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Emulating Ebbinghaus forgetting behavior in a
neuromorphic device based on 1D supramolecular
nanofibres†

Tejaswini S. Rao, ‡a Suman Kundu, ‡b Bharath Bannur, a Subi J. George c

and Giridhar U. Kulkarni *a

Mimicking synaptic functions in hardware devices is a crucial step in realizing brain-like computing

beyond the von Neumann architecture. 1D nanomaterials with spatial extensions of a few µm, similar to

biological neurons, gain significance given the ease of electrical transport as well as directionality. Herein,

we report a two-terminal optically active device based on 1D supramolecular nanofibres consisting of CS

(coronene tetracarboxylate) and DMV (dimethyl viologen) forming alternating D–A (donor–acceptor)

pairs, emulating synaptic functions such as the STP (short-term potentiation), LTP (long-term poten-

tiation), PPF (paired-pulse facilitation), STDP (spike-time dependent plasticity) and learning–relearning

behaviors. In addition, an extensive study on the less explored Ebbinghaus forgetting curve has been

carried out. The supramolecular nanofibres being light sensitive, the potential of the device as a visual

system is demonstrated using a 3 × 3 pixel array.

1 Introduction

Learning and forgetting are important cognitive activities con-
tributing to resource and energy optimization in the human
brain. Something not so crucial for life sustenance need not
be remembered for long, unlike the present-day practice of
reckless storage of bulky data in memory devices! In this direc-
tion, researchers have explored the fabrication of devices exhi-
biting an inherent ability to forget. There are devices that can
be optically stimulated to a specific state and, later, electrically
erased.1,2 In some other devices, the erasing is done
thermally,3,4 sometimes only temporarily with the application
of force.5,6 Also, there are systems that have information
encoded in them via thermal or optical treatments, which self-
erase when cooled.7 In the above examples, although the
stored information can be erased selectively, the action is not
truly spontaneous and is mostly abrupt. In contrast, the forget-
ting behavior in living systems is somewhat gradual and

dependent on the incoming information. The real technologi-
cal progress in this direction would depend on how closely the
artificial systems can be made to mimic the bio-counterparts.

The psychological aspect of human learning and forgetting
behaviors was put forth for the first time by Hermann
Ebbinghaus in 1885.8 Ebbinghaus showed that learning, if
repeated, results in slower forgetting. Also, once the learning
is stopped, the forgetting is rapid in the beginning and
becomes slower in the latter stages until the information is
completely forgotten, and this forgetting nature can be
approximated by an exponential function.9 Although this may
seem to follow a familiar trend, its quantitative formulation
owes much to the psychologist and hence the name
Ebbinghaus forgetting curve. After Ebbinghaus, though several
modified mathematical functions have been used in the litera-
ture to represent the course of forgetting, it is widely agreed
upon by researchers that forgetting retards over time.10 Thus,
the original Ebbinghaus equation still explains the forgetting
behavior.

The exponential nature of the forgetting curve is rather
straightforward to implement in artificial devices as following
the withdrawal of the stimulus, typically an electrical or optical
input, the device output tends to decay nearly exponentially
due to electrically induced trap states or due to persistent
photoconductivity (PPC) arising from filling up of the optically
stimulated trap states. The current decay attributed to PPC is
similar to the forgetting behavior observed in biological
systems, which is well documented.11 Many artificial synaptic
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devices exhibiting a current decay behavior analogous to the
Ebbinghaus forgetting curve have been reported and are thus
being considered potential in the context of cognitive
tasks.12–21 Hu et al.22 have emulated the Ebbinghaus forgetting
curve in electrically stimulated NiO-based memristor forming
conductive filaments, while Dai et al.23 demonstrated the same
in an organic field-effect transistor based on the charge trap-
ping mechanism. Wang et al. exploited the PPC effect to
mimic the Ebbinghaus learning and forgetting curve in a
TiNxO2−x/MoS2 heterojunction.24 Many others report such be-
havior in devices via trap-assisted processes that are mostly
optically stimulated.25–31 It is known that forgetting is also
dependent on how information is acquired.32 The information
obtained through prolonged exposure or through rehearsals is
well retained, whereas less rehearsed or less exposed infor-
mation is forgotten faster. The extent of learning, relearning,
and rehearsing dictates forgetting. Thus, understanding how
the extent of learning affects forgetting behavior poses to be
crucial. The present work deals extensively with some of these
aspects.

Specifically, we report a simple two-terminal optical neuro-
morphic device made with 1D supramolecular nanofibres to
emulate various synaptic functions with an emphasis on for-
getting behavior. Such device architectures and their functions
are rarely reported in the literature (Table S1, ESI†).
Supramolecular nanofibres consisting of CS (coronene tetra-
carboxylate) and DMV (dimethyl viologen) forming alternating
D–A (donor–acceptor) pairs and stabilized through charge-
transfer interactions are used here as the active material.33

Being fairly conducting, these fibres have, in the past, served
as an active element in humidity sensors,34 field effect transis-
tors,35 etc. These fibres self-assemble from water, are simple to
process without much dependence on lithography, enable
miniaturization, reduce carrier scattering, and thereby
increase charge transport.13,36 They undergo self-repair with
exposure to humidity,37 a property that may play an important
role in integration. Here, we have exploited the PPC behavior
exhibited by the device in emulating the short-term poten-
tiation (STP), long-term potentiation (LTP), the transition from
short-term (STM) to long-term memory (LTM), paired-pulse
facilitation (PPF), spike-time dependent plasticity (STDP) and
learning–forgetting–relearning behaviors. The estimated
energy consumption is ∼1.06 pJ per synaptic junction. A 3 × 3
array has also been prepared to demonstrate the potential of
the device architecture as a visual system.

2 Experimental
2.1 Synthesis of CS–DMV solution

The detailed synthesis procedure of the CS–DMV solution has
been reported previously.33 Briefly, the synthesis of CS (coro-
nene tetracarboxylate) was carried out using a two-fold oxi-
dative benzogenic Diels–Alder reaction of perylene with N-ethyl
maleimide in the presence of chloranil and p-hydroxyanisole
followed by hydrolysis with KOH in methanol. The synthesis of

DMV (dodecyl methyl viologen) was carried out using a con-
trolled reaction on one nitrogen of 4,4′-bipyridine with dodecyl
bromide to give a monopyridinium ion, followed by its treat-
ment with methyl iodide to give amphiphilic dicationic bipyri-
dine. The charge-transfer fibres were assembled by the injec-
tion of a methanol solution of unaggregated DMV into the
aqueous solution of free CS molecules (10% v/v methanol in
water). The desired concentration of the CS–DMV nanofibre
solution was prepared by diluting it with an appropriate
amount of deionized water.

2.2 Device fabrication

For the fabrication of the supramolecular nanofibre device, a
glass substrate was cleaned in piranha solution, followed by
washing with acetone, IPA, and distilled water. Interdigitated
micro-patterns were developed by photolithography on the
glass substrate. Then, microelectrodes were constructed by
sputter deposition of Ti followed by a lift-off process.
Furthermore, drops (1 μL) of 0.5 mM CS–DMV supramolecular
nanofibre dispersions were drop cast on the interdigitated
(IDT) microelectrodes. The devices were vacuum-desiccated
overnight to remove excess water.

2.3 Characterization

A CHROLIS C1 LED light source (Thorlabs) was used to illumi-
nate the device with the aid of a liquid light guide (LLG)
(Thorlabs). The current response of the device was measured
using a CH Instruments 660E (Austin, TX, USA) in the two-elec-
trode configuration after making the silver paste contact with the
Ti electrodes. The morphology of the nanofibres was examined
using a scanning electron microscope (Apreo 2 S SEM, Thermo
Fischer Scientific). UV-visible studies were performed using a
PerkinElmer Lambda-750 UV-visible spectrophotometer.

3 Results and discussion

Fig. 1(a) shows the schematic of the device architecture. The
optical microscopy images of the complete device are given in
Fig. S1 (ESI†). Details of the fabrication process are given in
the Experimental section. The FESEM image of the device
(Fig. 1(b)) shows the nanofibres spread across the Ti IDT elec-
trodes. In order to validate the device functioning, IV sweeps
were performed, which showed the capacitive nature of the
device (Fig. S2, ESI†), in line with an earlier study.38 The UV-
visible absorption spectrum of the supramolecular nanofibres
(Fig. S3, ESI†) shows strong absorption peaks at 324 and
357 nm with a broad band centered around 500 nm originat-
ing from the ground state charge transfer interaction between
the donor and the acceptor molecules.33 The presence of
strong absorption peaks in the UV region prompted us to
study the photoresponse behavior of the device; a detailed
photodetection study will be carried out separately. In the
present study, the performance was monitored using the
device current while illuminating it with UV light pulses of
365 nm, as shown in Fig. 1(c). An off-state current of 18 nA was
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observed for a bias voltage of 1.2 V. On illuminating it with a
UV pulse of 0.5 s width, the device current increased to 38 nA,
exhibiting the photo-sensing behavior. Interestingly, when the
light was turned off, the device current decayed gradually over
∼18 s to reach its initial value. When the light pulse duration
was increased to 20 s (Fig. 1(d)), along with enhancement in
the current response to ∼101 nA, the decay of the current after
the light pulse was prolonged (∼128 s). This indicates the tun-
ability of the current decay behavior by changing the light
pulse parameters. It is known from earlier studies that the con-
duction in the nanofibre has contributions from both elec-
tronic and ionic components, which arise from alternative
donor–acceptor charge-transfer pairs with surface hosting
ions.33 The humidity-sensitive nature,34 p-type behavior,35

matching of the Fermi level of the nanofibre with the work
function of Ti electrodes38 and delocalization of charge car-
riers along the π–π stacking planes of the donor and acceptor
molecules39 all seem to account for the effective generation
and separation of charge carriers upon UV exposure. The

observed decay is attributed to the PPC effect arising due to
the trap states that hinder the recombination of the photo-gen-
erated charge carriers.11 This PPC phenomenon exhibited by
the device was used to emulate the synapse-like behavior in
the nanofibre device. Device functioning as detailed above
consumes only ∼1.06 pJ per synaptic junction (see Note S1,
ESI†), which is comparable to the reported values from other
neuromorphic devices.40,41

The biological synapse, pictured as the pivotal unit for
achieving complex cognition, is a junction that transmits the
received electric impulse from the pre-synaptic neuron to the
post-synaptic neuron by releasing neurotransmitters from the
synaptic vesicles, thus marking signal transmission. Any
changes in the strength of the synaptic connection (also
known as the synaptic weight) lead to synaptic plasticity, influ-
encing the temporal profile of the signal transmission. This is
the basis of learning, cognition, and memory formation. The
biological brain exhibits synaptic functions such as PPF,42 STP,
LTP,43,44 and STDP45 responsible for displaying cognitive

Fig. 1 (a) Schematic of the supramolecular nanofibre device illuminated with UV light. (b) FESEM image of the device. The inset shows the
magnified image of the nanofibre mat spread across the Ti inter-digitated electrodes (Ti IDT). Photoresponse of the device for a single UV light pulse
(365 nm, 6.58 mW cm−2) of width (c) 0.5 s and (d) 20 s.
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activities. Such synaptic functions are emulated in the nanofi-
bre device, as discussed below.

The response of the supramolecular device to the optical
stimuli can be thought analogous to the biological synapse,
shown in Fig. 2(a). PPF, a form of short-term synaptic plasticity
where the response for the second stimulus is enhanced when
applied close to the first stimulus, is emulated in the device by
applying two UV pulses of 0.5 s width with 0.2 s gap (see
Fig. 2(b)). The current response is found to be analogous to
the excitatory post-synaptic current (EPSC) that follows the
firing of action potential42 in a biological synapse.

Interestingly, the current in the device for the second UV pulse
was greater than that for the first, indicating the facilitation of
the second UV pulse by the first UV pulse, leading to the PPF
behavior.

The degree of enhancement in the current for the second
pulse is given by the PPF index calculated using the equation:

PPF index ð%Þ ¼ ðA2=A1Þ � 100 ð1Þ

where A1 and A2 are the current states for the first and the
second UV pulses, respectively (Fig. 2(b)).

Fig. 2 (a) Schematic of the biological synapse with an enlarged view (left) depicting the release of neurotransmitters from the synaptic vesicles in
the pre-synaptic neuron to the post-synaptic neuron for signal transmission. Schematic of the device exposed to UV pulses (right). The post-synaptic
response for the pre-synaptic input, as observed in the biological synapse, is analogous to the current response for the UV pulse input in the device.
(b) EPSC of the device for a pair of UV light pulses (width: 0.5 s; interval: 0.2 s). (c) PPF index as a function of UV light pulse interval. (d) Normalized
conductance (SW = synaptic weight) against time for varying pulse intervals. (e) Variation of the τ and ΔGmax with the pulse interval.
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The PPF index varies with the time interval between the
pulses (Δt ) and is shown in Fig. 2(c). The variation can be
fitted with the bi-exponential function as shown below:

PPF ¼ C1 exp �Δt
τ1

� �
þ C2 exp �Δt

τ2

� �
ð2Þ

The bi-exponential function defines two decay constants, τ1
and τ2 accounting for the slow and the fast decay behaviors,
respectively. The PPF index, thus, explains that the infor-
mation coding is effective with a shorter pulse interval and
lessens with longer intervals. C1 and C2 are the facilitation
magnitudes for the slow and the fast decay behaviors,
respectively.46

From Fig. 2(c), it is observed that a smaller pulse interval
results in greater facilitation, while a larger pulse interval
leads to poor facilitation. The values of C1 = 23, C2 = 8, τ1 =
3390 s and τ2 = 429 s are obtained by fitting the experimentally
obtained results with eqn (2). The slow decay is facilitated
more than the fast decay, as given by C1 and C2, respectively.
However, the slow decay takes a longer time than the fast
decay, as observed from the values of τ1 and τ2, respectively.
The facilitation was then extended to a larger number (80) of
pulses of 0.5 s width while varying the pulse intervals (0.125 to
2 s) for each set. The device showed an increase in the current
response for subsequent pulses, prominently visible when the
pulse interval was smaller (Fig. S4, ESI†). Also, the current
decay was slower for the 0.125 s pulse interval than at larger
time intervals (Fig. 2(d)). It is evident that the device exhibits
memory formation and retention akin to the biological
systems – a repeated in-flow of information at smaller time
gaps results in a stronger acquisition with longer retention
(slower forgetting). The initial faster decay followed by a slower
decay of the current in the device is analogous to the STP and
LTP components of the biological synapse. The more promi-
nent STP component results in short-term memory, and a sig-
nificant LTP component shows a transition from short-term
memory (STM) to long-term memory (LTM).10,47 Accordingly,
the current decay for the 2 s interval produces a prominent
STP component, whereas the 0.125 s interval shows a signifi-
cant LTP, exhibiting the STM to LTM transition (Fig. 2(e)),
similar to the forgetting behavior in humans.

The Ebbinghaus forgetting curve22 is most widely used in
the literature as it rightly explains the forgetting behavior and
is also supported by many psychological experiments. Indeed,
many forgetting functions reported in the literature have also
been tried out (Fig. S5(a)–(f ), ESI†);9,48 however, the
Ebbinghaus forgetting function fitted the best for the nanofi-
bre device as well. Other equations (e.g., the sum of exponen-
tials, double and triple) fail to account for the forgetting be-
havior satisfactorily,9 whereas logarithmic and power functions
behave poorly under the boundary conditions and are shown
to produce poorer fits in some psychological experiments.
Besides, the Ebbinghaus forgetting curve is advantageous as it
explains the decay taking place at different time scales (fast
and slow processes). Specifically, in the simplest form, the

parameter β explains the degree of deviation from an exponen-
tial function.

ΔG
ΔGmax

¼ expð�ðt=τÞβÞ ð3Þ

Here, ΔG/ΔGmax is the synaptic weight change. ΔG = (G − G0)
is the difference between the conductance at time ‘t’ and the
initial dark state conductance, ΔGmax (=Gmax − G0) is the differ-
ence between the peak conductance and the initial dark state
conductance, τ is the relaxation time constant, and β is the
stretching exponent. The decreasing τ and ΔGmax values
(Fig. 2(e)) with an increasing pulse interval further confirms
the STM to LTM transition.

The observation of information for a longer time results in
stronger learning and slower forgetting. The same is emulated
here by varying the UV exposure time (Fig. S6(a), ESI†). With
longer UV exposure time, the device forgets the learned infor-
mation slowly, as reflected in the STP and the LTP components
(Fig. 3(a)). The slower forgetting with the UV exposure time
additionally indicates the transfer of information from STM to
LTM. The increments in τ (obtained from the Ebbinghaus for-
getting equation, see Fig. 3(b)) and ΔGmax with different UV
exposure time periods stand for slower forgetting and greater
memory retention, respectively. Greater retention also occurs
when a piece of information is learned frequently. With an
increase in the UV pulse frequency (Fig. S6(b), ESI†), the decay
becomes slower, resulting in the STM to LTM transition, as
shown in Fig. 3(c). Both τ and ΔGmax increase with frequency,
accounting for the alteration in the memory strength for
varying frequencies (Fig. 3(d)). Besides, a piece of information
is learned faster and stays longer when it is presented with a
higher intensity. The device shows a higher response for an
increase in intensity (Fig. S6(c), ESI†) and retains the obtained
response longer, as shown in Fig. 3(e). In addition, the incre-
ments in τ and ΔGmax with intensity mimic the STM to LTM
transition (Fig. 3(f )). Instead of fixed (80) pulses, experiments
were performed by varying the number of pulses as well (see
Fig. 4(a) and Fig. S7, ESI†), and the STM to LTM transition was
again evident. Both values, τ and ΔGmax, increased with the
number of pulses (Fig. 4(b)), corresponding to a slower forget-
ting. Another experiment involved two sets of pulses with a
sufficient gap between the two, such that the second set was
applied slightly before the previous current decayed (Fig. 4(c)).
Interestingly, less number of pulses (25) were required in the
second set to reach a current value that otherwise would take a
larger first set (35). Thus, the rate of relearning is 16% faster
than the learning process. The learning, forgetting, and
relearning behavior observed here is akin to humans.

Another important synaptic activity is STDP, where the tem-
poral correlation between the pre- and post-synaptic activities
governs the strength of learning and describes long-term synaptic
plasticity (LTP/LTD – long-term potentiation/depression).49,50 The
connection strength between the synapses varies with the time
interval (Δt ) of the pre- and the post-spikes. Among the two
forms of STDP, symmetric and asymmetric, representing the
Hebbian law, symmetric STDP is known to play a crucial role in
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auto-associative models.51,52 Symmetric STDP was emulated by
connecting two devices (one was considered as a pre-synapse and
the other post-synapse) and exposing each device to UV pulses at
different time intervals, Δt, as shown in the schematic (Fig. 5(a)).
The current response from each device was recorded on UV
exposure, and the change in conductance was calculated as:

ΔG ¼ ðG2 � G1Þ=G1 ð%Þ ð4Þ

for each Δt. The Δt value was varied from −1.0 to +1.0 s. The
STDP characteristics were derived by plotting ΔG as a function

of Δt, as shown in Fig. 5(b). The conductance change increases
with smaller Δt and decreases, both positively and negatively,
as Δt becomes larger. This indicates that the synaptic connec-
tion strengthens with a smaller Δt and weakens as the Δt
increases, thus emulating STDP.

Furthermore, the learning and forgetting behavior of the
device was emulated using a 3 × 3 visual pixel array (see
Fig. 6(a)). There are such reports on the emulation of advanced
cognitive behaviors53–55 and artificial visual perception56,57

using optoelectronic devices. In the present device, five ‘T’
shaped pixels were exposed to UV light under similar con-

Fig. 3 (a) Normalized conductance against time for different UV exposure times. (b) Variation of τ and ΔGmax with the UV exposure time. (c)
Normalized conductance against time for different frequencies. (d) Variation of τ and ΔGmax with the frequency. (e) Normalized conductance against
time for varying intensities. (f ) Variation of τ and ΔGmax with the intensity.
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Fig. 4 (a) Normalized conductance against time for varying number of pulses (width: 0.5 s, interval: 0.2 s). (b) Variation of τ and ΔGmax with the
number of pulses. (c) Emulation of the learning–forgetting–relearning behavior.

Fig. 5 (a) Schematic of two devices used for the emulation of spike-time dependent plasticity (bottom panel). The top panel shows the input pre-
and post-spike, applied to the pre- and post-synaptic devices, respectively, with the time interval, Δt. (b) Variation in the connection strength as a
function of Δt, exhibiting symmetric STDP.
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ditions, while the remaining four were masked. The current
response with an increase in the number of UV light pulses
(Fig. S8, ESI†) represents varying strengths in learning. When
the current response was color mapped, the alphabet ‘T’ which
was prominently formed after a UV exposure, became dull with
time; after 30 s, the symbol was nearly completely forgotten
(Fig. 6(b)). The learning and forgetting processes exhibited are
similar to those in the human brain, further demonstrating
the potential of the device to mimic the synaptic
functionalities.

4 Conclusions

A neuromorphic two-terminal device with 1D supramolecular
nanofibres as the photoactive element has been prepared. The
inherent PPC effect of the device for UV light was exploited to
mimic various synaptic functions such as the STP, LTP, PPF,
STDP, and learning–relearning behaviors by varying the UV
pulse parameters. With decreasing time intervals, from 20 to
0.1 s, PPF was realized. Similarly, the STP–LTP behavior was
emulated by applying 80 pulses of varied time intervals (from
0.125 to 2 s), by varying the UV exposure time (from 0.1 to 50
s), frequency (from 0.4 to 1.6 Hz), intensity (from 1.97 to
6.58 mW cm−2) and the number of pulses (from 1 to 45).
Overall, the current decay exhibited by the device after the UV
light termination was found to resemble the forgetting behav-
ior in humans, typified by the Ebbinghaus forgetting equation.
The learning–relearning behavior in 1D fibres was further
examined by applying the second set of pulses before the com-
plete decay of the first set. The relearning needed a less
number of pulses, signifying that relearning is faster than
learning. A symmetric STDP was produced by varying the time
interval Δt from −1 to +1 s, where the synaptic connection
strength increased with smaller Δt and decreased with larger
Δt, on both positive and negative scales. A 3 × 3 pixel array
responding to controlled exposure to UV light has been

demonstrated, establishing the potential of the device as a
visual system. The incorporation of a simple device architec-
ture with the utilization of 1D organic nanofibres to mimic the
various synaptic functions is a step forward in achieving paral-
lel processing, in turn, brain-like computing.
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