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Abstract: We fabricated large-area atomically thin MoS2 layers through the direct transformation of
crystalline molybdenum trioxide (MoO3) by sulfurization at relatively low temperatures. The obtained
MoS2 sheets are polycrystalline (~10–20 nm single-crystal domain size) with areas of up to
300 × 300 µm2, 2–4 layers in thickness and show a marked p-type behavior. The synthesized films are
characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction,
transmission electron microscopy and electronic transport measurements.

Keywords: 2D materials; molybdenum trioxide (MoO3); molybdenum disulfide (MoS2);
synthesis; sulfuration

1. Introduction

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have recently gained interest
among the scientific community to solve the weakness of the lack of a bandgap in graphene, which limits
its applications in field-effect transistors and digital integrated circuits [1]. The TMDC molybdenum
disulphide (MoS2) was the first 2D material with an intrinsic bandgap that was isolated [2] and it
consists of S-Mo-S layers that are held by weak van der Waal forces in a trigonal prismatic structure [3–6].
In its bulk form, this material displays an indirect bandgap of about 1.2 eV; nevertheless, it becomes
a direct bandgap semiconductor (1.8 eV) when it is thinned down to a monolayer [7]. In addition,
when a single-layer MoS2 is used as the channel in a field-effect transistor, it exhibits high in-plane
mobility and a large current ON/OFF ratio [8]. These are the reasons why molybdenum disulphide has
attracted interest for electronic and optoelectronics applications [8–10]. Furthermore, it is an attractive
candidate for energy conversion [11,12] and storage [13,14], hydrogen evolution reactions [15–17] or
oxygen reduction reactions [18].

The first methods that were reported for the synthesis of 2D MoS2 consisted of mechanical and
chemical exfoliation from bulk crystals [2,19–21] and, in fact, a lot of studies still use these methods
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since they provide high-quality single layers. However, these techniques present some problems,
like randomly deposited flakes, relatively small coverage area of material and poor control over
thickness. A solution for these issues is critical to achieve real-life electronic devices based on MoS2

and, therefore, synthesis of large-area MoS2 films is a very active research area. The most-explored
methods to synthesize large-area MoS2 thin films are chemical vapour deposition (CVD) [22,23] and
the sulfuration of sputtered molybdenum thin films [24–26].

Here, we explore an alternative route to obtain atomically thin MoS2 layers: the direct
transformation of crystalline molybdenum trioxide (MoO3) layers into MoS2 nanosheets by sulfurization
at moderate temperatures. Up to now, the sulfurization of crystalline MoO3 has only been demonstrated
to produce MoS2 fullerenes and nanotubes, but, here, we demonstrate that it can be also employed to
fabricate large-area MoS2 layers [27,28]. We characterized the resulting layers by Raman spectroscopy,
X-ray diffraction and transmission electron microscopy, finding that the resulting layers showed all
the characteristics of polycrystalline MoS2. We transferred the as-synthesized films to pre-patterned
electrodes to fabricate electronic devices, and we found that they were strongly p-doped, which can be
an interesting feature to complement the marked n-doping of mechanically exfoliated or CVD-grown
MoS2. Our synthesis method does not require a tube furnace with flow gas control as the sulfurization
is carried out in a sealed ampoule, simplifying considerably its implementation and reducing its cost.

2. Materials and Methods

The crystalline MoO3 source is obtained by heating up a molybdenum foil (99.99% purity) to
540 ◦C in air using a laboratory hot plate. At this temperature, the MoO3 starts to sublime. A mica
substrate is placed above the hot molybdenum foil. The MoO3 gas sublimed from the hot molybdenum
foil crystalizes on the slightly cooler mica substrate placed on top, as we show in Figure 1a. As reported
by Molina-Mendoza et al. [27], this method produces continuous crystalline thin films through a van
der Waals epitaxy process thanks to the van der Waals interaction with the mica surface. Note that in
the van der Waals epitaxy process there is no need for lattice matching between the substrate and the
grown MoO3 overlayer.
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Prior to the sulfuration of the MoO3 crystals, they were reduced by heating them at 300 °C for 
24 h in a tube furnace in forming gas atmosphere, Figure 1b. This process yields MoO3−x crystals. We 
found that this step is crucial to avoid the evaporation of MoO3 during the sulfuration process as 
MoO3 is a highly volatile material. In contrast, MoO2 is a more stable oxide [29]; in fact, by partially 
reducing the molybdenum trioxide, we observed improved stability of the material upon 
temperature increase. The MoO3−x layers were then converted to MoS2 by a sulfuration process in a 
closed glass ampoule. The sample containing the MoO3−x layers was sealed with sulphur powder at 
10−5 mbar pressure. The ampoule was placed in a furnace at 500 °C for 5 h and then the temperature 
was increased at 600 °C for another 5 h. Once the sulfuration process was concluded, the temperature 
was slowly lowered to room temperature (Figure 1c). The number of MoS2 layers that we obtain 
depends on the starting MoO3 thickness. Therefore, with this method, we are able to obtain MoS2 
continuous layers covering most of the mica substrate with regions of up to 300 × 300 µm2 with < 5 
layers in thickness; an example is shown in Figure 2a. As discussed below, single-layer MoS2 could 

Figure 1. Cartoon of the process followed for the MoO3 conversion into MoS2. (a) MoO3 sublimes from
a hot molybdenum foil (540 ◦C) and crystallizes onto a mica substrate. (b) MoO3−x is formed after
placing the MoO3 in a tube furnace at 300 ◦C in a forming gas atmosphere for 24 h. (c) The sulfuration
process is performed in a closed glass ampoule at 500–600 ◦C.

Prior to the sulfuration of the MoO3 crystals, they were reduced by heating them at 300 ◦C for
24 h in a tube furnace in forming gas atmosphere, Figure 1b. This process yields MoO3−x crystals.
We found that this step is crucial to avoid the evaporation of MoO3 during the sulfuration process as
MoO3 is a highly volatile material. In contrast, MoO2 is a more stable oxide [29]; in fact, by partially
reducing the molybdenum trioxide, we observed improved stability of the material upon temperature
increase. The MoO3−x layers were then converted to MoS2 by a sulfuration process in a closed glass
ampoule. The sample containing the MoO3−x layers was sealed with sulphur powder at 10−5 mbar
pressure. The ampoule was placed in a furnace at 500 ◦C for 5 h and then the temperature was
increased at 600 ◦C for another 5 h. Once the sulfuration process was concluded, the temperature
was slowly lowered to room temperature (Figure 1c). The number of MoS2 layers that we obtain
depends on the starting MoO3 thickness. Therefore, with this method, we are able to obtain MoS2
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continuous layers covering most of the mica substrate with regions of up to 300 × 300 µm2 with
< 5 layers in thickness; an example is shown in Figure 2a. As discussed below, single-layer MoS2

could also be observed (see the discussion related to the scanning transmission electron microscopy
results). It is important to note that when we tried to sulfurize the as-grown MoO3 layers, without the
reduction step, we obtained thick MoS2 crystallites randomly deposited on both the ampoule surface
and on the substrate. Scanning transmission electron microscopy (STEM) data was acquired in an
aberration-corrected JEOL JEM-ARM200cF electron microscope (JEOL, Tokyo, Japan) operated at 80 kV.
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for the same sample after the sulfuration process shows a peak that corresponds to the (002) reflection 
of MoS2 [6]. Thus, we further confirm that we are able to obtain MoS2 from MoO3 deposited onto a 
mica substrate. In some works, it is proposed that the average thickness of a thin sample can be 

Figure 2. (a) Optical image of a large-area MoS2 on a mica substrate. (b) Raman spectra of MoS2 in
different regions of the same sample. The inset displays the relation between the frequency difference
of the two peaks and the number of layers of MoS2.

3. Results and Discussion

3.1. Raman Characterization

In Figure 2a, we show an optical image of a thin and large-area MoS2 film on mica. We employed
Raman spectroscopy to characterize the MoS2 film as this technique has been demonstrated to be a
very powerful tool to characterize 2D materials [30,31]. Figure 2b presents the Raman spectra acquired
on two locations (indicated in the figure) of the MoS2 film shown in Figure 2a. The characteristic E1

2g

and A1g phonon modes of MoS2 (around 380 and 415 cm−1) are clearly visible in the spectra [24,32].
One can determine the number of layers from the frequency difference between these two Raman
modes. In the inset in Figure 2b, we show the relation between this frequency difference and the
number of layers of MoS2, obtained from the literature [33,34], and we compare these values with
those obtained in two spots in our sample to determine the number of layers, finding that the MoS2

specimen is composed of a bilayer and a four-layer region. We refer the reader to the Supplementary
Materials for a Raman map of another thin MoS2 region.

3.2. XRD Characterization

The crystal structure of the films has been characterized with X-ray diffraction (XRD). XRD
was performed at room temperature on the initial sample (MoO3 grown on mica 18 mm × 2 mm
substrate) and on the final sample (MoS2 obtained after the sulfuration process). Figure 3 illustrates
the X-ray diffractograms that were taken for the initial sample and for the final sample in green and
blue, respectively. In red, we also show the X-ray diffractogram for a bare mica substrate, in order to
differentiate the peaks that belong to the substrate from the peaks that correspond to the growth film.
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Notice that the green spectrum exhibits peaks that correspond to (020), (040) and (060) reflections,
which belong to the diffraction peaks of MoO3. The appearance of the (0k0) peaks, parallel to the
plane (010), is a product of the preferred orientation of the MoO3 crystal with respect to the mica
(001) surface due to the van der Waals epitaxy type of growth [35]. The blue spectrum obtained for
the same sample after the sulfuration process shows a peak that corresponds to the (002) reflection
of MoS2 [6]. Thus, we further confirm that we are able to obtain MoS2 from MoO3 deposited onto
a mica substrate. In some works, it is proposed that the average thickness of a thin sample can be
obtained from the analysis of the XRD peaks using the Scherrer equation (D = kλ/βcosθ, where k is
the shape factor, λ is the X-ray wavelength, β is the full width at half maximum of the peak and 2θ is
the scattering angle) [36,37]. By analyzing the (002) peak of the MoS2 XRD pattern, we estimated a
c-stacking height for the analyzed sample of 10 nm, which corresponds to 15 layers of MoS2. Note that
this value corresponds to the average thickness of the whole sample; however, thinner regions (such as
those shown in Figure 2) can be found on it. It is also worth mentioning that the single-crystal domain
size observed in our samples is also of the order of ~10 nm (see STEM discussion below) and thus it is
not completely clear if the Scherrer equation provides accurate values of the average thickness of the
sample or simply the single-crystal domain size.

3.3. STEM Characterization

The crystal structure of the films can be further characterized in real space by STEM. Figure 4
displays a high-angle annular dark field (HAADF) image of a MoS2 layer transferred over a holey
Si3N4 membrane support by an all-dry deterministic transfer process [38]. In order to transfer the
MoS2 films on mica, we stuck a polydimethylsiloxane (PDMS) sheet on its surface and we immersed it
in distilled water. Due to the hydrophilic character of mica, the water wedges between de MoS2 and
the mica surface, separating the MoS2 layer, which remains attached to the PDMS substrate, from the
mica surface. The MoS2 is easily transferred to the membrane by gently pressing the PDMS containing
the MoS2 film against the acceptor substrate and peeling it off slowly.

The STEM characterization indicates that the MoS2 film is polycrystalline, with a single-crystal
domain size of 10–20 nm. Thinner regions can be found at the edges of the sulfurized film, where one
can find monolayer, bilayer and trilayer areas (Figure 4 shows the edge of an MoS2 film, where mono-,
bi- and tri-layer areas can be resolved). The fast Fourier transform (FFT) obtained from the monolayer
region clearly shows the hexagonal symmetry of MoS2.
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3.4. Electrical Characterization
The electrical properties of the fabricated MoS2 films were characterized by fabricating a field-effect

device, by transferring a MoS2 film onto a SiO2/Si with pre-patterned drain-source electrodes separated
by 10 µm. Figure 5a shows the measured source-drain current vs. gate voltage (Isd-Vg) characteristics
for a fixed source-drain voltage of Vsd = 1 V. Surprisingly, we obtained a decrease in the source-drain
current upon gate voltage increase without reaching the OFF state, which corresponds to a strong
p-doped field effect behavior. To confirm this fact, we performed a thermopower measurement.
Figure 5b displays the IV characteristics acquired, applying a temperature difference between the
two electrodes. It can be seen that a positive voltage offset at zero current appears (thermoelectric
voltage) when the temperature different increases. The inset shows the thermoelectric voltage versus
the temperature difference. The Seebeck coefficient can be extracted from the slope of a linear fit to the
data: S = +33.9 µV/K. This positive value confirms the p-doped nature of the MoS2 film obtained by the
direct sulfurization of crystalline MoO3. The low magnitude of the Seebeck coefficient also indicates
a high doping level. We have carried out preliminary Hall effect measurements by backing up the
p-type electrical behavior of the MoS2 films observed in the Seebeck and electric-field measurements.
Unfortunately, the large resistance of our samples precludes us from quantifying the charge carrier
concentration as the electronics of our Hall effect measuring system are optimized for low-impedance
samples. The highly linear shape of the IVs, together with the high doping inferred from the shallow
transconductance and low Seebeck coefficient, points to an Ohmic contact in the Au-MoS2 junction.
We also estimated the resistivity of the device as ~100 Ω·cm, which is significantly higher than that of
single-crystal MoS2 (~1–5 Ω·cm), [39,40] as expected from the small single-crystal domain size of our
synthetic MoS2 layers.

In order to get a deeper insight into the microscopic origin of this p-doping in our MoS2 layers,
we have done an electron energy loss spectra (EELS) analysis of the STEM data (see Supplementary
Materials). Apart from the presence of Mo and S, we found C (which could come from e-beam-induced
deposition of amorphous carbon during the STEM measurement), O and B. The presence of O could be
due to an incomplete MoO3-to-MoS2 transformation, and the presence of B impurities could come from
unintentional cross-contamination from the surface of the glass ampoules used during the growth.
The presence of these foreign species could be a plausible source of the unexpected p-type doping.

Figure 6a represents the measured Isd-Vsd characteristics in dark conditions and under light
excitation with different wavelengths. The gate voltage was set to Vg = 0 V during the measurement.
Fiber-coupled LED light sources were employed to illuminate the device. The inset of this figure zooms
in on the high voltage region of the traces to distinguish the differences induced upon illumination.
The photocurrent as a function of the wavelength can be calculated from these data, as we show
in Figure 6b. This spectrum reveals that the maximum photocurrent value is located between 530
and 595 nm, whereas it decreases at longer wavelengths. We were not able to measure a sizeable
photocurrent beyond 740 nm, as expected for multilayer MoS2.
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Figure 5. (a) Source-drain current vs. gate voltage measured in dark conditions and at Vsd = 1 V. The inset
shows an optical image of the device measured (channel length = 10 µm, channel width = 1 mm).
(b) Seebeck effect measurement on an MoS2 layer on a mica substrate by applying a temperature
difference between electrodes. The inset shows the linear relationship between the thermovoltage shift
and the difference in temperature. The Seebeck coefficient can be readily extracted from the slope.
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4. Conclusions

In summary, we presented an alternative method to obtain atomically thin MoS2 layers through
the direct transformation of crystalline molybdenum trioxide (MoO3) layers into MoS2 nanosheets
by sulfurization. The process can be carried out at moderate temperatures and using simple
instrumentation. We obtained large-area polycrystalline MoS2 sheets two to four layers thick and we
characterized them by Raman spectroscopy, X-ray diffraction and transmission electron microscopy.
Regarding their electronic properties, they are strongly p-doped.
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of the same region studied in (a), Figure S2: (a) High magnification HAADF image of a MoS2 thin film transferred
over a holey Si3N4 membrane support. (b) Electron energy loss spectra (EELS) acquired while scanning over the
area in (a) for a total time of 20 s.
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