcombe, and H. White, Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward net-
works, Neural Networks 3, 551–560 (1990).

[6] H. Lin and S. Jegelka, ResNet with one-neuron hidden layers is a Universal
Approximator, arXiv e-prints , arXiv:1806.10909 (2018).

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

[8] S. Liang and R. Srikant, Why deep neural networks? arXiv:1610.04161
(2016), arXiv:1610.04161 .

[9] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and ap-
plications in vision, in Proceedings of 2010 IEEE International Symposium
on Circuits and Systems (2010) pp. 253–256.

[10] Z. C. Lipton, J. Berkowitz, and C. Elkan, A Critical Review of Recurrent
Neural Networks for Sequence Learning, arXiv e-prints , arXiv:1506.00019
(2015).

[11] G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of Control, Signals and Systems 2, 303–314 (1989).

139

http://dx.doi.org/10.3905/jai.2018.20.3.079
http://dx.doi.org/10.3905/jai.2018.20.3.079
http://arxiv.org/abs/https://jai.pm-research.com/content/20/3/79.full.pdf
http://arxiv.org/abs/https://jai.pm-research.com/content/20/3/79.full.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://arxiv.org/abs/1806.10909
http://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1610.04161
http://dx.doi.org/ 10.1007/BF02551274

6

140 REFERENCES

[12] K. Hornik, Approximation capabilities of multilayer feedforward networks,
Neural Networks 4, 251–257 (1991).

[13] I. Lagaris, A. Likas, and D. Fotiadis, Artificial neural networks for solving
ordinary and partial differential equations, IEEE Transactions on Neural
Networks 9, 987–1000 (1998).

[14] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for
solving partial differential equations, Journal of Computational Physics
(2018).

[15] N. P. Jouppi and et al., In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit, arXiv e-prints , arXiv:1704.04760 (2017).

[16] J. M. Hutchinson, A. W. Lo, and T. Poggio, A Nonparametric Approach to
Pricing and Hedging Derivative Securities Via Learning Networks, The Jour-
nal of Finance 49, 851–889 (1994).

[17] J. Yao, Y. Li, and C. L. Tan, Option price forecasting using neural networks,
Omega 28, 455–466 (2000).

[18] R. Gencay and M. Qi, Pricing and hedging derivative securities with neu-
ral networks: Bayesian regularization, early stopping, and bagging, IEEE
Transactions on Neural Networks 12, 726–734 (2001).

[19] R. Garcia and R. Gençay, Pricing and hedging derivative securities with neu-
ral networks and a homogeneity hint, Journal of Econometrics 94, 93 – 115
(2000).

[20] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, Incorporating
second-order functional knowledge for better option pricing, in Proceedings
of the 13th International Conference on Neural Information Processing Sys-
tems, NIPS’00 (MIT Press, Cambridge, MA, USA, 2001) pp. 451–457.

[21] Y. Yang, Y. Zheng, and T. Hospedales, Gated neural networks for option
pricing: Rationality by design, in The Thirty-First AAAI Conference on Arti-
ficial Intelligence (AAAI-17) (2017) pp. 52–58.

[22] J. Han, A. Jentzen, and W. E, Solving high-dimensional par-
tial differential equations using deep learning, Proceedings
of the National Academy of Sciences 115, 8505–8510 (2018),
https://www.pnas.org/content/115/34/8505.full.pdf .

http://dx.doi.org/ 10.1016/0893-6080(91)90009-T
http://dx.doi.org/ 10.1109/72.712178
http://dx.doi.org/ 10.1109/72.712178
http://www.sciencedirect.com/science/article/pii/S0021999118305527
http://www.sciencedirect.com/science/article/pii/S0021999118305527
http://doi.wiley.com/10.1111/j.1540-6261.1994.tb00081.x
http://doi.wiley.com/10.1111/j.1540-6261.1994.tb00081.x
https://www.sciencedirect.com/science/article/pii/S0305048399000663
http://www.sciencedirect.com/science/article/pii/S0304407699000184
http://www.sciencedirect.com/science/article/pii/S0304407699000184
http://dl.acm.org/citation.cfm?id=3008751.3008817
http://dl.acm.org/citation.cfm?id=3008751.3008817
http://dl.acm.org/citation.cfm?id=3008751.3008817
http://arxiv.org/abs/https://www.pnas.org/content/115/34/8505.full.pdf

REFERENCES

6

141

[23] W. E, J. Han, and A. Jentzen, Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and back-
ward stochastic differential equations, Communications in Mathematics
and Statistics 5, 349–380 (2017).

[24] C. Beck, W. E, and A. Jentzen, Machine learning approximation
algorithms for high-dimensional fully nonlinear partial differential
equations and second-order backward stochastic differential equations,
ArXiv:abs/1709.05963 (2017), arXiv:1709.05963 [math.NA] .

[25] J. Sirignano and K. Spiliopoulos, Stochastic gradient descent in contin-
uous time, SIAM Journal on Financial Mathematics 8, 933–961 (2017),
https://doi.org/10.1137/17M1126825 .

[26] J. Fan and L. Mancini, Option Pricing With Model-Guided Nonparametric
Methods, Journal of the American Statistical Association 104, 1351–1372
(2009).

[27] J. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of non-
linear problems using neural networks, Journal of Computational Physics
363, 55 – 78 (2018).

[28] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learn-
ing of nonlinear partial differential equations, Journal of Computational
Physics 357, 125 – 141 (2018).

[29] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, Accelerating eu-
lerian fluid simulation with convolutional networks, ArXiv:abs/1607.03597
(2016), arXiv:1607.03597 .

[30] R. Cont and J. da Fonseca, Dynamics of implied volatility surfaces, Quanti-
tative Finance 2, 45–60 (2002).

[31] S. L. Heston, A closed-form solution for options with stochastic volatility
with applications to bond and currency options, Review of Financial Stud-
ies 6, 327–343 (1993).

[32] F. Fang and C. W. Oosterlee, A Novel Pricing Method for European Op-
tions Based on Fourier-Cosine Series Expansions, SIAM Journal on Scien-
tific Computing 31, 826–848 (2009).

[33] P. Jäckel, Let’s Be Rational, Wilmott 2015, 40–53 (2015).

http://arxiv.org/abs/1706.04702
http://arxiv.org/abs/1706.04702
http://arxiv.org/abs/1709.05963
https://doi.org/10.1137/17M1126825
http://arxiv.org/abs/https://doi.org/10.1137/17M1126825
http://www.tandfonline.com/doi/abs/10.1198/jasa.2009.ap08171
http://www.tandfonline.com/doi/abs/10.1198/jasa.2009.ap08171
http://www.sciencedirect.com/science/article/pii/S0021999118301190
http://www.sciencedirect.com/science/article/pii/S0021999118301190
http://www.sciencedirect.com/science/article/pii/S0021999117309014
http://www.sciencedirect.com/science/article/pii/S0021999117309014
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597
http://www.tandfonline.com/doi/abs/10.1088/1469-7688/2/1/304
http://www.tandfonline.com/doi/abs/10.1088/1469-7688/2/1/304
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/6.2.327
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/6.2.327
http://doi.wiley.com/10.1002/wilm.10395

6

142 REFERENCES

[34] C. J. Corrado and T. W. Miller, A note on a simple, accurate formula to com-
pute implied standard deviations, Journal of Banking Finance 20, 595 – 603
(1996).

[35] D. M. Chance, A Generalized Simple Formula to Compute the Implied
Volatility, Financial Review 31, 859–867 (1996).

[36] M. Brenner and M. G. Subrahmanyam, A Simple Formula to Compute the
Implied Standard Deviation, Financial Analysts Journal 44, 80–83 (1988).

[37] R. P. Brent, Algorithms for minimization without derivatives, (NJ: Prentice-
Hall, 1973) Chap. Chapter 4: An algorithm with guaranteed convergence
for finding a zero of a function.

[38] F. Fang and C. W. Oosterlee, A novel pricing method for European op-
tions based on Fourier-Cosine series expansions, SIAM Journal on Scientific
Computing 31, 826–848 (2009).

[39] H. N. Mhaskar, Neural networks for optimal approximation of smooth and
analytic functions, Neural Computation 8, 164–177 (1996).

[40] V. Maiorov and A. Pinkus, Lower bounds for approximation by mlp neural
networks, Neurocomputing 25, 81 – 91 (1999).

[41] D. Yarotsky, Error bounds for approximations with deep relu networks, Neu-
ral Networks 94, 103 – 114 (2017).

[42] S. Ruder, An overview of gradient descent optimization algorithms, arXiv
e-prints , arXiv:1609.04747 (2016).

[43] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv
e-prints , arXiv:1412.6980 (2014).

[44] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for Hyper-
Parameter Optimization, Advances in Neural Information Processing Sys-
tems (NIPS) , 2546–2554 (2011).

[45] J. Bergstra and Y. Bengio, Random Search for Hyper-Parameter Optimiza-
tion, Journal of Machine Learning Research 13, 281–305 (2012).

[46] J. Snoek, H. Larochelle, and R. P. Adams, Practical bayesian optimization
of machine learning algorithms, in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’12
(Curran Associates Inc., Red Hook, NY, USA, 2012) p. 2951–2959.

http://dx.doi.org/https://doi.org/10.1016/0378-4266(95)00014-3
http://dx.doi.org/https://doi.org/10.1016/0378-4266(95)00014-3
http://dx.doi.org/ 10.1111/j.1540-6288.1996.tb00900.x
http://www.jstor.org/stable/4479152
http://dx.doi.org/10.1137/080718061
http://dx.doi.org/10.1137/080718061
http://dx.doi.org/ https://doi.org/10.1016/S0925-2312(98)00111-8
http://dx.doi.org/ https://doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/ https://doi.org/10.1016/j.neunet.2017.07.002
http://www.jmlr.org/papers/v13/bergstra12a.html

REFERENCES

6

143

[47] L. N. Smith, Cyclical learning rates for training neural networks,
ArXiv:abs/1506.01186 (2015), arXiv:1506.01186 .

[48] I. Loshchilov and F. Hutter, SGDR: stochastic gradient descent with restarts,
arXiv:abs/1608.03983 (2016), arXiv:1608.03983 .

[49] M. D. McKay, R. J. Beckman, and W. J. Conover, A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code, Technometrics 21, 239 (1979).

[50] G. Hinton, O. Vinyals, and J. Dean, Distilling the Knowledge in a Neural
Network, ArXiv:abs/1503.02531 (2015), arXiv:1503.02531 [stat.ML] .

[51] A. G. Baydin, B. A. Pearlmutter, and A. A. Radul, Automatic differ-
entiation in machine learning: a survey, arXiv:abs/1502.05767 (2015),
arXiv:1502.05767 .

[52] I. Bouchouev and V. Isakov, The inverse problem of option pricing, Inverse
Problems 13, L11–L17 (1997).

[53] Z.-C. Deng, J.-N. Yu, and L. Yang, An inverse problem of determining the
implied volatility in option pricing, Journal of Mathematical Analysis and
Applications 340, 16 – 31 (2008).

[54] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models,
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
63, 425–464 (2001).

[55] R. Cont, Inverse problems in option pricing: a statistical approach using
minimal entropy random mixtures,
https://studies2.hec.fr/jahia/webdav/site/hec/shared/site/
statsinthechateau/sacces_anonyme/Lectures/Cont.pdf (Ac-
cessed on 17/03/2019).

[56] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint, Com-
munications on Pure and Applied Mathematics 57, 1413–1457 (2004),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.20042 .

[57] M. Gilli and E. Schumann, Calibrating option pricing models with heuris-
tics, in Natural Computing in Computational Finance: Volume 4, edited
by A. Brabazon, M. O’Neill, and D. Maringer (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012) pp. 9–37.

http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://www.jstor.org/stable/1268522?origin=crossref
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
http://dx.doi.org/10.1088/0266-5611/13/5/001
http://dx.doi.org/10.1088/0266-5611/13/5/001
http://dx.doi.org/ https://doi.org/10.1016/j.jmaa.2007.07.075
http://dx.doi.org/ https://doi.org/10.1016/j.jmaa.2007.07.075
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1111/1467-9868.00294
https://studies2.hec.fr/jahia/webdav/site/hec/shared/site/statsinthechateau/sacces_anonyme/Lectures/Cont.pdf
https://studies2.hec.fr/jahia/webdav/site/hec/shared/site/statsinthechateau/sacces_anonyme/Lectures/Cont.pdf
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1002/cpa.20042
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.20042
https://doi.org/10.1007/978-3-642-23336-4_2

6

144 REFERENCES

[58] C. Homescu, Implied volatility surface: Construction methodologies and
characteristics, arXiv e-prints , arXiv:1107.1834 (2011).

[59] R. Storn and K. Price, Differential evolution – a simple and efficient heuris-
tic for global optimization over continuous spaces, Journal of Global Opti-
mization 11, 341–359 (1997).

[60] S. Liu, C. W. Oosterlee, and S. M. Bohte, Pricing options and
computing implied volatilities using neural networks, Risks 7 (2019),
10.3390/risks7010016.

[61] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, Why and when
can deep-but not shallow-networks avoid the curse of dimensionality: A
review, International Journal of Automation and Computing 14, 503–519
(2017).

[62] J. D. Spiegeleer, D. B. Madan, S. Reyners, and W. Schoutens, Ma-
chine learning for quantitative finance: fast derivative pricing,
hedging and fitting, Quantitative Finance 18, 1635–1643 (2018),
https://doi.org/10.1080/14697688.2018.1495335 .

[63] B. Horvath, A. Muguruza, and M. Tomas, Deep learning volatility, arXiv
e-prints , arXiv:1901.09647 (2019).

[64] G. Dimitroff, D. Röder, and C. P. Fries, Volatility model calibration with
convolutional neural networks, http://dx.doi.org/10.2139/ssrn.3252432
(2018), http://dx.doi.org/10.2139/ssrn.3252432.

[65] A. Hernandez, Model calibration with neural networks,
http://dx.doi.org/10.2139/ssrn.2812140 (2016).

[66] A. Hirsa, T. Karatas, and A. Oskoui, Supervised Deep Neural Networks
(DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various
Different Processes, arXiv e-prints , arXiv:1902.05810 (2019).

[67] I. Vollrath and J. Wendland, Calibration of interest rate and option
models using differential evolution, SSRN Electronic Journal (2009),
10.2139/ssrn.1367502.

[68] A. Slowik and M. Bialko, Training of artificial neural networks using differ-
ential evolution algorithm, in 2008 Conference on Human System Interac-
tions (2008) pp. 60–65.

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
http://dx.doi.org/ 10.3390/risks7010016
http://dx.doi.org/ 10.3390/risks7010016
https://doi.org/10.1007/s11633-017-1054-2
https://doi.org/10.1007/s11633-017-1054-2
http://dx.doi.org/10.1080/14697688.2018.1495335
http://arxiv.org/abs/https://doi.org/10.1080/14697688.2018.1495335
https://EconPapers.repec.org/RePEc:arx:papers:1901.09647
https://EconPapers.repec.org/RePEc:arx:papers:1901.09647
http://dx.doi.org/ http://dx.doi.org/10.2139/ssrn.3252432
http://dx.doi.org/ http://dx.doi.org/10.2139/ssrn.3252432
https://ssrn.com/abstract=2812140
http://dx.doi.org/10.2139/ssrn.1367502
http://dx.doi.org/10.2139/ssrn.1367502

REFERENCES

6

145

[69] D. S. Bates, Jumps and stochastic volatility: Exchange rate pro-
cesses implicit in Deutsche mark options, The Review of Finan-
cial Studies 9, 69–107 (1996), http://oup.prod.sis.lan/rfs/article-
pdf/9/1/69/24435185/090069.pdf .

[70] F. Guillaume and W. Schoutens, Calibration risk: Illustrating the impact of
calibration risk under the Heston model, Review of Derivatives Research
15, 57–79 (2012).

[71] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016)
http://www.deeplearningbook.org.

[72] P. Gauthier and P.-Y. H. Rivaille, Fitting the smile, smart parameters for
SABR and Heston, SSRN Electronic Journal (2009), 10.2139/ssrn.1496982.

[73] M. Forde, A. Jacquier, and A. Mijatović, Asymptotic formulae for implied
volatility in the Heston model, Proceedings of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences 466, 3593–3620
(2010).

[74] Y. Cui, S. del Baño Rollin, and G. Germano, Full and fast calibration of
the Heston stochastic volatility model, European Journal of Operational Re-
search 263, 625–638 (2017).

[75] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, Averag-
ing weights leads to wider optima and better generalization, arXiv e-prints
, arXiv:1803.05407 (2018).

[76] P. Büchel, M. Kratochwil, M. Nagl, and D. Rösch, Deep calibration of finan-
cial models: Turning theory into practice, (2020), available at SSRN:https:
//ssrn.com/abstract=3667070.

[77] K. E. Erkan, European option pricing under the rough Heston model using
the COS method, MSc Thesis (2020).

[78] S. W. Seo and J. S. Kim, The information content of option-implied informa-
tion for volatility forecasting with investor sentiment, Journal of Banking
Finance 50, 106 – 120 (2015).

[79] P. Christoffersen, K. Jacobs, and B. Y. Chang, Handbook of Economic Fore-
casting, edited by G. Elliott and A. Timmermann, Handbook of Economic
Forecasting, Vol. 2 (Elsevier, 2013) pp. 581 – 656.

[80] J. C.Hull, Derivative Securities: Options, https://www.math.nyu.edu/
faculty/avellane/DSLecture3.pdf, lecture 3, Accessed: 2019-06-30.

http://dx.doi.org/10.1093/rfs/9.1.69
http://dx.doi.org/10.1093/rfs/9.1.69
http://arxiv.org/abs/http://oup.prod.sis.lan/rfs/article-pdf/9/1/69/24435185/090069.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/rfs/article-pdf/9/1/69/24435185/090069.pdf
http://dx.doi.org/10.1007/s11147-011-9069-2
http://dx.doi.org/10.1007/s11147-011-9069-2
http://www.deeplearningbook.org
http://dx.doi.org/ 10.2139/ssrn.1496982
http://dx.doi.org/ 10.1098/rspa.2009.0610
http://dx.doi.org/ 10.1098/rspa.2009.0610
http://dx.doi.org/ 10.1098/rspa.2009.0610
https://ideas.repec.org/a/eee/ejores/v263y2017i2p625-638.html
https://ideas.repec.org/a/eee/ejores/v263y2017i2p625-638.html
https://ssrn.com/abstract=3667070
https://ssrn.com/abstract=3667070
http://resolver.tudelft.nl/uuid:721510e7-6393-4b5e-af07-75063ced210c
http://dx.doi.org/ https://doi.org/10.1016/j.jbankfin.2014.09.010
http://dx.doi.org/ https://doi.org/10.1016/j.jbankfin.2014.09.010
http://dx.doi.org/ https://doi.org/10.1016/B978-0-444-53683-9.00010-4
http://dx.doi.org/ https://doi.org/10.1016/B978-0-444-53683-9.00010-4
https://www.math.nyu.edu/faculty/avellane/DSLecture3.pdf
https://www.math.nyu.edu/faculty/avellane/DSLecture3.pdf

6

146 REFERENCES

[81] A. Fodor, D. L. Stowe, and J. D. Stowe, Option Implied Dividends Predict
Dividend Cuts: Evidence from the Financial Crisis, Journal of Business Fi-
nance and Accounting 44, 755–779 (2017).

[82] J. F. Bilson, S. B. Kang, and H. Luo, The term structure of implied dividend
yields and expected returns, Economics Letters 128, 9 – 13 (2015).

[83] O. Burkovska, K. Glau, M. Mahlstedt, and B. Wohlmuth, Complexity reduc-
tion for calibration to American options, Journal of Computational Finance
23, 25–60 (2019).

[84] O. Burkovska, M. Gass, K. Glau, M. Mahlstedt, W. Schoutens, and
B. Wohlmuth, Calibration to American options: numerical investigation
of the de-Americanization method, Quantitative Finance 18, 1091–1113
(2018).

[85] Y. Achdou, G. Indragoby, and O. Pironneau, Volatility calibration with
American options, Methods and Applications of Analysis 11, 533–556
(2004).

[86] G. W. Kutner, Determining the Implied Volatility for American Options Us-
ing the QAM, The Financial Review 33, 119–30 (1998).

[87] P. Carr and L. Wu, Stock options and credit default swaps: A joint framework
for valuation and estimation, Journal of Financial Econometrics 8, 409–449
(2009).

[88] R. Lagnado and S. Osher, A Technique for Calibrating Derivative Security
Pricing Models: Numerical Solution of an Inverse Problem, Journal of Com-
putational Finance 1 (1997), 10.21314/JCF.1997.002.

[89] M. Nardon and P. Pianca, Extracting information on implied volatilities
and discrete dividends from American options prices, Journal of Modern
Accounting and Auditing 9, 112–129 (2013).

[90] L. H. Frankena, Pricing and hedging options in a negative interest rate envi-
ronment, Master’s thesis, Delft University of Technology, the Netherlands
(2016).

[91] M. De Donno, Z. Palmowski, and J. Tumilewicz, Double con-
tinuation regions for American and Swing options with nega-
tive discount rate in Lévy models, Mathematical Finance 0, 1–32,
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mafi.12218 .

https://ideas.repec.org/a/bla/jbfnac/v44y2017i5-6p755-779.html
https://ideas.repec.org/a/bla/jbfnac/v44y2017i5-6p755-779.html
http://dx.doi.org/ https://doi.org/10.1016/j.econlet.2015.01.003
http://dx.doi.org/10.21314/JCF.2019.367
http://dx.doi.org/10.21314/JCF.2019.367
http://dx.doi.org/ 10.1080/14697688.2017.1417622
http://dx.doi.org/ 10.1080/14697688.2017.1417622
https://projecteuclid.org:443/euclid.maa/1144939946
https://projecteuclid.org:443/euclid.maa/1144939946
https://EconPapers.repec.org/RePEc:bla:finrev:v:33:y:1998:i:1:p:119-30
http://dx.doi.org/10.1093/jjfinec/nbp010
http://dx.doi.org/10.1093/jjfinec/nbp010
http://dx.doi.org/10.21314/JCF.1997.002
http://dx.doi.org/10.21314/JCF.1997.002
https://repository.tudelft.nl/islandora/object/uuid:9d9f59d6-4d63-4751-832d-a19e34219d7d/datastream/OBJ/download
http://dx.doi.org/10.1111/mafi.12218
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/mafi.12218

REFERENCES

6

147

[92] S. Liu, C. W. Oosterlee, and S. M. Bohte, Pricing Options and
Computing Implied Volatilities using Neural Networks, Risks 7 (2019),
10.3390/risks7010016.

[93] V. Lokeshwar, V. Bhardawaj, and S. Jain, Neural network for pric-
ing and universal static hedging of contingent claims, arXiv e-prints ,
arXiv:1911.11362 (2019).

[94] S. Liu, A. Borovykh, L. A. Grzelak, and C. W. Oosterlee, A neural network-
based framework for financial model calibration, Journal of Mathematics
in Industry 9, 9 (2019).

[95] H. Bühler, L. Gonon, J. Teichmann, and B. Wood, Deep Hedging, arXiv e-
prints , arXiv:1802.03042 (2018).

[96] S. Becker, P. Cheridito, and A. Jentzen, Deep optimal stopping, Journal of
Machine Learning Research 20, 1–25 (2019).

[97] J. Ruf and W. Wang, Neural networks for option pricing and hedging: a lit-
erature review, arXiv e-prints , arXiv:1911.05620 (2019).

[98] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solv-
ing partial differential equations, Journal of Computational Physics 375,
1339 – 1364 (2018).

[99] S. Becker, P. Cheridito, and A. Jentzen, Pricing and Hedging American-Style
Options with Deep Learning, Journal of Risk and Financial Management 13
(2020), 10.3390/jrfm13070158.

[100] Y. Chen and J. W. L. Wan, Deep neural network framework based on
backward stochastic differential equations for pricing and hedging Amer-
ican options in high dimensions, Quantitative Finance 0, 1–23 (2020),
https://doi.org/10.1080/14697688.2020.1788219 .

[101] B. Salvador, C. W. Oosterlee, and R. van der Meer, Financial option valua-
tion by unsupervised learning with artificial neural networks, arXiv e-prints
, arXiv:2005.12059 (2020).

[102] Q. Cao, Computation of implied dividend based on option market data,
Master’s thesis, Delft University of Technology, the Netherlands (2005).

[103] J. Kragt, Option Implied Dividends, (2017), available at SSRN: https://
ssrn.com/abstract=2980275.

http://dx.doi.org/ 10.3390/risks7010016
http://dx.doi.org/ 10.3390/risks7010016
https://doi.org/10.1186/s13362-019-0066-7
https://doi.org/10.1186/s13362-019-0066-7
http://jmlr.org/papers/v20/18-232.html
http://jmlr.org/papers/v20/18-232.html
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/ 10.3390/jrfm13070158
http://dx.doi.org/ 10.3390/jrfm13070158
http://dx.doi.org/ 10.1080/14697688.2020.1788219
http://arxiv.org/abs/https://doi.org/10.1080/14697688.2020.1788219
http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/cao.pdf
https://ssrn.com/abstract=2980275
https://ssrn.com/abstract=2980275

6

148 REFERENCES

[104] P. Carr, R. Jarrow, and R. Myneni, Alternative characterizations of American
put options, Mathematical Finance 2, 87–106 (1992).

[105] A. Battauz, M. De Donno, and A. Sbuelz, Real Options and American
Derivatives: The Double Continuation Region, Management Science 61,
1094–1107 (2015).

[106] R. Guerrero, Essays on implied dividends, PhD Thesis (2017).

[107] Y. K. Kwok, Mathematical Models of Financial Derivatives, 2nd ed.
(Springer Verlag, 2008) chapter 5.

[108] W. Li and S. Chen, The early exercise premium in American op-
tions by using nonparametric regressions, International Jour-
nal of Theoretical and Applied Finance 21, 1850039 (2018),
https://doi.org/10.1142/S0219024918500395 .

[109] M. Engström and L. Nordén, The early exercise premium in American put
option prices, Journal of Multinational Financial Management 10, 461 –
479 (2000).

[110] G. Poitras, C. Veld, and Y. Zabolotnyuk, European Put-Call Parity and the
Early Exercise Premium for American Currency Options, Multinational Fi-
nance Journal 13, 39–54 (2009).

[111] B. Zhang and C. W. Oosterlee, Fourier Cosine Expansions and Put-Call Re-
lations for Bermudan Options, in Numerical Methods in Finance (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012) pp. 323–350.

[112] F. Fang and C. W. Oosterlee, Pricing early-exercise and discrete barrier op-
tions by Fourier-cosine series expansions, Numerische Mathematik 114, 27
(2009).

[113] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436–444
(2015).

[114] R. Maziar, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural
networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations, Journal of Compu-
tational Physics 378, 686–707 (2019).

[115] S. Becker, P. Cheridito, and A. Jentzen, Deep Optimal Stopping, Journal of
Machine Learning Research 20, 1–25 (2019).

https://ideas.repec.org/a/bla/mathfi/v2y1992i2p87-106.html
http://dx.doi.org/ 10.1287/mnsc.2013.1891
http://dx.doi.org/ 10.1287/mnsc.2013.1891
https://doi.org/10.14264/uql.2018.86
http://dx.doi.org/10.1142/S0219024918500395
http://dx.doi.org/10.1142/S0219024918500395
http://arxiv.org/abs/https://doi.org/10.1142/S0219024918500395
http://dx.doi.org/ https://doi.org/10.1016/S1042-444X(00)00025-6
http://dx.doi.org/ https://doi.org/10.1016/S1042-444X(00)00025-6
http://www.mfsociety.org/../modules/modDashboard/uploadFiles/journals/MJ~767~p16uefc4sa1fms11ki12s5u3l3u64.pdf
http://www.mfsociety.org/../modules/modDashboard/uploadFiles/journals/MJ~767~p16uefc4sa1fms11ki12s5u3l3u64.pdf
https://doi.org/10.1007/s00211-009-0252-4
https://doi.org/10.1007/s00211-009-0252-4

REFERENCES

6

149

[116] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar,
D. Skinner, A. Ramadhan, and A. Edelman, Universal Differential Equa-
tions for Scientific Machine Learning, arXiv e-prints , arXiv:2001.04385
(2020).

[117] L. A. Grzelak, J. Witteveen, M. Suarez-Taboada, and C. W. Oosterlee,
The stochastic collocation Monte Carlo sampler: highly efficient sampling
from expensive distributions, Quantitative Finance 19, 339–356 (2019),
https://nod oi .or g /10.1080/14697688.2018.1459807 .

[118] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta
Numerica 8, 143–195 (1999).

[119] E. Platen, An introduction to numerical methods for stochastic differential
equations, Acta Numerica 8, 197–246 (1999).

[120] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning
data-driven discretizations for partial differential equations, Proceed-
ings of the National Academy of Sciences 116, 15344–15349 (2019),
https://www.pnas.org/content/116/31/15344.full.pdf .

[121] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural Ordi-
nary Differential Equations, arXiv e-prints , arXiv:1806.07366 (2018).

[122] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud,
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Genera-
tive Models, arXiv e-prints , arXiv:1810.01367 (2018).

[123] X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. K. Duvenaud, Scalable gradi-
ents and variational inference for stochastic differential equations, in Pro-
ceedings of The 2nd Symposium on Advances in Approximate Bayesian In-
ference, Proceedings of Machine Learning Research, Vol. 118, edited by
C. Zhang, F. Ruiz, T. Bui, A. B. Dieng, and D. Liang (PMLR, 2020) pp. 1–
28.

[124] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, in Pro-
ceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’14 (MIT Press, Cambridge, MA, USA,
2014) p. 2672–2680.

[125] Y. Xie, E. Franz, M. Chu, and N. Thuerey, TempoGAN: A Temporally Coher-
ent, Volumetric GAN for Super-Resolution Fluid Flow, ACM Transactions
on Graphics 37 (2018).

http://arxiv.org/abs/https://no_doi.org/10.1080/14697688.2018.1459807
http://arxiv.org/abs/https://www.pnas.org/content/116/31/15344.full.pdf

6

150 REFERENCES

[126] L. Yang, D. Zhang, and G. E. Karniadakis, Physics-Informed Generative
Adversarial Networks for Stochastic Differential Equations, arXiv e-prints
, arXiv:1811.02033 (2018).

[127] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,
Graduate texts in mathematics (World Piblishing Company, 1988).

[128] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applica-
tions, Springer series in synergetics (World Publishing Corporation, 1984).

[129] G. N. Milstein, Approximate integration of stochastic differential equa-
tions, Theory of Probability and Its Applications 19, 557–562 (1975),
https://nod oi .or g /10.1137/1119062 .

[130] R. H. Cameron and W. T. Martin, The orthogonal development of nonlinear
functionals in series of Fourier-Hermite functionals, Annals of Mathematics
48, 385–392 (1947).

[131] L. A. Grzelak, The collocating local volatility framework – a fresh look at ef-
ficient pricing with smile, International Journal of Computer Mathematics
96, 2209–2228 (2019).

[132] F. N. Fritsch and R. E. Carlson, Monotone piecewise cubic interpolation,
SIAM Journal on Numerical Analysis 17, 238–246 (1980).

[133] J. P. Berrut and L. N. Trefethen, Barycentric Lagrange Interpolation, SIAM
Review 46, 501–517 (2004).

[134] Theodore J. Rivlin, Chebyshev Polynomials: From Approximation Theory
to Algebra and Number Theory, Pure and Applied Mathematics: A Wiley
Series of Texts, Monographs and Tracts (Wiley, 1990).

[135] M. Gaß, K. Glau, M. Mahlstedt, and M. Mair, Chebyshev interpolation for
parametric option pricing, Finance and Stochastics 22, 701–731 (2018).

[136] K. Glau, P. Herold, D. B. Madan, and C. Pötz, The Chebyshev method for the
implied volatility, Journal of Computational Finance 23 (2019).

[137] K. Glau and M. Mahlstedt, Improved error bound for multivariate Cheby-
shev polynomial interpolation, International Journal of Computer Mathe-
matics 96, 2302–2314 (2019).

[138] L. Capriotti, Fast Greeks by Algorithmic Differentiation, Journal of Compu-
tational Finance 14, 3–35 (2010).

http://arxiv.org/abs/https://no_doi.org/10.1137/1119062

REFERENCES

6

151

[139] M. B. Giles and P. Glasserman, Smoking adjoints: Fast Monte Carlo Greeks,
Risk 19, 88–92 (2006).

[140] C. W. Oosterlee and L. A. Grzelak, Mathematical Modeling and
Computation in Finance (World Scientific (EUROPE), 2019)
https://worldscientific.com/nod oi /pd f /10.1142/q0236 .

[141] Shashi Jain, Álvaro Leitao and Cornelis W. Oosterlee, Rolling Adjoints: Fast
Greeks along Monte Carlo scenarios for early-exercise options, Journal of
Computational Science 33, 95–112 (2019).

[142] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation Func-
tions: Comparison of trends in Practice and Research for Deep Learning,
arXiv e-prints , arXiv:1811.03378 (2018).

[143] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (PMLR, 2010) pp. 249–
256.

[144] D. Yarotsky, Error bounds for approximations with deep ReLU networks,
Neural Networks 94, 103–114 (2017).

[145] H. Montanelli and Q. Du, New Error Bounds for Deep ReLU Networks Us-
ing Sparse Grids, SIAM Journal on Mathematics of Data Science 1, 78–92
(2019).

[146] G. E. Uhlenbeck and L. Ornstein, On the Theory of the Brownian Motion,
Physical Review 36, 823–841 (1930).

[147] M. Broadie and O. Kaya, Exact simulation of stochastic volatility and other
affine jump diffusion processes, Operations Research 54, 217–231 (2006).

[148] A. Leitao, L. A. Grzelak, and C. W. Oosterlee, On a one time-step Monte
Carlo simulation approach of the SABR model: Application to European
options, Applied Mathematics and Computation 293, 461–479 (2017).

[149] P. Glasserman, Monte Carlo methods in financial engineering (Springer,
New York, 2004).

[150] F. A. Longstaff and E. S. Schwartz, Valuing American Options by Sim-
ulation: A Simple Least-Squares Approach, The Review of Finan-
cial Studies 14, 113–147 (2015), https://academic.oup.com/rfs/article-
pdf/14/1/113/24432078/113.pdf .

http://arxiv.org/abs/https://worldscientific.com/no_doi/pdf/10.1142/q0236
http://arxiv.org/abs/https://academic.oup.com/rfs/article-pdf/14/1/113/24432078/113.pdf
http://arxiv.org/abs/https://academic.oup.com/rfs/article-pdf/14/1/113/24432078/113.pdf

6

152 REFERENCES

[151] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian Motions, Frac-
tional Noises and Applications, SIAM Review 10, 422–437 (1968).

[152] J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough, Quantitative
Finance 18, 933–949 (2018).

[153] Y. Yu, X. Si, C. Hu, and J. Zhang, A Review of Recurrent Neural Networks:
LSTM Cells and Network Architectures, Neural Computation 31, 1235–1270
(2019).

[154] M. B. Giles, Multilevel Monte Carlo Path Simulation, Operations Research
56, 607–617 (2008).

[155] M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica 24, 259–328
(2015).

CURRICULUM VITÆ

Shuaiqiang LIU

18-Nov-1984 Born in Handan, Province Hebei, China.

EDUCATION

2004–2008 B.Sc in Mathematics and Applied Mathematics
Northwestern Polytechnical University, Xi’an, China

2008–2011 M.Sc in Applied Mathematics
Northwestern Polytechnical University, Xi’an, China

2010–2010 Visiting Student
Technical University of Munich, Munich, Germany

2016–2020 Ph.D in Applied Mathematics
Delft University of Technology, Delft, The Netherlands
Thesis: Supervised deep learning in computational finance
Promotor: Prof. dr. ir. Cornelis W. Oosterlee

WORK EXPERIENCE
2011-2016 Computational Fluid Dynamics Engineer,

AECC Commercial Aircraft Engine CO. LTD, Shanghai, China
2016-2017 Chief Information Officer,

Shuyun Puhui Digital Credit CO. LTD, Beijing, China

153

LIST OF PUBLICATIONS

• Journal papers

1. Shuaiqiang Liu, Lech A. Grzelak and Cornelis W. Oosterlee. The Seven-League
Scheme: Deep learning for large time step Monte Carlo simulations of stochas-
tic differential equations, under review.

2. Shuaiqiang Liu, Álvaro Leitao, Anastasia Borovykh, and Cornelis W. Oost-
erlee. On a neural network to extract implied information from American
options, under review.

3. Shuaiqiang Liu, Anastasia Borovykh, Lech A. Grzelak and Cornelis W. Oost-
erlee. A neural network-based framework for financial model calibration,
Journal of Mathematics in Industry, 9 (9), 2019.

4. Shuaiqiang Liu, Cornelis W. Oosterlee, and Sander M. Bohté. Pricing Op-
tions and Computing Implied Volatilities using Neural Networks, Risks, 7 (1),
16, 2019.

• Proceedings or working papers

1. Shuaiqiang Liu, Álvaro Leitao, Anastasia Borovykh and Cornelis W. Ooster-
lee, Machine Learning to Compute Implied Volatility from European/American
Options Considering Dividend Yield, Proceedings 2020 (the 3rd XoveTIC Con-
ference, A Coruña, Spain), 54, 61.

2. Shuaiqiang Liu, Cornelis W. Oosterlee and Sander M. Bohté. Classify time

series with space filling curves using deep Convolutional Neural Networks,

working paper, 2017.

155

LIST OF PRESENTATIONS

• Oral Presentations

1. The 2020 ACM International Conference on AI in Finance (peer-reviewed,
acceptance rate 41%), New York(online), USA, October 2020.

2. Machine learning in quantitative finance and risk management, CWI,
Amsterdam (online), July 2020.

3. The 2nd international symposium on PDEs & Stochastic analysis in
Mathematical Finance (Best Presentation), organized by University
of Wollongong (Australia), January 2020.

4. Centre for Translational Data Science (an invited talk), The University
of Sydney, Sydney, Australia, December 2019.

5. The Quantitative Methods in Finance 2019 Conference, Sydney, Aus-
tralia, December 2019.

6. The 3rd International Conference on Computational Finance, A Coruña,
Spain, July 2019.

7. SIAM Conference on Financial Mathematics & Engineering, Toronto,
Canada, June 2019.

8. The 18th Winter school on Mathematical Finance, Lunteren, The Nether-
lands, January 2019.

• Poster Presentations

1. The 44th Woudschoten conference, Zeist, The Netherlands, 2019.

2. The 43th Woudschoten conference, Zeist, The Netherlands, 2018.

157

ACKNOWLEDGEMENTS

This dissertation concludes my PhD research work that was done between De-
cember 2016 and November 2020 in TU Delft. Herewith I would like to acknowl-
edge those people from whom I benefited over the past four years, although the
names on the list are too many to mention everyone.

My most sincere gratitude goes to my supervisor Prof. Cornelis(Kees) Oost-
erlee. He offered me this valuable opportunity of pursuing a PhD, for which I
will always be grateful. Without his constant guidance and help, the dissertation
would have never been successfully finished. Pearls are everywhere but not the
same as the eyes. Kees has the eyes, as well as the patience, to let his students
shine. I have much freedom to explore new ideas or speak my mind. Kees is al-
ways the anchor of me when things are difficult. His positive attitude (e.g., doing
his best, working hard, trust), professional supervision, broad and deep knowl-
edge motivated and helped me to overcome those difficulties. When it was day or
night, I always got his swift and helpful feedback, which kept my work going on
without any interruption. Even when we had to stay at home during the COVID-
19 pandemic lockdown, our research still went smoothly. Working together with
Kees is more than enjoyable and fruitful. In addition to work, I have many good
memories of him in life. It is unbelievable that he recognized me among many
people at a glance on his way to the lecture room, when I first arrived and was
sitting in the public area of the EWI building. Kees also gave me help with life in
the Netherlands. Words are not enough to express my appreciation.

I am indebted to Prof. Sander Bohté, who guided me to the field of machine
learning over my first two years, and Dr. Lech Grzelak, who provided many use-
ful comments and ideas during my PhD research. Special thanks also go to my
collaborators, Álvaro and Anastasia, for their contributions to this dissertation.
Thank Prof. Pasquale Cirillo for being my co-promotor when he worked at TU
Delft. Thank Dr. Damien Ackerer (Swissquote) for bringing into practice some of
the work involved in this dissertation.

I am sincerely thankful to the members of my defence committee board for
reading the dissertation and participating in my defence.

I learnt a lot from interaction with (former) members of Kees’ excellent re-
search group, for example, Anton, Andrea, Beatriz, Bowen, Bin, Dan, Fei, Fang,
Jing, Kiwai, Kristoffer, Linlin, Nikolaj, Peiyao, Prashant, Qian, Thomas, ZaZa. I
also had numerous useful discussions with Kees’ MSc or Bachelor students, es-

159

160 PRESENTATIONS

pecially Daan, Erkan, Jorino, Maximo and Sultan. It was a great pleasure to have
met them. Thank Nada for the arrangement when I stayed in CWI.

I would also like to thank my friendly office mates, Anne, Hugo, Jiao, Lisa,
Luis, Luyu, Thomas, for a lot of pleasant moments. Thank Amey, Varun and Xiu-
jie. Due to our close cooperation as the 2018-2019 board of SIAM Student Chap-
ter Delft, we successfully organized academic or non-academic events. The help
from the Chinese community is very appreciated, such as Senlei, Guoxin, Cong,
Jie, Hongzhi, Lizhou, and so on. I feel very lucky to be a friend of a kind-hearted
couple, Jiao Chen and Fei Xu, who shared countless practical tips on study & life
in the Netherlands.

I am grateful to the colleagues of the Numerical Analysis Group in Delft In-
stitute of Applied Mathematics for creating such a pleasant atmosphere, Baljin-
nyam, Behrouz, Fred, Gabriela, Jochen, Kees Lemmens, Kees Vuik, Kristof, Roel,
Reinaldo, Prajatka, Mohamed, Marieke, Merel, Mousa, Menel, Xiwei, etc. It was
fun playing with the team mates of Krylov Tiger, the soccer team participating in
the Monday League of TU Delft. I also enjoyed the football night every Friday, to-
gether with my Chinese friends. Thank Qiyao for regularly organizing Badminton
games. Without these colleagues and sport activities, the life in Delft would have
never been so colorful.

I would like to express the special gratitude to my family, including my par-
ents, my parents-in-law, my sister and her husband (all the best to your son
YiChun), my younger brother, my brother-in-law. Their endless support gives
me the courage to move every time I want to take a step forward in my career or
life. My wife, Lu, deserves the most special acknowledgement. Had it not been
for her support and love, I would have never gone so far.
感谢我的父亲和母亲！此书献给父亲六十岁生日。

Shuaiqiang Liu
Eindhoven, December 2020

	Summary
	Samenvatting
	Introduction
	Machine learning in finance
	Financial options
	Implied information

	Supervised learning
	Outline of this dissertation

	Pricing options and computing implied volatilities
	Introduction
	Option pricing and asset models
	The Black-Scholes PDE
	Implied volatility
	The Heston model
	Numerical methods for implied volatility
	COS method for pricing options

	Methodology
	Artificial Neural Networks
	Hyper-Parameters optimization
	Learning rates

	Numerical results
	Details of the data set
	Black-Scholes model
	Implied volatility
	Heston model for option Prices

	Conclusion

	Calibration Neural Networks
	Introduction
	Financial model calibration
	Asset pricing models
	The calibration procedure
	Choices within calibration

	An ANN-based approach to calibration
	Artificial Neural Networks
	The forward pass: learning the solution with ANNs
	The backward pass: calibration using ANNs
	Numerical optimization

	Numerical results
	Parameter sensitivities for Heston model
	The forward pass
	The backward pass
	The Bates model

	Conclusion

	Extracting implied information from American options
	Introduction
	American options
	Problem formulation
	The put-call symmetry
	Implied volatility and dividend yield

	Pricing American options by the COS method
	Pricing Bermudan options
	Pricing American options

	Methodology
	Artificial Neural Networks
	ANN for implied volatility
	Determining implied dividend and implied volatility
	The ANN configuration

	Numerical results
	Computing implied volatility
	Computing implied information

	Conclusion

	The Seven-League scheme
	Introduction
	Stochastic differential equations and stochastic collocation
	SDE basics
	 Stochastic collocation method

	Methodology
	Data-driven numerical schemes
	The Seven-League scheme
	The Artificial Neural Network

	 An efficient large time step scheme: Compression-Decompression Variant
	CDC variant
	Interpolation techniques
	Path-wise sensitivity

	Numerical experiments
	ANN training details
	Error analysis, the Lagrangian case
	Path-wise error convergence
	Applications in finance

	Conclusion

	Conclusions and Outlook
	Conclusions
	Outlook

	References
	titleReferences

	Curriculum Vitæ
	List of Publications
	List of Presentations
	Acknowledgements

