by 2940 41 Preliminary Design of a Polyurethane Recycle Plant

2

Appendix

January 1992

G-Groep '91-II-B

Faculty of Mechanical Engineering and Marine Technology Equipment for Process Industry

ERRATUM

REQUIRED ENERGY (Chapter 4 in report)

A mistake was made in chapter 4 of the report concerning the energy balance. In table 4.3 the duty of pump 1 (P1) was given to be 3500 kW. This should be 3.5 kW. Because of this error the total required work for pumping was incorrect. The time average work of P1 has to be calculated (as in the report): 3.5*(7.5/60)=0.44 kW. The total work (calculated by adding the duties of the remaining pumps in table 4.3) for pumping is then 9.0 kW.

The energy required for the two cutters is: 40.5 and 150 kW.

The high shear mixer will operate continuously, as discussed in the additional report about the PID, so the required energy is 33 kW.

The energy for mixing in V4, R1 and R2 is 6 kW in total. The energy required for the extractor (RDC) is 1.5 kW.

The total required work for the process is calculating by adding all these duties: 240 kW

ERRATUM REACTOR HARDWARE:

p. 6.20, line 7 - two filters in series should be two filters in parallel

p. 6.20, line 14 - appendix A6.XV should be appendix A6.XVI (data on filters)

ERRATUM SETTLER:

p. 6.24, line 17 - $_1$ = flow rate light phase should be Q_1 = flow rate light phase

p. 6.24, line 23 - x in eq. (6.32) is θ in table A.3

p. 6.24, line 25 - Table 6.3 should be Table A.3 p. 6.27, line 3 - add to results $t_c = 105 \text{ s}$ $dH_c = 0.039 \text{ m}$

p. 6.27, line 9 - $t_s = 195$ m should be $t_s = 195$ s

Appendix A6.XVI

p. s11, bottom - Hfl 8000,- should be Hfl 7000,-

			1.0	
	Duty (kW)	Area(m ²)		
H1 flash feed heater	924	385		
H2 flash vapour condensor	71	1		
H3 reactor feed preheater	235	37		
H4 reactor feed heater	349	13		
H5 reactor vapour condensor	5	0.3		
H6 distillation top condensor	4596			
H7 distillation reboiler	4625			
H8 extractor feed cooler	6	0.2		
H9 extractor feed/product exchange	r 69	33		
H10 extractor feed cooler	5	0.2		
H11 flash vapour condensor	30	0.3		
H12 extractor feed/product exchange	er 60	39		
H13 flash feed heater	33	4		
H14 flash bottom cooler	36	0.6		

53

			vol	ume (m ³)	
V1	fresh MEG s	torace		37.5	
V2	crude MEG s	torage		200	
V3	KAC/MEG st	orace		5	
V4	feed mixer			12.5	
V5	cut PU stora	De		40	
V6	prepared fee	d stora	oe	250	
V7	separator ve	ssel	D=	0.5, L=2.55	
V8	water/HCL s	torage	1		
V9	water/HCL/D	ADPM	storag	е	
		duly (kW)		
	cutter 1	40.5			
	culler 2	150			
			duly (kW)	
	high shear n	nixer	23	15	
	and the second				

2.00

	Duty (W)
P1 MEG pump	450
P2 flash feed pump	950
P3 flash top pump	26
P4 N2 compressor	
P5 reactor feed pump	2300
P6 reactor 2 pump	230
P7 distillation bottom pump	20
P8 condensate pump	1200
P9 flash condensate pump	16
P10 extractor product pump	82
P11 flash feed pump	78
P12 flash bottom pump	95
P13 flexibles pump	50

13

£

P4

11

-O P3

12

HZ

76

52

diameter, height (m) D=1.1, H=3.3 D=0.2, H=8.5 d T1 flash vessel, H₂O/feed T2 MEG/H₂O stripper T3 N₂ dryer T4 N₂ dryer T5 packed distillation column T6 extractor column (RDC) T3 flesh column (RDC) D=1.5, H=10.0 D=0.4, H=9.5 D=0.6, H=2.0 D=0.3, H=2.0 D=0.3, H=2.0 T7 flash column, flex/MEG T8 ion-exchanger T9 ion-exchanger D=2.6, H=4.5 D=2.1, H=6.6 R1 reaclor1 R2 reaclor2

34 002 î 24 Hater Ø H5 6.6 kg/h 42 ate Энв 39 38 37 H12 He 4 28 23 36 PB 14 22 P10 Stear 46 F 41 19 20 40 18 26 75 Ð 17 PS 45 S 25 27 ¥ 35 47 D PB

3

2

1

stream

flexibles rigids DADPM KAC H₂O

4

5

6

7	8	9	10	11	12	13	14	15	16
	2		0.10	1	1	2	1	1	1
25	25	150	129	139	139	139	139	139	139
35	35	150	100	0	1	1	1	1	
-		080	ò		1	040		•	980
10000	10000	10000	378	378	-	-	1)	378	9622
10000	10000		-						
	-			2				-	
0.25	0.95	0.35					•		0.35
0.35	0.35	20						-	20
10	10	10	6.6	6.6	6.6	6.6		0.13	3.4

P T vapour fract PU MEG flexibles ngids DADPM KAc H ₂ O N ₂	(bar) (*C) tion (kg/h) (kg/h) (kg/h) (kg/h) (kg/h) (kg/h) (kg/h)	1 20 - - - - - 10	1 35 - 254.6 - -	1 35 - 20 - 20 - 20 -	1 35 - 10000 - - 0.35 20 10 -	1 35 - 0.000 - 0.35 20 10	1 35 - 980 10000 - - 0.35 20 10	1 35 - 980 10000 - - 0.35 20 10 -	2 35 - 980 10000 - - 0.35 20 10 -	1 150 - 980 10000 - - 0.35 20 10 -	0.10 139 1 378 - 5.6	1 139 0 378 - - 6.6	1 139 1 - - 6.6 24	2 139 1 - - - 6.6 44	1 139 1 - - - - - - - - - - - - - -	1 139 1	1 139 - 980 9622 - 0.35 20 3.4 -	0.10 139 - 980 10000 - - 0.35 20 3.53 -	5 139 - 980 10000 - - 0.35 20 3.53 -	4.4 164 - 980 10000 - - 0.35 20 3.53 -	3.0 200 2e-3 980 10000 - - 0.35 20 3.53 *	
stream		28	29	30	31	32	33	34 —.	35	36	37	38	39	40	41	42	43	44	45	46	47	
P T vapour fran PU MEG flexibles rigids DADPM KAc H ₂ O	(bar) (°C) ction (kg/h) (kg/h) (kg/h) (kg/h) (kg/h) (kg/h)	1 80 - 127.5 714 - 8.6 -	1 80 127.5 714 0.29	3 80 - 127.5 714 - 0.29	2 191 - 127.5 714 - 0.29 -	1 198 0.14 - 127.5 714 - 0.29	0.15 198 1	3 80 - 126.8 - 0.16 -	2 200 - 9756 - 351 23.3 20 -	1 198 1 15660 - 0.21 -	3 198 - 10440 - 0.21 -	3 198 - 2598.6 - 0.20 -	3 198 - 9725.4 - 0.35 -	3 198 - - 841.1 - - 0.01 -	1.2 90 - 841.1 - 0.01 -	1 80 - 641.1 - 0.01 -	1 80 - 841.1 - 8.33 -	3 80 - 841.1 - 8.33 -	2 180 - 841.1 - 8.33 -	1 203 - 236.2 - 351 47.1 20	1 203 - 157.4 - 351 31.38 20 -	

Appendix A.4.III.

Note:

Rigide to

19

20

÷

18

17

my lat lo

Process Flow diagram (corrected)

Poly Urethane Recycle Plant ICI G-Groep '91-II-B

operation upstream V5 is discontinuous, operation downstream V5 is continuous.

IAPPENDIX A.4.I

THESE EQUATIONS ARE USED TO DALCULATE THE DADPH MASS BALANCED

DB = 01.5 + 0.55613	TEALANCE REACTORS
DS = DS + D4	(EALANCE SETTLER)
$D4 \times 8, 5 = D8 \times 25$	(PERFORMANCE BETTLER)
$D \oplus D \oplus B = D \oplus D \oplus D \oplus D$	(BALANCE EXTRACTOR)
D5 = D1a + D4	(BALANCE MIXPOINT IN FRONT OF DISTILLATION)
D14 = D15 + D17	(BALANCE BELIT FRINT IN FROM OF EXTRACTOR)
D17 + D12 = D13	CRALANDE MIX POINT TO BRUDE MED STORAGED
DP = D12 + D10	CEALANCE FLASHI
D6*0,21 = D14*30.9869	(PERFERMANCE DISTILLATION)
$D12 = 1.31 \times D10$	CPERFORMANCE FLASHI
D1E/D17 = 841.12/(10440-841.12)	(NATIO OF DADPM STREAMS ON BASIE ACCORDING
	TO RATID OF WEB STREAMS FROM DISTILLATIONS

DE = D14 + D8

(PERFORMANCE EXTRACTOR)

E=2 K=2 F=(E-1)/(E^(5)-1) (DF-015/K)/(D0-115/K)=F

----- Sulution -----

11.12, 111.21	time a more of the same part
12.00	The state of the state
1252	= +8,5966
<u>7</u> 3.44	= +23.261
DIS	= +6.017187
139	= 40,28563
10 3 E	+ +B.3282
	= 431.570
2) 3 4	= -40,21233
017	= ±0.1744
1 A. 12.	- +0.18198
-10	= ⇒0.1236E
57 Z4	※ 今回え、四アム
15	- 2.0000
	# MZ.0000

Matheol Iterative Numeric processors Trulator APPENDIX A.4.II

THESE EQUATIONS ARE UESD TO CALCULATE THE MEG MASS BALANCE?

m1=10000 mreo=116.5 m8=127.5 m9 =127.5 m1=m3+mrec m3=m8+m4 m5=m4+m16 m5=m14+m6 m14=m17+m15 m9=m12+m10 m13=m17+m12 m8+m15=m16+m9 mi4=m6%66.307 m14=m15*(10432/840.5) m12=m10*184.29 mnw=m1-m13

(feed) (reacting MEG) (MEG in settler top to extractor) (MEG in settler top to flash through extractor) (balance reactor) {balance settler} (mix point in front of distillation) (balance distillation) (balance splitter in front of extractor) {balance flash} {balance mix point to crude MEG storage} · {balance extractor} {performance distillation} {split ratio distillation top to extractor} (performance flash) {calculation of required fresh MEG feed}

solution Variables: m 1 = +10000. mreg = +116.50 = +127.50mB = +127.50m9 $m\overline{3}$ = +9883.5 m4 = +9756.0 m5 = +10597.= +841.12 m16 m14 = +10440. mó = +157.44= +9598.6 m17 m15 = +841.12m12= +126.81= +0.68811 miO m13 = +9725.4 = +274.63 mmw

Largest residual is 2.5E-12 Method: Iterative Numeric processor: Emulator

Da H1 flash feed heater H2 flash vapour condensor H3 reactor feed preheater H4 reactor feed preheater H5 reactor vapour condensor H6 distillation top condensor H7 distillation reboiler H8 extractor feed cooler H9 extractor feed cooler H10 extractor feed cooler H10 extractor feed cooler H11 flash vapour condensor H12 extractor feed/product exchanger H13 flash feed heater H14 flash bottom cooler	ty (kW) Area(m ²) 924 385 71 1 235 37 349 13 5 0.3 4596 4625 6 0.2 69 33 5 0.2 30 0.3 60 39 33 4 36 0.6	P1 MEG pump P2 flash feed pump P3 flash top pump P4 pump P5 reactor feed pump P6 reactor 2 pump P7 distillation bottom pump P8 condensate pump P9 flash condensate pump P10 extractor product pump P11 flash feed pump P12 flash bottom pump P13 flexibles pump	Duty (W) 450 950 26 2300 200 1200 16 82 78 95 50	T1 flash vessel, H ₂ O/feed T2 MEG/H ₂ O stripper T3 N ₂ dryer T4 N ₂ dryer T5 distillation column T6 extractor column T7 flash column, flex/MEG T8 ion-exchanger T9 ion-exchanger R1 reactor1 R2 reactor2	diameter, height (m) D=1.1, H=3.3 D=0.2, H=8.5 D=1.5, H=10.0 D=0.4, H=9.5 D=0.6, H=2.0 D=0.3, H=2.0 D=0.3, H=2.0 D=2.6, H=4.5 D=2.1, H=6.6	V1 fresh MEG storage V2 crude MEG storage V3 KAc/MEG storage V4 feed mixer V5 cut PU storage V6 prepared feed storage V7 separator vessel V8 water/HCL storage V9 water/HCL/DADPM stora	volume (m ²) 200 50 40 25 D=0.5, L=2.55 rage
---	---	---	---	--	---	---	--

index 1 2 3 4 5 6 7 8 9 10 1 <th></th>																					
P Bearl (NC) 1 <th< td=""><td>stream</td><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td>16</td><td></td><td>Rig</td><td>ide to</td></th<>	stream		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Rig	ide to
T CC) 20 35 15	D	(bar)		a l					3 4			0.15	1		1 15	0.15	0.15	0.15	Lot		DOXY Ist Io
apport reaction apport rea	F F	(C)	20	25	25	25	1	1	1	2	1	0.15	120	120	1.15	120	120	0.15			
and a	vapour fra	ction	20	35	35	55	35	35	35	35	150	139	135	159	100	135	135	139			
rkc r	vapour na	(ka/b)	-		-	000	-	-			-	1		10			1	090			
matrix basis basis <t< td=""><td>MEG</td><td>(kg/h)</td><td>990</td><td>254.6</td><td>- 20</td><td>10000</td><td>980</td><td>980</td><td>980</td><td>980</td><td>980</td><td>0</td><td>378</td><td>0622</td><td>378</td><td>378</td><td>378</td><td>900</td><td></td><td></td><td></td></t<>	MEG	(kg/h)	990	254.6	- 20	10000	980	980	980	980	980	0	378	0622	378	378	378	900			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MEG	(kg/h)		234.0	20	10000	10000	10000	10000	10000	10000	378	370	9022	370	370	370	9022			
Indica Indica I <thi< th=""> I <thi< th=""> I I <thi<< td=""><td>liexidies</td><td>(kg/li)</td><td></td><td>5</td><td></td><td>•</td><td></td><td></td><td>.₹4</td><td>-</td><td>•</td><td></td><td></td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<<></thi<></thi<>	liexidies	(kg/li)		5		•			. ₹ 4	-	•			<u></u>							
DADUM Mg/n - - - 0.35 0.35 0.35 0.35 - - - 1 0.35 0.35 0.35 0.35 0.35 0.35 0.15 - - 1 0.35 0.36 0.30 0.31 0.31 </td <td>ngias</td> <td>(kg/n)</td> <td>57 (S</td> <td></td> <td>÷</td> <td>-</td> <td>in second</td> <td></td> <td>1.1</td> <td></td> <td>10000</td> <td>•</td> <td></td> <td>1</td> <td>-</td> <td></td> <td>•</td> <td>-</td> <td></td> <td></td> <td></td>	ngias	(kg/n)	57 (S		÷	-	in second		1.1		10000	•		1	-		•	-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DADPM	(Kg/n)			-	0.35	0.35	0.35	0.35	0.35	0.35		С.		•	1.2	•	0.35			
HQ (kg/h) 10 - 10 10 10 10 10 10 10 6.6 6.6 6.6 6.6 <td>KAC</td> <td>(kg/n)</td> <td>· · ·</td> <td>•</td> <td>20</td> <td>20</td> <td>20</td> <td>20</td> <td>20</td> <td>20</td> <td>20</td> <td></td> <td>1000</td> <td>·</td> <td>200</td> <td></td> <td>Shares</td> <td>20</td> <td>24</td> <td></td> <td></td>	KAC	(kg/n)	· · ·	•	20	20	20	20	20	20	20		1000	·	200		Shares	20	24		
stream 17 18 19 20 21 23 24 25 26 27 28 20 30 31 32 30 34 30 34 P (57) 139 139 139 144 30	H ₂ O	(kg/h)	10		•	10	10	10	10	10	10	6.6	6.6	6.6	6.6		0.13	3.4			
P (bar) 0.15 5 4.4 3.0 3.0 3.0 3.0 2.5 3.0 2.00 9.0 9	stream		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	
p (b,n) 1,39 1,40 3,00 2,00 2,00 2,00 9,00 8,00 8,0		0	0.15	5	4.4	2.0	2.0	2.0	2	0.5											
I (C) 1.9 1.9 1.9 1.9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 9.00 8.0 8.0 1.01 1.98 1.98 8.0 vapour responsible (kg/h) 900 960 960 980 980 980 1.0 <th1.0< th=""> 1.0 1.0</th1.0<>	P 	(bar)	120	120	4.4	3.0	3.0	3.0	3	2.5	3	2	1.2	1	1	3	2	1	0.10	3	
vapour fraction 1	1	(°C)	129	139	104	200	200	200	200	200	200	200	90	80	80	80	191	198	198	80	
PJ (kg/h) 900 900 900 9800 9800 9800 9800 1000 10000	vapour frac	lion	-			26-3		1		-		•		(e.)			0 1 1	0.14	1		
MEG (kg/h) 10000	PU	(kg/h)	980	980	980	980	-	-			÷	·	5 7 5				-	(a)	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MEG	(kg/h)	10000	10000	10000	10000	9823.5	60	127.5	127.5	127.5	127.5	127.5	127.5	127.5	127.5	127.5	127.5	126.8	126.8	
rigids (kg/h) 1.3 1.35 1.35 1.35 1.1	flexibles	(kg/h)		-			714		714	714	714	714	714	714	714	714	714	714	-	-	
DADPM (kg/h) 0.35 0.35 0.35 0.35 0.35 31.85 - - 31.85 8.6 8.6 8.6 8.6 0.29	rigids	(kg/h)				Sources	351		·			Sec.		1. E. C.					-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DADPM	(kg/h)	0.35	0.35	0.35	0.35	31.85			•	31.85	8.6	8.6	8.6	0.20	0.20	0.29	0.29	0.16	0.16	
H ₁ O (kg/h) 3.53 3.51 3.51	KAc	(kg/h)	20	20	20	20	20		-	•			-		0.29	0.29	0.25	0.23	0.10		
stram 35 36 37 38 9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 P (bar) (°C) 200 198 198 198 198 198 198 198 198 10 1	H2O	(kg/h)	3.53	3.53	3.53	3.53		-	•	•	-	-	-		-		2				
stream 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 P (bar) 2 1 3 3 3 3 1.2 1 1 3 2 1 1 0.15 3 2.5 2 2.5 1 Yapour fraction - 1 3 1.2 1 1 3 2.03 1.03 1.03 2.5 2 2.5 1.0 1.03 2.03 1.03 1.03 2.03 1.03 1.03 2.03 1.03 1.03 2.5 2 2.5 1 Yapour fraction - 1 1.03 <th1.03< th=""> 1.03 <th1.0< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1.0<></th1.03<>																					
P (bar) 2 1 3 3 3 3 3 3 1.2 1 1 3 2 1 1 0.15 3 2.5 2 2.5 1 T (°C) 200 198 198 198 198 198 198 198 198 198 198 198 100 80 80 80 180 203 198 198 120 170 46 vapor fraction -<	stream		35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
T (°C) 200 198 198 198 198 198 198 198 198 198 198 198 198 2 1 1 0.15 3 2.5 2 2.5 1 vapour fraction 1	P	(bar)	2	1	3	3	3	3	1.2			2		100	4			1202	122	10122	20
vapour fraction 1	т	(°C)	200	198	198	198	198	198	1.2	1	1	3	2	1	1	0.15	3	2.5	2	2.5	1
PU (kg/h) 9756 1560 10440 9598.6 9725.4 841.1 8	vapour frac	tion		1					90	80	80	80	180	203	203	198	198	120	120	170	46
MEG (kg/h) 9756 15660 10440 9598.6 9725.4 841.1 841.1 841.1 841.1 236.2 157.4 0.7 0.7 0.7 0.7 9725.4 9725.4 9725.4 rigids (kg/h) 351 <t< td=""><td>PÚ</td><td>(ka/h)</td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>-</td><td>•</td><td>•</td><td></td><td></td><td></td><td>•</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>•</td></t<>	PÚ	(ka/h)		2					-	•	•				•		-	-	-		•
Ilexibles (kg/h)	MEG	(kg/h)	9756	15660	10440	9598.6	9725 4			-	·	-	-		•		-	÷	-		•
rigids (kg/h) 351 351 351 351 351 351 351 351 351 DADPM (kg/h) 23.3 0.21 0.21 0.20 0.35 0.01 0.01 0.01 8.33 8.33 8.33 47.1 31.4 0.1 0.1 0.1 0.1 0.1 0.35 0.35 KAc (kg/h) 20 H ₂ O (kg/h)	flexibles	(ka/h)				-	0.20.4	1	841.1	841.1	841.1	841.1	841.1	236.2	157.4	0.7	0.7	0.7	0.7	9725.4	9725.4
DADPM (kg/h) 23.3 0.21 0.21 0.20 0.35 0.01 0.01 8.33 8.33 47.1 31.4 0.1 0.1 0.1 0.35 0.35 KAc (kg/h) 20 - - - 20 20 -<	rigids	(kg/h)	351	351	351	351	351	251	•		-	-	-			714	714	714	714		
KAc (kg/h) 20	DADPM	(kg/h)	23.3	0.21	0.21	0.20	0.35	0.01				-	÷	-	351		• :	÷		•	
H ₂ O (kg/h) - 20	KAc	(kg/h)	20.5	0.21	0.41	0.20	0.55	0.01	0.01	0.01	8.33	8.33	8.33	47.1	31.4	0.1	0.1	0.1	0.1	0.35	0.35
.5. fuña.it	HO	(kg/h)	20	-						•			-	20	20				- 10 C		
		1.9.11								·					-		14		24	2	

Appendix A.4.III. Process Flow diagram

Poly Urethane Recycle Plant ICI G-Groep '91-II-B Note: operation upstream V5 is discontinuous, operation downstream V5 is continuous.

Heat exchanger

For cooling of liquid stream (MEG,DADPM) from distillation column to extractor, will be used cold liquid stream (MEG,DADPM) from extractor to feed of distillation column .

Hot liquid (MEG, DADPM) from distillation : Flowrate liquid : := 840.21 Q [kg/hr] meg := 0.01788 [kg/hr] Q dadpm Q := Q + Q tot1 dadpm meg Temperature liquid : := 198 --->----т := 90 т 1 2 T := T + 273 т := T + 273 1 2k 2 1k Properties of hot liquid (MEG, DADPM) from distillation column : Cp of MEG: 2 -3 3 6 2 Cp (t) := $0.1148 \cdot 10 - 0.75 \cdot 10 \cdot t + 0.8020 \cdot t - 0.57 \cdot 10 \cdot t$ meg1 lk Cp (t) _____meg1 T - ' - dt Cp := - т meg1 1k 2k 2k М := 62.07 [gram/mol] meg Cp meg1 Cp := meg1 Μ 3 = 2.92796426.10 Cp meg meg1 Heat load : Q tot1 -·Cp · T н := --- T meg1 1k 1 3600 2k $= 7.38047161 \cdot 10$ H 1

Appendix A5.I

Cutter 1	Cutter 2	Transport	Drying	Transport	Dosing	Transport	Mixing	Advantages	Disadvantages
Granulator to reduce crude PU size to appx. 30 mm.	Granulator to further reduce PU particle size from 30 mm to 10 mm.		Expansion of N2 and evaporating of H2O after freezing and grinding in Cryogen- cutter.	Blowing with N2 to avoid dust explosion or use of force of gravity dependant on type of dosing unit.	Coriolis principle dosing unit.	Blowing with N2 to avoid dust explosion or use of force of gravity.	Continuous mixing with MEG.	Continuous, no inter- mediate storage necessary. Moisture content re- duction to appx 0%.	Expensive due to high N2 consumption
		Use force of gravity or blower in granulator to fill dryer. (Dependant on granu- lator design)	Use a Nauta-mixer with a N2 flow as drying agent. Use a Nauta-mixer under vacuum con- ditions.	Batchwise transport out of dryer to mixer with screw- conveyor.	Weighing of mixing vessel.	Dosing unit and mixing vessel are combined.	High shear in-line. Semi-batch mixing		HOSOKAWA-MICRON: - Volume too large - Very long drying time. - Vacuum very high
		Use screw-conveyor for PU transport from storage after cutter 2 to mixing/ drying vessel.	Inject dry PU into MEG and use a N2 bubble flow during mixing to absorb H2O (ICI batch principle)	Transport to mixer is not necessary. Mixer and dryer are combined in one vessel.	Weighing of mixing vessel.	Dosing init and mixing vessel are combined.	High shear in-line	Mixer and dryer com- bined in a single vessel.	Complex process control. Only few experimen- tal data available. Moisture content still relatively high after drying.
Granulator to reduce crude PU size to appx. 30 mm.	Granulator to further reduce PU particle size from 30 mm to 10 mm.	Use force of gravity or use blower in granulator to fill dryer. (Dependant on granu- lator design)	Batchwise drying under high vacuum conditions (without mixing with MEG).	Screw-conveyor for PU transport to mixer.	Weighing of mixing vessel.	Dosing unit and mixing vessel are combined.	High shear in-line	_	 Very high vacuum Very long drying time
		Use force of gravity or use blower in granulator to fill dryer. (Dependant on granu- lator design)	Drying takes place ir flash vessel after mixing. (Pre-flash storage necessary)	Use pump to fill pre-flash storage.	Weighing of mixing vessel (Before pre- flash storage).	Dosing unit and mixing vessel are combined.	High shear in-line	80% of moisture can be removed. No complex equipment necessary.	Lot of equipment necessary.
		Use force of gravity or use blower in granulator to fill dryer. (Dependant on granu- lator design)	PU is mixed with excess MEG (1:10). Slurry is filtered. Then H2O is stripped from MEG. MEG and filtrate are mixed again.		Weighing of mixing vessel.	Dosing unit and mixing vessel are combined.	High shear in-line.		Only 50% of moisture content reduction. Filtration is hard.
		Use force of gravity or use blower in granulator to fill dryer. (Dependant on granu- lator design)	Continuous drying in moving bed dryer. Use N2 or dry air as drying agent.	Use a screw conveyor for transport to mixer.	Weighing of mixing vessel.	Dosing unit and mixing vessel are combined	High shear in-line.	High moisture content reduction. Continuous drying.	No data available on PU behaviour in dryer.
		Use force of gravity or use blower in granulator to fill dryer. (Dependant on granu- lator design)	Batchwise drying in packed bed dryer. Use N2 or dry air as drying agent.	Use a screw conveyor for transport to mixer.	Weighing of mixing vessel.	Dosing unit and mixing vessel are combined.	High shear in-line.	High moisture content reducution.	No data available on PU behaviour in dryer.
		Use force of gravity or use blower in granulator to fill dryer. Conveyor dryer takes care of homo- geneous particle distribution.	Continuous drying in conveyor dryer. Use dry air as drying agent.	Use a screw conveyor for transport to mixer.	Weighing of mixing vessel.	Dosing unit and mixing vessel are combined.	High shear in-line.	Continuous drying.	Expensive dryer. Large dryer.

Cold liquid (MEG, DADPM) from extractor : Flowrate liquid : Q := 840.21 [kg/hr] meg := 8.3282 [kg/hr] 0 dadpm Q := Q + Qtot2 meg dadpm Cp := Cp meg2 m take ; meg1 Temperature cold liquid : t := 180 [C] ----< t := 80 [C] 2 1 t := t + 273 2k 2 t := t + 273 1k 1 Heat be needed to heating cold liquid : [Watt] Q tot2 $:= \frac{1}{3600} \cdot Cp \quad \begin{bmatrix} t & -t \\ 2k & 1k \end{bmatrix}$ H 2 H = 6.90135978.10 2 T = 198 --->-- T = 90 1 2 t = 180 ---- t = 80 2 t = 180 ---- t = 80 t - t = $\frac{1}{t}$ t - t = $\frac{2}{t}$ = $\frac{1}{t}$ = $\frac{1}$ T - T 1 2 R := _____t - t 2 1 1 1 R = 1.08S = 0.84745763 $\frac{\begin{bmatrix} \mathbf{T} & -\mathbf{t} \\ \mathbf{1} & \mathbf{2} \end{bmatrix} - \begin{bmatrix} \mathbf{T} & -\mathbf{t} \\ \mathbf{2} & \mathbf{1} \end{bmatrix}}{\ln \begin{bmatrix} \mathbf{T} & -\mathbf{t} \\ \mathbf{1} & \mathbf{2} \end{bmatrix}}$ δΤ := --[C] lm

T

2

- t 1 δT = 13.61038022 lm

From Appendix A of "Apparaten voor warmteoverdracht"[st42/i20], choose heat exchanger : 6 shell passes 12 or more tube passes The coefficient factor F : F := 0.825

The correction logarithmic mean temperature : $\begin{array}{ccc} \delta \mathtt{T} & := \mathtt{F} \cdot \delta \mathtt{T} \\ & \mathtt{Imc} & \mathtt{Im} \\ \delta \mathtt{T} & = \mathtt{11.22856368} \\ & \mathtt{Imc} \end{array}$

From table 12.1 ["Chemical Engineering vol.6"] :

U := 200 [W/m^2 C] (organic - organic)

Provisional area :

$$A := \frac{1}{\delta T \cdot U} \qquad [m^2]$$

A = 32.86471811

Appendix A5.II

Calculation of the diffusion coefficient with two estimation correlations given in Reid[1] These correlations are: 1 Tyn and Calus method 2 Nakanishi correlation For both correlations there are several parameter needed voor MEG and water these are: -3 -3 Μ := 62.069.10 kg/mol М := 18.015.10 h20 meg := 470.5 Tb K Tb := 373.2 K h20 meg := 645 K := 647.3 K Tc Tc h20 meg Pc := 77 bar Pc := 57.1 bar h20 meg ptb := 971.463 kg/m3 density of MEG at Tb meq 1. Tyn and Calus method Molair volume of MEG at normal boilingpoint Μ ---5 meg $= 6.389 \cdot 10$ Vb Vb m3/mol := ptb meq meg meg Molair volume of water at normal boilingpoint from Reid[1] table 3-9 -6 := 18.7.10 m3/mol Vb h20 Calculation of surface tension for water and MEG at Tb using Brock and Bird correlation

The surface tensions are
The surface tensions are

$$\sigma_{1} := Pc \qquad \frac{2}{3} \qquad \frac{1}{3} \qquad \frac{1}{3} \qquad \frac{1}{9} \qquad \frac{1}{9} \qquad \frac{1}{9} \qquad \frac{1}{9} \qquad \frac{1}{9} \qquad \frac{1}{1} \qquad \frac{1}{9} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{9} \qquad \frac{1}{1} \qquad \frac{1}{1}$$

 $\sigma_{1}^{-} := \Pr_{1}^{-} \cdot \operatorname{Tc}_{1}^{-} \cdot \left[\begin{array}{c} 0.132 \cdot \alpha c & - 0.278 \\ h20 & h20 & h20 \end{array} \right] \cdot \left[\begin{array}{c} Tb \\ h20 \\ 1 - \frac{h20}{Tc} \\ h20 \end{array} \right] \quad dyne/cm$

 $\sigma := \sigma 1 \cdot 10 \quad \sigma = 0.022 \quad N/m2$ h20 h20 h20 h20

The viscosity of MEG as a function of temperature is:

 η_{meg} (T) := exp $\left[-6.98 + \frac{2.894 \cdot 10}{T}\right]$ cP

When water is the solute a dimer value of should be used

The diffusion coefficient at a temperature of ... K is

$$D1(T) := 8.93 \cdot 10^{-8} \cdot \frac{\begin{bmatrix} V_{b} & \cdot 10 \\ meg \end{bmatrix}}{\begin{bmatrix} V_{b} & \cdot 10 \\ meg \end{bmatrix}} \cdot \frac{T}{\eta} \cdot \begin{bmatrix} \sigma_{1} \\ meg \\ \sigma_{1} \\ h20 \end{bmatrix}} cm2/s$$

 $\begin{array}{ccc} -4 & & -9 \\ D & (T) & := 10 & D1(T_{2}/s) & D & (273 + 140) & = 2.469 \cdot 10 & m2/s \\ T.C & & T.C & \end{array}$

2. Nakanishi correlation

For this correlation we needed the Nakanishi values voor MEG en water when water is the solute and MEG the solvent

I := 2.8 S := 1 water is the solute h20 h20 h20 \therefore reg is the solute meg meg meg h20 \therefore meg is the solvent

density of meg and water as a function

 ρ (T) := 1.348.10 - 0.788.T kg/m3 meg

 ρ (T) := 1.211·10³ - 0.692·T kg/m3

Molar volumes of MEG and water as a function of temperature

The diffusion coefficient of water in MEG at a temperature of K is

$$\begin{array}{ccc} -4 & & -9 \\ D & (T) & := 10 & D2(T) & D & (273.15 + 140) & = 3.214 \cdot 10 & m2/s \\ N & & N & \end{array}$$

The two correlation estimates these diffusion coefficients at T= 140 \sim 1. Tyn and Calus D (273.15 + 140) = 2.476 \cdot 10 m2/s T.C -9

2. Nakanishi D (273.15 + 140) = 3.214 · 10 m2/s

Appendix A5.III

** Structu	ure an	nd parameters of present mo	odel **		
Block	Туре	Inputs/Comment	Par1	Par2	Par3
2002000000	CON		. 0000		
00	oon	;[H20] in gasfeed			
DB	CON		2.0000E-0:	3	
DIFF	CON		3.2140E-09	9	
		;diff.coeff at 140C	50.00		
E	CON		. 3000		
FIV	CON		. 6333		
COEDC	CON	;gastiow mays	5000		
SPECS	CON		1000		
SUAF	CON	surface renewalrate	. 1000		
CGDANKWE	INT	FIV*(CO-CGDANKWE)/VG+KLDA	NKWE*S*(M*CLI	DANKWE-CGDAN	KWE)/VG
		;gasphase Danckw mod	. 0000	0.000 (M)	
CGFILM	INT	FIV*(CO-CGFILM)/VG+KLFILM	*S*(M*CLFILM·	-CGFILM)/VG	
		;gasphase Filmmodel	.0000		DTEL AVC
CGHIGBIE	INT	FIV*(CO-CGHIGBIE)/VG+KLHI		ATCHIE-CONTO	BIEJ/VB
	10 A 1 71	;gasphase Higble mod	ODANKUEL (VI		
CLDANKWE	INI	-KLDANKWE*S*(M*CLDANKWE-C)	1 DAMAN		
DI CTLM	TNT	-KIETIMSSS(MSCIETIM-COETI	M) / VI		
()L.F.J.L.I'I	TINI	·liquidabase Filmmod	1.000		
CLHIGATE	INT	-KLHIGBIE*S*(M*CLHIGBIE-C	GHIGBIE)/VL		
DETTENDE	2	;lig.phase Higbi mod	1.000		
KLDANKWE	VAR	SQAT(DIFF*SUAF)			
		;mtran.coef Danmode			
KLFILM	VAR	DIFF/1E-04			
		;mtran.coef filmmode			
KLHIGBIE	VAH	2*SQRT(DIFF/(PI*TET))			
		;mtran.coef higbmode	r. r. r.)		
М	VAR	4*(106.122/28)*HHUN2/(HHU	DEG)		
DUCERTO	1100	; VOLUM. distri. coeff	(()		
HHUDEG	VAH	1.348E03-0.708*(273.13+14			
DUDNO	VAR	28F-03%1F05/(8 3144%(273)	15+140))		
NHUNZ	VAN	density gasphase	,,		
S	VAR	6*VG/(DB)			
.,		total bubble area			
TET	VAR	DB/(4*FIV/(E*PI*2.3*2))			
VG	VAB	E/(1-E)*VL			
103467		;volume of gas			
VI.	VAR	10000/BHODEG			
		;volume of liquid			
PSI* cos					

.

Appendix A5.IV

- liquid moves

- liquid not infinite

Appendix A5.V

** Struct	ure ar	nd parameters of present	model **		
Bluck	Туре	Inputs/Comment	Par1	Par2	Par3
			=======================		
CO	CON	1	. 0000		
		;[H20] in gasfeed			
DB	CON		2.0000E-03		
DIFF	CON		3.2140E-09		
		;diff.coeff at 1400			
E	CON		. 3000		
FIV	CUN		. 2728		
		;gasflow m3/s			
SPECS	CON		.5000		
SUAF	CON		. 1000		
		;surface renewalrate			
CGDANKWE	INT	FIV*(CO-CGDANKWE)/VG+KLD	ANKWE*S*(M*CLDA	NKWE-CGDANK	WE)/VG
		;gasphase Danckw mod	. 0000		
CGFILM	INT	FIV*(CO-CGFILM)/VG+KLFIL	M*S*(M*CLFILM-C	GFILM)/VG	
		gasphase Filmmodel	. 0000		
CGHIGBIE	INT	FIV*(CO-CGHIGBIE)/VG+KLH	IGBIE*S*(M*CLHI	GBIE-CGHIGE	JIE)/VG
		;gasphase Higbie mod	. 0000		
CLDANKWE	INT	-KLDANKWE*S*(M*CLDANKWE-	CGDANKWE) / VL		
		:lig.phase danck mod	1.000		
CLFTLM	INT	-KLFILM*S*(M*CLFILM-CGFI	LM)/VL		
		:liquidphase Filmmod	1.000		
CLHIGHIE	INT	-KLHIGBIE*S*(M*CLHIGBIE-	CGHIGBIE)/VL		
	1992 (1993)	:lig.phase Higbi mod	1.000		
KLDANKWE	VAR	SOBTI DIFF*SUBF)			
		:mtran.coef Danmode			
KLFILM	VAR	DIFF/1E-04			
		:mtran.coef filmmode			
KLHIGBIE	VAR	2*SQRT(DIFF/(PI*TET))			
		:mtran.coef higbmode			
м	VAB	4*(106.122/28)*BHON2/(BH	ODEG)		
	A A A C C	:volum.distri.coeff	an a		
BHODEG	VAR	1.348E03-0.788*(273.15+1	40)		
1111001212		density megohase			
RHON2	VAR	28F-03*1F05/(8.3144*(223	15+140))		
111137112		density gashbase	,,,		
C;	VAR	6#VG/(DB)			
0		total bubble area			
TET	VAR	DA/(A*ETV/(E*PT*2 3*2))			
VC	VAP	E / (1 - E) * V = E + E + E + E + E + E + E + E + E + E			
V (S	VAN	ivolump of gas			
MI	VAD	10000/840050			
VL	VAN	ivelume of liquid			
DCTO COC		, vorome of ridoro			

Appendix A5.VI

Calculation of the diffusion coefficient with two estimation correlations given in Reid, Prausnitz and Poling These correlations are: 1 Tyn and Calus method 2 Nakanishi correlation For both correlations there are several parameter needed voor DEG and water these are: -3 -3 := 106.122.10 kg/mol М := 18.015.10 M deg h20 := 519.0 := 373.2 Tb K Tb K h20 deg := 681 := 647.3K K TC Tc h20 dea := 57.1 Pc := 47 bar Pc bar h20 deg 1. Tyn and Calus method Molair volume of DEG at normal boilingpoint unknown an estimation is made with 1 Schroeder method :DEG = C4 H10 O3 C=7 H = 7 O = 7 $:= 4 \cdot 7 + 10 \cdot 7 + 3 \cdot 7$ Vb = 119 cm3/mol Vb deg1 deg1 2 Le Bas method C = 14.8 H = 3.7 O = 9.9 ether O = 7.4 alcohol := 4.14.8 + 10.3.7 + 9.9 + 2.7.4= 120.9 Vb cm3/mol Vb deg2 deg2 Vb + Vb deg2 deg1 -6 $= 1.2 \cdot 10$ m3/mol --10 Vb Vb := 2 deg deq Molair volume of water at normal boilingpoint from Reid[1] table 3-9 -6 := 18.7.10 m3/mol Vb h20 Calculation of surface tension for water and MEG at Tb using Brock and Bird correlation

I

The surface tensions are
The surface tensions are

$$\sigma_{1} := Pc \qquad \frac{2}{3} \qquad \frac{1}{3} \qquad (0.132 \cdot \alpha c \qquad -0.278) \cdot \left[1 - \frac{Tb}{deg}\right]^{\frac{9}{9}} \qquad dyne/cm$$

$$\sigma_{1} := \sigma_{1} \qquad \cdot 10^{-3} \qquad \sigma_{1} = 0.026 \qquad N/m2$$

$$\sigma_{1} := Pc \qquad \frac{2}{3} \qquad \frac{1}{3} \qquad (0.132 \cdot \alpha c \qquad -0.278) \cdot \left[1 - \frac{Tb}{h20}\right]^{\frac{9}{9}} \qquad dyne/cm$$

$$\sigma_{1} := Pc \qquad \frac{2}{h20} \qquad \cdot Tc \qquad \cdot \left[0.132 \cdot \alpha c \qquad -0.278\right] \cdot \left[1 - \frac{Tb}{h20}\right]^{\frac{9}{9}} \qquad dyne/cm$$

$$\sigma_{1} := \sigma_{1} \qquad \cdot 10^{-3} \qquad \sigma_{1} = 0.022 \qquad N/m2$$
The viscosity of DEG as a function of temperature using Lewis-Squire method:

viscosity known at 373 K nk := 1.25 cp

$$-1$$

0.2661
 η_{deg} (T) := $\begin{bmatrix} -0.2661 + \frac{T - 373.15}{233} \end{bmatrix}$ cp

When water is the solute a dimer value of should be used

Vbdim := 2.Vb h20

The diffusion coefficient at a temperature of 473.15 K is

0.267 6 0.15 .10 Vb $\sigma 1$ deg -8 т deg 0.433 η deg D1(T) := 8.93·10 cm2/s (T) σ1 6 h20 Vbdim · 10

 $\begin{array}{ccc} -4 & -8 \\ D & (T) & := 10 & D1(T_{m}^{2}/s) & D & (273 + 200) & = 1.058 \cdot 10 & m2/s \\ T.C & T.C & T.C & \end{array}$

2. Nakanishi correlation

For this correlation we needed the Nakanishi values voor MEG en water when water is the solute and MEG the solvent

I := 2.8 S := 1 water is the solute h20 h20 := 2.0 S := 1 Α deg is the solvent deg deg density of water as a function of temperature from Handbook 3 $(T) := 1.211 \cdot 10 - 0.692 \cdot T$ kg/m3 ρ h20 М h20 V molaire volume of water in m3/mol (T) := h20 (T) ρ h20

Molaire volume of deg with the Rackett technique using a known density at 293K $\rho.293 = 1118 \text{ kg/m3}$

$$\phi(\mathbf{T}) := \begin{bmatrix} 1 - \frac{\mathbf{T}}{\mathbf{Tc}} \end{bmatrix}^{\frac{7}{7}} - \begin{bmatrix} 1 - \frac{293}{\mathbf{Tc}} \end{bmatrix}^{\frac{7}{7}} \quad \text{Vsr} := \frac{\text{deg}}{1118}$$

$$V_{\text{deg}} (\mathbf{T}) := V \text{sr} \cdot 0.2489$$

6 8 -8 2.40.10 ٠V (T) ·10 ·A ·S 9.97.10 deg deg deg Т D2(T) := 1 η (T) deg 6 -(T) ·10 Ι S 3 h20 h20 h20 6 I (T) ·10 h20 D (T) := 10 ·D2(T) -8 D (273.15 + 200) = 1.904 · 10 m2/sN N

The diffusion coefficient of water in DEG at a temperature of 473 K is

The two correlation estimates these diffusion coefficients at T= 473 K

1. Tyn and Calus D $(273.15 + 200) = 1.06 \cdot 10$ m2/s T.C -82. Nakanishi D $(273.15 + 200) = 1.904 \cdot 10$ m2/s

Appendix A5.VII

** Structure and parameters of present model **						
Block	Туре	Inputs/Comment	Par1	Par2	Pary	
со	CON		.0000		Incense	
		;[H20] in gasfeed				
DB	CON		2.0000E-03			
DIFF	CON		1.5000E-08			
		;diff.coeff at 140C				
E	CON		. 3000			
FIV	CON		2.7780E-04			
		;gasflow m3/s				
SPECS	CON		.5.000			
SURF	CON		. 1000			
		;surface renewalrate				
CGDANKWE	INT	FIV*(CO-CGDANKWE)/VG+KLDANK	WE*S*(M*CLDAN	NKWE-CGDANKU	JE)/VG	
1920-1920-1920	20110220	;gasphase Danckw mod	. 0000			
CGFILM	INT	FIV*(CO-CGFILM)/VG+KLFILM*S	*(M*CLFILM-CC	GFILM)/VG		
(5.45 × 1.17 × 1.5 × 1.77 × 1.7	· · · · · · ·	;gasphase Filmmodel	.0000			
CCHIGHIE	INI	FIV*(CO-CGHIGHIE)/VG+KLHIGB	IE*S*(M*CLHI(BIE-CGHIGB	IE)/VG	
OL DANIZUE	TNIT	;gasphase Higble mod	. 0000			
UL DANN.WE	T 14 1	-KLDANKWE*5*(M*CLDANKWE-CGD	ANKWEJ 7VL			
CLETIM	TNE	- PLETIMACA(MAOLETIM ODETIM)	9.752			
GLT 11.11	1141	-REFIEMASA(MAGEFIEM-CGFIEM)	/VL O DCO			
CLHTGBTE	TNT	-KINIGATE*S*(M*CINICATE_CCN	9.752 TCHTEL/VI			
	1.111	lig phase Highi mod	0 252			
KLDANKWE	VAR	SNAT(DIFE*SUBE)	3.732			
		:mtran.coef Danmode				
KLFILM	VAR	DIFF/1E-04				
		;mtran.coef filmmode				
KLHIGBIE	VAH	2*SQAT(DIFF/(PI*TET))				
		;mtran.coef higbmode				
М	VAR	40*(106.122/28)*AHON2/(AHOD)	EG)			
		;volum.distri.coeff				
RHODEG	VAR	1.348E03-0.788*(273.15+200)				
		;density megphase				
AHON2	VAA	28E-03*1E05/(8.3144*(273.15	+200))			
		;density gasphase				
5	VAR	6*VG/(DB)				
		;total bubble area				
TET	VAR	DB/(4*FIV/(E*PI*.45*2))				
VG	VAA	E/(1-E)*VL				
	1.1.0.5	;volume of gas	×			
VL	VAR	35/RHODEG				

Appendix A5.VIII

TABLE OF SIZES ... VACUUM ROTARY DRYERS

- Antice has s		TOTAL WOR		WORKING NEATING	*OVERALL DIMENSIONS			
The Dia Section		CU. FT.	CU. FT.	SQ. FT	WIDTH	LENGTH	HEIGHT	SALUCT.
2'	4'	12.2	7.3	10.6	3'	9'4"	4'	2800
2	8'	24.2	14.5	21.2	3'	15'	4'	4300
3'	7'6"	49.1	29.4	47.4	4'	16'6"	7'	7400
3'	10'	65.6	39.3	63.0	4'	19'	7'	9500
3'	15'	98.2	58.9	96.5	4'	25'	7'	13,300
3'	20'	131.2	78.6	130.0	4'	30'	7'	16,000
4'	15'	167.6	100.6	139.6	5'	26'	8'3"	20,300
4'	20'	223.4	134.0	187.0	5'	31'	8'3"	25,100
5'	15'	246.2	147.7	183.7	6'	33'	8'	27,800
5'	20/	328.2	197.0	246.0	6'	38'	8'	34,500
5'	25'	400.2	240.1	307.2	6'	43'	8'	41,000
5'	30'	492.3	295.4	369.5	6'	48'	8'	49,000
6'4"	36'	893.6	536.2	584.4	7'	50'4"	11'	85,500

*Overall dimensions include drive, to these must be added foundation and operating space around dryer.

FIG. 3 Buflovak vacuum rotary dryers features and sizes. (From Blaw-Knox Buflovak Division Catalog 365-A.)

FIG. 4 Buflovak vacuum rotary dryers. (From Blaw-Knox Buflovak Division catalog 365-A.)

Appendix A5.IX

ADIABATIC FLASH P = 75 mm Hg T_{feed} = 150°C

CHEMCAD 2 Version 2.4

Filename : FLASH3.TLK

FLOWSHEET SUMMARY

Equipment Stream Numbers

1 FLAS 1 -2 -3

Stream Connections

Stream Equipment From To 1 1 2 1 3 1

COMPONENTS 135 62 { Ethylene-Glycol water }

THERMODYNAMICS K-value model :SRK Enthalpy model :SRK Water miscible

Adiabatic flash

Flash Summary

Equipment name	
number	1
Mode	8 {adiabatic flash}
	mmHg
Parameter 1	75.0001 P _{vessel}
Parameter 2	.000000
Heat duty MJ /hr	.000000
K-values	
Ethylene-Glycol	.942510

Water 46.4204 ISOTHERMAL FLASH P = 75 mm Hg T_{feed} = 150°C , T_{vessel} =140°C CHEMCAD 2 Version 2.4

Filename : FLASH3.TLK

FLOWSHEET SUMMARY

Equipment Stream Numbers

1 FLAS 1 -2 -3

Stream Connections

Stream	Equipment				
	From	То			
1		1			
2	1				
3	1				

COMPONENTS 135 62 { Ethylene-Glycol water }

THERMODYNAMICS K-value model :SRK Enthalpy model :SRK Water miscible

Flash Summary

Equipment name		
number	1	
Mode	5 {i	sothermal flash}
	deg C	
Parameter 1	140.000	T _{vessel}
	mmHg	
Parameter 2	75.0001	P _{vessel}
Heat duty MJ /hr	730.866	
K-values		
Ethylene-Glycol	.971200	
Water	47.1568	

Appendix A5.X

ADIABATIC FLASH WITH A FIXED PRESSURE OF P = 75 mmHG variation of the input temperature

Feed contains: MEG	10000	kg/h (161.111 kmol/h)
water	10	kg/h (0.55494 kmol/h)
PU	1000	kg/h

assume P = 75 mm HG

Tfeed IC	Tend łC	Top prod V kmol/h	MEG-Wat kmol/h	Bottom p B kmol/h	MEG-Water kmol/h	removed waterfractio
151	139.51	6.9099	0.37463	154.76	0.18031	0.675082
150	120.42	6 2720	6.0099	155 20	155.1	0 655000
150	100.42	0.3739	0.36404	100.20	0.1919	0.0005555
140	100.00	E 0044	5.4908	1 55 00	156.64	0.024024
149	139.39	5.8341	0.35235	100.62	0.23011	0.634934
140	100.00	5 01 47	4.9754	150.05	156.13	0 611417
140	139.32	5.3147	0.3393	156.55	0.21564	0.011417
147	120.24	1 7021	4.4695	156 20	156.64	0.595343
147	109.24	4.7304	0.32483	100.29	0.23011	0.565545
146	130 15	4 2410	3.9636	157 4	157.15	0 555664
140	100.10	4.2413	0.30836	107.4	0.24658	0.00004
145	139.05	3 7583	3.4684	157.91	157.64	0.522363
145	.50.00	0.7000	0.28988		0.26506	

assume P = 76 mm HG

Tfeed IC	Tend IC	Top prod	ucts	Bottom p	roducts	
		kmol/h	kmol/h 6.1413	kmol/h	kmol/h 154.97	
151	139.73	6.5073	0.366	155.16	0.18894	
150	120.66	E 0749	5.6203	155 60	155.49	
150 139.60	139.00	5.9740	0.35457	155.69	0.20037	
149	139.59	5 4 4 4 5	5.1027	156.22	156.01	
140	100.00	0.1110	0.34183		0.21311	
148	139 52	4 9187	4.5911	156 75	156.52	
140	100.02	4.9107	0.32762	100.70	0.22732	
147	139 43	4 398	4.0863	157 27	157.02	
147	100.40	4.000	0.31169	.07.27	0.24325	

removed waterfractio

0.659531

0.638934

0.615977

0.59037

0.561664

assume P = 74 mm HG

Tfeed IC Tend IC		Top products		Bottom	products	removed waterfractio
		V kmol/h	MEG-Wat kmol/h	B kmol/h	MEG-Water kmol/h	
151	139.24	6.776	0.37287	154.89	0.18207	0.67191
150	139 18	6 2432	5.8812	155 12	155.23	0 650467
100	100.10	0.2402	0.36208	155.42	0.192886	0.032467
149	139 11	5 7111	5.361	155 95	155.75	0 630780
140	100.11	0.7111	0.35005	100.00	0.20489	0.030769

assume P = 50 mm HG

Tfeed IC Tend IC		Top products		Bottom	products	removed waterfractic
		V	MEG-Wat	В	MEG-Water	
		kmol/h	kmol/h	kmol/h	kmol/h	
151	132.16	10.605	10.101	151.06	150.95	0.79978
			0.44383		0.1111	
			9.6272		151.48	
150	132.13	10.066		151.59		0.790554
			0.43871		0.11623	
			9.0986		152.01	
149	132.1	9.5317		152.13		0.780607
			0.43319		0.12175	

							TOP
P mmHg	Tend oC	Top proc V kmol/h	lucts MEG-Wat kmol/h 2.9208	Bottom p B kmol/h	oroducts MEG-Water kmol/h 158.19	removed water- fraction	H2O/MEG massratio
100	144.64	3.1674	0.2466	158.5	0.30834	0.444372	0.024512
00	140 70	4 0540	3.9582	157 /1	157.15	0.522210	0.021708
90	142.72	4.2042	0.29596	157.41	0.25898	0.00019	0.021700
20	140.6	5 1 551	5.4554	156 01	155.99	0.610715	0.018036
80	140.0	5.4554	0.33891	130.21	0.21603	0.010713	0.010000
70	100 17	6 7095	6.422	15/ 97	154.69	0.67847	0 017021
70	130.17	0.7905	0.37651	104.07	0.17843	0.07047	0.017021
60	105.00	0 0100	7.9029	152.25	153.21	0 737846	0.015042
60	135.39	8.3123	0.40946	155.55	0.14548	0.737646	0.013042
50	100 10	10.000	9.6272	151 50	151.48	0 700554	0.01323
50	132.13	10.000	0.43871	151.59	0.11623	0.790004	0.01020
10	100.01	10 1 11	11.676	140 50	149.43	0 92746	0.011556
40	128.21	12.141	0.46474	149.02	0.090199	0.00740	0.011000

At a fixed temperature T = 150 \pm C and changing the pressure in the vessel

Appendix A5.XI

FLOW SUMMARIES

CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	150.000	139.420	139.420
Pres mmHg	760.001	75.0001	75.0001
Enth MJ /hr	-4212.07	265.651	-4478.98
Vapor mole fraction	.000000	.997437	.000000
Total kgmol/hr	161.664	6.10565	155.556
Flowrates in kgmol/h	r		
Ethylene-Glycol	161.109	5.74736	155.359
Water	.554936	.358288	.196649

FLOW SUMMARIES

Stream No.	1	2	3		
Temp C	150.000	139.420	139.420		
Pres mmHg	760.001	75.0001	75.0001		
Enth MJ /hr	-4212.07	265.651	-4478.98		
Vapor mass fraction	.000000 .997328		.000000		
Total kg/hr	10009.7	363.184	9646.37		
Flowrates in kg/hr					
Ethylene-Glycol	9999.71	356.727	9642.82		
Water	9.99995	6.45634	3.54361		

Appendix A5.XII

FLOW SUMMARIES

÷ 3

CHEMCAD 2 - Version 2.4

Stream No.	1	2	3	
Temp C	150.000	140.000	140.000	
Pres mmHg	760.001	75.0001	75.0001	
Enth MJ /hr	-4212.07	699.198	-4180.52	
Vapor mole fraction	.000000	.999922	.000000	
Total kgmol/hr	161.664	15.7748	145.890	
Flowrates in kgmol/h	r			
Ethylene-Glycol	161.109	15.3109	145.799	
Water	.554936	.463947	.909884E-01	

FLOW SUMMARIES

Stream No.	1	2	3 140.000		
Temp C	150.000	140.000			
Pres mmHg	760.001 75.00		75.0001		
Enth MJ /hr	-4212.07	699.198	-4180.52		
Vapor mass fraction	.000000	.989553	.000000		
Total kg/hr	10009.7	958.677	9051.10		
Flowrates in kg/hr					
Ethylene-Glycol	9999.71	950.317	9049.46		
Water	9.99995	8.36032	1.63961		

Appendix A5.XIII

For the design of the flashvessel we used results from CHEMCAD

When the Feedtemperature is 150 o C and the vesselpressure is 75 mmHg (0.1 bar) The Top en bottomproducs are:

BOTTOM TOP := 139.24 т := 139.24 oC т oC b v V := 6.3739 B := 155.29 Kmol/h Kmol/h Kmol/h Kmol/h MEG := 155.1 := 6.0099 MEG b H20 := 0.1909 Kmol/h H20 := 0.32483 Kmol/h b v MH2O := 18 kg/kmol PU := 990 kg/h Mmeg := 62kg/kmol Total massflow of the gasphase en the liquidflow is Mliq := MEG ·Mmeg + H2O ·MH2O + PU Mgas := MEG · Mmeg + H2O · MH2O b b 4 $Mliq = 1.061 \cdot 10$ kq/h 2 kg/hMgas = 3.785.10 Mliq Mgas Ml := -Mg := -3600 3600 kg/s Ml = 2.947kg/s Mq = 0.105At a temperature of 139 oC and a pressurre of 75 mmHg the densities are Assumed that the gas contains alone MEG := 0.238 Kg/m3 := 1024.49 kg/m3 ρ ρ liq gas The design equtions for the vertical flash vessel are taken from CHEMICAL ENGINEERING VOLUME 6 page 364-365 The design gas velocity Uv liq = 2.296m/s := 0.035 U U v V Vapour volumetric flow- rate Mg = 0.442m3/s ¢ := v ρ gas 4.0 D = 0.495m vessel Diameter D := $\pi \cdot U$

Liquid volumetric flow rate

$$\phi l := \frac{Ml}{\rho} \qquad \phi l = 2.877 \cdot 10^{-3} m3/s$$

Assume there is a liquid holdup of 600 s (10 minutes)

liquid height 600 $:= \phi 1 \cdot \frac{\pi}{\pi} \frac{2}{- \cdot D}$ H н = 8.973 m liq liq The Feed liquid level distance is usely H := 0.4 m f The Height needed for the gas is := 1.5·D H = 0.742 with a minimum of 1 m H gas gas Total height of the vessel Htot := H + H gas liq Htot = 9.715 m Htot Par = 19.631Par := ---D For a good design the design parameter 3 < Par< 5 To improve this design we take Par = 5 so Htot/D = 5 H := 5 Dnew := 1 Hl := 1 guess values needed to solve the equations Given H Dnew ≈ -3 we take Hgas= 1.3 * Diameter H ≈ 1.3 Dnew + Hl 600 Hl ≈ ¢l·π 2 - · Dnew 4 1.089 Dnew Dnew 3.268 H = := Find(Dnew, H, H1) H 1.852 Hl Hl ø v Ugas = 0.474 m/s Ugas := π 2 Hgas := H - Hl Hgas = 1.416 - · Dnew 4

Appendix A5.XIV

The design of the horizontal flash vessel. There are no real design parameters for a horizontal flash vessel. A approximation is here given -3 $\phi l = 2.877 \cdot 10$ = 0.442m3/s m3/sø v again we assume a holdup of 10 minutes Volume of the liquid in the vessel is V = 1.726 $V := \phi 1.600$ m3 liq liq Assume Height of the liquid is H1=0.75*D H(Dves) := 0.25 Dves with dves is diameter of the vessel the cross area of the gas stream is 0.5 2 2 π 2 Dves 2 2·H (Dves) Dves A (Dves) := -.Dves - H(Dves) - H(Dves) -----asin 8 Dves q 2 π A (Dves) := - Dves - A (Dves)lig q For a good design is the ratio L/Dves = 5 $L(Dves) := 5 \cdot Dves$ with L is length of the vessel Vliq1(Dves) := A (Dves) ·L(Dves) liq Dves := 1 a guess needed to solve the next equation Dves := root Vliq1(Dves) - V , Dves Dves = 0.817liq The dimension of the horizontal flash vessel are Dves = 0.817L(Dves) = 4.087m m For the gas remains a volume of 2 π v = 0.419:= - · Dves · L (Dves) - V v liq gas gas 2 π Vves := -. Dves .L (Dves) Vves = 2.1454 V = 1.726 liq

Appendix A5.XV

Calculation of the critical pressure to cause buckling Pc Using the Brownell and Young correlation given in Coulson[17] assuming : wall thickniss t is of the carbon steel vessel -3 t := 15.10m 11 Young modulus of carbon steel at 150 C is E := 1.10 N/m2The assumed safty factor is 6 for external pressure vessels S := 6 Vertical vessel D := 1.09m H := 3.3 m Н Par1 := --- Par1 = 3.028 D DV parameters needed for the graph of Collaps coefficient given here below Par2 = 72.667v Par2 := -t := 7 Kc vertical Kc $\frac{\text{vertical}}{S} \cdot E \cdot \begin{bmatrix} t \\ t \\ D \end{bmatrix}$:= -Pc $= 3.04 \cdot 10$ N/m2Pc vertical vertical v With a safety factor of 6 is this critical pressure well above the design pessure of 5 := 1.10 P design Horizontal vessel assume it is supported bij two ring with eff. length of L=3 := 0.8 m L := 2.5 D m eff h L eff Par3 = 3.125Par3 := D h Kc := 6 D horizontal Par4 = 53.333h Par4 := -t Kc [t] D horizontal ·E· Pc $= 6.592 \cdot 10$ S Pc horizontal N/m2horizontal

Also above the design pressure so a wall thickness of 15 mm is sufficient

Packing type	Nominal size, mm	Wall thickness,	Outside diameter and length, mm	Approximate no. elements per m ³	Approximate weight per m ³ , kg	Approximate surface area, m ¹ /m ³	Percent void space	Packing factor Fp m ⁻¹
Berl saddles, ceramic	6 13 25 38 50	24) 4 9		3.78 × 10 ⁴ 590,000 77,000 22,800 8,800	900 865 720 640 625	900 465 250 150 105	60 62 68 71 72	2950 790 360 215 150
Intalua saddles, ceramic	6 13 25 38 50 75	-114-1 	œ	$\begin{array}{c} 4.15 \times 10^{6} \\ 730,000 \\ 84,000 \\ 25,000 \\ 9,400 \\ 1,870 \end{array}$	865 720 705 670 760 590	984 625 255 195 118 92	75 78 77 80 79 80	2380 660 320 170 130 70
Intalox saddles, metal	(No. 25) (No. 40) (No. 50) (No. 70)		-	168,400 50,100 14,700 4,630	8	i den	97 97 98 98	135 82 52 43
Intalos saddles, plastic (polypropylene)	25 50 75			55,800 7,760 1,520	76 64 60	206 108 88	91 93 94	105 69 50
Pall rings, metal	16 25 38 50 90	26 gauge 24 22 20	16 25 38 50 90	49,600 13,000 6,040 1,170	480 415 385 270	205 130 115 92	92 94 95 96 97	230 157 92 66 53
Pall rings, plastic (polypropylene)	16 25 38 50 90	6 (4) 8 (1000)	16 25 38 50 90	214,000 50,100 13,600 6,360 1,170	116 88 76 72 68	340 205 130 100 85	87 90 91 92 92	310 170 105 82 52
Baschig rings, ceramic	6 13 19 25 38 50 75 100	1.6 2.4 3.2 6.4 6.4 9.5 9.5	6 13 19 25 38 50 75 100	3.02 × 10 ⁴ 378,000 109,000 47,700 13,500 5,800 1,700 1,700 700	960 880 670 740 660 590 580	710 370 240 190 120 92 62 46	62 64 72 74 68 74 75 80	5250 2000 840 510 310 215 120
Raschig rings, steel	19 25 38 50 75	1.6 1.6 1.6 1.6 1.6	19 25 38 50 75	111,000 46,300 14,100 5,900 1,800	1500 1140 785 590 400	245 185 130 95 66	80 86 90 92 95	730 450 270 187 105
Hy-Pac, steel	(No. 1) (No. 2)		30 60	30,000 3,780	300 225	177 95	96 97	141 59
Levapackingt	(No. 1) (No. 2)	11111 11111	20 100	34,000 10,500	270 210	164 118		
Low-density polyethylene Tellerettes	1			39,700	160	250	83	

1

Figure A5.XXVI.1

÷

Appendix A5.XVI

Packing Calculations

Strippers.

In 5.5.5.5 the calculation of a tray column is given in this appendix the calculations of random and structured packing column are given.

Random Packing column.

A packing with a nominal length of 25 mm gives the smallest HETP and therefor the smallest column. Raschig Rings can be used here.

The calculations for a random packing column are in the next tables:

Packing factor: $F_{\tau p}$ (see Fig.A5.XVI.1)	510
Pressure drop: ΔP (mBar)	300
Flow factor: F _{lg}	1.12
Capacity factor: $C_{\tau p}$ (see Figure A5.XVI.2)	0.24
Operating mass velocity of vapour: $m_{g} = \sqrt{\frac{C_{\gamma p} \rho_{g} (\rho_{1} - \rho_{g})}{13 F_{\gamma p} (\frac{\mu_{1}}{\rho_{1}})^{0.1}}}$	$\sqrt{\frac{0.24*0.82*(1100-0.82)}{13*510*(\frac{1.06}{1100})^{0.1}}}$
<u>Diameter:</u> $d=1.1284\sqrt{\frac{M_g}{m_g}}$	$1.1284\sqrt{\frac{44.4}{3600*0.26}}=0.25$

HETP	0.5	
$H_p = N_{theoretisch} * HETP$	0.5 * 43=21.5	
$H_{column} = H_{p} + 3.5$	25	

So a random packing column will be 25 meters high with a diameter of 0.25 meter.

Structured packing column.

The calculations for a structured packing column are in the next tables:

Flow factor:	0.12	
Capacity factor: C _{sp} (see Figure A5.XVI.3)	0.01	
Flooding velocity: $u_{g, \max} = C_{sp} \sqrt{\frac{\rho_1 - \rho_g}{\rho_g}}$	$0.01\sqrt{\frac{1100-0.82}{0.82}} = 0.37$	
F-factor: 0.8 $u_{g, \max} \sqrt{\rho_g}$	0.8*0.37\sqrt{0.82}=0.27	
<u>Diameter</u> : $d=1.1284\sqrt{\frac{M_g}{F(\rho_g)^{0.5}}}$	$1.1284\sqrt{\frac{44.4}{3600*0.27(0.82)^{0.5}}}$	=0.23

HETP	0.33	
$H_p = N_{theoretical}^* HETP$	43 * 0.33=14.3	
$H_{column} = H_{p} + 3.7$	18	

So a structured packing column will be 18 meters high with a diameter of 0.23 meter.

Appendix A5.XVII

Cost Calculations

Costs of an apparat can be found in Webci[19] but not ever apparatus used in the plant is given in this book therefore cost calculations for these apparatus are given below:

Costs of the storage tanks.

For cost calculations of storage tanks the following formula is used:

 $C_{st}=C_{sto} * F_{m} * (I/336.2)$

In which: C_{sto} =exp (7.483 + 0.6255 ln V_{tank}) F_m =material vessel=1 (carbon steel) V_{tank} =tank volume I=Chemical Engineering Plant Cost Index=

$$I = \frac{I_{equipment} + I_{tanks}}{2} = \frac{396.8 + 367.5}{2} = 382.2$$

Calculations for each storage tank follow below:

-Crude MEG and MEG tank:

 $C_{sto} = exp (7.483 + 0.6255 \ln 37.5) = 17,200$ $C_{st} = 17,200 * 1 * (382.2/336.2) = 19,500 US$ \$

So these 2 tanks together cost about Hfl.70,000.

-MEG with KAc tank:

For this tank the above mentioned formulas are not valid because it's volume is to small.

For this tank a assumed price is Hfl.2,000.

-Storage tank before the reactor:

 $C_{sto}=exp (7.483 + 0.6255 \ln 25)=13,300$ $C_{st}=13,300 * 1 * (382.2/336.2)=15,100$ US\$

So this tank costs about Hfl.27,800.

All together these 4 storage tanks cost about Hfl.110,000.

Costs of the mixer unit.

For the mixer unit as mentioned in chapter 1 the following equipment is needed: -Silverson's in line high shear mixer L700 -tank of 12.5 m³ inclusive mixer -about 5 m pipping

The cost calculation of the equipment follows below:

-High shear mixer L700 costs:Hfl.45,000

-Tank of 12.5 m³ inclusive mixer:<u>Hfl.56,000</u>

-5 meter pipping with a diameter of 100 mm: about Hlf.150

So the total mixer unit will cost Hfl.101,000.

Costs of the heat exchanger.

For cost calculations of a heat exchanger the following formula is used:

 $C_{he} = C_{heo} * F_{p} * F_{t} * (I/336.2)$

In which: C_{heo}=exp (a + b ln A) a=7.085 (carbon steel) b=0.656 (carbon steel) A=heat transfer area=10 F_p=pressure factor=1.1 (10 bar < pressure < 20 bar) F_t=heat exchanger type factor=0.8 I=Chemical Engineering Plant Cost Index=367.5

Filling in these formulas yields:

 $C_{heo} = exp (7.085 + 0.656 ln 10) = 5408$ $C_{ha} = 5408 * 1.1 * 0.8 * (367.5/336.2) = 5200 US$$

So the heat exchanger costs about Hfl.9,600.

Costs of the flash vessel.

For cost calculations for a flash vessel the cost calculations of a pressure vessel is used.

For a pressure vessel the following formula is used:

 $C_{pv}=C_{pvo} * F_m * F_p * (I/336.2)$

In which: $C_{pvo} = (a + b * L) * d^{1.1}$ a=1500 b=1100L=hight of vessel=3.5 meter D=diameter of vessel=1.2 meter F_m =material factor=1 (carbon steel) F_p =pressure factor=1.1 (0.1 bar under pressure) I=Chemical Engineering Plant Cost Index=

$$I = \frac{I_{equipment} + I_{tanks}}{2} = \frac{.396.8 + 367.5}{2} = 382.2$$

Filling in these formulas yields:

$$C_{pvo} = (1500 + 1100 * 3.5) * 1.2^{1.1} = 6538$$

 $C_{nv} = 6538 * 1 * 1.1 * (382.2/336.2) = 8175$ US\$

So the flash vessel costs about Hfl.15,000.

Costs of the stripper.

For cost calculations of a stripper the following formula is used:

 $C_{co} = C_{pv} + C_{int}$

In which: $C_{pv}=C_{pvo} * F_m * F_p * (I_{pv}/336.2)$ $C_{pvo}= (a + b * H) * D^{1.1}$ $C_{int}=cost of column internals$ a=1294 b=1141H=hight of column D=diameter of column $F_m=material factor=1 (carbon steel)$ $F_p=pressure factor=1 (1.0 bar)$ $I_{pv}=Chemical Engineering Plant Cost Index=382.2$

Filling in these formulas for the Tray column yields:

 $C_{pvo}=(1294 + 1141 * 8.5) * 0.22^{1.1}=2080$ $C_{pv}=2080 * 1 * 1 * (382.2/336.2)=2360$ US\$

For a Tray column the next formula for C_{int} is used:

$$C_{int}=N_{tr} * C_{tr} * F_{m} * F_{nt} * F_{tt} * (I_{int}/336.2)$$

In which: $C_{tr} = 58.7 + 88.4 * D + 52.9 * D^2$ N_{tr}=number of trays=43 F_{nt}=number of trays factor=1 F_{tt}=tray type factor=1 I_{int}=Chemical Engineering Plant Cost Index=355.7

 C_{tr} =58.7 + 88.4 * 0.22 +52.9 * 0.22²=81 C_{int} =43 * 81 * 1 * 1 * 1 * 1 * (355.7/336.2)=3685 US\$

And finally : C_{co}=2360 + 3685=6000 US\$

So the Tray column costs about Hfl.11,000.

Similar calculations gave the costs of Random and structured Packing column: Random Packing column : Hfl.25,000 Structured Packing column: Hfl.22,800

Appendix A5.XVIII

PU Drying Behaviour

To be able to set up models to describe drying behaviour of PU foam one first has to know how PU foam behaves. Unfortunately hardly any information on PU is available in the literature. The following assumptions have to be made:

- PU is non hygroscopic
- PU does not shrink during drying
- As can be seen in Figure A5.XVIII.1 roughly drying takes place in two phases. First the constant drying rate period. In this period the surface of the PU is totally wet. Every time a molecule of moisture evaporates at the surface it is replaced from within by another molecule. At a certain moment dry spots occur at the surface and the drying rate starts to decrease. It now depends on the speed of diffusion how fast the moisture is removed and evaporsted from the body. This is the falling rate period. Since the initial moisture content of the PU is very low (x = 0.01) drying take splace in the falling rate period.
- To describe the transfer of moisture from PU to gas the Fick's second law of diffusion is used.

Determination of Diffusivity Coefficient D:

No data are available on the diffusivity of PU foam. Since data are available on the diffusivity of plastics the D of PU is derived from these data.

$$D^{CO_2} = 2 \cdot 5 \times 10^{-7} e^{\left(-\frac{4378}{T}\right)}$$
$$D^{H_2O} \approx 10 \times D^{CO_2}$$
$$D_{eff} = \frac{D_{H_2O} \rho_{plastic}}{\rho_{foam}} \times \frac{E_{geo}}{geo}$$

The geometry factor E_{geo} for closed foam is approximately 50. Assumed is that for open foam structures the geometry factor is 100.

To be able to use Fick's second law of diffusion Zuiderweg[10]:

 $N_a = K_g (C - C_g)$

the mass transfer coefficient k_g has to be determined.

For a gas flow through a stack of spheres Zuiderweg[10] gives the following equation:

 $Sh = 1 . 25 Re^{0.59} Sc^{\frac{1}{3}}$

From this equation k_g can be determined:

Sherwood number: $Sh = \frac{k_{\perp} d_{p}}{D}$

Reynolds number: $Re = \frac{\rho u d_p}{\eta}$

Schmidt number: $SC = \frac{\eta}{\rho D}$

$$k_{g} = \frac{D}{d_{c}} (1 \cdot 25 Re^{-0 \cdot 59} Sc^{-\frac{1}{3}})$$

The amount of moisture contained by one sphere has to be estimated:

The initial moisture content of the PU: $X_0 = 0.01 \%$ The volume of 1000 kg PU foam : $V = 20.0 \text{ m}^3$ The volume of 1000 kg cut PU foam : $V = 33.3 \text{ m}^3$ 1 m^3 of cut PU foam contains 0.30 kg H₂0. Assumed is that 1 m³ of PU theoretically contains 1.0 x 10e6 spheres with a 10 mm diameter: 1 sphere contains 3.0 x 10-7 kg H₂O.

Appendix A5.XIX

Program Moving Bed Dryer

{ start of TRKUSER.PAS } { use with version 5.01 or 5.02 }

{\$N+} { Change N+ into N- if you do NOT use double precision reals }

program TRKUser(input,output);

uses

{\$IFOPT N+} RKMath, TRKMath, {\$ELSE} RKNorm, TRKNorm, {\$ENDIF} crt; { add any other unit you want to use here }

const

Comp = 2; Tanks = 10; AbsErr = 1e-8; RelErr = 1e-6; Spc = ' ';

type

ConcVector = array[1..Comp] of RKFloat;

{------} { Above array MUST start with element 1 and end with Comp }

{-----}

ConcArray = array[0..Tanks] of ConcVector;

{------}

{ Above array MUST start with element 0 and end with Tanks }

{------}

var

TimeStart, TimeEnd : RKFloat; TimeFinal, TimeDelta : RKFloat; CStart, CEnd : ConcArray; ErrCAbs, ErrCRel : ConcVector;

BEDROGRER : TRKProblem; {\$F+} { This directive is a MUST for next procedure! }

procedure DerivatesTank(var CTankBef,CTank,dCdTime; TankNumb : integer);

{\$F-} { After the heading this directive is not needed anymore }

var

CBef : ConcVector absolute CTankBef; C : ConcVector absolute CTank; dCdt : ConcVector absolute dCdTime;

}

const

rho = 1100;fi = 400/3600;{ m3/s gas debiet } D = 0.017;{ deeljes diameter} Avat = 5 ; { vatdwarsoppervlak } Temp = 333; {K gas temperatuur} Av =500; {totale grensvlak oppervlak} k3 = 0.05681818; $\{((1-e)*(1-emf)*Rho)^{-1}\}$ Tau = 50/(fi*Tanks);{s verblijiftijd in een tank} var ProdRate1, ProdRate2 : RKFloat; rhogas,v,Diff, Pvap, Re,Sc,kg, k1, k2,n : Real ; begin n := (1.66 + 4.8e - 03*(Temp - 273.15))*1e - 05;rhogas:=28*1e-3*1e05/(8.3144*Temp); v:=fi/(Avat); Diff:= 5.5e-03*exp(-4378/Temp); { open cellen } Pvap:=exp(25.369-5152/Temp); re:= rhogas*v*D/n; Sc:=n/(rhogas*Diff);

```
kg:=(Diff/D)*(1.25*exp(0.59*ln(re))+exp(0.33*ln(Sc)));
   k1:= kg*Av;
   k2:=18*e-03*Pvap/(8.3144*Temp);
  ProdRate1 := +k1*(k2*C[1]-C[2]); { water in PU}
  ProdRate2 := ProdRate1 ; {water in gas}
  dCdt[1] := -k3*ProdRate1; {mbal water in pu}
  dCdt[2] := (CBef[2]-C[2])/(0.6*Tau)+ProdRate2/(0.6); {mbal water in gas}
 end;
var
 Ti, Cj : integer;
 FileName : string;
 OutFile : text;
 Ready : boolean;
begin
                                       { main block }
 for C_j := 1 to Comp do begin
  ErrCAbs[Cj] := AbsErr;
  ErrCRel[Cj] := RelErr;
 end;
 TRKSetUpProblem(Comp, Tanks, DerivatesTank,
             ErrCAbs, ErrCRel, Robinson);
 TimeStart := 0.0;
 CStart[0,1] := 0.01; CStart[0,2] := 0.0;
 for Ti := 1 to Tanks do CStart[Ti,1] := 0.01;
 for Ti := 1 to Tanks do for Cj := 2 to Comp do CStart[Ti,Cj] := 0.0;
 TimeFinal := 1800; TimeDelta := 60; Ready := false;
 {------}
 { The file created here can be used as input for RRGRAPH. }
 { If you only need output to the console delete all lines }
 { starting with >>>
                                               }
 {------}
 {>>>} writeln('Hit RETURN for screen output only,'+
            ' use file name PRN for output to printer!');
 {>>>}
 {>>>} write ('File name for output to disk: ');
 {>>>} readln(FileName);
 {>>>} if FileName = '' then FileName := 'NUL';
 {>>>} assign(OutFile, FileName);
 {>>>} rewrite(OutFile);
 {>>>} writeln(OutFile,'Time':17,Spc,'C1':17,Spc,
           'C2':17);
  clrscr;
  repeat
```

```
TimeEnd := TimeStart + TimeDelta;
TRKFromToUsing(TimeStart, CStart, TimeEnd, CEnd, Robinson);
writeln('Time : ', TimeEnd);
writeln('C ', Tanks:2, ', 1 : ', CEnd[Tanks,1]);
writeln('C ', Tanks:2, ', 2 : ', CEnd[Tanks,2]);
writeln;
RKWriteSteps(output, Robinson);
```

{>>>} { In next output values are separated by a space because }
{>>>} { TURBO PASCAL has the nasty habit to concatenate values }
{>>>} { if the last one of the two has a negative sign! }
{>>>} { e.g. 1.34E-0003-2.45E-0003 }
{>>>} { This causes programs like RRGRAPH to generate an error!}
{>>>} writeln(OutFile,TimeEnd:17,Spc,CEnd[Tanks,1]:17,Spc,
{>>>} CEnd[Tanks,2]:17); {,Spc,CEnd[Tanks,3]:17);}

```
if abs(TimeFinal-TimeEnd)<0.5*abs(TimeDelta) then begin
Ready := true;
end else begin
CStart := CEnd;
TimeStart := TimeEnd;
end;
until Ready or keypressed;
```

```
{>>>} RKWriteSteps(OutFile, Robinson);
{>>>} close(OutFile);
repeat until keypressed
end.
{ end of TRKUSER.PAS }
```

Appendix A5.XX

{ start of TRKUSE2.PAS } { use with version 5.01 or 5.02 }

{\$N+} { Change N+ into N- if you do NOT use double precision reals }

program TRKUser(input,output);

uses

{\$IFOPT N+} RKMath, TRKMath, {\$ELSE} RKNorm, TRKNorm, {\$ENDIF} crt; { add any other unit you want to use here }

const

Comp = 2; Tanks = 10; AbsErr = 1e-8; RelErr = 1e-6; Spc = ' ';

type

ConcVector = array[1..Comp] of RKFloat;

{------}

{ Above array MUST start with element 1 and end with Comp } {-------}

ConcArray = array[0..Tanks] of ConcVector;

{------} { Above array MUST start with element 0 and end with Tanks } {-------}

var

TimeStart, TimeEnd : RKFloat; TimeFinal, TimeDelta : RKFloat; CStart, CEnd : ConcArray; ErrCAbs, ErrCRel : ConcVector; Robinson : TRKProblem;

{\$F+} { This directive is a MUST for next procedure! }

procedure DerivatesTank(var CTankBef,CTank,dCdTime;

TankNumb : integer);

{\$F-} { After the heading this directive is not needed anymore }

var

CBef : ConcVector absolute CTankBef; C : ConcVector absolute CTank; dCdt : ConcVector absolute dCdTime;

{------} { Specify all 1..Comp differential equations in tank { numbered TankNumb, using: } { dCdt[i] := a function of (CBef[i], C[k], ...);} { where $1 \le (i, j \text{ and } k) \le Comp$ } { and C [1..Comp] concentrations in tank TankNumb CBef[1..Comp] concentrations in tank (TankNumb-1) } dCdt[1..Comp] derivatives in tank TankNumb } { N.B. TankNumb (value 1.. Tanks) only added to enable } intermediate output of results. { ATTENTION: DO NOT CHANGE CBef OR C! {------}

}

const

```
rho = 1100;
   fi = 250/3600;
                         { m3/s gas debiet }
                  { deeljes diameter}
{ vatdwarsoppervlak}
   D = 0.017;
 Avat = 5 ;
 Temp = 333 ; {K gas temperatuur}
Av =500; {totale grensvlak oppervlak}
 k3 = 0.05681818; {((1-e)*(1-emf)*Rho)^-1}
 Tau = 32.129/(fi*Tanks);
                               {(Vreac/fi)/tanks s}
var
 ProdRate1, ProdRate2 : RKFloat;
 rhogas, v, Diff, Pvap, Re, Sc, kg, k1, k2, n : Real ;
begin
  n := (1.66 + 4.8e - 03*(Temp - 273.15))*1e - 05;
  rhogas:=28*1e-3*1e05/(8.3144*Temp);
  v:=fi/(Avat);
  Diff:= 5.5e-03*exp(-4378/Temp); { open cel}
  Pvap:=exp(25.369-5152/Temp);
  re:= rhogas*v*D/n ;
  Sc:=n/(rhogas*Diff);
  kg:=(Diff/D)*(1.25*exp(0.59*ln(re))+exp(0.33*ln(Sc)));
  k1:= kg^*Av;
  k2:=18*e-3*Pvap/(8.3144*Temp);
```

```
ProdRate1 := +k1*(k2*C[1]-C[2]); { water in PU}
  ProdRate2 := ProdRate1 :
                                    {water in gas}
   dCdt[1] := -k3*ProdRate1;
                                    {mbal water in pu}
   dCdt[2] := (CBef[2]-C[2])/(0.6*Tau)+ProdRate2/(0.6); {mbal water in gas}
 end:
var
 Ti, Cj : integer;
 FileName : string;
 OutFile : text;
 Ready : boolean:
begin
                                     { main block }
 for C_j := 1 to Comp do begin
  ErrCAbs[Cj] := AbsErr;
  ErrCRel[Cj] := RelErr;
 end:
 TRKSetUpProblem(Comp, Tanks, DerivatesTank,
             ErrCAbs, ErrCRel, Robinson);
 TimeStart := 0.0;
 CStart[0,1] := 0.01; CStart[0,2] := 0.0;
 for Ti := 1 to Tanks do CStart[Ti,1] := 0.01;
 for Ti := 1 to Tanks do for Cj := 2 to Comp do CStart[Ti,Cj] := 0.0;
 TimeFinal := 1800; TimeDelta := 60; Ready := false;
 {------}
 { The file created here can be used as input for RRGRAPH. }
 { If you only need output to the console delete all lines }
 { starting with >>>
                                               }
 {------}
 {>>>} writeln('Hit RETURN for screen output only,'+
 {>>>} ' use file name PRN for output to printer!');
 {>>>} write ('File name for output to disk: ');
 {>>>} readln(FileName);
 {>>>} if FileName = '' then FileName := 'NUL';
 {>>>} assign(OutFile, FileName);
 {>>>} rewrite(OutFile);
 {>>>} writeln(OutFile,'Time':17,Spc,'C1':17,Spc,
           'C2':17);
  clrscr;
  repeat
  TimeEnd := TimeStart + TimeDelta;
  TRKFromToUsing(TimeStart, CStart, TimeEnd, CEnd, Robinson);
  writeln('Time : ', TimeEnd);
  writeln('C', Tanks:2, ', 1: ', CEnd[Tanks,1]);
```

```
writeln('C', Tanks:2, ', 2: ', CEnd[Tanks,2]); writeln;
```

RKWriteSteps(output, Robinson);

```
{>>>} { In next output values are separated by a space because }
   {>>>} { TURBO PASCAL has the nasty habit to concatenate values }
   {>>>} { if the last one of the two has a negative sign!
                                                             }
   {>>>} { e.g. 1.34E-0003-2.45E-0003
                                                             }
   {>>>} { This causes programs like RRGRAPH to generate an error!}
   {>>>} writeln(OutFile,TimeEnd:17,Spc,CEnd[Tanks,1]:17,Spc,
   {>>>}
                   CEnd[Tanks,2]:17); {,Spc,CEnd[Tanks,3]:17);}
   if abs(TimeFinal-TimeEnd)<0.5*abs(TimeDelta) then begin
    Ready := true;
   end else begin
    CStart
            := CEnd:
    TimeStart := TimeEnd;
   end;
 until Ready or keypressed;
 {>>>} RKWriteSteps(OutFile, Robinson);
 {>>>} close(OutFile);
 repeat until keypressed
end.
```

{ end of TRKUSER.PAS }

Appendix A5.XXI

Conveyor Dryer

Before a model of the drying behaviour of the conveyor dryer can be derived a few assumptions have to be made:

- The moisture content of the drying agent is constant; $c_g = c$. Because the PU is constantly fed with fresh gas and the height of the PU bed (H_{bed}) is limited this assumption does not influence the outcome to a great extent.
- The PU throughput (PU flow) is constant; $\phi_m = c$.
- The mixture PU/H_2O behaves according to Raoult's Law; $yP = xP_{vap}$
- H_{20} (g) behaves like an ideal gas; PV = RT.
- The PU mass flow is constant: 1000 kg/h = 0.278 kg/s.
- Gas flow should not exceed 0.30 m/s to avoid excessive whirling of the PU in the dryer.
- Width of the bed is the maximum width that is available on standard conveyor dryers. Other widths are 1.50 and 2.0 m.

Mass balance over volume:

IN = OUT - TRANSFER

$$\phi_m x_{1+\delta_1} = \phi_m x_1 - 1$$
. 0 x10 $^{-3} m_{wat} k_g (c_{H_2O} - c_g) A$

No PU is in gas phase: $y_{PU} = 0$; $y_{H2O} = 1$ Combination of Raoult's law and the ideal gas law yields:

$$C_{H_2O} = \frac{xP_{vap}}{RT}$$

$$\phi_m \frac{\delta x}{\delta l} = -1 \cdot 0 \times 10 \quad {}^{-3}m_{wat} \quad k_g \left(\frac{xP_{vap}}{RT} - e_g\right) A_{spec}$$

$$\frac{\delta l}{\delta x} = -\frac{\phi_m RT}{1 \cdot 0 \times 10 \quad {}^{-3}m_{wat} \quad k_g \left(xP_{vap} - e_g RT\right) A_{spec}$$

$$L_{bed} = \int_{x_0}^{x_0} \frac{-\phi_m RT}{1 \cdot 0 \times 10 \quad {}^{-3}m_{wat} \quad k_g A_{spec} \quad H_{bed} \quad W_{bed} \quad (xP_{ve})$$

To determine D and kg the following Sherwood relationship is used Zuiderweg[10]:

$$Sh = 1.25 Re^{0.59} Sc^{\frac{1}{3}}$$

This relationship is applicable for stacks of spheres with a critical diameter of 1.77do. Therefore dPU = 0.017 m.

To meet the specifications (x0= 0.01 to x= =0.001) 9.0 kg/h H20 has to be removed from the PU. Once the length of the bed is known, together with gas velocity and bed width the gas flow and moisture concentration can be calculated. Since bed length also depends on moisture content of the gas this is an iterative process. In all calculations is assumed that the moisture content of the gas is constant over the control volume. Therefore this is a worst case analysis.

4.

GAS DATA Drying agent: N2 gas (K) Gas temperature: Temp := 333.15 (m/s)Gas velocity: Vgas := 0.25 5 Pgas := 1.0.10 (N/m2)Gas pressure: (kg/kmol) Mgas := 28.0 Gas weight: Rgas := 8.3144 (kJ/kmolK) (J/molK) Gas constant: Mgas · Pgas rhogas := -(kg/m3)Gas density: 3 Rgas 1.0 10 Temp rhogas = 1.01085136- 5 ·1.0·10 1.66 + 4.8·10 (Temp - 273.15) Gas viscosity: etha := -5 etha = 1.948.10WATER DATA 5152 Pvap := exp 25.369 (N/m2)Vapour pressure: Temp Pvap = 2.00201495.10 x0 := 0.01 (kg h20/kg PU) Moisture content PU: xe := 0.001 Mwat := 18 (kg/kmol) Water weight: PU DATA phi := 0.278 (kg/sec) PU throughput: Aspec := 500 (m2/m3)Specific PU area: -3 -4378 exp Diff. coeff. PU: Diff := 5.5 10 Temp -8 $Diff = 1.07944377 \cdot 10$

Option 1 flashdrying

storage crude	36000
meg	18000
kac	18000
cutter 1	150000
cutter 2	250000
storage dry PU	27800
screw	13000
mixingvessel	56000
in line mixer	45000
weightunit	19000
pre reactor storage	27800
heat exchanger	9600
flash vessel	13500
condensor	10000
MEG stripper	11000
vacuum pomp	5000
gasdryer	40000
5 pumps	7000
total investment coast	756700

Option 2 cryogenic grounding

1

t

meg

kac

cryogenic grounder

pre reactor storage

N2 gas cooling installation

heat exchanger

expansion vessel

mixingvessel

in line mixer

weightunit

storage crude

cutter 1

screw

Option 3 convey dryer

storage crude 36000 meg 18000 kac 18000 150000 cutter 1 250000 cutter 2 2500000 covey dryer 13000 screw 56000 mixingvessel in line mixer 45000 19000 weightunit 27800 pre reactor storage heat exchanger 10000 65000 gas dryer 4 pump 5400

total investment coast

1228400

36000

18000

18000

150000

307800

27800

13000

56000

45000

19000

27800

10000

500000

total investment coast

3213200

Appendix A5.XXIII

List of companies

The next list provids the adresses of companies mentioned and/or recamended in preceding chapters.

Agglorex:	Industriepark - Kerkhoven
	B-3900 Lommel (Belgium)
	Tel: (011) 54 25 32
	Fax: (011) 54 57 92
	Telex: 39206
Chris Heynen Systems B.V:	Postbus 2050
5 5	8203 AB Lelystad (Netherlands)
	Staalstraat 31
	8211 AH Lelvstad
	Tel: $+31 (0)3200 26849(33855)$
	Fax: +31 (0)3200 30844
	Telex: (England)890511 oneone g
	att: 38681001
Delair B.V:	Etten-leur (Netherlands)
2000 2000	Tel: (01608) 85800
	101. (01000) 05000
Dosco B V:	Postbus 102
20000 2.11	3760 AC Soest (Netherlands)
	Tel: (02155) 12734
	F_{ax} : (02155) 22206
	Talax: $(02133) 23200$
	1002.45770
Hosokowa Micron	Haarlem (Netherlands)
nosono wa micron.	Tel: $(023) 311377/157511$
	101. (023) 511577/157511
Hydrochemie-Conhag B V:	Industrieweg 04
irjuitenenne connag D.v.	2651 BD Berkel en Bodenrije (Notherlande)
	T_{al} (01801) 15822/15211
	$ \begin{array}{lllllllllllllllllllllllllllllllllll$
	Fax: (01891) 15274
Kowser & Machar	Plaskyloon 144
Rayser & Macky.	P 8/0 10/0 Privacel (Palaium)
	T_{a1} (02) 725 40 72
	Early (02) 733 40 72
	rax. (02) / 34 /0 00

Mica Machinery:	Mica House,Hyde Road, Denton, Manchester, England M34 3AE Tel: (061) 320 3356 Fax: (061) 320 3345 Telex:61556 caribag		
Silverson Machines Ltd:	Waterside, chesham, Bucks., England, HP5 1 PQ Tel: (0494) 786331 Telex:837335 Silverson G.		
UNTHA:	A.5431 Kuchl (austria) Kellau 141 tel: (06244) 7770		
Van Vloten B.V:	Utrechtseweg 4a 3451 GG Vleuten (Netherlands) Tel: (03407) 9299 Fax: (03407) 3904 Telex: 47.338		

Appendix(1: reactions in structure formula's.

Appendix(2: derivation of equation 4.

The mass of PU can be written as:

Mass
$$PU = \rho \frac{1}{6} \pi d_p^3$$

the differential of PU is d(PU):

$$d(PU) = \rho \frac{1}{2} \pi d_p^2 d(d_p)$$

this can be filled in in 1, and combined with 3 simultaniously, $K_{\rm s}$ and $C_{\rm m}$ are contracted to $K_{\rm 0}$:

$$\int_{d_0}^{d_p} d_p = \int_0^t 2 * \frac{K_s}{\rho} d(t)$$

Solving this equation yields (4).

Appendix 3: determination of Ko.

According to ICI, a reaction time of 3 hours is required, at +/- 200 deg.C., for complete reaction of PU particles with initial diameter of 5E-4 m. These data are filled in (4) with $d_p(3 \text{ h.})=0$. K_0 is then readilly equated: 0.092 (kg/s m²).

Appendix 4: derivation of equation 8.

A mass stream of PU particles as in (7) can be written as:

particle flux * mass of a particle * desity of a particle

mathematically:

$$\Phi_{mass,PU} = N^* \left(\frac{1}{6} \pi d_p^3\right) \rho$$

this can be filled in in the transport terms of (7) together with $N=N^*\tau$. This yields 8.

Appendix(5: derivation of equation 14.

As said in the text 11 is filled in in 9:

$$E(d_p) = \frac{-C A}{\tau} \exp(-\frac{A}{\tau}(d_p - d_0))$$
$$A = \frac{\rho}{2 K_0}$$

Normalisation of $E(d_p)$, with normalisation constant C, and $d(d_p)$ from 12, means solving C from:

$$1 = \int_{-\infty}^{d_0} \frac{C(-A)}{\tau} \exp(-\frac{A}{\tau} (d_0 - d_p)) d(d_p)$$

This yields C=-1, and (14) occurs.

Appendix 6: derivation of equation 16.

Again 11 is filled in, now in 15:

$$E(d_p) = C \frac{A (d_0 - d_p)}{\tau^2} \exp(\frac{-A (d_0 - d_p)}{\tau})$$

C is the normalisation constant to be calculated. Thus the next integral has to be solved:

$$1 = C \int_{-\infty}^{d_0} \frac{-A^2(d_0 - d_p)}{\tau^2} \exp(\frac{-A(d_0 - d_p)}{\tau}) d(d_p)$$

C is -1, so 16 follows.

Appendix /7: derivation of equation 17.

If a pulse of tracer is injected in the frist tank (resulting in a initial concentration C_0) of a two tanks in series system the concentration in the effluent is:

$$C_1(t) = C_0 \exp(-\frac{t}{\tau_1})$$

So the mass balance across the second tank is:

$$\phi_{v} C_{2}(t) = \phi_{v} C_{1}(t) - V_{T,2} \frac{d(C_{2}(t))}{d(t)}$$

Combining the two above equations, and rewriting yields:

$$\frac{d(C_2(t))}{d(t)} = \frac{C_0}{\tau_2} \exp(-\frac{t}{\tau_1}) - \frac{C_2(t)}{\tau_2}$$

This can not be solved readilly, but Laplace transformation has to be applied:

$$s C_2(s) - C_2(0) = \frac{C_0}{\tau_2} \left(\frac{1}{s + \frac{1}{\tau_1}}\right) - \left(\frac{1}{\tau_2}\right) C_2(s)$$

rewriting this, thus solving, yields:

$$C_{2}(s) = \left(\frac{C_{0}}{\tau_{2}}\right) \left(\frac{1}{s + \frac{1}{\tau_{1}}}\right) \left(\frac{1}{s + \frac{1}{\tau_{2}}}\right)$$

transforming this back to the t-domain yields:

$$E(t) = \frac{1}{\tau_1 - \tau_2} (\exp(\frac{-t}{\tau_1}) - \exp(\frac{-t}{\tau_2}))$$

Applying $C_0=m/V_1$, and $C_2(t)=C_0*E_2(t)$ yields 17.

Appendix 8: derivation of equation 18.

This is analogous to the derivation of 14 and 16. Again t and d(t) are taken from 11 and 12 and the same procedure is folloed. The value of the normalisation constant is again -1.

Appendix 9: determination of the volume flow.

The volume flow in the reactor, is determined by summing the volume flows of each relevant component (MEG, flexibles, rigids and PU). The pores of the MEG are assumed to be completly filed with MEG. As the conversion in the first reactor is approximately 100 %, the flow out consists of MEG, flexibles and rigids.

Volume flow in: PU: 980/1100 = 0.89MEG: 10000/1110 = 9.01Total volume flow in = 9.90, say 10 m₃/h.

Volume flow out: MEG: 9873/1110 = 8.89flexibles: 714/1060 = 0.67rigids: 351/1789 = 0.19Total volume flow out = 9.76, say 10 m₃/h.

Although the volume flows are not completely constant, at this stage of design it can be assumed to be constant.

Appendix 10: derivation of equation 23.

Equation 16 is to be integrated according to 22. Filling in $E_2(d_p)$ yields:

$$\int_{10e-8}^{d_f} \frac{A_2}{\tau^2} (d_0 - d_p) \exp(\frac{-A}{\tau} d_0) \exp(\frac{A}{\tau} d_p) d(d_p) = 0.01$$

this can be rewritten, and solved:

$$\frac{0.01 \ \tau^2 \ \exp(\frac{A}{\tau} \ d_0)}{A^2} = \left[\frac{\tau \ d_0}{A} \ \exp(\frac{A}{\tau} \ d_p)\right]_{10e-8}^{d_0}$$
$$-\left[\frac{\tau^2}{A^2} \ \exp(\frac{A}{\tau} \ d_p) \ (\frac{A}{\tau} \ d_p - 1\right]_{10e-8}^{d_0}$$

Filling in the boundaries and rewriting yields 23.

Appendix(11: Mercury file for tank volume and conversion calculation.

Problem: A:\TAU.BAK CALCULATION OF TANK VOLUMES) g=0.092 $F = \Box_{Q} - \Box$ hiv=10 nc=1100 =rho/(2*ko) CALCULATION OF TAU TUBE AND TUBE VOLUME IN MODEL FOR 1-ST REAL REACTOR: f=d0-(2*ka*tautube/rho) autube=Vtube/phiv CALCULATION OF (REAL) TANK VOLUMES, VOLI=VOL23 .01=A\$dF/tau\$(1-exp((A/tau)\$(-df)))-((A\$df/tau)-1)+exp((A/tau)\$(-df))\$((A*(1e-()/tau)-1) au=Vc/phiv - Solution ariablest ko = +0.092000 { = +23 / 250 } = +0,00050000 (= +1 / 2000) d0 = +0.00050000 (= +1 / 2000) df = +5.0000E-05 (= +1 / 20000) phiv = +10.000 r la co = +1100.0 = +5978.3 $\zeta = +137500 / 23$) tautube = 0.1%Vtube - +2,690I viube = +26.901 tau = 0.1*Vc - +26.902 (= +2475 / 92) = +2.0149 Ve = +20, 149 rgest residual is 2.2E-11 inod: Iterative meric processor: Emulator

Problem: C:\CALC\MERCURY\CONVERSI.EKA ------CALCULATION OF CONVERSION IN (REAL) TANKS) o=0.092 0=5e-4 biv=10 nc=1100 au=2.0149 CALCULATION OF AVERAGE DIAMETER IN EFFLUNET 1-ST REAL REACTORS av^3-df^3+(6%Ro%tau/rhc)%dav^2=0 CALCULATION OF CONVERSION IN (REAL) TANKS: onv1=(d0^3-dav^3)/(d0^3) Shv2=1-conv1 and Solution and Solution ariabies: = +0.092000 { = +23 / 250 } 14.72 = +0.00050000 { = +1 / 2000 } dO = +5.0000E-05 = +1 / 20000 3p = +10.000 r = +10.000argest residual is O ethod: Exact umeric processor: Emulator

Appendix 12: Calculation of the volume occupied by PU-particles

Determination of the particle flux:

N*=phi,m/(rho*Vp)=1000*6/(1100*pi*(5e-4)3)=1.4*1010

Determination of the residence time in the tube:

Tau= (d_o-df) *rho/ $(2*k_o)$ = $(5e^{-4}-5^{e-5})$ *1100/(2*0.092)=2.7 h N, number of particles present: 2.7*1.4*10¹⁰=3.78*10¹⁰

Determination of the volume occupied by PU-particles:

V=pi/6*((do-df)/2)³*N=pi/6*((5e⁻⁴-4^{e-5})/2)³*3,78*10¹⁰=0.22 m³

On the total volume of the first reactor of 22.6 m³ this is about 1 vol%

Appendix 13: Calculation of the feed composition for the flash calculation for the reactor.

Basis is the mass balance, and reaction B.

DADPM formed: 31.5 kg/h, thus 0.161 kmol/h, CO2 fomed: 2*0.161 kmol/h, thus 14.78 kg/h, MEG fed to reactor: 10000 kg/h, thus 162 kmol/h.

Total moles/h: 161.483 kmol/h. So the mole fractions for the feed are: zm = 162/162.483 = 0.99703 zc = 2*0.161/162.483 = 0.0019876zd = 0.161/162.483 = 0.00099087

Appendix (14: MathCad file for determination of vapor fraction and composition

zd := 0.0009909 zc := 0.0019818 zm := 0.9970273 Pcs := 12203 Pms := 1.098 Pds := 0.003528 P := 3 $Kc := \frac{Pcs}{p}$ $Km := \frac{Pms}{p}$ Kd := Pds $y_{C}(V) = \frac{z_{C} \cdot K_{C}}{1 + V \cdot (K_{C} - 1)}$ $yd(V) := \frac{zd \cdot Kd}{1 + V \cdot (Kd - 1)}$ $\forall m(V) := \frac{zm \cdot Km}{1 + V \cdot (Km - 1)}$ yt(V) := yc(V) + ym(V) + yd(V)V := 0.00001 $V := root(yt(V) - i_vV)$ $y_{C}(V) = 0.63473794 \qquad V = 0.0028771$ $yd(V) = 1.16865679.10^{-6}$ vm(V) = 0.36557884yt(V) = 1.00031795 $xc := \frac{yc(V)}{Kc}$ $xd := \frac{yd(V)}{Kd}$ $xm := \frac{ym(V)}{Km}$ xc = 1.56044729.10⁻⁴ xd = 9,93755772.10⁻⁴

xm = 0.99884928

APPENDIX 6.14 Reactor Hardware:

Determination of the geometry for the reactors 1 and 2 :

$$\begin{array}{c} v_{1} := 20 \\ 1 \\ \end{array} \\ \begin{array}{c} T_{1} := \left[\frac{4 \cdot v}{1} \\ \frac{1}{\pi \cdot 1.5}\right]^{3} \\ T_{1} := 2.57 \\ \end{array} \\ \begin{array}{c} T_{1} := 1.5 \cdot T_{1} \\ 1 \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 1.5 \cdot T_{1} \\ \end{array} \\ \begin{array}{c} z_{1} := 2.57 \\ \end{array} \\ \begin{array}{$$

 $\eta := \frac{1}{1 - h} \begin{bmatrix} 1 + \frac{-4}{\eta + \eta} \\ c & d \end{bmatrix} \qquad \eta = 1.894 \cdot 10$

 $\begin{array}{cccccccc} & -3 & & & & \\ \eta & := 0.19 \cdot 10 & \text{Pas} & \rho & := 1153 & \text{kg/m3} & t := 200 & c \\ \text{mix} & & & & \text{mix} & & & \\ \phi & := 11000 & \text{kg/u} & Q & := 26.5 \cdot 10 & \text{m3/s} & h := 0.083 \\ \text{m} & & & v \end{array}$

P := 3 bar (operating pressure for both vessels)

Reactor 1: propeller mixer with rotor speed N1=95 rpm. This is determined by the power equation with the power number taken from (1), see also figure 1.

	т				
	1				95
D	:=	D	= 0.857	N	:=
1	3	1		1	60

 $\operatorname{Re}_{1} := \frac{\begin{array}{c} 2 \\ N & D \\ 1 & 1 \end{array}}{\begin{array}{c} \eta \\ mix \end{array}} \qquad \operatorname{Re}_{1} = 7.052 \cdot 10 \qquad > 10 \quad (\text{turbulent area})$

power consumption : from figure 1 (1)) we find that Pv1=0.9.
Reactor 2: here we wish to realize a dispersion with d3.2=1 mm, we use a turbine mixer with P2=0.1*V2 in Kw as a design rule for a turbine mixer the power number in the turbulent area Pv2=5. This is taken from figure 2 (1).

 $:= \frac{2}{4}$ D = 0.51 P := 5 ρ := 1160 v2 c 129 := --- (This implicates that a reduction of the number of revolutions N 60 from 129 rpm to 9 rpm is necessary in order to realize the 2 required sauter diameter) 9 (This number is found by iteration using the formula for the := - required sauter diameter) 3 60 $\varepsilon := \frac{\begin{array}{c} 3 & 5 \\ v_{2} & mix & 3 & 2 \\ \hline v_{2} & mix & 3 & 2 \\ \rho & \cdot \begin{bmatrix} \pi \\ -4 \end{bmatrix} \cdot \underbrace{r}_{2} & \cdot \underbrace{r}_{2} \\ \sigma := 1.6 \cdot 10 \\ \varepsilon = 2.91 \cdot 10 \\$ 3 5 $\mathbf{P} := \mathbf{P} \cdot \boldsymbol{\rho} \cdot \mathbf{N} \cdot \mathbf{D}$ 2 $\operatorname{Re}_{2} := \frac{\begin{array}{c} D & \cdot N & \cdot \rho \\ 2 & 3 & \text{mix} \end{array}}{\begin{array}{c} \eta \\ \eta \\ \text{mix} \end{array}}$ $Re_{2} = 2.367 \cdot 10 > 10 \quad (turbulent area)$

For vessels with geometries other than standard the following correlation applies (taken from zuiderweg (2)), here we design the rotor on the required sauter diameter using the dissipated energy per unit mass which would follow from a number of revolutions of N3=9 rpm, which is the actual number of revolutions taking place in the second reactor:

 $d_{3.2} := 0.11 \cdot \left[\frac{\begin{matrix} 0.6 \\ \sigma \\ \hline 0.4 \\ \epsilon \end{matrix} \right] \cdot h^{0.5} \cdot \left[\frac{\eta}{d} \\ \frac{\eta}{c} \\$

With N3 = 9 rpm of a turbine mixer, the required sauter diameter is reached.

RAU

Determination of the necessary filter :

This determination is done on the basis of data handed out by Amafilter b.v., hereby expressing our gratitude towards this company for their cooperation and patience. Once the filter system was determined and belonging filters chosen, a check with Amafilter b.v. was made to see if the yielded results are applicable. The results have been found to be applicable.

The following filters have been chosen with the corresponding data given in table 1, 2 and 3 and figure 4 :

- Two basket wedge wired filters placed in duplo in order to make continouos operation possible, see table 3 for further details.
- Filter series type 72-S-I (S stands for screw on and I stands for carbon steel construction) with a connection measurement of 2 inch, see table 3 for further details.
- A mesh value of 325 corresponds with 50 micron meters (necessary filtering diameter), this data was supplied by phone.
- This mesh value corresponds with a correction factor for the pressure drop of c=3, this is found by iteration from the table in figure 3 where a mesh value of 100 corresponds with a correction factor of c=1.7.
- The corresponding pressure drop in meters water column (MWK) with 1 MWK=0.1 bar, is found from figure 3 for the serie nr. 72 with a flow rate of Qv=10 m3/hr (kapaciteit).
- The pressure drop read from figure 3 has to be corrected for the density. This is done by multiplying with the density of the mixture in kg/l.

The pressure drop is calculated as follows :

This answer is very small which is in accordance with the principle on which the reactor was designed, to reach a low value for the pressure drop for the filter system.

Approximate costing of the reactor hardware according to WEBCI/WUBO and offer by Amafilter b.v. and estimate by Gasequip b.v. for the extra costs for two turbines in serie in an agitated vessel:

R1S

Reactor1: agitated vessel with propellor	£ 73,000
Reactor2: agitated column with two turbines and	f 78,000
a motor reduction (1)	
Isolation reactor1: for 200 C	f 12,650
Isolation reactor2: for 200 C	£ 8,350
Filtersystem: 72-S-I in Duplo, includes 20 extra	£ 9,500
baskets for maintanance	
1 pump: capacity 10 m3/hr	f 1,700
Total estimated costs reactor	£183,200

Material specification of reactor :

-1 (operating pressure with a 10 percent safety margin) $P := 1.1 \cdot 3 \cdot 10$:= 105 (design stress at a temperature of 200 c for carbon steel) σ d 3 3 T := 2.57·10 т := 2.04.10 (vessel diameter) 2 1 P.T 2 = 3.211 (vessel thickness in mm according to BS e := е 2 2 5500, British Standard for vessels - P 2·0 subjected to internal pressure) d P·T 1 e = 4.045 (first reactor vessel thickness) e - P 1 2·0 1 d

For practical design the minimum wall thickness for vessel diameters of 2-2.5 (m) is 9 mm, which is well above the calculated necessary wall thickness. This includes a corrosion allowance of 2 mm.

Appendix 6.16 Settler Calculation and Costs:

SETTLER CALCULATIONS AT T=200 c (473 K) AND P=2 bar : ρ := 1070 kg/m3 ρ := 1160 kg/m3 (specific gravity) d c $d\rho := \rho - \rho \qquad d\rho = 90 \qquad T := 473 \text{ K} \quad P := 2 \text{ bar}$ $\sigma := 0.0024 \text{ N/m} \quad \sigma := 0.0008 \text{ N/m}$ $\sigma := \sigma - \sigma$ $\sigma = 0.0016$ (surface tension in N/m) c d Calculation of viscosities with experimentally determined equations: $\eta := \exp \left[\frac{6.69 \cdot 10}{T} - 16 \right]^{-3} - 16 = \frac{-3}{10} - \frac{3}{10} = \frac{-3}{10} - \frac{3}{10} - \frac{3}{$ $\eta = 1.56259563 \cdot 10$ Pas $\eta = 0.00137143$ Pas $Q := 24.306 \cdot 10 \text{ m3/s} Q := 2.207 \cdot 10 \text{ m3/s}$ $\begin{array}{cccc} Q & := Q & + Q \\ s & d & c \\ & & & h := \begin{bmatrix} Q \\ d \\ \hline Q \end{bmatrix} & m3/m3 & (holdup) \end{array}$ g := 9.8 m/s2minimum diameter : sauter diameter : d := 150.10 d := 1000·10 min Calculation of the settler area with stokes-formula : 2 $u := g \cdot dp \cdot \frac{\min}{18 \cdot \eta}$ u = 0.00705557 t $\begin{array}{c} A & := 4.96 \cdot 10 \\ s & \end{array} \cdot \begin{bmatrix} -5 \\ -5 \\ c \\ \hline c \\ -2 \\ d \\ \vdots \\ \end{array} \right| \qquad \begin{array}{c} A & = 0.34446553 \\ s \\ \end{array}$

57

 $\theta_{c} := 31 \cdot 10^{3} \cdot \frac{d}{1.24} \cdot \frac{1.24}{g} \cdot \frac{1.48}{d\rho} = 55.60886933$ A := 1.2 c := 0.025 (m/s)^2/3 (for industrial systems) $dH1 := \frac{\begin{pmatrix} Q & \cdot \theta \\ d & c \\ c & \cdot h \cdot A \end{pmatrix}}{\begin{pmatrix} Q & \cdot \theta \\ c & c \end{pmatrix}} dH := \begin{bmatrix} dH1 \\ c \end{bmatrix}^{3} dH = 0.03838459$ $\begin{array}{cccc} H & := 10 \cdot dH & H & = 0.38384591 \\ s & c & s \end{array}$ Decanter geometry : $D := \begin{bmatrix} 0.215 \cdot \mathbb{A} \\ 0 \end{bmatrix} \quad D = 0.507937 \qquad \mathbf{r} := \begin{bmatrix} D \\ -2 \end{bmatrix}$ $L := 5 \cdot D$ L = 2.53968502 t := - t = 0.08465617 $I := 2 \cdot \begin{bmatrix} D \\ - z \\ 2 \\ - z \end{bmatrix}^{2} - t^{2} = 0.5$ I = 0.4788876 A = 0.34446553 I = 0.4788876 A = 1.21622366 $A_{t} := 0.5 \cdot \pi \cdot r^{2} - t \cdot \begin{bmatrix} 2 & 2 \\ r & -t \end{bmatrix}^{0.5} - r^{2} \cdot a \sin \begin{bmatrix} t \\ -t \end{bmatrix} \qquad A_{t} = 0.05912649$ $\begin{array}{ccc} 2 \\ \mathbf{A} & := \pi \cdot \mathbf{r} & -\mathbf{A} \\ \mathbf{h} & 1 \end{array} \quad \mathbf{P} := 2 \cdot \mathbf{r} \cdot \mathbf{a} \cos \begin{bmatrix} \mathbf{t} \\ - \\ \mathbf{r} \end{bmatrix} \qquad \mathbf{V} & := \begin{bmatrix} \pi \\ - \\ \mathbf{A} \end{bmatrix} \cdot \mathbf{D} \cdot \mathbf{L}$ A = 0.14350624 P = 0.62524984 h

Determination of the necessary height of the settler :

$$D_{1} := \begin{bmatrix} A \\ 1 \\ I + P \end{bmatrix} \qquad D_{h} := \begin{bmatrix} A \\ h \\ 1 + 2 \cdot \pi \cdot r - P \end{bmatrix}$$
$$D_{1} = 0.21419974 \qquad D_{h} = 0.39605165$$

Check on coalescence time (to pass through dispersion-band):

$$t := 0.5 \cdot \begin{bmatrix} A \\ c \\ dH \\ c \\ Q \\ d \end{bmatrix} t = 104.35321491$$

Determination of residence time in settler :

		v			
		S			
t	:=		t	=	194.1022514
S		Q	S		
		S			

Light phase (dispers) :

$$v_{1} := \frac{Q}{Q} \cdot v_{1} = 0.04283837$$

$$v_{1} := \frac{V}{Q} \cdot v_{1} = 194.1022514$$

$$v_{1} = \frac{Q}{Q} \cdot v_{1} = 194.1022514$$

Heavy phase (continues) :

 $\begin{array}{ccc}
Q \\
V \\
h \\
Q \\
s
\end{array} \cdot V \\
V \\
h \\
s
\end{array} = 0.47178493$

$$\begin{aligned} t_{vh} &:= \frac{v}{h} \\ t_{vh} &:= \frac{v}{h} \\ c_{c} &t_{vh} = 194.1022514 \end{aligned}$$
Light phase outlet design :
velocity through outlet < 3m/s v_1 := 3

$$\begin{aligned} \lambda_{0} &:= \frac{Q}{t_{1}} \\ \lambda_{0} &= 7.35666667 \cdot 10^{-5} \\ \phi_{0} &= 0.00967822 \\ \phi_{0} &= 0.00967822 \\ heavy phase end the design : v_{1} := 3 \\ \lambda_{0} &:= \left[\frac{A}{t_{1}} \\ \frac{Q}{\pi}\right]^{0.5} \\ d_{0} &= 0.00967822 \\ \phi_{0} &= 0.00967822 \\ \phi_{0} &= 0.00967822 \\ heavy phase end the design : v_{1} := 3 \\ \lambda_{0} &:= \frac{Q}{t_{1}} \\ \lambda_{0} &= 8.102 \cdot 10^{-4} \\ d_{0} &= 0.0321182 \\ \end{aligned}$$
Feed arrangement :

$$\rho_{1} \cdot v_{1}^{2} &= 1.044 \cdot 10^{4} \\ \rho_{1} \cdot v_{1}^{2} &= 9.63 \cdot 10^{3} \\ N_{rel} &:= \frac{u_{1} \cdot D_{1} \cdot \rho}{\eta_{d}} \\ N_{rel} &:= \frac{u_{1} \cdot D_{1} \cdot \rho}{\eta_{c}} \\ N_{rel} &:= \frac{u_{1} \cdot D_{1} \cdot \rho}{\eta_{c}} \\ N_{rel} &:= 2.07441288 \cdot 10^{4} \end{aligned}$$

Results of the settler calculations :

-4 -3 -4 $= 1.5 \cdot 10$ d d $= 1 \cdot 10$ T = 473 $= 2.207 \cdot 10$ Q η = 0.001371433.2 min (t=180 c) d d = 0.0024306 Q = 1.56259563· η c C

= 0.00705557 u (settling velocity, m/s) t = 0.34446553(necessary settler area, m2) A S (defined decanter cross section area, m2) A = 1.2 C A = 1.21622366 (real settling area, m2) r V = 0.5146233(decanter volume, m3) s D = 0.507937(decanter diameter, m) L = 2.53968502(decanter length, m) t = 194.1022514(residence time in settler, seconds) s θ = 55.60886933 (coalescence time, seconds) С = 104.35321491 (time to pass through dispersion band, seconds) t С dH = 0.03838459(height of coalescence layer, m) C (hydraulic diameter light phase, m) D = 0.214199741 D = 0.39605165(hydraulic diameter heavy phase, m) h

Cost calculation taken from WEBCI/WUBO, november 1989 :

Cilindrical tank with rounded fronts and a wall thickness off 8 mm, a volume of 1 m3, a lenght of 1,1 m and a diameter of 1 m cost f 11,000

In this case the volume Vs = 0.51 with a lenght of 2.5 m and a diameter of 0.5 m, meaning a correction of about 0.65 for the volume (based on extrapolion) and 1.1 for L/D.

This leads to a total estimate of f 8,000

Туре	Aansluit- maat (inch	Slandaard perforatie mm	Opper- vlakte pijp cm ^z	Elleki korfle mi	tieve Builen Ingle diamete m korf m mm	Filtrerend oppervlak cm*	Vrlj oppervlak cm²	Verhouding vrij- tot pljp-
50	3/4	0.8	24					
50	1	0.0	3.4	80	52	132	37	10.7
	111	0.0	5.6	80	52	132	37	6.6
50	11/2	1.2	13	120	68		UI	IU
50	2	2	22	150		263	97	7.4
50	21/2	2	31	150	90	428	197	9.1 /
50	3	2.8	48	150	90	428	197	6.4
50	4	3.6	82	260	120	506	24	5.1
50	5	3.6	129	300	120	947	483	5.9
50	6	3.6	186	320	100	1397	- 713	5.5
50	8	3.6	323	116	180	1830	933	5
			010	413	263	3560	1742	5.3
72	3/8	0.8	1.2	70	76	0.4		
72	1/2	0.8	2	70	30	84	23	18.9
72	3/4	0.8	34	80	30	84	23	11.8
72	1	0.8	5.6	00	52	132	37	10.7
72	11/4	12	0.7	00	52	132	37	6.6
72	11/2	12	12	90	68	201	74	7.7
> 72	2	2	13	120	68	263	97	7.4
72	21/2	5	22	120	90	330	152	7 1
72	3	20	31	140	120	677	270	8.8
72	4	2.0	48	200	120	742	319	6
72	5	0.0	82	200	180	1091	556	6.8
72	5	3.6	129	310	180	1721	878	6
72	0	3.0	186	380	180	2100	1076	6
12	0	3.6	323	486	263	4030	2010	6.2
40	3/8	(80) mesh	1.2	30	24	00		-
40	1/2	80 mesh	2	30	24	23	6	5.1
40	3/4	80 mesh	3.4	36	24	23	6	3.2
40	1	0.8	5.6	SR.	32	40	12	3.6
40	11/4	0.8	9.7	81	40	12	19	3.5
40	11/2	0.8	13	QR.	57	134	37	3.8
45	2	0.8	22	110	60	177	49	3.7
45	21/2	0.8	31	130		232	65	3 /
45	3	8.0	49	170	100	339	94	3
		00100			/ 100	336	148	3.1
30	11/2	3.6	13	110	. 59	020	1.0	-
30	2	3.6	22	110	00	238	121	9.2
30	21/2	3.6	31	180	100	348	177	8.2 /
30	3	36	48	100	100	563	287	9.3
30	4	36	82	200	100	563	287	6
30	5	3.6	120	200	120	740	377	4.6
30	6	36	129	240	130	1024	522	4.1
30	8	3.6	202	290	160	1463	727	4
1	5	5.0	323	370	220	2537	1294	4
- 1	trans.	- 11						×

Table 1 Filter specifications

•

Tabel voor de bepaling van het drukverlies

Deze tabellen zijn opgesteld uitgaande van schone korven, zonder bekleding met metaalgaas en met water als vloeistof. Voor eventuele afwijkingen, gelieve u de navolgende korrektiegegevens toe te passen.

SOORTELIJK GEWICHT

Vermenigvuldig het drukverlies voor water met het soortelijk gewicht van de in aanmerking komende vloeistof. (Water heeft een soortelijk gewicht van 1.0).

VISKOSITEIT

Vermenigvuldig de waterdrukverlies uitkomst met de onderstaande getallen indien vloeistolfen met een hogere viskositeit worden verwerkt. (Water heeft een viskositeit van 1 cps)

Viskositei CPS	. G reg	eperio- rd metaal korf	40 Mesh Metaalgaas korf- bekleding	60 Mesh Metaalgaas M korf- bekleding b	80 Mesh etaalqaas korf- ekleding	100 Mesh Metaalgaas korf- bskleding
40 10				1		2
1	0.1	1.0	1.2	1.4	1.6	1.7
105	4* 0	1.6	1.9	2.1	2.4	2.6
210	-V	1.7	2.2	2.4	2.6	2.8
425	1	1.9	2.4	2.7	2.9	3.2
625	1	2.0	2.6	2.9	3.2	3.5
1050	1.1	2.2	3.0	3.5	4.0	4.5
2150		2.5	3.5	4.2	5.0	6.0
				1		

1)

cube N +1 - ' S - 7 > ----2 0 T 0

FELCO General Specification Sheet for WCS Filters and Screens SCREEN SIZES PROFILE APPROX SCREEN DD. SUPPORT TOTAL NO. WIRE WEIGHT ROD OF SUPPORT NORMALLY INCHES MM SIZE (NO.) ROOS USED (NO.) LBS JFT KI/M 11/16 27 60 14 50,60,70 .5 1 1% 32 60 49 18 .5 1 1.32 34 60 18 19 .5 1 1 1/2 38 60 21 14 1% . 1.66 42 60 10 24 1% 1 13/4 44 60 28 .. 11/2 1.25 1.9 -48 60 24 . 1% 125 2 . 60 51 24 -2 3 2% 60 60 26 21/4 3.3 21/2 64 90 18 --.. 21/4 3.3 2% 73 ~ 60 32 24 3.7 -76 3 90 24 21/2 3.7 3% 83 90 28 23/4 4 3% 60 83 39 .. 24 4 31/2 **2B** 90 28 *3 60.70 4.5 3% 92 90 -0 24 4 8 102 4 90 34 ** 5 7.5 4% 114 .1875 24 .. 5% 8 4% 117 90 .. 32 -5 9 5% 133 90 44 -5 9 5% 143 90 36 7 10.5 6 152 .1875 36 8 60,70,90 -2 8 203 .1875 40 10 -5

NOTE 1. Above screens can be fabricated using the following materias: (A) CARBON STEEL (E) MONEL

(B) CARBON STEEL (GALVANIZED) (F) HASTELOY (C) STAINLESS STEEL (304/316) (G) ALLOY 20 (D) INCONNEL

- 2. Weights are approximate and will vary with different wire shapes and slot sizes.
- 3. For screen sizes not listed above, contact Felco Industries Ltd.

% OPEN AREA FOR WEDGE-WIRE PROFILES AND SELECTED SLOT OPENINGS

WRAP	PROFILE		SLOT OPENINGS (INCHES)																
PROFILES	(₩)	004	.005	.006	.007	.006	.009	.010	.015	.020	.025	.030	.035	.040	.045	.050	.060	.070	.100
NO. 50	.050	7.4	9.0	10.7	12.2	13.8	15.3	16.7	23.0	28.6	33.6	37.5	41.2	44.4	47.5	50.0	54.5	58.3	66 6
NO. 60	.060	6.2	7.7	9.1	10.4	11.8	13.0	14.3	20.0	25.0	29.4	33.3	36.8	40.0	42.9	45.5	50.0	53.8	62.5
NO. 69	.069	5.5	6.7	7.9	9.1	10.3	11,4	12.6	17.8	22.4	26.6	30.3	33.5	36.5	39.4	41.8	46.4	50.2	59.1

SLOT OPENING

% OPEN AREA = PROFILE WIDTH (W) + SLOT OPENINGS

AREA OF TUBE

TUBE DIAMETER (INCHES)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00
AREA OF TUBE PER LINEAR FT. (IH ²)	3769	56.54	75 39	94.24	113 09	131 94	150,79	169.64	188 49	207.34	226.19	245.04	263.89	282.74	301.59

AREA OF TUBE = DIAMETER x 37.69 (SQ. INCHES) PER LINEAR FOOT eres a size of

WIRE SIZES AVAILABLE

WEDGE-WI	RE					5. 	
+ ×	inch mm	NO.	50		60	69	90
	y	x	.050 1.3)60 1.5	.069 1.8	.090 2.3
V	4	у	.090 2.3	.1 2	00 2.5	.130 3.3	.140 3.6
ROUND WI	RE DIAMETE	A (D) n	nm				
NO.	150	177	2	36	250	290	312
(D) mm	3.81	4.5		6	6.35	7.37	7.93

GSS8-82

IIII SEE OTHER SIDE

Specification Sheet (Cont.)

HOW TO ORDER FELCO FILTER AND STRAINER PARTS

Since all our screens are fabricated to customers' specifications, the following information is necessary: **OPERATING CONDITIONS:**

 operating pressure
 operating temperature
 pressure loss
 slot opening
 flow rate
 open area needed PHYSICAL SIZE: special littings

 type of material overall length outside diameter

Felco screens are made from a large variety of wire sizes to meet your specifications.

CANADIAN LEADER IN WEDGE-WIRE CUSTOM FILTRATION SYSTEMS.

FOR TECHNICAL ADVICE USE OUR INFORMATION HOT LINE

(416) 669 5950

Canadian INDUSTRIES

15 CONNIE CRESCENT, CONCORD, ONT., CANADA L4K 1L3

(416) 669 5950 TELEX 06-964673

Tabel 3 Filter specification

Appendix A6.XVII

Determination of Psat of the Rigids

The Riedel Equation can be used to estimate the saturation pressure, when only the normal boiling point and critical temperature and pressure are known.

$$lnP_r^{sat} = D * (35 - \frac{36}{T_r} + (\frac{\alpha_c}{D} - 42) * lnT_r + T^6)$$

with

$$D = 0.0838 * (\alpha_c - 3.758)$$

and

$$\alpha_{c} = \frac{0.315 * (-35 + \frac{36}{T_{r,n}} + 42 * \ln T_{r,n} - T_{r,n}^{6}) + \ln P_{c}}{0.0838 * (-35 + \frac{36}{T_{r,n}} + 42 * \ln T_{r,n} - T_{r,n}^{6}) - \ln T_{r,n}}$$

The normal boiling point of the Rigids is about $450^{\circ}C$ (= 723K), the critical temperature is about 928K and the critical pressure is about 24 bar. These values are obtained from group contribution methods. This leads to:

$$lnP^{sat} = 143.87 - \frac{2.15 * 10^4}{T} - 15.60 * lnT + 1.0 * 10^8 * T^6$$

T is in Kelvin and P^{sat} is in Pa.

Appendix A6.XVIII

Calculations for isothermal flash

The gases are assumed to be ideal as well as the solutions. For a rough calculation this will be a reasonable assumption especially because the pressure won't that high. The temperature in the flash vessel shouldn't exceed 200°C because there is a danger

of degeneration of the Rigids. This limits the pressure in the vessel to about 1 bar. The lower limit of the pressure is about 0.1 bar because else the capital costs for the vessel become to high. At 0.1 bar the temperature in the vessel is about 135°C. So the temperature range to be considered is 135-200°C and the pressure range is 0.1 to 1.0 bar.

The equations for the calculations are entered in Mercury (a computing programma) and the results are listed below.

1 For the mixture MEG-DADPM-Rigids:

Input data:

* P = 100 mbar (total pressure)

* Vapor fraction (mol) V = 0.9779 (required to satisfy specification)

Problem: C:\MERCURY\FLASH.EKA _____

```
\ln(P1s)=20.53-6022.2/(T-28.25)
ln(P2s)=20.309-9009.7/T
\ln(P3s) = \ln(24312) + 0.6440*(35-36*928/T-24.23\ln(T/928)+(T/928)^{6})
Pb=z1*P1s + z2*P2s + z3*P3s
Pd=1/(z1/P1s + z2/P2s + z3/P3s)
K1=P1s/P
K2=P2s/P
K3=P3s/P
z_{1*K1/(1 + V^{*}(K_{1-1})) + z_{2*K2/(1 + V^{*}(K_{2-1})) + z_{3*K3/(1 + V^{*}(K_{3-1}))=1}
z1=0.9936
z2=0.0055
z3=1-z1-z2
y1=z1*K1/(1 + V*(K1-1))
y_3=z_3*K_3/(1 + V*(K_3-1))
x1=v1/K1
x2=y2/K2
x3=y3/K3
L=1-V
V=0.9779
P=100
```

	= Solution =====
Variab	les:
P1s	= EXP(20.53-6022.2/(T-28.25))
	= +136.23376931336958
Т	= 9009.7/(20.309-LN(P2s))
	= +413.90212468699201
P2s	= +0.2325368498136327
P3s	= EXP(10.09872533459663+0.644*(35-33408/(9009.7/(20.309-LN(P2s)))-
	24.23*LN(9009.7/(20.309-LN(P2s))/928)+(9009.7/(20.309-LN(P2s))/928)^-
6))	
	= +0.0011853787026161718
Pb	= 0.9936*P1s+0.0055*P2s+0.0009*P3s
	= +135.36315320927881
z 1	= +0.99360000000000000000000000000000000000
z2	= +0.005500000000000000000000000000000000
z3	= +0.000900000000000000000000000000000000
Pd	= 1/(0.9936/P1s+0.0055/P2s+0.0009/P3s)
	= +1.2655079450555953
K 1	= 0.01*P1s
	= +1.3623376931336957
Ρ	= +100.0000000000000000000000000000000000
K2	= 0.01*P2s
	= +0.0023253684981363264
K3	= 0.01*P3s
	= +1.1853787026161716E-05
v	$= +0.977900000000000 $ { $= +9779 / 10000$ }
y1	= 0.009936*P1s/(1+0.9779*(0.01*P1s-1))
	= +0.99947479698302166
y2	= 5.5E-05*P2s/(1+0.9779*(0.01*P2s-1))
	= +0.00052472053663899941
y3	= 9E-06*P3s/(1+0.9779*(0.01*P3s-1))
	= +4.8248033932593264E-07
x 1	= 0.009936*P1s/(1+0.9779*(0.01*P1s-1))/(0.01*P1s)
	= +0.73364687919923555
x2	= 5.5E-05*P2s/(1+0.9779*(0.01*P2s-1))/(0.01*P2s)
~	= +0.22565048810953545
x3	= 9E-06*P3s/(1+0.9779*(0.01*P3s-1))/(0.01*P3s)
	= +0.040702632691230395
L	$= +0.02210000000000 $ { $= +221 / 10000 $ }

Largest residual is 2E-17 Method: Iterative Numeric processor: 8087

The index 1,2 and 3 stands for MEG, DADPM and Rigids respectively

Pressure is in mbar and temp. in Kelvin.

P(index)s is the saturation pressure.

Z, y and x are molfractions in feed, top and bottom respectively.

V is the vapor fraction (mol) which will leave at the top and L is the liquid fraction (mol) which leaves the flash vessel at the bottom.

The main point is that y2 is about 100 times to high (it should be about 6.3*10^-6).

2 For the mixture MEG-DADPM

Input data: * P is 100 mbar * Vapor fraction (mol) V =0.9842 (required to satisfy the specification)

```
Problem: C:\MERCURY\FLASH2.EKA
ln(P1s)=20.53-6022.2/(T-28.25)
ln(P2s)=20.309-9009.7/T
Pb=z1*P1s + z2*P2s
Pd=1/(z1/P1s + z2/P2s)
K1=P1s/P
K2=P2s/P
z1*K1/(1 + V*(K1-1)) + z2*K2/(1 + V*(K2-1))=1
z1=0.999095
z2=1-z1
y_1=z_1*K_1/(1 + V*(K_1-1))
y_{z=z^{K2}/(1 + V^{K2-1}))
x1=y1/K1
x2=y2/K2
L=1-V
V=0.9842
P=100
```

	= Solution =====
Variab	les:
P1s	= EXP(20.53-6022.2/(T-28.25))
	= +105.46350172258235
Т	= 9009.7/(20.309-LN(P2s))
	= +407.68160716638931
P2s	= +0.166819282016795
Pb	= 0.999095*P1s+0.000905*P2s
	= +105.36820822497364
z 1	= +0.99909500000000
z2	= +0.00090500000000
Pd	= 1/(0.999095/P1s+0.000905/P2s)
	= +67.121281386869924
K 1	= 0.01*P1s
	= +1.0546350172258234
Р	= +100.0000000000000000000000000000000000
K2	= 0.01*P2s
	= +0.0016681928201679455
v	= +0.9842000000000000000000000000000000000000
y1	= 0.00999095*P1s/(1+0.9842*(0.01*P1s-1))
	= +0.99991344291068496
y2	= 9.05E-06*P2s/(1+0.9842*(0.01*P2s-1))
	= +8.6557089315054367E-05
x1	= 0.00999095*P1s/(1+0.9842*(0.01*P1s-1))/(0.01*P1s)
	= +0.94811325869011875
x2	= 9.05E-06*P2s/(1+0.9842*(0.01*P2s-1))/(0.01*P2s)
	= +0.051886741309880607
L	= +0.01580000000000000000000000000000000000

Largest residual is 7.8E-17 Method: Iterative Numeric processor: 8087

Again y2 is much too high; it should be 6.3*10e-6 however it is 86.6*10e-6.

Appendix A6.XIX

Attempt to make a McCabe-Thiele diagram

At 200°C the relative volatility (a) is 445. The equilibrium equation then is: $y = \frac{445 \cdot 2}{1 + 444 - 2}$

Appendix A6.XX

Chemcad listing

Mixture: MEG-Rigids-DADPM

CHEMCAD 2 Version 2.4

Page 1

Filename : DEST3.TLK Date: 13-Dec-91 Time: 5:16 pm

FLOWSHEET SUMMARY

Equipment Stream Numbers

1 SHOR 1 -2 -3

COMPONENTS 135 1002 1004

THERMODYNAMICS K-value model :SRK Enthalpy model :SRK

Page 2

Short-Cut Distillation Summary

Equipment name	
number	1
Mode	2
Light key posn/name	e 1 Ethylene-
Frac. LK to overhead	d .984230
Heavy key posn/nam	e 2 DADPM
Frac. HK to overhea	d .637750E-02
Condenser type	total
R/Rmin	100.000
No. of stages	2
Minimum no. of stag	ges 2
Feed stage	2
Calculated duties	
Condenser MJ /h	1123E+05
Reboiler MJ /hr	.1110E+05
Column pres. bars	.999979
Rmin	.100000E-04
Reflux ratio	.100000E-02

FLOW SUMMARIES

Page 3 CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	190.000	192.920	202.070
Pres bars	.999979	.999979	1.04998
Enth MJ /hr	-2664.05	-2502.06	-33.6715
Vapor mole fraction	.000000	.000000	.000000
Total kgmol/hr	171.784	168.000	3.78600
Flowrates in kgmol/h	r		
Ethylene-Glycol	170.689	167.999	2.69178
DADPM	.156799	.999984E-	-03 .155799
RIGIDS	.938494	.801465E-0	.938414

FLOW SUMMARIES

Page 4 CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	190.000	192.920	202.070
Pres bars	.999979	.999979	1.04998
Enth MJ /hr	-2664.05	-2502.06	-33.6715
Vapor mass fraction	.000000	.000000	.000000
Total kg/hr	10976.4	10427.6	548.935
Flowrates in kg/hr			
Ethylene-Glycol	10594.3	10427.4	167.074
DADPM	31.0932	.198297	30.8949
RIGIDS	350.997	.299748E-01	350.967

FLOW SUMMARIES

Page 5 CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	190.000	192.920	202.070
Pres bars	.999979	.999979	1.04998
Enth MJ /hr	-2664.05	-2502.06	-33.6715
Vapor mass fraction	.000000	.000000	.000000
Total kg/hr	10976.4	10427.6	548.935
Component mass frac	ctions		
Ethylene-Glycol	.965190	.999978	.304359
DADPM	.283273E	-02 .190166	E-04 .562816E-01
RIGIDS	.319774E-0	01 .287457E	-05 .639359

Mixture: MEG-DADPM

CHEMCAD 2 Version 2.4

Page 1

Filename : DEST2.TLK Date: 13-Dec-91 Time: 5:18 pm

FLOWSHEET SUMMARY

Equipment Stream Numbers

1 SHOR 1 -2 -3

COMPONENTS 135 1002

THERMODYNAMICS K-value model :SRK Enthalpy model :SRK

Page 2

Short-Cut Distillation Summary

Equipment name	
number	1
Mode	2
Light key posn/nam	e 1 Ethylene-
Frac. LK to overhea	d .984230
Heavy key posn/nan	ne 2 DADPM
Frac. HK to overhea	ad .146080E-02
Condenser type	total
R/Rmin	100.000
No. of stages	3
Minimum no. of sta	ges 2
Feed stage	2
Calculated duties	
Condenser MJ /h	r1665E+05
Reboiler MJ /hr	.1655E+05
Column pres. bars	.999979
Rmin	.303150E-03
Reflux ratio	.303150E-01

FLOW SUMMARIES

Page 3 CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	190.000	192.920	202.420
Pres bars	.999979	.999979	1.04998
Enth MJ /hr	-2657.48	-2502.06	-23.7739
Vapor mole fraction	.000000	.000000	.000000
Total kgmol/hr	171.784	168.001	3.78548
Flowrates in kgmol/h	r		
Ethylene-Glycol	170.689	167.999	2.69178
DADPM	1.09529	.159999E	-02 1.09369

FLOW SUMMARIES

Page 4 CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	190.000	192.920	202.420
Pres bars	.999979	.999979	1.04998
Enth MJ /hr	-2657.48	-2502.06	-23.7739
Vapor mass fraction	.000000	.000000.	.000000
Total kg/hr	10811.5	10427.7	383.953
Flowrates in kg/hr			
Ethylene-Glycol	10594.3	10427.4	167.074
DADPM	217.197	.317278	216.879

FLOW SUMMARIES

Page 5 CHEMCAD 2 - Version 2.4

Stream No.	1	2	3
Temp C	190.000	192.920	202.420
Pres bars	.999979	.999979	1.04998
Enth MJ /hr	-2657.48	-2502.06	-23.7739
Vapor mass fraction	.000000	.000000	.000000
Total kg/hr	10811.5	10427.7	383.953
Component mass fra	ctions		
Ethylene-Glycol	.979911	.999970	.435141
DADPM	.200894E	-01 .304265	E-04 .564859

Appendix A6.XXI

Other possible packed column

Packed column with Mellapak 125Y internals:

Top temperature	193°C
Bottom temperature	203°C
Column pressure	1 bar
Pressure drop	0.05 bar
Reflux ratio	0.5
Column diameter	1.24 m
HETP	0.87 m
Packing length	3.20
Total length	9.20
Superficial liq. velocity	4.4 m/h
Reboiler heat duty	4625 kW
Condensor heat duty	4595 kW

Appendix A6.XXII

Costing

A cost estimation was done for the two columns mentioned in paragraph 3.2.

1 The sieve trays column:

Shell: $C_{pv} = C_{pvo} * F_m * F_p * I/336.2$

with F_m: material-of-construction factor F_p: design-pressure cost factor I: Chemical Engineering Cost Index C_{pvo} : (a + b*l) * d^{1.1} with 1: length of the vessel d: internal diameter a: 1294 b: 1141 The pressure in the column is 1 bar: $F_p = 1$ Material: stainless steel: $F_{\rm m} = 3.7$ I = 375Chem. Eng. Cost Index: Length of vessel: 1 = 10 m.Internal diameter: d = 1.48 m.

This results in a total cost for the shell (C_{pv}): \$ 78,948.- (HFl 145,250.-)

Trays: $C_{int} = N_{tr} * C_{tr} * F_{m} * F_{nt} * F_{tr} * I/336.2$

with N_{u} : number of trays F_{m} : cost factor of construction material F_{m} : cost factor of number of trays F_{u} : cost factor of the tray type I : CEPC Index $C_{u} = 58.7 + 88.4 * d + 52.9 * d^{2}$ with d: internal diameter

Number of trays is 10: $N_{tr} = 10$ Material: stainless steel: $F_m = 1.7$ $F_{tr} = 1.5$ $F_{tr} = 1$ $C_{tr} = $306.-$

Total cost for internals (Cint): \$ 8,687.- (HFI 16,000.-)

So the total costs for the sieve trays column are: \$ 87,635.- (HFI 161,250.-)

2 The packed column (with mellapak Y250)

Shell:

Same as the one above: 1 = 7.60 m. d = 1.36 m. Fm = 3.7 (again stainless steel)

This leads to $C_{pv} =$ \$ 57,680.- (HFl 106,100.-)

Internals:

Mellapak Y250: HFl 10,000.-/m3

Total packing volume: $0.25*\pi*1.36^{2}*1.65 = 2.40 \text{ m}^3$ Internals cost: HFI 24,000.-

Total costs for the packed column: HFI 130,100.-

figure A.7.I.1 typical mixer-settler

Appendix A7.I EXTRACTION EQUIPMENT

1 MIXER-SETTLERS (figure A.7.I.1)

- * the liquids are continuously contacted in the mixer under thorough agitation and then they flowout to another compartment of the same vessel or to another vessel where the phases seperate; these two vessels are often used in a cascade arrangement in order to obtain continuous operation,
- * a cascade of mixer-settlers requires large floorarea which depends mostly on the settling characteristics of the liquid mixture,
- * the intens agitation required for efficient extraction will have to be balanced against the possibility of forming a stable emulsion,
- * the pumps and extensive piping system involved in mixer-settler installations increase the initial cost of the equipment,
- they are particularly practical and economical for the operations (washing and neutralization) that require high capacity and few stages (<3),
- very high flow rates prohibit the use of a column due to the large diameters,
- * pilot testing is usually desired for proper design of mixer settlers,

useful features:

- * flexibility and reliability,
- * capacity to handle slurries,
- * intensity of agitation can easily be varied independent of the liquid flow rates,
- * high stage efficiency,
- * good contacting,
- * handles wide flow ratio,
- * low headroom,
- * many stages available,
- * reliable scale up,
- relatively insensitive to interfacial debris and undissolved solids,

disadvantages:

- * large holdup,* high power costs,
- * high investment,
- * they require large floor or ground space (especially
 - because of the typical settler),
- * interstage pumping may be required,
- * generally more complex than other devices and occupy a relatively large volume.
- * large residence times (considerable time needed to achieve steady state) require large inventory of working solutions; they tie up a large amount of in-process material, which can be costly or hazardous,
- * they can suffer large solvent losses; most commercial units are difficult to seal,

figure A.7.I.2 Podbielniak centrifugal extractor

figure A.7.I.3 Luwesta centrifugal extractor

2 Centrifugal extractors (figures A.7.I.2 and A.7.I.3)

* Multi-stage countercurrent centrifugal extractors contain a series of perforated concentric cylinders. Heavy phase is fed into the center of the disc series, the light phase to its periphery. Interaction between the fluids is governed by a pressure balance. By setting the inlet pressure of the two phases and the outlet pressure of the light phase, one can shift the position of the interface and thus set which phase is dispersed and which is continuous.

* application of centrifugal force yields many times the force available under normal gravity conditions thereby enhancing the seperation of 'difficult settling' systems,

* by rapid rotation of the entire mass of liquids involved in extraction, as in a centrifuge, the pressure head available to force the liquids through the equipment could be greatly increased. This results in much higher liquid throughput with a shorter time of contact between the liquids,

* they can be advantageously used to process liquids with emulsifying tendencies or high viscosities or interfacial tensions which are difficult to handle in other extractors,

* Attractive for circumstances where the solute is particularly valuable (pharmaceuticals) or the requirements for product cleanliness are strict.

* ordinarily suitable only when three or fewer stages are required, although up to seven stages have been attained,

advantages:

 * handles extremely low density difference between phases (less than 50 [kg/m³],

- * achieving steady state in a relatively short period, short residence time,
- * low holdup volume, short holdup time, low space requirements,
- * small inventory of equipment,

* small extractor volumes for high flow capacities,

- * requires low inventories of the liquid-liquid phase,
- * continuous extraction processes reach steady state quickly, with relatively little of the raffinate requiring reprocessing to bring it to its final specifications,

disadvantages:

- * high initial and maintenance costs,
- * high operating costs,
- * limited number of stages in single unit.
- regular maintenance of the bearings and seals is required because they are relatively high speed machines with fast moving parts,
- * if solids are present, plugging can be a problem,

3 Unagitated columns

- * simplest type of contactors available for liquid- liquid-extraction,
- * they occupy small floor area, high headroom required,
- * low initial and operating costs,
- * relatively low efficiency,
- * most suitable for application where the number of stages required is low,
- * limited throughput with small density difference,
- * high headroom,
- * cannot handle high flow ratio,
- * not/less suitable for low density differences,
- * difficult scale up.
- 3.1 Spray column (figure A.7.I.4)
 - * vertical column in which the dispersed phase is sprayed through the continuous phase,
 - * capacity depends on the throughput rates of both the dispersed and the continuous phase and also on the size of the drops of the dispersed phase produced by the entrance nozzles,
 - * axial mixing reduces the extraction rates because of the deviation from true countercurrent behaviour, therefore only used when the overall transferunits involved in the seperation process is relatively small,
 - * only when the density ratio and viscosity ratio of the dispersed to the continuous phase are large, the continuous phase may approach perfect mixing. Such ideal conditions of flow behaviour are not normally met with in spray columns operated in commercial practice,
 - * much axial mixing occurs, so theyseldom represent more than one theoretical stage,
 - * they find their niche in the handling of fluids containing large amounts of suspended solids, because they lack internals to plug,
 - * used for simple seperations like washing, treating and neutralization,

advantages: * simplest possible contactor in construction,

- * spraycolumns are inexpensive,
- * they have high flow capacity,

disadvantages:

- * very low efficiencies because of poor phase contact and excessive backmixing in the continuous phase,
- * it is ordinarily difficult to obtain an equivalent of more than a few theoretical stages in a single spray column,

figure A.7.I.5 packed column

figure A.7.I.6 sieve-plate column

3.2 Packed column (figure A.7.I.5)

- * the column is usually packed with packings such as Raschig rings, Lessing rings, Intallox and Bearl saddles, which promote coalescence and redispersion of the dispersed phase,
- to avoid coalescence of the dispersed phase it is essential that the continuous phase preferentially wets the packing and other column internals,
- * columndiameter determined from desired flow capacity and flooding characteristics of the packing,
- * more efficient than the spray extraction towers on account of increased efficiency brought about by the use of packings,
- * the pair of liquid phases must have sufficient difference in density to induce and maintain traffic of the phases in the interstices of the packing,
- * particularly used in cases where the number of transfer units is small,
- * generally not suitable when the liquids contain suspended solids.
- * they offer advantages when only a few stages (up to three, say) are required,
- * should not be used if the ratio of flow rate is beyond the range 0.5 to 2.0 because of probable flooding when suitable hold-up and interfacial area were provided,
- * packed column preferred over a spray column, as the reduced flow capacity is less significant than the improved mass transfer,

advantages:

- * random packing aids the formation of drops, which helps the mass transfer; this leads to a better efficiency because of improved contacting and lessened axial mixing,
- * the packing pieces in the column help to increase the local velocity of the continuous phase and restrict the circulation or backmixing in that phase,
- * the packings improve the distribution and holdup of the dispersed phase by distorting and breaking up the bigger drops and hindering their free movement, thus yielding more surface for mass transport,
- disadvantages: * random packings restrict the free area for flow of the fluids and thus hinders throughput,
 - * can be difficult to scale up,
 - * they are subject to plugging when solids are present,
 - * effective initial distribution of liquid is critical for the performance of the extractor,

3.3 Sieve plate column (figure A.7.I.6)

- * consists of multiorifice plates with or without downcomers,
- * the dispersed phase travels up or down through the column depending upon the density of the phase dispersed,

- * they provide repeated coalescence and redispersion of the drop phase and offer the advantages of cross-flow of the continuous phase in addition to yielding high extraction efficiencies with practically no axial mixing,
- * essentially stagewise in operation but careful design can provide excellent flow capacities for this type of column,
- * they may be considered as a series of short spray columns arranged one above the other.
- particularly used for processes requiring only a few thyeoretical stages and for corrosive systems where no mechanically moving parts are advantageous,

* besides having a principle interface at either the top or the bottom of the column, the sieve plate extractor also has a number of intermediate interfaces, one for each tray,

- * because of simplicity and low costs, still used in many commercial ex tractions, despite their low efficiency,
- advantages: * reasonably high throughput capacity, as they can be built in large dimensions,
 - * simple scale-up, as there is little backmixing,
 - * reasonably flexible and efficient,
 - * the plates eliminate backmixing of the continuous phase almost completely,
 - * the repeated coalescence and dispersion of the dispersed phase enhances the extraction rates considerably,

disadvantages:

- * they are very susceptible to solids plugging,
- * relatively narrow operating range in regard to throughput,* low efficiency,

4 Agitated columns

- * they receive mechanical energy via rotating or reciprotating elements or pulsation. This creates and maintains dispersion in the extractor over a wide range of operating conditions,
- * the degree of dispersion and consequently the performance of the column can be considerably enhanced by the introduction of some form of mechanical agitation,
- * they can generally attain a shorter height equivalent to a theoretical stage,

Rotary agitated

advantages: * good dispersion,

- * reasonable costs.
- * insensitive to silica contamination in the feed stream,
- * many stages possible,
- * relatively easy scale up,

figure A.7.I.7 Scheibel column
* they have a high efficiency (depends upon the geometry of the system and upon the power input to the impeller) and flexibility,

disadvantages:

- * limited throughput with small density difference,
- * cannot handle emulsifying systems,
- * cannot handle high flowratio.
- * since the force of gravity is used to produce countercurrent flow, mechanical agitation may also promote backmixing (this can be reduced by introducing suitable baffles),
- * these contactors have increased maintenance costs,

Pulse agitated

- * an oscillating pulse to the liquids in the extraction column (such as packed and Sieve-plate column) can appreciably increase the extraction efficiency (due to the increase in both turbulence and interfacial area caused by the breakup of dispersed phase),
- * high efficiency and the possibilaty of creating the pulse remotely have made such columns important in nuclear industry,
- * the performance of these column contactors indicates that they are more efficient and posess better operational flexibility than the conventional sieve-plate, packed and spray columns,
- * increases both turbulence and interfacial area,
- * low axial mixing and a relatively small increase in axial mixing with an increase in column diameter,

4.1 York Scheibel column (figure A.7.I.7)

- * extraction column with an impressive number of theoretical stages per unit of height,
- * replacement of the mesh not only solves the scale-up and solids problems but also raises the efficiency of the column.
- * first rotary agitated column to be introduced commercially,
- * earlier design: a cylindrical vessel with alternate packed (normally filled with York mesh packings) and unpacked sections serving as settling and mixing chambers with centrally spaced turbine blade impellers functioning within the unpacked, non-baffled sections,
- * later version: the impeller used is shrouded by keeping two stationary ring baffles on either side of the paddle in each rotor compartment. The ring baffles help the fluid to be thrown away radially to wards the wall. The wall forces the fluid to return to the central intake of the impeller before it passes through the next packed section,

figure A.7.I.8 Oldshue-Rushton column

figure A.7.I.10 RDC

figure A.7.I.13 vibrating plate extractor

figure A.7.I.12 Karr column

The shell (1) of the column proper is connected at each end to settling sections of larger diameter. The upper settling section (2) is provided with a distributor for the heavy phase (3) and an overflow for the light phase (4). The lower settling section (5) contains an outlet for the heavy phase (6) and a distributor for the light phase (7). According to the choice of the phase being dispersed, either section may be equipped with an interface control. In the discussion that follows, the lighter phase is assumed to be dispersed.

A stack of perforated plates (8) is situated in the shell, fastened to a rod (9) connected to an eccentric (10) that imparts to the whole stack a vertical harmonic motion, the amplitude and frequency of which are among the important controlling variables. The geometry of the perforated plates is specific for the VPE. The plates are provided with a number of small circular holes for the dispersed phase (11) and with one or more large openings for the continuous phase (12). These openings may either be circular or have various forms suitable from the point of view of plate design. In columns of smaller diameter the passages for continuous phase of neighboring plates are placed on opposite sides of the column axis, so that a crossflow of phases between the plates can occur. On large plates, the distribution of passages is such that several parallel sections with a crossflow of phases are created. As a general rule, the plates are provided with a vertical cylindrical wall (13) on their circumference extending against the flow of the dispersed phase. A similar lining may be applied also to the passages for continuous phase.

* the stage efficiency in these columns increases with agitator speed until it reaches a maximum value and finally decreases at higher agitator speeds presumably because of the formation of emulsion which can not be broken even in the packed settling chamber.

4.2 Oldshue-Rushton Column (figure A.7.I.8)

- * this is essentially a series of baffled mixing tanks stacked one atop another,
- * the vertical baffles enhance the mixing characteristics of each compartment, and the horizontal baffles define the mixing stages and help to minimize axial mixing,

4.3 Kühni Column (figure A.7.I.9)

- * consists of a series of mixing compartments (similar in principle to the Scheibel baffle column), each of which has a shrouded turbine impeller located between two perforated plates,
- * the hole area of the plates depends on the flow rates and the process application.

4.4 Rotary Disc Contactor (figure A.7.I.10)

- * one of the most widely used rotor-agitated columns for liquid-liquid extraction, especially in the petroleum and chemical industries,
- * it uses shearing action of a rapidly rotating disc to interdisperse the liquids,
- * the cylindrical column is separated into compartments. A centrally mounted rotating shaft run by a variable speed gear unit carries a number of equally spaced discs such that each disc operates in the middle of a compartment formed by stator rings,
- * the rotating discs offer a shearing action on larger drops and above a certain speed break them into smaller ones and therefore control the size of the dispersed drops,
- * the stators limit axial mixing and define the mixing stages in the vessel,
- * the intensity of turbulence is governed mainly by the rotor speed which also controls the size of the dispersed drops,
- * severe backmixing of the phases at high speeds may produce drastic reduction in the concentration driving force, reducing the mass transfer efficiency,
- * the equipment is more versatile in that its capacity can be varied at will and the scaling up is easier when compared to other contactors.

4.5 Asymmetric Rotating Disc Contactor (figure A.7.I.11)

- * a column having seperate mixing and settling compartments,
- * is asymmetric in that the shaft and rotors are not on the centerline of the vessel,
- * baffles between each stage direct the mixed liquids to a settling zone, from which they pass either upward or downward to the next stage,

4.6 Karr Column (figure A.7.I.12)

- * the droplets are formed by internals that reciprocate,
- * because it offers uniform shear mixing across the entire cross section, this column is particularly suitable for systems that tend to emulsify,
- * it offers very high throughput compared to other agitated extractors,
- because of its uniform-shear-mixing characteristics it provides drops in a narrow size range,
- * has a relatively high volumetric efficiency ((throughput per unit area)* (stages per unit height))

4.7 Vibrating Plate Extractor (figure A.7.I.13)

- similar to the reciprocating plate column;
 - smaller holes, less free area, employs downcomers or upcomers for the continuous phase (in this respect similar to the unagitated sieve plate column),
- * two seperate sets of plates, each set being supported by its own shaft,
- * the motion of the shaft is timed in such a way that each plate reciprocates 180 deg. out of place with the two adjecent plates,
- * thus the instantanuous velocities of neighbouring plates are of equal magnitude and opposite directions,
- * increases both capacity and efficiency.
- 4.8 Pulsed Sieve Plate Extractor
 - * mechanical energy is provided by pulsing the liquid itself,
 - * the liquids are cyclically pulsed in such a way that axial force is imposed on each of the phases,
 - * during each cycle, first the light phase and then the heavy phase are accellerated through th plates. This action disperses one of the two phases into drops as it is forced through the plates, and agitates the continuous phase,
 - * low axial mixing and high extraction efficiency because of:

uniform distribution of drops in the column,

uniform distribution of energy over a cross section of the column,

figure A.7.I.14 pulsed packed column

- * at lower pulsed volume velocities (amplitude*frequency*column crosssectional area) a discrete layer of liquid appears between plates during each reversal of the pulse cycle,
- * with higher pulsed volume velocities no coalescence and fairly uniform dispersion occurs,
- * this column acts as a stage-wise contactor, with coalescence and redispersi on of the dispersed phaseat each plate,

4.9 Pulsed Packed Extractor (figure A.7.I.1.4)

* see : packed column columns agitated by pulsation

Appendix A7.II PHYSICAL PROPERTIES

MEG

 $C_p^{liq}(T(K)) = 0.1148 \ 10^6 - 0.75 \ 10^2 \ T + 0.8020 \ T^2 - 0.57 \ 10^{-3} \ T^3 \qquad [J/kmol.K]$

molecular weight	M _{MEG}	62.07 [g/mol]
viscosity (20°C)	η_{MEG}	21 10 ⁻³ [Pa.s]
surface tension (20°C)	σ_{MEG}	48.4 10 ⁻³ [N/m]
critical temperature	Tc	436.85 [°C]
critical pressure	Pc	77 [bar]

temp. [°C]	pressure [bar]	liq. visc. [cP]	liq.density [kg/m ³]
25	0.000115	17.05294	1109.925
50	0.000906	7.06949	1092.448
75	0.005017	3.53366	1074.391
100	0.021117	2.01736	1055.666
125	0.071436	1.26939	1036.162
150	0.202678	0.85915	Ĩ015.745
175	0.498321	0.61475	994.249
200	1.089311	0.4592	971.463
			the second secon

surface tension $\sigma = A(1-T_r)^B$ with: A = 0.069370B = 0.59770

FLEXIBLES

 $C_p^{hq}(T(K)) = C_p(25^{\circ}C) (0.64 + 1.2 \ 10^{-3} \ T) [J/kg.K]$

specific heat (25°C)	C _p (25°C)	1930 [J/kg.K]
molecular weight	M _{MEG}	5000 [g/mol]

temp. [°C].	visc. [cP]	density [kg/l]
-1	53.0	-
4	30.0	-
5	24.0	-

figure A.7.II.1 flexible viscosity as determined by MMK

figure A.7.II.2 surface tension flexible-phase

22.0	-
19.0	-
15.0	-
12.5	-
-	1.060
11.0	-
6.0	1.007
-	1.003
-	0.999
-	0.996
-	0.992
-	0.988
	22.0 19.0 15.0 12.5 - 11.0 6.0 - - - - - - -

Figure A.7.II.1: flexible viscosity as a function of temperature.

FLEXIBLE PHASE

density (24°C) $\rho = 1070 \text{ [kg/m^3]}$ $\ln(visc[cP]) = \frac{5.92 \ 10^3}{T(K)} - 1.22 \ 10^1$

Figure A.7.II.2: flexible-phase surface tension as a function of temperature.

DADPM

(*)	*) $\rho_{\rm m} = \Sigma \mathbf{x}_{\rm i} \rho_{\rm i} \rho_{\rm m}$		mixture density
		\mathbf{x}_{i}	mass fraction component i

density component i Pi

(*) $\ln(\eta_m) = \Sigma x_i \ln(\eta_i)$

mixture viscosity η_{m} \mathbf{x}^{i} mole fraction component i viscosity component i η_i

(*) molar weight of mixture

$\mathbf{M}_{\mathrm{m}} = \boldsymbol{\Sigma} \mathbf{x}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}} \mathbf{M}_{\mathrm{m}}$	molecular weight of mixture
\mathbf{x}_{i}	mole fraction component i
\mathbf{M}_{i}	molecular weight of component i

(*) diffusion coefficient

$$\delta = \frac{7.4 \ 10^{-8} \ (\phi \ M_B)^{\frac{1}{2}} T}{\eta_B \ V_A^{0.6}}$$

δ = mutual diffusion coefficient of solute A at very low concentrati ons in solvent B, cm₂/s

¢ = association factor of solvent B, dimensionless

- MR = molecular weight of solvent B, g/mol
- = viscosity of solvent B, cP $\eta_{\rm B}$

= molar volume of solute A at its normal boiling temperature, V_A cm³/mol

T = temperature, K

(*) viscosity of mixture of continuous and dispersed phase in the column

$$\eta = \frac{\eta_c}{1-h} \left[1 + \frac{1.5 \quad \eta_d \quad h}{\eta_d + \eta_c} \right]$$

= mixture viscosity η_{m}

- = viscosity continuous phase η_c
- =viscosity dispersed phase η_{d}
- h = hold-up dispersed phase

(*) specific heat C_p of mixture $C_{p,m} = \Sigma x_i C_{p,i} C_p$ $\begin{array}{c} \mathbf{C}_{\mathbf{p}} \\ \mathbf{x}_{i} \\ \mathbf{C}_{\mathbf{p},i} \end{array}$ = specific heat of mixture = concentration of component = specific heat of component i

Appendix A7.III DESIGN OF ROTARY DISC CONTACTOR

The design of the Rotary Disc Contactor consists of two sections. In the capacity calculation the dimensions of stator, column, rotor and compartment will be calculated. In the seperation calculation the height of the column will be determined.

The design equations we used are from Zuiderweg [2]. Used properties calculated with Reid [7] and Perry [9].

A. Capacity calculation

1. Determine maximum hold-up h_{max} for the given $\alpha = Q_d/Q_c = V_d/V_c$ by iteration of:

$$\alpha = \frac{2 h_{\max}^{2} - h_{\max}^{3}}{\left[1 - h_{\max}^{3}\right]^{3}}$$

- 2. Choose operational hold-up h to be: $0.75 * h_{max}$.
- 3. Determine U_o with:

$$U_{\rho} = 0.9 \frac{[\Delta \rho g]^{\frac{5}{21}} \sigma^{\frac{6}{21}}}{\rho_{c}^{\frac{10}{21}} \eta_{c}^{\frac{1}{21}}}$$

4. Determine d_m at this condition;

$$d_m = \left[\frac{\rho_c U_o^2}{\sigma}\right]^{-1}$$

5. Determine ε in case of $d_{3,2}$ between d_m (4.) and about 1 [mm],

$$d_{3,2} = 0.25 \left[\frac{\sigma}{\rho_c}\right]^{\frac{3}{5}} e^{-\frac{2}{5}}$$

6. Determine terminal velocity U_o ($d_{3,2}$ in this interval);

$$\frac{4}{3} \frac{\Delta \rho \ d_{3,2} \ g}{\rho_c \ U_o^2} = 2.35 \left[\frac{\eta_c}{U_o \ d_{3,2} \ \rho_c} \right]^{\frac{1}{5}}$$

This formula is valid in case Reynolds number Re is larger than 10 and smaller than a maximum value of $1360*We^{-(6/5)}$.

Weber:

Reynolds:

$$We = \frac{\rho_c U_o^2 d_{3,2}}{\sigma} \qquad \qquad Re = \frac{\rho_c U_o d_{3,2}}{\eta}$$

7. Use the hold-up correction to determine slip velocity U_s;

$$U_s = U_o e^{-h}$$

8. Use the known U_s , α and h to determine U_d and U_c ;

$$U_s = \frac{U_d}{h} + \frac{U_c}{1-h}$$

$$\alpha = \frac{U_d}{U_c}$$

9. Determine stator diameter S and further column diameter D, height of compartment H and rotor diameter R;

$$\frac{\pi}{4} S^2 = \frac{Q_d + Q_c}{U_d + U_c}$$

Figure 7.4. gives us:

D [m]	0.06-0.3	0.3-1.0	> 1.0
S/D	0.7	0.7	0.7
R/D	0.5	0.5	0.5
H/D	0.3	0.2	0.1

B. Seperation calculation

1. Determine superficial velocities of dispersed (V_d) and continuous (V_c) phase;

$$V_d = U_d \left(\frac{S}{D}\right)^2$$

$$V_c = U_C \left(\frac{S}{D}\right)^2$$

figure A.7.III.1 coalescence frequency ω

figure A.7.III.2 Sherwood number Sh_d

3

2. Determine extraction factor E;

$$E = K \frac{S}{F}$$

3. Determine interfacial area a, using the calculated values of h and $d_{3,2}$;

$$a = 6 \frac{h}{d_{3,2}}$$

- 4. Estimate contacting time t by determining coalescence constant ω from figure A.7.III.1 and knowing that t equals 3 to 5 times (1/ ω).
- Determine F₀, estimate Sherwood number of the dispersed phase Sh_d from figure A.7.III.2 and calculate the mass transfer coefficient of dispersed phase k_d;

$$F_0 = \frac{t \, \delta_d}{d_{3,2}^2}$$
$$Sh_d = \frac{k_d \, d_{3,2}}{\delta_d}$$

6. Determine mass transfer coefficient of continuous phase k_c;

$$\frac{k_c \ d_{3,2}}{\delta_d} = 2 + 0.42 \left[\frac{d_{3,2}^{1.33} \ \varepsilon^{0.33} \ \rho_c}{\eta_c} \right]^{0.62} \left[\frac{\eta_c}{\delta_c \ \rho_c} \right]^{0.36}$$

7. Determine actual overall height of mass transfer unit HTU_{∞} ;

$$HTU_c = \frac{V_c}{a k_c}$$

$$HTU_d = \frac{V_d}{a k_d}$$

* *

$$HTU_{cc} = HTU_{c} + HTU_{d} E$$

- 8. Determine number of revolutions of rotor;
- Determine effective diffusion coefficients of dispersed (δ_{e,d}) and continuous (δ_{e,c}) phase;
- 10. Determine height of diffusion unit HDU_{∞} ;

$$\varepsilon = \frac{4}{\pi} c_p \frac{n^3 R^5}{H D^2}$$
$$\delta_{e,d} = \frac{V_d H}{h} + 0.024 R n H \left[\frac{S}{D}\right]^2$$
$$\delta_{e,c} = \frac{0.5 V_c H}{1-h} + 0.012 R n H \left[\frac{S}{D}\right]^2$$

In case of little axial mixing

$$\frac{(1-h) \, \delta_{e,c}}{V_c} + \frac{h \, \delta_{e,d}}{V_d} \leq HTU_{oc}$$

and

$$HDU_{oc} = \frac{(1-h) \delta_{e,c}}{V_c} + \frac{h \delta_{e,d} E}{V_d}$$

In case of much axial mixing

$$\frac{(1-h) \delta_{e,c}}{V_c} + \frac{h \delta_{e,d}}{V_d} > HTU_{oc}$$

and

$$HDU_{oc} = \frac{(1-h) \delta_{e,c} E}{V_c} + \frac{h \delta_{e,d}}{V_d}$$

11. Determine total height of effective overall mass transfer unit HTU_{∞}^{*}

$$HTU_{oc}^* = HTU_{oc} + HDU_{oc}$$

12. Determine height equivalent theoretical stages HETS;

$$HETS = \frac{\ln E}{E-1} HTU_{oc}^*$$

Determine length of extraction compartment (L) and total column length (L_{TOT});

$L_{TOT} = L + 0.3 + 0.5 D$

Calculations done with mathcad simulation program;

	80 _° C	100 _° C
α	1.088	1.090
h _{max}	0.391	0.391
h	0.293	0.293
U。	0.083	0.085
d _m	0.0056	0.0053
d _{3,2}	0.0011	0.0010
ε	0.179	0.201
U。	0.0265	0.0270
We	0.020	0.020
Remax	1.454 10 ⁵	1.454 10 ⁵
Re	10.2	14.92
Us	0.0198	0.0201
U _d	0.0042	0.0043
Uc	0.0039	0.0039
S	0.269	0.268
D	0.384	0.383
Н	0.077	0.077
R	0.192	0.191
\mathbf{V}_{d}	0.0021	0.0021
V _c	0.0019	0.0019
E	1.979	0.989
a	1.577 10 ³	1.6805 10 ³
ω	0.12	0.12
t	33.33	33.33
Fo	5.92 10-4	1.74 10-3
Sh _d	50	28
k _d	9.899 10-7	1.534 10-6
k _e	1.670 10-6	4.213 10-6

HTU _c	0.72	0.27
HTU _d	1.32	0.81
HTU∞	3.32	1.07
n	0.135	0.134
δ _{e,d}	5.612 10-4	5.699 104
δ _{e,c}	1.142 104	1.157 104
HDU∞	3.32	0.12
HTU _{cc} *	3.52	1.19
HETS	2.46	1.20
L	9.83	27.67
L _{TOT}	10.32	28.17
harmonic and her second		

Appendix A7.IV DESIGN OF PULSED PACKED COLUMN

The used design equations are from Ten Brink [4], Stemerding [5] and Lo [3]. Physical properties calculated with Reid [7] and Perry [9].

Choise of packing material;

The given calculation procedure is valid for packing materials with a void space up to 80%. We choose to use Raschig rings because they are largely applied in practice.

Raschig rings: $d_p = 19 \ 10^{-3} \ [m]$ $S_p = 240 \ [m^2/m^3]$ $\Omega = 0.8 \ [volume \ fraction]$

A. Calculation of column diameter

Assume a pulsation velocity A_p*f of 0.0125 [m/s] and a pulsation frequency f of 5400 cycles/h.

Determine drop diameter d_o without pulsation and the Sauter mean drop diameter d_{3,2};

$$d_o = 1.39 \left[\frac{\sigma}{\Delta \rho g} \right]^{0.5}$$

$$\frac{1}{d_{3,2}} - \frac{1}{d_0} = 6700 \left[\frac{1-\Omega}{\Omega} \right]^{0.95} \left[\frac{2 \rho_c A_p f}{\eta_c S_p} \right] \left[\frac{\eta_c^2 S_p}{\sigma \rho_c} \right]^{0.23} \left[\frac{\sigma S_p^2}{\Delta \rho g} \right]^{0.23}$$

2. Determination velocities of continuous (V_c) and dispersed (V_d) phase ;

First we need to calculate characteristic velocity Vo from

$$V_{a} = 6.23 \ 10^{-3} \ d_{32}^{0.727} \ \Delta \rho^{0.815}$$

This equation is valid if R < 0.406, with

$$R = d_{3,2}^{0.787} \Delta \rho^{0.255} \left[2 A_p f \right]^{-0.144} \left[S_p (1-\Omega) \right]^{0.426}$$

To calculate flooding velocities of continuous (V_{cf}) and dispersed (V_{df}) phase we solve the next equations by iteration;

$$V_{cf} = \Omega \ V_o \left[1 - 2 \phi_f \right] \left[1 - \phi_f \right]^2$$

$$V_{df} = 2 \Omega V_o \phi_f^2 [1 - \phi_f]$$
$$\alpha = \frac{Q_d}{Q_c} = \frac{V_{df}}{V_{cf}}$$

To find the velocities of continuous and dispersed phase we use:

$$V_d = 0.75 V_{dy}$$

$$V_{c} = 0.75 V_{cf}$$

3. Determine cross-sectional area A and diameter D of the column;

$$A = \frac{Q_d + Q_c}{V_c + V_d}$$
$$D = \left[\frac{4}{\pi} A\right]^{0.5}$$

B. Calculation of column height

1. Determine hold-up of dispersed phase ϕ_d by iteration of:

$$\frac{V_d}{\Phi_d} + \frac{V_c}{1-\Phi_d} = \Omega \ V_o \ (1-\Phi_d)$$

2. Determine interfacial area a;

$$a = \frac{6 \ \Omega \ \phi_d}{d_{3,2}}$$

3. First estimation height of overall diffusion unit HDU_{o} .

Assume the axial diffusion coefficients of continuous ($\delta_{ax,c}$) and dispersed ($\delta_{ax,d}$) phase are 0.0015 and 0.001 respectively.

$$p_c = \frac{V_c}{\delta_{ax,c}}$$

$$p_d = \frac{V_d}{\delta_{ax,d}}$$

$$HDU_o = \frac{1}{p_c} + \frac{1}{p_d}$$

4. Determine overall mass transfer coefficient K_{oc}.

Assume mass transfer coefficients of continuous (k_c) and dispersed (k_d) phase are the same as in case of RDC.

$$\frac{1}{K_{oc}} = \frac{1}{K_c} + \frac{m}{k_d}$$

5. Determine overall theoretical height of transfer unit HTU_{∞} based on continuous phase;

$$HTU_{oc} = \frac{V_d}{K_{oc} a}$$

6. Determine total height of effective overall mass transfer unit;

$$HTU_{oc}^* = HTU_{oc} + HDU_{o}$$

7. Determine height equivalent theoretical stages HETS;

$$HETS = \frac{\ln E}{E-1} HTU_{oc}^{*}$$

8. Estimation length of extraction equipment L;

$$L = N_{th} HETS$$

We can use the following equations to determine the actual extraction length L by iteration. By variation of L we can find a value at which the 'estimated' value (8.) equals the one found by iteration.

$$pl = \frac{1}{\frac{1}{E p_d} + \frac{1}{p_c}}$$

$$p2 = \frac{1}{\frac{1}{p_d} + \frac{1}{E p_d}}$$

$$p0 = \frac{\frac{0.1 L}{HTU_{oc}} + 1}{\frac{0.1 L}{HTU_{oc}} + \frac{p1}{p2}} p1$$

$$HDU_o = \frac{1}{p0 + \frac{0.8}{L} \frac{\ln E}{1 - \frac{1}{E}}}$$

$$HTU_{oc} = HTU_{oc} + HDU_{oc}$$

$$HETS = \frac{\ln E}{E-1} HTU_{oc}^*$$

$$L = N_{th} HETS$$

9. Determine total column length L_{TOT} ;

$$L_{TOT} = L + 6 + \left[\frac{L}{5 D} - 1\right] 1.5$$

	80 _° C	100 _° C
d _o	0.0103	0.0101
d _{3,2}	0.0014	0.0014
V。	0.0018	0.0018
R	0.153	0.153
V_{cf}	2.02 10-4	2.03 10-4
$\mathbf{V}_{\mathtt{df}}$	2.20 10-4	2.21 104
V_{d}	1.65 10-4	1.66 10-4
V _c	1.51 10-4	1.52 10-4
А	1.08	1.09
D	1.17	1.18
φ _d	0.160	0.160
а	541.5	544.5
Pc	0.151	0.152
Pd	0.165	0.166
K _{oc}	1.560 10-6	1.579 10-6
HTU_{∞}	0.19	0.19
HDU。	5.95	10.22
$\mathrm{HTU}_{\infty}^{*}$	0.14	10.42
HETS	4.28	10.47
L	17.14	41.89
L _{tot}	25.06	54.00

Calculations done with mathcad simulation program lead to:

Appendix A7.V DESIGN OF SIEVE PLATE COLUMN

Used equations are design equations from Krishna, college syllabus, subject: I21. Because design of RDC and PPC columns show that column dimensions become less easy for construction with increasing temperature (which leads to higher costs), and the different temperatures hardly effect the totally required energy of the total process that is designed, we choose the extraction to take place at 80°C. Design of the sieve plate column will only be done at a temperature of 80°C.

A. Determination of column area and diameter, downcomer area and perforated area.

1. choose a hole diameter d_h ;

$$0.5 \sqrt{\frac{\sigma}{\Delta \rho g}} < d_h < \pi \sqrt{\frac{\sigma}{\Delta \rho g}}$$

in this case:

 $3.71 < d_h < 23.7 \text{ [mm]}$

set a pitch; 12

2. Select hole velocity of dispersed phase (U_h);

$$Eo = (\Delta \rho) g \frac{d_h^2}{\sigma}$$

$$We = U_h^2 \rho_d \frac{d_h^2}{\sigma}$$

From these two equations Uh can be determined by:

$$We = 4.33 Eo^{-0.26}$$

The following guideline appeals:

 $U_{h} > 0.15 \text{ m/s}$

3. Predict Sauter mean drop diameter d_{32} ;

$$Fr = \frac{U_h^2}{g d_h}$$

For Eö < 0.4:

$$\frac{d_{3.2}}{d_h} = Eo^{-0.4} \left[2.13 \left(\frac{\Delta \rho}{\rho_d} \right)^{0.67} + \exp(-0.13 \ Fr) \right]$$

For $E\ddot{o} \ge 0.4$:

$$\frac{d_{3.2}}{d_h} = Eo^{-0.42} \left[1.24 + \exp(-Fr^{0.42}) \right]$$

Generally $d_{3.2} \approx 0.003 - 0.007 \text{ [m]}$

4. Determine active area of a tray or bubbling area A_b ;

hole area (A_h) ;

$$A_h = \frac{Q_d}{U_h}$$

Number of holes (N_h);

$$N_h = \frac{A_h}{\frac{\pi}{4} d_h^2}$$

Bubling area A_b;

$$\frac{A_h}{A_b} = 0.907 \left[\frac{d_h}{p}\right]^2$$

5. Determine active downcomer area A_d;

Assume $d_{min} = 0.1 d_{3.2}$

$$U_{CD} = 0.249 \ d_{\min} \left[\frac{g^2 \ \Delta \rho^2}{\rho_c \ \eta_c} \right]^{\frac{1}{3}}$$

$$A_d = \frac{Q_c}{U_{CD}}$$

6. Determine tower diameter D;

$$A_T = A_b + 2 A_d$$
$$D = \sqrt{\frac{4}{\pi} A_T}$$

B. Determination of number of plates and column height

1. Determine dispersed phase velocity (U_d) and dispersed phase hold-up (ϕ_d) ;

$$U_{d} = \frac{Q_{d}}{A_{b} + A_{d}}$$
$$V_{slip} = \frac{U_{d}}{\Phi_{d}}$$

$$\frac{V_{slip}^2}{g d_p} = 2.725 \frac{\Delta \rho}{\rho_c} \left[\frac{1 - \phi_d}{\frac{1}{1 + \phi_d^3}} \right]^{1.834}$$

2. Choose tray spacing;

 $T_s \approx 0.6 \ [m]$

3. Estimate overall tray efficiency E_o;

$$\frac{K_d}{\left[\frac{Ud}{\Phi_d}\right]} = \frac{0.00375}{1 + \frac{\eta_d}{\eta_c}}$$

4. number of plates (N), extraction height (L) and column height (L_{TOT}) ;

$$\frac{K_c}{\left[\frac{U_d}{\Phi_d}\right]} = 0.725 \left[\frac{d_p \left[\frac{U_d}{\Phi_d}\right] \rho_c}{\eta_c}\right]^{-0.43} \left[\frac{\eta_c}{\rho_c D_c}\right]^{-0.58} \left[1 - \phi_d\right]$$
$$\frac{1}{K_{odr}} = \frac{1}{K_d} + \frac{m}{K_c}$$
$$a = \frac{6 \phi_d}{d_p}$$
$$NTU_{odr} = \frac{K_{odr} a H_{dr}}{U_d}$$

 $Emd = 1 - \exp(-NTUodr)$

$$N = \frac{N_{th}}{E_o}$$

$$L = (N-1) T_s$$

 $L_{TOT} = L + 6$

The results of optimizing the sieve plate column; calculations done with mercury simulation program:

d _h	3.71 [mm]
р	12 [mm]
U _h	0.263 [m/s]
d _{3.2}	2.5 [mm]
A _b	0.016 [m ²]
A_d	0.0646 [m ²]

D	0.42 [m]
U _d	0.0032 [m/s]
φ _d	0.068 [volume fraction]
Ts	0.6 [m]
E	14.5 [%]
N	23 [-]
L	13.2 [m]
L _{tot}	19.2 [m]

Appendix A7.VI PRODUCT DATA SHEET

ROHM AND HAAS EUROPEAN REGION

致

ION EXCHANGE RESINS

AMBERLYST 15 STRONGLY ACIDIC CATALYST

PRODUCT DATA SHEET

Amberlyst 15 is a bead form, strongly acidic ion exchange resin developed particularly for heterogeneous acid catalysis of a wide variety of organic reactions.

It is also useful in non aqueous ion exchange systems for the removal of cationic impurities.

The macroreticular pore structure of Amberlyst 15 permits ready access of liquid or gaseous reactants to

the hydrogen ion sites located throughout the bead, thus ensuring successful performance even in non swelling organic media.

APPLICATIONS

Alkylation, esterification, etherification, condensation, hydrolysis etc..

Physical and Chemical Properties	
Tuna	Commented and the second second
lonic form (as supplied)	Strong acid, macroreticular, cation exchange
Appearance	Operation enhanced hands
Moisture content	1.5% maximum
Apparent density	Approximately CODe (item
Particle size	0.2 to 1.2 mm
Fines content	1% maximum emailer than 0.2 mm
Concentration of acid sites	A 7 mee/a
Swelling	60-70% day to state at all and to state
Surface area	50 ml/a
Porosity	0.40 ml/a
Average pore diameter	24 am
Suggested Operating Conditions	
pH range	
Temperature limitation	
Minimum bed depth	
Service flow rate	1 to 10 BV/h
Regeneration conditions	and the second and and a second
Concentration	1 to 3N HCl or H2SO4
CONCERTRATION	
Flow rate	1 to 4 BV/h

κ.

Appendix A7.VII DESIGN OF ION-EXCHANGER

Ion exchanger

Calculation of the ion exchanger column dimension : Flow rate of liquid (Flexible, MEG, DADPM) : Q := 714 [kg/h]flex Q := 0.6884 [kg/h] meq := 0.12365 [kg/h] Q dadpm Q := Q + Q+ Q tot flex dadpm meg The density of liquid at 120 C: ρ := 948 [kg/m^3] flex ρ := 1100 [kg/m^3] dadpm := 1036 ρ [kg/m^3] ÷ meg Q dadpm Q flex meg ρ := p + ρ Q flex dadpm meg Q tot tot ρ = 948.111 Molecular mass : := 198.3 [gram/mol] M dadpm Q dadpm Qmol := [mol/h] dadpm -3 ·10 М dadpm = 0.624 Qmol dadpm

,

The resin capacity :

```
C := 4.7 [meq/gram] resin
```

Adsorption :

DADPM + 2 (RESIN) ----> DADPM(RESIN)2

Density of resin :

ρ := 600 [kg/m^3] resin

Fractional voidage of bed of particles :

e := 0.4

Volume of bed as function of adsorption time : t in hours, take 24 hours for the adsorption proces

		3 Qmol ·10 ·t dadpm	
v bed	(t)	:=	[m^3]
		resin 3	

V (24) = 0.011 bed

The thickness of bed in function of diameter and adsorption time :

$$l(D,t) := \frac{\frac{v (t)}{bed}}{\frac{\pi^{2}}{-vD \cdot (1 - e)}}$$
[m]

1(0.1, 24) = 2.252

1(0.2,24) = 0.563 <----

1(0.25, 24) = 0.36

1(0.3,24) = 0.25 1(0.4,24) = 0.141

The thickness of bed (with swelling 70 %) is equal to : take diameter of 0.2 m, thus the thickness of bed :

$$\begin{bmatrix} 0.563 \cdot \frac{70}{100} \end{bmatrix} + 0.563 = 0.957 \quad [m]$$

$$1 \quad := 0.957 \quad [m]$$

The fluid velocity through the bed :

-

s

The stay time of fluid over the bed :

$$T(D,t) := \frac{l(D,t)}{u(D)}$$
 [seconds]
$$T(0.1,24) = 33.786$$
$$T(0.2,24) = 33.786$$
$$T(0.3,24) = 33.786$$

Calculation of pressure drop over the column : The diameter of resin : d := 1.2 [mm]

The fluid viscosity at 120 C :

 $\mu := 0.0868$ [N s/m²]

The surface area per unit volume of resin particle :

$$S := \frac{6}{\frac{-3}{d \cdot 10}} \qquad [m^2/m^3]$$
$$S = 5 \cdot 10$$

The flexible velocity in function of the diameter :

 $u(D) := u (D) \cdot e [m/s]$

u(0.1) = 0.027 u(0.2) = 0.007 < --- u(0.25) = 0.004 u(0.3) = 0.003u(0.4) = 0.002

The modified Reynolds number based on pore size :

$$Re_{1} (D) := \frac{1}{\mu \cdot S \cdot (1 - e)} Re_{1} (0.1) = 0.097$$

$$Re_{1} (0.2) = 0.024$$

$$Re_{1} (0.25) = 0.016$$

$$Re_{1} (0.3) = 0.011$$

$$Re_{1} (0.4) = 0.006$$

The friction factor : $Wf = R1/(\rho.flex*V1^2)$

The friction factor in function of the diameter "

 $\begin{array}{c} W & (D) := \begin{bmatrix} -1 & -0.1 \\ 5 \cdot \text{Re} & (D) & + 0.4 \cdot \text{Re} & (D) \\ 1 & 1 \end{bmatrix} \quad \text{[Carman's formule]}$

 $W_{f} (0.1) = 52.006$ f (0.2) = 206.582 f (0.25) = 322.485 $W_{f} (0.3) = 464.134$ f (0.4) = 824.675 f (0.4) = 824.675

The pressure drop over the bed as function of diameter and adsorption time:

$$dP(D,t) := \frac{\begin{array}{c} S \cdot (1-e) \cdot l(D,t) \cdot \rho & \cdot u(D) & W & (D) \\ 1 & f \\ \hline & & \\ 3 & 5 \\ e & \cdot 10 \end{array}$$
 [bar]

dP(0.1,24) = 37.013 dP(0.2,24) = 2.297 < ----- dP(0.25,24) = 0.94 dP(0.3,24) = 0.453 dP(0.4,24) = 0.143

The pressure drop over the column in the swollen condition :

$$dP(0.2,24) \cdot \frac{1}{1(0.2,24)} = 3.905 \quad [bar]$$