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According to recent theoretical and experimental work, the two-dimensional interacting electron gas in a
strong magnetic field can be well described in terms of composite fermions for which the net magnetic field
vanishes at a filling factor 1/2. We present a semiclassical theory of a geometrical effect of composite fermions
that manifests itself by a strong suppression of the current through a gated sample under application of a very
small gate voltage. This is explained by the strong bending of the classical ballistic trajectories of the com-
posite fermions by the net weak magnetic field produced by the gate voltage.

As has been well known for a long time (see, for example,
Ref. 1) the behavior of the two-dimensional (2D) electron
system in quantizing magnetic fields in the vicinity of the
filling factor v=1/2 (v=2m\?n,, A=+/hic/eB is magnetic
length, n, is electron density) is very different from the be-
havior near filling factors with odd denominators. In particu-
lar, the linear temperature dependence of p,, around
v=1/2 is a strong evidence for the absence of a §ap in the
energy spectrum of the system. The recent theory” (see also
Ref. 3) attributes the origin of “the v=1/2 anomaly” to the
existence of composite fermions (CF’s), which are electrons
with two magnetic flux quanta attached. The initial 2D sys-
tem of strongly interacting electrons can be transformed into
an equivalent system of fermions interacting with a Chern-
Simons gauge field, which is equivalent to attaching to each
electron a magnetic flux tube. In the mean field approxima-
tion CF’s see an average value of a fictitious magnetic field
arising from the flux tubes which is related to the mean value
of the electron density by the equation Bg.=4whcn,/e.
Thus, within the mean field approach the average net (ficti-
tious plus external B) magnetic field acting on the CF’s is

4mhen,
AB=B— —Q 1

For filling factor v=1/2 the average net magnetic field
acting on the CF is zero, and the ground state of the system
is a filled Fermi sea of CF’s with kp=(47n,)?=1/\. It was
argued in Ref. 2 that gauge field fluctuations do not destroy
the Fermi surface (at least for the Coulomb interaction be-
tween the electrons). The existence of a CF’s Fermi surface
already has been confirmed by several convincing experi-
ments. A semiclassical behavior of CF’s in an effective mag-
netic field AB was observed for small deviations of the ex-
ternal magnetic field from the value corresponding to
v=1/2.*

We present here a semiclassical theory of a geometrical
effect which CF’s should exhibit. In contrast to the effects
observed in Ref. 4, it is caused by a net classical inhomoge-
neous magnetic field. The main idea is based on the relation
between the net magnetic field and the local electron density
[Eq. (1)]. A change in the local electron density (by applying,
for example, a gate voltage) causes an inhomogeneous net
magnetic field. In the following we will consider a Hall bar
with a gate across the sample (Fig. 1). Assume that
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W>d>\, where W is the sample width and d is the length
of the region covered by the gate. Furthermore, /,>d (where
1,, is the mean free path for CF’s) so that the CF’s can cross
the gate region ballistically. At the same time [/, may be, of
course, much smaller than W. Application of a gate voltage
changes the electron density under the gate and thus leads to
a net inhomogeneous magnetic field AB existing only in the
gate region. The sign of this field can be arbitrary. This weak
magnetic field has a strong influence on the resistance of the
device: some of the CF’s are backreflected without crossing
the gate region (Fig. 1). It is clear that when the diameter of
the cyclotron orbit in the net magnetic field is equal to
d(2hckp/eAB=d), the current will be completely blocked,
because none of the CF’s trajectories reach (without scatter-
ing) the opposite lead. We stress that the corresponding gate
voltage and the net magnetic field can be very small:
Ve/Vga=AB/B=\/d<<1, where V,, is the value of the
voltage corresponding to complete depletion of electrons un-
der the gate. For example, for d=600 nm, AB~0.2 T suf-
fices, while the external magnetic field is of the order of 9.5
T. We would like to point out that the above condition in-
volves only the cyclotron radius of CF’s, which is deter-
mined by the mean electron density and does not depend on
the CF’s effective mass.

Without applied gate voltage the CF’s do not feel a net
magnetic field (v=1/2) and we assume that the current den-
sity across the sample is homogeneous. This assumption is
natural for the metallic state in a zero effective magnetic
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FIG. 1. Geometry of the structure considered. The dashed line
shows the current direction in the absence of scattering in the gate
region.
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field, especially when the width of the sample W is much
larger than CF mean free path.’

In order to calculate the current through the structure as a
function of the net magnetic field in the gate region (or,
which is the same, as a function of the gate voltage®), we
need to solve the Boltzmann kinetic equation in three differ-
ent regions (I-III, Fig. 1) and match the solutions at the
boundaries of the gate region. The linearized kinetic equation
for our problem is written as

e o'?fO
vp~Vr—E(vp><AB)-Vp 5f—eE~vp¥=St{5f}, )

where p is the kinetic momentum, €, is the kinetic energy of
a quasiparticle, of(r,p) is the local deviation from the equi-
librium distribution f(€p), the effects of scattering are in-
cluded in the collision integral St{5f}, and AB=0 in the
regions of the leads (|x|=d/2). The electric field here is an
effective field which includes also the field produced by the
moving flux tubes.’

Since the magnitude of the effect in question depends on
the value of the CF’s mean free path, we need some estima-
tion of this quantity. Fluctuations of the donor potential lead
to variations of the electron density within the 2D plane,
which in turn cause static fluctuations of the vector potential.
Scattering by these gauge-field fluctuations is the main scat-
tering mechanism for composite fermions.>> It should be
noted here that the theoretical value for the CF’s mean free
path? is much smaller than the value which follows from the
experimental data.* The eikonal approximation (which is ex-
act because of the small-angle nature of the CF’s scattering
by the donor potential) yields exactly the same value’ for a
transport scattering cross section as given by the calculation
in the Born approximation,” which is actually a manifestation
of a general theorem valid for small-angle scattering.® As a
result, for the system of uncorrelated donors we obtain the
same answer for the CF’s transport mean free path as in Ref.
2. Without solving this dilemma, we will describe the scat-
tering of CF’s in the effective time approximation, taking the
value of the transport mean free path /,=v g7 as a phenom-
enological parameter (which can be quite large):

SH{of}=1/7((8f) — 6f), ©)

where (8f(r)) = [37(d ¢/27) 8f(r,p) is the correction to the
distribution function averaged over the momentum angle.

We did not find an exact analytical solution of the kinetic
equation in the case when mean free paths in the leads and in
the gate region have the same values. Instead, we consider
here a model problem where the mean free path in the gate
region, /;, is much larger than the mean free path in the
leads, I,,: [;>1,>d. For AB corresponding to the condition
2r.~d (r,=vg/w.,o.,=eAB/mc) (when the current
through the structure is almost blocked) it is possible to ob-
tain a simple analytical solution of the “ballistic”” problem
and subsequently take into account the weak scattering of
CF’s in the gate region by the perturbation theory. On the
other hand, all the qualitative features of the phenomenon
can be understood just by taking the limit of /;,~[,>d in the
final solution.

Let us present first the zeroth order solution with respect
to the small parameter d/I; . We consider the linear regime in
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the applied source-drain voltage eV and the net effective
magnetic field in the interval 2r.=d (2r.—d<<d). We may
then neglect the influence of the electric field in the gate
region on the quasiparticle trajectories and determine the dis-
tribution function in each point within the gate region just
from consideration of the classical ballistic paths of CF’s in
the net magnetic field:

14
f(O)(x9p):f0( Ep+ e? 77(X5p)) >

=1 ifp(x)se<e(x)
+1 otherwise,

7(x,p)= @)

where ¢ is the angle between the CF momentum p and the x
axis and fo(e,=eV/2) is the distribution function of CF’s
entering the gate region from lead II (I). The distribution
function (4) gives the solution far from the boundaries of the
system: y+W/2>r ,W2—y>r.. For ¢(x),p,(x) we

have
) df2—x . dR2+x
sing(x)=—1+ , singy(x)=1— .
rC rC
®)
The current density in the x direction is given by the formula
d*p
jo= A - (0)
Jx=€ (2'7Tﬁ)2 UFCOS(Pf (x’p)a (6)

and using the results of Egs. (4) and (5) we finally have

e%kpV d
(2m)h 2r.)

Thus, when the condition 2r.=d is fulfilled (r.>\), the
current through the interior region is blocked. However, cur-
rent can still flow in the regions of width ~d nearby the
boundaries y = = W/2 (being directed along the y axis in the
interior of the sample; see Fig. 1). Indeed, assuming specular
scattering of CF’s at the boundaries, we can obtain that the
current density in the x direction on line x= +d/2 is equal to
zero (at 2r,=d) everywhere except the interval of y of the
order of d near y=+W/2, where it is of the order of
e*kpV/(2m)?h. Concerning the current density on line
x=—d/2, we have the symmetry relation j,(¥)|i=+ap
=j(=¥)|x=—gp. On the other hand, using distribution
function (4) we can calculate the current density in the gate
region in the y direction. It is given by Eq. (6) with the
cosine replaced by a sine function. As a result, we get at

2r.=d:
) ekpV 2x\?
HA==2e o NI T )

Thus, under these conditions the current flows along the path
indicated by the dashed line in Fig. 1 (through the corners of
the gate region). For the value of this residual current we
have I~ (e?V/#)krd, and for the ratio of residual current
to the current value I, at AB=0 we have [ /Iy~ (d/W)
X(L/ly), where L is the sample length in the x direction
(when 2r_<<d, we should substitute r, for d in these formu-
las). For the current value I, we have used the relation

Jx=—2 @
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Iy=0VW/L, o=(e*/4mh)(kgl,), which is correct when the
sample length is larger than the CF’s mean free path [, and,
as a result, there is a local relation between the current den-
sity and electric field. Besides, it explicitly uses the fact that
the quasiparticle conductivity tensor is diagonal at filling fac-
tor 1/2.2 Thus, we see that for the trivial reason that we have
three resistances in series (regions I-III, Fig. 1) the magni-
tude of the effect in question depends on the total length of
the sample. For not too long samples L <<W, which can be
achieved in practice using multiple-strip gated structures (see
discussion below), the value of the residual current is much
smaller than the initial current.

Let us now take into account the weak scattering of CF’s
in the gate region by the perturbation theory. In order to get
the correction to the distribution function f(x,p) due to
the scattering in the interior of the gate region we set
fO®,p) [Bq. 4)] and (fOx))=[3"(de/2m)f O (x,p)
into collision term (3) of kinetic equation (2). The corrected
solution can then be expressed in the form of an integral
along the trajectory of CF motion in the net magnetic field:

1 (o
fO(x,p)=~— ;J’_t((p)dtl[f(m(x(tl)ap(tl))—<f(0)(x(t1))>],

where ¢; is the time of motion. The quantities x(#;) and
p(t,) are, respectively, the coordinate and momentum on the
trajectory of the CF:

dr(ty)  dp(ty) _
dt; dty

p(t)=m ~ —[p(1,) X AB].

The value ¢;=0 corresponds to the point x where the CF has
momentum p(¢) and ¢(¢) is the time of motion along the
trajectory from the point x inside the gate region to the
boundary of the gate region with one of the leads. Below we
shall consider only the case 2r.=d. For the current density
in the x direction in the interior of the gate region (far from
the boundaries |y|=W/2) we get

e’kpV d (372

R CTSETH I e

3m—2¢ 1 1
X J do, 5—!— ;arcsin[— 1+ sing—sin(¢;+ ¢)]
0

_ (d) eszV
=-127 e ®

It should be noted that Eq. (8) was actually derived under the
assumption that the applied source-drain voltage drops in the
gate region (more precisely, over the length ~/, across the
gate region) or, in other words, that the resistance of the gate
region (at 2r.=d) is larger than the resistances of the leads.
In general, only a fraction V of the applied voltage drops
over this region. In this case the current density can be esti-
mated just by substituting V for V in Eq. (8). Using the
relation between the current density and the electric field in
the leads, j,= oE, ,0=(e%/4mh)(kgl,), we can relate V and
V and finally obtain

Jx=Jo ) liln > (9)
+a Ld

where j is the current density at AB=0 and « is a numeri-
cal coefficient of the order of unity. So, we see that in the
limit of /,~ I, the effect in question is large for Ld<I;. It is
clear that the magnitude of the effect can be enhanced con-
siderably in the case of multiple-gate structures where effec-
tive L is the period of the structure.’

It should be noted that, besides the magnetic field, CF’s
are also affected by some potential barrier in the gate region.
But for the value of the gate voltage considered here the
height of this barrier is A¢~FErN/d<<E, where E is the
CF’s Fermi energy, and the spatial scale of its variation
nearby the boundaries of the gate region is a>\ (a<<d);
therefore, the influence of this barrier on the transport is
exponentially small (a is the distance between the 2D plane
and the top of the heterostructure).

The effect considered should be strong in 2D ballistic
point contacts, where all applied voltage drops in the region
of the constriction. On application of a negative voltage to
the split gate (which defines the constriction), an additional
spot of net magnetic field in the constriction region is cre-
ated. The most striking feature of the phenomenon in this
geometry is that the effect should be visible even when the
width of the electronic sea in the constriction region W is
larger than depletion length /4., . Indeed, estimating the den-
sity reduction in the constriction region as én/n~1lae,/W,
we obtain for the cyclotron radius of CF’s in the net mag-
netic field within the constriction r,~AW/l4,. Thus, we
have A<<r <W if N <[4, <W. Therefore, the cyclotron ra-
dius can be much smaller than the width of the contact even
in the case of weak depletion in the center of the constriction
(WS Lagy).

We believe that the phenomenon described is specific for
the quantum state with filling factor 1/2. For comparison, if
we consider the same geometry for the case of external mag-
netic field close to zero, then application of small gate volt-
age will have a negligible effect on the current. In this sense,
the present phenomenon is analogous to the influence on the
transport of an external magnetic field applied locally as a
strip. Some aspects of this problem were investigated in sev-
eral papers.10 As regards the condition that the region of the
net magnetic field should be passed by CF’s ballistically, it
seems that this condition is not crucial and the phenomenon
should persist when the CF’s mean free path is smaller than
the length d of the gated strip (but larger than r.), though
probably less pronounced.

In conclusion, we have proposed a phenomenon which is
a consequence of the composite fermion picture and another
manifestation of extremely unusual properties of the state at
filling factor 1/2. On the other hand, it seems that the experi-
mental realization of the idea suggested is quite simple.
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