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CHAPTER 1

INTRODUCTION

The occurrence of time-related events of interest are thoroughly investigated in statis-
tics. For medical research, the event is mainly death, which led to the name survival
analysis, as well as the onset (relapse) of a disease, time to the first heart attack, etc.
Consequently, the event of interest is frequently named survival time, and the proba-
bility that the event of interest occurs later than some specified time point t is called
the survival or the survivorship function at time t. In economics, these studies are part
of what is referred to as duration analysis, in sociology they are called event history
analysis while in engineering, the field is called reliability theory, which studies the
life history of machines.

The main interest in survival analysis is to study the distribution of the event times
of interest. Although the common statistical approach would be to estimate the dis-
tribution or the density function, a more natural approach is to focus on the rate of
occurrence, since one is interested in studying the event of interest across time. The
rate of occurrence is commonly referred to as the hazard function; some researchers
suggestively called it “force of mortality”. In reliability theory it is called the failure
rate.

Furthermore, a peculiar characteristic in survival analysis is that the data is
recorded over a (pre)specified period of time, and hence not all events are observed,
and some subjects can be lost to follow-up during the study. Such observations are
called censored. There are various censoring schemes, including right or left censor-
ing, and interval censoring. In this thesis, the events of interest are assumed to be
right censored, which implies that for some subjects, the event of interest occurs after
the end of the study. The censoring mechanism is usually assumed to be independent
of the event of interest, and moreover, to be non-informative.

It is commonly of interest to analyze how different characteristics of subjects, such
as age, sex, or undergoing treatment affect the distribution of the event of interest.
These characteristics are referred to as covariates and for time-independent covari-
ates, this information is usually recorded at the beginning of the study. Within survival
analysis, the most popular method to investigate the hazard function, while account-
ing for covariates is the Cox model. In the Cox model, the hazard of a subject given
a set of covariates can be expressed in terms of a baseline hazard, for which all the
covariates are zero, weighted by an exponential function of the covariates.
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Even though the baseline hazard can be left completely unspecified, in practice,
it is often reasonable to assume a qualitative shape. This can be done by assuming
the baseline hazard to be monotone, for example, as suggested by Cox himself. Vari-
ous studies have indicated that a monotonicity constraint should be imposed on the
baseline hazard, which complies with the medical expertise. Time to death, infection
or development of a disease of interest are observed to have a nondecreasing base-
line hazard in most studies. Nevertheless, the survival time after a successful medical
treatment is usually modeled using a nonincreasing baseline hazard. Therefore, it
would be highly desirable to provide estimates that incorporate the shape restrictions
of the baseline hazard while preserving the flexible semiparametric setting of the Cox
model.

In this thesis, shape constrained estimators of the baseline hazard and density func-
tion within the Cox model will be defined and their asymptotic properties will be
examined. In addition to point estimates, interval estimates of a monotone baseline
hazard function will be provided, based on a likelihood ratio method, along with test-
ing at a fixed point. Finally, kernel smoothed monotone baseline hazard estimates will
be considered and their asymptotic properties will be investigated.

1.1 MONOTONE HAZARD ESTIMATION

This thesis focuses on monotone hazard estimation. This section introduces the con-
cept of monotone hazard function or failure rate, discusses acknowledged estimators
for monotone hazards in different models, as well as asymptotic properties of these
estimators.

For a random variable X , the hazard function is defined as

λpxq � lim
∆xÑ0

Ppx ¤ X ¤ x �∆x |X ¡ xq
∆x

.

If the distribution of X is assumed to be absolutely continuous, then the hazard func-
tion can also be expressed as

λpxq � f pxq
1� Fpxq ,

where f is the density function, and F is the cumulative distribution function of the
random variable X . It is frequently of interest to consider another characteristic of the
event time distribution, namely the cumulative hazard function, which is defined as

Λpxq �
» x

0
λpuqdu. (1.1.1)
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The cumulative hazard function can also be expressed in terms of the cumulative
distribution function in the following way

Λpxq � � logr1� Fpxqs. (1.1.2)

1.1.1 CHARACTERIZATION OF THE ESTIMATORS

Estimating distributions with monotone hazard functions has received considerable
attention starting with the forefront work of GRENANDER (1956), who derived
a maximum likelihood estimator for a distribution function with a nondecreasing
failure rate. BARLOW et al. (1963) provided additional properties for distributions
with monotone failure rates. Furthermore, MARSHALL & PROSCHAN (1965)
showed that the maximum likelihood estimator of a nondecreasing failure rate is
a right-continuous step function that is 0 before the first observation and jumps to
infinity at the largest observation.

MAXIMUM LIKELIHOOD ESTIMATOR

To illustrate this, let Xp1q ¤ Xp2q ¤ � � � ¤ Xpnq be the ordered observations. The
likelihood function is

L �
n¹

i�1

f pXpiqq �
n¹

i�1

λpXpiqqr1� FpXpiqqs.

Then, by (1.1.1) and (1.1.2), the loglikelihood, written as a function of the hazard
rate λ, is given by

lpλq �
ņ

i�1

�
logλpXpiqq �

» Xpiq

0
λpuqdu

�
. (1.1.3)

Since λpXpnqq can be chosen arbitrarily large, maximizing over nondecreasing λ
bounded by some M ¡ 0 will be considered first. This translates to maximizing the
loglikelihood function in (1.1.3) over 0 ¤ λpXp1qq ¤ � � � ¤ λpXpnqq ¤ M . It can be
easily seen that the loglikelihood function is maximized by minimizing the second
term in the sum and hence choosing the hazard to be constant between observations,
and moreover, to take the minimal possible value on each interval rXpiq, Xpi�1qs. Let
λpXpiqq � λi . The maximization problem reduces then to maximizing the following
objective function

n�1̧

i�1

�
logλi � pn� iqrXpi�1q� Xpiqsλi

�
, (1.1.4)

subject to 0¤ λ1 ¤ . . .¤ λn�1 ¤ M , as given by (7.4.4) in ROBERTSON et al. (1988).
The resulting estimator λ̂M

n pxq is a right-continuous step function of the following
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form

λ̂M
n pxq �

$'&'%
0 x   Xp1q,
λ̂i Xpiq ¤ x   Xpi�1q, for i � 1,2, . . . , n� 1,

M x ¥ Xpnq.

Moreover, by Theorem 1.4.4 in ROBERTSON et al. (1988),

λ̂i � min
i¤t¤n�1

max
1¤s¤i

t � s� 1°t
j�spn� jq

�
Xp j�1q� Xp jq

� ,

for i � 1,2, . . . , n � 1. Finally, letting M Ñ 8 yields the maximum likelihood
estimator (MLE) λ̂n.

GRENANDER-TYPE ESTIMATOR

GRENANDER (1956) derived the maximum likelihood estimator of a nonincreasing
density and additionally showed that the left-hand slope of the least concave majorant
of the empirical distribution function coincides with the nonincreasing density maxi-
mum likelihood estimator. While this may not necessarily hold for other estimators in
different (censoring) models, it advanced an attractive recipe of producing monotone
estimators, usually referred to as Grenander-type estimators. Thus, for constructing
an estimator of a nonincreasing function, one has to consider an estimator of the
integrated function, and take slopes of the least concave majorant of that estimator.
Similarly, to obtain an estimator of a nondecreasing function, one has to take slopes
of the greatest convex minorant of the estimator of the integrated function.

To illustrate this method for a nondecreasing hazard function, consider an estimator
of the cumulative hazard function. By (1.1.2), a natural estimator, referred to as the
empirical cumulative hazard function, is

Λnpxq � � logr1� Fnpxqs, (1.1.5)

with Fn the empirical distribution function. Let rΛn be the greatest convex minorant
of Λn, which is the greatest convex function lying below the empirical cumulative
hazard function. We then define the estimator λ̃n as the left-hand slope of the greatest
convex minorant rΛn of the empirical cumulative hazard function Λn. The Grenander-
type estimator has thus a convenient graphical representation. Specifically, construct
the cusum diagram consisting of the points

Pj � pXp jq,ΛnpXp jqqq,

for j � 1,2, . . . , n� 1 and P0 � p0,0q. Then, λ̃n is the left-hand slope of the greatest
convex minorant of this cusum diagram. Unlike in the monotone density case, the
Grenander-type estimator λ̃n is different from the maximum likelihood estimator λ̂n.
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To see this, we will make use of results from ROBERTSON et al. (1988) and notice
that the objective function in (1.1.4) can also be written as

n�1̧

i�1

pgi logλi �λiqwi ,

where, for i � 1, 2, . . . , n� 1,

wi � pn� iqrXpi�1q� Xpiqs,

and

gi �
1

pn� iqrXpi�1q� Xpiqs
.

As a result of Theorem 1.5.1 and 1.2.1 in ROBERTSON et al. (1988), the value λ̂i can
also be represented as the left derivative at Pi of the greatest convex minorant of the
cumulative sum diagram consisting of the points

Pi �
��1

n

i̧

j�1

w j ,
1

n

i̧

j�1

w j g j

�,

for i � 1, 2, . . . , n � 1, and P0 � p0,0q. This shows that this cusum diagram differs
from the cusum diagram of the Grenander-type estimator.

EXAMPLE 1. (U.S. power nuclear plants)
Failure data in the nuclear industry has been investigated by KVAM et al. (2002),
under the setting of a nondecreasing failure rate in an imperfect repair model. The
interest of the study is the estimation of the reliability of two large and repairable
components of the nuclear power plants. The event times of interest are thus the
failure times for groups of emergency diesel generators and motor-driven pumps. For
the study of emergency diesel generators, failure data were collected between 1976
and 1978, in three U.S. nuclear power plants: Calvert Cliffs, Big Rock Point and Zion I
and II. This example focuses only on the 24 emergency diesel generators failure times
at Calvert Cliffs nuclear power plant. A maximum likelihood estimator is proposed by
KVAM et al. (2002) to estimate the failure time distribution of plants.

Figure 1.1 shows the Grenander-type and the maximum likelihood estimator of the
assumed nondecreasing failure rate (hazard function) at the Calvert Cliffs nuclear
power plant. Note that the failure times are expressed in days. Furthermore, it is
worth mentioning that the authors provide no underlying motivation for the increas-
ing failure rate assumption, apart from the general consensus that “a significant
proportion of working components in industry [...] are known to have an increasing
failure rate”.
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FIGURE 1.1: Left panel: The empirical cumulative hazard function (solid line) along
with its GCM (dashed line). Right panel: The corresponding Grenander-type (dashed
line) and maximum likelihood (dotted line) estimators of a nondecreasing failure rate
of the Calvert Cliffs nuclear power plant.

RIGHT CENSORING MODEL

Within the right censoring model, suppose that the observed data consist of the
following pairs pT1,∆1q, pT2,∆2q, . . . , pTn,∆nq, where the generic follow-up time is
defined as T � minpX , Cq, with X denoting the event time and C the censoring time,
and where ∆ � tX ¤ Cu is the censoring indicator. Suppose that the distribution
function F of the event time X is absolutely continuous with density f and that the
censoring time C has an absolutely continuous distribution function G with density g.
The event time X and the censoring time C are assumed to be independent. Moreover,
the censoring mechanism is assumed to be non-informative, which implies that the
distributions F and G share no parameters. For the sake of simplicity, we will further
use the same notation for the estimators in the right censoring model as in the case
of no covariates.

Monotone maximum likelihood hazard estimation within the right censoring model
has been initially studied by PADGETT & WEI (1980) and MYKYTYN & SANT-
NER (1981). The Grenander-type estimator has been proposed and its asymptotic
properties have been investigated by HUANG & WELLNER (1995), who also provided
the asymptotic distribution of the maximum likelihood estimator of a monotone haz-
ard. The Grenander-type estimator is defined as the left-hand slope of the greatest



1.1. MONOTONE HAZARD ESTIMATION 7

convex minorant of the Nelson-Aalen estimator of the cumulative hazard function,

Λnptq �
¸
Ti¤t

di

ni
, (1.1.6)

where di is the number of events at time Ti and ni is the number of observations
greater than Ti (the number of individuals at risk at time Ti). The Nelson-Aalen es-
timator is different from the natural correspondent in the right-censoring model of
the cumulative hazard estimator in (1.1.5), which is sometimes referred to as the
Kaplan-Meier estimator (of the cumulative hazard function).

Let Tp1q ¤ Tp2q ¤ � � � ¤ Tpnq be the ordered observations and ∆p1q,∆p2q, . . . ,∆pnq
their corresponding censoring indicators. The likelihood function is then given by

L �
n¹

i�1

r f pTpiqqp1� GpTpiqqqs∆piqrgpTpiqqp1� FpTpiqqqs1�∆piq .

Since the censoring mechanism is assumed to be independent of the event times
and non-informative, the resulting function to be maximized is the following
(pseudo)loglikelihood

l �
ņ

i�1

�
∆piq log f pTpiqq � p1�∆piqq logr1� FpTpiqqs

�
,

which can be re-written in terms of the hazard and cumulative hazard function

l �
ņ

i�1

�
∆piq logλpTpiqq �ΛpTpiqq

�
.

Evidently, this (pseudo)loglikelihood function differs from the loglikelihood
in (1.1.3). Following the same reasoning as in the case of no censoring, it can be
shown that the maximum likelihood estimator of a nondecreasing hazard function is
obtained by maximizing the following objective function

n�1̧

i�1

!
∆i logλi � pn� iqrTpi�1q� Tpiqsλi

)
, (1.1.7)

where λi � λpTpiqq. As in the case of no censoring, one can obtain the maximum like-
lihood estimator following results in ROBERTSON et al. (1988). It is noteworthy that
the above objective function differs slightly from the objective function in HUANG &
WELLNER (1995) and consequently the two resulting estimators are different. How-
ever, it can be easily shown that the two estimators are asymptotically equivalent.
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1.1.2 ASYMPTOTIC DISTRIBUTION VIA INVERSE PROCESSES

The pointwise asymptotic distribution of the maximum likelihood estimator λ̂n for
the uncensored data has been derived by PRAKASA RAO (1970). For a fixed x0 in the
interior of the support of the distribution and under mild conditions,

n1{3

�
1� Fpx0q

4λpx0qλ1px0q

1{3 �

λ̂npx0q �λpx0q
� dÝÑ argmin

tPR
tWptq � t2u, (1.1.8)

where W is standard two-sided Brownian motion originating from zero and the
argmin function represents the supremum of times at which the minimum is attained.
In his proof, PRAKASA RAO (1970) followed the same approach as in deriving the
asymptotic distribution of the nonincreasing density.

GROENEBOOM (1985) derived the asymptotic distribution of a nonincreasing den-
sity in a more elegant manner and his proof relied on the equivalence between the
maximum likelihood estimator and the left-hand slope of the least concave minorant
of the empirical distribution function. His novel approach introduced and made use
of a so-called inverse process, defined in terms of the empirical distribution func-
tion. Even though, as mentioned before, the equivalence between the two estimators
might not necessarily hold, his approach produced a general method for acquiring
the asymptotic distribution of a monotone estimator. His method also applies to the
maximum likelihood estimator, for example, since, as shown in the previous section,
the maximum likelihood estimator of a nondecreasing function can be represented
as the left-hand slope of the greatest convex minorant of a given cusum diagram. In
this respect, the inverse process is represented in terms of the processes defining the
cusum diagram.

To the author’s best knowledge, the asymptotic distribution of the Grenander-type
hazard estimator in the case of no censoring has not been derived. Groeneboom’s
approach is illustrated below in the case of right censoring, by reproducing the results
of HUANG & WELLNER (1995). Consider the inverse process

Unpaq � argmin
xPr0,Tpnqs

tΛnpxq � axu, (1.1.9)

for a ¡ 0, where Λn is the Nelson-Aalen estimator in (1.1.6). The following switching
relationship holds with probability one

Unpaq ¥ x ô λ̃npxq ¤ a.

Figure 1.2 below exhibits a clear graphical representation of the switching relation-
ship. The 100 event times were generated from a Weibull distribution with shape
parameter 3{2 and the censoring times were assumed to be uniform r0, 1s.
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FIGURE 1.2: Nelson-Aalen estimator (solid line) along with its greatest convex mino-
rant (dashed line). The dotted line represents a line with slope a.

This relationship enables the derivation of the asymptotic distribution of λ̃n through
the more tractable asymptotic distribution of the inverse process Un, since, for a
fixed x0,

P
�

n1{3rλ̃npx0q �λpx0qs ¡ x
	
� P

�
λ̃npx0q ¡ λpx0q � n�1{3 x

	
� P

�
Unpλpx0q � n�1{3 xq   x0

	
� P

�
n1{3rUnpλpx0q � n�1{3 xq � x0s   0

	
.

By the definition of the inverse process in (1.1.9), and given that the argmin is in-
variant under addition of and multiplication with positive constants, it can be derived
that

n1{3rUnpλpx0q � n�1{3 xq � x0s � argmin
xPInpx0q

tZnpxq � axu, (1.1.10)

where Inpx0q � r�n1{3 x0, n1{3pTpnq� x0qs. The process

Znpxq � n2{3
�
Λnpx0 � n�1{3 xq �Λnpx0q � n�1{3λpx0qx

�
is usually referred to as the local process. The weak convergence of Zn as a process
in the space of all locally bounded real-valued functions endowed with the topol-
ogy of uniform convergence on compact intervals follows then from the Hungarian
embedding result in BURKE et al. (1988),

Znpxq dÝÑ Zpxq �W
�
λpx0q
Hpx0q

x


� 1

2
λpx0qx2,

where Hptq � PpT ¤ tq is the distribution function of the observed data. An extension
of the argmax continuous mapping theorem in KIM & POLLARD (1990) gives that

n1{3rUnpλpx0q � n�1{3 xq � x0s dÝÑ argmin
xPR

tZ� axu,
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which finally leads to the asymptotic distribution of the nondecreasing estimator λ̃n,

n1{3

�
1�Hpx0q

4λpx0qλ1px0q

1{3 �

λ̃npx0q �λpx0q
�

dÝÑ argmin
tPR

tWptq � t2u,

In the case of no censoring, Hptq reduces to Fptq and the above asymptotic distribu-
tion coincides with the asymptotic distribution in (1.1.8).

Strong pointwise convergence of the monotone hazard estimators has been in-
vestigated as well and results are available. A proof of the pointwise strong con-
sistency of the Grenander-type estimator can be found in GROENEBOOM & JONG-
BLOED (2013), in the case of no censoring, while in the right censoring setting, the
Grenander-type estimator is shown to be strongly consistent by HUANG & WELL-
NER (1995).

1.1.3 THE LIKELIHOOD RATIO METHOD

Ensuing inference can be pursued, by testing the hypothesis that the underlying
monotone hazard has a particular value ϑ0, at a fixed point x0. To this end, a likeli-
hood ratio test of H0 : λpx0q � ϑ0 versus H1 : λpx0q � ϑ0 can be used. Within shape
restricted problems, this approach was initially employed for monotone distributions
in the current status model, by BANERJEE & WELLNER (2001). The authors focused
on deriving the limiting distribution of the likelihood ratio test under the null hy-
pothesis, and obtained what the authors referred to as a fixed universal distribution,
defined in terms of slopes of the greatest convex minorant of the two-sided Brow-
nian motion plus a parabola. These findings were followed by a rapid stream of re-
search (e.g., see BANERJEE & WELLNER, 2001; BANERJEE, 2007; BANERJEE, 2008),
which revealed that the likelihood ratio method could be extended straightforwardly
to other shape constrained settings.

In the right censoring model, the limiting distribution of the likelihood ratio test
has been derived by BANERJEE (2008). Since the objective function in (1.1.7) dif-
fers slightly from the objective function in HUANG & WELLNER (1995), BANER-
JEE (2008) considers estimators which are different from the ones described be-
low. Nonetheless, the asymptotic distribution of the likelihood ratio test can be easily
shown to be the same.

The maximum likelihood estimator λ̂n � pλ̂1, λ̂2, . . . , λ̂n�1q is considered to be the
unrestricted estimator, that is obtained by maximizing (1.1.7) over all 0 ¤ λ1 ¤
� � � ¤ λn�1, where λi � λpTpiqq. Let now m such that Tpmq   x0   Tpm�1q. Then,
the constrained estimator λ̂0

n � pλ̂0
1, λ̂0

2, . . . , λ̂0
n�1q, the maximum likelihood estimator

under the null hypothesis H0 : λpx0q � ϑ0, is obtained by maximizing (1.1.7) over
all 0 ¤ λ1 ¤ � � � ¤ λm ¤ ϑ0 ¤ λm�1 ¤ � � � ¤ λn�1. In line with the reasoning for
the unconstrained estimator, it can be argued that the constrained estimator has to
be a nondecreasing step function that is zero for x   Tp1q, constant on the interval
rTpiq, Tpi�1qq, for i � 1,2, . . . , n � 1, is equal to ϑ0 on the interval rx0, Tpm�1qq, and
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can be chosen arbitrarily large for x ¥ Tpnq. The objective function to be maximized
reduces then to

m�1̧

i�1

!
∆i logλi � pn� iqrTpi�1q�Tpiqsλi

)
�∆m logλm � pn�mq

�
x0 � Tpmq

�
λm

�
n�1̧

i�m�1

!
∆i logλi � pn� iqrTpi�1q� Tpiqsλi

)
.

The likelihood ratio statistic for testing H0 : λpx0q � ϑ0 is thus

2 logξnpϑ0q �2

#
n�1̧

i�1

!
∆i log λ̂i � pn� iqrTpi�1q� Tpiqsλ̂i

)
�

m�1̧

i�1

!
∆i log λ̂0

i � pn� iqrTpi�1q� Tpiqsλ̂0
i

)
�∆m log λ̂0

m � pn�mqrx0 � Tpmqsλ̂0
m

�
n�1̧

i�m�1

!
∆i log λ̂0

i � pn� iqpTpi�1q� Tpiqqλ̂0
i

)+
.

The asymptotic distribution of 2 logξnpϑ0q is defined in terms of slopes of the process

Xptq �Wptq � t2,

where W is standard two-sided Brownian motion starting from zero. More specifi-
cally, let g be the left-hand slope of the greatest convex minorant of the process X,
which will be denoted by G. Moreover, the constrained analogue is defined as follows:
for t ¤ 0, construct the GCM of X, that will be denoted by GL and take its left-hand
slope at point t, denoted by DLpXqptq. When the slope exceeds zero, replace it by
zero. In the same manner, for t ¡ 0, denote the GCM of X by GR and its slope at
point t by DRpXqptq. Replace the slope by zero when it decreases below zero. This
slope process will be denoted by g0. Then,

2 logξnpϑ0q dÝÑD,

where D� ³ �pgpuqq2 � pg0puqq2� du.

Furthermore, confidence sets for λpx0q can be derived, based on the likelihood ratio
method. More specifically, it will be used that inverting the family of tests can yield,
in turn, pointwise confidence intervals for the hazard function. Let 2 logξnpϑq denote
the likelihood ratio for testing H0 : λpx0q � ϑ versus H1 : λpx0q � ϑ. A 100p1�αq%
confidence interval is then obtained by inverting the likelihood ratio test 2 logξnpϑq
for different values of ϑ, namely 

ϑ : 2 logξnpϑq ¤ qpD, 1�αq( ,
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where qpD, 1 � αq is the p1 � αqth quantile of the distribution D. Quantiles of D,
based on discrete approximations of Brownian motion, are provided in BANERJEE &
WELLNER (2005).

Another method of constructing pointwise confidence intervals is based on the
asymptotic distribution, at a fixed point x0, of the nonparametric maximum likeli-
hood estimator λ̂n, derived in HUANG & WELLNER (1995). Recall that

n1{3
�
λ̂npx0q �λpx0q

� dÝÑ
�

4λpx0qλ1px0q
1�Hpx0q

�1{3

argmin
tPR

tWptq � t2u

� Cpx0qargmin
tPR

tWptq � t2u,

where Cpx0q depends on x0 and on the underlying parameters. An estimator Ĉnpx0q
of Cpx0q will then yield a 100p1�αq% confidence interval for λpx0q�

λ̂npx0q � n�1{3Ĉnpx0qqpZ, 1�α{2q, λ̂npx0q � n�1{3Ĉnpx0qqpZ, 1�α{2q
�

,

where qpZ, 1 � α{2q is the p1 � α{2qth quantile of the distribution Z. These quan-
tiles have been computed in GROENEBOOM & WELLNER (2001). Nonetheless, this
method entails estimating the nuisance parameter, and more specifically, estimating
the derivative of the hazard function λ1px0q. One option would be to kernel smooth
the NPMLE λ̂n, which will be investigated in the following section, for uncensored
data.

1.1.4 SMOOTH HAZARD ESTIMATES

As emphasized in GROENEBOOM & JONGBLOED (2013), there are various ap-
proaches to construct smooth shape constrained estimators. It essentially depends
on the order of operations, i.e., first isotonize and then smooth or first smooth and
then isotonize. Moreover, these approaches depend on the method of isotonization,
whether it involves a maximum likelihood or a Grenander-type estimation. Results
involving only kernel smoothing will be detailed further.

For uncensored data, GROENEBOOM & JONGBLOED (2013) propose a smooth
monotone hazard estimator, that kernel smooths the Grenander-type hazard estima-
tor λ̃n. More specifically, consider

λ̃SG
n pxq �

»
kbpx � uqdrΛnpuq �

»
kbpx � uqλ̃npuqdu,

where rΛn is the greatest convex minorant of the empirical hazard function Λn
in (1.1.5), and for a bandwidth b � bn ¡ 0, kbpuq � p1{bqkpu{bq is the scaled version
of kernel density k with compact support.

The monotonicity of λ̃SG
n follows from the monotonicity of λ̃n. This method pro-

vides a straightforward estimate of the derivative of the hazard, λ̃SG1

n pxq � ³
kbpx �
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uqdλ̃npuq, which can be used, for example, to obtain confidence intervals based on
the asymptotic distribution of the Grenander-type estimator λ̃n.

Moreover, by Theorem 3.1 in GROENEBOOM & JONGBLOED (2013), for a band-
width bn such that n1{5 bn Ñ ν P p0,8q, as n Ñ 8, and x0 in the interior of the
support,

n2{5
�
λ̃SG

n px0q �λpx0q
�

dÝÑN pµ0pνq,σ2
0pνqq,

where

µ0pνq �
1

2
ν2λ2px0q

»
u2kpuqdu, σ2

0pνq �
λ2px0q
ν f px0q

»
k2puqdu.

The inconsistency of the Grenander-type estimator at the boundaries is inherited by
the smoothed estimator. This problem can be solved by using a boundary kernel.

1.2 COX PROPORTIONAL HAZARDS MODEL

The Cox proportional hazards model is one of the most popular approaches to
model right-censored time to event data in the presence of covariates. Let the ob-
served data consist of independent identically distributed triplets pTi ,∆i , Ziq, with
i � 1,2, . . . , n, where Ti denotes the follow-up time, with a corresponding censoring
indicator ∆i and covariate vector Zi P Rp. A generic follow-up time is defined by
T � min pX , Cq, where X represents the event time and C is the censoring time. Ac-
cordingly, ∆ � tX ¤ Cu, where t�u denotes the indicator function. The event time X
and censoring time C are assumed to be conditionally independent given Z , and the
censoring mechanism is assumed to be non-informative. The covariate vector Z P Rp

is assumed to be time invariant.

Within the Cox model, the distribution of the event time is related to the corre-
sponding covariate by

λ
�
x |z�� λ0pxqeβ

1
0z , (1.2.1)

where λ
�
x |z� is the hazard function for an individual with covariate vector z P Rp, λ0

represents the baseline hazard function and β0 PRp is the vector of the underlying re-
gression coefficients. Conditionally on Z � z, the event time X is assumed to be a non-
negative random variable with an absolutely continuous distribution function Fpx |zq
with density f px |zq. The same assumptions hold for the censoring variable C and
its distribution function G. The distribution function of the follow-up time T is de-
noted by H. We will assume the following conditions, which are commonly employed
in deriving large sample properties of Cox proportional hazards estimators (e.g., see
TSIATIS, 1981).

(A1) Let τF ,τG and τH be the end points of the support of F, G and H respectively.
Then

τH � τG   τF ¤8.
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(A2) There exists ε ¡ 0 such that

sup
|β�β0|¤ε

E

�
|Z |2 e2β 1Z

�
 8,

where | � | denotes the Euclidean norm.

The first assumption (A1) implies that, with positive probability, at the end of the
study there is at least one subject alive, i.e. there is at least one event of interest
that has not been observed. The second assumption (A2) concerns the covariates.
Numerous studies of the Cox model assume bounded covariates. In this thesis, the
results are proven under a milder condition, that the covariates have a bounded
second moment, for β in a neighborhood of the underlying regression parameter β0.

EXAMPLE 2. (Bone marrow transplant data)
Patients receiving bone marrow transplant as a treatment for leukemia frequently
develop complications. The causes may be the presence of a certain virus or that
the transplanted (grafted) immune cells attack the host tissue, which is known as
graft-versus-host disease (GVHD). As a consequence, one might expect that the de-
velopment of those complications would increase the risk of patients dying in re-
mission or the risk of leukemic relapse. The data was provided by the Medical Col-
lege of Wisconsin, Division of Biostatistics, Department of Population Health and
the sample included 137 patients from 4 hospitals. The data is available in KLEIN
& MOESCHBERGER (1997). The observed time is the time to death or on study
time, which is right-censored. There is data on 17 covariates, representing factors
that could influence the successfulness of the transplant. Out of these covariates, it is
worthwhile mentioning the type of leukemia the patients have, whether they develop
acute or chronic GVHD, the age and sex of the patient and donor, the waiting time
for the transplant, the hospital where the transplant took place, whether the donor or
patient has the CMV virus and a certain drug (MTX) usage. It is of interest to inves-
tigate what factors have the most important impact and what kind of patient groups
are more exposed to the risk of death or relapse.

1.2.1 THE BRESLOW ESTIMATOR

Let Λpx |zq � � logr1�Fpx |zqs be the conditional cumulative hazard function given
Z � z. Then, from (4.2.1) it follows that Λpx |zq � Λ0pxqexppβ 10zq, where Λ0pxq �³x
0 λ0puqdu denotes the baseline cumulative hazard function. When G has a density g,

then together with the relation λ� f {p1� Fq, the likelihood becomes

n¹
i�1

λpTi | Ziq∆i exp
��ΛpTi | Ziq

�� n¹
i�1

�
1� GpTi | Ziq

�∆i

gpTi | Ziq1�∆i .
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The term with g does not involve the baseline distribution and can be treated as a
constant term. Therefore, one essentially needs to maximize

n¹
i�1

λpTi | Ziq∆i exp
��ΛpTi | Ziq

�� n¹
i�1

�
λ0pTiqeβ

1
0 Zi

�∆i

exp
�
�eβ

1
0 ZiΛ0pTiq

�
. (1.2.2)

This leads to the following (pseudo) loglikelihood, written as a function of β P Rp

and λ0,
ņ

i�1

�
∆i logλ0pTiq �∆iβ

1Zi � eβ
1ZiΛ0pTiq

�
. (1.2.3)

Let Xp1q   Xp2q   � � �   Xpmq denote the ordered, observed survival times.
COX (1972) introduced the proportional hazards model and focused on estimating
the underlying regression coefficients of the covariates. He later showed (COX, 1975)
that his proposed estimator β̂n is the maximizer of the partial likelihood function

m¹
l�1

eβ
1Zl°n

j�1tT j ¥ Xplqueβ 1Z j
. (1.2.4)

The asymptotic properties of the maximum partial likelihood β̂n were broadly stud-
ied by TSIATIS (1981), ANDERSEN et al. (1993), OAKES (1977) and SLUD (1982),
among others.

Moreover, different functionals of the lifetime distribution are commonly investi-
gated and the (cumulative) hazard function is of particular interest. In the discussion
following COX’s (1972) paper, Breslow focused on estimating the baseline cumulative
hazard function, Λ0pxq �

³x
0 λ0puqdu, and proposed

Λnpxq �
¸

i|Xpiq¤x

di°n
j�1tT j ¥ Xpiqueβ̂

1
n Z j

, (1.2.5)

as a nonparametric maximum likelihood estimator of the baseline cumulative hazard
function Λ0, where di is the number of events at Xpiq and β̂n is the maximum partial
likelihood estimator of the regression coefficients. The estimator Λn is most commonly
referred to as the Breslow estimator. Under the assumption of a piecewise constant
baseline hazard function and assuming that all the censoring times are shifted to the
preceding observed event time, Breslow showed that the maximum partial likelihood
estimator β̂n along with the baseline cumulative hazard estimator Λn can be obtained
by jointly maximizing the full loglikelihood function, via a profile likelihood method.

For β fixed, Breslow maximized the (pseudo) loglikelihood function in (1.2.3) and
obtained

λi �
di

rXpiq� Xpi�1qs
°n

j�1tT j ¥ Xpiqueβ
1Z j

.



16 1. INTRODUCTION

Substituting λi in the (pseudo) likelihood function in (1.2.3) yields exactly the partial
likelihood function in (1.2.4). Therefore, substituting β by β̂n gives the estimates λ̂B

i
of the baseline hazard function. Nonetheless, the estimates λ̂B

i were not regarded
to provide a baseline hazard estimator, but as an intermediate step in computing
the cumulative baseline hazard estimator Λn. BURR (1994) proved that the baseline
hazard estimator λ̂B � pλ̂B

1 , λ̂B
2 , . . . , λ̂B

nq is inconsistent. Unfortunately, this estimator
is frequently referred to in the literature as the (baseline hazard) Breslow estimator.

It is noteworthy that in the case of no covariates, i.e., β � 0, the Breslow estima-
tor reduces to the Nelson-Aalen estimator in (1.1.6). Figure 1.3 depicts the Breslow
estimator for the bone marrow transplant data in Example 2.
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FIGURE 1.3: The Breslow estimator of the baseline cumulative hazard function for the
bone marrow transplant data in Example 2.

Asymptotic properties of the Breslow estimator, such as consistency and the asymp-
totic distribution, were derived by TSIATIS (1981) and ANDERSEN et al. (1993). For
an overview of the Breslow estimator, see LIN (2007).

1.3 OUTLINE OF THE THESIS

The research compiled in this thesis focuses on shape constrained nonparametric
estimation within the Cox model. It is of main interest to estimate the baseline hazard
function under the assumption of monotonicity and investigate the estimators’ asymp-
totic properties. The standard piecewise constant isotonic estimators are provided, as
well as smoothed versions of these estimators. Furthermore, along with baseline haz-
ard point estimates, interval estimates obtained through the likelihood ratio method
are examined. Finally, a baseline nonincreasing density estimator together with its
asymptotic properties is also included in the thesis. This research amounts in four
distinct papers, which are reproduced in the following four chapters.
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Chapter 2 contains the first paper, which investigates the nonparametric estimation
of a monotone baseline hazard λ0 and a nonincreasing baseline density f0 within
the Cox model. Two estimators of a nondecreasing baseline hazard function are pro-
posed, the nonparametric maximum likelihood estimator and a Grenander-type esti-
mator, defined as the left-hand slope of the greatest convex minorant of the Breslow
estimator Λn. It is demonstrated that the two estimators are strongly consistent and
asymptotically equivalent and the common limit distribution at a fixed point is de-
rived. Estimators of a nonincreasing baseline hazard are considered as well and their
asymptotic properties are acquired in a similar manner. Furthermore, a Grenander-
type estimator for a nonincreasing baseline density is defined as the left-hand slope
of the least concave majorant of an estimator of the baseline cumulative distribution
function, derived from the Breslow estimator. This estimator is shown to be strongly
consistent, and its asymptotic distribution at a fixed point is derived.

GROENEBOOM’s (1985) approach of deriving the asymptotic distribution of a
monotone estimator makes use of an inverse process, but also of a Hungarian em-
bedding type of result for the integrated estimator. To the author’s best knowledge,
there is no such result available in the literature for the Breslow estimator. The lack
of a Hungarian embedding for the Breslow estimator poses serious problems in de-
riving the asymptotic distribution of shape constrained baseline hazard estimators.
Nonetheless, this problem can be circumvented by using a linearization result of the
Breslow estimator together with the theory in KIM & POLLARD (1990). The lineariza-
tion result of the Breslow estimator is the subject of the second paper in Chapter 3.

The second paper thus provides an asymptotic linear representation of the Breslow
estimator of the baseline cumulative hazard function in the Cox model. The represen-
tation consists of an average of independent random variables and a term involving
the difference between the maximum partial likelihood estimator and the underlying
regression parameter. The order of the remainder term is shown to be arbitrarily close
to n�1. This result extends the result in KOSOROK (2008), showing that the Breslow
estimator is asymptotically linear with a given influence function and a remainder
term of order oppn�1{2q, while relaxing the strong assumption of bounded covariates.

Chapter 4 contains the third paper, that considers a likelihood ratio method for test-
ing whether a monotone baseline hazard function in the Cox model has a particular
value at a fixed point. The characterization of the estimators involved is provided both
in the nondecreasing and the nonincreasing setting. These characterizations facilitate
the derivation of the asymptotic distribution of the likelihood ratio test, which is iden-
tical in the nondecreasing and in the nonincreasing case. The asymptotic distribution
of the likelihood ratio test enables, via inversion, the construction of pointwise confi-
dence intervals. Simulations show that these confidence intervals exhibit comparable
coverage probabilities with the confidence intervals based on the asymptotic distri-
bution of the nonparametric maximum likelihood estimator of a monotone baseline
hazard function.



18 1. INTRODUCTION

The fourth paper, in Chapter 5, focuses on estimating the baseline hazard func-
tion λ0, under the assumption that λ0 is nondecreasing and smooth. The estimators
are obtained by kernel smoothing the maximum likelihood and Grenander-type
estimator of a nondecreasing baseline hazard function. Three different estimators are
proposed for a nondecreasing baseline hazard, depending on when the smoothing
step takes place. With this respect, a smoothed maximum likelihood estimator
(SMLE) is proposed, as well as a smoothed Grenander-type (SG) and a Grenander-
type smoothed (GS) estimator. The pointwise and uniform strong consistency of the
three smooth estimators is investigated.
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CHAPTER 2

SHAPE CONSTRAINED NONPARAMETRIC
ESTIMATORS OF THE BASELINE

DISTRIBUTION IN COX PROPORTIONAL
HAZARDS MODEL 1

We investigate nonparametric estimation of a monotone baseline hazard and a non-
increasing baseline density within the Cox model. Two estimators of a nondecreasing
baseline hazard function are proposed. We derive the nonparametric maximum like-
lihood estimator and consider a Grenander-type estimator, defined as the left-hand
slope of the greatest convex minorant of the Breslow estimator. We demonstrate that
the two estimators are strongly consistent and asymptotically equivalent and derive
their common limit distribution at a fixed point. Both estimators of a nonincreasing
baseline hazard and their asymptotic properties are acquired in a similar manner.
Furthermore, we introduce a Grenander-type estimator of a nonincreasing baseline
density, defined as the left-hand slope of the least concave majorant of an estimator of
the baseline cumulative distribution function, derived from the Breslow estimator. We
show that this estimator is strongly consistent and derive its asymptotic distribution
at a fixed point.

2.1 INTRODUCTION

Shape constrained nonparametric estimation dates back to the 1950s. The mile-
stone paper of GRENANDER (1956) introduced the maximum likelihood estimator
of a nonincreasing density, while PRAKASA RAO (1969) derived its asymptotic dis-
tribution at a fixed point. Similarly, the maximum likelihood estimator of a mono-
tone hazard function has been proposed by MARSHALL & PROSCHAN (1965) and its
asymptotic distribution was determined by PRAKASA RAO (1970). Other estimators
have been proposed and despite the high interest and applicability, the difficulty in
the derivation of the asymptotics was a major drawback. Shape constrained estima-
tion was revived by GROENEBOOM (1985), who proposed an alternative for Prakasa

1By Lopuhaä, H. P. and Nane, G. F. (2013). Scandinavian Journal of Statistics, doi: 10.1002/sjos.12008.



24 2. SHAPE CONSTRAINED ESTIMATION IN THE COX MODEL

Rao’s bothersome type of proof. Groeneboom’s approach employs a so-called inverse
process and makes use of the Hungarian embedding (KOMLÓS et al, 1975). Once
such an embedding is available, it enables the derivation of the asymptotic distribu-
tion of the considered estimator. This is the case, for example, when estimating a
monotone density or hazard function from right-censored observations, as proposed
by HUANG & ZHANG (1994) and HUANG & WELLNER (1995). Another setting for
deriving the asymptotic distribution, that does not require a Hungarian embedding,
was later provided by the limit theorems KIM & POLLARD (1990). Their cube root
asymptotics are based on a functional limit theorem for empirical processes.

The present chapter treats the estimation of a monotone baseline hazard and a non-
increasing baseline density in the Cox model. Ever since the model was introduced
(see COX, 1972) and in particular, since the asymptotic properties of the proposed es-
timators were first derived by TSIATIS (1981), the Cox model is the classical survival
analysis framework for incorporating covariates in the study of a lifetime distribution.
The hazard function is of particular interest in survival analysis, as it represents an
important feature of the time course of a process under study, e.g., death or a certain
disease. The main reason lies in its ease of interpretation and in the fact that the
hazard function takes into account ageing, while, for example, the density function
does not. Times to death, infection or development of a disease of interest in most
survival analysis studies are observed to have a nondecreasing baseline hazard. Nev-
ertheless, the survival time after a successful medical treatment is usually modeled
using a nonincreasing hazard. An example of nonincreasing hazard is presented in
COOK et al. (1998), where the authors concluded that the daily risk of pneumonia
decreases with increasing duration of stay in the intensive care unit.

CHUNG & CHANG (1994) consider a maximum likelihood estimator of a nonde-
creasing baseline hazard function in the Cox model, adopting the convention that
each censoring time is equal to its preceding observed event time. They prove con-
sistency, but no distributional theory is available. We consider a maximum likelihood
estimator λ̂n of a monotone baseline hazard function, which imposes no extra as-
sumption on the censoring times. This estimator differs from the one of CHUNG &
CHANG (1994) and has a higher likelihood. Furthermore, we introduce a Grenander-
type estimator of a monotone baseline hazard function based on the well-known
baseline cumulative hazard estimator, the Breslow estimator Λn (COX, 1972). The
nondecreasing baseline hazard estimator λ̃n is defined as the left-hand slope of the
greatest convex minorant (GCM) of Λn. Similarly, a nonincreasing baseline estimator
is characterized as the left-hand slope of the least concave majorant (LCM) of Λn. It
is noteworthy that, just as in the no covariates case (see HUANG & WELLNER, 1995),
the two monotone estimators are different, but are shown to be asymptotically equiv-
alent. Additionally, we introduce a nonparametric estimator of a nonincreasing base-
line density. An estimator Fn of the baseline distribution function is based on the
Breslow estimator and next, the baseline density estimator f̃n is defined as the left-
hand slope of the LCM of Fn. The treatment of the maximum likelihood estimator of a
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nonincreasing baseline density is much more complex and is deferred to another pa-
per. For the remaining three estimators, we show that they converge at rate n1{3 and
we establish their limit distribution. Since, to the authors best knowledge, there does
not exist a Hungarian embedding for the Breslow estimator, our results are based on
the theory of KIM & POLLARD (1990) and an argmax continuous mapping theorem
of HUANG & WELLNER (1995).

Chapter 2 is organized as follows. In Section 2.2, we introduce the model and
state our assumptions. The formal characterization of the maximum likelihood esti-
mator λ̂n is given in Lemmas 2.1 and 2.2. Our main results concerning the asymp-
totic properties of the proposed estimators are gathered in Section 2.3. Section 2.4
is devoted to proving the strong consistency results of the paper. The strong uniform
consistency of the Breslow estimator in Theorem 2.9 and of the baseline cumulative
distribution estimator Fn in Corollary 2.10, emerge as necessary results. These results
are preceded by three preparatory lemmas, that establish properties of functionals
in terms of which derivations thereof can be expressed. In order to prepare the ap-
plication of results from KIM & POLLARD (1990), in Section 2.5 we introduce the
inverses of the estimators in terms of minima and maxima of random processes and
obtain the limiting distribution of these processes. Finally, in Section 2.6, we derive
the asymptotic distribution of the estimators, at a fixed point.

2.2 DEFINITIONS AND ASSUMPTIONS

Let the observed data consist of independent identically distributed
triplets pTi ,∆i , Ziq, with i � 1,2, . . . , n, where Ti denotes the follow-up time,
with a corresponding censoring indicator ∆i and covariate vector Zi P Rp. A generic
follow-up time is defined by T � min pX , Cq, where X represents the event time
and C is the censoring time. Accordingly, ∆ � tX ¤ Cu, where t�u denotes the
indicator function. The event time X and censoring time C are assumed to be
conditionally independent given Z , and the censoring mechanism is assumed to be
non-informative. The covariate vector Z P Rp is assumed to be time invariant.

Within the Cox model, the distribution of the event time is related to the corre-
sponding covariate by

λ
�
x |z�� λ0pxqeβ

1
0z , (2.2.1)

where λ
�
x |z� is the hazard function for an individual with covariate vector z P Rp, λ0

represents the baseline hazard function and β0 PRp is the vector of the underlying re-
gression coefficients. Conditionally on Z � z, the event time X is assumed to be a non-
negative random variable with an absolutely continuous distribution function Fpx |zq
with density f px |zq. The same assumptions hold for the censoring variable C and
its distribution function G. The distribution function of the follow-up time T is de-
noted by H. We will assume the following conditions, which are commonly employed
in deriving large sample properties of Cox proportional hazards estimators (e.g., see
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TSIATIS, 1981).

(A1) Let τF ,τG and τH be the end points of the support of F, G and H respectively.
Then

τH � τG   τF ¤8.

(A2) There exists ε ¡ 0 such that

sup
|β�β0|¤ε

E

�
|Z |2 e2β 1Z

�
 8,

where | � | denotes the Euclidean norm.

2.2.1 NONDECREASING BASELINE HAZARD

Let Λpx |zq � � logr1 � Fpx |zqs be the cumulative hazard function. Then,
from (2.2.1) it follows that Λpx |zq � Λ0pxqexppβ 10zq, where Λ0pxq �

³x
0 λ0puqdu de-

notes the baseline cumulative hazard function. When G has a density g, then together
with the relation λ� f {p1� Fq, the likelihood becomes

n¹
i�1

�
f pTi | Ziqp1� GpTi | Ziqq

�∆i
�

gpTi | Ziqp1� FpTi | Ziqq
�1�∆i

�
n¹

i�1

λpTi | Ziq∆i exp
�
�ΛpTi | Ziq

�
�

n¹
i�1

�
1� GpTi | Ziq

�∆i

gpTi | Ziq1�∆i .

The term with g does not involve the baseline distribution and can be treated as a
constant term. Therefore, one essentially needs to maximize

n¹
i�1

λpTi | Ziq∆i exp
�
�ΛpTi | Ziq

�
�

n¹
i�1

�
λ0pTiqeβ

1
0 Zi

�∆i

exp
�
� eβ

1
0 ZiΛ0pTiq

�
.

This leads to the following (pseudo) loglikelihood, written as a function of β P Rp

and λ0,
ņ

i�1

�
∆i logλ0pTiq �∆iβ

1Zi � eβ
1ZiΛ0pTiq

�
. (2.2.2)

REMARK. Note that if the censoring distribution is discrete, the likelihood of pT,∆, Zq
can still be written as

r f pT | Zqp1� GpT | Zqqs∆rgpT | Zqp1� FpT | Zqqs1�∆,

where gpy|zq � PpC � y|Z � zq, which will lead to the same expression as in (2.2.2).
However, as we will make use of other results in the literature that are established
under the assumption of an absolutely continuous censoring distribution (e.g., from
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TSIATIS, 1981), we do not further investigate the behavior of our estimators in the
case of a discrete censoring distribution.

For β P Rp fixed, we first consider maximum likelihood estimation of a nonde-
creasing λ0. This requires the maximization of (2.2.2) over all nondecreasing λ0.
Let Tp1q   Tp2q   � � �   Tpnq be the ordered follow-up times and, for i � 1, 2, . . . , n,
let∆piq and Zpiq be the censoring indicator and covariate vector corresponding to Tpiq.
The characterization of the maximizer λ̂npx;βq can be described by means of the pro-
cesses

Wnpβ , xq �
» �

eβ
1z
» x

0
tu¥ suds



dPnpu,δ, zq, (2.2.3)

and

Vnpxq �
»
δtu  xudPnpu,δ, zq, (2.2.4)

with β P Rp and x ¥ 0, where Pn is the empirical measure of the pTi ,∆i , Ziq, and is
given by the following lemma.

LEMMA 2.1. For a fixed β P Rp, let Wn and Vn be defined in (2.2.3) and (2.2.4). Then,
the NPMLE λ̂npx;βq of a nondecreasing baseline hazard function λ0 is of the form

λ̂npx;βq �

$'&'%
0 x   Tp1q,
λ̂i Tpiq ¤ x   Tpi�1q, for i � 1, 2, . . . , n� 1,

8 x ¥ Tpnq,

where λ̂i is the left derivative of the greatest convex minorant at the point Pi of the
cumulative sum diagram consisting of the points

Pj �
�

Wnpβ , Tp j�1qq �Wnpβ , Tp1qq, VnpTp j�1qq
	

,

for j � 1, 2, . . . , n� 1 and P0 � p0, 0q. Furthermore,

λ̂i � max
1¤s¤i

min
i¤t¤n�1

°t
j�s∆p jq°t

j�s

�
Tp j�1q� Tp jq

�°n
l� j�1 eβ

1Zplq

, (2.2.5)

for i � 1,2, . . . , n� 1.

PROOF. Similar to MARSHALL & PROSCHAN (1965) and Section 7.4 in ROBERTSON
et al. (1988), since λ0pTpnqq can be chosen arbitrarily large, we first consider the
maximization over nondecreasing λ0 bounded by some M ¡ 0. When we increase
the value of λ0 on an interval pTpi�1q, Tpiqq, the terms λ0pTpiqq in (2.2.2) are not
changed, whereas terms with Λ0pTpiqq will decrease the loglikelihood. Since λ0 must
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be nondecreasing, we conclude that the solution is a nondecreasing step function,
that is zero for x   Tp1q, constant on rTpiq, Tpi�1qq, for i � 1,2, . . . , n� 1, and equal
to M , for x ¥ Tpnq. Consequently, for β P Rp fixed, the (pseudo) loglikelihood reduces
to

Lβpλ0q �
n�1̧

i�1

∆piq logλ0pTpiqq �
ņ

i�2

eβ
1Zpiq

i�1̧

j�1

�
Tp j�1q� Tp jq

�
λ0pTp jqq

�
n�1̧

i�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
.

(2.2.6)

Maximization over 0 ¤ λ0pTp1qq ¤ � � � ¤ λ0pTpn�1qq ¤ M will then have a solu-
tion λ̂M

n px;βq and by letting M Ñ8, we obtain the NPMLE λ̂npx;βq for λ0.

First, notice that the loglikelihood function in (2.2.6) can also be written as

n�1̧

i�1

�
si logλ0pTpiqq �λ0pTpiqq

�
wi , (2.2.7)

where, for i � 1, 2, . . . , n� 1,

wi �
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq ,

and

si �
∆piq�

Tpi�1q� Tpiq
�°n

l�i�1 eβ
1Zplq

.

As mentioned above, we first maximize over nondecreasing λ0 bounded by some M .
Since M can be chosen arbitrarily large, the problem of maximizing (2.2.7) over
0 ¤ λ0pTp1qq ¤ � � � ¤ λ0pTpn�1qq ¤ M can be identified with the problem solved
in Example 1.5.7 in ROBERTSON et al. (1988). The existence of λ̂M

n is therefore
immediate and is given by

λ̂M
n px;βq �

$'&'%
0 x   Tp1q,
λ̂i Tpiq ¤ x   Tpi�1q, for i � 1,2, . . . , n� 1,

M x ¥ Tpnq,

where, as a result of Theorems 1.5.1 and 1.2.1 in ROBERTSON et al. (1988), the
value λ̂i is the left derivative at Pi of the GCM of the cumulative sum diagram (CSD)
consisting of the points

Pi �
��1

n

i̧

j�1

w j ,
1

n

i̧

j�1

w js j

�, i � 1,2, . . . , n� 1,
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and P0 � p0, 0q. It follows that

1

n

i̧

j�1

w j �
i̧

j�1

�
Tp j�1q� Tp jq

� 1

n

ņ

l�1

tTl ¥ Tp j�1queβ
1Zl

�
» Tpi�1q

Tp1q

»
tu¥ sueβ 1z dPnpu,δ, zqds �Wnpβ , Tpi�1qq �Wnpβ , Tp1qq.

For the y-coordinate of the CSD, notice that

1

n

i̧

j�1

w js j �
1

n

i̧

j�1

∆p jq �
1

n

ņ

j�1

tT j ¤ Tpiq,∆ j � 1u � VnpTpi�1qq.

By letting M Ñ 8, we obtain the NPMLE λ̂npβ , xq for λ0. The max-min formula
in (2.2.5) follows from Theorem 1.4.4 in ROBERTSON et al. (1988). �

REMARK. From the characterization given in Lemma 2.1, it can be seen that the GCM
of the CSD only changes slope at points corresponding to uncensored observations,
which means that λ̂npx;βq is constant between successive uncensored follow-up
times. Moreover, similar to the reasoning in the proof of Lemma 2.1, it follows that
λ̂npx;βq maximizes (2.2.2). The reason to provide the characterization in Lemma 2.1
in terms of all follow-up times is that this facilitates the treatment of the asymptotics
for this estimator. Finally, for the solution λ̂M

n px;βq, on the interval rTpnq,τHq, in prin-
ciple one could take any value between λ̂n�1 and M . This means that for λ̂npx;βq,
on the interval rTpnq,τHq, one could take any value larger than λ̂n�1.

In practice, one also has to estimate β0. The standard choice is β̂n, the maximizer
of the partial likelihood function

m¹
l�1

eβ
1Z j°n

j�1tT j ¥ Xpiqueβ 1Z j
,

as proposed by COX (1972, 1975), where Xp1q   Xp2q   � � �   Xpmq denote the
ordered, observed event times. Since the maximum partial likelihood estimator β̂n
for β0 is asymptotically efficient under mild conditions and because the amount of
information on β0 lost through lack of knowledge of λ0 is usually small (e.g., see
EFRON, 1977; OAKES, 1977; SLUD, 1982), we do not pursue joint maximization
of (2.2.2) over nondecreasing λ0 and β0. We simply replace β in λ̂npx;βq by β̂n, and
we propose λ̂npxq � λ̂npx; β̂nq as our estimator of λ0.

Note that λ̂n is different from the estimator derived by CHUNG & CHANG (1994),
where each censoring time is taken equal to the preceding observed event time. This
leads to a CSD that is slightly different from the one in Lemma 2.1. However, it can
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be shown that both estimators have the same asymptotic behavior. Furthermore, if
we take all regression coefficients equal to zero, the model coincides with the ordi-
nary random censorship model with a nondecreasing hazard function as considered
in HUANG & WELLNER (1995). The characterization in Lemma 2.1, with β0 � 0,
differs slightly from the one in Theorem 3.2 in HUANG & WELLNER (1995). Their
estimator seems to be the result of maximization of the loglikelihood correspond-
ing to (2.2.2) over left-continuous λ0 that are constant between follow-up times. Al-
though this estimator does not maximize the loglikelihood corresponding to (2.2.2)
over all nondecreasing λ0, the asymptotic distribution will turn out to be the same as
that of λ̂n, for the special case of no covariates. The computation of joint maximum
likelihood estimates for β and λ0 is considered by HUI & JANKOWSKI (2012), who
also developed an R package to compute the estimates.

To illustrate the computation of the estimator described in Lemma 2.1, consider an
artificial survival dataset consisting of 10 follow-up times, with only Tp2q, Tp5q, Tp6q,
and Tp8q being observed event times. In Figure 2.1 we illustrate the construction of
the proposed estimator and compare the resulting estimate with the one suggested
by CHUNG & CHANG (1994). In order to compare the CSD of both estimates, the
coordinates of the CSD described in Lemma 2.1 have been multiplied with a factor n,
which obviously leads to the same slopes. Figure 2.1 displays the points of the CSD
(bullet points) and the GCM (solid curve) in the left panel. The horizontal segments
are generated by pnWnpβ̂n, xq � nWnpβ̂n, Tp1qq, nVnpxqq for x ¥ Tp1q. Note that the
process nVn has a jump of size 1 right after a point Pj that corresponds to an observed
event time. Taking left derivatives then yield jumps of λ̂n only at observed event times.
The right panel of Figure 2.1 displays the corresponding graph of λ̂n (solid curve).
The jumps of λ̂n in the right panel correspond to the changes of slope of the GCM
at the points P1, P4 and P7 in the left panel and occur at the event times Tp2q, Tp5q,
and Tp8q. The height of the horizontal segments in the right panel corresponds to
the slopes of the GCM in the left panel. For comparison we have added the CSD
(star points) and the corresponding GCM (dashed curve) of the estimator derived
by CHUNG & CHANG (1994) in the left panel and the resulting estimator in the
right panel (dashed curve). Note that shifting the censoring times back to the nearest
previous event time, as suggested in CHUNG & CHANG (1994), pushes points in the
CSD, that correspond to event times, to the left. As a consequence this yields steeper
slopes in the left panel and hence a larger estimate of the hazard in the right panel.
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FIGURE 2.1: The cumulative sum diagrams along with their GCM (left panel) and
the corresponding estimates of a nondecreasing baseline hazard (right panel). Bullet
points and solid curve correspond to the estimator in Lemma 2.1; star points and
dashed curve correspond to the estimator in CHUNG & CHANG (1994).

Another possibility to estimate a nondecreasing hazard is to construct a Grenander-
type estimator, i.e., consider an unconstrained estimator Λn of the cumulative haz-
ard Λ0 and take the left slope of the GCM as an estimator of λ0. Several isotonic
estimators are of this form (e.g., see GRENANDER, 1956; BRUNK, 1958; HUANG &
WELLNER, 1995; DUROT, 2007). Breslow (COX, 1972) proposed

Λnpxq �
¸

i|Xpiq¤x

di°n
j�1tT j ¥ Xpiqueβ̂ 1n Z j

, (2.2.8)

as an estimator of Λ0, where di is the number of events at Xpiq and β̂n is the maximum
partial likelihood estimator of the regression coefficients. The estimator Λn is most
commonly referred to as the Breslow estimator. In the case of no covariates, i.e.,
β � 0, the NPMLE estimate of a nondecreasing hazard rate has been illustrated in
HUANG & WELLNER (1995).

Following the derivations in TSIATIS (1981), it can be inferred that

λ0pxq �
dHucpxq{dx

E
�tT ¥ xuexppβ 10Zq� , (2.2.9)

where Hucpxq � PpT ¤ x ,∆ � 1q is the sub-distribution function of the uncensored
observations. Consequently, it can be derived that

Λ0pxq �
»

δtu¤ xu
E
�tT ¥ xuexppβ 10Zq� dPpu,δ, zq, (2.2.10)
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where P is the underlying probability measure corresponding to the distribution of
pT,∆, Zq. From (A1), it follows that Λ0pτHq   8. In view of the above expression, an
intuitive baseline cumulative hazard estimator is obtained by replacing the expecta-
tions in (2.2.10) by averages and by plugging in β̂n, which yields exactly the Breslow
estimator in (2.2.8). As a Grenander-type estimator of a nondecreasing hazard, we
propose the left-hand derivative λ̃n of the greatest convex minorant rΛn of Λn. This
estimator is different from λ̂n for finite samples, but we will show that both estima-
tors are asymptotically equivalent. For the special case of no covariates, this coincides
with the results in HUANG & WELLNER (1995).

2.2.2 NONINCREASING BASELINE HAZARD

A completely similar characterization is provided for the NPMLE of a nonincreasing
baseline hazard function. As in the nondecreasing case, one can argue that the log-
likelihood is maximized by a decreasing step function that is constant on pTpi�1q, Tpiqs,
for i � 1, 2, . . . , n, where Tp0q � 0. In this case, the loglikelihood reduces to

Lβpλ0q �
ņ

i�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpiq� Tpi�1q

� ņ

l�i

eβ
1Zplq

+
,

which is maximized over all λ0pTp1qq ¥ � � � ¥ λ0pTpnqq ¥ 0. The solution is character-
ized by the following lemma. The proof of this lemma is completely similar to that of
Lemma 2.1.

LEMMA 2.2. For a fixed β PRp, let Wn be defined in (2.2.3) and let

Ynpxq �
»
δtu¤ xudPnpu,δ, zq. (2.2.11)

Then the NPMLE λ̂npx;βq of a nonincreasing baseline hazard function λ0 is given by

λ̂npx;βq � λ̂i for x P pTpi�1q, Tpiqs,

for i � 1, 2, . . . , n, where λ̂i is the left derivative of the least concave majorant (LCM) at
the point Pi of the cumulative sum diagram consisting of the points

Pj �
�

Wnpβ , Tp jqq, YnpTp jqq
	

,

for j � 1, 2, . . . , n and P0 � p0, 0q. Furthermore,

λ̂i � max
1¤s¤i

min
i¤t¤n

°t
j�s∆p jq°t

j�s

�
Tp jq� Tp j�1q

�°n
l� j eβ

1Zplq

,

for i � 1,2, . . . , n.
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Analogous to the nondecreasing case, for x ¥ Tpnq, one can choose for λ̂npx;βq any
value smaller than λ̂n. As before, we propose λ̂npxq � λ̂npx; β̂nq as an estimator
of λ0, where β̂n denotes the maximum partial likelihood estimator of β0. Similar
to the nondecreasing case, the Grenander-type estimator λ̃n of a nonincreasing λ0
is defined as the left-hand slope of the LCM of the Breslow estimator Λn, defined
in (2.2.8).

An illustration of the NPMLE of a nonincreasing baseline hazard function can be
found in van GELOVEN et al. (2012), who investigated the hazard of patients with
acute coronary syndrome. Previous clinical trials indicated a decreasing risk pattern,
which the authors confirmed by a test based on a bootstrap procedure. The above
estimate has been computed for 1200 patients undergoing early or selective invasive
strategies, that were monitored for five years, and their performance was evaluated
by means of a simulation experiment. The R code is available in the online version of
their paper.

2.2.3 NONINCREASING BASELINE DENSITY

Suppose one is interested in estimating a nonincreasing baseline density f0p�q �
f p�|z � 0q. One might argue that this problem is of less interest, because the mono-
tonicity assumption assumed for z � 0 may no longer hold if one transforms the co-
variates by a� bz, whereas the Cox model essentially remains unchanged. Whereas
the estimator of the baseline hazard remains monotone under such transformations,
this may no longer hold for the estimator of the baseline density. Despite this draw-
back, we feel that the estimation of a nonincreasing baseline density may be of inter-
est.

In this case, the corresponding baseline distribution function F0 is concave and it
relates to the baseline cumulative hazard function Λ0 as follows

F0pxq � 1� e�Λ0pxq. (2.2.12)

Hence, a natural estimator of the baseline distribution function is

Fnpxq � 1� e�Λnpxq, (2.2.13)

where Λn is the Breslow estimator, defined in (2.2.8). A Grenander-type estimator f̃n
of a nonincreasing baseline density is defined as the left-hand slope of the LCM of Fn.
Recall that Λn depends on β̂n and Z1, Z2, . . . , Zn, and therefore the same holds for Fn
and f̃n.

The derivation of the NPMLE for f0 is much more complex than the previous esti-
mators and its treatment is postponed to a future manuscript. In the special case of
no covariates, the NPMLE f̂n has first been derived in HUANG & ZHANG (1994). In
HUANG & WELLNER (1995) a different characterization has been provided for f̂n
in terms of a self-induced cusum diagram and it was shown that f̂n and f̃n, the
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Grenander-type estimator defined as the left-hand slope of the least concave majo-
rant of the Kaplan-Meier estimator are asymptotically equivalent.

2.3 MAIN RESULTS

In this section, we state our main results. The proofs are postponed to subsequent
sections. The next theorem provides pointwise consistency of the proposed estimators
at a fixed point x0 in the interior of the support. Note that the results below imply
that if x0 is a point of continuity of λ0, then λ̂npx0q Ñ λ0px0q with probability one,
and likewise for the other estimators.

THEOREM 2.3. Assume that (A1) and (A2) hold.

(i) Suppose that λ0 is nondecreasing on r0,8q and let λ̂n and λ̃n be the estimators
defined in Section 2.2.1. Then, for any x0 P p0,τHq,

λ0px0�q ¤ liminf
nÑ8

λ̂npx0q ¤ limsup
nÑ8

λ̂npx0q ¤ λ0px0�q,

λ0px0�q ¤ liminf
nÑ8

λ̃npx0q ¤ limsup
nÑ8

λ̃npx0q ¤ λ0px0�q,

with probability one, where the values λ0px0�q and λ0px0�q denote the left and
right limit at x0.

(ii) Suppose that λ0 is nonincreasing on r0,8q and let λ̂n and λ̃n be the estimators
defined in Section 2.2.2. Then, for any x0 P p0,τHq,

λ0px0�q ¤ liminf
nÑ8

λ̂npx0q ¤ limsup
nÑ8

λ̂npx0q ¤ λ0px0�q,

λ0px0�q ¤ liminf
nÑ8

λ̃npx0q ¤ limsup
nÑ8

λ̃npx0q ¤ λ0px0�q,

with probability one.

(iii) Suppose that f0 is nonincreasing on r0,8q and let f̃n be the estimator defined in
Section 2.2.3. Then, for any x0 P p0,τHq,

f0px0�q ¤ liminf
nÑ8

f̃npx0q ¤ limsup
nÑ8

f̃npx0q ¤ f0px0�q,

with probability one, where f0px0�q and f0px0�q denote the left and right limit
at x0.

The following two theorems yield the asymptotic distribution of the monotone con-
strained baseline hazard estimators. In order to keep notations compact, it becomes
useful to introduce

Φpβ , xq �
»
tu¥ xueβ

1z dPpu,δ, zq, (2.3.1)
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for β P Rp and x P R, where P is the underlying probability measure corresponding
to the distribution of pT,∆, Zq. Furthermore, by the argmin function we mean the
supremum of times at which the minimum is attained. Note that the limiting dis-
tribution and the rate of convergence coincide with the results commonly obtained
for isotonic estimators and differ from the corresponding quantities in the traditional
central limit theorem. The limiting distribution, usually referred to as the Chernoff
distribution, has been tabulated in GROENEBOOM & WELLNER (2001).

THEOREM 2.4. Assume (A1) and (A2) and let x0 P p0,τHq. Suppose that λ0 is non-
decreasing on r0,8q and continuously differentiable in a neighborhood of x0, with
λ0px0q � 0 and λ10px0q ¡ 0. Moreover, suppose that Hucpxq and x ÞÑ Φpβ0, xq are
continuously differentiable in a neighborhood of x0, where Huc is defined below (2.2.9)
and Φ is defined in (2.3.1). Let λ̂n and λ̃n be the estimators defined in Section 2.2.1.
Then,

n1{3

�
Φpβ0, x0q

4λ0px0qλ10px0q

�1{3 �
λ̂npx0q �λ0px0q

� dÝÑ argmin
tPR

tWptq � t2u, (2.3.2)

whereW is standard two-sided Brownian motion originating from zero. Furthermore,

n1{3
�
λ̃npx0q � λ̂npx0q

�
pÝÑ 0, (2.3.3)

so that the convergence in (2.3.2) also holds with λ̂n replaced by λ̃n.

The next theorem establishes the same results as in Theorem 2.4, for the nonincreas-
ing case.

THEOREM 2.5. Assume (A1) and (A2) and let x0 P p0,τHq. Suppose that λ0 is non-
increasing on r0,8q and continuously differentiable in a neighborhood of x0, with
λ0px0q � 0 and λ10px0q   0. Moreover, suppose that Hucpxq and x ÞÑ Φpβ0, xq are
continuously differentiable in a neighborhood of x0, where Huc is defined below (2.2.9)
and Φ is defined in (2.3.1). Let λ̂n and λ̃n be the estimators defined in Section 2.2.2.
Then,

n1{3

����� Φpβ0, x0q
4λ0px0qλ10px0q

�����
1{3 �

λ̂npx0q �λ0px0q
� dÝÑ argmin

tPR
tWptq � t2u, (2.3.4)

whereW is standard two-sided Brownian motion originating from zero. Furthermore,

n1{3
�
λ̃npx0q � λ̂npx0q

�
pÝÑ 0,

so that the convergence in (2.3.4) also holds with λ̂n replaced by λ̃n.
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In the special case of no covariates, i.e., β0 � 0, it follows that Φpβ0, x0q � 1 �
Hpx0q, so that with the above results we recover Theorems 2.2 and 2.3 in HUANG
& WELLNER (1995). If, in addition, one specializes to the case of no censoring, i.e.,
Φpβ0, x0q � 1� Hpx0q � 1� Fpx0q, we recover Theorems 6.1 and 7.1 in PRAKASA
RAO (1970). The asymptotic distribution of the baseline density estimator is provided
by the next theorem.

THEOREM 2.6. Assume (A1) and (A2) and let x0 P p0,τHq. Suppose that f0 is non-
increasing on r0,8q and continuously differentiable in a neighborhood of x0, with
f0px0q � 0 and f 10px0q   0. Let F0 be the baseline distribution function and suppose
that Hucpxq and x ÞÑ Φpβ0, xq are continuously differentiable in a neighborhood of x0,
where Huc is defined below (2.2.9) and Φ is defined in (2.3.1). Let f̃n be the estimator
defined in Section 2.2.3. Then,

n1{3

����� Φpβ0, x0q
4 f0px0q f 10px0qr1� F0px0qs

�����
1{3 �

f̃npx0q � f0px0q
�

dÝÑ argmin
tPR

tWptq � t2u,

whereW is standard two-sided Brownian motion originating from zero.

In the special case of no covariates, it follows that

Φpβ0, x0q
1� F0px0q

� 1�Hpx0q
1� Fpx0q

� 1� Gpx0q,

so that the above result recovers Theorem 2.1 in HUANG & WELLNER (1995). If,
in addition, one specializes to the case of no censoring, i.e., Gpx0q � 0, we recover
Theorem 6.3 in PRAKASA RAO (1969), and the corresponding result in GROENE-
BOOM (1985).

2.4 CONSISTENCY

The strong pointwise consistency of the proposed estimators will be proven us-
ing arguments similar to those in ROBERTSON et al. (1988) and HUANG & WELL-
NER (1985). First, define

Φnpβ , xq �
»
tu¥ xueβ

1z dPnpu,δ, zq, (2.4.1)

for β P Rp and x ¥ 0 and note that the Breslow estimator in (2.2.8) can also be
represented as

Λnpxq �
»
δtu¤ xu
Φnpβ̂n, uq dPnpu,δ, zq, x ¥ 0. (2.4.2)
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To establish consistency of the estimators, we first obtain some properties of Φn and Φ,
as defined in (2.4.1) and (2.3.1) and their first and second partial derivatives, which
by the dominated convergence theorem and conditions (A1) and (A2) are given by

Dp1qpβ , xq � BΦpβ , xq
Bβ �

»
tu¥ xu z eβ

1z dPpu,δ, zq PRp,

Dp1q
n pβ , xq � BΦnpβ , xq

Bβ �
»
tu¥ xu z eβ

1z dPnpu,δ, zq PRp,

Dp2qpβ , xq � B2Φpβ , xq
Bβ2 �

»
tu¥ xu zz1 eβ

1z dPpu,δ, zq PRp �Rp,

Dp2q
n pβ , xq � B2Φnpβ , xq

Bβ2 �
»
tu¥ xu zz1 eβ

1z dPnpu,δ, zq PRp �Rp.

In order to prove consistency, we need uniform bounds on Φ and its derivatives. These
are provided by the next lemma.

LEMMA 2.7. Suppose that (A2) holds for some ε ¡ 0. Then, for any 0  M   τH ,

(i)
0  inf

x¤M
inf

|β�β0|¤ε
|Φpβ , xq| ¤ sup

xPR
sup

|β�β0|¤ε

|Φpβ , xq|   8.

(ii) For any sequence β�n , such that β�n Ñ β0 almost surely,

0  liminf
nÑ8

inf
x¤M

|Φnpβ�n , xq| ¤ limsup
nÑ8

sup
xPR

|Φnpβ�n , xq|   8,

with probability one.

(iii) For i � 1, 2,
sup
xPR

sup
|β�β0|¤ε

|Dpiqpβ , xq|   8.

(iv) For i � 1, 2 and for any sequence β�n , such that β�n Ñ β0 almost surely,

limsup
nÑ8

sup
xPR

|Dpiq
n pβ�n , xq|   8,

with probability one.

PROOF. First, for every x ¤ M and β P Rp,

0  Φpβ , Mq ¤ Φpβ , xq (2.4.3)

and for every x P R and |β � β0| ¤ ε,

Φpβ , xq ¤ Φpβ , 0q ¤ sup
|β�β0|¤ε

E
�
eβ

1Z
�
 8. (2.4.4)
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Hence, by dominated convergence, for every x ¤ M , the function β ÞÑ Φpβ , xq is con-
tinuous and therefore attains a minimum on the set |β�β0| ¤ ε. Together with (2.4.3)
and (2.4.4), this proves (i).

To show (ii), note that similar to (2.4.3) and (2.4.4), for every x P r0, Ms and
β P Rp,

Φnpβ , Mq ¤ Φnpβ , xq (2.4.5)

and for every x P R and β P Rp,

Φnpβ , xq ¤ Φnpβ , 0q. (2.4.6)

Choose ε ¡ 0 from (A2) and let δ � ε{2?p. Strong consistency of β�n yields that,
for n sufficiently large,

β0 j �δ ¤ β�n j ¤ β0 j �δ, for all j � 1, 2, . . . , p,

with probability one. Next, consider all subsets Ik � ti1, i2, . . . , iku � t1, 2, . . . , pu � I .
Then, for each Ik fixed, on each event£

jPIk

tZi j ¥ 0u
£

lPIzIk

tZil   0u, where Zi � pZi1, . . . , Zipq1 P Rp,

we have¸
jPIk

pβ0 j �δqZi j �
¸

lPIzIk

pβ0 j �δqZil ¤ β�
1

n Z ¤
¸
jPIk

pβ0 j �δqZi j �
¸

lPIzIk

pβ0 j �δqZil .

Define αk,γk P Rp with coordinates

αk j �
#
β0 j �δ, j P Ik,

β0 j �δ, j P IzIk,
and γk j �

#
β0 j �δ, j P Ik,

β0 j �δ, j P IzIk.

Then |β0 �αk| ¤ ε and |β0 � γk| ¤ ε and together with (2.4.5) and (2.4.6), we find
that for every x ¤ M ,

min
Ik�I

#
1

n

ņ

i�1

tTi ¥ Mueα1k Zi

+
¤ Φnpβ�n , xq (2.4.7)

and for every x P R,

Φnpβ�n , xq ¤max
Ik�I

#
1

n

ņ

i�1

eγ
1
k Zi

+
. (2.4.8)

By (A2) and the law of large numbers,

min
Ik�I

#
1

n

ņ

i�1

tTi ¥ Mueα1k Zi

+
Ñmin

Ik�I
E
�
tT ¥ Mueα1k Z

�
¡ 0,
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with probability one and similarly,

max
Ik�I

#
1

n

ņ

i�1

eγ
1
k Zi

+
Ñmax

Ik�I
E
�
eγ

1
k Z
�
¤ sup

|β�β0|¤ε

E
�
eβ

1Z
�
 8, (2.4.9)

with probability one. This proves (ii).

To prove (iii), it suffices to show that the inequalities hold componentwise. For this,
notice that for the jth element of the vector Dp1q,

sup
xPR

sup
|β�β0|¤ε

���E�
tT ¥ xuZ j eβ

1Z
����¤ sup

|β�β0|¤ε

E

�
|Z j |eβ

1Z
�
 8,

by (A2). Completely analogous, a similar inequality can be shown for each element
of Dp2q.

Finally, to prove pivq, note that similar to (2.4.8) and (2.4.9), for the jth component
of Dp1q

n , we can write

sup
xPR

���Dp1q
n j pβ�n , xq

���¤ ¸
Ik�I

�
1

n

ņ

i�1

|Zi |eγ
1
k Zi

�
Ñ E

�
|Z |eγ1k Z

�
 8,

with probability one, as n tends to infinity. Likewise, a similar result can be obtained
for each element of Dp2q

n . �

Obviously, we will approximate Φnpβ̂n, xq and Φnpβ0, xq by Φpβ0, xq. According to
the law of large numbers, Φn will converge to Φ, for β and x fixed. However, we need
uniform convergence at proper rates. This is established by the following lemma.

LEMMA 2.8. Suppose that condition (A2) holds and β̂n Ñ β0, with probability one. Then,

sup
xPR

��Φnpβ̂n, xq �Φpβ0, xq
��Ñ 0,

with probability one. Moreover,
?

n sup
xPR

��Φnpβ0, xq �Φpβ0, xq
��� Opp1q. (2.4.10)

PROOF. For all x P R, write

|Φnpβ̂n, xq �Φpβ0, xq| ¤ |Φnpβ̂n, xq �Φnpβ0, xq| � |Φnpβ0, xq �Φpβ0, xq|.

For the second term on the right hand side, consider the class of functions

G �  
gpu, z; xq : x P R( ,
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where for each x P R and β0 PRp fixed,

gpu, z; xq � tu¥ xuexppβ 10zq
is a product of an indicator and a fixed function. It follows that G is a VC-subgraph
class (e.g., see Lemma 2.6.18 in van der VAART & WELLNER, 1996) and its enve-
lope G � exppβ 10zq is square integrable under condition (A2). Standard results from
empirical process theory (van der VAART & WELLNER, 1996) yield that the class of
functions G is Glivenko-Cantelli, i.e.,

sup
xPR

|Φnpβ0, xq �Φpβ0, xq| � sup
gPG

����» gpu, z; xqdpPn � Pqpu,δ, zq
����Ñ 0, (2.4.11)

with probability one. Moreover, G is a Donsker class, i.e.,

?
n
»

gpu, z; xqdpPn � Pqpu,δ, zq � Opp1q,

so that (2.4.10) follows by continuous mapping theorem. Finally, by Taylor expansion
and the Cauchy-Schwarz inequality, it follows that

sup
xPR

��Φnpβ̂n, xq �Φnpβ0, xq
��� sup

xPR

���pβ̂n � β0q1Dp1q
n pβ�, xq

���
¤|β̂n � β0| sup

xPR

���Dp1q
n pβ�, xq

��� ,
for some β�, for which |β��β0| ¤ |β̂n�β0|. Together with (2.4.11), from the strong
consistency of β̂n (e.g., see Theorem 3.1 in TSIATIS, 1981) and Lemma 2.7, the lemma
follows. �

The previous results can be used to prove a first step in the direction of proving
Theorem 2.3, i.e., suitable uniform approximation of Λn and Fn by Λ0 and F0. Strong
uniform consistency of Λn and process convergence of

?
npΛn �Λ0q has been estab-

lished by KOSOROK (2008), under the stronger assumption of bounded covariates.
Weak consistency has been derived or mentioned before, see for example PRENTICE
& KALBFLEISCH (2003).

THEOREM 2.9. Under the assumptions (A1) and (A2), for all 0  M   τH ,

sup
xPr0,Ms

��Λnpxq �Λ0pxq
��Ñ 0,

with probability one and
?

n sup
xPr0,Ms

��Λnpxq �Λ0pxq
��� Opp1q.
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PROOF. From the expression for the baseline cumulative hazard function in (2.2.10)
together with (2.3.1) and (2.4.2), it follows that

sup
xPr0,Ms

��Λnpxq �Λ0pxq
��¤ sup

xPr0,Ms

�����
»
δtu¤ xu

�
1

Φnpβ̂n, uq �
1

Φnpβ0, uq

�
dPnpu,δ, zq

�����
� sup

xPr0,Ms

����» δtu¤ xu
�

1

Φnpβ0, uq �
1

Φpβ0, uq



dPnpu,δ, zq
����

� sup
xPr0,Ms

����» δtu¤ xu
Φpβ0, uq d pPn � Pq pu,δ, zq

����
� An � Bn � Cn.

Starting with the first term on the right hand side, note that

An ¤
|β̂n � β0|

Φnpβ̂n, MqΦnpβ0, Mq sup
xPR

���Dp1q
n pβ�, xq

��� (2.4.12)

for some |β� � β0| ¤ |β̂n � β0|. According to Lemma 2.7, the right hand side is
bounded by C |β̂n�β0|, for some C ¡ 0. Since β̂n is strongly consistent and |β̂n�β0| �
Oppn�1{2q, (e.g., see Theorems 3.1 and 3.2 in TSIATIS, 1981), it follows that An Ñ 0
almost surely and An � Oppn�1{2q. Similarly,

Bn ¤
1

Φnpβ0, MqΦpβ0, Mq sup
xPR

��Φnpβ0, xq �Φpβ0, xq
�� . (2.4.13)

From Lemmas 2.7 and 2.8, it follows that Bn Ñ 0 almost surely and Bn � Oppn�1{2q.
For the last term Cn, consider the class of functions H �  

hpu,δ; xq : x P r0, Ms(,
where for each x P r0, Ms, with M   τH and β0 PRp fixed,

hpu,δ; xq � δtu¤ xu
Φpβ0, uq .

The function h is a product of indicators and a fixed uniformly bounded monotone
function. Similar to the arguments given in the proof of Lemma 2.8, it follows that
the classH is Glivenko-Cantelli, i.e.,

sup
hPH

����» hpu,δ; �qdpPn � Pqpu,δ, zq
����Ñ 0,

almost surely, which gives the first statement of the lemma. Moreover,H is a Donsker
class and hence the second statement of the lemma follows by continuous mapping
theorem. This completes the proof. �

Strong uniform consistency of Fn follows immediately from the strong consistency
of the Breslow estimator established in Theorem 2.9, and is stated in the next corol-
lary.
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COROLLARY 2.10. Under the assumptions (A1) and (A2) and for all 0  M   τH ,

sup
xPr0,Ms

|Fnpxq � F0pxq| Ñ 0,

with probability one.

PROOF. The proof is straightforward and follows immediately from Theorem 2.9, re-
lations (2.2.12) and (2.2.13), together with the fact that |e�y � 1| ¤ 2|y|, as y Ñ 0.
�

Note that the estimators in Theorem 2.3 (i) of the baseline hazard are essentially
the slopes of the GCM of Vn. For this reason, as a final preparation for the proof of The-
orem 2.3, we establish uniform convergence of the GCM of Vn by the following lemma.
This lemma is completely similar to Lemma 4.3 in HUANG & WELLNER (1995).

LEMMA 2.11. Assume that Λ0 is convex on r0,τHs and that conditions (A1) and (A2)
hold. Let β̂n be the maximum partial likelihood estimator and define

pWnpxq �Wnpβ̂n, xq �Wnpβ̂n, Tp1qq, x ¥ Tp1q, (2.4.14)

where Wn is defined in (2.2.3). Let
� pWnpxq, pVnpxq

�
be the GCM of

� pWnpxq, Vnpxq
�
,

for x P rTp1q, Tpnqs, where Vn is defined in (2.2.4). Then

sup
xPrTp1q,Tpnqs

���pVnpxq � V pxq
���Ñ 0, (2.4.15)

with probability one, where V pxq � Hucpxq, as defined just below (2.2.9).

PROOF. By Glivenko-Cantelli,

sup
xPrTp1q,Tpnqs

��Vnpxq � V pxq
��Ñ 0, (2.4.16)

almost surely, because of the continuity of V . Furthermore,

Wnpβ̂n, Tp1qq �
» Tp1q

0
Φnpβ̂n, sqds � Tp1qΦnpβ̂n, Tp1qq Ñ 0, (2.4.17)

almost surely, since Φnpβ̂n, sq is bounded uniformly according to Lemma 2.7 and
Tp1qÑ 0 with probability one, by the Borel-Cantelli lemma. Moreover, if we define

W pβ , xq �
» �

eβ
1z
» x

0
tu¥ suds



dPpu,δ, zq, (2.4.18)
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then we can write

W0pxq �W pβ0, xq �
» x

0
Φpβ0, sqds, (2.4.19)

where Φ is defined in (2.3.1). It follows that

sup
xPrTp1q,Tpnqs

��� pWnpxq �W0pxq
���¤ sup

xPrTp1q,Tpnqs

����» x

0

�
Φnpβ̂n, sq �Φpβ0, sq� ds

���� ,
¤ τH sup

xPR

��Φnpβ̂n, xq �Φpβ0, xq
��Ñ 0,

(2.4.20)

with probability one, by Lemma 2.8.

Take pW�1
n to be the inverse of pWn, which is well defined on r0, pWnpTpnqqs, since pWn

is strictly monotone on rTp1q, Tpnqs. We first extend pWn to rTp1q,8q and pW�1
n to r0,8q.

Define pWnptq � pWnpTpnqq � pt � Tpnqq, for all t ¥ Tpnq, so that pW�1
n pyq � Tpnq �

py � pWnpTpnqqq, for y ¥ pWnpTpnqq. Similarly, take W�1
0 to be the inverse of W0, which

is well-defined since W0 is strictly monotone on r0,τHs and extend W0 and W�1
0

to r0,8q, by defining W0ptq � W0pτHq � pt � τHq, for all t ¥ τH , so that W�1
0 pyq �

τH�py�W0pτHqq, for y ¥W0pτHq. It follows that the extension W�1
0 pyq is uniformly

continuous on r0,8q. Immediate derivations give that

sup
0¤y¤ pWnpTpnqq

��� pW�1
n pyq �W�1

0 pyq
���Ñ 0, (2.4.21)

with probability one. Furthermore, it can be inferred that

δn � sup
yPr0, pWnpTpnqqs

���Vn � pW�1
n pyq � V �W�1

0 pyq
���

¤ sup
yPr0, pWnpTpnqqs

���pVn � V q � pW�1
n pyq

���� sup
yPr0, pWnpTpnqqs

���V � pW�1
n pyq � V �W�1

0 pyq
���

¤ sup
tPrTp1q,Tpnqs

��Vnptq � V ptq
��� sup

yPr0, pWnpTpnqqs

���V �
� pW�1

n pyq �W�1
0 pyq

	���
Ñ 0,

almost surely, by (2.4.16), (2.4.21), and the continuity of V . According to (2.2.9)
and (2.4.19), λ0 can also be represented as

λ0pxq �
dV pxq{dx

dW0pxq{dx
, (2.4.22)

which is well-defined for x P r0,τHq, since Φ is bounded away from zero, by
Lemma 2.7. Taking x �W�1

0 pyq, gives that

dV
�

W�1
0 pyq

	
dy

� λ0

�
W�1

0 pyq
	

, y P r0, W0pτHqq.
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Therefore, convexity of Λ0 implies convexity of V�W�1
0 and subsequently of V�W�1

0 �
δn. Moreover, from the definition of δn, it follows that for every y P r0, pWnpTpnqqs,

V �W�1
0 pyq �δn ¤ Vn � pW�1

n pyq.
As pVn � pW�1

n pyq is the greatest convex function below Vn � pW�1
n pyq, we must have

V �W�1
0 pyq �δn ¤ pVn � pW�1

n pyq ¤ Vn � pW�1
n pyq,

for each y P r0, pWnpTpnqqs. Re-writing the above inequalities leads to

�δn ¤ pVn � pW�1
n pyq � V �W�1

0 pyq ¤ Vn � pW�1
n pyq � V �W�1

0 pyq ¤ δn.

Taking the supremum over r0, pWnpTpnqqs then yields

sup
yPr0, pWnpTpnqqs

���pVn � pW�1
n pyq � V �W�1

0 pyq
���Ñ 0, (2.4.23)

with probability one. From (2.4.21), (2.4.23) and the continuity of V , we conclude
that

sup
tPrTp1q,Tpnqs

���pVnptq � V ptq
���� sup

yPr0, pWnpTpnqqs

����pVn � V
	
� pW�1

n pyq
���

¤ sup
yPr0, pWnpTpnqqs

���pVn � pW�1
n pyq � V �W�1

0 pyq
���

� sup
yPr0, pWnpTpnqqs

���V �W�1
0 pyq � V � pW�1

n pyq
���Ñ 0,

with probability one. �

Obviously, in the nonincreasing case, similar to (2.4.15), one can show

sup
xPr0,Tpnqs

���pYnpxq � V pxq
���Ñ 0, (2.4.24)

almost surely, where
�
Wnpβ̂n, xq, pYnpxq

�
is the LCM of

�
Wnpβ̂n, xq, Ynpxq

�
, with Yn de-

fined in (2.2.11). We are now in the position to prove Theorem 2.3, which establishes
strong pointwise consistency of the estimators.

PROOF.[Proof of Theorem 2.3] First consider the second statement of case (i). Since rΛn
is convex on the open interval p0,τHq, it admits in every point x0 P p0,τHq a finite left
and a right derivative, denoted by rΛ�n and rΛ�n respectively. Moreover, for any fixed
x0 P p0,τHq and for sufficiently small δ ¡ 0, it follows thatrΛnpx0q � rΛnpx0 �δq

δ
¤ rΛ�n px0q ¤ rΛ�n px0q ¤

rΛnpx0 �δq � rΛnpx0q
δ

.
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When nÑ8, then for any 0  M   τH ,

sup
xPr0,Ms

���rΛnpxq �Λ0pxq
���¤ sup

xPr0,Ms

��Λnpxq �Λ0pxq
�� . (2.4.25)

This is a variation of Marshall’s lemma and can be proven similar to (7.2.3) in
ROBERTSON et al. (1988) or Lemma 4.1 in HUANG & WELLNER (1995). By con-
vexity of Λ0 and the fact that rΛn is the greatest convex function below Λn, one must
have

Λ0pxq �δn ¤ rΛnpxq ¤ Λnpxq,
where δn � supxPr0,Ms |Λ0pxq � Λnpxq|, which yields inequality (2.4.25).
From (2.4.25) and Theorem 2.9, by first letting nÑ8 and then δÑ 0, we find

λ0px0�q ¤ liminf
nÑ8

rΛ�n px0q ¤ limsup
nÑ8

rΛ�n px0q ¤ limsup
nÑ8

rΛ�n px0q ¤ λ0px0�q.

Because λ̃npx0q � rΛ�n px0q, this proves that λ̃n is a strongly consistent estimator.

For λ̂n, first note that since pVn is convex on the open interval p0,τHq, it admits in
every point x0 P p0,τHq a finite left and a right derivative, denoted by pV�

n and pV�
n

respectively, where

pV�
n pxq � lim

δÓ0

pVnpxq � pVnpx �δqpWnpxq � pWnpx �δq
,

pV�
n pxq � lim

δÓ0

pVnpx �δq � pVnpxqpWnpx �δq � pWnpxq
.

For any fixed x P p0,τHq and for sufficiently small δ ¡ 0, it follows that

pVnpx0q � pVnpx0 �δqpWnpx0q � pWnpx0 �δq
¤ pV�

n px0q ¤ pV�
n px0q ¤

pVnpx0 �δq � pVnpx0qpWnpx0 �δq � pWnpx0q
.

By (2.4.19) and (2.4.20), and letting nÑ8, we obtain

V px0q � V px0 �δq
W0px0q �W0px0 �δq

¤ liminf
nÑ8

pV�
n px0q ¤ limsup

nÑ8

pV�
n px0q ¤

V px0 �δq � V px0q
W0px0 �δq �W0px0q

.

Furthermore, by letting δÑ 0, together with (2.4.22), we get

λ0px0�q ¤ liminf
nÑ8

pV�
n px0q ¤ limsup

nÑ8

pV�
n px0q ¤ limsup

nÑ8

pV�
n px0q ¤ λ0px0�q,

which completes the proof of (i), since λ̂npx0q � pV�
n px0q. The proofs of (ii) and (iii)

are completely analogous, using (2.4.24) and Corollary 2.10. �
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2.5 INVERSE PROCESSES

To obtain the limit distribution of the estimators, we follow the approach proposed
by GROENEBOOM (1985). For each proposed estimator, we define an inverse process
and establish its asymptotic distribution. The asymptotic distribution of the estima-
tors then emerges via the switching relationships. The inverse processes are defined
in terms of some local processes and this section is devoted to acquire the weak
convergence of these local processes. Furthermore, the inverse processes need to be
bounded in probability. This result, along with the limiting distribution of the inverse
processes and hence of the estimators are deferred to Section 2.6.

In order to keep the exposition brief, we do not treat all five separate cases in
detail, but we confine ourselves to the most important ones, as the other cases can be
handled similarly. In the case of a nondecreasing λ0, the distribution of the NPMLE λ̂n
can be obtained through the study of the inverse process

pUλn paq � argmin
xPrTp1q,Tpnqs

!
Vnpxq � a pWnpxq

)
, (2.5.1)

for a ¡ 0, where Vn and pWn have been defined in (2.2.4) and (2.4.14). Succeedingly,
for a given a ¡ 0, the switching relationship holds, i.e., pUλn paq ¥ x if and only if
λ̂npxq ¤ a with probability one, so that after scaling, it follows that

n1{3
�
λ̂npx0q �λ0px0q

�¡ a ô n1{3
�pUλn pλ0px0q � n�1{3aq � x0

�
  0, (2.5.2)

for 0   x0   τH , with probability one. A similar relationship holds for λ̃n and the
corresponding inverse process

rUλn paq � argmin
xPr0,Tpnqs

 
Λnpxq � ax

(
. (2.5.3)

For the nonincreasing density estimator f̃n, we consider the inverse process

rU f
n paq � argmax

xPr0,Tpnqs

 
Fnpxq � ax

(
, (2.5.4)

where argmax denotes the largest location of the maximum. In this case, instead
of (2.5.2), we have

n1{3
�

f̃npx0q � f0px0q
�
¡ a ô n1{3

�rU f
n p f0px0q � n�1{3aq � x0

�
¡ 0, (2.5.5)

Similarly, in the case of estimating a nonincreasing λ0, we consider the inverse pro-
cesses pUλn and rUλn defined with argmax instead of argmin in (2.5.1) and (2.5.3) and
we have switching relations similar to (2.5.5).
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From the definition of the inverse process in (2.5.3) and given that the argmin
is invariant under addition of and multiplication with positive constants, it can be
derived that

n1{3
�rUλn pλ0px0q � n�1{3aq � x0

�
� argmin

xPInpx0q

!rZλnpxq � ax
)

(2.5.6)

where Inpx0q � r�n1{3 x0, n1{3pTpnq� x0qs and

rZλnpxq � n2{3
�
Λnpx0 � n�1{3 xq �Λnpx0q � n�1{3λ0px0qx

�
. (2.5.7)

Likewise, n1{3
�pUλn pλ0px0q � n�1{3aq � x0

�
is equal to

argmin
xPI 1npx0q

#pZλnpxq � n1{3a

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�+
, (2.5.8)

where I 1npx0q � r�n1{3px0 � Tp1qq, n1{3pTpnq� x0qs and

pZλnpxq � n2{3

Φpβ0, x0q

�
Vnpx0 � n�1{3 xq � Vnpx0q

�λ0px0q
� pWnpx0 � n�1{3 xq � pWnpx0q

��
,

(2.5.9)

and similarly

n1{3
�rU f

n p f0px0q � n�1{3aq � x0

�
� argmax

xPInpx0q

trZ f
npxq � axu, (2.5.10)

where

rZ f
npxq � n2{3

�
Fnpx0 � n�1{3 xq � Fnpx0q � n�1{3 f0px0qx

�
. (2.5.11)

In the case of estimating a nonincreasing λ0, we consider the argmax of the pro-
cesses (2.5.9) and (2.5.7). Before investigating the asymptotic behavior of the above
processes, we first need to establish the following technical lemma. It provides a suf-
ficient bound on the order of shrinking increments of an empirical process that we
will encounter later on.

LEMMA 2.12. Assume (A1) and (A2). Let x0 P p0,τHq fixed and suppose that

Huc is continuously differentiable in a neighborhood of x0. (2.5.12)
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Then, for any k � 1, 2, . . .,

sup
|x|¤k

�����
»
δ
�
tu¤ x0 � n�1{3 xu

� tu¤ x0u
	� 1

Φnpβ0, uq �
1

Φpβ0, uq



dpPn � Pqpu,δ, zq
�����

is of the order Oppn�7{6 log nq.

PROOF. Take 0¤ x ¤ k and consider the class of functions

Fn �
 

fnpu,δ, z; xq : 0¤ x ¤ k
(

, (2.5.13)

where for each 0¤ x ¤ k,

fnpu,δ, z; xq � δtx0   u¤ x0 � n�1{3 xu
�

1

Φnpβ0, uq �
1

Φpβ0, uq



.

Correspondingly, consider the class Gn,k,α consisting of functions

gpu,δ, z; y,Ψq � δtx0   u¤ x0 � yu
�

1

Ψpuq �
1

Φpβ0, uq



.

where 0¤ y ¤ n�1{3k and Ψ is nonincreasing left continuous, such that

Ψpx0 � n�1{3kq ¥ K and sup
uPR

��Ψpuq �Φpβ0, uq
��¤ α,

where K � Φpβ0, px0 �τHq{2q{2. Then, for any α¡ 0 and k � 1,2, . . .,

P
�
Fn � Gn,k,α

�Ñ 1,

by Lemma 2.8. Furthermore, the class Gn,k,α has envelope

Gpu,δ, zq � δtx0   u¤ x0 � n�1{3ku α
K2 ,

for which it follows from (2.5.12), that

}G}2
P,2 �

»
Gpu,δ, zq2 dPpu,δ, zq

� α
2

K4 Ppx0   T ¤ x0 � n�1{3k,∆� 1q � O pα2kn�1{3q.

Since the functions in Gn,k,α are sums and products of bounded monotone functions,
its entropy with bracketing satisfies

log Nr spε,Gn,k,α, L2pPqq À
1

ε
,
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see e.g., Theorem 2.7.5 in van der VAART & WELLNER (1996) and Lemma 9.25 in
KOSOROK (2008), and hence, for any δ ¡ 0, the bracketing integral

Jr spδ,Gn,k,α, L2pPqq �
» δ

0

b
1� log Nr spε}G}2,Gn,k,α, L2pPqqdε  8.

By Theorem 2.14.2 in van der VAART & WELLNER (1996), we have

E
����?n

»
gpu,δ, z; y,ΨqdpPn � Pqpu,δ, zq

����
Gn,k,α

¤ Jr sp1,Gn,k,α, L2pPqq}G}P,2

� O pαk1{2n�1{6q,

where } � }F denotes the supremum over the class of functions F . Now, according
to (2.4.10)

plog nq�1?n sup
xPR

��Φnpβ0, xq �Φpβ0, xq
��Ñ 0,

in probability. Therefore, if we choose α� n�1{2 log n, this gives

E
����» gpu,δ, z; y,ΨqdpPn � Pqpu,δ, zq

����
Gn,k,α

� O pk1{2n�7{6 log nq

and hence by the Markov inequality, this proves the lemma for the case 0 ¤ x ¤ k.
The argument for �k ¤ x ¤ 0 is completely similar. �

Our approach in deriving the asymptotic distribution of the monotone estimators
involves application of results from KIM & POLLARD (1990). To this end, we first
determine the limiting processes of (2.5.9), (2.5.7) and (2.5.11).

LEMMA 2.13. Suppose that (A1) and (A2) hold. Assume (2.5.12) and that

λ0 is continuously differentiable in a neighborhood of x0. (2.5.14)

Moreover, assume that

x ÞÑ Φpβ0, xq is continuously differentiable in a neighborhood of x0. (2.5.15)

Then, for any k � 1, 2, . . .,

sup
|x|¤k

���rZλnpxq � pZλnpxq���Ñ 0,

in probability, where the processes rZλn and pZλn are defined in (2.5.7) and (2.5.9), respec-
tively.
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PROOF. We will prove that for any k � 1, 2, . . . ,

sup
xPr0,ks

���rZλnpxq � pZλnpxq���Ñ 0,

in probability, since the result for �k ¤ x ¤ 0 follows completely analogous. Write

Φpβ0, x0q
�rZλnpxq � pZλnpxq	

� n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φnpβ̂n, uq � 1

�
dPnpu,δ, zq

� n2{3λ0px0q
» x0�n�1{3 x

x0

�
Φpβ0, x0q �Φnpβ̂n, sq�ds

� n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φnpβ̂n, uq �

Φpβ0, x0q
Φnpβ0, uq

�
dPnpu,δ, zq

� n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φnpβ0, uq � 1



dPnpu,δ, zq

� n2{3λ0px0q
» x0�n�1{3 x

x0

�
Φpβ0, x0q �Φnpβ0, sq�ds

� n2{3λ0px0q
» x0�n�1{3 x

x0

�
Φnpβ0, sq �Φnpβ̂n, sq�ds

� An1pxq � An2pxq � An3pxq � An4pxq.

We will show that the supremum of all four terms on the right hand side tend to zero
in probability. Similar to (2.4.12), according to Lemma 2.7,

|An1pxq| ¤ C |β̂n � β0|n2{3
» !

x0   u¤ x0 � n�1{3 x
)

dPnpu,δ, zq,

for some C ¡ 0. Since, |β̂n � β0| � Oppn�1{2q and

» !
x0   u¤ x0 � n�1{3 x

)
dpPn � Pqpu,δ, zq � Oppn�2{3 x1{2q �Oppn�1{3 xq,

it follows that

|An1pxq| � Oppn�1{2 x1{2q �Oppn�1{6 xq, (2.5.16)
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and likewise, |An4pxq| � Oppn�1{6 xq. Furthermore, write

An2pxq

�n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φnpβ0, uq �

Φpβ0, x0q
Φpβ0, uq



d pPn � Pq pu,δ, zq

� n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φpβ0, uq � 1



d pPn � Pq pu,δ, zq

� n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φnpβ0, uq �

Φpβ0, x0q
Φpβ0, uq



dPpu,δ, zq

� n2{3
»
δ
!

x0   u¤ x0 � n�1{3 x
)�Φpβ0, x0q
Φpβ0, uq � 1



dPpu,δ, zq

� Bn1pxq � Bn2pxq � Bn3pxq � Bn4pxq.

According to Lemma 2.12,

sup
0¤x¤k

��Bn1pxq
��� Oppn�1{2 log nq. (2.5.17)

For the term Bn2, consider the class F consisting of functions

f pu,δ, z; xq � δtx0   u¤ x0 � n�1{3 xu
�
Φpβ0, x0q
Φpβ0, uq � 1



,

where 0¤ x ¤ k, with envelope

Fpuq � δtx0   u¤ x0 � n�1{3ku
�

Φpβ0, x0q
Φpβ0, x0 � n�1{3kq � 1

�
.

Then, the L2pPq norm of the envelope satisfies

}F}2
P,2 �

�
Φpβ0, x0q

Φpβ0, x0 � n�1{3kq � 1

�2 �
Hucpx0 � n�1{3kq �Hucpx0q

�
� O pn�1q,

according to (2.5.12) and Lemma 2.7, so that by arguments similar as in the proof of
Lemma 2.12,

sup
0¤x¤k

|Bn2pxq| � Oppn�1{3q. (2.5.18)

For the term Bn3, similar to the treatment of the right hand side of (2.4.13), it follows
that

|Bn3pxq| ¤ n2{3Oppn�1{2q
���Hucpx0 � n�1{3 xq �Hucpx0q

���� Oppn�1{6 xq, (2.5.19)
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by condition (2.5.12). Next, we combine Bn4pxq with An3pxq. First write

An3pxq � n2{3λ0px0q
» x0�n�1{3 x

x0

�
Φnpβ0, sq �Φpβ0, sq� ds

� n2{3λ0px0q
» x0�n�1{3 x

x0

rΦpβ0, sq �Φpβ0, x0qsds

� Cn1pxq � Cn2pxq.
As for Cn1,

|Cn1pxq| ¤ n1{3 xλ0px0q sup
xPR

��Φnpβ0, xq �Φpβ0, xq
��� Oppn�1{6 xq, (2.5.20)

according to Lemma 2.8. Finally, using (2.2.9) and (2.3.1),

Bn4pxq � Cn2pxq � n2{3
» x0�n�1{3 x

x0

�
Φpβ0, x0q �Φpβ0, uq�λ0puqdu

� n2{3λ0px0q
» x0�n�1{3 x

x0

�
Φpβ0, sq �Φpβ0, x0q

�
ds

� n2{3
» x0�n�1{3 x

x0

�
Φpβ0, sq �Φpβ0, x0q

� �
λ0psq �λ0px0q

�
ds

� Oppn�1{3 xq,
(2.5.21)

by conditions (2.5.15) and (2.5.14). We conclude that

Φpβ0, x0q
���rZλnpxq � pZλnpxq���� Oppn�1{2 x1{2q �Oppn�1{6 xq �Oppn�1{3q, (2.5.22)

and after taking the supremum over r0, ks, the lemma follows. �

To find the limit process of pZλn , we will apply results from KIM & POLLARD (1990).
The limit distribution for rZλn will then follow directly from Lemma 2.13. Let BlocpRq
be the space of all locally bounded real functions on R, equipped with the topology
of uniform convergence on compact domains.

LEMMA 2.14. Assume (A1) and (A2) and let 0   x0   τH . Suppose
that (2.5.12), (2.5.14) and (2.5.15) hold. Then the processes pZλn and rZλn defined
in (2.5.9) and (2.5.7) converge in distribution to the process

Zpxq �W
�
λ0px0q
Φpβ0, x0q

x


� 1

2
λ10px0qx2, (2.5.23)

in BlocpRq, whereW is standard two-sided Brownian motion originating from zero.
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PROOF. We will apply Theorem 4.7 in KIM & POLLARD (1990). To this end, write the
process pZλn in (2.5.9) aspZλnpxq � �n2{3Pn gp�, n�1{3 xq � n2{3Rnpxq, (2.5.24)

for x P r�n1{3px0�Tp1qq, n1{3pTpnq� x0qs, where for Y � pT,∆, Zq and ϑ P r�x0,τH�
x0s,

gpY,ϑq � �g1pY,ϑq � g2pY,ϑq,

g1pY,ϑq � �tT   x0 � ϑu� tT   x0u
� ∆
Φpβ0, x0q

g2pY,ϑq � λ0px0qeβ
1
0 Z

Φpβ0, x0q
» x0�ϑ

x0

tT ¥ suds.

(2.5.25)

Furthermore,

Rnpxq �
�λ0px0q
Φpβ0, x0q

�� pWnpx0 � n�1{3 xq �Wn0px0 � n�1{3 xq
	

�
� pWnpx0q �Wn0px0q

	�
,

where Wn0pxq �Wnpβ0, xq, with Wn defined in (2.2.3). For all k � 1, 2, . . . , consider

|Rnpxq| ¤
λ0px0q
Φpβ0, x0q

» ���ts ¤ x0 � n�1{3 xu� ts ¤ x0u
��� ��Φnpβ̂n, sq �Φnpβ0, sq

�� ds,

which by similar reasoning as in (2.4.12) gives that

|Rnpxq| � Oppn�5{6 xq, (2.5.26)

by Lemma 2.7. Hence, the process x ÞÑ n2{3Rnpxq tends to zero in BlocpRq. It is suf-
ficient then to demonstrate that �n2{3Pn gp�, n�1{3 xq converges to Zpxq in BlocpRq.
To this end, we will show that the conditions of Lemma 4.5 and 4.6 in KIM & POL-
LARD (1990) hold. Condition (i) of Lemma 4.5 is trivially fulfilled, since ϑ0 � 0 is
an interior point of r�x0,τH � x0s. Moreover, observe that for all ϑ P r�x0,τH � x0s,
from (2.2.9) and (2.3.1), we have

P gp�,ϑq � �1

Φpβ0, x0q
» x0�ϑ

x0

�
λ0puq �λpx0q

�
Φpβ0, uqdu. (2.5.27)

Thus, by (2.5.15) and (2.5.14),

BP gp�,ϑq
Bϑ ��Φpβ0, x0 � ϑq

Φpβ0, x0q
 
λ0px0 � ϑq �λ0px0q

(
B2P gp�,ϑq

Bϑ2 ��
�BΦpβ0, x0 � ϑq

Bϑ


λ0px0 � ϑq �λ0px0q

Φpβ0, x0q
� Φpβ0, x0 � ϑq

Φpβ0, x0q
λ10px0 � ϑq.
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It follows that P gp�,ϑq is twice differentiable at ϑ0 � 0, its unique maximizing value,
with second derivative �λ10px0q   0, which establishes condition (iii) of Lemma 4.5
in KIM & POLLARD (1990). Next, compute

Hps, tq � lim
αÑ8

αP gp�, s{αqgp�, t{αq,

for finite s and t. Write

αP gp�, s{αqgp�, t{αq � αP
�
� g1p�, s{αq � g2p�, s{αq

	�
� g1p�, t{αq � g2p�, t{αq

	
and compute the four terms separately. For all s and t,

αP
��g1p�, s{αqg2p�, t{αq

��
¤ λ0px0qt
Φ2pβ0, x0q

E
�
|tT   x0 � s{αu� tT   x0u|eβ

1
0 Z
�
Ñ 0,

(2.5.28)

as αÑ8. Completely analogous, it follows that

lim
αÑ8

αP g2p�, s{αqg2p�, t{αq � 0, (2.5.29)

for all s and t. Finally, consider the limit for αP g1p�, s{αqg1p�, t{αq. For s, t ¥ 0,

αP g1p�, s{αqg1p�, t{αq � α

Φ2pβ0, x0q
»
δtx0 ¤ u  x0 � ps^ tq{αudPpu,δ, zq

� α

Φ2pβ0, x0q
» x0�ps^tq{α

x0

λ0puqΦpβ0, uqdu

� 1

Φ2pβ0, x0q
» s^t

0
λ0px0 � v{αqΦpβ0, x0 � v{αqdv,

by (2.2.9) and (2.3.1). Therefore, by the continuity of λ0 and Φ,

lim
αÑ8

αP g1p�, s{αqg1p�, t{αq � λ0px0q
Φpβ0, x0q

ps^ tq. (2.5.30)

A similar reasoning applies for s, t   0 and P g1p�, s{αqg1p�, t{αq � 0, when s and t
have opposite signs. Hence, condition (ii) of Lemma 4.5 in KIM & POLLARD (1990)
is verified, with

Hps, tq � λ0px0q
Φpβ0, x0q

p|s| ^ |t|q,

for st ¥ 0 and Hps, tq � 0, for st   0. Note that Hps, tq is the covariance kernel of
the centered Gaussian process in (2.5.23). For condition (iv) of Lemma 4.5 in KIM &
POLLARD (1990), it needs to be shown that for each t and ε ¡ 0

lim
αÑ8

αP gp�, t{αq2t|gp�, t{αq| ¡ αεu � 0. (2.5.31)
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In view of (2.5.28) and (2.5.29), it suffices to show that

lim
αÑ8

αP g1p�, t{αq2t|gp�, t{αq| ¡ αεu � 0.

Moreover, since g1 is bounded uniformly for ϑ P r�x0,τH � x0s, by Lemma 2.7,

t|gp�, t{αq| ¡ αεu ¤ t|g2p�, t{αq| ¡ αε{2u ¤ 2

αε
|g2p�, t{αq|,

for α sufficiently large. By (2.5.28), it follows that

αP g1p�, t{αq2t|gp�, t{αq| ¡ αεu ¤ 2

ε
P g1p�, t{αq2

��g2p�, t{αq
��

¤ 2

εΦpβ0, Mq P
��g1p�, t{αqg2p�, t{αq

��Ñ 0.

Hence, all conditions of Lemma 4.5 in KIM & POLLARD (1990) are satisfied.

To continue with verifying the conditions of Lemma 4.6 in KIM & POLLARD (1990),
consider the class of functions G � tgp�,ϑq : ϑ P r�x0,τH � x0su and the classes

GR �
 

gp�,ϑq P G : |ϑ| ¤ R
(

, (2.5.32)

for any R¡ 0, R in a neighborhood of zero. Since the functions in GR are the difference
of g1p�,ϑq, which is an the product of indicators, and g2p�,ϑq, which is the product
of a fixed function and a linear function, it follows that GR is a VC-subgraph class
of functions, and hence it is uniformly manageable, which proves condition (i) of
Lemma 4.6 in KIM & POLLARD (1990). Furthermore, choose as an envelope for GR,

GR � GR1 � GR2, (2.5.33)

where

GR1pT,∆, Zq � tx0 � R¤ T   x0 � Ru
Φpβ0, x0q

,

GR2pT,∆, Zq � 2Rλ0px0q
Φpβ0, x0q

eβ
1
0 Z .

(2.5.34)

Calculations completely analogous to (2.5.28), (2.5.29) and (2.5.30), with 1{R play-
ing the role of αÑ8, yield that PG2

R � O pRq, as RÑ 0. This proves condition (ii) of
Lemma 4.6 in KIM & POLLARD (1990). To show condition (iii) of Lemma 4.6 in KIM
& POLLARD (1990), first note that

P|gp�,ϑ1q � gp�,ϑ2q| ¤ P|g1p�,ϑ1q � g1p�,ϑ2q| � P|g2p�,ϑ1q � g2p�,ϑ2q|.
Now,

P|g1p�,ϑ1q � g1p�,ϑ2q| �
1

Φpβ0, x0q
��Hucpx0 � ϑ1q �Hucpx0 � ϑ2q

��� O p|ϑ1 � ϑ2|q,
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according to (2.5.12). Analogously,

P|g2p�,ϑ1q � g2p�,ϑ2q| ¤
λ0px0q
Φpβ0, x0q

|ϑ1 � ϑ2|E
�
eβ

1
0 Z
�
� O p|ϑ1 � ϑ2|q,

by (A2), which proves condition (iii) of Lemma 4.6 in KIM & POLLARD (1990). Fi-
nally, to establish condition (iv) of Lemma 4.6 in KIM & POLLARD (1990), we have
to show that for each ε ¡ 0, there exists K ¡ 0 such that

PG2
RtGR ¡ Ku   εR,

for R near zero. The proof of this is completely analogous to proving (2.5.31),
with 1{R playing the role α Ñ 8. This shows that all conditions of Theorem 4.7
in KIM & POLLARD (1990) are fulfilled, from which we conclude that the process
�n2{3Pn gp�, n�1{3 xq converges in distribution to the process

�W
�
λ0px0q
Φpβ0, x0q

x


� 1

2
λ10px0qx2 d�W

�
λ0px0q
Φpβ0, x0q

x


� 1

2
λ10px0qx2.

Together with (2.5.24) and (2.5.26), this proves the weak convergence of pZλn . Weak
convergence of rZλn is then immediate, by Lemma 2.13. �

As a consequence, we obtain the limiting distribution of the process in (2.5.8).

LEMMA 2.15. Assume (A1) and (A2) and suppose that (2.5.12), (2.5.14) and (2.5.15)
hold. Let 0   x0   τH and a ¡ 0 fixed and let pZλn and pWn be defined in (2.5.9)
and (2.4.14). Then, the process

pZλnpxq � n1{3a

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
converges weakly to

Zpxq � ax �W
�
λ0px0q
Φpβ0, x0q

x


� 1

2
λ10px0qx2 � ax ,

in BlocpRq, whereW is standard two-sided Brownian motion originating from zero.

PROOF. In view of Lemma 2.14, it suffices to show that for any k � 1,2, . . .,

sup
|x|¤k

���n1{3
� pWnpx0 � n�1{3 xq � pWnpx0q

�
�Φpβ0, x0qx

���Ñ 0, (2.5.35)
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almost surely. This is immediate, since similar to (2.4.20), together with the mono-
tonicity of Φpβ0, uq, one has, for x ¥ 0,���n1{3

� pWnpx0 � n�1{3 xq � pWnpx0q
�
�Φpβ0, x0qx

���
¤ n1{3

» x0�n�1{3 x

x0

��Φnpβ̂n, uq �Φpβ0, x0q
�� du

¤ |x | sup
uPR

��Φnpβ̂n, uq �Φpβ0, uq
��� |Φpβ0, x0 � n�1{3 xq �Φpβ0, x0q|

� opxq �O pn�1{3 xq,

(2.5.36)

almost surely, using Lemma 2.8 and (2.5.15). The case x   0 can be treated likewise.
�

Finally, the next lemma provides the limit process of rZ f
n .

LEMMA 2.16. Assume (A1) and (A2). Let x0 P p0,τHq and suppose
that (2.5.12), (2.5.14) and (2.5.15) hold. Then the process rZ f

n defined in (2.5.11)
converges in distribution to the process

Z
f pxq �W

�
f0px0qp1� F0px0qq
Φpβ0, x0q

x


� 1

2
f 10px0qx2. (2.5.37)

in BlocpRq, whereW is standard two-sided Brownian motion originating from zero.

PROOF. From (2.5.7), we have Λnpx0�n�1{3 xq�Λnpx0q � n�2{3rZλnpxq�n�1{3λ0px0qx ,
so that by (2.2.13),

rZ f
npxq � n2{3

�
�e�Λnpx0�n�1{3 xq� e�Λnpx0q� n�1{3 f0px0qx

�
� n2{3

�
�e�Λnpx0q

�
e�n�2{3

rZ
λ
npxq�n�1{3λ0px0qx � 1

	
� n�1{3 f0px0qx

�
.

(2.5.38)

Because e�y � 1 � �y � y2{2 � opy2q, for y Ñ 0 and supxPR |rZλnpxq| � Opp1q,
according to Lemma 2.14, it follows that

e�n�2{3
rZ
λ
npxq�n�1{3λ0px0qx � 1�� n�2{3rZλnpxq � n�1{3λ0px0qx �

1

2
n�2{3λ0px0q2 x2

�Oppn�4{3q �Oppn�1 xq � oppn�2{3 x2q.

Similarly, from Theorem 2.9, we have that e�Λnpx0q � e�Λ0px0q�Oppn�1{2q. Since

e�Λ0px0qλ0px0q � r1� F0px0qsλ0px0q � f0px0q,
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from (2.5.38), we find that

rZ f
npxq � r1� F0px0qsrZλnpxq � 1

2
r1� F0px0qsλ0px0q2 x2

�Oppn�1{2q �Oppn�1{6 xq � oppx2q.
(2.5.39)

According to Lemma 2.14, the process r1� F0px0qsrZλnpxq � 1
2
r1� F0px0qsλ0px0q2 x2

converges weakly to

r1� F0px0qsW
�
λ0px0q
Φpβ0, x0q

x


� 1

2
r1� F0px0qsλ10px0qx2 � 1

2
r1� F0px0qsλ2

0px0qx2,

which has the same distribution as the process in (2.5.37), by means of Brownian
scaling and the fact that

λ10 �
�

f0

1� F0


1

� p1� F0q f 10 � f 2
0

p1� F0q2
� f 10

1� F0
�λ2

0. (2.5.40)

Hence, for any k � 1, 2, . . ., it follows from (2.5.39) that

sup
|x|¤k

|rZ f
npxq �Z f pxq| � opp1q,

which finishes the proof. �

2.6 LIMIT DISTRIBUTION

The last step in deriving the asymptotic distribution of the estimators is to find the
limiting distribution of the inverse processes rUλn , pUλn and rU f

n defined in (2.5.3), (2.5.1)
and (2.5.4) and of the versions of rUλn and pUλn in the case of a nonincreasing hazard, by
applying Theorem 2.7 in KIM & POLLARD (1990). This requires the inverse processes
to be bounded in probability.

LEMMA 2.17. Assume (A1) and (A2) and let x0 P p0,τHq. Suppose that λ0 is monotone
and suppose that f0 is nondecreasing. Suppose that (2.5.14) and (2.5.15) hold, with
λ0px0q � 0. Then, for each ε ¡ 0 and M1 ¡ 0, there exists M2 ¡ 0 such that,

P

�
max
|a|¤M1

n1{3
���pUλn pλ0px0q � n�1{3aq � x0

���¡ M2



  ε (2.6.1)

P

�
max
|a|¤M1

n1{3
���rUλn pλ0px0q � n�1{3aq � x0

���¡ M2



  ε (2.6.2)

P

�
max
|a|¤M1

n1{3
���rU f

n p f0px0q � n�1{3aq � x0

���¡ M2



  ε, (2.6.3)

for n sufficiently large.



2.6. LIMIT DISTRIBUTION 59

PROOF. The proof of the lemma follows closely the lines of proof of Lemma 5.3
in GROENEBOOM & WELLNER (1992) (see also Lemma 7.1 in HUANG & WELL-
NER, 1995). First consider (2.6.1) in case λ0 is nondecreasing. It will be shown that

P

�
max
|a|¤M1

n1{3
�pUλn pλ0px0q � n�1{3aq � x0

�
¡ M2



  ε, (2.6.4)

as the other part can be proved similarly. Because pUλn paq is nondecreasing, the prob-
ability in (2.6.4) is equal to

P

�
n1{3

�pUnpλ0px0q � n�1{3M1q � x0

�
¡ M2

	
.

The relationship between the inverse process pUλn and the process pZλn defined
in (2.5.9), together with the fact that pZλnp0q � 0, implies that

P

�
n1{3

�pUλn pλ0px0q � n�1{3M1q � x0

�
¡ M2

	
¤P

�pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
¤ 0, for some x ¥ M2

�
.

(2.6.5)

By condition (2.5.14), there exists M0 ¡ 0 such that, for any x P rTp1q, Tpnqs with |x �
x0| ¤ M0, λ10pxq ¡ 0 and λ10pxq is close to λ10px0q. Take n�1{3 x ¤ M0. From (2.5.24)
and (2.5.35),

pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
��n2{3Pn gp�, n�1{3 xq �M1 x � pRnpxq,

(2.6.6)

where pRnpxq � Oppn�1{6 xq � opxq � O pn�1{3 xq, by (2.5.26) and (2.5.36). Fur-
thermore, for 0   R ¤ M0, consider the class of functions GR defined in (2.5.32)
along with its envelope defined in (2.5.33). It has been determined in the proof
of Lemma 2.14 that GR is uniformly manageable for its envelope GR and that
PG2

R � O pRq, for 0   R ¤ M0. Thus, Lemma 4.1 in KIM & POLLARD (1990) states
that for each δ ¡ 0, there exist random variables Sn � Opp1q such that

|Pn gp�, n�1{3 xq � P gp�, n�1{3 xq| ¤ δn�2{3 x2 � n�2{3S2
n , (2.6.7)

for n�1{3 x ¤ M0. Choose δ � λ10px0q{8 in the above inequality. It will result that

�n2{3pPn � Pqgp�, n�1{3 xq ¥ �1

8
λ10px0qx2 � S2

n .
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Furthermore, by (2.5.14), (2.5.15) and (2.5.27),

�n2{3P gp�, n�1{3 xq � x2

2Φpβ0, x0q
!
λ10px0 � ϑnqΦpβ0, x0 � ϑnq

� �
λ0px0 � ϑnq �λ0px0q

�
Φ1pβ0, x0 � ϑnq

) (2.6.8)

for |ϑn| ¤ n�1{3 x ¤ M0, where Φ1pβ0, xq � BΦpβ0, xq{Bx . From the choice of M0 and
since λ10px0q ¡ 0, we can find K ¡ 0 such that for any x ¡ K ,

�n2{3P gp�, n�1{3 xq �M1 x ¥ 1

4
λ10px0qx2,

for n sufficiently large. We conclude that

pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
��n2{3Pn gp�, n�1{3 xq �M1 x � pRnptq
� �n2{3pPn � Pqgp�, n�1{3 xq � n2{3P gp�, n�1{3 xq �M1 x � pRnpxq

¥ 1

8
λ10px0qx2 � S2

n � pRnpxq,

where pRnpxq � Oppn�1{6 xq � opxq � O pn�1{3 xq and the Op, O and o terms do not
depend on x . It follows that for x ¥ M2 ¡ K ,

pZλnpxq� n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
¥ 1

8
λ10px0qx2 � S2

n � oPp1q, (2.6.9)

where the oP term does not depend on x . Then, M2 can be chosen such that

P

�
S2

n ¥
1

8
λ10px0qM2

2 � oPp1q


  ε,

for n sufficiently large. We find that

P

�pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
¤ 0, for some M2 ¤ x ¤ n1{3M0

�

¤P
�

1

8
λ10px0qx2 � S2

n � oPp1q ¤ 0, for some M2 ¤ x ¤ n1{3M0



¤P

�
S2

n ¥
1

8
λ10px0qx2 � oPp1q, for some M2 ¤ x ¤ n1{3M0



¤ ε,

for n sufficiently large.
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For n�1{3 x ¡ M0, we first show that

pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
¥ pZnpn1{3M0{2q �

n1{3M1

Φpβ0, x0q
� pWnpx0 �M0{2q � pWnpx0q

�
,

(2.6.10)

with large probability, for n sufficiently large. Then,

P

�pZnpn1{3M0{2q �
n1{3M1

Φpβ0, x0q
� pWnpx0 �M0{2q � pWnpx0q

�
¤ 0

�

can be bounded with the argument above. Lemma 2.11 and (2.4.16) yield thatpVnpx0 � M0{2q � Vnpx0 � M0{2q � op1q, with probability one and by definition
Vnpx0 � n�1{3 xq ¥ pVnpx0 � n�1{3 xq, for all x0 � n�1{3 x P rTp1q, Tpnqs. This implies
that

Vnpx0 � n�1{3 xq � Vnpx0 �M0{2q
¥ pVnpx0 � n�1{3 xq � pVnpx0 �M0{2q � op1q,
¥ λ̂npx0 �M0{2q

� pWnpx0 � n�1{3 xq � pWnpx0 �M0{2q
�
� op1q,

(2.6.11)

using the convexity of pVn. To show (2.6.10), note that by definition (2.5.9),

pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpβ̂n, x0q

�
�
#pZλnpn1{3M0{2q �

n1{3M1

Φpβ0, x0q
� pWnpx0 �M0{2q � pWnpx0q

�+

� n2{3

Φpβ0, x0q
!

Vnpx0 � n�1{3 xq � Vnpx0 �M0{2q

�
�
λ0px0q � n�1{3M1

�� pWnpx0 � n�1{3 xq � pWnpx0 �M0{2q
�)

,
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and furthermore,

n2{3

Φpβ0, x0q
!

Vnpx0 � n�1{3 xq � Vnpx0 �M0{2q

�
�
λ0px0q � n�1{3M1

�� pWnpx0 � n�1{3 xq � pWnpx0 �M0{2q
	)

¥ n2{3

Φpβ0, x0q
!�
λ̂npx0 �M0{2q �λ0px0q � n�1{3M1

�
�
� pWnpx0 � n�1{3 xq � pWnpx0 �M0{2q

�
� op1q

)
� n2{3

Φpβ0, x0q
!�
λ0px0 �M0{2q �λ0px0q � n�1{3M1 � op1q

�
�
�
W0px0 � n�1{3 xq �W0px0 �M0{2q � op1q

�
� op1q

)
¡ 0,

for n sufficiently large, using (2.4.20) and the fact that λ0 and W0 are strictly increas-
ing and n�1{3 x ¡ M0. It follows that

P

�pZλnpxq � n1{3M1

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
¤ 0, for some x ¡ n1{3M0

�

¤P
�pZλnpn1{3M0{2q �

n1{3M1

Φpβ0, x0q
� pWnpx0 �M0{2q � pWnpx0q

�
¤ 0

�
¤ ε.

This completes the proof of (2.6.4). The other part of (2.6.1) for a nondecreasing λ0
is proven similarly.

For (2.6.2), in case of a nondecreasing λ0, by the same reasoning that leads
to (2.6.5) we first have

P

�
n1{3

�rUλn pλ0px0q � n�1{3M1q � x0

�
¡ M2

	
¤P

�rZλnpxq �M1 x ¤ 0, for some x ¥ M2

	
.

Moreover, by (2.5.22),rZλnpxq � pZλnpxq �Oppn�1{2 x1{2q �Oppn�1{6 xq �Oppn�1{3q,
where the Op terms do not depend on x . Similar to (2.6.9), one obtains

rZλnpxq �M1 x ¥ 1

8
λ10px0qx2 � S2

n � opp1q,

for M2 ¤ x ¤ n1{3M0, where the op-term does not depend on x , which yields

P

�rZλnpxq �M1 x ¤ 0, for some M2 ¤ x ¤ n1{3M0

	
¤ ε.
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In the case x ¡ n1{3M0, similar to (2.6.11), Theorem 2.9 and (2.4.25) yield

Λnpx0 � n�1{3 xq �Λnpx0 �M0{2q
¥ rΛnpx0 � n�1{3 xq � rΛnpx0 �M0{2q � op1q
¥ λ̃npx0 �M0{2qpn�1{3 x �M0{2q � op1q.

(2.6.12)

This leads to rZλnpxq �M1 x ¥ rZλnpn1{3M0{2q �M1n1{3M0{2,

from which we conclude

P

�rZλnpxq �M1 x ¤ 0, for some x ¡ n1{3M0

	
¤ ε.

This completes one part of the proof of (2.6.2) for a nondecreasing λ0. The other part
is shown similarly.

For (2.6.3), using that rU f
n is nonincreasing, similar to (2.6.5), we first have

P

�
n1{3

�rU f
n p f0px0q � n�1{3M1q � x0

�
¡ M2

	
¤P

�rZ f
npxq �M1 x ¥ 0, for some x ¥ M2

	
,

Next, according to (2.5.39), (2.5.22) and (2.5.36), we obtain

rZ f
npxq �M1 x �� r1� F0px0qsn2{3pPn � Pqgp�, n�1{3 xq

� r1� F0px0qsn2{3P gp�, n�1{3 xq � 1

2
r1� F0px0qsλ0px0q2 x2 �M1 x

�Oppn�1{3q �Oppn�1{2 x1{2q � oppxq � oppx2q,

where the Op and op terms do not depend on x and where P gp�, n�1{3 xq is given
in (2.6.8). Now, choose δ �� f 1px0q{p8r1�F0px0qsq ¡ 0 in (2.6.7), so that according
to Lemma 4.1 in KIM & POLLARD (1990),

�r1� F0px0qsn2{3pPn � Pqgp�, n�1{3 xq ¤ �1

8
f 10px0qx2 � S2

n ,

for n�1{3 x ¤ M0 and S2
n � Opp1q. Furthermore, from (2.6.8) together with (2.5.40),

it follows that we can find a K ¡ 0 such that for any x ¡ K ,

�r1� F0px0qsn2{3P gp�, n�1{3 xq � 1

2
r1� F0px0qsλ0px0q2 x2 �M1 x   1

4
f 10px0qx2,

for n sufficiently large. Similar to (2.6.9) we have for x ¥ M2 ¥ K ,

rZ f
npxq �M1 x ¤

�
1

8
f 10px0q � opp1q

�
x2 � S2

n � opp1q,
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where the op terms do not depend on x , which leads to

P

�rZ f
npxq �M1 x ¥ 0, for some M2 ¤ x ¤ n1{3M0

	
¤ ε,

for n sufficiently large. In the case x ¡ n1{3M0, first, similar to (2.4.25), we can obtain
that for any 0  M   τH ,

sup
xPr0,Ms

���rFnpxq � F0pxq
���¤ sup

xPr0,Ms

��Fnpxq �Λ0pxq
�� ,

which then similar to (2.6.12) together with Corollary 2.10 yields

Fnpx0 � n�1{3 xq � Fnpx0 �M0{2q
¤ rFnpx0 � n�1{3 xq � rFnpx0 �M0{2q � op1q
¤ f̃npx0 �M0{2qpn�1{3 x �M0{2q � op1q.

(2.6.13)

This leads to rZ f
npxq �M1 x ¤ rZ f

npn1{3M0{2q �M1n1{3M0{2,

from which we conclude

P

�rZλnpxq �M1 x ¥ 0, for some x ¡ n1{3M0

	
¤ ε.

This completes one part of the proof of (2.6.3). The other part is shown similarly.

Finally, the proof of (2.6.1) and (2.6.2) in the case of a nonincreasing λ0 is along the
lines of the proof of (2.6.3), combined with arguments used for the proof of (2.6.1)
and (2.6.2) in the nondecreasing case. �

Hereafter, the continuous mapping theorem from KIM & POLLARD (1990) will be
applied to the inverse processes in (2.5.1), (2.5.3) and (2.5.4), in order to derive the
limiting distribution of the considered estimators. Let CmaxpRq denote the subset of
BlocpRq consisting of continuous functions f for which f ptq Ñ �8, when |t| Ñ 8
and f has an unique maximum.

PROOF.[ Proof of Theorem 2.4] The aim is to apply Theorem 2.7 in KIM & POL-
LARD (1990) and Theorem 6.1 in HUANG & WELLNER (1995). Since Theorem 2.7
from KIM & POLLARD (1990) applies to the argmax of processes on the whole real
line, we extend the process

pZλn pa, xq � pZλnpxq � n1{3a

Φpβ0, x0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�
from (2.5.8) for x P rn1{3pTp1q � x0q, n1{3pTpnq � x0qs, to the whole real line. De-
fine pZλn pa, xq � pZλn pa, n1{3pTp1q � x0qq, for x   n1{3pTp1q � x0q and pZλn pa, xq �
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pZλn pa, n1{3pTpnq � x0qq � 1, for x ¡ n1{3pTpnq � x0q. Then, pZλn pa, xq P BlocpRq and
according to (2.5.8),

n1{3
�pUλn pλ0px0q � n�1{3aq � x0

�
� argmin

xPR

!pZλn pa, xq
)
� argmax

xPR

!
�pZλn pa, xq

)
.

By Lemma 2.14, for any a fixed, the process �pZλn pa, xq converges weakly to the
process �Zpxq � ax P CmaxpRq with probability one, where Z has been defined
in (2.5.23). Lemma 2.17 ensures the boundedness in probability of n1{3tpUλn pλ0px0q�
n�1{3aq � x0u. Consequently, by Theorem 2.7 in KIM & POLLARD (1990), it follows
that

n1{3
�pUλn pλ0px0q � n�1{3aq � x0

�
dÝÑ argmax

xPR

 �Zpxq � ax
(� argmin

xPR

 
Zpxq � ax

(
.

The same argument applies to the process rZλnpxq � ax from (2.5.6), for x P
r�n1{3 x0, n1{3pTpnq� x0qs, which we extend to the whole real line in a similar fashion.
Furthermore, if we fix a, b PR, it will follow that�pZλn pa, xq, rZλnpxq � bx

	
dÝÑ
�
Zpxq � ax ,Zpxq � bx

	
,

by Lemma 2.15 and Lemma 2.14. Hence, the first condition of Theorem 6.1 in HUANG
& WELLNER (1995) is verified. The second condition is provided by Lemma 2.17,
whereas the third condition is given by (2.5.6) and (2.5.8). Therefore, by Theorem 6.1
in HUANG & WELLNER (1995),�

n1{3
�pUλn pλ0px0q � n�1{3aq � x0

�
,n1{3

�rUλn pλ0px0q � n�1{3 bq � x0

��
dÝÑ �

Uλpaq, Uλpbq� ,

where

Uλpaq � sup

"
t :W

�
λ0px0q
Φpβ0, x0q

t


� 1

2
λ10px0qt2 � at is minimal

*
.

Additional computations show that Uλpaq d�Uλp0q � a{λ10px0q and therefore, by the
definition of the inverse processes in (2.5.1) and (2.5.3),

P

�
n1{3

�
λ̂npx0q �λ0px0q

�¡ a, n1{3
�
λ̃npx0q �λ0px0q

�
¡ b

	
ÑPpUλpaq   0, Uλpbq   0q �Pp�λ10px0qUλp0q ¡ a,�λ10px0qUλp0q ¡ bq,

as nÑ8. This implies that�
n1{3

�
λ̂npx0q �λ0px0q

�
,n1{3

�
λ̃npx0q �λ0px0q

��
dÝÑ ��λ10px0qUλp0q,�λ10px0qUλp0q

�
,
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which proves (2.3.3). To establish the limiting distribution, define

Apxq �
�
Φpβ0, xq

4λ0pxqλ10pxq

�1{3

,

and note that

n1{3Apx0q
�
λ̂npx0q �λ0px0q

� dÝÑ Apx0qλ10px0qUλp0q d� argmin
tPR

 
Wptq � t2

(
,

by Brownian scaling and the fact that the distribution of Uλp0q is symmetric around
zero. �

PROOF.[Proof of Theorem 2.5] The proof of Theorem 2.5 is completely analogous to
that of Theorem 2.4. The inverse processes to be considered in this case are

pUλn paq � argmax
xPr0,Tpnqs

 
Ynpxq � aWnpβ̂n, xq( ,

rUλn paq � argmax
xPr0,Tpnqs

 
Λnpxq � ax

(
,

for a ¡ 0, where Wn, Yn and Λn have been defined in (2.2.3), (2.2.11) and (2.2.8)
and β̂n is the maximum partial likelihood estimator. By the same arguments as used
in the proof of Theorem 2.4, the limiting distribution is expressed in terms of

argmax
tPR

 
Wptq � t2

( d�argmax
tPR

 �Wptq � t2
(� argmin

tPR
tWptq � t2u,

by properties of Brownian motion. �

PROOF.[Proof of Theorem 2.6] Completely similar to the reasoning in the proof of
Theorem 2.4, we obtain

n1{3
�rU f

n p f0px0q � n�1{3aq � x0

�
dÝÑ U f paq,

where

U f paq � sup

"
t :W

�
f0px0qr1� F0px0qs
Φpβ0, x0q

t


� 1

2
f 10px0qt2 � at is maximal

*
.

As before, by Brownian scaling, U f paq d�U f p0q � a{ f 10px0q and together with (2.5.5)
we obtain

P

�
n1{3

�
f̃npx0q � f0px0q

�
  a

	
ÑP

�� f 10px0qU f p0q   a
�

.
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Similar to the proof of Theorem 2.4, with

Apxq �
����� Φpβ0, xq
4 f0pxq f 10pxqr1� F0pxqs

�����
1{3

,

we conclude that n1{3Apx0qr f̃npx0q � f0px0qs converges in distribution to

Apx0q f 10px0qU f p0q � argmax
tPR

tWptq � t2u d� argmin
tPR

tWptq � t2u,

using Brownian scaling and the fact that the distribution of U f p0q is symmetric
around zero. �
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CHAPTER 3

AN ASYMPTOTIC LINEAR REPRESENTATION
FOR THE BRESLOW ESTIMATOR 1

We provide an asymptotic linear representation of the Breslow estimator of the base-
line cumulative hazard function in the Cox model. Our representation consists of an
average of independent random variables and a term involving the difference be-
tween the maximum partial likelihood estimator and the underlying regression pa-
rameter. The order of the remainder term is arbitrarily close to n�1.

3.1 INTRODUCTION

The proportional hazards model is one of the most popular approaches to model
right-censored time to event data in the presence of covariates. COX (1972) intro-
duced this semiparametric model and focused on estimating the underlying regres-
sion coefficients of the covariates. His estimator was later shown by COX (1975) to be
a maximum partial likelihood estimator and its asymptotic properties were broadly
studied (TSIATIS, 1981; ANDERSEN et al., 1993; OAKES, 1977; SLUD, 1982). Dif-
ferent functionals of the lifetime distribution are commonly investigated and the (cu-
mulative) hazard function is of particular interest. In the discussion following the
Cox’s (1972) paper, Breslow proposed a nonparametric maximum likelihood estima-
tor for the baseline cumulative hazard function. Asymptotic properties of the Breslow
estimator, such as consistency and the asymptotic distribution, were derived by TSI-
ATIS (1981) and ANDERSEN et al. (1993). For an overview of the Breslow estimator,
see LIN (2007).

Estimators in unconditional censorship models such as the Kaplan–Meier and
Nelson–Aalen estimators have received considerable attention, especially in the
1980s. Established large sample properties include consistency and asymptotic nor-
mality (BRESLOW & CROWLEY, 1974), rate of strong uniform consistency (CSÖRGŐ
& HORVÁTH, 1983), strong approximation or Hungarian embedding (BURKE et
al., 1981), and linearization results (LO & SINGH, 1985). LO & SINGH (1985) ex-
pressed the difference between the Kaplan–Meier estimator and the underlying dis-

1By Lopuhaä, H. P. and Nane, G. F. (2013). Communications in Statistics - Theory and Methods, 42:
1314–1324.
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tribution function in terms of a sum of independent identically distributed random
variables, almost surely, with a remainder term of the order n�3{4plog nq3{4, with n
denoting the sample size; this rate was later improved to n�1 log n by LO et al. (1989).
To our knowledge, a strong approximation result for the Breslow estimator is unavail-
able in the literature. KOSOROK (2008) establishes a representation of the Breslow
estimator in terms of counting processes. Although this can be turned into an asymp-
totic linear representation similar to the one in LO & SINGH (1985), the covariates
are assumed to be in a bounded set and the remainder term is only shown to be of
the order oppn�1{2q.

In this chapter, we derive a similar linearization result for the Breslow estimator,
i.e., we prove that the difference between the estimator Λn and the cumulative base-
line hazard function Λ0 can be represented as a sum of independent random vari-
ables and a term involving the difference between the regression parameter and its
maximum partial likelihood estimator. However, we allow unbounded covariates and
we show that the remainder term is of the order n�1a�1

n , where an may be any se-
quence tending to zero. As an can be chosen to converge to zero arbitrarily slowly, this
means that the order of the remainder term is arbitrarily close to n�1. The proof is
based on empirical process theory, which allows the extension of our result to related
semi-parametric models, such as marginal regression models. Our main motivation is
isotonic estimation of the baseline distribution in the Cox model. An example is the
Grenander-type estimator λ̃n for a nondecreasing baseline hazard λ0, considered in
Chapter 2, which is defined as the left-hand slope of the greatest convex minorant of
the Breslow estimator. The limit behavior of λ̃n at a fixed point t0 essentially follows
from the limit behavior of the process

t ÞÑ n2{3
!
pΛn �Λ0q

�
t0 � n�1{3 t

	
� pΛn �Λ0q pt0q

)
.

In the absence of a strong approximation result for the process Λn�Λ0, an alternative
to obtain the limit process is to apply the results in KIM & POLLARD (1990) to the
linear representation of Λn �Λ0, provided that the remaining terms in the represen-
tation are of order smaller than n�2{3. This cannot be ensured by the representation
in KOSOROK (2008), whereas the order n�1a�1

n can be chosen sufficiently small, for
suitable choices of an. Another application of our linear representation is that, to-
gether with a linear representation of the maximum partial likelihood estimator, a
central limit theorem can be established for Λn � Λ0. Moreover, such a representa-
tion may also provide a means to estimate the variance of the Breslow estimator, by
using plug-in estimators. A linear representation of the partial maximum likelihood
estimator can be deduced from results in TSIATIS (1981) or KOSOROK (2008).

The chapter is organized as follows. The Cox model and the Breslow estimator are
introduced in Section 3.2. Section 3.3 is devoted to the main result of the paper and
its proof as well as two preparatory lemmas.
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3.2 BACKGROUND, NOTATION, AND ASSUMPTIONS

Let X denote a positive random variable representing the survival time of a pop-
ulation of interest. The random variable C denotes the censoring time. Now, define
T � minpX , Cq as the generic follow-up time and ∆ � tX ¤ Cu as its corresponding
indicator, where t�u denotes the indicator function. Suppose that at the beginning
of the study, extra information such as sex, age, status of a disease, etc. is recorded
for each subject as covariates. Let Z denote a p-dimensional covariate vector. There-
fore, suppose we observe the following independent, identically distributed triplets
pTi ,∆i , Ziq, with i � 1,2, . . . , n. The censoring mechanism is assumed to be non-
informative. Moreover, given the covariate Z , the survival time X is assumed to be
independent of the censoring time C . The p-dimensional covariate vector Z is as-
sumed to be time invariant and non-degenerate.

In the Cox model, the distribution of the survival time is related to the correspond-
ing covariate by

λ
�
x | z

�� λ0pxqeβ
1
0z , x P R�,

where λ
�
x | z

�
is the hazard function for a subject with covariate vector z P Rp, λ0

represents the underlying baseline hazard function, and β0 P Rp is the vector of the
underlying regression coefficients. Conditionally on Z � z, the survival time X is
assumed to be a nonnegative random variable, with an absolutely continuous distri-
bution function Fpx | zq with density f px | zq. The same assumptions hold for the
censoring variable C and its distribution function G. Let H be the distribution func-
tion of the follow-up time T and let τH � inftt : Hptq � 1u be the end point of the
support of H. Moreover, let τF and τG be the end points of the support of F and G,
respectively. We employ the usual assumptions for deriving large sample properties
of Cox proportional hazards estimators (TSIATIS, 1981):

(A1) τH � τG   τF .

(A2) There exists ε ¡ 0 such that

sup
|β�β0|¤ε

E

�
|Z |2 e2β 1Z

�
 8,

where | � | denotes the Euclidean norm.

Let Xp1q   Xp2q   � � �   Xpmq denote the ordered, observed survival times. COX
(1972, 1975) introduced the proportional hazards model and proposed the partial
likelihood estimator β̂n as an estimator for the underlying regression coefficients β0.
Breslow (COX, 1972) focused on estimating the baseline cumulative hazard function,
Λ0pxq �

³x
0 λ0puqdu, and proposed

Λnpxq �
¸

i|Xpiq¤x

di°n
j�1tT j ¥ Xpiqueβ̂

1
n Z j

, (3.2.1)
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as an estimator for Λ0, where di is the number of events at Xpiq and β̂n is the par-
tial maximum likelihood estimator of the regression coefficients. The estimator Λn
is most commonly referred to as the Breslow estimator. Under the assumption of
a piecewise constant baseline hazard function and assuming that all the censoring
times are shifted to the preceding observed survival time, Breslow showed that the
partial maximum likelihood estimator β̂n along with the baseline cumulative hazard
estimator Λn can be obtained by jointly maximizing the full loglikelihood function.

Let

Φpβ , xq �
»
tu¥ xueβ

1z dPpu,δ, zq,

Φnpβ , xq �
»
tu¥ xueβ

1z dPnpu,δ, zq,
(3.2.2)

where P is the underlying probability measure corresponding to the distribution of
pT,∆, Zq and Pn is the empirical measure of the triplets pTi ,∆i , Ziq, for i � 1, 2, . . . , n.
Furthermore, let Hucpxq � PpT ¤ x ,∆ � 1q be the sub-distribution function of the
uncensored observations. Then, using the derivations in TSIATIS (1981), it can be
deduced that

λ0puq �
dHucpuq{du

Φpβ0, uq . (3.2.3)

Consequently, it can be derived that

Λ0pxq �
»
δtu¤ xu
Φpβ0, uq dPpu,δ, zq. (3.2.4)

From (A1) it follows that Λ0pτHq   8. An intuitive baseline cumulative hazard func-
tion estimator is obtained by replacing Φ in (3.2.4) by Φn and by plugging in β̂n,
which yields exactly the Breslow estimator in (3.2.1),

Λnpxq �
»
δtu¤ xu
Φnpβ̂n, uq dPnpu,δ, zq. (3.2.5)

KOSOROK (2008) established strong uniform consistency for the Breslow estima-
tor and the process convergence of

?
npΛn � Λ0q, yet under the strong assumption

of bounded covariates. Using standard empirical processes methods, LOPUHAÄ &
NANE (2013) establish strong uniform consistency at rate n�1{2 for the Breslow esti-
mator under the relatively mild conditions (A1) and (A2).
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3.3 ASYMPTOTIC REPRESENTATION

The following two lemmas will be used in proving the main result of the paper.

LEMMA 3.1. Suppose that condition (A2) holds and let Φn and Φ be defined in (3.2.2).
With ε ¡ 0 taken from (A2), for |β � β0|   ε, let

Dp1qpβ , xq � BΦpβ , xq
Bβ �

»
tu¥ xu z eβ

1z dPpu,δ, zq PRp,

Dp1q
n pβ , xq � BΦnpβ , xq

Bβ �
»
tu¥ xu z eβ

1z dPnpu,δ, zq PRp.
(3.3.1)

Then,
?

n sup
xPR

��Φnpβ0, xq �Φpβ0, xq
��� Opp1q,

?
n sup

xPR

���Dp1q
n pβ0, xq � Dp1qpβ0, xq

���� Opp1q.
(3.3.2)

PROOF. Consider the class of functions G � tgpu, z; xq : x P Ru, where, for each x P R
and β0 PRp fixed,

gpu, z; xq � tu¥ xuexppβ 10zq
is a product of an indicator and a fixed function. It follows that G is a Vapnik–
C̆ervonenkis (VC)-subgraph class (Lemma 2.6.18 in van der VAART & WELL-
NER, 1996) and its envelope G � exppβ 10zq is square integrable under condition (A2).
Standard results from empirical process theory (van der VAART & WELLNER, 1996)
yield that the class of functions G is a Donsker class, i.e.,

?
n
»

gpu, z; xqdpPn � Pqpu,δ, zq � Opp1q,

so that the first statement in (3.3.2) follows by the continuous mapping theorem.
To prove the second statement, it suffices to consider each jth coordinate, for j �
1,2, . . . , p, fixed. In this case, we deal with the class G j � tg jpu, z; xq : x P Ru, where

g jpu, z; xq � tu¥ xuz jexppβ 10zq.
From here the argument is exactly the same, which proves the lemma. �

LEMMA 3.2. Assume (A1) and (A2). Then, for all M P p0,τHq,

ann sup
xPr0,Ms

����» δtu¤ xu
�

1

Φnpβ0, uq �
1

Φpβ0, uq



dpPn � Pqpu,δ, zq
����� Opp1q,

for any sequence an � op1q.
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PROOF. Consider the class of functions Fn �
 

fnpu,δ, z; xq : 0¤ x ¤ M
(
, where

fnpu,δ, z; xq � δtu¤ xu
�

1

Φnpβ0, uq �
1

Φpβ0, uq



.

Correspondingly, consider the class Gn,M ,α consisting of functions

gpu,δ, z; y,Ψq � δtu¤ yu
�

1

Ψpuq �
1

Φpβ0, uq



,

where 0¤ y ¤ M and Ψ is nonincreasing left continuous, such that

ΨpMq ¥ K , sup
uPr0,Ms

��Ψpuq �Φpβ0, uq
��¤ α,

where K � Φpβ0, Mq{2. Then, for any α ¡ 0, we have PpFn � Gn,M ,αq Ñ 1, by
Lemma 3.1. Furthermore, the class Gn,M ,α has envelope Gpu,δ, zq � α{K2. Since the
functions in Gn,M ,α are products of indicators and a difference of bounded monotone
functions, its entropy with bracketing satisfies

log Nr spε,Gn,M ,α, L2pPqq À
1

ε
,

see e.g., Theorem 2.7.5 in van der VAART & WELLNER (1996) and Lemma 9.25 in
KOSOROK (2008). Hence, for any δ ¡ 0, the bracketing integral

Jr spδ,Gn,M ,α, L2pPqq �
» δ

0

b
1� log Nr spε}G}2,Gn,M ,α, L2pPqqdε  8.

By Theorem 2.14.2 in van der VAART & WELLNER (1996), we have

E
����?n

»
gpu,δ, z; y,ΨqdpPn � Pqpu,δ, zq

����
Gn,M ,α

¤ Jr sp1,Gn,M ,α, L2pPqq}G}P,2 � O pαq,

where } � }F denotes the supremum over the class of functions F . Now, let an � op1q.
Then, according to (3.3.2),

an
?

n sup
xPR

��Φnpβ0, xq �Φpβ0, xq
��� opp1q.

Therefore, if we choose α� n�1{2a�1
n , this gives

E
����» gpu,δ, z; y,ΨqdpPn � Pqpu,δ, zq

����
Gn,M ,α

� O ppnanq�1q

and hence, by the Markov inequality, this proves the lemma. �

The asymptotic linear representation of the Breslow estimator is provided by the
next theorem.
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THEOREM 3.3. Assume (A1) and (A2). Let Φ and Dp1q be defined in (3.2.2) and (3.3.1).
Then, for all M P p0,τHq and x P r0, Ms,

Λnpxq �Λ0pxq �
1

n

ņ

i�1

ξpTi ,∆i , Zi; xq � pβ̂n � β0q1A0pxq � Rnpxq,

where β̂n is the maximum partial likelihood estimator,

A0pxq �
» x

0

Dp1qpβ0, uq
Φpβ0, uq λ0puqdu (3.3.3)

and

ξpt,δ, z; xq � �eβ
1
0z
» x^t

0

λ0puq
Φpβ0, uq du� δtt ¤ xu

Φpβ0, tq
and Rn is such that

sup
xPr0,Ms

��Rnpxq
��� Oppn�1a�1

n q,

for any sequence an � op1q.

PROOF. For β PRp, define

Λnpβ , xq �
»
δtu¤ xu
Φnpβ , uq dPnpu,δ, zq.

Hence, the Breslow estimator in (3.2.5) can also be written as Λnpβ̂n, xq. For x P
r0, Ms, consider the following decomposition

Λnpxq �Λ0pxq � Tn1pxq � Tn2pxq,
where Tn1pxq � Λnpβ̂n, xq �Λnpβ0, xq and Tn2pxq � Λnpβ0, xq �Λ0pxq.

For the term Tn1, first notice that a Taylor expansion of Λnp�, xq around β0 yields
that

Λnpβ̂n, xq �Λnpβ0, xq � ��β̂n � β0

�1
Anpxq �

1

2

�
β̂n � β0

�1
Rn1pxq

�
β̂n � β0

�
, (3.3.4)

where the vector An and matrix Rn1 are given by

Anpxq �
»
δtu¤ xuDp1q

n pβ0, uq
Φ2

npβ0, uq dPnpu,δ, zq, (3.3.5)

Rn1pxq

�
»
δtu¤ xu2Dp1q

n pβ�, uqDp1q
n pβ�, uq1� Dp2q

n pβ�, uqΦnpβ�, uq
Φ3

npβ�, uq dPnpu,δ, zq,
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for some |β�� β0| ¤ |β̂n � β0|, with Dp1q
n as defined in (3.3.1) and

Dp2q
n pβ , xq � B2Φnpβ , xq

Bβ2 �
»
tu¥ xu zz1 eβ

1z dPnpu,δ, zq PRp �Rp.

We define Dp2qpβ , xq similarly, with Pn replaced by P.
According to (A2), we have |Dp1qpβ0, xq| ¤ E �|Z |exppβ 10Zq�   8, for all x P R, and
similarly

|Dp1q
n pβ0, xq| ¤ 1

n

ņ

i�1

|Zi |eβ
1
0 Zi Ñ E

�
|Z |eβ 10 Z

�
 8,

with probability one. Likewise, |Dp2qpβ0, xq|   8 and

|Dp2q
n pβ0, xq| ¤ 1

n

ņ

i�1

|Zi |2eβ
1
0 Zi Ñ E

�
|Z |2eβ

1
0 Z
�
 8,

with probability one. Furthermore, for all x P r0, Ms,

0  Φpβ0, Mq ¤ Φpβ0, xq ¤ Φpβ0, 0q � E
�
eβ

1
0 Z
�
 8

and Φnpβ0, Mq ¤ Φnpβ0, xq ¤ Φnpβ0, 0q, where Φnpβ0, Mq Ñ Φpβ0, Mq and
Φnpβ0, 0q Ñ Φpβ0, 0q, with probability one. It follows that there exist constants
K1, K2 ¡ 0, such that for all x P r0, Ms,

|Dp1qpβ0, xq| ¤ K2, |Dp2qpβ0, xq| ¤ K2, K1 ¤ Φpβ0, xq ¤ K2 (3.3.6)

and for n sufficiently large,

|Dp1q
n pβ0, xq| ¤ K2, |Dp2q

n pβ0, xq| ¤ K2, K1 ¤ Φnpβ0, xq ¤ K2, (3.3.7)

with probability one. According to (3.2.3),

δ

Φpβ0, uq dPpu,δ, yq � dHucpuq
Φpβ0, uq � λ0puqdu, (3.3.8)

so that A0, as defined in (3.3.3), is equal to

A0pxq �
»
δtu¤ xuDp1qpβ0, uq

Φ2pβ0, uq dPpu,δ, zq P Rp,

Then, for the An term in (3.3.4), it can be deduced that

sup
0¤x¤M

|Anpxq � A0pxq| ¤ sup
0¤u¤M

�����D
p1q
n pβ0, uq
Φ2

npβ0, uq � Dp1qpβ0, uq
Φ2pβ0, uq

�����
� sup

0¤x¤M

�����
»
δtu¤ xuDp1qpβ0, uq

Φ2pβ0, uq dpPn � Pqpu,δ, zq
����� .
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By (3.3.6) and (3.3.7), the first term on the right hand side is bounded by

1

K2
1

sup
0¤x¤M

���Dp1q
n pβ0, xq � Dp1qpβ0, xq

���� 2K2
2

K4
1

sup
0¤x¤M

��Φnpβ0, xq �Φpβ0, xq
�� ,

which is of the order Oppn�1{2q, by Lemma 3.1. For the second term on the right hand
side, for each j � 1, . . . , p, fixed, consider the class G j � tg jpu,δ; xq : x P r0, Msu,
consisting of functions

g jpu,δ; xq � δtu¤ xu
Dp1q

j pβ0, uq
Φ2pβ0, uq ,

where Dp1q
j denotes the jth coordinate of Dp1q. Now, each g jpu,δ; xq is the product of

indicators and a fixed uniformly bounded function. Standard results from empirical
process theory (van der VAART & WELLNER, 1996) give that the class G j is Donsker.
As in the proof of Lemma 3.1, we find that for every j � 1, . . . , p,

?
n sup

0¤x¤M

����» g jpu,δ; xqdpPn � Pqpu,δ, zq
����� Opp1q.

It follows that
sup

0¤x¤M
|Anpxq � A0pxq| � Oppn�1{2q.

and we can conclude that�
β̂n � β0

�1
Anpxq �

�
β̂n � β0

�1
A0pxq � Rn2pxq,

where Rn2pxq � Oppn�1q, uniformly for x P r0, Ms, since β̂n � β0 � Oppn�1{2q (TSI-
ATIS, 1981). For the term containing Rn1, first observe that, according to (3.3.7), for n
sufficiently large,

sup
uPr0,Ms

�����2Dp1q
n pβ�, uqDp1q

n pβ�, uq1� Dp2q
n pβ�, uqΦnpβ�, uq

Φ3
npβ�, uq

������ O p1q,
almost surely, so that

sup
0¤x¤M

����12�β̂n � β0

�1
Rn1pxq

�
β̂n � β0

������ Oppn�1q.

Concluding,
Tn1pxq �

�
β̂n � β0

�1
A0pxq �Oppn�1q, (3.3.9)

uniformly in x P r0, Ms. Proceeding with Tn2, write

Tn2pxq � Λnpβ0, xq �Λ0pxq � Bnpxq � Cnpxq � Rn3pxq � Rn4pxq,
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where

Bnpxq �
»
δtu¤ xuΦpβ0, uq �Φnpβ0, uq

Φ2pβ0, uq dPpu,δ, zq,

Cnpxq �
»
δtu¤ xu
Φpβ0, uq dpPn � Pqpu,δ, zq,

Rn3pxq �
»
δtu¤ xu

�
1

Φnpβ0, uq �
1

Φpβ0, uq



dpPn � Pqpu,δ, zq,

Rn4pxq �
»
δtu¤ xu rΦpβ0, uq �Φnpβ0, uqs2

Φ2pβ0, uqΦnpβ0, uq dPpu,δ, zq.

For the dominating term in Tn2, we can write

Bnpxq � Cnpxq � �
»
δtu¤ xuΦnpβ0, uq

Φ2pβ0, uq dPpu,δ, zq �
»
δtu¤ xu
Φpβ0, uq dPnpu,δ, zq

� 1

n

ņ

i�1

ξpTi ,∆i , Zi; xq,

where

ξpt,δ, z; xq � �
»
γtu¤ xutt ¥ uueβ 10z

Φ2pβ0, uq dPpu,γ, yq � δtt ¤ xu
Φpβ0, tq .

Using (3.3.8), we conclude that

ξpt,δ, z; xq � �eβ
1
0z
» x^t

0

λ0puq
Φpβ0, uq du� δtt ¤ xu

Φpβ0, tq .

For the remainder terms, it follows by Lemma 3.2, that for any sequence an � op1q,

sup
0¤x¤M

��Rn3pxq
��� Oppn�1a�1

n q. (3.3.10)

To treat Rn4, note that

��Rn4pxq
��¤ 1

Φ2pβ0, Mq
1

Φnpβ0, Mq sup
xPR

|Φnpβ0, xq �Φpβ0, xq|2,

so that by (3.3.2) and (3.3.7),

sup
0¤x¤M

��Rn4pxq
��� Oppn�1q.

Together with (3.3.9) and (3.3.10), this proves the theorem. �
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In the special case of no covariates, i.e., β0 � β̂n � 0, it follows that

Φpβ0, xq � 1�Hpxq,
where H is the distribution function of the follow-up times and

ξpt,δ, z; xq � �eβ
1
0z
» x^t

0

λ0puq
Φpβ0, uq du� δtt ¤ xu

Φpβ0, tq

� �
» x^t

0

dHucpuq
r1�Hpuqs2 �

δtt ¤ xu
1�Hptq .

This means that Theorem 3.3 retrieves a result similar to Lemma 2.1 in LO et
al. (1989).

The rate at which the error term Rn tends to zero becomes faster as an tends to
zero more slowly. If an � 1{ log n, we obtain the same rate as the error term in
Lemma 2.1 in LO et al. (1989). However, they obtain the order O pn�1 log nq almost
surely, whereas Theorem 3.3, with the choice an � 1{ log n, only provides this order
in probability. Also, the sequence an may be chosen to converge to zero arbitrarily
slowly. This means that the order Oppn�1a�1

n q of Rn is arbitrarily close to Oppn�1q.
Using a linear representation of β̂n � β0, a full linearization of the Breslow es-

timator can be obtained. Such a linear representation can be deduced from the
proof of Theorem 3.2 in TSIATIS (1981) or from an application of Theorem 2.11
in KOSOROK (2008); see also Section 4.2.1 in KOSOROK (2008). As a consequence,
Theorem 1 together with the expansion of β̂n � β0 can be used to establish a central
limit theorem for the Breslow estimator, as well as to estimate the limiting covari-
ance structure, by using plug-in estimators. For example, the term A0 in the linear
expression can be estimated consistently by An in (3.3.5).

REFERENCES

ANDERSEN, P. K., BORGAN, O., GILL, R. D. & KEIDING, N. (1993). Statistical Models
Based on Counting Processes. Springer. New York.

BRESLOW, N. & CROWLEY, J. (1974). A large sample study of the life table and
product limit estimates under random censorship. Annals of Statistics, 2: 437–
453.

BURKE, M. D., CSÖRGŐ, S. & HORVÁTH, L. (1981). Strong approximations of some
biometric estimates under random censorship. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete, 56: 87–112.

COX, D. R. (1972). Regression models and life-tabels (with discussion). Journal of
the Royal Statistical Society. Series B, 34: 187–220.



82 3. A LINEAR REPRESENTATION OF THE BRESLOW ESTIMATOR

COX, D. R. (1975). Partial likelihood. Biometrika, 62: 269–276.
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CHAPTER 4

A LIKELIHOOD RATIO TEST FOR MONOTONE
BASELINE HAZARD FUNCTIONS IN THE COX

MODEL 1

We consider a likelihood ratio method for testing whether a monotone baseline haz-
ard function in the Cox model has a particular value at a fixed point. The charac-
terization of the estimators involved is provided both in the nondecreasing and the
nonincreasing setting. These characterizations facilitate the derivation of the asymp-
totic distribution of the likelihood ratio test, which is identical in the nondecreasing
and in the nonincreasing case. The asymptotic distribution of the likelihood ratio test
enables, via inversion, the construction of pointwise confidence intervals. Simulations
show that these confidence intervals exhibit comparable coverage probabilities with
the confidence intervals based on the asymptotic distribution of the nonparametric
maximum likelihood estimator of a monotone baseline hazard function.

4.1 INTRODUCTION

In survival analysis, using COX (1972) proportional hazards model is the typi-
cal choice to account for the effect of covariates on the lifetime distribution. Its
attractiveness resides in its form, that allows for efficient estimation of the re-
gression coefficient, while leaving the baseline distribution completely unspecified,
see e.g., EFRON (1977), OAKES (1977), and SLUD (1982). The regression coeffi-
cient estimator is the well-known maximum partial likelihood estimator (COX, 1972
and 1975). As a response to Cox’s paper, Breslow proposed in COX (1972) a different
approach, that yields the same maximum partial likelihood estimator, along with an
estimator of the baseline cumulative hazard function Λ0. Impressive amount of re-
search rapidly followed Cox’s seminal paper, which primarily focused on deriving the
(asymptotic) properties of the maximum partial likelihood estimator of the regres-
sion coefficient β̂n, as well as of the Breslow estimator Λn of the baseline cumulative
hazard function.

Even though the baseline hazard λ0 can be left completely unspecified, in practice,

1By Nane, G. F. (2013). Submitted for publication to Statistica Sinica.
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one might be interested in restricting λ0 qualitatively. This can be done by assum-
ing the baseline hazard to be monotone, for example, as suggested by Cox himself
(COX, 1972). Various studies have indicated that a monotonicity constraint should be
imposed on the baseline hazard, which complies with the medical expertise. For an
illustration of a nonincreasing baseline hazard estimator in the study of patients with
acute coronary syndrome, see van GELOVEN et al. (2011). LOPUHAÄ & NANE (2013)
propose a nonparametric maximum likelihood estimator and a Grenander-type esti-
mator for estimating a monotone baseline hazard function. The Grenander-type es-
timator is defined in terms of slopes of the greatest convex minorant of the Breslow
estimator Λn. The two estimators have been proven to be asymptotically strongly con-
sistent and have been shown to exhibit the same distributional law. Furthermore, at
a fixed point x0, the scaled difference between the maximum likelihood estimator λ̂n
and the true baseline hazard λ0 converges in distribution to the distribution of the
minimum of two-sided Brownian motion plus a parabola times a constant depend-
ing on the underlying parameters. These results adhere to the general nonparametric
shape constrained theory, and, in particular, prolong naturally the findings of HUANG
& WELLNER (1995) in the case of the random censorship model with no covariates.

Ensuing inference will be pursued in this chapter, by testing the hypothesis that the
underlying monotone baseline hazard has a particular value ϑ0, at a fixed point x0.
We will use a likelihood ratio test of H0 : λ0px0q � ϑ0 versus H1 : λ0px0q � ϑ0.
Within the shape restricted problems, this approach was initially employed for mono-
tone distributions in the current status model by BANERJEE & WELLNER (2001).
The authors focused on deriving the limiting distribution of the likelihood ratio test
under the null hypothesis, and to obtain what the authors referred to a fixed uni-
versal distribution, defined in terms of slopes of the greatest convex minorant of the
two-sided Brownian motion plus a parabola. These findings were followed by a rapid
stream of research, see, e.g., BANERJEE & WELLNER (2005), BANERJEE (2007), and
BANERJEE (2008), that revealed that the likelihood ratio method could be extended
straightforwardly in other shape constrained settings. In this chapter, we carry on
this research for the monotone baseline hazard function in the Cox model. In addi-
tion to extending directly the results in the right censoring model with no covariates
in BANERJEE (2008), we aim to provide a thorough description of the method and
detailed proofs for all results.

Furthermore, we will derive confidence sets for λ0px0q, based on the likelihood ra-
tio method. More specifically, we will use that inverting the family of tests can yield,
in turn, pointwise confidence intervals for the baseline hazard function. A more direct
method of constructing pointwise confidence intervals is based on the asymptotic dis-
tribution, at a fixed point x0, of the nonparametric maximum likelihood estimator λ̂n,
derived in Chapter 2. Nonetheless, this entails the bothersome issue of estimating the
nuisance parameter, and more specifically, estimating the derivative of the baseline
hazard function λ1px0q, since, to the author’s best knowledge, there is no available
smooth monotone estimator of the baseline hazard function in the Cox model. One
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option would be to kernel smooth the NPMLE λ̂n; however, this would pose extra
difficulties, like an appropriate choice of a bandwidth. For a discussion of these issues
in the case of right-censoring with no covariates, see BANERJEE (2008).

The chapter is organized as follows. Section 4.2 introduces the Cox model, the
notations and the common assumptions. In Section 4.3, we introduce the likelihood
ratio method and characterize the maximum likelihood estimator λ̂n of a mono-
tone baseline hazard function and the estimator λ̂0

n, for which λ̂0
npx0q � ϑ0, for

a fixed x0 in the interior of the support of the baseline distribution. We provide
the characterization of the two estimators in the case of both nondecreasing and
nonincreasing baseline hazard functions λ0. The asymptotic distribution of the
likelihood ratio statistic is provided, along with preparatory lemmas, in Section 4.4.
Finally, Section 4.5 is devoted to constructing pointwise confidence intervals and
comparing them, via simulations, with the conventional confidence intervals based
on the asymptotic distribution of the NPMLE λ̂n.

4.2 DEFINITIONS AND ASSUMPTIONS

Suppose that the observed data consist of the following independent and iden-
tically distributed triplets pTi ,∆i , Ziq, with i � 1, 2, . . . , n. The event time, denoted
by X and commonly referred to as the survival time is subject to random censoring.
Thus, T � minpX , Cq, where T is the follow-up time and C denotes the censoring
time. The indicator ∆ � tX ¤ Cu marks whether the follow-up time is an event or a
censoring time. Finally, Z PRp denotes the covariate vector of the observed follow-up
time T , which is assumed to be time invariant. The event time X and censoring time C
are assumed to be conditionally independent, given the covariate vector Z . Further-
more, let F be the distribution function of the non-negative random variable X , G the
distribution function of the non-negative random variable C , and H the distribution
function of T . The distribution function Fpx |zq is assumed to be absolutely continu-
ous, with density f px |zq. Similarly, the distribution function Gpc|zq is assumed to be
absolutely continuous, with density gpc|zq. In addition, Fpx |zq and Gpc|zq share no
parameters, thus the censoring mechanism is assumed to be non-informative.

Let λpx |zq be the hazard function for an individual with covariate vector z P Rp.
The Cox model specifies that

λ
�
x |z�� λ0pxqeβ

1
0z , (4.2.1)

where λ0 represents the baseline hazard function, that corresponds to z � 0, and
β0 P Rp is the vector of the underlying regression coefficients. Finally, we consider
the following assumptions, that are typically employed when deriving large sample
properties of estimators within the Cox model; e.g., see TSIATIS (1981).

(A1) Let τF ,τG and τH be the end points of the support of F, G and H respectively.
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Then
τH � τG   τF ¤8.

(A2) There exists ε ¡ 0 such that

sup
|β�β0|¤ε

E

�
|Z |2 e2β 1Z

�
 8,

where | � | denotes the Euclidean norm.

4.3 THE LIKELIHOOD RATIO METHOD AND THE CHARACTERIZA-
TION OF THE ESTIMATORS

By definition, Λpx |zq � � logr1� Fpx |zqs is the cumulative hazard function. Thus,
from (4.2.1), it follows that Λpx |zq � Λ0pxqexppβ 10zq, where Λ0pxq �

³x
0 λ0puqdu is

the baseline cumulative hazard function. Since, for a continuous distribution, λptq �
f ptq{p1� Fptqq, for t ¥ 0, the full likelihood is given by

n¹
i�1

 
f pTi | Ziq

�
1� GpTi | Ziq

�(∆i
 

gpTi | Ziq
�
1� FpTi | Ziq

�(1�∆i

�
n¹

i�1

λpTi | Ziq∆i exp
��ΛpTi | Ziq

�� n¹
i�1

�
1� GpTi | Ziq

�∆i gpTi | Ziq1�∆i .

As the censoring mechanism is assumed to be non-informative, and by (4.2.1), maxi-
mizing the full likelihood is the same as maximizing

n¹
i�1

λpTi | Ziq∆i exp
��ΛpTi | Ziq

�� n¹
i�1

�
λ0pTiqeβ

1
0 Zi

�∆i

exp
�
�eβ

1
0 ZiΛ0pTiq

�
,

which yields the following (pseudo) loglikelihood function, written as function of
β PRp and λ0

ņ

i�1

�
∆i logλ0pTiq �∆iβ

1Zi � eβ
1ZiΛ0pTiq

�
.

Let Tp1q   Tp2q   � � �   Tpnq be the ordered follow-up times and, for i � 1, 2, . . . , n,
let∆piq and Zpiq be the censoring indicator and covariate vector corresponding to Tpiq.
Writing the above (pseudo) likelihood as a function of β and λ0 gives

Lβpλ0q �
ņ

i�1

�
∆piq logλ0pTpiqq �∆piqβ 1Zpiq� eβ

1Zpiq

» Tpiq

0
λ0puqdu

�
. (4.3.1)

Following the approach in Chapter 2, we do not proceed with the joint maximiza-
tion of (4.3.1) over β and monotone λ0. Alternatively, for β PRp fixed, we consider
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maximum likelihood estimation of a monotone baseline hazard function λ0 and de-
note the estimator by λ̂npx;βq. Afterwards, we simply replace β by β̂n, the maximum
partial likelihood estimator ( see, e.g., COX (1972) and COX (1975)) of the under-
lying regression coefficients β0, due to its commendable asymptotic properties (see,
e.g., EFRON, 1977, OAKES, 1977, and SLUD, 1982). The proposed NPMLE is thus
λ̂npxq � λ̂npx; β̂nq and will be referred to as the unconstrained estimator of a mono-
tone λ0.

Furthermore, for β P Rp fixed, we maximize the loglikelihood function Lβpλ0q
in (4.3.1) over the class of all monotone baseline hazard functions, under the null
hypothesis H0 : λ0px0q � ϑ0, for x0 P p0,τHq and ϑ0 P p0,8q, fixed. We obtain
λ̂0

npx;βq and hence propose λ̂0
npxq � λ̂0

npx; β̂nq as the constrained NPMLE.

Replacing β by β̂n also in the loglikelihood function (4.3.1) yields the likelihood
ratio statistic for testing H0 : λ0px0q � ϑ0,

2 logξnpϑ0q � 2Lβ̂n
pλ̂nq � 2Lβ̂n

pλ̂0
nq. (4.3.2)

Thus, for computing the likelihood ratio statistic, we need to characterize the uncon-
strained NPMLE λ̂n and the constrained NPMLE λ̂0

n of a monotone baseline hazard
function λ0.

4.3.1 NONDECREASING BASELINE HAZARD

We consider first maximum likelihood estimation of a nondecreasing baseline haz-
ard function λ0. Both the unconstrained estimator λ̂n and the constrained estima-
tor λ̂0

n will be characterized in terms of the processes

Wnpβ , xq �
» �

eβ
1z
» x

0
tu¥ suds



dPnpu,δ, zq, (4.3.3)

and

Vnpxq �
»
δtu  xudPnpu,δ, zq, (4.3.4)

with β P Rp and x ¥ 0, and where Pn is the empirical measure of the pTi ,∆i , Ziq,
with i � 1, 2, . . . , n. The characterization of the unconstrained estimator λ̂npx;βq has
already been provided in Lemma 2.1 in Chapter 2, which we restate below. Further-
more, we provide a closed form of the estimator on blocks of indices on which the
estimator is constant. This expression will be useful in deriving the asymptotic distri-
bution of the likelihood ratio statistic.

LEMMA 4.1. Let Tp1q ¤ Tp2q ¤ � � � ¤ Tpnq be the ordered follow-up times and consider a
fixed β PRp.

(i) Let Wn and Vn defined in (4.3.3) and (4.3.4). Then, the NPMLE λ̂npx;βq of a
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nondecreasing baseline hazard function λ0 is of the form

λ̂npx;βq �

$'&'%
0 x   Tp1q,
λ̂i Tpiq ¤ x   Tpi�1q, for i � 1,2, . . . , n� 1,

8 x ¥ Tpnq,

where λ̂i is the left derivative of the greatest convex minorant (GCM) at the point
Pi of the cumulative sum diagram (CSD) consisting of the points

Pj �
�

Wnpβ , Tp j�1qq �Wnpβ , Tp1qq, VnpTp j�1qq
	

, (4.3.5)

for j � 1,2, . . . , n� 1 and P0 � p0, 0q.
(ii) For k ¥ 1, let B1, B2, . . . , Bk be blocks of indices such that λ̂npx;βq is constant on

each block and B1 Y B2 Y . . .Y Bk � t1, 2, . . . , n� 1u. Denote by vn jpβq the value
of λ̂npx;βq on block B j . Then,

vn jpβq �
°

iPB j
∆piq°

iPB j

�
Tpi�1q� Tpiq

�°n
l�i�1 eβ

1Zplq

. (4.3.6)

PROOF. The proof of (i) is provided by Lemma 2.1 in Chapter 2. The NPMLE λ̂npx;βq
is obtained by maximizing the (pseudo) loglikelihood function in (4.3.1) over all
0 ¤ λ0pTp1qq ¤ λ0pTp2qq ¤ � � � ¤ λ0pTpnqq. As argued in Chapter 2, the estimator has
to be a nondecreasing step function, that is zero for x   Tp1q, constant on the interval
rTpiq, Tpi�1qq, for i � 1, 2, . . . , n� 1 and can be chosen arbitrarily large for x ¥ Tpnq.
Then, for fixed β PRp, the (pseudo) loglikelihood function in (4.3.1) reduces to

n�1̧

i�1

∆piq logλ0pTpiqq �
ņ

i�2

eβ
1Zpiq

i�1̧

j�1

�
Tp j�1q� Tp jq

�
λ0pTp jqq

�
n�1̧

i�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
.

(4.3.7)

Let λi � λ0pTpiqq, for i � 1, 2, . . . , n� 1 and λ � pλ1,λ2, . . . ,λn�1q. Then, finding the
NPMLE reduces to maximizing

ϕpλq �
n�1̧

i�1

#
∆piq logλi �λi

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
, (4.3.8)

over the set 0 ¤ λ1 ¤ λ2 ¤ � � � ¤ λn�1. The NPMLE corresponds thus to a vector
λ̂ � pλ̂1, λ̂2, . . . , λ̂n�1q that maximizes ϕ over 0 ¤ λ1 ¤ � � � ¤ λn�1. To prove (ii),
we first derive the Fenchel conditions of the estimator. Thus, we will show that the
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estimator λ̂npx;βq maximizes the (pseudo) loglikelihood function in (4.3.1) over the
class of nondecreasing baseline hazard functions if and only if

¸
j¥i

$&%∆p jq

λ̂ j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¤ 0, (4.3.9)

for i � 1, 2, . . . , n� 1, and

n�1̧

j�1

$&%∆p jq

λ̂ j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.- λ̂ j � 0. (4.3.10)

The NPMLE λ̂npx;βq is thus uniquely determined by these Fenchel conditions. The
rest of the proof focuses on deriving the Fenchel conditions (4.3.9) and (4.3.10) and
on establishing (4.3.6).

First, note that the function ϕ in (4.3.8) is concave and that the vector of partial
derivatives ∇ϕpλq � p∇1ϕpλq,∇2ϕpλq . . . ,∇n�1ϕpλqq is given by

∇ϕpλq �
�
∆p1q
λ1

�
�
Tp2q� Tp1q

� ņ

l�2

eβ
1Zplq , . . . ,

∆pn�1q

λn�1
�
�
Tpnq� Tpn�1q

�
eβ

1Zpnq

�
.

Define now the functions gipλq � λi�1 � λi , for i � 1, 2, . . . , n� 1 and λ0 � 0, and
the vector gpλq � pg1pλq, g2pλq, . . . , gn�1pλqq. Moreover, define the matrix of partial
derivatives by

G �
�
Bgipλq
Bλ j

�
, for i � 1, 2, . . . , n� 1; j � 1,2, . . . , n� 1. (4.3.11)

Let rϕpλq � �ϕpλq. Then, maximizing (4.3.8) over all 0 ¤ λ1 ¤ λ2 ¤ � � � ¤ λn�1
is equivalent with minimizing rϕpλq under the restriction that all components of the
vector gpλq are negative. An adaptation of the Karush-Kuhn-Tucker theorem (e.g., see
Theorem 8.1 in GROENEBOOM, 1998) states that λ̂ minimizes rϕ over all vectors λ
such that gipλq ¤ 0, for all i � 1, 2, . . . , n� 1, if and only if the following conditions
hold

∇ϕ̃pλ̂q � GTα� 0, (4.3.12)

gpλ̂q �w � 0, (4.3.13)

xα, wy � 0, (4.3.14)

for α� pα1,α2, . . . ,αn�1q, with αi ¥ 0, i � 1,2, . . . , n�1 and w � pw1, w2, . . . , wn�1q,
with wi ¥ 0, for i � 1, 2, . . . , n� 1. The first condition (4.3.12), yields that

αi ��
¸
j¥i

∇ jϕpλ̂q � �
¸
j¥i

$&%∆p jq

λ̂ j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.- . (4.3.15)
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Since αi ¥ 0, for all i � 1,2, . . . , n�1, condition (4.3.9) is immediate. From (4.3.13),
w ��gpλ̂q � pλ̂1�λ̂0, λ̂2�λ̂1, . . . , λ̂n�1�λ̂n�2q, with λ̂0 � 0. Note that the condition
wi ¥ 0 implies that λ̂i�1 ¤ λ̂i , for all i � 1, 2, . . . , n� 1, which is trivially satisfied.
Finally, by (4.3.14),

n�1̧

i�1

pλ̂i � λ̂i�1q
¸
j¥i

∇ jϕpλ̂q � 0,

which re-writes exactly to (4.3.10).

To derive the expression in (4.3.6), we prove first that (4.3.9) and (4.3.10) imply
that

n�1̧

j�1

$&%∆p jq

λ̂ j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-� 0. (4.3.16)

Condition (4.3.9) gives that
°n�1

j�1 ∇ jϕpλ̂q ¤ 0. In addition, as the maximizer λ̂ is
nondecreasing,

λ̂1

n�1̧

j�1

∇ jϕpλ̂q ��∇2ϕpλ̂qλ̂2 �∇3ϕpλ̂qλ̂3 � . . .�∇n�1ϕpλ̂qλ̂n�1

�∇2ϕpλ̂qλ̂1 �∇3ϕpλ̂qλ̂1 � . . .�∇n�1ϕpλ̂qλ̂1

�
n�1̧

i�2

pλ̂i�1 � λ̂iq
¸
j¥i

∇ jϕpλ̂q ¥ 0.

This shows (4.3.16). Now let B1, B2, . . . , Bk be blocks of indices on which λ̂ is con-
stant such that B1 Y B2 Y . . .Y Bk � t1, 2, . . . , n� 1u and let vn jpβq be the value of λ̂
on the block B j , with j � 1,2, . . . , k. If k � 1, then the expression of vn1 is imme-
diate from (4.3.16). Moreover, observe that, by (4.3.14),

°n�1
i�1 αi

�
λ̂i � λ̂i�1

� � 0,
and since αi ¥ 0 and λ̂i ¥ λ̂i�1, for any i � 1,2, . . . , n� 1, it will follow that αi � 0,
whenever λ̂i�1   λ̂i . Hence, for k ¥ 2, there exist k�1 α’s that are zero. Then (4.3.6)
follows by (4.3.15) and (4.3.16). For example, for k ¥ 3, choose any two consecu-
tive αi that are zero. From (4.3.15), we get that by subtracting these αi ’s,¸

iPB j

∇iϕpλ̂q �
¸
iPB j

#
∆piq

vn jpβq
�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
� 0.

As vn jpβq is constant on B j , this yields (4.3.6). �

As mentioned beforehand, the proposed unconstrained estimator is thus λ̂npxq �
λ̂npx; β̂nq. Equivalently, on each block of indices B j , for j � 1, 2, . . . , k, we propose the
estimate v̂n j � vn jpβ̂nq. Under the null hypothesis H0 : λ0px0q � ϑ0, the characteri-
zation of the constrained maximum likelihood estimator λ̂0

n is provided by the next
lemma.
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LEMMA 4.2. Let x0 P p0,τHq fixed, such that Tpmq   x0   Tpm�1q, for a given 1 ¤ m ¤
n� 1. Consider a fixed β PRp.

(i) For i � 1,2, . . . , m, let λ̂L
i be the left derivative of the GCM at the point P L

i of
the CSD consisting of the points P L

j � Pj , for j � 1, 2, . . . , m, with Pj defined

in (4.3.5) and P L
0 � p0,0q. Moreover, for i � m � 1, m � 2, . . . , n � 1, let λ̂R

i
be the left derivative of the GCM at the point PR

i of the CSD consisting of the
points PR

j � Pj , for j � m, m� 1, . . . , n� 1, with Pj defined in (4.3.5). Then, for

ϑ0 P p0,8q, the NPMLE λ̂0
npxq of a nondecreasing baseline hazard function λ0,

under the null hypothesis H0 : λ0 � ϑ0, is of the form

λ̂0
npx;βq �

$''''''&''''''%

0 x   Tp1q,
λ̂0

i Tpiq ¤ x   Tpi�1q, for i � 1,2, . . . , m� 1, m� 1, . . . , n� 1,

λ̂0
m Tpmq ¤ x   x0,

ϑ0 x0 ¤ x   Tpm�1q,

8 x ¥ Tpnq,
(4.3.17)

where λ̂0
i � minpλ̂L

i ,ϑ0q, for i � 1, 2, . . . , m, and λ̂0
i � maxpλ̂R

i ,ϑ0q, for i �
m� 1, m� 2, . . . , n� 1.

(ii) For k ¥ 1, let B0
1 , B0

2 , . . . , B0
k be blocks of indices such that λ̂0

npx;βq is constant on
each block and B0

1 Y B0
2 Y . . .Y B0

k � t1,2, . . . , n� 1u. Then, there is one block,
say B0

r , on which λ̂0
npx;βq is equal to ϑ0, and one block, say B0

p , that contains m.

On all other blocks B0
j , denote by v0

n jpβq the value of λ̂0
npx;βq on block B0

j . Then,

v0
n jpβq �

°
iPB0

j
∆piq°

iPB0
j

�
Tpi�1q� Tpiq

�°n
l�i�1 eβ

1Zplq

, (4.3.18)

for j � 1, . . . , p� 1, p� 1, . . . , k. On the block B0
p that contains m,

v0
nppβq �

°
iPB0

p
∆piq°

iPB0
pztmu

�
Tpi�1q� Tpiq

�°n
l�i�1 eβ

1Zplq � rx0 � Tpmqs
°n

l�m�1 eβ
1Zplq

.

(4.3.19)

PROOF. We will derive the Karush-Kuhn-Tucker (KKT) conditions, that uniquely de-
termine the constrained NPMLE, and which implicitly provide the characterization
in (ii). To prove the lemma, we will show that the estimator proposed in (i) satisfies
these conditions.

The constrained NPMLE estimator is obtained by maximizing the objective func-
tion (4.3.1) over 0 ¤ λ0pTp1qq ¤ � � � ¤ λ0pTpmqq ¤ ϑ0 ¤ λ0pTpm�1qq ¤ � � � ¤
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λ0pTpn�1qq. In line with the reasoning for the unconstrained estimator, it can be ar-
gued that the constrained estimator has to be a nondecreasing step function that is
zero for x   Tp1q, constant on rTpiq, Tpi�1qq, for i � 1,2, . . . , n� 1, is equal to ϑ0 on
the interval rx0, Tpm�1qq, and can be chosen arbitrarily large for x ¥ Tpnq. Therefore,
for a fixed β PR, the (pseudo) loglikelihood function in (4.3.1) reduces to

m�1̧

i�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+

�∆pmq logλ0pTpmqq �λ0pTpmqq
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq

� ϑ0

�
Tpm�1q� x0

� ņ

l�m�1

eβ
1Zplq

�
n�1̧

i�m�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
.

(4.3.20)

By letting λi � λ0pTpiqq, for i � 1,2, . . . , n� 1 and λ � pλ1,λ2, . . . ,λn�1q, we then
want to maximize

ϕ0pλq �
m�1̧

i�1

#
∆piq logλi �λi

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+

�∆pmq logλm �λm

�
x0 � Tpmq

� ņ

l�m�1

eβ
1Zplq

�
n�1̧

i�m�1

#
∆piq logλi �λi

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
,

(4.3.21)

over the set 0 ¤ λ1 ¤ . . . ¤ λm ¤ ϑ0 ¤ λm�1 ¤ . . . ¤ λn�1. Let the vector
λ̂c � pλ̂c

1, λ̂c
2, . . . , λ̂c

n�1q denote the constrained NPMLE under the null hypothesis
H0 : λ0px0q � ϑ0. We will show next that λ̂c maximizes the objective function
in (4.3.21) over the class of nondecreasing baseline hazard functions, under the null
hypothesis, if and only if the following conditions are satisfied

¸
j¤i

$&%∆p jq

λ̂c
j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¥ 0, for i � 1,2, . . . , m� 1, (4.3.22)

m�1̧

j�1

#
∆p jq

λ̂c
j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

+

�
∆pmq
λ̂c

m

�
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq ¥ 0,

(4.3.23)
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¸
j¥i

$&%∆p jq

λ̂c
j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¤ 0, (4.3.24)

for i � m� 1, m� 2, . . . , n� 1 and

n�1̧

j�1
j�m

#
∆p jq

λ̂c
j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

+�
λ̂c

j � ϑ0

	

�
#
∆pmq
λ̂c

m

�
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq

+�
λ̂c

m � ϑ0

�� 0.

(4.3.25)

The NPMLE λ̂c is thus uniquely determined by these conditions. To prove (i), we will
show that λ̂0

n defined in (4.3.17) verifies the Karush-Kuhn-Tucker (KKT) conditions
(4.3.22)-(4.3.25). Therefore, λ̂0

n is the unique maximizer of ϕ0pλq in (4.3.21), over
the set 0 ¤ λ1 ¤ � � � ¤ λm ¤ ϑ0 ¤ λm�1 ¤ � � � ¤ λn�1. As it will be seen further,
despite bothersome calculations, the distinct form of the likelihood grants a unified
framework for deriving the KKT conditions, that uses all the follow-up times, unlike
the reasoning in BANERJEE & WELLNER (2001), where the (pseudo) loglikelihood is
split and arguments are carried both to the left and to the right of x0.

Similar to the unconstrained case, observe that the function ϕ0

is concave and that the vector of partial derivatives is ∇ϕ0pλq �
p∇1ϕ

0pλq, . . . ,∇mϕ
0pλq, . . . ,∇n�1ϕ

0pλqq, with

∇iϕ
0pλq �

∆piq
λi

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq ,

for i � 1, . . . , m� 1, m� 1, . . . , n� 1, and

∇mϕ
0pλq �

∆pmq
λm

�
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq .

Note that the form of∇mϕ
0pλq differs from the form of∇iϕ

0pλq, for i � 1, 2, . . . , m�
1, m� 1, . . . , n� 1. Moreover, define the vector gpλq � pg1pλq, g2pλq, . . . , gn�1pλqq,
with

gipλq �

$''''&''''%
λi �λi�1 i � 1, 2, . . . , m� 1,

λm � ϑ0 i � m,

ϑ0 �λm�1 i � m� 1,

λi�1 �λi i � m� 2, . . . , n� 1,

and consider the matrix of partial derivatives defined in (4.3.11). Computations as
in (4.3.15) can be derived to show that condition (4.3.12) yields (4.3.22)-(4.3.24),
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upon noting that

αi �
#°

j¤i∇ jϕ
0pλ̂cq i � 1,2, . . . , m,

�°
j¥i∇ jϕ

0pλ̂cq i � m� 1, m� 2, . . . , n� 1.
(4.3.26)

Condition (4.3.13) gives that w � pλ̂c
2�λ̂c

1, λ̂c
3�λ̂c

2, . . . ,ϑ0�λ̂c
m, λ̂c

m�1�ϑ0, . . . , λ̂c
n�1�

λ̂c
n�2q, which together with (4.3.14) and (4.3.26), yields (4.3.25).

Moreover, (4.3.14) gives that

m�1̧

i�1

αi

�
λ̂c

i�1 � λ̂c
i

	
�αm

�
ϑ0 � λ̂c

m

��αm�1

�
λ̂c

m�1 � ϑ0

	
�

n�1̧

m�2

αi

�
λ̂c

i � λ̂c
i�1

	
� 0.

Obviously, αi � 0 if λ̂c
i   λ̂c

i�1, for i � 1, . . . , m� 1, m� 1, . . . , n� 1 and (4.3.18) can
be derived as in the proof of Lemma 4.1. For the block B0

p containing m, we get that

¸
iPB0

pztmu

#
∆piq

v0
nppβq

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+

�
∆pmq

v0
nppβq

�
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq � 0,

which gives exactly (4.3.19). Therefore showing that the estimator λ̂0
n defined

in (4.3.17) satisfies the KKT conditions (4.3.22)-(4.3.25) also proves (ii).

Recall that λ̂0
n is minpλ̂L

i ,ϑ0q, for i � 1, 2, . . . , m, and that λ̂L
i is the unconstrained

estimator when considering only the follow-up times Tp1q, Tp2q, . . . , Tpmq. Moreover, λ̂0
n

is maxpλ̂R
i ,ϑ0q, for i � m�1, m�2, . . . , n�1, where λ̂R

i can be viewed as the uncon-
strained estimator when considering only the follow-up times Tpmq, Tpm�1q, . . . , Tpn�1q.
Note that (4.3.16) together with (4.3.9) imply that

¸
j¤i

$&%∆p jq

λ̂ j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¥ 0, for i � 1, 2, . . . , n� 1. (4.3.27)

The condition holds for i � 1, 2, . . . , m� 1, and, moreover,

¸
j¤i

#
∆p jq

minpλ̂L
j ,ϑ0q

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

+

¥
¸
j¤i

$&%∆p jq

λ̂L
j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¥ 0,
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for i � 1,2, . . . , m�1. Therefore, minpλ̂L
i ,ϑq, for i � 1, 2, . . . , m�1 satisfies (4.3.22).

Furthermore, (4.3.27) holds for i � m, which implies that

m�1̧

j�1

$&% ∆p jq

minpλ̂L
j ,ϑ0q

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-
�
$&% ∆pmq

minpλ̂L
m,ϑ0q

�
�

x0 � Tpmq
� ņ

l� j�1

eβ
1Zplq

,.-
¥

m̧

j�1

$&% ∆p jq

minpλ̂L
j ,ϑ0q

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¥ 0,

hence λ̂0
n satisfies (4.3.23) as well. It is straightforward that maxpλ̂R

i ,ϑ0q, for i �
m� 1, m� 2, . . . , n� 1 satisfies (4.3.24), since, by definition, λ̂R

i satisfies (4.3.9), for
i � m� 1, m� 2, . . . , n� 1, and

¸
j¥i

#
∆p jq

maxpλ̂R
j ,ϑ0q

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

+

¤
¸
j¥i

$&%∆p jq

λ̂R
j

�
�
Tp j�1q� Tp jq

� ņ

l� j�1

eβ
1Zplq

,.-¤ 0.

Finally, to check if λ̂0
n verifies the condition (4.3.25), we will argue on the blocks

of indices on which λ̂n, and hence λ̂L
i and λ̂R

i are constant. By (4.3.6), for each
block B j , with j � 1,2, . . . , k, on which the unconstrained estimator has the constant
value vn jpβq,

¸
iPB j

#
∆piq

vn jpβq
�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
vn jpβq � 0,

and ¸
iPB j

#
∆piq

vn jpβq
�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
� 0.

Then, on each block B j that does not contain m, we can write

¸
iPB j

#
∆piq
λ̂i

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
λ̂i

� ϑ0

¸
iPB j

#
∆piq
λ̂i

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
,

(4.3.28)
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and this holds for λ̂L
i , as well as for λ̂R

i . It is straightforward that minpλ̂L
i ,ϑ0q, for

i � 1, 2, . . . , m and maxpλ̂R
i ,ϑ0q, for i � m�1, m�2, . . . , n�1 satisfy this relationship.

For the block Bp that contains m, we have

¸
iPBpztmu

#
∆piq
λ̂L

i

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
λ̂L

i

�
#
∆pmq
λ̂L

m

�
�
Tpm�1q� x0

� ņ

l�m�1

eβ
1Zplq �

�
x0 � Tpmq

� ņ

l�m�1

eβ
1Zplq

+
λ̂L

m

�ϑ0

¸
iPBpztmu

#
∆piq
λ̂L

i

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+

� ϑ0

#
∆pmq
λ̂m

�
�
Tpm�1q� x0

� ņ

l�m�1

eβ
1Zplq �

�
x0 � Tpmq

� ņ

l�m�1

eβ
1Zplq

+
.

Constraining λ̂L
m to be ϑ0 on the interval rx0, Tpm�1qq yields

¸
iPBpztmu

#
∆piq
λ̂L

i

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+
λ̂L

i

�
#
∆pmq
λ̂L

m

�
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq

+
λ̂L

m

�ϑ0

¸
iPBpztmu

#
∆piq
λ̂L

i

�
�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ
1Zplq

+

� ϑ0

#
∆pmq
λ̂L

m

�
�

x0 � Tpmq
� ņ

l�m�1

eβ
1Zplq

+
.

(4.3.29)

Once more, for i P Bp, minpλ̂L
i ,ϑ0q satisfies this relationship. Summing over all blocks

in (4.3.28) and (4.3.29) completes the proof. �

Similar to the unconstrained estimator, we propose λ̂0
npxq � λ̂0

npx; β̂nq as the con-
strained estimator and v̂0

n j � v0
n jpβ̂nq, where β̂n is the maximum partial likelihood

estimator.

REMARK. As already pointed out in Chapter 2, if we take β0 � 0, the characterization
of the unconstrained estimator differs slightly from the characterization of the non-
decreasing hazard estimator within the ordinary random censorship model, provided
in HUANG & WELLNER (1995). Correspondingly, the characterizations in Lemma 4.1
and 4.2, with β0 � 0 differ from the characterizations furnished in BANERJEE (2008).
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Although the estimators in BANERJEE (2008) do not maximize the (pseudo) loglike-
lihood function in (4.3.1) (in the absence of covariates and under the null hypothesis)
over nondecreasing λ0, the asymptotic distribution of the likelihood ratio test based
on these estimators will coincide with our proposed distribution, in the case of no
covariates.

Using the notations in BANERJEE (2008), let slogcmp f , Iq be the left-hand slope of
the greatest convex minorant of the restriction of the real-valued function f to the
interval I . Denote by slogcmp f q � slogcmp f ,Rq. Moreover, let

slogcm0p f q �min
�
slogcmp f , p�8, 0sq, 0

�
1p�8,0s�max

�
slogcmp f , p0,8qq, 0

�
1p0,8q.

Furthermore, for positive constants a and b, define

Xa,bptq � aWptq � bt2, (4.3.30)

whereW is a standard two-sided Brownian motion originating from zero. Let

ga,bptq � slogcmpXa,bqptq, (4.3.31)

the left-hand slope of the GCM Ga,b of the process Xa,b, at point t. The constrained
analogous is defined as follows: for t ¤ 0, construct the GCM of Xa,b, that will be
denoted by GL

a,b and take its left-hand slopes at point t, denoted by DLpXa,bqptq.
When the slopes exceed zero, replace them by zero. In the same manner, for t ¡ 0,
denote the GCM of Xa,b by GR

a,b and its slopes at point t by DRpXa,bqptq. Replace the
slopes by zero when they decrease below zero. This slope process will be denoted
by g0

a,b, which is thus given by

g0
a,bptq �

$'&'%
min

�
DLpXa,bqptq, 0

�
t   0,

0 t � 0,

max
�
DRpXa,bqptq, 0

�
t ¡ 0.

(4.3.32)

Note that for t ¤ 0, there exists, almost surely s   0 such that DLpXa,bqpsq is strictly
positive for any point greater than or equal to s and the left derivative at s is non-
positive. Equivalently, for t ¡ 0 there exists almost surely s ¡ 0 such that DRpXa,bqpsq
is strictly negative for any point smaller than or equal to s and the left derivative at s
is non-negative. In addition, observe that g0

a,bptq � slogcm0pXa,bqptq, as defined and
characterized in BANERJEE & WELLNER (2001).

4.3.2 NONINCREASING BASELINE HAZARD

The characterization of the unconstrained and the constrained NPMLE estimators of
a nonincreasing baseline hazard function follows analogously to the characterization
of the nondecreasing estimators. The unconstrained NPMLE λ̂npx;βq is obtained by
maximizing the (pseudo) likelihood function in (4.3.1) over all λ0pTp1qq ¥ λ0pTp2qq ¥
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� � � ¥ λpTpnqq ¥ 0. As derived in Chapter 2, the likelihood is maximized by a nonin-
creasing step function that is constant on pTpi�1q, Tpiqs, for i � 1,2, . . . , n and where
Tp0q � 0. The (pseudo) loglikelihood in (4.3.1) becomes then

ņ

i�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpiq� Tpi�1q

� ņ

l�i

eβ
1Zplq

+
. (4.3.33)

The lemmas below provide the characterization of the unconstrained estima-
tor λ̂npx;βq and the constrained estimator λ̂0

npx;βq. Their proofs follow by argu-
ments similar to those in the proofs of Lemma 4.1 and Lemma 4.2, as well as the
necessary and sufficient conditions that uniquely characterize these estimators..

LEMMA 4.3. Let Tp1q   Tp2q   � � �   Tpnq be the ordered follow-up times and consider a
fixed β PRp.

(i) Let Wn be defined in (4.3.3) and let

V npxq �
»
δtu¤ xudPnpu,δ, zq. (4.3.34)

Then, the NPMLE λ̂npx;βq of a nonincreasing baseline hazard function λ0 is given
by

λ̂npx;βq �
#
λ̂i Tpi�1q   x ¤ Tpiq, for i � 1,2, . . . , n,

0 x ¡ Tpnq,

for i � 1, 2, . . . , n, with Tp0q � 0 and where λ̂i is the left derivative of the least
concave majorant (LCM) at the point Pi of the cumulative sum diagram consisting
of the points

Pj �
�

Wnpβ , Tp jqq, V npTp jqq
	

, (4.3.35)

for j � 1,2, . . . , n and P0 � p0,0q.
(ii) Let B1, B2, . . . , Bk be blocks of indices such that λ̂npx;βq is constant on each block

and B1YB2Y . . .YBk � t1,2, . . . , nu. Denote by vn jpβq, the value of the estimator
on block B j . Then

vn jpβq �
°

iPB j
∆piq°

iPB j

�
Tpiq� Tpi�1q

�°n
l�i eβ

1Zplq

.

In fact, for x ¥ Tpnq, λ̂npx;βq can take any value smaller than λ̂n, the left derivative
of the LCM at the point Pn of the CSD. As before, we propose λ̂npxq � λ̂npx; β̂nq as
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the estimator of λ0 and v̂n j � vn jpβ̂nq, where β̂n denotes the maximum partial like-
lihood estimator of β0. Fenchel conditions as in (4.3.9) and (4.3.10) can be derived
analogously.

The NPMLE estimator λ̂0
n maximizes the (pseudo) loglikelihood function in (4.3.33)

over the set λ0pTp1qq ¥ � � � ¥ λ0pTpmqq ¥ ϑ0 ¥ λ0pTpm�1qq ¥ � � � ¥ λ0pTpnqq ¥ 0. It can
be argued that the constrained estimator has to be a nonincreasing step function that
is constant on pTpi�1q, Tpiqs, for i � 1, 2, . . . , n, is ϑ0 on the interval pTpmq, x0s, and is
zero for x ¥ Tpnq. Hence, the (pseudo) loglikelihood function becomes

m̧

i�1

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpiq� Tpi�1q

� ņ

l�i

eβ
1Zplq

+

�∆pm�1q logλ0pTpm�1qq � ϑ0

�
x0 � Tpmq

� ņ

l�m�1

eβ
1Zplq

�λ0pTpm�1qq
�
Tpm�1q� x0

� ņ

l�m�1

eβ
1Zplq

�
ņ

i�m�2

#
∆piq logλ0pTpiqq �λ0pTpiqq

�
Tpiq� Tpi�1q

� ņ

l�i

eβ
1Zplq

+
.

The characterization of the constrained NPMLE λ̂0
n is provided with the next lemma.

LEMMA 4.4. Let x0 P p0,τHq fixed, such that Tpmq   x0   Tpm�1q, for a given 1 ¤ m ¤
n� 1. Consider a fixed β PRp.

(i) For i � 1,2, . . . , m, let λ̂L
i to be the left derivative of the LCM at the point P L

i
of the CSD consisting of the points P L

j � Pj , for j � 1, 2, . . . , m, with Pj defined

in (4.3.35), and P L
0 � p0, 0q. Moreover, for i � m � 1, m � 2, . . . , n, let λ̂R

i be
the left derivative of the LCM at the point PR

i of the CSD consisting of the points
PR

j � Pj , for j � m, m� 1 . . . , n, with Pj defined in (4.3.35). Then, the NPMLE

λ̂0
npx;βq of a nonincreasing baseline hazard function λ0, under the null hypothesis

H0 : λ0 � ϑ0, is given by

λ̂0
npx;βq �

$''''&''''%
λ̂0

i Tpi�1q   x ¤ Tpiq, for i � 1, 2, . . . , m, m� 2, . . . , n,

ϑ0 Tpmq   x ¤ x0,

λ̂0
m�1 x0   x ¤ Tpm�1q,

0 x ¡ Tpnq,
(4.3.36)

where Tp0q � 0 and where λ̂0
i � maxpλ̂L

i ,ϑ0q, for i � 1, 2, . . . , m, and λ̂0
i �

minpλ̂R
i ,ϑ0q, for i � m� 1, m� 2, . . . , n.
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(ii) For k ¥ 1, let B0
1 , B0

2 , . . . , B0
k be blocks of indices such that λ̂0

npx;βq is constant on
each block and B0

1 Y B0
2 Y . . .Y B0

k � t1,2, . . . , nu. There is one block, say B0
r , on

which λ̂0
npx;βq is ϑ0, and one block, say B0

p , that contains m� 1. On all other

blocks B0
j , denote by v0

n jpβq the value of λ̂0
npx;βq on block B0

j . Then,

v0
n jpβq �

°
iPB0

j
∆piq°

iPB0
j

�
Tp jq� Tp j�1q

�°n
l� j eβ

1Zplq

.

On the block B0
p , that contains m� 1,

v0
nppβq

�
°

iPB0
p
∆piq°

iPB0
pztm�1u

�
Tpiq� Tpi�1q

�°n
l�i�1 eβ

1Zplq � rTpm�1q� x0s
°n

l�m�1 eβ
1Zplq

.

Evidently, we propose λ̂0
npxq � λ̂0

npx; β̂nq as the constrained estimator of a nonin-
creasing baseline hazard function λ0, as well as v̂0

n j � v0
n jpβ̂nq on blocks of indices

where the estimator is constant. The Fenchel conditions corresponding to (4.3.22)-
(4.3.25) can be derived in the same manner as for the constrained estimator in the
nondecreasing case.

Let slolcmp f , Iq be the left-hand slope of the LCM of the restriction of the real-
valued function f to the interval I . Denote by slolcmp f q � slolcmp f ,Rq. For a, b ¡
0, let X a,bptq � aWptq � bt2, where W is a standard two-sided Brownian motion
originating from zero. Denote by La,b the LCM of X a,b and let

la,bptq � slolcmpX a,bqptq, (4.3.37)

be the left-hand slope of La,b, at point t. Additionally, set

slolcm0p f q �max
�
slolcmp f , p�8, 0sq, 0

�
1p�8,0s�min

�
slolcmp f , p0,8qq, 0

�
1p0,8q.

For t ¤ 0, construct the LCM of X a,b, that will be denoted by LL
a,b and take its left-hand

slope at point t, denoted by DLpX a,bqptq. When the slopes fall behind zero, replace
them by zero. In the same manner, for t ¡ 0, denote the LCM of X a,b by LR

a,b and its

slope at point t by DRpX a,bqptq. Replace the slopes by zero when they exceed zero.
This slope process will be denoted by l0

a,b, which is thus given by

l0
a,bptq �

$''&''%
max

�
DLpX a,bqptq, 0

	
t   0,

0 t � 0,

min
�

DRpX a,bqptq, 0
	

t ¡ 0.

(4.3.38)

Observe that l0
a,bptq � slolcm0pX a,bqptq.
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4.4 THE LIMIT DISTRIBUTION

Let BlocpRq be the space of all locally bounded real functions on R, equipped with
the topology of uniform convergence on compact sets. In addition,CminpRq is defined
as the subset of BlocpRq consisting of continuous functions f for which f ptq Ñ 8,
when |t| Ñ 8 and f has a unique minimum. Let L be the space of locally square
integrable real-valued functions on R, equipped with the topology of L2 convergence
on compact sets.
For a generic follow-up time T , consider Hucpxq � PpT ¤ x ,∆ � 1q, the sub-
distribution function of the uncensored observations. Moreover, let

Φpβ , xq �
»
tu¥ xueβ

1z dPpu,δ, zq, (4.4.1)

for β PRp and x PR, where P is the underlying probability measure corresponding
to the distribution of pT,∆, Zq. For a fixed point x0 P p0,τHq, define the processes

Xnpxq � n1{3
�
λ̂npx0 � n�1{3 xq � ϑ0

	
,

Ynpxq � n1{3
�
λ̂0

npx0 � n�1{3 xq � ϑ0

	
.

(4.4.2)

The following lemma provides the joint asymptotic distribution of the above pro-
cesses.

LEMMA 4.5. Assume (A1) and (A2) and let x0 P p0,τHq. Suppose that λ0 is nondecreas-
ing on r0,8q and continuously differentiable in a neighborhood of x0, with λ0px0q � 0
and λ10px0q ¡ 0. Moreover, assume that the functions x ÞÑ Φpβ0, xq and Hucpxq, defined
in (4.4.1) and above (4.4.1), are continuously differentiable in a neighborhood of x0.
Finally, assume that the density of the follow-up times is continuous and bounded away
from zero in a neighborhood of x0. Define

a �
d

λ0px0q
Φpβ0, x0q

and b � 1

2
λ10px0q. (4.4.3)

Then pXn, Ynq converges jointly to pga,b, g0
a,bq, in L � L , where the processes ga,b

and g0
a,b have been defined in (4.3.31) and (4.3.32).

PROOF. Note that the processes Xn and Yn are monotone. By making use of Corollary 2
in HUANG & ZHANG (1994) and the remark above the corollary, it suffices to prove
that the finite dimensional marginals of the process pXn, Ynq converge to the finite
dimensional marginals of the process pga,b, g0

a,bq, in order to prove the lemma.

For x ¥ Tp1q, let pWnpxq �Wnpβ̂n, xq �Wnpβ̂n, Tp1qq,
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where Wn is defined in (4.3.3), and where β̂n is the maximum partial likelihood
estimator. For fixed x0 and x P r�k, ks, with 0  k  8, define the process

Znpxq �
n2{3

Φpβ0, x0q
!

Vnpx0 � n�1{3 xq � Vnpx0q

�λ0px0q
� pWnpx0 � n�1{3 xq � pWnpx0q

�)
,

(4.4.4)

where Vn is defined in (4.3.4). For a and b defined in (4.4.3), Zn converges weakly
to Xa,b, as processes in BlocpRq, by Lemma 2.14 in Chapter 2. Define now

Snpxq �
n1{3

Φpβ0, x0q
! pWnpx0 � n�1{3 xq � pWnpx0q

)
. (4.4.5)

From the proof of Lemma 2.15 in Chapter 2, Snpxq converges almost surely to the
deterministic function x , uniformly on every compact set.

Following the approach in GROENEBOOM (1985), LOPUHAÄ & NANE (2013) ob-
tained the asymptotic distribution of the unconstrained maximum likelihood estima-
tor λ̂n by considering the inverse process

Unpzq � argmin
xPrTp1q,Tpnqs

!
Vnpxq � z pWnpxq

)
, (4.4.6)

for z ¡ 0, where the argmin function represents the supremum of times at which the
minimum is attained. Since the argmin is invariant under addition of and multiplica-
tion with positive constants, it follows that

n1{3
�
Unpϑ0 � n�1{3zq � x0

�
� argmin

xPInpx0q

 
Znpxq � Snpxqz

(
,

where Inpx0q � r�n1{3px0 � Tp1qq, n1{3pTpnq � x0qs. For z ¡ 0, the switching relation-
ship λ̂npxq ¤ z holds if and only if Unpzq ¥ x , with probability one. This translates, in
the context of this lemma, to

n1{3
�
λ̂npx0 � n�1{3 xq � ϑ0

�
¤ z ô n1{3

�
Unpϑ0 � n�1{3zq � x0

�
¥ x ,

for 0   x0   τH and ϑ0 ¡ 0, with probability one. The switching relationship is thus

Xnpxq ¤ z ô n1{3
�
Unpϑ0 � n�1{3zq � x0

�
¥ x . Hence finding the limiting distribution

of Xnpxq resumes to finding the limiting distribution of n1{3
�
Unpϑ0 � n�1{3zq � x0

�
.

By applying Theorem 2.7 in KIM & POLLARD (1990), it follows that, for every z ¡ 0,

n1{3
�
Unpϑ0 � n�1{3zq � x0

�
dÝÑ Upzq,
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as inferred in the proof of Theorem 2.4 in Chapter 2, where Upzq �
sup

 
t PR : Xa,bptq � zt is minimal

(
. It will result that, for every x P r�k, ks,

P
�
Xnpxq ¤ z

�� P
�

n1{3
�
λ̂npx0 � n�1{3 xq � ϑ0

�
¤ z

	
� P

�
n1{3

�
Unpϑ0 � n�1{3zq � x0

�
¥ x

	
Ñ P

�
Upzq ¥ x

�
.

Using the switching relationship on the limiting process, it can be deduced that

Upzq ¥ x ô ga,bpxq ¤ z, with probability one, and thus Xnpxq dÝÑ ga,bpxq.
In order to prove the same type of result for Ynpxq, consider first the following

process rYnpxq � n1{3
�
λ̃npx0 � n�1{3 xq � ϑ0

	
, (4.4.7)

where, for x0 P p0,τHq, such that Tpmq   x0   Tpm�1q,

λ̃npxq �

$''''''''&''''''''%

0 x   Tp1q,
λ̂L

i Tpiq ¤ x   Tpi�1q, for i � 1,2, . . . , m� 1

λ̂L
m Tpmq ¤ x   x0,

0 x0 ¤ x   Tpm�1q,

λ̂R
i Tpiq ¤ x   Tpi�1q, for i � m� 1, m� 2, . . . , n� 1

8 x ¥ Tpnq,

with λ̂L
i and λ̂R

i defined in Lemma 4.2. For this, we have considered up to x0
an unconstrained estimator which is constructed based on the sample points
Tp1q, Tp2q, . . . , Tpm�1q. Moreover, to the right of x0, we have considered an uncon-
strained estimator based on the points Tpm�1q, Tpm�2q, . . . , Tpnq. It is not difficult to
see that

Ynpxq �

$''&''%
min

�rYnpxq, 0
	

x   0,

0 x � 0,

max
�rYnpxq, 0

	
x ¡ 0.

(4.4.8)

For z ¡ 0, define the inverse processes

U L
n pzq � argmin

xPrTp1q,Tpm�1qs

!
Vnpxq � z pWnpxq

)
,

UR
n pzq � argmin

xPrTpm�1q,Tpnqs

!
Vnpxq � z pWnpxq

)
Take x   x0. The switching relationship for λ̃n is given by λ̃npxq ¤ z if and only if

U L
n pzq ¥ x , with probability one, which gives that

n1{3
�
λ̃npx0 � n�1{3 xq � ϑ0

�
¤ z ô n1{3

�
U L

n pϑ0 � n�1{3zq � x0

�
¥ x ,
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with probability one. Moreover,

n1{3
�
U L

n pϑ0 � n�1{3zq � x0

�
� argmin

xPI L
n px0q

 
Znpxq � Snpxqz

(
,

where I L
n px0q � r�n1{3px0 � Tp1qq, n1{3pTpm�1q� x0qs. Denote by

Znpz, xq � Znpxq � Snpxqz.

As for the unconstrained estimator, we aim to apply Theorem 2.7 in KIM & POL-
LARD (1990). As Theorem 2.7 in KIM & POLLARD (1990) applies to the argmax of
processes on the whole real line, we extend the above process in the following manner

Z�n pz, xq �

$'&'%
Znpz,�n1{3px0 � Tp1qqq x  �n1{3px0 � Tp1qq,
Znpz, xq �n1{3px0 � Tp1qq ¤ x ¤ n1{3pTpm�1q� x0q,
Znpz, n1{3pTpm�1q� x0qq � 1 x ¡ n1{3pTpm�1q� x0q.

Then, Z�n pz, xq P BlocpRq and

n1{3
�
U L

n pϑ0 � n�1{3zq � x0

�
� argmin

xPR

 
Z�n pz, xq(� argmax

xPR

 �Z�n pz, xq( .

Since λ0px0q � ϑ0 ¡ 0 and λ0 is continuously differentiable in a neighborhood
of x0, it follows by a Taylor expansion and by Lemma 2.5 in DEVROYE (1981)
that n1{3pTpm�1q � x0q � Oppn�1 log nq. Therefore, by virtue of Lemma 2.14 and
Lemma 2.15 in Chapter 2, the process x ÞÑ �Z�n pz, xq converges weakly to Z�pxq P
CmaxpRq, for any fixed z, where

Z�pxq �
#
�Xa,bpxq � zx x ¤ 0,

1 x ¡ 0,

for a and b defined in (4.4.3). Hence, the first condition of Theorem 2.7 in KIM &
POLLARD (1990) is verified. The second condition follows directly from Lemma 2.17
in Chapter 2, while the third condition is trivially fulfilled. Thus, for any z fixed,

n1{3
�
U L

n pϑ0 � n�1{3zq � x0

�
dÝÑ U�pzq,

where U�pzq � sup
 

t ¤ 0 : Xa,bptq � zt is minimal
(
. Concluding, for x   0,

P
�rYnpxq ¤ z

	
� P

�
n1{3

�
λ̃npx0 � n�1{3 xq � ϑ0

�
¤ z

	
� P

�
n1{3

�
U L

n pϑ0 � n�1{3zq � x0

�
¥ x

	
Ñ P

�
U�pzq ¥ x

�
.
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The switching relationship for the limiting process gives that U�pzq ¥ x ô
DLpXa,bqpxq ¤ z, with probability one, where DLpXa,bqpxq has been defined as the
left-hand slope of the GCM of Xa,b, at a point x   0. Hence, for x   0,

rYnpxq dÝÑ DLpXa,bqpxq.
Completely analogous, rYnpxq dÝÑ DRpXa,bqpxq, for x ¡ 0. By continuous mapping
theorem and by (4.4.8), it can be concluded that for fixed x P r�k, ks,

Ynpxq dÝÑ g0
a,bpxq,

where g0
a,b has been defined in (4.3.32).

Our next objective is to apply Theorem 6.1 in HUANG & WELLNER (1995). The
first condition of Theorem 6.1 is trivially fulfilled. The second condition follows by
Lemma 2.17 in Chapter 2, while the third condition follows by the definition of the
inverse processes. Hence, for fixed x ,

P
�
Xnpxq ¤ z, Ynpxq ¤ z

�Ñ P
�

ga,bpxq ¤ z, g0
a,bpxq ¤ z

	
,

for a and b defined in (4.4.3). The arguments for one dimensional marginal con-
vergence can be extended to the finite dimensional convergence, as in the proof of
Theorem 3.6.2 in BANERJEE (2001), by making use of Lemma 3.6.10 in BANER-
JEE (2001). Hence, we can conclude that the finite dimensional marginals of the pro-
cess pXn, Ynq converge to the finite dimensional marginals of the process pga,b, g0

a,bq.
This completes the proof. �

By making use of results in Chapter 2, a completely similar result holds in the
nonincreasing setting.

LEMMA 4.6. Assume (A1) and (A2) and let x0 P p0,τHq. Suppose that λ0 is nonincreas-
ing on r0,8q and continuously differentiable in a neighborhood of x0, with λ0px0q � 0
and λ10px0q   0. Moreover, assume that the functions x Ñ Φpβ0, xq and Hucpxq, defined
in (4.4.1) and above (4.4.1), are continuously differentiable in a neighborhood of x0.

Then, for a and b defined in (4.4.3), pXn, Ynq converge jointly to
�

la,b, l0
a,b

	
in L �L ,

where the processes la,b and l0
a,b have been defined in (4.3.37) and (4.3.38).

Subsequently, we state two immediate results, that will be used repeatedly through-
out the rest of the paper.

LEMMA 4.7. Let x0 P p0,τHq fixed and let Dn be the set on which the unconstrained
NPMLE λ̂n, defined in Lemma 4.1, differs from the constrained NPMLE λ̂0

n, defined in
Lemma 4.2. Then, for any ε ¡ 0, there exists kε ¡ 0 such that

liminf
nÑ8

P
�

Dn � rx0 � n�1{3kε, x0 � n�1{3kεs
	
¥ 1� ε.
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PROOF. The proof of this fact follows by exactly the same reasoning as in the proof of
Lemma 2.6 in BANERJEE (2006), preprint for BANERJEE (2007). �

LEMMA 4.8. Consider the processes Xn and Yn defined in (4.4.2). Then, for every ε ¡ 0
and k ¡ 0, there exists an M ¡ 0 such that

limsup
nÑ8

P

�
sup

xPr�k,ks

��Xnpxq
��¡ M

�
¤ ε.

Similarly,

limsup
nÑ8

P

�
sup

xPr�k,ks

��Ynpxq
��¡ M

�
¤ ε.

PROOF. The monotonicity of the processes Xn and Yn yields that

sup
xPr�k,ks

��Xnpxq
���max

 ��Xnp�kq
�� , ��Xnpkq

��( ,

sup
xPr�k,ks

��Ynpxq
���max

 ��Ynp�kq
�� , ��Ynpkq

��( .

Assume |Xnpkq| to be the maximum in the above display. Since for fixed k, Xnpkq dÝÑ
ga,bpkq, with a and b defined in (4.4.3), it will result that the processes Xn and Yn
in (4.4.2) are, with high probability, uniformly bounded. �

The limiting distribution of the likelihood ratio statistic of a nondecreasing baseline
hazard function λ0 is supplied then by the subsequent theorem.

THEOREM 4.9. Suppose (A1) and (A2) hold and let x0 P p0,τHq. Assume that λ0 is
nondecreasing on r0,8q and continuously differentiable in a neighborhood of x0, with
λ0px0q � 0 and λ10px0q ¡ 0. Moreover, assume that Hucpxq and x Ñ Φpβ0, xq, defined
in (4.4.1) and above (4.4.1), are continuously differentiable in a neighborhood of x0.
Let 2 logξnpϑ0q be the likelihood ratio statistic for testing H0 : λ0px0q � ϑ0, as defined
in (4.3.2). Then,

2 logξnpϑ0q dÝÑD,

where D � ³ �pg1,1puqq2 � pg0
1,1puqq2

�
du, with g1,1 and g0

1,1 defined in (4.3.31) and
(4.3.32).
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PROOF. By (4.3.7) and (4.3.20), the likelihood ratio statistic 2 logξnpϑ0q � 2Lβ̂n
pλ̂nq�

2Lβ̂n
pλ̂0

nq can be expressed as

2 logξnpϑ0q �2
n�1̧

i�1

∆piq log λ̂npTpiqq � 2
n�1̧

i�1

∆piq log λ̂0
npTpiqq

� 2
n�1̧

i�1
i�m

�
Tpi�1q� Tpiq

��
λ̂npTpiqq � λ̂0

npTpiqq
� ņ

l�i�1

eβ̂
1
n Zplq

� 2
�
Tpm�1q� x0

��
λ̂npTpmqq � ϑ0

� ņ

l�m�1

eβ̂
1
n Zplq

� 2
�

x0 � Tpmq
��
λ̂npTpmqq � λ̂0

npTpmqq
� ņ

l�m�1

eβ̂
1
n Zplq .

Let

Sn � 2
n�1̧

i�1

∆piq log λ̂npTpiqq � 2
n�1̧

i�1

∆piq log λ̂0
npTpiqq, (4.4.9)

and denote by Dn, the set of indices i on which λ̂npTpiqq differs from λ̂0
npTpiqq. Hence,

expanding both terms of Sn around λ0px0q � ϑ0, we get

Sn �2
¸
iPDn

∆piq
λ̂npTpiqq � ϑ0

ϑ0
� 2

¸
iPDn

∆piq
λ̂0

npTpiqq � ϑ0

ϑ0

�
¸
iPDn

∆piq

�
λ̂npTpiqq � ϑ0

�2

ϑ2
0

�
¸
iPDn

∆piq

�
λ̂0

npTpiqq � ϑ0

�2

ϑ2
0

� Rn,

with

Rn �
1

3

¸
iPDn

∆piq

�
λ̂npTpiqq � ϑ0

�3

�
λ̂�n pTpiqq

�3 � 1

3

¸
iPDn

∆piq

�
λ̂0

npTpiqq � ϑ0

�3

�
λ̂0�

n pTpiqq
�3

� Rn,1 � Rn,2,

where λ̂�n pTpiqq is a point between λ̂npTpiqq and ϑ0 and λ̂0�
n pTpiqq is a point between

λ̂0
npTpiqq and ϑ0. We want to show that Rn,1 and Rn,2, hence Rn converge to zero, in

probability. As for the Rn,1 term, it can be inferred that

|Rn,1| ¤
1

3

»
δtu P Dnu

���n1{3
�
λ̂npuq � ϑ0

����3��λ̂�n puq��3 dPnpu,δ, zq,
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where Dn is the time interval on which λ̂n differs from λ̂0
n. Choose now ε ¡ 0 and γ¡

0, and for x0 P p0,τHq fixed and kε ¡ 0, denote by In � rx0 � n�1{3kε, x0 � n�1{3kεs.
We can write Rn,1 � Rn,1tDn � Inu� Rn,1tDn � Inu. Since, by Lemma 4.7,

Pp|Rn,1tDn � Inu| ¡ γq ¤PpDn � Inq   ε,

we will further focus on bounding |Rn,1tDn � Inu|. By Lemma 4.7 and by Lemma 4.8,

there exists kε ¡ 0 such that supxPr�kε ,kεs

���λ̂npx0 � n�1{3 xq � ϑ0

��� is Oppn�1{3q. Fur-
thermore, since

sup
xPr�kε ,kεs

���λ̂�n px0 � n�1{3 xq � ϑ0

���¤ sup
xPr�kε ,kεs

���λ̂npx0 � n�1{3 xq � ϑ0

��� ,
it will result that, for u P Dn,

���n1{3
�
λ̂npuq � ϑ0

����3 is uniformly bounded and
��λ̂�n puq��3

is uniformly bounded away from zero. It will result that there exists M ¡ 0 such that

|Rn,1| ¤M
»
δtx0 � kεn

�1{3 ¤ u¤ x0 � kεn
�1{3ud pPn � Pq pu,δ, zq

�M
»
δtx0 � kεn

�1{3 ¤ u¤ x0 � kεn
�1{3udPpu,δ, zq � opp1q.

Chebyshev’s inequality provides that the first term on the right-hand side is Oppn�2{3q.
As the function Huc defined above (4.4.1) is assumed to be continuously differentiable
in a neighborhood of x0, the second term on the right-hand side is Oppn�1{3q. We can
conclude that Rn,1 � opp1q. Completely similar, by using Lemma 4.7 and Lemma 4.8,
it can be shown that Rn,2 � opp1q. Thus 2 logξnpϑ0q � An � Bn � opp1q, where

An �
2

ϑ0

¸
iPDn

∆piq
�
λ̂npTpiqq � λ̂0

npTpiqq
�

� 2
¸

iPDnztmu

�
Tpi�1q� Tpiq

��
λ̂npTpiqq � λ̂0

npTpiqq
� ņ

l�i�1

eβ̂
1
n Zplq

� 2
�
Tpm�1q� x0

��
λ̂npTpmqq � ϑ0

� ņ

l�m�1

eβ̂
1
n Zplq

� 2
�

x0 � Tpmq
��
λ̂npTpmqq � λ̂0

npTpmqq
� ņ

l�m�1

eβ̂
1
n Zplq ,

(4.4.10)

and

Bn �
1

ϑ2
0

¸
iPDn

∆piq

"�
λ̂npTpiqq � ϑ0

�2
�
�
λ̂0

npTpiqq � ϑ0

�2
*

. (4.4.11)
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Hence, An can be written as An � An1 � An2, where

An1 �
2

ϑ0

¸
iPDn

�
λ̂npTpiqq � ϑ0

�#
∆piq� ϑ0

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

+
,

and

An2 �
2

ϑ0

¸
iPDnztmu

�
λ̂0

npTpiqq � ϑ0

�#
∆piq� ϑ0

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

+

� 2

ϑ0

�
λ̂0

npTpmqq � ϑ0

�#
∆pmq� ϑ0

�
x0 � Tpmq

� ņ

l�m�1

eβ̂
1
n Zplq

+
.

For the term An1, partition the set of indices Dn into s consecutive blocks of indices
B1, B2, . . . , Bs, such that λ̂n is constant on each block. Denote by v̂n j the unconstrained
estimator λ̂npTpiqq, for each i P B j , with j � 1,2, . . . , s. By (4.3.6), it follows that

An1 �
2

ϑ0

ş

j�1

¸
iPB j

�
v̂n j � ϑ0

	#
∆piq� ϑ0

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

+

� 2

ϑ0

ş

j�1

�
v̂n j � ϑ0

	$&%¸
iPB j

∆piq� ϑ0

¸
iPB j

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

,.-
� 2

ϑ0

ş

j�1

�
v̂n j � ϑ0

	2 ¸
iPB j

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

� 2

ϑ0
n
¸
iPDn

�
λ̂npTpiqq � ϑ0

�2 1

n

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq .

Define

Φnpβ , xq �
»
tu¥ xueβ

1z dPnpu,δ, zq, (4.4.12)

and note that »
rTpiq,Tpi�1qq

Φnpβ̂n, uqdu� 1

n

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq ,

for each i � 1,2, . . . , n� 1. The term An1 can then be written as

An1 �
2

ϑ0
n
» !

u P Dn

)�
λ̂npuq � ϑ0

�2
Φnpβ̂n, uqdu,

where Dn is the interval on which λ̂n and λ̂0
n differ. Similarly, for the term An2, parti-

tion Dn into q consecutive blocks of indices B0
1 , B0

2 , . . . , B0
q , such that the constrained
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estimator λ̂0
n is constant on each block. There is one block, say B0

r , on which the con-
strained estimator is ϑ0, and one block, say B0

p that contains m. On all other blocks B0
j ,

denote by v̂0
n j the constrained estimator λ̂0

npTpiqq, for each i P B0
j . It will result that,

An2 �
2

ϑ0

q̧

j�1
j�r,p

¸
iPB0

j

�
v̂0

n j � ϑ0

	#
∆piq� ϑ0

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

+

� 2

ϑ0

¸
iPB0

pztmu

�
v̂0

np � ϑ0

	#
∆piq� ϑ0

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

+

� 2

ϑ0

�
v̂0

np � ϑ0

	#
∆pmq� ϑ0

�
x0 � Tpmq

� ņ

l�m�1

eβ̂
1
n Zplq

+

� 2

ϑ0

q̧

j�1
j�r,p

�
v̂0

n j � ϑ0

	$'&'%
¸
iPB0

j

∆piq� ϑ0

¸
iPB0

j

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

,/./-
� 2

ϑ0

�
v̂0

np � ϑ0

	# ¸
iPB0

p

∆piq� ϑ0

� ¸
iPB0

pztmu

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

�
�

x0 � Tpmq
� ņ

l�m�1

eβ̂
1
n Zplq

�+
.

By (4.3.18) and (4.3.19),

An2 �
2

ϑ0

q̧

j�1
j�r,p

�
v̂0

n j � ϑ0

	2 ¸
iPB0

j

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

� 2

ϑ0

�
v̂0

np � ϑ0

	2
# ¸

iPB0
pztmu

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

�
�

x0 � Tpmq
� ņ

l�m�1

eβ̂
1
n Zplq

+

� 2

ϑ0
n

¸
iPDnztmu

�
λ̂0

npTpiqq � ϑ0

�2 1

n

�
Tpi�1q� Tpiq

� ņ

l�i�1

eβ̂
1
n Zplq

� 2

ϑ0
n
�
λ̂0

npTpmqq � ϑ0

�2 1

n

�
x0 � Tpmq

� ņ

l�m�1

eβ̂
1
n Zplq .
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As λ̂0
npxq � λ̂0

npTpmqq on the interval rTpmq, x0q and λ̂0
npxq � ϑ0 on the interval

rx0, Tpm�1qq, this gives that» Tpm�1q

Tpmq

�
λ̂0

npuq � ϑ0

�2
Φnpβ̂n, uqdu

�
» x0

Tpmq

�
λ̂0

npuq � ϑ0

�2
Φnpβ̂n, uqdu�

» Tpm�1q

x0

�
λ̂0

npuq � ϑ0

�2
Φnpβ̂n, uqdu

�1

n

�
λ̂0

npTpmqq � ϑ0

�2 �
x0 � Tpmq

� ņ

l�m�1

eβ̂
1
n Zplq .

This leads to

An2 �
2

ϑ0
n
» !

u P Dn

)�
λ̂0

npuq � ϑ0

�2
Φnpβ̂n, uqdu,

and, thus An in (4.4.10) can be written as

An �
2

ϑ0
n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)
Φnpβ̂n, uqdu.

In a similar manner, Bn in (4.4.11) can be expressed as

Bn �
1

ϑ2
0

n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)

dVnpuq,

by (4.3.4) and by noting that for every i � 1,2, . . . , n� 1,»
rTpiq,Tpi�1qq

dVnpuq � VnpTpi�1qq � VnpTpiqq �
1

n
∆piq.

Concluding,

2 logξnpϑ0q �
2

ϑ0
n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)
Φnpβ̂n, uqdu

� 1

ϑ2
0

n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)

dVnpuq � opp1q.

Let V pxq � ³
δtu   xudPpu,δ, zq, and see that, in fact, V pxq � Hucpxq, where Huc

has been defined above (4.4.1). Thus,

2 logξnpϑ0q �
2

ϑ0
n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)
Φpβ0, uqdu

� 1

ϑ2
0

n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)

dV puq � Rn � opp1q,
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where Rn � Rn1 � Rn2, with

Rn1 �
2

ϑ0
n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)�
Φnpβ̂n, uq �Φpβ0, uq� du,

and

Rn2 �
1

ϑ2
0

n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)

d
�
Vnpuq � V puq� .

The aim is to show that Rn1 and Rn2, and thus Rn is opp1q. The term Rn1 can be written
as

2

ϑ0
n1{3

» !
u P Dn

)#�
n1{3

�
λ̂npuq � ϑ0

��2

�
�
n1{3

�
λ̂0

npuq � ϑ0

��2
+�
Φnpβ̂n, uq �Φpβ0, uq� du.

Lemma 2.8 in Chapter 2 provides that

sup
xPR

��Φnpβ̂n, xq �Φpβ0, xq
��Ñ 0,

with probability one. From Lemma 4.8 and since
³tu P Dnudu ¤ 2kεn

�1{3, by
Lemma 4.7 and by using similar arguments as for the term Rn,1, we can conclude
that Rn1 is opp1q. Analogously,

Rn2 �
1

ϑ2
0

n1{3
» !

u P Dn

)
δ

#�
n1{3

�
λ̂npuq � ϑ0

��2

�
�
n1{3

�
λ̂0

npuq � ϑ0

��2
+

dpPn � Pqpu,δ, zq.

Once more, by Lemma 4.7 and Lemma 4.8, there exists M2 ¡ 0 such that

|Rn2| ¤
M2

2

ϑ2
0

n1{3
»
δ
!

u P Dn

)
dpPn � Pqpu,δ, zq,

with arbitrarily large probability. Chebyshev’s inequality along with the same reason-
ing as for the term Rn,1 provides that Rn2 � opp1q. Hence,

2 logξnpϑ0q �
2

ϑ0
n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)
Φpβ0, uqdpuq

� 1

ϑ2
0

n
» !

u P Dn

)!�
λ̂npuq � ϑ0

�2 � �
λ̂0

npuq � ϑ0

�2
)

dV puq � opp1q.
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Consider the change of variable x � n1{3pu� x0q and let rDn � n1{3
�

Dn � x0

	
. This

yields that

2 logξnpϑ0q �
2

ϑ0

» !
x P rDn

)�
X 2

npxq � Y 2
n pxq

�
Φpβ0, x0 � n�1{3 xqdx

� 1

ϑ2
0

» !
x P rDn

)�
X 2

npxq � Y 2
n pxq2

�
V 1px0 � n�1{3 xqdx � opp1q

� 2

ϑ0
Φpβ0, x0q

» !
x P rDn

)�
X 2

npxq � Y 2
n pxq

�
dx

� 1

ϑ2
0

V 1px0q
» !

x P rDn

)�
X 2

npxq � Y 2
n pxq

�
dx � opp1q.

As inferred in (2.2.9) and (2.4.22) in Chapter 2,

λ0pxq �
dV pxq{dx

Φpβ0, xq ,

which gives that

2 logξnpϑ0q �
1

ϑ0
Φpβ0, x0q

» !
x P rDn

)�
X 2

npxq � Y 2
n pxq

�
dx � opp1q.

Thus

2 logξnpϑ0q �
1

a2

» !
x P rDn

)�
X 2

npxq � Y 2
n pxq

�
dx � opp1q,

where a has been defined in (4.4.3). From Lemma 4.7, for every ε ¡ 0, we can find
an interval r�kε, kεs such that PprDn � r�kε, kεsq ¡ 1� ε, for n sufficiently large. In
order to prove the theorem, we apply Lemma 4.2 in PRAKASA RAO (1969), by taking

Qn �
1

a2

» !
x P rDn

)�
X 2

npxq � Y 2
n pxq

�
dx ,

Qnε �
1

a2

»  
x P r�kε, kεs

(�
X 2

npxq � Y 2
n pxq

�
dx ,

Qε �
1

a2

»  
x P r�kε, kεs

(�pga,bpxqq2 �
�

g0
a,bpxq

	2
�

dx ,

and

Q � 1

a2

»  
x P Da,b

(�pga,bpxqq2 �
�

g0
a,bpxq

	2
�

dx ,

where Da,b denotes the set on which ga,b and g0
a,b differ. Condition (i) in Lemma 4.2 of

Prakasa Rao follows by Lemma 4.7. In addition, Lemma 4.7 and Lemma 4.5 yield con-
dition (ii), since for every ε ¡ 0, we can find kε ¡ 0 such that PpDa,b � r�kε, kεsq ¡
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1� ε. The third condition follows, for every fixed ε, by Lemma 4.5 and by contin-
uous mapping theorem. Namely, pXn, Ynq ñ pga,b, g0

a,bq as a process in L �L and
p f , gq ÞÑ ³tx P r�c, csup f 2pxq� g2pxqqdx is a continuous function defined onL �L
with values in R. Conclusively,

1

a2

» �
X 2

npxq � Y 2
n pxq

�!
x P rDn

)
dx dÝÑ 1

a2

» �
pga,bpxqq2 �

�
g0

a,bpxq
	2
� 

x P Da,b

(
dx ,

d�
» �

pg1,1pxqq2 �
�

g0
1,1pxq

	2
� 

x P D1,1

(
dx ,

by continuous mapping theorem and by Brownian scaling, as derived in BANERJEE
& WELLNER (2001). This completes the proof. �

The asymptotic distribution of the likelihood ratio statistic in the nonincreasing
baseline hazard setting can be derived completely analogous.

THEOREM 4.10. Suppose (A1) and (A2) hold and let x0 P p0,τHq. Assume that λ0 is
nonincresing on r0,8q and continuously differentiable in a neighborhood of x0, with
λ0px0q � 0 and λ10px0q   0. Moreover, assume that Hucpxq and x Ñ Φpβ0, xq, defined
in (4.4.1) and above (4.4.1), are continuously differentiable in a neighborhood of x0.
Let 2 logξnpϑ0q be the likelihood ratio statistic for testing H0 : λ0px0q � ϑ0, as defined
in (4.3.2). Then,

2 logξnpϑ0q dÝÑD.

PROOF. Following the same reasoning as in the proof of Theorem 4.9 and by
Lemma 4.6, it can be deduced that

2 logξnpϑ0q dÝÑ 1

a2

» �
pla,bpxqq2 �

�
l0
a,bpxq

	2
�!

x P Da,b

)
dx ,

where Da,b is the set on which la,b and l0
a,b differ. By continuous mapping theo-

rem, it suffices to show that, for t fixed, la,bpX a,bqptq has the same distribution as
ga,bpXa,bqptq and l0

a,bpX a,bqptq has the same distribution as g0
a,bpXa,bqptq. It is note-

worthy that
slolcmpX a,bqptq � �slogcmp�X a,bqptq.

Thus, by Brownian motion properties and continuous mapping theorem,

P
�
la,bptq ¤ z

�� P
��slogmcp�aWptq � t2q ¤ z

�� P
��slogmcpaWptq � t2q ¤ z

�
� P

��ga,bptq ¤ z
�

.

Concluding, la,bpX a,bqptq d� � ga,bpXa,bqptq, and a similar reasoning can be applied to

show that l0
a,bpX a,bqptq d� � g0

a,bpXa,bqptq. The proof is then immediate, by continuous
mapping theorem. �
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REMARK. The same limiting distributionD is obtained for the loglikleihood ratio statis-
tic in the absence of covariates in BANERJEE (2008), as well as in other censoring
frameworks, as derived in BANERJEE & WELLNER (2001). In fact, it has been shown
in BANERJEE (2007) that the same holds true for a wide class of monotone response
models. This distribution differs from the usual χ2

1 distribution, that is obtained in
the regular parametric setting. It is noteworthy thatD does not depend on any of the
parameters of the underlying model, and this property turns out to be particularly
useful in constructing confidence intervals for the parameters of interest, as it will be
exposed in the subsequent section.

4.5 POINTWISE CONFIDENCE INTERVALS VIA SIMULATIONS

Once having derived the asymptotic distribution of the likelihood ratio statistic, the
practical application at hand is to construct, for fixed x0 P p0,τHq, pointwise con-
fidence intervals. We will derive such intervals, for a nondecreasing baseline hazard
function λ0, evaluated at a fixed point x0, based on simulated data and compare these
intervals with the intervals based on the asymptotic distribution of the nondecreasing
NPMLE λ̂n. According to Theorem 2.4 in Chapter 2, for fixed x0,

n1{3
�
λ̂npx0q �λ0px0q

� dÝÑ
�

4λ0px0qλ10px0q
Φpβ0, x0q

�1{3

argmin
xPR

tWptq � t2u

� Cpx0qZ,

where W is standard two-sided Brownian motion starting from zero, and the con-
stant Cpx0q depends on x0 and on the underlying parameters. An estimator Ĉnpx0q
of Cpx0q will then yield an 1�α confidence interval for λ0px0q

C1
n,α �

�
λ̂npx0q � n�1{3Ĉnpx0qqpZ, 1�α{2q, λ̂npx0q � n�1{3Ĉnpx0qqpZ, 1�α{2q

�
,

where qpZ, 1�α{2q is the p1�α{2qth quantile of the distribution Z. These quantiles
have been computed in GROENEBOOM & WELLNER (2001), and we will further use
qpZ, 0.975q � 0.998181. For simulation purposes, we propose

Ĉnpx0q �
�

4λ̂npx0qλ̂1npx0q
Φnpβ̂n, x0q

�1{3

,

where Φnpβ , xq has been defined in (4.4.12), and β̂n is the maximum partial likeli-
hood estimator. Lemma 2.8 in Chapter 2 ensures that Φnpβ̂n, �q is a strong uniform
consistent estimator of Φpβ0, �q. Furthermore, as an estimate for λ10px0q, we choose
the numerical derivative of λ̂n on the interval that contains x0, that is, the slope of
the segment rλ̂npTpmqq, λ̂npTpm�1qqs.
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Pointwise confidence intervals for λ0px0q can also be constructed by making use of
Theorem 4.9. Let 2 logξnpϑq denote the likelihood ratio for testing H0 : λ0px0q � ϑ
versus H1 : λ0px0q � ϑ. A 1�α confidence interval is then obtained by inverting the
likelihood ratio test 2 logξnpϑq for different values of ϑ, namely

C2
n,α �

 
ϑ : 2 logξnpϑq ¤ qpD, 1�αq( ,

where qpD, 1 � αq is the p1 � αqth quantile of the distribution D. Quantiles of D,
based on discrete approximations of Brownian motion, are provided in BANERJEE &
WELLNER (2005), and we will make use of qpD, 0.95q � 2.286922. The parameter ϑ
is chosen to take values on a fine grid between 0 and 6. It can be shown immediately
that, for large enough n, the coverage probability of C2

n,α is approximately 1�α.

For the performance analysis, we have constructed and compared, from simulated
data, the confidence intervals C1

n,α and C2
n,α, for α � 0.05 and various n. We will

assume a Weibull baseline distribution function for the event times, with shape pa-
rameter 2 and scale parameter 1. For simplicity, we will assume that the covariate is
single-valued and uniformly p0,1q distributed and take β0 � 0.5. Given the covariate,
the censoring times are assumed to be uniformly p0, 1q distributed. We will choose
x0 �

a
log2, the median of the baseline distribution of the event times. For each

chosen sample size, we generate 1000 replicates and compute the empirical coverage
and the average length of the corresponding confidence intervals. Furthermore, since
we are simulating from a Weibull distribution with shape parameter 2 and scale pa-
rameter 1, and hence know the true baseline hazard function λ0 and its derivative, as
well as the true underlying regression coefficient, we could also consider a confidence
interval C

1
n,α, given by

C
1
n,α �

�
λ̂npx0q � n�1{3C0px0qqpZ, 1�α{2q, λ̂npx0q � n�1{3C0px0qqpZ, 1�α{2q

�
,

where C0 is a deterministic function given by

C0px0q �
�

4vλ0px0qλ10px0q
Φpβ0, x0q

�1{3

.

Table 4.1 reveals the performance, for various sample sizes, of the confidence inter-
val C2

n,0.05 based on the likelihood ratio method (LR), the confidence interval C1
n,0.05,

based on the asymptotic distribution (AD) of the scaled differences between the
NPMLE λ̂n and the true baseline hazard at a fixed point, as well as the confidence
interval C

1
n,0.05 based on the known Weibull distribution (TD).

It is noteworthy that for each sample size, the likelihood ratio method yields, on
average, shorter pointwise confidence intervals in comparison with the confidence in-
tervals based on the asymptotic distribution of the NPMLE estimator λ̂n. Moreover, the
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LR AD TD

n AL CP AL CP AL CP

50 4.275 0.917 5.203 0.932 1.506 0.964
100 3.837 0.923 4.838 0.941 1.317 0.953
200 3.009 0.931 4.605 0.947 1.247 0.947
500 2.734 0.947 3.372 0.948 0.961 0.964

1000 1.454 0.942 2.259 0.940 0.713 0.957
5000 0.879 0.945 1.768 0.952 0.546 0.953

TABLE 4.1: Simulaton results for constructing 95% pointwise confidence intervals us-
ing the likelihood ratio C2

n,0.05 (LR) or the asymptotic distribution of the NPMLE es-

timator C1
n,0.05 (AD) and C

1
n,0.05 (TD), in terms of average length (AL) and empirical

coverage (CP).

confidence intervals based on the likelihood ratio exhibit comparable coverage prob-
abilities with the confidence intervals C2

n,0.05, based on the asymptotic distribution.

As expected, the highest coverage rate is attained by the confidence intervals C
1
n,0.05.

Furthermore, they also yield confidence intervals with the shortest length, on average.
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CHAPTER 5

SMOOTH MONOTONE ESTIMATION OF THE
BASELINE HAZARD IN THE COX MODEL 1

We consider estimators of a baseline hazard function under the assumption that the
baseline hazard is nondecreasing and smooth. We obtain these estimators by kernel
smoothing the shape constrained estimators defined in Chapter 2. Depending on the
choice of shape constrained estimators and when the smoothing is performed, three
different estimators are studied. Furthermore, we investigate the pointwise consis-
tency of these kernel estimators.

5.1 INTRODUCTION

Nonparametric estimators that account for the assumption of smoothness received
considerable attention in the literature. The long and abundant stream of research
has shown that a smooth estimator has an interest of its own, along with allowing
the estimation of the first or second derivatives of the estimator. For example, the
first derivative might be of interest to construct confidence intervals based on the
asymptotic distribution, as exposed in Chapter 4. There are various smoothing options
for a given estimator, including a local polynomial method, spline methods and kernel
methods. Nonparametric estimation of smooth distribution functions based on kernels
dates back in 1950’s, when ROSENBLATT (1956) was the first to propose a kernel
density estimator of a univariate probability distribution.

Smooth estimation under shape constraints received a lot of attention since MAM-
MEN (1991) addressed this problem for regression functions. Smooth estimation of
a monotone density has been considered by van der VAART & van der LAAN (2003),
among others, who showed that a monotone kernel estimator with bandwidth n�1{3,
defined as the slope of the least convex minorant of the convolution of the em-
pirical distribution function with a scaled kernel exhibits the same rate of conver-
gence but different limiting distribution than an unsmoothed monotone estimator.
For monotone hazard functions, GROENEBOOM & JONGBLOED (2013) propose a
kernel smooth least-squares estimator, along with a smooth estimate based on penal-
ization, and investigate their asymptotic properties. In a paper on testing the equality

1By Jongbloed, G., Lopuhaä, H. P. and Nane, G. F. In preparation.
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of functions under monotonicity constraints, DUROT et al. (2013) consider smooth
estimators within a general model that accommodates monotone regression curves,
monotone densities and monotone hazards in the random censorship model. Further-
more, GROENEBOOM & JONGBLOED (2010) consider a maximum smoothed likeli-
hood estimator of an nondecreasing hazard. In the current status model, Groeneboom
et al. (2010) propose various smooth estimators of a nonincreasing density, along with
estimators of the cumulative distribution function and plug-in hazard estimators, and
examine the asymptotic properties of these estimators.

This chapter focuses on kernel smooth baseline hazard estimators in the Cox model,
under the assumption of monotonicity. The Cox model (COX, 1972) is one of the most
acknowledged and used in practice semiparametric models. The event of interest for
each subject in the study is usually assumed to be subject to right censoring and a
number of (time-independent) covariates are typically registered for each subject.
The model is expressed through the hazard function, and relates the hazard of each
subject with a given covariate vector to the baseline hazard, corresponding to the null
covariate vector, and an exponential function of covariates. A key feature of the model
is that one is able to efficiently estimate the regression coefficients by a maximum par-
tial likelihood estimator, while leaving the baseline hazard completely unspecified,
see, e.g., EFRON (1977), OAKES (1977) and SLUD (1982). Furthermore, Breslow
(COX, 1972) focused on hazard estimation and proposed a maximum likelihood esti-
mator of the baseline cumulative hazard function, which is commonly known as the
Breslow estimator.

To the authors’ best knowledge, ANDERSEN et al. (1985) were the first to propose
a smooth baseline hazard estimator within the Cox model. Moreover, they claim that
this estimator follows an asymptotic normal distribution, for a bandwidth b � bn Ñ 0,
such that nbn Ñ 8, by combining the asymptotic results of RAMLAU-HANSEN
(1983), that considered smoothing counting processes by means of kernel functions,
with the asymptotic properties of the Breslow estimator. DABROWSKA (1997) con-
sidered kernel smoothing estimation in a generalized Cox model. The regression pa-
rameters estimator is obtained by kernel smoothing the risk and counting processes
involved and the baseline cumulative hazard estimator is obtained by further smooth-
ing in the time direction. The asymptotic distribution of the estimators is derived for
a bandwidth b � bn such that nb4

n Ñ 0. WELLS (1994) investigated the asymptotic
properties of the baseline hazard kernel estimator and shows that the estimator is
uniformly consistent and asymptotically normal, when the bandwidth is proportional
to n�1{5.

Although the baseline hazard can be left completely unspecified, in practice, one
might be interested in restricting it qualitatively. LOPUHAÄ & NANE (2013a) pro-
posed a maximum likelihood λ̂n and a Grenander-type estimator λ̃n of a monotone
hazard function. The Grenander-type estimator λ̃n of a nondecreasing baseline haz-
ard estimator is defined as the left-hand slope of the greatest convex minorant of the
Breslow estimator. The two estimators have been proven to be strongly consistent and
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furthermore, the estimators have been shown to exhibit the same distributional law.
The asymptotic distribution is defined in terms of the minimum of a two-sided Brown-
ian motion plus a parabola times a constant depending on the underlying parameters
and follows the general shape constrained theory.

In this chapter, we introduce maximum likelihood and Grenander-type smooth es-
timators of a monotone baseline hazard function. Three different estimators emerge
from the interplay of isotonization and smoothing. The first considered estimator is
the smoothed maximum likelihood estimator, which is obtained by smoothing the
nonparametric maximum likelihood estimator λ̂n of a nondecreasing baseline hazard
function. Similarly, the smoothed Grenander-type estimator is obtained by smoothing
the Grenander-type estimator λ̃n. Another proposed estimator is the Grenander-type
smoothed estimator, which is obtained by first smoothing the Breslow estimator of
the baseline cumulative hazard function and then taking slopes of the greatest con-
vex minorant of the smoothed Breslow estimator.

The chapter is organized as follows. Section 5.2 introduces the Cox model,
along with necessary definitions and usual assumptions. Section 5.3 introduces the
smoothed maximum likelihood estimator and provides its strong uniform consistency,
while Section 5.4 and 5.5 focuses on Grenander-type smooth estimators and on prov-
ing their strong consistency.

5.2 DEFINITIONS AND ASSUMPTIONS

The observed data consist of the triplets pT1,∆1, Z1q, . . . , pTn,∆n, Znq, where Ti de-
notes the ith follow-up time with a corresponding censoring indicator ∆i and covari-
ate vector Zi PRp. The generic follow-up time is defined as T � minpX , Cq, where X
denotes the event time and C is the censoring time. The censoring indicator is defined
as ∆� tX ¤ Cu, where t�u denotes the indicator function. Given the covariate Z , the
event time X and the censoring time C are assumed to be independent. Furthermore,
conditionally on Z � z, the event time X is assumed to be a nonnegative random vari-
able with an absolutely continuous distribution function Fpx |zq with density f px |zq.
Similarly, conditionally on Z � z, the censoring time C is assumed to be a nonnegative
random variable with an absolutely continuous distribution function Gpc|zq and den-
sity gpc|zq. The distribution functions F and G are assumed to share no parameters,
thus the censoring mechanism is assumed to be non-informative. Lastly, the covariate
vector Z PRp is assumed to be time invariant.

Within the Cox model, the distribution of the survival time is related to the corre-
sponding covariate by

λ
�
x | z

�� λ0pxqeβ
1
0z , x P R�,

where λ
�
x | z

�
is the hazard function for a subject with covariate vector z P Rp, λ0

represents the underlying baseline hazard function, corresponding to a subject with
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z � 0, and β0 PRp is the vector of the underlying regression coefficients.

Denote the distribution of the follow-up time T by H. We consider the following
assumptions, typically employed when deriving large sample properties of estimators
within the Cox model, see, e.g., TSIATIS (1981).

(A1) Let τF ,τG and τH be the end points of the support of F, G and H respectively.
Then

τH � τG   τF ¤8.

(A2) There exists ε ¡ 0 such that

sup
|β�β0|¤ε

E

�
|Z |2 e2β 1Z

�
 8,

where | � | denotes the Euclidean norm.

5.3 SMOOTHED MAXIMUM LIKELIHOOD ESTIMATORS

A first natural manner to obtain a smooth estimator of a nondecreasing base-
line hazard function is to smooth the nonparametric maximum likelihood estimator
(NPMLE) λ̂n defined and characterized in Chapter 2. In this section, we will do so by
using kernel smoothing.

As inferred in Section 2.2.1, for fixed β , the NPMLE λ̂npx;βq of a nondecreasing
baseline hazard function λ0 is the maximizer of the (pseudo) loglikelihood function
Lβpλ0q in (2.2.6) over nondecreasing baseline hazard functions. After obtaining the
solution to this maximization problem, we simply replace β by β̂n, the maximum
partial likelihood proposed by COX (1972,1975). Recall that λ̂npxq � λ̂npx; β̂nq is of
the form

λ̂npxq �

$'&'%
0 x   Tp1q,
λ̂i Tpiq ¤ x   Tpi�1q, for i � 1,2, . . . , n� 1,

8 x ¥ Tpnq,

where λ̂i , for i � 1,2, . . . , n�1, are defined as slopes of the greatest convex minorant
of a cusum diagram defined in terms of the processes Wn and Vn in (2.2.3) and (2.2.4),
but also have the following max-min representation

λ̂i � max
1¤s¤i

min
i¤t¤n�1

°t
j�s∆p jq°t

j�s

�
Tp j�1q� Tp jq

�°n
l� j�1 eβ̂

1
n Zplq

,

for i � 1, 2, . . . , n� 1.

Let now k be a kernel density with support r�1,1s. We list below some of the typical
properties of the kernel function that will be further employed
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1. kpxq ¥ 0, for all x PR,

2.
³

kpxqdx � 1,

3. kpxq � kp�xq,
4.

³
xkpxqdx � 0,

5.
³

x2kpxqdx � c2  8.

Note that property 4 is implied by the symmetry of the kernel density and since
the support is r�1, 1s. Likewise, property 5 follows from previous assumptions. We
will consider the scaled version kbpuq � b�1kpu{bq of the kernel function k, where
0  b � bn is a bandwidth that depends on the sample size, with bn Ñ 0, as nÑ8.

We define our kernel smoothed maximum likelihood estimator (SMLE) of the base-
line hazard function λ0 at a point x0 by

λ̂SM
n px0q �

»
kbpx0 � uqλ̂npuqdu. (5.3.1)

Since λ̂n is nondecreasing, it can be easily shown that the smoothed estimator λ̂SM
n

is nondecreasing as well. Moreover, the strong pointwise consistency of the smooth
estimator λ̂SM

n follows from the strong pointwise consistency of the NPMLE λ̂n, as it
will be shown with the next theorem.

THEOREM 5.1. Assume that (A1) and (A2) hold. Suppose that λ0 is nondecreasing and
continuous in a neighborhood of x0. Then, for any x0 P p0,τHq,

λ̂SM
n px0q �λ0px0q Ñ 0,

with probability one.

PROOF. For a fixed x0 in the interior of the support p0,τHq, consider

λ̂SM
n px0q �λ0px0q � λ̂SM

n px0q �λs
0px0q �λs

0px0q �λ0px0q, (5.3.2)

where

λs
0px0q �

»
kbpx0 � uqλ0puqdu (5.3.3)

is the convolution of λ0 with the scaled kernel kb. For the last two terms on the
right-hand side, a change of variable yields

λs
0px0q �λ0px0q �

»
1

b
k
�

x0 � u

b



λ0puqdu�λ0px0q

�
»

kpyqrλ0px0 � bn yq �λ0px0qsdy.
(5.3.4)
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Since bn y Ñ 0, as nÑ8, then for every ε ¡ 0, there exists a natural number N such
that, for every n¡ N , |bn y|   ε. Fix ε ¡ 0. As λ0 is nondecreasing, it follows that

λ0px0 � εq �λ0px0q   λ0px0 � bn yq �λ0px0q   λ0px0 � εq �λ0px0q,
and by property 2 of the kernel function,

λ0px0 � εq �λ0px0q  
»

kpyqrλ0px0 � bn yq �λ0px0qsdy   λ0px0 � εq �λ0px0q.

In addition, by taking nÑ8,

λ0px0 � εq �λ0px0q   limsup
nÑ8

»
kpyqrλ0px0 � bn yq �λ0px0qsdy

  λ0px0 � εq �λ0px0q.
As ε ¡ 0 is chosen arbitrarily, the continuity of λ0 at x0 yields that, by (5.3.4),

λs
0px0q �λ0px0q Ñ 0.

Moreover, by a change of variable, the first two terms on the right-hand side of (5.3.2)
can be written as

λ̂SM
n px0q �λs

0px0q �
»

kpyq �λ̂npx0 � bn yq �λ0px0 � bn yq�dy. (5.3.5)

Once more, since bn y Ñ 0, as n Ñ 8, then for every ε ¡ 0, there exists a natural
number N such that, for every n ¡ N , |bn y|   ε. Fix ε ¡ 0. As both λ̂n and λ0 are
nondecreasing, it follows that

λ̂npx0 � εq �λ0px0 � εq   λ̂npx0 � bn yq �λ0px0 � bn yq   λ̂npx0 � εq �λ0px0 � εq,
and, once again, by property 2 of the kernel,

λ̂npx0 � εq �λ0px0 � εq  
»

kpyq �λ̂npx0 � bn yq �λ0px0 � bn yq�dy

  λ̂npx0 � εq �λ0px0 � εq,
By taking nÑ8, we get

limsup
nÑ8

pλ̂npx0 � εq �λ0px0 � εqq   limsup
nÑ8

»
kpyq �λ̂npx0 � bn yq �λ0px0 � bn yq�dy

  limsup
nÑ8

pλ̂npx0 � εq �λ0px0 � εqq.

By Theorem 2.3 in Chapter 2, we obtain

λ0px0 � εq �λ0px0 � εq   limsup
nÑ8

»
kpyq �λ̂npx0 � bn yq �λ0px0 � bn yq�dy

  λ0px0 � εq �λ0px0 � εq,
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with probability one. By the continuity of λ0 at x0 and by (5.3.5),

λ̂SM
n px0q �λs

0px0q Ñ 0,

with probability one. This completes the proof. �

5.4 SMOOTHED GRENANDER-TYPE ESTIMATORS

We will consider now smoothing the Grenander-type estimator λ̃n of a nondecreas-
ing baseline hazard. Recall that λ̃n is defined as the left-hand slope of the greatest
convex minorant rΛn of the Breslow estimator Λn, and its asymptotic properties have
been investigated in Chapter 2.

Then, the smoothed Grenander-type (SG) estimator λ̃SG
n at a fixed point x0 is de-

fined by

λ̃SG
n px0q �

»
kbpx0 � uqλ̃npuqdu�

»
kbpx0 � uqdrΛnpuq, (5.4.1)

where b � bn is the bandwidth. Note that the monotonicity of λ̃SG
n follows from the

monotonicity of λ̃n. The strong uniform consistency along with rates of convergence
for λ̃SG

n are provided in the theorem below.

THEOREM 5.2. Assume that (A1) and (A2) hold. Suppose that λ0 is nondecreasing and
twice differentiable on r0,8q, with uniformly bounded first and second derivatives, and
that the kernel k is differentiable with a uniformly bounded derivative. Then, for each
ε ¡ 0 and for each M   τH ,

sup
xPrε,Ms

���λ̃SG
n pxq �λ0pxq

���Ñ 0,

with probability one. Moreover,

sup
xPrε,Ms

���λ̃SG
n pxq �λ0pxq

���� Oppb�1n�1{2 � b2q,

where b � bn is the bandwidth used in the scaled kernel function kb.

PROOF. Write

λ̃SG
n pxq �λ0pxq � λ̃SG

n pxq �λs
0pxq �λs

0pxq �λ0pxq,

where λs
0pxq is defined in (5.3.3). A Taylor expansion yields then, for x P rε, Ms,
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ξn P px , x � bnuq, and n sufficiently large,

λs
0pxq �λ0pxq �

»
kpuqλ0px � bnuqdu�λ0pxq �

»
kpuqrλ0px � bnuq �λ0pxqsdu

�
»

kpuq
�
�λ10pxqbnu� 1

2
λ20pξnqb2

nu2

�
du

��λ10pxqbn

»
ukpuqdu� 1

2
λ20pξnqb2

n

»
u2kpuqdu.

The first term on the right-hand side is zero, by property 4 of the kernel density. In
addition, by property 5 of the kernel function and as λ0 has a uniformly bounded
second derivative, it can be argued that, for all x P rε, Ms,��λs

0pxq �λ0pxq
��¤ 1

2
sup

xPrε,Ms

|λ20pxq|b2
n

»
u2kpuqdu� O pb2

nq. (5.4.2)

Moreover, since λs
0pxq �

³
kbpx � uqdΛ0puq, integration by parts yields

λ̃SG
n pxq �λs

0pxq �
»

kbpx � uqd
�rΛn �Λ0

	
puq

�
�

kbpx � uqprΛnpuq �Λ0puqq
����x�b

x�b

�
» B
Bu

kbpx � uq
�rΛnpuq �Λ0puq

�
du

�� 1

b2
n

»
k1
�

x � u

bn


�rΛnpuq �Λ0puq
�

du.

A change of variable gives that, for all x P rε, Ms,���λ̃SG
n pxq �λs

0pxq
���¤ 1

bn

»
|k1pyq|

���rΛnpx � bn yq �Λ0px � bn yq
��� dy

¤ 1

bn
sup

zPr0,Ms

���rΛnpzq �Λ0pzq
��� » |k1pyq|dy.

Marshall’s lemma together with Theorem 2.9 in Chapter 2 give that, for all 0   M  
τH ,

sup
xPr0,Ms

���rΛnpxq �Λ0pxq
���¤ sup

xPr0,Ms

��Λnpxq �Λ0pxq
��Ñ 0,

with probability one. Hence, for all x P rε, Ms,
|λ̃SG

n pxq �λs
0pxq| Ñ 0,

with probability one, as the compactly supported kernel has a uniformly bounded
derivative. This together with (5.4.2) proves the first claim of the theorem, since
b � bn Ñ 0, as nÑ8.
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Furthermore, Marshall’s lemma and Theorem 2.9 in Chapter 2 also provide that,
for all 0  M   τH ,

sup
xPr0,Ms

���rΛnpxq �Λ0pxq
���¤ sup

xPr0,Ms

��Λnpxq �Λ0pxq
��� Oppn�1{2q, (5.4.3)

which gives that, for all x P rε, Ms,���λ̃SG
n pxq �λs

0pxq
���� Oppb�1

n n�1{2q.

This together with (5.4.2) completes the proof of the second claim of the theorem. �

REMARK. It is noteworthy that a KIEFER WOLFOWITZ (1976) type of result for the
Breslow estimator, namely a sharper bound in (5.4.3) would be necessary in deriving
the asymptotic distribution of the smoothed Grenander-type estimator λ̃SG

n , by fol-
lowing the approach used in GROENEBOOM & JONGBLOED (2013). This would also
make use of the linearization result of the Breslow estimator derived by LOPUHAÄ &
NANE (2013b) and exposed in Chapter 3.

5.5 GRENANDER-TYPE SMOOTHED ESTIMATORS

An alternative method to construct a smooth nondecreasing baseline hazard es-
timator is to consider a Grenander-type estimator based on the smoothed Breslow
estimator. Thus, we first smooth the Breslow estimator Λn in the time direction, and
consider, for fixed x0,

Λs
npx0q �

»
kbpx0 � uqΛnpuqdu�

»
Kbpx0 � uqdΛnpuq, (5.5.1)

where Kpxq � ³x
�8 kpuqdu is the integrated kernel function corresponding to the ker-

nel density k and Kbpuq � Kpu{bq its scaled version. The Grenander-type smoothed
(GS) baseline hazard estimator λ̃GS

n is defined as the left derivative of the greatest
convex minorant of the smoothed Breslow estimator Λs

n.

The strong consistency of the estimator λ̃GS
n follows from the uniform strong con-

sistency of the smoothed Breslow estimator, and the proof is in line with the rea-
soning for the unsmoothed estimator. Hence, we will show first that Λs

n is a uni-
formly strongly consistent estimator of the underlying baseline cumulative hazard
function Λ0.

LEMMA 5.3. Assume (A1) and (A2) hold that the baseline hazard λ0 is nondecreasing
and continuously differentiable on r0,8q, with uniformly bounded derivative. Let Λs

n be
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the smoothed Breslow estimator defined in (5.5.1). Then, for each ε ¡ 0 and for each
M   τH ,

sup
xPrε,Ms

��Λs
npxq �Λ0pxq

��Ñ 0,

with probability one. Moreover,

sup
xPrε,Ms

��Λs
npxq �Λ0pxq

��� Oppn�1{2 � b2q,

where b � bn is the bandwidth used in the scaled kernel function kb.

PROOF. Write
Λs

npxq �Λ0pxq � Λs
npxq �Λs

0pxq �Λs
0pxq �Λ0pxq, (5.5.2)

where Λs
0pxq �

³
kbpx � uqΛ0puqdu is the convolution of Λ0 with the scaled kernel

function kb. Similar to the proof of Theorem 5.1, by a change of variable and a Taylor
expansion, we can write, for x P rε, Ms, ξn P px , x � bnuq, and n sufficiently large,

Λs
0pxq �Λ0pxq �

»
kpyqΛ0px � bn yqdy �Λ0pxq

�
»

kpyq �Λ0px � bn yq �Λ0pxq
�

dy

�
»

kpyq
�
�λ0pxqbn y � 1

2
λ10pξnqb2

n y2

�
dy

��λ0pxqbn

»
ykpyqdy � 1

2
λ10pξnqb2

n

»
y2kpyqdy.

By properties 4 and 5 of the kernel function and since λ0 has a uniformly bounded
derivative, it results, for all x P rε, Ms,��Λs

0pxq �Λ0pxq
��¤ 1

2
sup

xPrε,Ms

|λ10pxq|b2
n

»
y2kpyqdy � Oppb2

nq. (5.5.3)

For the first two terms on the right-hand side of (5.5.2), integration by parts yields
that, for every x P rε, Ms,��Λs

npxq �Λs
0pxq

��¤ »
kbpx � uq

��Λnpuq �Λ0puq
�� du

¤ sup
xPr0,Ms

|Λnpxq �Λ0pxq|
»

kbpx � uqdu

Ñ 0,

with probability one, by Theorem 2.9 in Chapter 2. This together with (5.5.3) proves
the first claim of the lemma, since b � bn Ñ 0, as n Ñ 8. Furthermore, by (5.4.3)
and (5.5.3), the second claim of the lemma is immediate. �



5.5. GRENANDER-TYPE SMOOTHED ESTIMATORS 129

The strong pointwise convergence of λ̃GS
n is then immediate, by using a variation of

Marshall’s lemma, similar as in the proof of Theorem 2.3 in Chapter 2.

COROLLARY 5.4. Assume (A1) and (A2)and suppose that λ0 is nondecreasing on r0,8q.
Let λ̃GS

n be the derivative of the greatest convex minorant of the smoothed Breslow esti-
mator Λs

n in (5.5.1). Then, for any x0 P p0,τHq,

λ̃GS
n px0q �λ0px0q Ñ 0,

with probability one.
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SUMMARY

SHAPE CONSTRAINED NONPARAMETRIC ESTIMATION

IN THE COX MODEL

The events of interest in any survival analysis study are regularly subject to censoring.
There are various censoring schemes, including right or left censoring, and interval
censoring. The most frequent censoring scheme is the right censoring, where subjects
might drop out of the study or simply because not all events of interest occur before
the end of the study. Moreover, for each subject, additional information referred to
as covariates is registered at the beginning or throughout the study, such as age, sex,
undergoing treatment, etc. The classical model to study the distribution of the events
of interest, while accounting for additional information, is the Cox model.

The Cox model expresses the hazard function of a subject given a set of covariates
in terms of a baseline hazard, for which all covariates are zero, and an exponential
function of the covariates and corresponding regression parameters. The baseline
hazard can be left completely unspecified while estimating the regression parameters.
Nonetheless, in practice, there are numerous studies in which the baseline hazard
appears to be monotone. Time to death or to the onset of a disease are observed
to have a nondecreasing baseline hazard, while the survival or recovery time after a
successful medical treatment usually exhibit a nonincreasing baseline hazard.

The aim of this thesis is to study the behavior of nonparametric baseline hazard
and baseline density estimators in the Cox model under monotonicity constraints.
The event times are assumed to be right censored and the censoring mechanism is
assumed to be independent of the event of interest and non-informative. The covari-
ates are assumed to be time-independent, usually recorded at the beginning of the
study. In addition to point estimates, interval estimates of a monotone baseline haz-
ard will be provided, based on a likelihood ratio method, along with testing at a fixed
point. Furthermore, kernel smoothed estimates of a monotone baseline hazard will
be defined and their behavior will be investigated.

In Chapter 2, we propose several nonparametric monotone estimators of a base-
line hazard or a baseline density within the Cox model. We derive the nonparametric
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maximum likelihood estimator of a nondecreasing baseline hazard and we consider
a Grenander-type estimator, defined as the left-hand slope of the greatest convex mi-
norant of the Breslow estimator. The two estimators are then shown to be strongly
consistent and asymptotically equivalent. Moreover, we derive their common limit
distribution at a fixed point. The two equivalent estimators of a nonincreasing base-
line hazard and their asymptotic properties are acquired similarly. Furthermore, we
introduce a Grenander-type estimator of a nonincreasing baseline density, defined
as the left-hand slope of the least concave majorant of an estimator of the baseline
cumulative distribution function derived from the Breslow estimator. This estimator
is proven to be strongly consistent and its asymptotic distribution at a fixed point is
derived.

Chapter 3 provides an asymptotic linear representation of the Breslow estimator
of the baseline cumulative hazard function in the Cox model. This representation
can be used to derive the asymptotic distribution of the Grenander type estimator
of a monotone baseline hazard estimator. The representation consists of an average
of independent random variables and a term involving the difference between the
maximum partial likelihood estimator and the underlying regression parameter. The
order of the remainder term is arbitrarily close to n�1.

Chapter 4 focuses on interval estimation and on testing whether a monotone base-
line hazard function in the Cox model has a particular value at a fixed point, via
a likelihood ratio method. Nonparametric maximum likelihood estimators under the
null hypothesis are defined for both nondecreasing and nonincreasing baseline hazard
functions. These characterizations, along with those of the monotone nonparamet-
ric maximum likelihood estimators provide the asymptotic distribution of the likeli-
hood ratio test. This asymptotic distribution enables, via inversion, the construction
of pointwise confidence intervals. This method of constructing confidence intervals
avoids the issue of estimating the nuisance parameters, as in the case of confidence
intervals based on the asymptotic distribution of the estimators. Simulations indicate
that the two methods yield confidence intervals with comparable coverage probabil-
ities. Nonetheless, the confidence intervals based on the likelihood ratio are smaller,
on average.

Finally, in chapter 5 we consider smooth baseline hazard estimators. The estimators
are obtained by kernel smoothing the maximum likelihood and Grenander-type esti-
mators of a monotone baseline hazard function. Three different estimators are pro-
posed for a nondecreasing baseline hazard, which are provided by the interchange
of the smoothing and isotonization step. With this respect, we define a smoothed
maximum likelihood estimator (SMLE), as well as a smoothed Grenander type (SG)
estimator and a Grenander type smoothed (GS) estimator. All estimators are shown
to be strongly pointwise or uniformly consistent.



SAMENVATTING

NIET-PARAMETRISCHE SCHATTING MET VORMRESTRICTIES

IN HET COX MODEL

In een analyse van levensduren zijn de tijdstippen, waarop de gebeurtenissen
plaatsvinden waarin men is geïnteresseerd, regelmatig onderworpen aan censurering.
Er zijn verschillende vormen van censurering, waaronder rechts- of links censurering,
en interval censurering. De meest voorkomende vorm van censurering is rechts
censurering, waarbij deelnemers de studie voortijdig verlaten of waarbij niet alle
gebeurtenissen voor het einde van de studie plaatsvinden. Bovendien wordt voor elke
deelnemer aan de studie aanvullende informatie geregistreerd, aangeduid als covari-
aten, ofwel aan het begin dan wel gedurende het onderzoek zoals: leeftijd, geslacht,
ondergaande behandeling, etc. Het klassieke model voor de kansverdeling van de
gebeurtenissen rekening houdend met de aanvullende informatie is het Cox model.

Het Cox model beschrijft de hazard functie van een deelnemer, gegeven een set
covariaten, in termen van een baseline hazard, waarvoor alle covariaten nul zijn, en
een exponentiële functie van de covariaten en bijbehorende regressieparameters. Bij
het schatten van de regressieparameters hoeft de baseline hazard niet nader gespeci-
ficeerd te worden. Toch zijn er in de praktijk talrijke studies waarbij de baseline
hazard monotone lijkt. De tijdsduur tot overlijden of tot de aanvang van een ziekte
wordt geassocieerd met een niet-dalende baseline hazard, terwijl de levensduur of
hersteltijd na een succesvolle medische behandeling gewoonlijk een niet-stijgende
baseline hazard vertoont.

Het doel van dit proefschrift is om het gedrag van niet-parametrische schatters voor
de baseline hazard en de baseline dichtheid in het Cox model te bestuderen onder de
aanname van monotonie. Het wordt verondersteld dat de gebeurtenissen recht gecen-
sureerd zijn en dat het censurerings mechanisme niet-informatief is en onafhanke-
lijk is van de gebeurtenis. De covariaten worden verondersteld als tijdsonafhankelijk,
gewoonlijk geregistreerd aan het begin van de studie. Naast punt schatters voor een
monotone baseline hazard, worden interval schatters voorgesteld, gebaseerd op een
likelihood ratio methode in samenhang met het toetsen op een vast punt. Daarnaast
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worden kernschatters voor een monotone baseline hazard gedefinieerd en zal hun
gedrag worden onderzocht.

In Hoofdstuk 2, introduceren we verschillende niet-parametrische monotone schat-
ters voor de baseline hazard of de baseline kansdichtheid in het Cox model. We leiden
de niet-parametrische maximum likelihood schatter af voor een niet-dalende baseline
hazard en beschouwen een soort van Grenander-schatter, gedefinieerd als de linker
afgeleide van de grootste convexe minorant van de Breslow schatter. De twee schat-
ters blijken sterk consistent te zijn en asymptotisch equivalent. Bovendien leiden we
de gemeenschappelijke kansverdeling af in een vast punt. De twee equivalent schat-
ters voor een niet-stijgende baseline hazard en hun asymptotische eigenschappen
worden op eenzelfde manier afgeleid. Verder introduceren we een Grenander-schatter
voor een niet-stijgende baseline kansdichtheid, gedefinieerd als de linker afgeleide
van de kleinste concave majorant van een schatter voor de baseline verdelingsfunc-
tie afgeleid van de Breslow schatter. Deze schatter wordt bewezen sterk consistent te
zijn, en de asymptotische kansverdeling in een vast punt wordt afgeleid.

In Hoofdstuk 3 leiden we een asymptotische lineaire representatie af voor de Bres-
low schatter voor de baseline cumulatieve hazardfunctie in het Cox model. Deze rep-
resentatie kan gebruikt worden om de asymptotische verdeling van de Grenander-
schatter van een monotone baseline hazard te bepalen. De representatie omvat
een gemiddelde van onafhankelijke stochastische variabelen en een term die be-
trekking heeft op het verschil tussen de maximum partial likelihood schatter en de on-
derliggende regressieparameter. De orde van de resterende term is willekeurig dicht
bij n�1.

Hoofdstuk 4 richt zich op interval schatting voor de monotone baseline hazard
in het Cox model en toetsen of deze een specifieke waarde heeft in een vast punt,
via een likelihood ratio methode. Niet-parametrische maximum likelihood schat-
ters onder de nulhypothese worden gedefinieerd voor zowel niet-dalende en niet-
stijgende baseline hazard functies. Deze karakteriseringen, samen met die van de
monotone niet-parametrische maximum likelihood schatters, leiden tot de asympto-
tische kansverdeling van de likelihood ratio toetsingsgrootheid. Deze asymptotische
kansverdeling maakt de constructie mogelijk van puntsgewijze betrouwbaarheidsin-
tervallen, via inversie. Deze werkwijze voor het construeren van betrouwbaarheidsin-
tervallen vermijdt het probleem van het schatten van nuisance parameters, zoals bij
de betrouwbaarheidsintervallen gebaseerd op de asymptotische kansverdeling van
de schatters. Simulaties tonen aan dat beide methoden betrouwbaarheidsintervallen
opleveren met een vergelijkbaar overdekkingspercentage. Niettemin, zijn de betrouw-
baarheidsintervallen gebaseerd op de likelihood ratio methode gemiddeld kleiner.

Tenslotte worden in Hoofdstuk 5 gladde schatters voor de baseline hazard on-
derzocht. De schatters worden verkregen door kernel smoothing van de niet-
parametrische maximum likelihood schatters en Grenander-schatters voor een mono-
tone baseline hazard functie. Drie verschillende schatters worden voorgesteld voor
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een niet-dalende baseline hazard, die worden verkregen door verwisseling van de
smoothing-stap en de isotonisatie-stap. Op deze manier definiëren we een gladde
maximum likelihood schatter (SMLE), een gladde Grenander-schatter (SG) en een
Grenander-schatter gebaseerd op een gladde naïeve schatter (GS). Alle schatters bli-
jken sterk consistent te zijn, zowel puntsgewijs als uniform.
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