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Abstract9

Abrupt depth transitions (ADTs) have been shown to induce the release of bound waves into free
waves, which results in spatially inhomogeneous wave fields atop ADTs. Herein, we examine
the role of free-wave release in the generation and spatial distribution of higher-harmonic wave
components and in the onset of wave breaking for very steep periodic waves upon interaction
with an ADT. We utilise a Smoothed Particle Hydrodynamics (SPH) model, making use of its
ability to automatically capture breaking and overturning surfaces. We validate the model against
experiments. The SPH model is found to accurately reproduce the phase-resolved harmonic com-
ponents up to the sixth harmonic, particularly in the vicinity of the ADT. For the cases studied,
we conclude that second-order free waves released at the ADT, and their interaction with the lin-
ear and second-order bound waves (beating), drive higher-order bound-wave components, which
show spatial variation in amplitude as a result. For wave amplitudes smaller than the breaking
threshold, this second-order beating phenomenon can be used to predict the locations where peak
values of surface elevation are located, whilst also predicting the breaking location for wave am-
plitudes at the breaking threshold. Beyond this threshold, the contributions of the second-order
and higher harmonics (second–harmonic amplitudes are up to 60% and sixth-harmonic up to 10%
of the incident amplitude) cause breaking to occur nearer to the ADT, and hence the wave break-
ing onset location is confined to the region between the ADT and the first anti-node location of
the second-order components. Counter-intuitively, we find that, at the point of breaking, steeper
incident waves are found to display reduced non-linearity as a result of breaking nearer to the
ADT.
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1. Introduction12

Abrupt depth transitions (ADTs) exist in the form of natural and man-made bathymetric fea-13

tures, such as seamounts, continental shelves, steep beaches, reefs, and breakwaters. The effect14

of variations in depth on the properties of surface waves in coastal waters has been the subject of15

an extensive literature (e.g., [1–7]). ADTs have been shown to release free waves [8, 9], transfer16

energy to higher frequencies [10–12], and, recently, induce rogue wave events [5, 13, 14]. Wave17

fields atop ADTs can be highly spatially variable and exhibit extreme crests, and as such have18

significant implications for the loading on structures placed on the shallower (or lee-) side of the19

ADT. This paper investigates the nonlinear behaviour of steep monochromatic waves atop ADTs20

with and without wave breaking.21

For steep monochromatic waves in intermediate and uniform depth without breaking, wave22

nonlinearity is well understood. Most importantly, bound wave components are forced, which do23

not obey the (linear or nonlinear) dispersion relationship [15]. In the presence of an ADT, addi-24

tional nonlinear phenomena occur, some of which have been explained by Massel [9] for weakly25

nonlinear monochromatic waves, up to second order in wave steepness. Waves are both trans-26

mitted and reflected by the ADT, and when the incident wave is weakly nonlinear, a release of27

bound waves into additional free waves at second order takes place. These free wave components28

do obey the linear dispersion relationship. The free superharmonic waves therefore travel at a29

phase speed different from the phase speed of the linear transmitted free waves (and their second-30

order superharmonic bound waves). This leads to a spatial beating pattern in the superharmonic31

surface elevation with a beating length of π/(k2 f0,s − 2k0,s), where 2k0,s denotes the wavenum-32

ber of the transmitted second-order superharmonic bound wave and k2 f0,s the wavenumber of the33

second-order superharmonic free wave in the shallower depth. The first anti-node is observed at34

ϕ2s/(k2 f0,s − 2k0,s), where ϕ2s denotes the phase shift between the superharmonic bound and free35

waves. For second-order waves in the limits of a small change in depth or very deep water on the36

deeper side ϕ2s = π. This behaviour predicted by Massel [9] has been observed experimentally by37

Monsalve Gutiérrez [16].38

By extending the theory of Massel [9] to narrow-banded wavepackets, Li et al. [17, 18] have39

demonstrated that beating of the second-order superharmonic waves only occurs within a limited40

distance from the top of the ADTs for non-monochromatic waves and that, in addition, second-41

order subharmonic free waves are generated. Based on the deterministic model developed by Li42

et al. [17], Li et al. [19] have proposed a mechanism for the formation of rogue waves atop ADTs43

by developing a second-order stochastic model. This model can explain the non-homogeneous44

statistical properties of irregular waves (e.g., skewness, kurtosis) atop ADTs observed in numerical45

simulations [5, 20–23] and experiments [13, 14, 23, 24].46

Experiments and numerical simulations have also been used to examine the behaviour of steep47

monochromatic waves propagating over ADTs, including effects up to third order. In Ohyama48

and Nadaoka [25], a boundary element code is used to study nonlinear wave transformation over49

a submerged shelf, where significant third-order wave components are observed in addition to50

those at second order. Using a Boussinesq-type model for the shallower side, Grue [26] concluded51

that the second and third harmonic waves on the lee-side of an obstacle can, in some cases, be52

comparable to the amplitude of the incoming first harmonic.53
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Several experimental studies have demonstrated that higher-harmonic generation occurs as54

waves propagate over various types of depth transitions (both finite-length and stepped). The55

generation of higher harmonics were noticed on the lee-side of submerged breakwaters whose56

crests are near to the free surface in Dattatri et al. [27]. In Kojima et al. [11], a similar phenomenon57

is observed for finite and infinite length submerged plates, concluding that energy is transferred58

to higher frequencies. Highly irregular wave forms are observed after the depth increase for the59

finite-length plate case. This phenomenon is described as ‘harmonic de-coupling’ in Beji and60

Battjes [12], which occurs when waves propagate over the downward slope of a submerged bar.61

For the cases presented they conclude that this phenomenon is more dominant than wave breaking62

in terms of the redistribution of energy. In a subsequent numerical study by Beji and Battjes [28],63

a Boussinesq model was developed and found to accurately describe the wave transformations64

observed in [12]. These experimental and numerical studies support findings from early field65

work by Byrne [8], where additional wave components were observed due to shallow-water wave66

interaction with a natural submerged offshore bar. Similar findings were found in another field67

study by Young [10] assessing wave propagation over coral reefs.68

It is clear from the aforementioned studies that second and third-harmonic components of the69

wave field can be significantly amplified when monochromatic waves travel over an ADT and that,70

separately, ADTs can be the cause of wave breaking. Through a comparison of new experiments71

and numerical simulations using Smoothed Particle Hydrodynamics (SPH) this paper will examine72

why steep monochromatic waves break atop ADTs and what the role of higher harmonics is in73

causing this breaking process and setting the breaking location.74

In order to model steep waves interacting with varying bathymetry, numerical solvers that75

provide direct numerical solutions of the fully nonlinear potential flow (FNPF) equations can be76

used. However, such models are incapable of fully capturing wave breaking due to the potential77

flow assumption, which is violated in breaking waves. In FNPF models, waves are modelled as78

either a single-valued free surface or as a Lagrangian free surface, modelling the overturning jet79

to the point of re-connection with the surface below. A spilling-breaker model was successfully80

incorporated into a FNPF code in Grilli et al. [29] to prevent overturning and used to predict wave81

shoaling over mild slopes. However, to model the complete breaking process, computational fluid82

dynamics (CFDs) codes are required to solve the full Navier–Stokes equations. In Chella et al.83

[30], the incompressible Reynolds-averaged Navier–Stokes (RANS) are solved with a k-ω turbu-84

lence model to assess the breaking wave profile asymmetry over a submerged reef. They conclude85

that the water depth over the reef largely determines the wave breaking behaviour and breaker86

characteristics. A CFD study by Srineash and Murali [31] showed an increase in higher-harmonic87

content with increasing steepness as waves propagate over a mild-slope ramp. No breaking cases88

were carried out in [31].89

In conventional Eulerian grid-based CFD models, maintaining mass conservation with over-90

turning free surfaces is problematic, and alternative Lagrangian-particle approaches are increas-91

ingly used. The Lagrangian Smoothed Particle Hydrodynamics (SPH) framework is one such92

method, offering major advantages to modelling these free-surface flows (e.g., [32]). There are93

essentially two main variants of SPH: the weakly compressible form where fluid pressure and94

density are explicitly related through the Tait equation of state (Eq. (7)), and the incompressible95

form which maintains a divergence-free velocity field through the projection method (e.g., [33]).96
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Due to pressure noise resulting from the stiff equation of state, and the numerical diffusion tech-97

niques employed to resolve this (e.g., δ-SPH, [34]), weakly-compressible SPH is known to suffer98

from non-physical pressure noise and excessive dissipation [35]. In contrast, the incompress-99

ible form of SPH has higher accuracy and better conservation properties (see e.g., [36]), but at100

greater computational expense. Recent advances in weakly compressible (δ)-SPH have, however,101

demonstrated notable improvements in field quantities, energy and volume conservation, and in102

the reduction of non-physical dissipation [35]. In this paper we use the weakly compressible SPH103

code DualSPHysics [37, 38] with a more standard δ-SPH scheme, described further in Section 2.2.104

With particles of constant mass, the SPH approach models breaking without special treatment105

of the free surface (e.g., [39, 40]). SPH has also been used to model waves interacting with106

underwater obstacles. In Gotoh et al. [41] a SPH model with large-eddy simulation (see [42]) was107

used to model wave interaction with a partially submerged breakwater to assess turbulence and108

vortical flow. SPH has also been used to model shallow-water solitary waves interacting with a109

curtain-type breakwater in Shao [43], and Han and Dong [44] used SPH to assess shallow-water110

solitary waves interacting with a submerged breakwater, assessing breakwater performance and111

energy transmission coefficients. The performance of berm breakwaters after potential reshaping112

by storms was assessed using SPH in Akbari and Torabbeigi [45]. Additionally, the interaction of113

waves with submerged porous obstacles has been successfully modelled in Khayyer et al. [46] and114

Tsuruta et al. [47] using incompressible SPH models. None of these SPH-based studies focus on115

the ability of the model to capture the (higher-) harmonic waves and the resulting interaction on116

the shallower (or lee-) side of the ADT. This leads to the third objective of the paper: to validate117

SPH for the generation of higher harmonics, specifically due to an ADT. This will allow us to118

assess the nature and origin of the higher harmonics and their role in the onset of wave breaking.119

The paper is laid out as follows. In Section 2, the experimental set-up and numerical method120

are described, and the test cases are defined. Section 2.4 presents a convergence study along121

with example outputs. Results are presented in Section 3, where in Section 3.1 and Section 3.2 a122

harmonic analysis is presented comparing between SPH simulations and experiments. Section 3.1123

focuses on time and frequency-domain analysis, whilst Section 3.2 presents a spatial analysis of124

the transmitted superharmonics. Section 3.3 explores the role of the harmonics in determining the125

breaking onset and location. Concluding remarks are offered in Section 4.126

2. Methodology127

2.1. Experimental set-up128

Experiments were carried out in the COAST (Coastal, Ocean and Sediment Transport) labora-129

tory at the University of Plymouth, UK. A false floor was installed in the 35 m long flume, which130

has a width of 0.6 m. The water depth, hd, was set to 0.55 m, and the false floor installed with a131

height hstep = 0.35 m from 7.5 m to 22.5 m away from the wavemaker. Hence, the shallower side132

water depth, hs = hd − hstep = 0.2 m. A diagram of the test set-up is shown in Fig. 1, including the133

12 resistance-type multiplexed wave gauges installed and used for analysis and model validation.134

All gauges are sampled at 128 Hz, and their positions are defined in Table 1.135
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35m

7.5m 15m

1 2-9 10 11 12

hd

hs

x

beachwavemaker wave gauges

Figure 1: Diagram of experimental wave flume and set-up.

35m

7.5m 15m

hd
x

wavemaker

measurement area damping zone

hs

Figure 2: Diagram of numerical wave flume. Black regions denote solid boundaries.

Gauge no. 1 2 3 4 5 6 7 8 9 10 11 12

Position [m] -1.865 -0.1 0 0.1 0.3 0.5 0.7 0.9 1.1 5 7.5 10

Table 1: Positions of the wave gauges relative to the depth transition (x = 0), as indicated in Fig. 1.
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2.2. Numerical method136

2.2.1. SPH implementation137

The open-source code DualSPHysics [37, 38] is used for all SPH simulations, and both the138

fluid and solid domains are defined as discrete particles. The weakly-compressible form of the139

SPH equations are solved. In DualSPHysics, and SPH in general, the discrete approximation for a140

physical quantity, β, for particle i is given by:141

βi =
∑
j∈Ω

β jWi, jV j, (1)

where j ∈ Ω, and Ω is the set of neighbouring particles. The kernel function is denoted by142

Wi, j = W(|xi, j|, h) and is calculated as a function of the distance between particles (|xi, j| = |xi − x j|)143

and the smoothing length, h. The volume of a neighbouring particle j is denoted by V j, and144

V j = m j/ρi with m j and ρ j the mass and density of particle j, respectively.145

For all simulations a quintic Wendland kernel [48] is used, defined as:146

Wi, j = αD (1 −
q
2

)4 (2q + 1) for 0 ≤ q ≤ 2, (2)

where q = |xi, j|/h, and αD is a normalisation term. For the 2D simulations presented in this paper147

αD = 7/(4 πh2), and h is set to 1.2
√

2 dp, where dp is the particle spacing.148

2.2.2. Governing equations149

Fluid quantities are calculated based on the principles of conservation of mass (continuity) and150

momentum.:151

Dρ
Dt

+ ρ∇ · u = 0, (3)
152

Du
Dt

= −
1
ρ
∇p + g + Γ, (4)

where ρ is the fluid density, u = (u, v,w) is the velocity vector with components in the (x, y, z)-153

directions, p is the fluid pressure, and g is gravitational acceleration. D/Dt denotes the material154

derivative and Γ represents the dissipative terms.155

The weakly-compressible SPH form of the continuity equation, including the δ-SPH density156

diffusion term of [49], is given by:157

dρi

dt
=

∑
j∈Ω

m jvi, j · ∇Wi, j + δhc0

∑
j∈Ω

V jΨi, j · ∇Wi, j, (5)

where vi, j = vi − v j and ∇Wi, j is the kernel gradient. The speed of sound c0 is set to 20
√

ghd158

for these simulations, where
√

ghd is the phase speed for a shallow-water wave in a water depth159

hd. The acceleration due to gravity is denoted by g. The δ-SPH coefficient, δ, is taken to be the160

standard value of 0.1 (e.g. [50]). The diffusion term, Ψi, j is given by (as in [51]):161

Ψi, j = 2(ρD
j − ρ

D
i )

xi, j

|xi, j|
= 2(ρT

i, j − ρ
H
i, j)

xi, j

|xi, j|
, (6)
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which is the formulation first described in [49]. The superscripts D,T and H denote the dynamic,162

total and hydrostatic densities, respectively. For weakly-compressible SPH, the pressure and den-163

sity, and hence conservation of mass and momentum equations, are coupled using the Tait equation164

of state:165

p =
c2

0ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
, (7)

where ρ0 =1000 kg m−3 is the reference density of water, and γ = 7 is the polytropic index. Eq. (7)166

is a very stiff equation, and coupled with particle disorder, results in significant non-physical den-167

sity fluctuations. In our simulations, the aforementioned δ-SPH density diffusion term in Eq. (5)168

is therefore introduced to reduce these density fluctuations.169

The momentum equation, including artificial viscosity, is given by:170

dvi

dt
= −

∑
j∈Ω

m j

(
p j + pi

ρiρ j
+ Πi, j

)
∇Wi, j + g, (8)

where g is the gravitational acceleration vector, and Πi, j is the artificial viscosity term, which is171

defined as in [39], namely:172

Πi, j =
−αΠc0

ρi + ρ j

hvi, j · xi, j

|xi, j|
2 + 0.01h2 , (9)

where αΠ is set to 0.01 (typically between 0.01 and 0.1).173

Time-stepping is carried out using a symplectic explicit second-order time-integration method174

using a predictor and corrector stage. The Courant number is set to 0.2.175

2.2.3. Numerical wave flume set-up176

The numerical wave flume is depicted in Fig. 2, and a summary of key parameters used for177

the simulations is provided in Table 2. The numerical flume is set up to have the same x and z-178

dimensions as the physical flume depicted in Fig. 1. However, the numerical flume is a 2D model179

of the physical flume in order to obtain the high particle density required to capture wave breaking180

onset.181

Based on preliminary validation studies, waves were simulated using a second-order wave-182

maker [53] without active wave absorption. To minimise reflected waves from the end of the183

computational domain, a large passively absorbing damping zone was defined from x = 17.5 m184

to x = 27 m (25 m to 34.5 m from the wavemaker). This damping zone reduces fluid velocities185

quadratically to zero over the length of the damping zone. A convergence study (Section 2.4)186

showed that a particle spacing dp = 0.005 m is sufficient for capturing the appropriate physics,187

particularly near to the depth transition. Surface elevation values were extracted every dp from188

-6.5 m to 12.5 m, enabling detailed spatial assessment of the wave fields. Velocities of SPH par-189

ticles are also extracted over the same x-range to enable assessment and visualisation of breaking190

wave cases.191

In order to provide improved estimates of fluid pressures near solid boundaries, all solid bound-192

aries (tank walls, floor and wavemaker) are defined using the modified dynamic boundary condi-193

tions (mDBC) recently implemented in DualSPHysics [52].194
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Parameter Value

SPH Kernel Quintic Wendland
Particle spacing (dp) 0.005 m
Smoothing length (h) 1.2

√
2 dp

Density diffusion (δ) 0.1
Diffusion term (Ψi, j) Fourtakas et al. [49]
Particle shifting Off

Speed of sound (c0) 20
√

ghd

Reference density (ρ0) 1000 kgm−3

Polytropic index (γ) 7
Artificial viscosity (αΠ) 0.01
Time integration Predictor-corrector
Courant number 0.2
Simulation time 30 s
Simulation output frequency 20 Hz
Dynamic boundary condition mDBC [52]

Table 2: Key parameters and formulations used for the SPH simulations.

2.3. Experimental and numerical test cases195

For all test cases, monochromatic (regular) waves are generated with frequency, f0 = 19/32 ≈196

0.594 Hz. The corresponding wavenumbers on the deeper (k0d) and shallower (k0s) sides are197

1.85 m−1 and k0s = 2.80 m−1, respectively. Hence, k0dhd = 1.02 and k0shs = 0.559, and waves are198

in intermediate water depth both before and after the step.199

Waves are generated for a range of amplitudes in both experiments and the numerical model,200

each for a duration of 30 s. In order to compare experimental and numerical wave parameters,201

measurements taken at gauge 1 from the experiments are initially assessed relative to equivalent202

measurements from the numerical model extracted at the same location (x = −1.865 m). The203

‘ramp-up’ of the wave generation differs between the experimental and numerical wavemakers as204

does the sampling frequency. To remedy this, the wave gauge measurements are down-sampled205

to 20 Hz and, through cross-correlation analysis, the lag associated with the maximum cross-206

correlation value (measured at gauge 1 location) is removed from the start of all gauge measure-207

ments. This reduces both sets of measurements to a length of 29.15 s on a synchronised time base,208

t.209

To enable assessment of the incident wave amplitudes in the numerical model and experiments,210

the mean wave amplitude measured at gauge 1 (or SPH equivalent) from t = 17.9 s to 29.15 s is211

used and referred to as a1. This corresponds to the time window used for frequency-domain212

analysis in Section 3.1. These mean amplitudes will include reflections from the step and the213

effects of nonlinear waves, but enable fair comparison between the model and the experimental214

test cases.215

The extracted experimental and numerical reference wave amplitudes a1 are presented in216
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breaking onset

Figure 3: Mean amplitudes measured from experiments and the SPH model from 17.9 s to 29.15 s, showing breaking
(B) and non-breaking (NB) cases used for direct comparison. The grey transparent patch denotes the region where
breaking is observed (the left-hand side of the patch corresponds to where mild inconsistent breaking is observed and
the right-hand side to where breaking became persistent).

Fig. 3. The high-density region of wave amplitudes for the experimental cases was used to iden-217

tify the threshold amplitude(s) at which waves begin to break, which is highlighted by the grey218

transparent patch. The left-hand side of the patch defines the amplitude where breaking occurs219

infrequently, not for every crest and if so very gently, and the right hand-side corresponds to con-220

sistent breaking for consecutive waves. Very large amplitudes are generated in the SPH model221

to assess how breaking behaviour changes and limits shallower-side amplitudes. For direct com-222

parison, a breaking (B) and a non-breaking case (NB) for which amplitudes are very similar are223

identified and are encircled by a blue box in Fig. 3. These cases are used for the convergence study224

(Section 2.4) and for more detailed comparisons and analysis throughout Section 3.1.225

As will become apparent in Section 3.2, the values of a1 are not exactly equal to the incident226

wave amplitude, as values of a1 include reflections from the step. Due to the wave gauge placement227

(single gauge on the deeper-side), it was not possible to calculate the true incident amplitudes for228

the experiments. For the SPH simulations, however, the high-resolution surface elevation outputs229

facilitate reflection analysis to isolate the incident and reflected waves, the results of which are230

presented in Appendix A. Reflected wave amplitudes are found to be 22-28% of the incident231

wave amplitude. In Section 3, results are presented relative to a1 when both SPH and experiments232

are included, and relative to the calculated value of the incident amplitude from SPH simulations,233

a1,i, when only SPH results are presented.234

2.4. Model convergence and example outputs235

In order to assess convergence and model performance, the initial particle spacing dp was236

varied for the breaking (B) and non-breaking (NB) validation cases. Particle spacing values of237

dp = 0.02 m, 0.01 m and 0.005 m were used. Fig. 4 shows the difference between wave gauge238

measurements and SPH measurements, represented by the coefficient of determination r2 for both239

the breaking (B) and non-breaking (NB) cases and for three values of dp. Values of the coefficient240

of determination r2 are based on the second half of the time signal (t = 17.9 s to 29.15 s) to241

ensure waves, including second-order free waves have reached all wave gauges. This window also242

corresponds to the section used for frequency-domain analysis in Section 3.1.243

In general, decreasing dp serves to improve the comparison. Very good agreement is observed244

between the simulations and wave gauges near to the step for dp = 0.005 m; r2-values between245

0.98 and 0.995 are calculated for gauges 1–9 for both B and NB cases. Mean r2-values over all246

gauges are approximately 0.96 and 0.93 for the non-breaking and breaking cases, respectively.247
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Figure 4: Coefficient of determination (r2) between SPH model and experiments as a function of gauge position and
for three values of the particle spacing dp. Both non-breaking (NB, left) and breaking (B, right) cases are shown. The
inserts within each plot show r2-values in the region near to the step.

Although poorer performance is observed further from the wavemaker (and step), this is deemed248

as acceptable agreement, particularly considering the measured discrepancy in input amplitude as249

presented in Fig. 3. The increased discrepancy between the experimental and numerical surface250

elevations with increasing x on the shallower side (x > 0) for the non-breaking case is likely251

due to the non-physical large artificial viscosity required to keep simulations stable along with the252

dissipative effects of the density diffusion scheme. For the breaking case, this, in combination with253

the three-dimensional and turbulent nature of the breaking itself, contributes to the discrepancy. As254

will become apparent, the surface elevations near to the step are of most interest, and in this region255

there is very good agreement. A value of dp = 0.005 m was used for all subsequent simulations.256

Detailed analysis in Sections 3.1 and 3.2.1 largely focuses on extracted superharmonics, and257

hence some example outputs of complete spatial and temporal measurements are shown in this258

section. Fig. 5a, b show the SPH particle velocities in the x-direction, vx, for the breaking (B)259

case. Also presented are the interpolated surface elevations from the SPH simulations and the260

wave gauge measurements from experiments, between which good agreement is demonstrated.261

The aforementioned free second-order superharmonic is visible as are the associated large crest262

amplitudes near to the depth transition, prior to breaking. Wave breaking is subsequently apparent263

between gauges 9 and 10. Fig. 5c shows time series of surface elevations for the breaking case at264

gauge 9. Synchronisation, as mentioned in Section 2.3, is based on gauge 1 measurements. Gauge265

9 is at a location where the free and bound second-order superharmonics are coming into phase;266

hence the surface elevation is highly asymmetric, and indeed the wave form indicates the presence267

of additional free components. The SPH model agrees well with the experimental measurements,268

although the difference in wavemaker ‘ramp-up’ is evident for the first measured wave.269
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Figure 5: Panels a) and b) show particle velocities in the x-direction, vx, along with interpolated free surfaces from
SPH simulations and experiments at the gauge locations (Exp.) for the breaking case defined in Fig. 3 at a simulation
time of 14.5 s. Panel c) shows a time-domain comparison between the SPH and experimental measurements at gauge
9 for the breaking case.

3. Results270

3.1. Frequency and time-domain analysis271

This section assesses the release of wave harmonics due to nonlinear monochromatic waves272

transitioning over an ADT and validates the SPH model through comparisons of the extracted273

superharmonics from the SPH simulations to those from experimental observations.274

To assess the superharmonics, Fast Fourier Transforms (FFTs) are used to extract harmonic275

amplitudes, and for all harmonic analysis, the synchronised time window between 17.9 s to 29.15 s276

is used (see Section 2.3) to ensure wave components have had time to travel across the measure-277

ment domain. This precise section length also minimises spectral leakage, enabling harmonics to278

be extracted readily from the FFTs. Fig. 6 shows amplitude spectra for several wave gauges for the279

non-breaking (NB, top row) and breaking (B, bottom row) cases. SPH equivalents are also shown.280

Assessing the non-breaking (NB) case shown in Fig. 6, it is apparent that on the deeper side
(gauge 1) the waves are only weakly non-linear, as the second superharmonic amplitude is over an
order of magnitude smaller than the first harmonic and the third and fourth superharmonic waves
are negligibly small. Compared to the deeper side (gauge 1), an increase in the amplitude of the
second harmonic is shown at the step interface (gauge 3), whereas an increase in all superharmonic
amplitudes is shown for all gauges further downstream from the step (gauges 5 to 9). At gauge
9, up to the sixth-harmonic component become notable. Further from the step, at gauge 10, all
superharmonic amplitudes are reduced compared to those measured at gauge 9. Fig. 6 clearly
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Figure 6: Discrete amplitude spectra of the surface elevations measured at the different gauge positions in the ex-
periments compared to analogous spectra obtained from SPH simulations for breaking (B) and non-breaking (NB)
cases.
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indicates a spatially in-homogeneous wave field with a localised peak. This in-homogeneity is a
result of the second-order effects that are investigated by [9, 17] and, in addition, their higher-order
counterparts. Following Massel [9] and Li et al. [17], we know free waves with frequency 2 f0 are
released at the step, where f0 denotes the incident linear wave frequency. The transmitted free
wave obeys (approximately for waves of larger steepness) the linear dispersion relation

16π2 f 2
0 = gk2 f0,s tanh k2 f0,shs, (10)

where g is gravitational acceleration, and k2 f0,s denotes the wavenumber of the transmitted second-
order superharmonic free wave on the shallower side. This free wave generally has a phase shift
of ϕ2s ≈ π relative to the second-order superharmonic bound wave that also exists in the absence
of the step [17]. The superharmonic free and bound waves can be linearly superimposed, leading
to a spatial beating pattern in the surface elevation, which reaches its first peak in the vicinity of
gauge 9. Li et al. [17] suggests that the first peak location, xp, measured from the step interface,
appears in the region

0.9π
k2 f0,s − 2k0,s

. xp .
1.1π

k2 f0,s − 2k0,s
, (11)

where k0,s denotes the wavenumber of the linear transmitted wave on the shallower side. The281

lower and upper limits, 0.9π and 1.1π, were chosen in this paper as the phase shift, ϕ2s, between282

the bound and free is not exactly π and [9, 17] can only provide a leading-order estimate for the283

steep waves we consider here. For the case presented in this paper, ϕ2s is predicted to be 0.92π284

based on [9, 17]. Furthermore, the locations of the maximum (anti-node) and minimum crests285

(node) associated with the beating pattern can be estimated by (ϕ2s + (2n− 2)π)/(k2 f0,s − 2k0,s) and286

(ϕ2s + (2n − 1)π)/(k2 f0,s − 2k0,s), respectively, where n is a positive integer and 0.9π . ϕ2s . 1.1π.287

These locations will be examined in §3.2, and we will show in §3.3 that the first anti-node location,288

xp, is a good estimate of the location at which the waves start to break when the incident wave289

amplitude is gradually increased.290

The spatial beating pattern of the second-order free and bound waves also appears to correlate291

with an increase in amplitude of higher harmonics (third to sixth). In Section 3.2.1 the higher292

harmonics are explored in more detail, before assessing how this influences breaking behaviour in293

Section 3.3. SPH measurements compare favourably to experiments for all gauges, however, minor294

deviation is noted for gauge 10, particularly for fourth and higher superharmonic amplitudes. This295

may be attributed to the aforementioned excessive dissipation in the SPH simulations, the effects of296

which accumulate downstream from the step and disproportionately affect the higher frequencies.297

Similar results are evident for the breaking case (B), as shown in Fig. 6. Compared to the298

deeper side, superharmonic amplitudes increase up to gauge 9, then decrease for gauge 10. In this299

case, however, as shown in Fig. 5, the waves break between gauge 9 and 10. Again, good agree-300

ment is found between the SPH model outputs and experiments for gauges 1 to 9, with significantly301

poorer agreement for gauge 10. The wave breaking process, which results in energy dissipation302

and re-distribution, is imperfectly modelled, resulting in small errors in both the frequency and303

amplitude of higher-frequency components (at gauge 10, downstream of breaking).304

To assess wave harmonics in the time domain, inverse Fourier Transforms applied to each305

isolated harmonic are computed, with the results for the breaking (B) and non-breaking (NB)306
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cases shown in Figs. 7 and 8. Harmonics are normalised by the deeper-side reference amplitudes,307

a1, presented in Fig. 3. The increase in superharmonic amplitudes locally at gauge 9 is clearly308

significant and is captured well by the SPH model for both cases. The change in wave profile and309

amplification of the crest amplitude from gauge 1 to gauge 9 is quite striking, and the subsequent310

reduction in crest amplitude at gauge 10 highlights the localised nature of the phenomenon. As311

observed in Fig. 6, the SPH results at gauge 10 for the breaking case do not agree well with the312

experiments for the higher superharmonics (fifth and sixth).313

Fig. 9 shows the amplitudes for the different harmonics, extracted from the spectra, as a func-314

tion of a1 for experiments and SPH simulations at several gauge positions. Results from all ex-315

perimental cases are shown in addition to the SPH simulations up to a1 = 0.05 m. From Fig. 9 it316

is evident that for all a1 values shown the deeper-side incident wave fields remains weakly non-317

linear with second-order contribution up to 0.1a1. Higher superharmonics become increasingly318

significant near to the step on the shallower side, where at gauge 9 even the contribution of the319

sixth superharmonic component becomes significant for larger amplitudes. The amplitudes of all320

superharmonics are reduced at gauge 10, where free and bound second-order components are no321

longer in phase, and after a1 ≈ 0.04 m it is clear that breaking is limiting the superharmonic ampli-322

tudes further. Overall, reasonable agreement is found between SPH simulations and experiments323

for all harmonics, input amplitudes and wave gauge positions. The notable disagreement found at324

second order for gauge 3 is perhaps expected as the gauge is located at the depth transition where325

any minor position error will result in large differences in the harmonic content. Disagreement at326

gauge 10 is more significant than at other gauges, and is more pronounced at higher values of a1,327

which can be explained by the presence of wave breaking, which is three-dimensional, turbulent,328

and not perfectly modelled in the SPH simulations.329

3.2. Spatial analysis330

In the SPH simulations the harmonics presented in the time domain in Figs. 7 and 8 can also331

be plotted as a function of space and compared to gauges at the measurement locations. Fig. 10332

and Fig. 11 present this for the non-breaking and breaking cases, respectively. The synchronised333

time presented of t = 17.9 s ensures the free second-order superharmonic has had time to prop-334

agate to the end of the measurement domain. For both the non-breaking (Fig. 10) and breaking335

(Fig. 11) cases excellent agreement is found between experiments and SPH simulations for the336

phase-resolved harmonics. Assessing the second-order superharmonic in Figs. 10 and 11, the ap-337

proximate node and anti-node locations, measured from the step interface, are seen near x = 3 m,338

6 m, and 9 m. These locations agree well with the estimates from Eq. (11) and [9, 17] for the case339

considered: with xp ≈ 2.86 m using k2 f0,s = 6.67 m−1, 2k0,s = 5.66 m−1, and the phase difference340

between free and bound second-order components at the step ≈ 0.92π based on [17]. For the ap-341

parent node at x = 6 m there is an almost perfect cancellation of the surface elevation at the time342

presented, which suggests that the free and bound waves are of very similar amplitude. At this343

node, the amplitudes of the higher harmonics are also significantly reduced. For the breaking case344

presented in Fig. 11, the first anti-node is clearly observed, with significantly larger superharmonic345

amplitudes than in the non-breaking (NB) case, however, a clear second anti-node is not observed346

after the breaking location.347
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Figure 7: Comparison of separated harmonic time series for the non-breaking case showing experiments and SPH
simulations for several gauge positions.

Figure 8: Comparison of separated harmonic time series for the breaking case showing experiments and SPH simu-
lations for several gauge positions.
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Figure 9: Extracted normalised higher-harmonic amplitudes an/a1 at different gauge positions as a function of input
amplitude a1 comparing experiments and SPH simulations.

Fig. 12 presents the amplitudes associated with the first to the sixth harmonics as a function348

of space for four incident wave amplitudes including the breaking (B) and non-breaking (NB)349

cases, with both SPH simulations and experimental values shown in panels b–d. Also presented350

for panels a–c are the values expected from the second-order theory by Massel [9], as implemented351

in [17].352

It is evident from Fig. 12 that the higher-harmonic components appear to have the same beating353

pattern as the second-order components. This suggests the origin of these components; i.e. the354

third and higher harmonics are bound to the second harmonic. If these were free components355

released at the ADT, one would expect higher-wavenumber beating patterns than those observed.356

For the lower amplitude cases (panels a–c) there is a clear second anti-node, which is not apparent357

in the breaking (B) case (panel d) as high-frequency surface motion is dissipated by breaking.358

On the shallower side, there is modulation of the amplitude of the first harmonic, which may be359

a result of third-order interaction, considering that the cross-interaction of the second-order free360

and transmitted linear would lead to a third-order bound wave of frequency f0 but a wavenumber361

(k2 f0,s − 2k0,s ≈ 1 m−1) different from the wavenumber of the first harmonic. It is also noteworthy362

that amplitude of the second harmonic exceeds the amplitude of the first harmonic for the breaking363

(B) case at x ≈ 3 m. For x < 0, there is a clear oscillation of the amplitude of the first harmonic364

due to the partial standing wave formed as a result of wave reflection from the step. It is evident365

that a1 is, therefore, not a representation of the true incident amplitude as gauge 1 is located where366

the incident and reflected wave components are in phase. A further assessment of the incident367

and reflected waves are presented in Appendix A with transmitted waves assessed further in368

Section 3.2.1. It is also noteworthy that amplitude of the second harmonic exceeds the amplitude369

of the first harmonic for the breaking (B) case at x ≈ 3 m.370

A number of observations can be made when comparing the extracted spatial distribution of371

harmonics from the SPH model (solid lines) to those expected based on the theory by Massel372

(1983) [9] (dashed lines). On the deeper side, good agreement between theory and SPH simula-373

tions is found for the linear wave amplitude and the spatial standing wave pattern that arises due374

to reflections from the step. On the shallower side, both the predicted linear and second-order375

harmonic amplitudes from [9] are larger than those measured in experiments and extracted from376
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Figure 10: Separated harmonics from SPH simulations as a function of space and compared to experiments at the
wave gauges for the non-breaking case at synchronised time t = 17.9 s.

Figure 11: Separated harmonics from SPH simulations as a function of space and compared to experiments at the
wave gauges for the breaking case at synchronised time t = 17.9 s.
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Figure 12: Spatial distribution of the amplitude of wave harmonics for select cases. a) a1,i = 0.0102 m, b) a1,i =

0.0177 m, c) non-breaking case a1,i = 0.0243, and d) breaking case a1,i = 0.0388 m. Experiments and SPH outputs
are presented for cases b–d, along with second-order theoretical predictions by Massel (1983) [9] for the non-breaking
cases (a–c). Transparent grey patches represent the expected node and anti-node locations.
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the SPH model. This is due to the omission of higher-order effects in the theory, which would377

result in the forcing of higher modes. The predicted pattern of second-order beating, however,378

is consistent with the SPH simulations and experiments and is clearly the dominant mechanism379

at play. The near-perfect cancellation at x ≈ 6 m arises because the theoretical bound and free380

second harmonic amplitudes are approximately equal, as also observed in the SPH simulations.381

The two lower-amplitude cases (panels a and b) demonstrate that, as the incident wave amplitude382

is decreased, the SPH simulations and experiments approach the second-order solutions of Massel383

[9]. Despite the omission of higher-order effects, it appears that the second-order beating effect384

described in [9, 17] can be used to predict where the maximum values of the surface elevation will385

be found. This is explored further in Section 3.3.386

3.2.1. Transmitted waves387

To better assess the harmonic content of the waves obtained from the SPH simulations upon388

transmission over the step, spatio-temporal (k- f ) amplitude spectra have been computed for the389

total surface elevations on the shallower region over the synchronised time t = 17.9 s to 29.15 s.390

This enables the assessment of all present harmonic components, and is shown in Fig. 13 for four391

different cases. In Fig. 13 the linear dispersion relation is indicated by a blue dotted line, and a 1:1392

relationship between f / f0 and k/k0s is shown by a red dotted line, indicating a constant phase speed393

equal to that of the first harmonic and thus the location of bound waves. In Fig. 13, the amplitudes394

are normalised by the maximum value at the first harmonic and are compensated (scaled) by the395

ratio of f / f0 to aid visual clarity of the (much smaller) higher-harmonic amplitudes on the colour396

scale. Due to the limited length of the shallower-side SPH domain (12.5 m), the wavenumber397

resolution is relatively coarse at ∆k = 0.503 m−1.398

Despite the relatively coarse wavenumber resolution, several observations can be made as-399

sessing the k- f spectra presented in Fig. 13. It is clearly seen that, as we increase the incident400

amplitude (moving from panels a to d and e to h), the higher harmonics become more visible,401

demonstrating an increased ratio of their amplitudes to the transmitted first harmonic amplitude.402

Both free and bound second harmonics are present, corresponding to non-zero amplitudes lying403

on the blue and red dashed lines, respectively. It is also evident that the higher harmonics (third404

to sixth) are not free waves but bound, as indicated by their coincidence with the red dotted lines.405

Fig. 13e–g show that for the non-breaking cases, the free and bound second harmonics are of sim-406

ilar amplitude, as also noted in Section 3.2 and predicted by Massel [9]. For the breaking case (d,407

h), the distinction between the free and bound wavenumbers of the second harmonic is less clear.408

As the spatio-temporal spectra are essentially averages over the spatial domain, the distinction be-409

tween pre- and post-breaking frequency-wavenumber spectra is not evident. This distinction could410

be made more visible by reducing the domain length over which spectra are computed. However,411

this will reduce the wavenumber resolution too much to resolve the separate components.412

3.3. Harmonic-induced wave breaking413

For suitably large incident waves, the second-order beating phenomenon and the coupled local414

increase in the magnitude of the higher harmonics previously discussed will lead to breaking, as415

examined further in this section.416
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Figure 13: Spatio-temporal amplitude spectra for four cases with increasing amplitudes: a) a1,i = 0.0102 m, b) a1,i =

0.0177 m, c) a1,i = 0.0243 m (NB), d) a1,i = 0.0388 m (B). Panels e-h show zoomed-in regions for f / f0 = 1–3
to assess second-order free wave content and correspond to panels a-d, respectively. Amplitudes have been scaled
(compensated) by the ratio of f / f0 to enable visualisation the higher-harmonic amplitudes, and are normalised by
the maximum value at the first harmonic. Blue dotted lines denote the linear dispersion relation, and red dotted lines
indicate a 1:1 relationship between f / f0 and k/k0s and hence a constant phase speed equal to the phase speed of the
first harmonic and thus the location of bound waves.

In Fig. 14, the wave evolution is shown for several wave amplitudes along with the corre-417

sponding velocity in the x-direction, vx, for one instant in time. Increasing the wave amplitude418

(non-breaking cases), and hence the amplitude of the free and bound second-order waves (and419

higher-harmonic bound waves) serves to significantly alter the wave profiles and velocity. Crests420

become amplified and narrower; the effect of the free second-order harmonic on the surface ele-421

vation becomes clearly visible; amplitudes become more spatially variable, and velocities in the422

crest increase non-linearly with amplitude.423

The a1,i = 0.032 m case (a1 = 0.039 m) corresponds approximately to the lower breaking424

threshold identified in experiments (as shown in Fig. 3). For this case, the wave crest reaches425

over 2.5 times the incident wave amplitude before starting to spill over gently at around x = 3 m,426

roughly at the location of the first anti-node (x ≈ 3.12 m). As breaking is observed for this427

amplitude in the SPH simulations, this demonstrates that the SPH model appears to capture the428

breaking threshold well. For the a1,i = 0.039 m case (B, a1 = 0.048 m), the wave crest also exceeds429

2.5 times the incident wave amplitude, but this occurs much closer to the step before breaking430

more violently. As the wave amplitude increases, the breaking location moves nearer to the step,431

and for a1,i = 0.051 m occurs at x ≈ 1 m. For this case, the normalised surface elevation (η/a1,i) is432

greatly limited by breaking and does not significantly exceed 1.0.433

To assess this harmonic-induced wave breaking further, we examine the maximum surface434

elevation as a function of the incident wave amplitude a1,i along with the locations of the maxima435

(as a proxy for breaking onset location, beyond the breaking threshold). This is presented in436

Fig. 15, along with the experimentally identified breaking onset thresholds highlighted in Fig. 3437
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Figure 14: Left: evolution of surface elevation for different wave amplitudes (rows). Right: corresponding horizontal
velocity fields for t = 11.6 s (corresponding to the yellow and black dashed lines in the left-hand side panel). The
second and fourth rows correspond to the NB and B cases, and the third corresponds to an input amplitude associated
with the breaking limit.
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Figure 15: Panel a shows the maximum value of surface elevation normalised by incident amplitude as a function of
incident amplitude. Panel b presents the corresponding locations of maximum surface elevation. The grey transparent
area denotes the breaking threshold, and the dotted lines indicate the region 0.9π/(k2 f0,s − 2k0,s) to 1.1π/(k2 f0,s − 2k0,s).

(approximately converted to a1,i values). The dashed lines indicate the expected location of the first438

anti-node, π/(k2 f0,s−2k0,s), with dotted lines bounding 0.9π/(k2 f0,s−2k0,s) to 1.1π/(k2 f0,s−2k0,s) as439

an ad-hoc estimation of the uncertainty of the true phase of the second-order free waves at the ADT440

for very steep-amplitude waves. Large values of the normalised surface elevation are calculated441

for values close to, and exceeding, the breaking amplitude threshold. The larger values of η/a1,i442

recorded just beyond the breaking threshold are likely due to jetting/spray. It is evident that the443

locations of the maxima agree well with the expected location of the first anti-node of the second-444

order beating pattern for amplitudes up to breaking, and hence define the expected breaking onset445

location for wave amplitudes at the breaking threshold. Past this threshold, the maximum value of446

the surface elevation occurs closer to the step (smaller x), as the combination of the first and higher447

harmonics even before the anti-node location increase the elevation to a value above the breaking448

limit.449

Fig. 16 shows the amplitudes of the superharmonics at the locations of maximum surface ele-450

vation as a function of incident amplitude a1,i. For values of a1,i below the breaking threshold, the451

normalised superharmonic amplitudes all increase with a1,i. At the breaking threshold (grey patch)452

significant higher-harmonic contribution is observed and the location of the higher-harmonic max-453

ima moves closer to the step. For incident amplitudes larger than the breaking threshold, the rel-454

ative value of higher harmonics increase further with a1,i up to a limiting value after the breaking455

threshold (and prior to the anti-node location). Hence, for incident wave amplitudes slightly above456

the breaking limit, at the point of breaking there is increased higher-order contribution to the wave457

form. For waves with incident amplitudes much larger than the breaking threshold, however, the458

higher-order contribution decreases with amplitude. This is a result of waves breaking prior to459

the anti-node location (indicated by the location of maximum surface elevation in Fig. 15), where460

the harmonics are observed to be a maximum. Hence, somewhat counter-intuitively, the incident461

waves with the highest steepness are found to be significantly less non-linear at the point of break-462

ing. The presence or lack of higher-harmonic contributions at the breaking onset will define the463
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Figure 16: Values of normalised harmonic amplitudes at the location of maximum surface elevation (see Fig. 15) as
a function of incident amplitude. Panels a) to f) correspond to values for the second to sixth harmonic, respectively.
The grey transparent area denotes the breaking threshold.

kinematics and affect the resulting breaker characteristics.464

4. Conclusions465

In this paper we have experimentally and numerically assessed how harmonics generated at an466

abrupt depth transition (ADT) cause spatial variability of the wave field, and induce breaking on467

the shallower side of the ADT. The SPH model presented is found to agree well with experiments,468

and the high resolution of the model is used to explore the spatial distribution of harmonics and469

the onset of wave breaking.470

From the SPH model results, we observe for the non-dimensional water depths considered471

that the higher harmonics (third to sixth) follow the spatial beating pattern of the free and bound472

second-order interaction predicted by [9] and are made up predominantly of bound components.473

We therefore conclude that these spatially variable bound higher harmonics fundamentally re-474

sult from the second-order free-bound interaction. For incident wave amplitudes smaller than the475

breaking threshold, the locations of peak values of surface elevation, and the location where super-476

harmonic amplitudes (second to sixth harmonic) are found to be at a maximum, are all predicted477

by this second-order beating phenomenon, despite significant higher-harmonic contributions to the478

wave fields. For incident wave amplitudes at the breaking threshold, breaking onset is also found479

to occur at this second-order anti-node location, whilst increasing amplitude above this limit serves480

to move the breaking onset location nearer to the ADT. The contribution of higher harmonics at481

the breaking onset is found to vary significantly depending on the breaking location: waves which482

have larger incident wave amplitudes break closer to the ADT and are associated with reduced483

higher-harmonic contribution. This observation has significant implications for the breaking wave484

kinematics and any associated loading on structures placed atop abrupt depth transitions.485

For waves breaking due to ADTs, the breaking onset, location and associated kinematics are486

therefore dominated by the second-order free-bound interaction and associated local increase in487

the amplitude of higher harmonics. The breaking onset location beyond the breaking threshold is488

confined between the ADT (x = 0 m) and x = ϕ2s/(k2 f0,s − 2k0,s), where 2k0,s denotes the second-489

order superharmonic bound wavenumber, k2 f0,s the second-order superharmonic free wavenumber490

in the shallower depth, and ϕ2s is the free-wave phase shift which is approximately equal to π491
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(predicted to be 0.92π for the case presented based on second-order theory). Future work will492

extend this understanding to more realistic offshore scenarios, including multi-chromatic wave493

conditions and the effect of oblique angles of incidence and directional spreading.494
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Appendix A. Incident and reflected waves611

In Section 3.2 it was noted that the value of a1 does not represent the linear incident amplitude.612

Hence, a simple frequency-domain reflection analysis was carried out on the SPH simulation data613

to identify the true incident amplitude. To separate the linear incident and reflected components,614

we use the approach detailed in [54] to resolve left and right-travelling wave components. This615

analysis is only carried out on the SPH simulation data, as having only a single gauge on the deeper616

side makes this analysis impossible for the experiments.617

A subset of the SPH surface elevation data is used for analysis to avoid duplicate separa-618

tions arising between measurement locations, and a target wave gauge array is defined based on619

a 12th-order Golomb ruler (similar to the approach implemented in [55]). Data is extracted at620

model-output locations closest to the target locations. The desired array, and co-array, defining the621

separations between all array locations, are presented in Figs. A.17 and A.18 (black circles) along622

with the locations used for analysis (red diamonds).623

Fig. A.19 presents the outputs of the reflection analysis. Assessing Fig. A.19a, it is evident that624

the values of a1 taken at gauge 1 are larger then the true incident amplitude (a1,i) due to being at a625

constructive interference location. The reflection coefficient for the first harmonic (Fig. A.19b) is626

calculated to be between 0.22 and 0.28 and increases with incident amplitude. These values of a1,i627

are used to contextualise the breaking analysis presented in Section 3.3.628
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Figure A.17: Desired gauge spacing based on a 12th-order Golomb ruler along with SPH model output locations used
for analysis.

Figure A.18: Desired co-array separation based on a 12th-order Golomb ruler along with the obtained co-array using
SPH model output locations.

Figure A.19: Reflection analysis outputs for all SPH simulations. Panel a) shows the relationship between the refer-
ence amplitude a1 and the true linear incident amplitude a1,i. Panel b) presents the reflection coefficient as a function
of the incident amplitude.
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