HIGH STRENGTH THIN GLASS AS STIFF STRUCTURAL FABRIC

CONTENT PRESENTATION

CONTENT PRESENTATION

HIGH STRENGTH THIN GLASS AS STIFF STRUCTURAL FABRIC

HIGH STRENGTH THIN GLASS

POTENTIALS

KNOWLEDGE GAP

USED IN CONSUMER ELECTRONICS

HIGH STRENGTH THIN GLASS

POTENTIALS

KNOWLEDGE GAP

USED IN CONSUMER ELECTRONICS

Thinner

Stronger

HIGH STRENGTH THIN GLASS

USED IN CONSUMER ELECTRONICS

Thinner

Stronger

Flexible

Exceptional scratch resistance

Lightweight

Higher impact resistance

INTRODUCTION

RESEARCH

DESIGN IDEA

LITERATURE RESEARCH

DESIGN

EXPERIMENTAL INVESTIGATION PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

HIGH STRENGTH THIN GLASS

USED IN CONSUMER ELECTRONICS

Thinner

Stronger

Outstanding optical clarity

Superior touch sensitivity

Higher impact resistance

Durable

Lightweight

DESIGN

INVESTIGATION

DESIGN

NUMERICAL

Exceptional scratch resistance

MIGHT RESULT INTO MORE LIGHTWEIGHT, CURVED, TRANSPARENT STRUCTURES

HIGH STRENGTH THIN GLASS

POTENTIALS

KNOWLEDGE GAF

HIGH STRENGTH THIN GLASS

POTENTIALS

KNOWLEDGE GAP

HIGH STRENGTH THIN GLASS SHAPES

- 1. Flat creating lightweight facades
- 2. Single curved creating curved facades

3. Double curved & creating curved & geometrical complex facades

HIGH STRENGTH THIN GLASS

POTENTIALS

KNOWLEDGE GAP

EARLIER DONE RESEARCH HIGH STRENGTH THIN GLASS

- 1. Flat by I. van der weijde (TU Delft, 2017)
- 2. Single curved creating curved facades

3. Double curved & creating curved & geometrical complex facades

HIGH STRENGTH THIN GLASS

POTENTIALS

KNOWLEDGE GAP

TUDelft 12 / 172

EARLIER DONE RESEARCH HIGH STRENGTH THIN GLASS

- 1. Flat
 by I. van der weijde
 (TU Delft, 2017)
- 2. Single curved by C. Simoen (TU Delft, 2016)

3. Double curved & creating curved & geometrical complex facades

KNOWLEDGE GAP

EARLIER DONE RESEARCH HIGH STRENGTH THIN GLASS

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

STATE-OF-THE-ART

DOUBLE CURVED GLASS

1. Hot bent glass

2. Cold bent glass

Can only be cold bent with
a curvature in the opposite way:

anticlastic

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

TUDelft 17 / 172

DOUBLE CURVED GLASS

1. Hot bent glass

2. Cold bent glass

Research into anticlastic cold
bent thin glass....

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

ANTICLASTIC COLD BENT THIN GLASS

Although it is easier to bend...

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

DOUBLE COLD BENT THIN GLASS

Although it is easier to bend... thin glass is more sensitive to buckling.

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

DOUBLE COLD BENT THIN GLASS

Although it is easier to bend... thin glass is more sensitive to buckling.

Because of lack of sustain any compressive normal forces: **membrane behaviour**. Thin glass probably never have the chance to come in a **metastable configuration**.

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

BASED ON THE **HIGH STRENGTH & MEMBRANE BEHAVIOUR**...

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

BASED ON THE HIGH TENSILE STRENGTH & MEMBRANE BEHAVIOUR...

INDUCE THE TWISTING BY APPLYING (IN-PLANE) TENSION LOAD

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

"TO WHAT EXTENT IS IT POSSIBLE TO CURVE A FLAT SHEET OF THIN GLASS INTO A DOUBLE ANTICLASTIC BENT SURFACE BY ADDING TENSION TO THE CURRENTLY USED COLD TWISTING TECHNIQUE?"

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

FROM **DESIGN IDEA** TO **DEFINITIVE DESIGN**

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

DESIGN BY **RESEARCH**

INTRODUCTION

RESEARCH

DEFINITION

DESIGN

IDEA

RESEARCH

DESIGN

CONCEPT

RESEARCH

EXPERIMENTAL

INVESTIGATION

PRELIMINARY

DESIGN

NUMERICAL

INVESTIGATION

DEFINITIVE

STATE-OF-THE-ART

PROBLEM STATEMENT

RESEARCH QUESTION

APPROACH

TUDelft 26 / 172

DESIGN BY **RESEARCH**

RESEARCH

INTRODUCTION

RESEARCH DEFINITION

DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

TUDelft 27 / 172

INTRODUCTION

RESEARCH DEFINITION

DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

TUDelft 28 / 172

TUDelft 29 / 172

INTRODUCTION

RESEARCH DEFINITION

DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

DESIGN IDEA

DESIGN IDEA

Four point fabric structure design by Frei Otto Kassel, 1955

Curved glass demonstrated by Carlyn Simoen Delft, 2016

IMAGINE TENT STRUCTURES BUILT OUT OF GLASS

DESIGN IDEA

Four point fabric structure design by Frei Otto Kassel, 1955

Curved glass demonstrated by Carlyn Simoen Delft, 2016

IMAGINE TENT STRUCTURES BUILT OUT OF HIGH STRENGTH THIN GLASS

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

ARY NUMERICAL INVESTIGATION

LITERATURE RESEARCH

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

TUDelft

VERTICAL PRODUCTION PROCESS FLAT GLASS

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

VERTICAL PRODUCTION PROCESS *(ULTRA-) THIN* FLAT GLASS

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

SAFE
STIFF & STABLE
STRONG

TuDelft 39 / 172

HORIZONTAL PRODUCTION PROCESS FLAT GLASS

(Micro) float-line

GLASS PRODUCTION

HORIZONTAL PRODUCTION PROCESS THIN FLAT GLASS

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

THERMAL TEMPERING

In an oven by temperature

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

THERMAL TEMPERING

CHEMICAL STRENGTHENING

In an oven by temperature

In a salt bath by ion-exchange

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

THERMAL TEMPERING

In an oven

by temperature

thickness limited to 2.8mm

size is limited to 3m x 6m

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH

VS.

CHEMICAL STRENGTHENING

In a salt bath

by ion-exchange

thickness not limited size is limited to 1.5m x 1.5m

DESIGN CONCEPT

PERIMENTAL VESTIGATION PRECIMINARY DESIGN

NUMERICAL INVESTIGATIO DEFINITIVE

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

SAFE
STIFF & STABLE
STRONG

TUDelft 44 / 172

Thin glass is designated to

CHEMICAL STRENGTHENING

In a salt bath

by ion-exchange

thickness not limited

size is limited to 1.5m 1.5m

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

Chemical strengthening method is

8X tougher

than thermal tempering method

	Value	•
Prestressing method	in MPa	[N/mm ²]
Annealed	45	
Heat-strengthened	70	
Fully tempered	120	
Chemically strengthened	750-1000*	

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

HIGH STRENGTH THIN GLASS

Chemical strengthening method is

8X tougher

than thermal tempering method

Value	0
in MPa	[N/mm ²]
45	
70	
120	
750-1000*	
	in MPa 45 70 120

GLASS
PRODUCTION
STRENGTHENING

GLASS AS
CONSTRUCTION
MATERIAL

SAFE STIFF & STABLE STRONG

HIGH STRENGTH THIN GLASS

SAFE STIFF & STABLE STRONG

GLASS AS CONSTRUCTION MATERIAL

SAFE

+ SAFETY BY ENHANCED SAFETY MECHANISM: LAMINATION

Remaining structural capacity after breakage

Breakage behaviour depends on built up elastic energy stored in the pane

GLASS AS CONSTRUCTION MATERIAL

SAFE

WHERE CAN CHEMICALLY STRENGTHENED GLASS BE POSITIONED?

Remaining structural capacity after breakage

Breakage behaviour depends on built up elastic energy stored in the pane

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

TuDelft 50 / 172

WHERE CAN CHEMICALLY STRENGTHENED GLASS BE POSITIONED?

Breakage behaviour depends on built up elastic energy stored in the pane

GLASS
PRODUCTION
STRENGTHENING

GLASS AS
CONSTRUCTION
MATERIAL

SAFE STIFF & STABLE STRONG

+ STIFFNESS & STABILITY BY ADDING MATERIAL OR GEOMETRY

GLASS
PRODUCTION
STRENGTHENING

GLASS AS CONSTRUCTION MATERIAL

> SAFE STIFF & STABLE STRONG

+ STIFFNESS & STABILITY BY ADDING MATERIAL OR GEOMETRY

By adding material thickness.

2. Single curved

Through geometrical form.

3. Double curved

Through geometrical form.

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

RY NUMERICAL INVESTIGATION

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

CONVENTIONAL TECHNOLOGY TO CREATE AN ANTICLASTIC SURFACE

Based on the idea that the pane can resist COMPRESSION, and a little TENSION

INTRODUCTION

ARCH NITION DESIGN IDEA

RESEARCH

DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

NEW TECHNIQUE TO CREATE AN ANTICLASTIC SURFACE

Based on the idea that the pane can resist TENSION, and a little COMPRESSION

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

CREATED GEOMETRY MAKES IT CHALLENGING FOR A SUFFICIENT CONNECTION

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

CREATED GEOMETRY MAKES IT DIFFICULT FOR A SUFFICIENT CONNECTION

How does the connection need to look like to double cold bend the glass?

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

CREATED GEOMETRY MAKES IT DIFFICULT FOR A SUFFICIENT CONNECTION

How does the connection need to look like to double cold bend the glass?

How do you grip? Where do you grip?

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA

RESEARCH

DESIGN CONCEPT **EXPERIMENTAL**INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION DEFINITIV

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

2D TENSIONING TO DETERMINE *STRENGTH*

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

2D TENSIONING TO DETERMINE *STRENGTH*

2. Clamping

3. Adhesive

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

2D TENSIONING TO DETERMINE *STRENGTH*

CREATING A HYPAR SURFACE

LIMITATIONS

INTRODUCING TENSION 2D

2D TENSIONING TO DETERMINE *STRENGTH*

DESIGN

IDEA

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

EXPERIMENTAL INVESTIGATION

IDEA

RESEARCH

DEFINITION

EXPERIMENTAL INVESTIGATION

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

DUCTILE MATERIALS

Tensile load with pull-out test

EXPERIMENTAL INVESTIGATION

STANDARD TEST METHODS

BRITTLE MATERIALS

Flexural load with 4-point bend test

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA

RESEARCH

DESIGN

Flexural load with Ring-on-ring test

EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

EXPERIMENTAL INVESTIGATION

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

BRITTLE MATERIALS

STANDARD TEST METHODS

NON-STANDARE TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

DESIGN A NON-STANDARD TEST METHODTHAT FITS INTO THE PULL-OUT MACHINE

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT **EXPERIMENTAL INVESTIGATION**

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

2D TENSIONING TO DETERMINE *STRENGTH*

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

DESIGN TEST SET-UP

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

PREPERATION SPECIMENS

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

PULL-OUT TEST RESULTS & DISCUSSION

RESULTS SPECIMENS

PULL-OUT TEST RESULTS & DISCUSSION

RESULTS SPECIMENS

 \rightarrow 3 of 4 above 30000N circa 3000 kg

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TuDelft 79 / 172

RESULTS SPECIMENS

→ 3 of 4 above 30000N circa 3000 kg

PULL-OUT TEST **RESULTS &** DISCUSSION

RESULTS SPECIMENS

 \rightarrow 3 of 4 above 30000N circa 3000 kg

→ 2 of 4 force/strain functions are not linear

PULL-OUT TEST **RESULTS &** DISCUSSION

RESULTS SPECIMENS

 \rightarrow 3 of 4 above 30000N circa 3000 kg

→ 2 of 4 force/strain function is not linear

> because of failure adhesive between glass and alumium plate

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TEST RESULT SPECIMEN #1

Failure at 36 286 N 3.570 mm

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TEST RESULT SPECIMEN #2

Failure at 19 038 N 3.184 mm

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TEST RESULT SPECIMEN #3

Failure at 30 164 N 3.576 mm

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TEST RESULT SPECIMEN #4

Failure at 32 767 N 4.923 mm

PULL-OUT TEST CONCLUSION

TENSILE STRENGTH

250 MPa

INTRODUCTION

DEFINITION

DESIGN IDEA

LITERATURE RESEARCH

DESIGN CONCEPT

EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TENSILE STRENGTH

250 MPa

of the earlier mentioned bending tensile strength of 750MPa...

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TENSILE STRENGTH

250 MPa

of the earlier mentioned bending tensile strength of 750MPa...

Same yield strength as structural A36 steel!

STANDARD TEST METHODS

NON-STANDARD TEST METHOD

PULL-OUT TEST
DESIGN
PREPERATION
RESULTS &
DISCUSSION
CONCLUSION

TENSILE STRENGTH

250 MPa

1/3 of the earlier mentioned bending tensile strength of 750MPa...

Same yield strength as structural A36 steel!

...of course, there has to be a design safety factor taken into account

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

RY NUMERICAL INVESTIGATION

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

WHERE TO APPLY THE SUPPORT?

NUMERICAL

INVESTIGATION

DEFINITIVE

DESIGN

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

HOW DOES THE SUPPORT GOING TO LOOK LIKE?

S TRENGTH	WEAKNESS
O PPORTUNITY	THREAT

Reviewed aspects:

Easiness of fabrication & assembling Structural behaviour Lightweightness

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

96 / 172

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

97 / 172

SWOT ANALYSES

CATEGORY EXTRUDED PROFILE

INTRODUCTION

RESEARCH

IDEA

DESIGN RESEARCH

DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

DEFINITIVE

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

TUDelft

99 / 172

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

TUDelft

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY BOLTED CONNECTION

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA

LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

DEFINITIVE N DESIGN

Rubber/POM/Neoprene

Thin glass

Aluminium

Stainless steel

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY BOLTED CONNECTION

NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY LACING

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA

LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION DEFINITIVE DESIGN

Rubber/POM/Neoprene

Thin glass

Aluminium

Stainless steel

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY SUBSTRUCTURE

RESEARCH

TUDelft 108 / 172

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY SUBSTRUCTURE

TuDelft 109 / 172

EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

SWOT ANALYSES

CATEGORY CLEAN CONNECTION

DESIGN

IDEA

RESEARCH

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY | EXTRUDED PROFILE

INTRODUCTION

DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY | EXTRUDED PROFILE

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

- HIGH INTERNAL STRESSES IN EXTRUDED PROFILE

CATEGORY | EXTRUDED PROFILE

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

- DIFFICULT TO FABRICATE

CATEGORY I EXTRUDED PROFILE

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH

CATEGORY I EXTRUDED PROFILE

DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

+ TENSILE STRESSES CAN BE CONTROLED BY COMPOSITE MATERIAL

CATEGORY I EXTRUDED PROFILE

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY II BOLTED CONNECTION

Thin glass

Aluminium

Stainless steel

FRP

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY II BOLTED CONNECTION

+ REDUCED DISTANCE BETWEEN PANELS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY II BOLTED CONNECTION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY III LACING

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY IV SUBSTRUCTURE

- LOTS OF SUBSTRUCTURE \rightarrow LOOSING TRANSPARENCY

Thin glass

Aluminium

Stainless steel

NUMERICAL

INVESTIGATION

Rubber/POM/Neoprene

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY IV SUBSTRUCTURE

- NO CONTROL OF APPLIED TENSION

126 / 172

EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY IV SUBSTRUCTURE

+/- ADDED SUBSTRUCTURE OF RUBBER CAN BE STRAINED BUT HAS NO CAPABILITY OF TRANSFERRING TENSION

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

CATEGORY IV SUBSTRUCTURE

+ ADDING FIBRES WOULD GIVE THE POSSIBILITY OF TRANSFERRING TENSILE STRESSES

SWOT ANALYSES

CATEGORY V CLEAN CONNECTION

+ BETTER TO MAKE IT FROM 1 MATERIAL WITHOUT THE USE OF EXTRA CONSTRUCTION MATERIAL

DESIGN

IDEA

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

TUDelft

DESIGN OF THE CONNECTION

SWOT ANALYSES

DYNAMIC EDGE STIFFNESS

WITH A COMPOSITE MATERIAL NEEDED STRAIN/TENSION CAN BE CONTROLLED

- → MORE LAYERS OF GFRP
- → DIFFERENT DIRECTION OF FIBRES

More strain in low stiffness direction

Lower strain in higher stiffness direction

DYNAMIC EDGE STIFFNESS

WITH A COMPOSITE MATERIAL NEEDED STRAIN/TENSION CAN BE CONTROLLED

NUMERICAL SIMULATION WILL DETERMINE THE STIFFNESS

INTRODUCTION

RESEARCH

DESIGN IDEA

DESIGN

INVESTIGATION

PRELIMINARY DESIGN

More strain in low stiffness direction

NUMERICAL

Lower strain in higher stiffness direction

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH

DEFINITION

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

DYNAMIC EDGE STIFFNESS: THREE MODELS

I. Twisting from the middle

II. Twisting from the corners

III. Twisting from the corners

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

TUDelft 139 / 172

DYNAMIC EDGE STIFFNESS: FIVE DIFFERENT GRADIENTS

C. Linear increased stiffness

D. Digressive decreased stiffness

E. Digressive increased stiffness

Constant stiffness

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIFNTS

RESULTS & DISCUSSION

CONCLUSION

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

MODEL III TWISTING FROM & AT THE CORNERS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

MODEL III STIFFNESS IN THE CORNERS NEED TO BE HIGHER THAN MIDDLE

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

TuDelft 144 / 172

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

INTRODUCTION

DESIGN

IDEA

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

DESIGN

RESEARCH

dZ = 20mm

NUMERICAL

INVESTIGATION

PRELIMINARY

DESIGN

INVESTIGATION

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIFNTS

RESULTS & DISCUSSION

CONCLUSION

TuDelft 146 / 172

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

APPLYING THE 5 DIFFERENT STIFFNESS GRADIENTS TO THE MODELS

DESIGN

IDEA

INTRODUCTION

Production of the control of the con

III. Twisting from the cornes

Most appropriate one for a
definitive design

LITERATURE DESIGN
RESEARCH CONCEP

EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION DEFINITIV

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

LINEAR DECREASED EDGE STIFFNESS FOR ALL MODELS

THREE NUMERICAL MODELS

FIVE DIFFERENT STIFFNESS GRADIENTS

RESULTS & DISCUSSION

CONCLUSION

LINEAR DECREASED EDGE STIFFNESS FOR ALL MODELS

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

Y NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

NUMERICAL INVESTIGATION

DEFINITIVE DESIGN

RESEARCH DEFINITION DESIGN IDEA

BUILD UP GFRP LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

LINEAR DECREASED EDGE STIFFNESS THROUGH THE AMOUNT OF LAYERS

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

BUILD UP GFRP LAYERS

INTEGRATED DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

INTRODUCTION

LINEAR DECREASED EDGE STIFFNESS THROUGH THE AMOUNT OF LAYERS

DEFINITIVE

DESIGN

BUILD UP GFRP LAYERS

INTEGRATED DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

INTEGRATING THE DOVETAIL JOINT WITHIN THE GFRP EDGES

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

BUILD UP GFRP LAYERS

INTEGRATED DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

INTEGRATING THE DOVETAIL JOINT WITHIN THE GFRP EDGES

BUILD UP GFRF LAYERS

INTEGRATED DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

SUPPORT GFRP EDGE AT THE CORNERS

159 / 172

SCALABILITY

REPETITIVE HYPAR SURFACE

DEFINITIVE

DESIGN

BUILD UP GFRF LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

INTRODUCTION

RESEARCH

DEFINITION

DESIGN

IDEA

BY ASSEMBLING EACH PANEL TO EACH OTHER

DESIGN

CONCEPT

EXPERIMENTAL

INVESTIGATION

PRELIMINARY

DESIGN

NUMERICAL

INVESTIGATION

DEFINITIVE

DESIGN

LITERATURE

RESEARCH

BUILD UP GFRF LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

BUILD UP GFRP LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

BUILD UP GFRP LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

INTRODUCTION

MAXIMUM TENSILE STRESS CAPACITY

DEFINITIVE

DESIGN

BUILD UP GFRP LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

INTRODUCTION

MAXIMUM TENSILE STRESS CAPACITY

BUILD UP GFRP LAYERS

INTEGRATED
DOVETAIL JOINT

SCALABILITY

TECHNIQUE OF TWISTING

EXTREME TWISTING

MAXIMUM TENSILE STRESS CAPACITY

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

CONCLUSION

"TO WHAT EXTENT IS IT POSSIBLE TO CURVE A FLAT SHEET OF THIN GLASS INTO A DOUBLE ANTICLASTIC BENT SURFACE
BY ADDING TENSION TO THE CURRENTLY USED COLD TWISTING TECHNIQUE?"

RESEARCH

CONCLUSION

"TO WHAT EXTENT IS IT POSSIBLE TO CURVE A FLAT SHEET OF THIN GLASS INTO A DOUBLE ANTICLASTIC BENT SURFACE BY ADDING TENSION TO THE CURRENTLY USED COLD TWISTING TECHNIQUE?"

DEFINITIVE

EVALUATION

INTRODUCTION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN NUMERICAL INVESTIGATION

RESEARCH DEFINITION DESIGN IDEA LITERATURE RESEARCH DESIGN CONCEPT EXPERIMENTAL INVESTIGATION

PRELIMINARY DESIGN

Y NUMERICAL INVESTIGATI

