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Summary 
 
In data assimilation problems, various types of data are naturally linked to different spatial resolutions (e.g. 
seismic and electromagnetic data), and these scales are usually not coincident to the subsurface simulation 
model scale. Alternatives like down/upscaling of the data and/or the simulation model can be used, but with 
potential loss of important information. To address this issue, a novel Multiscale (MS) data assimilation method 
is introduced. The overall idea of the method is to keep uncertain parameters and observed data at their original 
representation scale, avoiding down/upscaling of any quantity. The method relies on a recently developed 
mathematical framework to compute adjoint gradients via a MS strategy. The fine-scale uncertain parameters 
are directly updated and the MS grid is constructed in a resolution that meets the observed data resolution. The 
advantages of the technique are demonstrated in the assimilation of data represented at a coarser scale than the 
simulation model. The misfit objective function is constructed to keep the MS nature of the problem. The 
regularization term is represented at the simulation model (fine) scale, whereas the data misfit term is 
represented at the observed data (coarse) scale. The performance of the method is demonstrated in synthetic 
models and compared to down/upscaling strategies. The experiments show that the MS strategy provides 
advantages 1) on the computational side – expensive operations are only performed at the coarse scale; 2) with 
respect to  accuracy – the matched uncertain parameter distribution is closer to the “truth”; and 3) in the 
optimization performance –  faster convergence behaviour due to faster gradient computation. In conclusion, the 
newly developed method is capable of providing superior results when compared to strategies that rely on the 
up/downscaling of the response/observed data, addressing the scale dissimilarity via a robust, consistent MS 
strategy. 
 
 



Introduction

Reservoir simulation models should be conditioned to field data, whenever possible, in order to reduce
uncertainty in the model parameters and hence increase forecasting reliability. Well production data
(time-series of fluid rates and pressures), seismic surveys and well testing pressure data are some instan-
ces of field data that can be assimilated in order to better estimate the uncertain parameters. In addition,
spatially distributed observations (e.g. seismic, electromagnetics) provide valuable information that can
considerably improve the assimilation process (Emerick et al., 2007b). For instance, over the past de-
cades, an increasing number of seismic monitoring cases has been observed (Ullmann De Brito et al.,
2010, 2011). One of the main advantages of time-lapse seismic data is its ability to approximate the
pressure/fluid distribution inside the reservoir. This may considerably help to gain insight in the reser-
voir drainage process. Moreover, it may help to characterize the formation, either via improved static
geological modelling, or via dynamic assimilation (computer-assisted history matching). One hurdle in
the process of assimilating spatially distributed information is the fact that, more often than not, the ob-
served data and the forward model are described at different spatial scales. In fact, it is an open question
at which scale data should best be assimilated: the simulation model scale or the observed data scale
(Emerick et al., 2007b). The literature indicates that up/downscaling of the observed data to the simu-
lation model scale is the most employed strategy (Gosselin et al., 2003; Gervais-Couplet et al., 2010;
Le Ravalec et al., 2012).

Data assimilation and uncertainty quantification (UQ) are computationally demanding. Different techni-
ques such as Monte Carlo (MC) methods (Liu et al., 2003), Ensemble Kalman Filter (EnKF) and deriva-
tions (Aanonsen et al., 2009; Evensen, 2009; Emerick and Reynolds, 2013a) and randomized maximum
likelihood (Oliver et al., 1996) are developed to perform those studies. A comparison between the diffe-
rent techniques is provided by Emerick and Reynolds (2013b). Regardless of the technique, a common
feature they share is the necessity of performing many forward model runs in order to reasonably sample
the posterior probability distribution of the reservoir uncertain parameters. Upscaling (Durlofsky, 2003;
Farmer, 2002), can build faster, reasonably accurate forward models that can speed up the sampling pro-
cess. However, to accurately represent some physical phenomena, e.g. mixing, diffusion, fluid fronts,
or compositional capillary effects, fine-scale resolution is of utmost importance. Hence, the ability of
keeping the high fidelity description of geological parameters is fundamental for an adequate reservoir
characterization.

Alternatively, multiscale (MS) methods can be used (Jenny et al., 2003; Hou and Wu, 1997). These
are efficient simulation strategies capable of solving the flow problem in a coarser grid, while being
capable of accurately representing fine scale heterogeneities. Fu et al. (2010, 2011) developed a MS
adjoint method for single-phase flow in porous media. The most efficient data assimilation methods are
gradient-based, with gradients obtained with the adjoint method Oliver et al. (2008). Krogstad et al.
(2011) and Moraes et al. (2017a) present multiscale gradient computation strategies for multiphase flow,
the former applied to a production optimization problem, and the latter to data assimilation problems.
Also, the latter is based on the general framework for MS gradient computation presented by Moraes
et al. (2017b), whose algebraic nature does not rely on any assumption regarding the nature of the
parameters, observations, or objective function type.

The objective of this work is to develop and demonstrate an inverse modelling method that, at the same
time, (1) is computationally efficient, (2) addresses the scale dissimilarity issue, with minimum loss of
information, and (3) is capable of updating the highest fidelity model description. To this end, we exploit
multiscale (MS) simulation strategies in order to (1) speed-up the forward simulation, while preserving
fine-scale geological features, (2) efficiently compute gradient information and (3) to seamlessly concili-
ate model and observed data scales. For a comprehensive review on the recent developments associated
with MS methods applied to reservoir simulation, see Li et al. (2015).

The remainder of this paper is organized as follows. Firstly, a brief overview about how data assimila-
tion is approached from a Bayesian perspective is presented. Next, we state our target forward model,
consisting of incompressible single-phase flow in heterogeneous porous media. Also, we revisit the
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MS solution of the flow equation in a purely algebraic presentation. Thereafter, we discuss the data
assimilation problem setup, focusing on the challenges of assimilating spatially distributed data. More
specifically, we discuss alternatives on how to conciliate data and model scales. Then, we introduce our
multiscale data assimilation strategy, consisting of, basically, a MS objective function and a MS gradient
computation strategy. The method here employed is largely based on the MS gradient computation stra-
tegy discussed by Moraes et al. (2017b). We compare the different data conciliation methods and our
newly introduced method based on a synthetic 2D case. We focus our experiments on both the maximum
a-posteriori (MAP) estimate and UQ via the randomized maximum likelihood (RML) method. A dis-
cussion about the results and the challenges that the method can encounter are presented next. Finally, a
summary of the developments and results, as well as future research perspectives, are presented.

Preliminaries

We base our developments on a Bayesian framework. According to Bayes’ theorem, the posterior pro-
bability distribution function (PDF) can be computed as

f (θ|dobs) =
f (dobs|θ) f (θ)

f (dobs)
, (1)

and, if the a priori PDF of the uncertain parameters, f (θ), and the measurement errors from the obser-
vations dobs are assumed Gaussian, it can be shown that the conditional a posteriori distribution is given
by (Tarantola, 2005)

f (θ|dobs) ∝ exp(−O(y(x,θ) ,θ)) , (2)

where the objective function O is given by

O(y(x,θ) ,θ) =
1
2
(θ−θprior)

T C−1
θ (θ−θprior)+

1
2
(y(x,θ)−dobs)

T C−1
D (y(x,θ)−dobs) .

(3)

In the above equations, θ ∈ RNθ is the vector of uncertain parameters, y ∈ RNy in the vector of model
responses (outputs), x ∈ RNx is the state vector, θprior is the prior mean, Cθ ∈ RNθ×Nθ is the parameter
covariance matrix and CD ∈ RNy×Ny the covariance matrix of the measurement errors.

The solution of Eq. (3) can be stated as an optimization problem

minimize
θ

O(y(x,θ))

subject to g(x,θ) = 0,
θ ∈ [θmin,θmax] ,

(4)

where g : RNF ×RNθ → RNF represent the set of forward model equations and θmin,θmax are the para-
meter bounds. The efficient solution of Eq. (4) requires gradient-based methods (Nocedal and Wright,
2006) combined with efficient gradient computation methods. For this purpose, from the chain rule, the
gradient of Eq. (3) is given by

∇θO =

(
dO
dθ

)T

=

(
dO
dy

dy
dθ

)T

= GT
∇yO, (5)

where G ∈ RNy×Nθ is the so-called sensitivity matrix, representing the sensitivity of the responses w.r.t.
the parameters. Efficient gradient methods are analytical, and more specifically in inverse problems
where the number of parameters is greater than the number of output functionals, the Adjoint method
is the most accurate, efficient method (Oliver et al., 2008). Rodrigues (2006) discusses how the right-
multiplication of G by an arbitrary vector (as in Eq. (5)) can be efficiently computed via the adjoint
method.
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The Forward Model

The set of discretized equations that describes the forward simulation at the fine scale can be algebrai-
cally expressed as (Moraes et al., 2017b)

gF (x,θ) = 0, (6)

where gF : RNF ×RNθ → RNF represents the set of algebraic forward model equations, x ∈ RNF is the
state vector (which, for single-phase flow, contains the grid block pressures) and the subscript F refers to
‘fine scale’. There are NF fine-scale cells and Nθ parameters. Eq. (6) implicitly assumes a dependency
of the state vector x on the parameters θ, i.e.

x = x(θ) . (7)

Once the model state is determined, the observable responses of the forward model are computed. The
forward model responses may not only depend on the model state, but also on the parameters themselves,
and can be expressed as

yF = hF (x,θ) , (8)

where hF : RNF ×RNθ → RNy represents the output equations Jansen (2013b). It is assumed that gF can
be described as

gF (x,θ) = A(θ)x−q(θ) , (9)

where A = A(θ)∈RNF ×RNF represents the system equations and q = q(θ)∈RNF is a vector of source
terms.

Multiscale Simulation

A two-stage multiscale (MS) solution strategy Zhou and Tchelepi (2008); Wang et al. (2014) can be
devised by firstly computing a coarse scale solution

ğ(x̆,θ) = (RAP) x̆− (Rq) = Ăx̆− q̆ = 0̆, (10)

where-after an approximate fine-scale solution is formed as

g′
(
x′, x̆,θ

)
= x′−Px̆ = 0. (11)

Let x̆ ∈ RNC be the coarse scale solution (NC� NF ), and x′ ∈ RNF the approximated fine-scale solution.
The prolongation operator P = P(θ) is an NF ×NC matrix that maps (interpolates) the coarse-scale
solution to the fine-scale resolution, where NC is the number of coarse grid-blocks. The restriction
operator R = R(θ) is defined as an NC×NF matrix which maps the fine scale to the coarse scale. More
information about how these operators are constructed for the Multiscale Finite Volume (MSFV) method
can be found in Zhou and Tchelepi (2008) and Wang et al. (2014).

Data Assimilation Problem Setup

The maximum a posteriori probability (MAP, (Oliver et al., 2008)) of the uncertain parameters is obtai-
ned by solving the optimization problem stated in Eq. (4), with the objective function (OF) given by Eq.
(3) (and using Eq. (8)), the gradient of which is given by

∇θ O = C−1
θ

(θ−θprior)+

(
dh
dθ

)T

C−1
D (h(x,θ)−dobs) =

C−1
θ

(θ−θprior)+GT m.

(12)

Following an implicit differentiation strategy (Rodrigues, 2006; Kraaijevanger et al., 2007; Moraes et al.,
2017b), the and sensitivity matrix G can be computed as

G =
∂h
∂x

dx
dθ

+
∂h
∂θ

=−∂h
∂x

(
∂g
∂x

)−1
∂g
∂θ

+
∂h
∂θ

, (13)
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where the partial derivative matrices are obtained from the forward model and output equations, and

m = C−1
D (h(x,θ)−dobs) . (14)

The product GT m is solved with cost of one backward simulation, regardless the number of model
parameters, via the Adjoint method.

Randomized Maximum Likelihood (RML) RML (Oliver et al., 1996) is an approximated sampling
method for UQ, which obtains the j-th sample of the posterior PDF distribution by solving Eq. (4) for a
given sample θuc, j from N (θprior, Cθ ) and a given sample dobs,uc, j from N (dobs, CD). Therefore, Eq.
(3) can be re-written for O j (h,θ) as

O j (h,θ) =
1
2
(θ−θuc, j)

T C−1
θ (θ−θuc, j)+

1
2
(
h(x,θ)−dobs,uc, j

)T C−1
D

(
h(x,θ)−dobs,uc, j

)
.

(15)

Hence, a minimization problem has to be solved for every j-th posterior PDF sample one wants to
estimate.

Conciliation of Spatially Distributed Data and Forward Model Scales

In the data assimilation of spatially distributed observations, Eq. (12) assumes that the observations dobs
and the model responses h are described at the same scale. This is often not the case. Due to resolution
issues and acquisition limitations, observations are often not avaialble at the fine scale description of the
model parameters. Therefore, if no MS simulation is available, either dobs must be downscaled to the
simulation scale or h must be upscaled to the observation scale.

The downscaling of observed data can be expressed as

d′obs = Dd̆obs, (16)

where D is an NF ×NC downscaling operator, d̆obs is the coarse scale observation and d′ is the approxi-
mated observation at the fine scale.

Two different approaches on how to deal with the scale dissimilarity via downscaling are considered
here. In the first, we downscale the pressure measured at the coarse scale by making

D = RT . (17)

where R is the MSFV restriction operator. This strategy can be viewed as a constant interpolation of the
coarse scale observations at the fine-scale model scale.

In the second strategy, we build a multiscale prolongation operator Pprior = P(θprior), whose columns
are comprised of local multiscale basis functions (Jenny et al., 2003), and prolong (interpolate) the coarse
scale information by setting

D = Pprior. (18)

Note that Pprior is static and can be viewed as a MS downscaling operator.

In the aforementioned strategies, Eq. (3) can be used by making dobs = d′obs and a conventional gradient-
based optimization to solve Eq. (4) is run at the model (fine) scale. However, this is only true if one can
describe the data covariance matrix CD, originally at (coarse) observation scale, at the fine scale. This
can be achieved by making

C′D = DC̆DDT , (19)

where C′D is the covariance matrix represented at the fine scale. It is simple to show that Eq. (19) holds
because of the linearity of the expectation operator. From Eq. (16), the expectation of d′obs is given by

E[d′obs] = DE[d̆obs]. (20)
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The covariance of d′obs can then be computed as (Emerick, A. A., personal communication, March 23,
2018)

Cov[d′obs] = E[(d′obs−E[d′obs])(d
′
obs−E[d′obs])

T ]

= E[D(d̆obs−E[d̆obs])(d̆obs−E[d̆obs])
T DT ]

= DE[(d̆obs−E[d̆obs])(d̆obs−E[d̆obs])
T ]DT

= DCov[d̆obs]DT

(21)

Alternatively, one could upscale the model responses as

d̆obs = Uh, (22)

where U is an NC×NF upscaling operator, and solve Eq. (3) by setting dobs = d̆obs. One advantage over
the dowscaling strategy is that CD is kept at its original scale. Two upscaling strategies are considered.
In the first one, a simple arithmetic average is applied by setting

U = M, (23)

where,

M(c, f ) =


1

NC
F
, if f ∈Ωc

0, otherwise
. (24)

In Eq. (24), NC
F is the number of fine grid cells within a given coarse cell C, Ωc is the c-th primal coarse

grid domain and f is the fine-grid cell index.

In the second upscaling streategy, we again build a prolongation operator Pprior based on θprior and
upscale the observed response by setting

U = P†, (25)

where the † symbol denotes for the Moore-Penrose inverse. Here, we construct P† from its truncated
singualar value decomposition (TSVD) (Strang, 1993)

P = ΣΛ∆
T =

[
Σp Σ0

][Λp 0
0 0

][
∆T

p
∆T

0

]
= ΣpΛp∆

T
p (26)

where Σ ∈RNF×NF and ∆ ∈RNC×NC are orthonormal matrices, Λ ∈RNF×NC is a diagonal matrix contai-
ning the eigenvalues of P, and the subscript p indicates the first p columns of the matrices corresponding
the p non-zero eigenvalues.

We highlight that we only consider strategies that change observed data / responses scale and do not
consider strategies that change the original uncertain parameters description scale. This is because we
aim to update the most accurate description of the model parameters, so that important fine-scale features
(crucial to describe the physical phenomena) are not lost.

Multiscale Data Assimilation

An MS solution strategy provides a coarse scale solution that can, theoretically, be represented at any
resolution coarser than the fine-scale resolution. In data assimilation studies, where the spatially dis-
tributed data resolution is known and is coarser than the model resolution, the MS grid can be chosen
to be at the same resolution as the assimilation grid. This allows spatially distributed model responses
to be computed at the same scale as the observed data. Next, we devise a multiscale data assimilation
procedure based on this feature. This allows us, instead of manipulating the data and/or the uncertain
parameters, to accurately compute responses at the observed data scale.
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Therefore, a multiscale objective function is introduced by re-writting Eq. (3) as

OMS
(
h̆,θ
)
=

1
2
(θ−θprior)

T C−1
θ (θ−θprior)+

1
2
(
h̆(x̆,θ)− d̆obs

)T C−1
D

(
h̆(x̆,θ)− d̆obs

)
,

(27)

where h̆ is the response at the (coarse) observation scale and x̆ is the coarse state variable, computed by
Eq. (10). Hence, the misfit term is computed at the coarse scale – the scale where data is assimilated
– and the regularization term is described in the fine scale – the scale where the model parameters are
described.

Multiscale Gradient Computation

As discussed in Moraes et al. (2017b), the state vector can be described as a combination of both sets of
primary variables at the fine and coarse scales, i.e.,

x =

[
x̆
x′
]
, (28)

and, similarly, the model equations represented as a combination of the equations at both scales, i.e.,

g(x,θ) =
[

ğ
g′
]
= 0. (29)

The definition of the state vector as in Eq. (28) is a key aspect of this development. It allows the
description of the state not only at the fine scale, but also at the coarse scale. The simulator responses y
obtained from the multiscale method are represented as

y̆ = h̆(x̆,θ) , (30)

the sensitivity matrix G can be computed in a multiscale fashion as

G′ =
(

∂ h̆
∂ x̆

+
∂ h̆
∂x′

P
)
(RAP)−1R

(
∂A
∂θ

P+A
∂P
∂θ

)
x̆− ∂ h̆

∂x′
∂P
∂θ

x̆+
∂ h̆
∂θ

. (31)

Eq. (31) allows capturing derivative informations of the coarse response, namely
∂ h̆
∂ x̆

and
∂ h̆
∂θ

.

In a similar way that MS methods represent (interpolate) the coarse scale solution at the fine scale, the

partial derivative of the prolongation operator w.r.t. the model parameters,
∂P
∂θ

in Eq. (31), allows the
representation of the model parameters at the fine-scale, even though the primary variables are not solved
at the model scale.

The gradient of Eq. (27) w.r.t. the model parameters at fine scale can be computed as

∇θ OMS = C−1
θ

(θ−θprior)+

(
dh̆
dθ

)T

C−1
D

(
h̆(x̆,θ)− d̆obs

)
=

C−1
θ

(θ−θprior)+G′T m̆,

(32)

where
m̆ = C−1

D

(
h̆(x̆,θ)− d̆obs

)
. (33)

The product G′T m̆ can be accurately and efficiently computed via the MS adjoint method (Moraes et al.,
2017b).
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Numerical Experiments

We focus our analysis to incompressible, single phase-flow. In our experiments, a simple synthetic
model is considered as proof of concept. It is a 2D inverted five-spot model, consisting of a 21× 21
equidistant Cartesian mesh with grid block size dimensions of 33.3×33.3×2 m. The reservoir porosity
is constant and equal to 0.3. A fluid dynamic viscosity of 0.5×10−3 Pa.s is considered. The wells are
controlled by bottom-hole pressure (BHP). The injection pressure is 35 MPa and the production wells’
BHP is 25 MPa.

The uncertainty around the absolute permeability distribution is represented by an ensemble of different
permeability realizations. The ensemble is generated via the decomposition of a reference permeability
‘image’using Principal Component Analysis (PCA) parameterization (Jansen, 2013a). Fig. 1 illustrates
four different permeability realizations from the ensemble of 1,000 equiprobable permeability realiza-
tions. In order to focus on the MS aspect of the data assimilation process, we assume that pressures

Figure 1 Four different permeability realizations from the ensemble of 1,000 members of the toy model 
numerical experiment.

can be approximately extracted from time-lapse seismic survey (Tura and Lumey, 1999; Landrø, 2001; 
Cole et al., 2002; Lumley et al., 2003; MacBeth et al., 2006). However, it is important to note that this 
is not a limitation. If one is interested to perform the data assimilation in different domains, say, in 
the impedances domain (Emerick et al., 2007b), the additional complexity involved is the appropriate 
incorporation of seismic forward model equations in the forward model set of equations (Emerick et al., 
2007a) and, consequentially, the computation the appropriate partial derivative information necessary to 
compute Eq. (12).

The ‘true’observed data, ptrue, is obtained from a twin experiment, where a MS simulation is run using 
a permeability field randomly chosen from an ensemble of equiprobable model realizations. The coarse 
observed data is the coarse scale pressure x̆ computed with Eq. (10), while the (hypothetical, for com-
parison purposes) fine observed data is computed with E q. (9). The pressure measurement errors are 
considered to follow a spherical covariance model with a 1% standard deviation in all experiments and 
correlation lengths equal to 1 grid-block size. Noise is added to the data by setting

pobs = ptrue +
√

CDz, (34)

where z is sampled from N (µ = 0, σ2 = 1) and
√

CD is computed from a Cholesky decomposition.
More details on the procedure can be found in Oliver et al. (2008). The resulting noisy observed coarse
and fine pressure fields are illustrated, respectively, in Fig. 2d and Fig. 2c.

We consider the observation grid (Fig. 2b) where the observed data is represented to be three times
coarser than the model grid (Fig. 2a) in the x and y directions. Hence, it has 7×7 grid-blocks with grid
block size 99.9×99.9×2 m.

The covariance matrix Cθ is computed from the ensemble of realizations as

Cθ =
1

Ne−1
(
Θ−µeT )(

Θ−µeT )T
, (35)
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(a) Model grid (b) Observation grid

(c) Fine-scale observation (d) Coarse-scale observation

Figure 2 Schematic representation of the model (fine) grid (a) and observation (coarse) grid (b). Also, 
the (noisy) pressure data distribution observed at the fine-grid (hypothetical complete observations) (c) 
and at the actual observation grid resolution (d).

where Θ is the NF × Ne matrix whose j-th column is given by the member of the ensemble θ j, j ∈ 
{1, ...,Ne},

µ =
1

Ne

Ne

∑
j=1

θ j, (36)

is the ensemble mean, and e = [1, ...,1]T is a vector of ones of size Ne×1. The prior is taken to be the
ensemble mean,

θprior = µ. (37)

In the fine scale data assimilation strategy, an adjoint model (Rodrigues, 2006) is used to calculate the
OF gradient given by Eq. (3). In the multiscale strategy, we employ the MS adjoint gradient computation
depicted in Algorithm 4 in Moraes et al. (2017b). Because the spatially distributed observed data at the
coarse scale is the primary variable itself, in Eq. (27) we have

∂ h̆
∂ x̆

= Ĭ, (38)

where Ĭ is the NC×NC identity matrix, and

∂ h̆
∂x′

= 0. (39)

when pressure is observed at the coarse scale. And when pressure is observed at the fine-scale,

∂h
∂x

= I, (40)

Also, because in this case the relationship between the primary variables and the outputs is not a function
of the parameter, it follows that

∂ h̆
∂θ

= 0̆, (41)
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and
∂h
∂θ

= 0. (42)

We utilize the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm as presented in
Nocedal and Wright (2006), as it is the most efficient algorithm to deliver optimization results for the
solution of Eq. (4) (Zhang and Reynolds, 2002).

Maximum a posteriori Probability (MAP) Estimate

In this section we assess the performance of computing the MAP estimate via the newly introduced
method in comparison the to down/upscaling strategies discussed before. Therefore, six different data
assimilation strategies are considered, namely:

1. fine-scale data assimilation with constant prolongation downscaling of observed pressure (Eq.
(17));

2. fine-scale data assimilation with prior MS prolongation downscaling of observed pressure (Eq.
(18));

3. fine-scale data assimilation with arithmetic average to upscale the simulated pressure (Eq. (24));

4. fine-scale data assimilation with pseudo-inverse of MS prolongation to upscale tje simulated pres-
sure (Eq. (25));

5. multiscale data assimilation strategy introduced in this work;

6. fine-scale data assimilation with complete observations available at the model (fine) scale.

The latter, a hypothetical situation, is considered as the reference case, as if enough resolution was
available to resolve the observed property at the (fine) model scale. Also, note that MS operators are
used in strategies 1, 2 and 4. For comparison purposes, we consider the objective function normalized
by the number of data points Nd . Furthermore, according to Tarantola (2005); Oliver et al. (2008), an

acceptable data match is achieved when
O
Nd
≈ 0.5.

Firstly, we present a qualitative discussion based on the MAP conditioned permeability fields and final
matched pressure fields in comparison to the respective ’true‘permeability and pressure fields. The
results for the fine-scale, complete observation data assimilation exercise is illustrated in Fig. 3, followed
by the results from the downscaling and upscaling data conciliation strategies, represented, respectively,
by Fig. 4 and Fig. 5. Lastly, the results of the data assimilation using our MS data assimilation strategy
are illustrated in Fig. 6.

From a qualitative point of view, the matched responses from all data assimilation strategies, except
the responses obtained by the constant interpolation downscaling (Fig. 4g) and arithmetic average up-
scaling (Fig. 5g), are fairly similar to the observed data. The pressure matches are both in accordance
with the fine-scale pressure match (Fig. 3f) and with the ‘true’pressure field. However, the simpler
up/downscaling strategies result in somewhat poorer matches around the injection well.

Also, it is possible to observe that, from the point of view of the conditioned permeability fields, all
assimilation strategies were capable of recovering the main features. Furthermore, not much difference
is noted in the results when comparing the upscaling to the downscaling matched permeability fields. In
order to better assess the quality of the parameter matches, we investigate the permeability distribution
from the different matching exercises. Therefore, the density functions of the matched permeability
fields are plotted in Fig. 7. It is possible to note that, even though the initial permeability distribution
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(a) ptrue (b) pprior (c) pmatch

(d) ktrue (e) kprior (f) kmatch

Figure 3 Data assimilation results, fine-scale data assimilation, complete, fine-scale observations. In 
the first row, the (a) true, (b) initial and (c) matched pressure fields are shown. In the second row, (d) the 
‘true’, (e) the prior and (f) the conditioned permeability fields are shown.

(a) ptrue (b) pprior (c) pmatch, RT (d) pmatch, P

(e) ktrue (f) kprior (g) kmatch, RT (h) kmatch, P

Figure 4 Data assimilation results, fine-scale data assimilation, downscaling of data observations. In 
the first row, the (a) true, (b) initial, (c) matched using the constant interpolation (RT ) and (d) matched 
using the MS prolongation operator (P) pressure fields are shown. In the second row, (d) the ‘true’, (e) 
the prior, (g) the conditioned using RT and (g) the conditioned using P permeability fields are shown. 
The color maps follow the color bar found in Fig. 3

.
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(a) ptrue (b) pprior (c) pmatch, M (d) pmatch, P†

(e) ktrue (f) kprior (g) kmatch, M (h) kmatch, P†

Figure 5 Data assimilation results, fine-scale data assimilation, upscaling of model responses. In the 
first row, the (a) true, (b) initial, (c) matched using arithmetic average (M) and (d) matched using the MS 
prolongation operator pseudo-inverse (P†) pressure fields are shown. In the second row, (d) the ‘true’,
(e) the prior, (g) the conditioned using M and (g) the conditioned using P† permeability fields are shown. 
The color maps follow the color bars found in Fig. 3.

(a) ptrue (b) pprior (c) pmatch

(d) ktrue (e) kprior (f) kmatch

Figure 6 Data assimilation results, multiscale data assimilation. In the first row, the (a) true, (b) initial 
and (c) matched pressure fields are shown. In the second row, (d) the ‘true’, (e) the prior and (f) the 
conditioned permeability fields are shown. The color maps follow the color bars found in Fig. 3. Note 
that MS assimilation provides a fine-scale improved permeability field (f) while the observation is at 
coarse scale.
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is considerably far from the true model (due to the rather homogeneous prior used in the MAP), the
complete observation, fine-scale strategy is capable of reproduction of the reference permeability density
function. But, more importantly, the MS data assimilation, with coarse scale only observations, can also
provide a permeability field whose density function is consistent with the ‘true’permeability density
function. Also, it can be noted that the permeability fields obtained by the other strategies are also
consistent with the ‘true’permeability distribution.
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Figure 7 Permeability conditioned marginal PDFs for the different data assimilation strategies.

We also analyse the optimization convergence behaviour shown in Fig. 8 for quantitative assessment of
the match. The fine-scale reference data assimilation reaches a normalized OF value very close to the
ideal value of 0.5, while all other data assimilation strategies reach values relatively higher, with the
simpler constant interpolation and arithmetic average scaling strategies reaching slightly higher OF va-
lues. It is important to note that the optimization behaviour is remarkably similar for all up/downscaling
strategies, as well as for the MS data assimilation strategy here presented.

Uncertainty Quantification

A RML is run for 100 randomly chosen permeability realization from the 1,000 members ensemble
(Fig. 1), for each data conciliation strategy. In order to estimate the conditioned permeability distribution
for each permeability realization, a LBFGS optimization is run for each chosen member. The results for
the exercise are shown in Fig. 9.

It can be observed that the permeability marginal PDFs conditioned to the pressure data obtained by
the MS data assimilation here introduced (Fig. 9e) are closer to the reference fine-scale conditioned
PDFs (Fig. 9f). Additionally, by observing the spread of the conditioned PDFs obtained from the RML
employing the up/downscaling strategies, one can note that the MS strategy is also capable of somewhat
better representing the uncertainty.

Discussion

Firstly, even though all data assimilation strategies were capable of achieving simular MAP estimates,
one should note that the synthetic case used in the experiments has low permeability contrasts. Moreover
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Figure 8 Optimization performance of the data assimilation utilizing the 6 different scale conciliation 
strategies as presented in this section. Note that the FS represent the hypothetical case where both 
observed data and model parameters are at fine scale (i.e. item 6 on our list of strategies).
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(d) P†
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(e) Full Multiscale
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(f) Fine scale

Figure 9 RML probability density functions for 100 permeability realizations randomly chosen from 
the original ensemble of 1,000 realizations (see Fig. 1). The curves in red represent the prior perme-
ability distributions, while the curves in green the conditioned permeability distributions. (a) Constant
interpolation downscaling (RT ), (b) arithmetic average downscaling (M), (c) MS prolongation operator 
downscaling, (d) MS prolongation operator upscaling P†, (e) the multiscale data assimilation strategy
and (f) the reference fine-scale.
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the five-spot configuration is very simple and the well spacing is relatively dense compared to the cha-
racteristic size of the heterogeneities. Nonetheless, given the good results observed in the employment
of our MS data assimilation strategy, we believe that the performance of the method in more challenging
scenarios is worth investigating. A systematic study of the effects of the underlying geological com-
plexity on the MS assimilation procedure is necessary.The MS ability to preserve fine-scale features is
expected to allow for more detailed description of the fine-scale uncertain parameters. Additionally, we
emphasize the importance of the proper representation of the measurement errors in at different scales.
One must take into account the data redundancy in the case of downscaling the observed data to the
model scale.

One could consider a third, fine-scale only, MS-based approach, based on the reconstruction of the
prolongation operator at every optimizer iteration γ , so that changes in the permeability during the
optimization process are also captured by the basis functions update. Hence, one could write

d′γobs = Pγ d̆obs, (43)

where Pγ is the reconstructed prolongation operator at γ . This can only be achieved at the expense of the
reconstruction of the basis function every γ iteration. We performed studies (not reported here) where
we neglect the partial derivative of P w.r.t θ but we did update P. Similar results were obtained when P is
not updated and only based on the prior (Eq. (18)), as reported here. Moreover, it is discussed in Moraes
et al. (2017b) how to efficiently compute P/θ. This can be an alternative to further take advantage of
MS principles even when a MS forward simulation is not available.

In this work we employ a two-stage MS simulation strategy, and consequently a two-stage MS gradient
computation strategy. We make the primal MS coarse grid to be coincident to the observation grid re-
solution. However, the idea of the MS data assimilation can be extended to seamlessly address data
available at multiple scales, or even consider one, or multiple MS grid resolution(s) for assimilation pur-
poses only and different one(s) for the forward simulation. To this end, multilevel multiscale strategies
(Cusini et al., 2016) could be applied. Following the same multilevel multiscale strategy, data acquired
at different scales (e.g. electromagnetics, high resolution close to the well, along with seismic data, low
resolution in the vertical direction) could also be seamlessly and simultaneously be assimilated.

Following our studies, and also reported by Moraes et al. (2017b) and Fu et al. (2010), it can be noted
that MSFV gradients can be less accurate for highly heterogeneous media. In addition, one may want
to have error control on the MSFV gradient quality for practical applications. Furthermore, LBFGS
proposes under/overshooting updates, mainly close to the wells (Gao et al., 2004), which also configures
a challenging scenario for the MSFV gradient computation. These challenges can be addressed from the
optimization point of view or from the gradient computation perspective. The former can be considered
via data misfit damping or parameter constraints (Gao et al., 2004). The latter by improved MS gradient
quality, via more accurate MSFV solutions (Wang et al., 2016; Hajibeygi and Jenny, 2011). An iterative
MSFV gradient computation, following the solution strategy proposed by Hajibeygi and Jenny (2011)
could allow for additional error control over the gradient computation.

Final Remarks

Our simple numerical experiments indicate that the presented method outperforms the strategies that
rely on the upscaling/downscaling of model responses/observed data. The examples also indicate that
the method has the potential to address the problem of data dissimilarity in the data scale assimilation
and is worth further investigation. Applications in more complex cases, and for different types of assi-
milation problems, should give more insights about the potential of the method. An important result is
the ability of our MS data assimilation strategy to closely reproduce the reference fine-scale uncertainty
quantification results. The experiments also show that MS simulation concepts can also provide accurate
up/downscaling operators.
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