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Abstract. We give a new proof of a recent characterization by Diaz and May-
oral of compactness in the Lebesgue-Bochner spaces Lp

X , where X is a Banach
space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function
spaces EX , where E is a Banach function space with order continuous norm.
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Let X be a Banach space. The problem of describing the compact sets in the
Lebesgue-Bochner spaces Lp

X , 1 ≤ p < ∞, goes back to the work of Riesz, Fréchet,
Vitali in the scalar-valued case, cf. [7], and has been considered by many authors,
cf. [2, 4, 5, 11, 12]. In a recent paper, Diaz and Mayoral [5] proved that if the
underlying measure space is finite, then a subset K of Lp

X is relatively compact
if and only if K is uniformly p-integrable, scalarly relatively compact, and either
uniformly tight or flatly concentrated. Their proof relies on the Diestel-Ruess-
Schachermayer characterization [6] of weak compactness in L1

X and the notion of
Bocce oscillation, which was studied recently by Girardi [8] and Balder-Girardi-
Jalby [3] in the context of compactness in L1

X . The purpose of this note is to
present an extension of the Diaz-Mayoral result to vector-valued Banach function
spaces EX , with a proof based on Prohorov’s tightness theorem.

We begin with some preliminaries on Banach lattices and Banach function
spaces. Our terminology is standard and follows [9].

A Banach lattice E is said to have order continuous norm if every net in E
which decreases to 0 converges to 0. Every separable Banach function space E
has this property. Indeed, because such spaces are Dedekind complete [9, Lemma
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2.6.1] and cannot contain an isomorphic copy of l∞, this follows from [9, Corollary
2.4.3].

A subset F of a Banach lattice E is called almost order bounded if for every
ε > 0 there exists an element xε ∈ E+ such that F ⊆ [−xε, xε] + B(ε), where
[−xε, xε] := {y ∈ E : −xε ≤ y ≤ xε} and B(ε) := {x ∈ X : ‖x‖ < ε}. It follows
from [9, Theorem 2.4.2] that every almost order bounded set in a Banach lattice
with order continuous norm is relatively weakly compact.

Lemma 1. Let E be a Banach lattice and let I be a dense ideal in E. If the set
A ⊆ E+ is almost order bounded, then for every ε > 0 there exists an element
xε ∈ I+ such that A ⊆ [0, xε] +B(ε).

Proof. Fix ε > 0 and choose yε ∈ E+ such that A ⊆ [−yε, yε] + B( 1
2ε). Choose

xε ∈ I such that 0 ≤ xε ≤ yε and ‖yε − xε‖ < 1
2ε.

Fix a ∈ A, say a = y+ b with y ∈ [−yε, yε] and ‖b‖ < 1
2ε. With zε := yε + |b|

we have ‖zε − xε‖ ≤ ‖yε − xε‖ + ‖b‖ < ε. From a ≤ zε we infer (a − xε)+ ≤
(zε − xε)+ = zε − xε and hence ‖(a − xε)+‖ ≤ ‖zε − xε‖ < ε. It follows that
a = a ∧ xε + (a− xε)+ ∈ [0, xε] +B(ε). �

If E is a Banach function space with order continuous norm, then for all
f ∈ E we have limr→∞ ‖1{|φ|>r}φ‖E = 0. Motivated by this we shall call a subset
F of E uniformly E-integrable if

lim
r→∞ sup

φ∈F

∥
∥1{|φ|>r}φ

∥
∥

E
= 0.

For E = Lp with 1 ≤ p < ∞, this definition reduces to the classical definition of
uniform p-integrability.

If E is a Banach function space containing the constant function 1, then every
uniformly E–integrable subset of E is almost order bounded. From Lemma 1 we
deduce the following converse:

Lemma 2. Let E be a Banach function space with order continuous norm over
a σ-finite measure space (S, ν). If F ⊆ E+ is almost order bounded, then F is
uniformly E-integrable.

Proof. Let ε > 0 be fixed. By Lemma 1, applied to I := E ∩ L∞(S, ν), we may
choose xε ∈ E+ and real numbers Rε ≥ 0 such that 0 ≤ xε ≤ Rε ν-almost every-
where and F ⊆ [0, xε] +B(ε). Keeping φ ∈ F fixed for the moment, we can write
φ = x+ b with x ∈ [0, xε] and ‖b‖E < ε. Then, for all r > 0,

∥
∥1{φ>r}φ

∥
∥

E
≤ ∥

∥1{φ>r}x
∥
∥

E
+

∥
∥1{φ>r}b

∥
∥

E

≤ ∥
∥1{x>

1
2 r}x

∥
∥

E
+

∥
∥1{|b|> 1

2 r}x
∥
∥

E
+ ‖b‖E

≤ ∥
∥1{xε>

1
2 r}xε

∥
∥

E
+

2Rε

r

∥
∥b

∥
∥

E
+ ε,
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where in the last step we used that ν-almost everywhere we have

0 ≤ 1
2r1{|b|> 1

2 r}x ≤ |b|x ≤ |b|xε ≤ Rε|b|.

The lemma immediately follows from this. �

The next lemma gives a sufficient condition for norm convergence in almost
order bounded sets. Recall that an element x∗ ∈ E∗ in the dual of a Banach lattice
E is called stricly positive if 〈|x|, x∗〉 = 0 implies x = 0.

Lemma 3. Let E be a Banach lattice with order continuous norm and let F be
an almost order bounded subset of E. If (xj)j≥1 is a sequence in F such that
limj→∞〈|xj |, x∗〉 = 0 for some strictly positive element x∗ ∈ E∗, then limj→∞ xj =
0 in E.

Proof. Assume the contrary and choose sequences jn → ∞ and a number δ > 0
such that ‖xjn

‖E ≥ δ for all n. We have

lim
m,n→∞〈|xjm

− xjn
|, x∗〉 ≤ lim

m→∞〈|xjm
|, x∗〉 + lim

n→∞〈|xjn
|, x∗〉 = 0

and therefore, by [10, Lemma 3.8], limn→∞ xjn
= x for some x ∈ E. Then ‖x‖ ≥ δ

and 0 = limn→∞〈|xjn
|, x∗〉 = 〈|x|, x∗〉. This contradicts the fact that x∗ is strictly

positive. �

Let X be a Banach space. A set M of Radon probability measures on X is
called uniformly tight if for every ε > 0 there exists a compact set K in X such
that

μ(K) ≥ 1 − ε ∀μ ∈ M.

By Prohorov’s theorem for Radon measures [13, Theorem I.3.6], M is uniformly
tight if and only if M relatively weakly compact, i.e., every sequence (μn)n≥1 has
a subsequence (μnk

)k≥1 such that for some Radon probability measure μ we have

lim
k→∞

∫

X

f dμnk
=

∫

X

f dμ for all f ∈ Cb(X),

where Cb(X) is the space of all scalar-valued bounded continuous functions on X.
We shall formulate the main result of this paper for Banach function spaces

E over a probability space (Ω,P). This is done merely for convenience; the result
extends to arbitrary finite measure spaces by a trivial normalization argument.

The space EX of all strongly P-measurable functions φ : Ω → X such that
ω �→ ‖φ(ω)‖ belongs to E is a Banach space with respect to the norm

‖φ‖EX
:=

∥
∥ ‖φ‖∥

∥
E
.

Here, as usual, we identify functions that are equal P-almost everywhere. It follows
from [9, Proposition 2.6.3] that limn→∞ φn = φ in EX implies that for some
subsequence we have limk→∞ φnk

(ω) = φ(ω) in X for P-almost all ω ∈ Ω.
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The distribution of a function φ ∈ EX is the Radon probability measure μφ

on X defined by

μφ(B) = P{φ ∈ B} for B ⊆ X Borel.

This definition is independent of the representative of φ used to define μφ.
We call a subset F of EX :

• almost order bounded, if {‖φ‖ : φ ∈ F} is almost order bounded in E;
• scalarly relatively compact, if {〈φ, x∗〉 : φ ∈ F} is relatively norm compact

in E for all x∗ ∈ E∗;
• uniformly tight, if {μφ : φ ∈ F} is uniformly tight.

Lemma 4. Let F be a subset of EX . If F is almost order bounded, then also F −F
is almost order bounded.

Proof. Fix ε > 0. Using Lemma 1 we choose xε ∈ E+ such that ‖φ‖ ∈ [0, xε] +
B( 1

2ε) for all φ ∈ F .
Step 1 – We claim that each φ ∈ F can be written as φ = f + g with

‖f‖ ∈ [0, xε] and g ∈ B( 1
2ε). Indeed, we have

φ =
(

1{‖φ‖≤xε}φ+ 1{‖φ‖>xε}
xε

‖φ‖φ
)

+ 1{‖φ‖>xε}
(‖φ‖ − xε)

‖φ‖ φ.

For the first term on the right hand side we have
∥
∥
∥1{‖φ‖≤xε}φ+ 1{‖φ‖>xε}

xε

‖φ‖φ
∥
∥
∥ ∈ [0, xε].

Writing ‖φ‖ = a+ b with a ∈ [0, xε] and ‖b‖E < 1
2ε, for the second term we have

∥
∥
∥1{‖φ‖>xε}

(‖φ‖ − xε)
‖φ‖ φ

∥
∥
∥ = 1{‖φ‖>xε}(a+ b− xε) ≤ 1{‖φ‖>xε}b,

which shows that
∥
∥
∥1{‖φ‖>xε}

(‖φ‖ − xε)
‖φ‖ φ

∥
∥
∥

EX

≤ ‖b‖E < 1
2ε.

This proves the claim.
Step 2 – Let φ1, φ2 ∈ F be given, and write φk = fk +gk, where ‖fk‖ ∈ [0, xε]

and gk ∈ B( 1
2ε) for k = 1, 2. Then

‖φ1 − φ2‖ = ‖f1 − f2‖ +
( ‖φ1 − φ2‖ − ‖f1 − f2‖

)

,

with ‖f1 − f2‖ ∈ [0, 2xε] and
∣
∣ ‖φ1 − φ2‖ − ‖f1 − f2‖

∣
∣ ≤ ‖g1 − g2‖,

which shows that
∥
∥ ‖φ1 − φ2‖ − ‖f1 − f2‖

∥
∥

E
< ε. �

Theorem 5. Let E be a Banach function space with order continuous norm over a
probability space (Ω,P). Let X a Banach space. For a subset F of EX the following
assertions are equivalent:
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(1) The set F is relatively compact;
(2) The set F is uniformly tight, almost order bounded, and scalarly relatively

compact.

As has been mentioned above, every separable Banach function space has
order continuous norm.

Proof. Without loss of generality we may assume that E is saturated, i.e., that
f ≡ 0 on A for all f ∈ E implies P(A) = 0 [14, Section 67].

(1)⇒(2): It is clear that the relative compactness of F implies its almost
order boundedness and scalar relative compactness.

To prove the uniform tightness of F , by Prohorov’s theorem it suffices to show
that every sequence (φn)n≥1 in F has a subsequence (φnj

)j≥1 whose distributions
converge weakly.

Let us write μn := μφn
for simplicity. Since F is compact we may assume, by

passing to a subsequence, that (φn)n≥1 converges in EX to an element φ ∈ EX . By
passing to a further subsequence we may also assume that the convergence takes
place almost surely. Let μ := μφ be the distribution of φ. Then for all f ∈ Cb(X)
we have, by dominated convergence,

lim
n→∞

∫

X

f dμn = lim
n→∞

∫

Ω

f ◦ φn dP =
∫

Ω

f ◦ φdP =
∫

X

f dμ.

(2)⇒(1): Let (φn)n≥1 be a sequence in F . We shall prove that some subse-
quence (φnj

)j≥1 converges in EX .
Step 1 – Let νn,m denote distribution of the random variable φn − φm. We

claim that the family (νn,m)n,m≥1 is uniformly tight. The proof is standard and
runs as follows. Fix some ε > 0. Since (μn)n≥1 is uniformly tight we may choose
a compact set K ⊆ X such that μn(K) ≥ 1 − ε for all n ≥ 1. The set L = {x− y :
x, y ∈ K} is compact as well, being the image of the compact set K×K under the
continuous map (x, y) �→ x − y. Noting that φn(ω) ∈ K and φm(ω) ∈ K implies
φn(ω) − φm(ω) ∈ L, the claim now follows from

νn,m(L) ≥ P{φn ∈ K, φm ∈ K}
≥ 1 − (

P{φn ∈ �K} + P{φm ∈ �K}) = 1 − (

μn(K) + μm(K)
) ≥ 1 − 2ε.

Step 2 – Since F is uniformly tight, we may assume X to be separable. Let
(x∗

m)m≥1 be a sequence in X∗ whose intersection with every ball is weak∗-dense.
As before we let μn denote the distribution of φn. Prohorov’s theorem implies the
existence of a weakly convergent subsequence (μnj

)j≥1. By passing to a subse-
quence we may assume that the limit ψm := limj→∞〈φnj

, x∗
m〉 exists in E for all

m and that the convergence happens almost surely.
We claim that νnj ,nk

→ δ0 weakly as j, k → ∞, where δ0 denotes the Dirac
measure concentrated at 0. Let jl → ∞ and kl → ∞. By Step 1 we may pass
to a subsequence of the indices l and assume that νnjl

,nkl
→ ν for some Radon
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probability measure ν on X. By taking Fourier transforms, from the almost sure
convergence liml→∞〈φnjl

, x∗
m〉 = liml→∞〈φnkl

, x∗
m〉 = ψm we see that for all m,

ν̂(x∗
m) = lim

l→∞
ν̂njl

,nkl
(x∗

m) = lim
l→∞

∫

Ω

exp(−i〈φnjl
− φnkl

, x∗
m〉)dP = 1 = δ̂0(x∗

m)

by dominated convergence. Noting that the weak∗-topology of every ball in X∗ is
metrizable, combined with the fact that the Fourier transforms of Radon probabil-
ity measures are weak∗-sequentially continuous, it follows that ν̂ = δ̂0. Therefore
ν = δ0 by the uniqueness of the Fourier transform. Since the sequences jl and kl

were arbitrary, this proves the claim.
Step 3 – It remains to show that the sequence (φnj

)j≥1 is Cauchy in EX .
For j, k ≥ 1 define the functions gjk ∈ E by

gjk := ‖φnj
− φnk

‖.
For n ≥ 1 choose rn ≥ 0 so large that

‖1{gjk>rn}gjk‖E < 1
n for all j, k ≥ 1.

This is possible since F − F is almost order bounded by Lemma 4. By Lemma 2,
‖F − F‖ is uniformly E-integrable.

Let f ∈ Cb(R) be arbitrary. By Step 2 and Prohorov’s theorem,

lim
j,k→∞

∫

Ω

f ◦ gjk dP = f(0).

Keeping n ≥ 1 fixed for the moment and taking f(t) = |t| ∧ rn, it follows that
there exists an index Nn ≥ 1 such that

∫

Ω

gjk ∧ rn dP < 1
n for all j, k ≥ Nn.

Let 0 ≤ ψ0 ≤ 1 be a P-almost everywhere strictly positive function belonging to
the associate space E′, which is defined as the space of all ν-measurable functions
ψ on S such that

‖ψ‖E′ := sup
‖φ‖E≤1

∫

Ω

|φψ| dP < ∞.

Such a function exists since E is assumed to be saturated. Note that ψ0 is strictly
positive as element of E∗. For j, k ≥ Nn,

0 ≤ 〈gjk, ψ0〉 ≤ 〈gjk ∧ rn, ψ0〉 + 〈1{gjk>rn}gjk, ψ0〉 < 1
n (1 + ‖ψ0‖E′).

It follows that limj,k→∞〈gjk, ψ0〉 = 0. Now Lemma 3 shows that limj,k→∞ gjk = 0
in E. �

As in [5], the uniform tightness assumption in assertion (2) may be replaced
by flat concentration. This follows from Prohorov’s theorem in combination with
the well known result of de Acosta [1], see also [13, Theorem I.3.7], that a family
M of Radon probability measures on X is uniformly tight if and only if M is flatly
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concentrated and for all x∗ ∈ E∗ the set of image measures 〈M,x∗〉 = {〈μ, x∗〉 :
x∗ ∈ E∗} is uniformly tight.
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