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Abstract
In this paper, we prove the global well-posedness and interior regularity for the
2D Navier–Stokes equations driven by a fractional noise acting as an inhomo-
geneous Dirichlet-type boundary condition. The model describes a vertical
slice of the ocean with a relative motion between the two surfaces and can be
thought of as a stochastic variant of the Couette flow. The relative motion of
the surfaces is modeled by a Gaussian noise which is colored in space and
fractional in time with Hurst parameterH> 3

4 .
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1. Introduction

In many situations occurring in applied sciences, noise can affect the evolution of a system
only through the boundary of a region where the system evolves. Such phenomena can be
modeled via partial differential equations with boundary noise, as introduced by Da Prato and
Zabczyck in the seminal paper [21]. Such a description presents several issues from a math-
ematical viewpoint. Indeed, nowadays it is well-known that in the one dimensional case, the
solution of the heat equation with white noise Dirichlet or Neumann boundary conditions has
low (space) regularity compared to the case of noise diffused inside the domain. This is due to
the large amplitude of the fluctuations of the solutions close to the boundary. In particular, in
the case of Dirichlet boundary conditions the solution is only a distribution. This allowed to
treat only a restricted class of nonlinearities, exploiting specific properties of the heat semig-
roup and studying carefully the blow-up of the solution close to the boundary. For some results
in this direction, the reader is referred to [2, 12, 25, 36]. On the contrary, partial differential
equations with white noise Neumann boundary conditions with more severe nonlinearities
have been considered in [14, 61], and in the last few years, maximal Lp regularity techniques
provided new ideas to treat some of those arising in fluid dynamics. Indeed, some results on
the global and local well-posedness of the 2D Navier–Stokes equations and the 3D primitive
equations with boundary noise perturbations of Neumann type have been proven in [1] and
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[10], respectively. Besides the physical interests in studying the Navier–Stokes equations with
boundary noise in virtue of its connection with the Couette flow (see also below for further
motivations), the present manuscript also aims at (partially) filling the gap in the literature
between Dirichlet and Neumann type boundary conditions for fluid dynamical models.

Throughout the manuscript, we fix a finite time horizon T > 0 and consider a spatial domain
O = T× (0,a) where T is the one-dimensional torus and a> 0. We further define the lower
and upper parts of the boundary of O by

Γb = T×{0} and Γu = T×{a} . (1.1)

In this work, we focus on the global well-posedness and interior regularity of the two-
dimensional Navier–Stokes equations with fractional boundary noise. The unknowns are the
velocity field u(t,ω,x,z) = (u1,u2) : (0,T)×Ω×O→ R2 and the pressure P : (0,T)×Ω×
O→ R, which formally satisfy the system



∂tu=∆u+∇P− (u ·∇)u on (0,T)×O,
divu= 0 on (0,T)×O,
u1 = gẆH on (0,T)×Γu,

u2 = 0 on (0,T)×Γu,

u= 0 on (0,T)×Γb,

u(0) = uin on O,

(1.2)

where (uin,g) are given data and WH is a fractional Brownian motion with Hurst parameter
H> 3

4 , respectively. The assumptions on (uin,g,WH) are made precise below. Even if we
consider a more regular noise in time than the one introduced in [21], the combination of the
blow-up of the solution close to the boundary and the Navier–Stokes nonlinearity makes the
global well-posedness and the interior regularity of (1.2) a non-trivial issue, which, indeed,
cannot be treated simply by the techniques introduced in [1]. Indeed, to the best of our know-
ledge, this is the first instance of a global well-posedness result for a fluid dynamical system
with non-homogeneous Dirichlet-type boundary conditions of a regularity class comparable
with the time derivative of a fractional Brownian motion with Hurst parameterH> 3

4 , see [15,
28, 37] and the references therein for some results in this direction. Moreover, the reader is
referred to [26] for the analysis of some properties of (1.2) in the 3D case replacing gẆH with
an Ornstein Uhlenbeck process and to [2, 36] for some results on the existence and unique-
ness of solutions for the heat equation with white noise Dirichlet type boundary conditions
perturbed by some Lipschitz forcing. Finally, in [9, 56] the emphasis is on the non-penetration
boundary conditions, namely it is studied the case u2 = g(x, t) on Γu ∪Γb, with g much more
regular either in time and space than gẆH.

According to [35, 52, 53], see also the discussion in the introduction of [1], the geometry
considered in (1.2) can be seen as an idealization of the ocean dynamics (more precisely, a
vertical slice of the ocean). The model (1.2), describes a Couette flow, namely a viscous fluid
in the space between two surfaces, one of which is moving tangentially relative to the other
(see also remark 1.4). The relative motion of the surfaces imposes a shear stress on the fluid
and induces the flow. Let us recall that the onset of turbulence is often related to the random-
ness of background movement [47]. Moreover, according to [54, chapter 3] in any turbulent
flow there are unavoidably perturbations in boundary conditions and material properties. We
model these features by the noise term gẆH. As introduced by Kolmogorov in [41], fractional
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Brownian motion can be thought of as a model for turbulence. Moreover, to describe turbu-
lence in 3D fluids, models of random vortex filaments have been introduced in [29]. These have
been analyzed for fractional Brownian motion with H> 1/2 in [51] and H< 1/2 in [30].

1.1. Main result

We begin by introducing some basic notation. Throughout this manuscript, we work on a
complete filtered probability space (Ω,F ,(Ft)t⩾0,P) and consider a separable Hilbert spaceU.
A processΦ is said to beF-progressive measurable if, for every t> 0, the restrictionΦ|(0,t)×Ω

is measurable with respect to Ft⊗B((0, t)), where B denotes the Borel σ-algebra. Further
notation concerning function spaces is deferred to section 1.3. On the noise WH we enforce
the following

Assumption 1.1. WH is a U-cylindrical fractional Brownian motion with Hurst parameter
H ∈ ( 34 ,1) and g ∈ L2(U,H−s(Γu)) with s ∈ [0, 12 ) and H− s

2 >
3
4 .

Note that assumption 1.1 is consistent with the results obtained in [23] for the stochastic
heat equation with Dirichlet fractional noise. The reader is referred to remark 1.4 for the case
of a time-dependent g.

Following [22, chapter 15] and [20], we construct solutions to (1.2) by the splitting

u= wg+ v, (1.3)

wherewg is a mild solution of the linear problemwith non-homogeneous boundary conditions

∂twg =∆wg+∇Pg on (0,T)×O,
divwg = 0 on (0,T)×O,
wg,1 = gẆH on (0,T)×Γu,

wg,2 = 0 on (0,T)×Γu,

wg = 0 on (0,T)×Γb,

wg (0) = 0 on O

(1.4)

and v is a weak solution of

∂tv=∆v+∇(P−Pg)

− div((v+wg)⊗ (v+wg)) on (0,T)×O,
divv= 0 on (0,T)×O,

v= 0 on (0,T)× (Γb ∪Γu) ,

v(0) = uin on O.

(1.5)

In (1.5), due to the divergence-free of v and wg, we rewrote the Navier–Stokes nonlinearity in
the conservative form to accommodate the weak (PDE) setting.

As discussed in [22, chapter 13], if g, uin,WH(t) were sufficiently regular, then u= v+wg
would be a classical solution of the Navier–Stokes equations with non-homogeneous boundary
conditions (1.2).

Next, we introduce the class of solutions we are going to consider. To motivate them, let us
first discuss the regularity of wg. It is well-known that, in the case of Dirichlet-type boundary
conditions, the solution of a linear problem with boundary noise and H= 1

2 is a distribution
which blows-up close to the boundary, see [2, 21], and the same holds also in case of H 6= 1

2 ,

4
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see [12]. Therefore, we cannot expect that the mild solution of (1.4) has arbitrarily good integ-
rability properties as in [1, 10]. This has drastic consequences in our analysis. As we will show
in proposition 3.1, we have, P− a.s.,

wg ∈ C
(
[0,T] ;L2q

(
O;R2

))
for all q ∈ (1,qH) (1.6)

where

qH :=
2

2s+ 5− 4H
∈ (1,2) . (1.7)

Let us stress that qH < 2 and limH↓3/4 qH=1 even if s= 0. As we will see below, this fact cre-
ates major difficulties in our analysis of the auxiliary Navier–Stokes equations (1.5). In particu-
lar, wg⊗wg ∈ C([0,∞);Lq(O;R2))P− a.s. and, from parabolic regularity, the best regularity
we can hope for is v ∈ Lp([0,∞);H1,q(O;R2)) P− a.s. for all p<∞. Thus, in general,

v 6∈ L2
(
0,T;H1

(
O;R2

))
P− a.s. for any T<∞.

Therefore, v is a solution of the Navier–Stokes equations with infinite energy and the argument
used in [1] does not work. The case of infinite energy solutions of 2D Navier–Stokes equations
already appeared in the literature [11, 33]. In [33] the unboundedness of the energy is due to
a rough initial data u0 6∈ L2 while in [11] to a rough forcing term f 6∈ L2(0,T;H−1) acting on
the bulk. Our case does not fit in any of the above situations due to the presence of transport-
type terms depending on the wg in (1.5) and the fact that we are working on domains. For
this reason, our proofs rely on different methods. For details, the reader is referred to the text
before remark 1.4.

In light of the previous discussion, we are now ready to define solutions to (1.2). Below,
we set A : B=

∑2
i,j=1A

i,jBi,j for two matrices A and B and Lq the image of Lq(O;R2) via the
Leray projection P defined rigorously in section 2.1.

Definition 1.2. Let T<∞, uin ∈ L0F0
(Ω;L2) and q ∈ (1,qH).

• (q-solution) A progressively measurable process u with P− a.s. paths in L2q
′
(0,T;L2q), is a

pathwise weak q-solution of (1.2) if for all divergence-free ϕ = (ϕ1,ϕ2) ∈ C∞(O;R2) such
that ϕ= 0 on Γb ∪Γu and a.e. t ∈ (0,T),
ˆ
O
u(x, t)ϕ(x) dx−

ˆ
O
uin (x)ϕ(x) dx

=

ˆ t

0

ˆ
O
(u ·∆ϕ + [u⊗ u] :∇ϕ) dxdr−〈g,∂2ϕ1〉H−s(Γu),Hs(Γu)W

H
t .

• (unique q-solution) A q-solution u to (1.2) is said to be a unique solution if for any other
q-solution ũ we have u= ũ a.e. on [0,T]×Ω.

• (unique solution) A q-solution u is said to be a unique solution to (1.2) if it is also a q̃-solution
for all q̃ ∈ (1,qH).

Before stating our main result, let us first comment on the above definition. Due to the argu-
ment below (1.5), one cannot expect solutions to (1.2) with integrability in space larger or equal
to 2qH. Furthermore, even if solutions are constructed by (1.3), the uniqueness class is inde-
pendent of this splitting. Moreover, the unique solution of (1.2) is independent of the choice
of q ∈ (1,qH). Such independence is expected from solutions to (1.2) in light of (1.6). Finally,

5
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let us discuss the regularity class chosen to define q-solutions. Since O is two-dimensional,
the space L2q

′
(0,T;L2q(O;R2)) has Sobolev index given by (keeping in mind the parabolic

scaling)

− 2
2q ′ −

2
2q

=−1.

In particular, the regularity class chosen for q-solutions to (1.2) is critical for the Navier–
Stokes equations in two dimensions and satisfies the classical Ladyzhenskaya–Prodi–Serrin
condition. In light of the recent convex integration results [16, 17, 44] in absence of noise and
with periodic boundary conditions in all directions, the regularity assumption in our definition
is expected to be sharp for obtaining uniqueness and a-fortiori well-posedness.

The main result of the current work reads as follows.

Theorem 1.3. Let assumption 1.1 be satisfied and uin ∈ L0F0
(Ω;L2).

(1) There exists a unique solution of (1.2) in the sense of definition 1.2 with paths in

u ∈ C
(
[0,T] ;L2

)
P− a.s.

(2) The unique solution of (1.2) satisfies, for all t0 ∈ (0,T) and O0 ⊂O such that
dist(O0,∂O)> 0,

u ∈ C
(
[t0,T] ;C

∞ (
O0;R2

))
P− a.s.

The proof of theorem 1.3(1) and (2) are given in section 3.3 and section 4.2, respectively.
Routine extensions of the above are commented in remark 1.4 below.

Next, let us discuss the main ideas behind the proof of theorem 1.3. As commented above,
due to (1.6), we cannot deal with the techniques introduced in [1] to study (1.5). Indeed, con-
trary to [1, 20], the splitting introduced above is not enough to study the global well-posedness
of (1.2) since (1.5) has no Leray solutions since wg⊗wg 6∈ L2(0,T;L2). Thus, we control the
blow-up of the energy of v introducing further splittings depending on the regularity of wg. As
discussed above we will show that wg ∈ C([0,T];L2q) for some q ∈ (1,qH). Since the space
C([0,T];L2q), q> 1 is subcritical for 2D Navier–Stokes equations we have some hopes to
exploit the strong time regularity ofwg to circumvent its rough behavior in space. The heuristic
idea above is realized by writing

v=
N−1∑
i=0

vi+ v, (1.8)

where N depends only on q. The terms {vi}i∈{0,...,N−1} are defined inductively solving homo-
geneous Stokes equations with forcing having mixed regularity in space and time, such that
the regularity in space increases in iwhile the regularity in time decreases in i. On the contrary
v is a Leray-type solution of the remainder equation. In particular, N is chosen large enough
such that the equation for v has a forcing in L2(0,T;H−1) and therefore is regular enough to
prove the existence and uniqueness of Leray solutions, see theorem 2.6 below. The reader is
referred to section 3.2 for further discussions.

The interior regularity of u in theorem 1.3(2) is treated considering again the splitting
u= v+wg introduced above. The interior regularity of wg can be proved similarly to the lin-
ear part of [1]. On the contrary, the low regularity of v does not allow us to study directly its

6
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interior regularity by Serrin’s argument as in [1]. For this reason, we rely on the splitting (1.8)
analyzed in section 3.2 to study the well-posedness of (1.5). Combining maximal Lp regularity
techniques for studying the interior regularity of the vi’s, an induction argument and a Serrin
argument for treating the interior regularity of v, we obtain the required regularity of v. As
shown in [60] (see also [43, section 13.1]) and similarly to [1], higher-order interior time regu-
larity does not appear to be attainable for our Navier–Stokes problemwith stochastic boundary
conditions. This stands in contrast to the case of the heat equation with white noise boundary
conditions, as studied in [12]. The underlying reason for this phenomenon is the presence of
the unknown pressure P, whose non-local nature creates a link between interior and boundary
regularity, where the noise acts.

To conclude, let us point out that, in contrast to [11, 33], we employ a different splitting
scheme to prove existence due to the presence of the transport-type terms originated by wg.
Moreover, the number of splitting N depends on how much the Sobolev index of the space
C([0,T];L2q(O;R2)), i.e.− 1

q , is far from the critical threshold−1. In particular, N→∞ as q ↓
1. As commented above, such a splitting is also convenient when proving the interior regularity
for u which was not addressed in the above-mentioned works.

Remark 1.4 (Extensions). One can readily check that theorem 1.3 extends in the following
cases:

• (Bounded domains) If O is replaced by a smooth C2-bounded domain in R2. However, we
prefer to keep the same geometry of [1] for two reasons. Firstly, and more importantly, as
discussed in section 1, the model considered has a clear physical interpretation. Secondly, in
this way, we can easily compare our results, techniques and assumptions with those of [1].

• (Fractional Volterra noise) If WH is replaced by a α-regular Volterra process with α > 1
4 .

Let us recall that a fractional Brownian motion with Hurst parameter H is an example
of a α-regular Volterra process with α=H− 1

2 . These are non-Markovian stochastic pro-
cesses which can be represented as integrals of kernels with respect to the Brownian motion
and include for example the fractional Liouville Brownian motion and the Rosenblatt pro-
cess. Stochastic convolutions with respect to such processes were analyzed in [13, 18, 19].

• (Time-dependent g) The term g in the boundary noise gẆH depends on time as long as it is
progressively measurable and the corresponding process wg satisfies (1.6).

• (Full stochastic Couette flow) More general boundary conditions like{
u1 = Uup + gẆH on (0,T)×Γu,

u1 = Ub on (0,T)×Γb.

can be considered for sufficiently smooth velocity fieldsUup,Ub such that the corresponding
process wg satisfies (1.6). For example the caseUup,Ub ∈ L2((0,T)×T) can be treated. The
above can be seen as a Couette flow with uncertainty on the velocity of one of the two
surfaces.

1.2. Overview

In section 2, we introduce the functional framework required to study problem (1.2). The proof
of theorem 1.3 is developed in sections 3 and 4. Specifically, global well-posedness, i.e. item
(1), is addressed in section 3, where we first analyze the linear problem (1.4) in section 3.1,
followed by the nonlinear problem (1.5) in section 3.2. Interior regularity, i.e. item (2), is the
focus of section 4. In particular, section 4.1 is devoted to the interior regularity of the solution
to the linear problem (1.4), while section 4.2 deals with the nonlinear problem (1.5).

7
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1.3. Notation

Here we collect some notation which will be used throughout the paper. Additional notation
will be introduced where needed. We use C to denote a generic constant, which may vary from
line to line. When it is important to emphasize the dependence of C on a parameter ξ, we write
C(ξ). Moreover, we sometimes write a≲ b (resp. a≲ξ b) to mean that there exists a constant
C (resp. C(ξ)) such that a⩽ Cb (resp. a⩽ C(ξ)b).

Let q ∈ (1,∞) be fixed. For any integer k⩾ 1, we denote by Wk,q the standard Sobolev
spaces. In the case of non-integer smoothness s ∈ (0,∞) \N, we defineWs,q = Bsq,q where B

s
q,q

is the Besov space with smoothness s, and integrability q and microscopic integrability q. We
also denote byHs,q the Bessel potential spaces. Both Besov and Bessel potential spaces can be
defined via Littlewood–Paley theory (see, e.g. [58], [57, section 6]), or through interpolation
methods based on the classical Sobolev spaces Wk,q (see, e.g. [8, chapter 6]). For a domain
D⊂ Rn, integer d⩾ 1, andA ∈ {W,H}, we define the vector-valued spaces byAs,q(D;Rd) =
(As,q(D))d. Let K1 and K2 be two separable Hilbert spaces. We denote by L2(K1,K2) the set
of Hilbert–Schmidt operators fromK1 toK2. We will use the following Fubini-type identity:

Hs (D;K1) = L2 (K1,H
s (D)) for all s ∈ R,

which follows from [39, theorem 9.3.6] and interpolation theory.

2. Preliminaries

2.1. The Stokes operator and its spectral properties

In this section, we introduce the functional analytic setup to define all the objects necessary in
the following. Throughout this subsection, we let r ∈ (1,∞). Recall thatO = T× (0,a)where
a> 0.

We begin by introducing the Helmholtz projection on Lr(O;R2), see e.g. [55, subsection
7.4]. As described also in [1, section 2.1], the projection can be defined via an elliptic problem.
We recall its construction here for the sake of completeness. Let f ∈ Lr(O;R2) and let ψf be
the unique solution of the following elliptic problem{

∆ψf = div f on O,
∂n̂ψf = f · n̂ on Γu ∪Γb.

(2.1)

Here n̂ denotes the exterior normal vector field on ∂O. This problem is understood in its stand-
ard weak formulation:

ˆ
O
∇ψf ·∇ϕ dxdz=

ˆ
O
f ·∇ϕdxdz for all ϕ ∈ C∞ (O) . (2.2)

By [55, Corollary 7.4.4] , we have ψf ∈W1,r(O) and ‖∇ψf ‖Lr(O;R2) ≲ ‖ f‖Lr(O;R2). The
Helmholtz projection Pr : Lr(O;R2)→ Lr(O;R2) is then defined by

Prf = f−∇ψf, f ∈ Lr
(
O;R2

)
.

Next, we define the Stokes operator on Lr(O;R2) corresponding to the boundary conditions
considered in (1.2). For notational convenience, we define Ar as minus the Stokes operator so

8
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that Ar is a positive operator for r= 2 (i.e. 〈A2u,u〉⩾ 0 for all u ∈ D(A2)). Let

Lr := P
(
Lr
(
O;R2

))
, Hs,r := Hs,r

(
O;R2

)
∩Lr, s ∈ R.

Then, we define the operator Ar : D(Ar)⊆ Lr → Lr where

D(Ar) =
{
f = ( f1, f2) ∈W2,r

(
O;R2

)
∩Lr : f |Γb∪Γu = 0

}
,

and Aru=−P∆u for u ∈ D(Ar).
In the main arguments, we need stochastic and deterministic maximal Lr-regularity estim-

ates for convolutions. By [42, 48], it is enough to provide the boundedness of theH∞-calculus
for Ar. The reader is referred to [55, chapters 3 and 4] and [39, chapter 10] for the main notation
and basic results on the H∞-calculus.

Contrary to [1], the boundary conditions we are interested in here are much more classical.
Indeed, the Stokes operator with no-slip boundary conditions is well-studied. The reader is
referred e.g. to [38, section 2.8], [34, 49] and [40, section 9] for the proof of this nowadays
classical statement.

Lemma 2.1. For all r ∈ (1,∞), the operator Ar is invertible and has a bounded H∞-calculus
of angle 0. Moreover, the domain of the fractional powers of Ar is characterized as follows:

D(Aαr ) =


H2α,r if α <

1
2r
,{

u ∈H2α,r : u|∂O = 0
}

if
1
2r
< α⩽ 1.

The above implies that−Ar generates an analytic semigroup on Lr which admits stochastic
and deterministic maximal Lp-regularity for all p ∈ (1,+∞), see [55, chapter 3-4] and [48].
We denote such semigroup by Sr(t). We continue introducing some known facts about the
‘Sobolev tower’ of spaces associated with the operator Ar. We denote by

Xα,Ar = D(Aαr ) for α⩾ 0,

Xα,Ar = (Lr,‖Aαr · ‖Lr)∼ for α < 0,

where ∼ denotes the completion. Indeed, since 0 ∈ ρ(Ar) by lemma 2.1, we have that f 7→
‖Aαr f‖Lr is a norm for all α< 0. Since (Ar)∗ = Ar′ , it follows that (see e.g. [4, chapter 5,
theorem 1.4.9])

(Xα,Ar)
∗
= X−α,Ar′ . (2.3)

For notational convenience, we will write A, S(t) instead of A2 and S(t). Moreover we define

H := L2, V := D
(
A1/2

)
.

We denote by 〈·, ·〉 and ‖·‖ the inner product and the norm in H, respectively. In the following,
V∗ denotes the dual of V and we identifyH with its dualH∗. Whenever X is a reflexive Banach
space such that the embedding X ↪→ H is continuous and dense, denoting by X∗ the dual of X,
the scalar product 〈·, ·〉 in H extends to the dual pairing between X and X∗. We will simplify
the notation accordingly.

9
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For the convenience of the reader, we recall here the definition of the deterministic maximal
Lp-regularity, since our techniques heavily rely on it.

Definition 2.2 ([55, Definition 3.5.1])We letX stand for a Banach space andA a linear closed
operator on X with domain D(A). We say that the inhomogeneous initial value problem on
Lp(0,T;X ) given by

u̇(t)+Au(t) = f(t) , u(0) = u0 (2.4)

admits maximal Lp-regularity, if for each f ∈ Lp(0,T;X ) and u0 ∈ (X ,D(A))1−1/p,p there
exists a unique u ∈W1,p(0,T;X )∩Lp(0,T;D(A)) satisfying (2.4) a.e. in (0,T).

2.2. The Dirichlet map

Now we are interested in L2-estimates for the Dirichlet map, i.e. we are interested in studying
the weak solutions of the elliptic problem

−∆u+∇π = 0, on O,
divu= 0 on O,

u(·,0) = 0, on Γb,

u1 (·,a) = g, on Γu,

u2 = 0, on Γu.

(2.5)

To state the main result of this subsection, we formulate (2.5) in the very weak setting. To this
end, we argue formally. Take ϕ = (ϕ1,ϕ2) ∈ C∞(O;R2) such that divϕ = 0,

ϕ = 0, on Γb ∪Γu.

A formal integration by parts shows that (2.5) implies
ˆ
O
u ·∆ϕ dxdz=

ˆ
T
g(x)∂2ϕ1 (x,a) dx. (2.6)

In particular, the RHS of (2.6) makes sense even in case g is a distribution if we interpret´
T g(x)∂2ϕ1(x,a)dx= 〈∂2ϕ1(·,a),g〉. The well-posedness of (2.5) is, as for the properties of
the Stokes operator, a well-known fact. Indeed, theorem 2.3 below holds. The reader is referred
to [6, 7, 27, 32, 59] for its proof and more general results on the Dirichlet boundary values
problem above even in case of weighted Lr spaces of Muckenhoupt class and u · n̂|Γu∪Γb 6= 0.

Theorem 2.3. For all g ∈ H− 1
2 (Γu) there exists a unique very weak solution (u,π) ∈ H×

H−1(O)/R of (2.5). Moreover (u,π) satisfy

‖u‖+ ‖π‖H−1(O)/R ⩽ C‖g‖
H− 1

2 (Γu)
. (2.7)

Finally, if g ∈ H 3
2 (Γu), then (u,π) ∈H2 ×H1(O)/R and

‖u‖H2(O;R2) + ‖π‖H1(O)/R ⩽ C‖g‖H3/2(Γu). (2.8)

Next, we denote byD the solution map defined by theorem 2.3 which associate to a bound-
ary datum g the velocity u solution of (2.5), i.e. Dg := u. From the above result, we obtain

10
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Corollary 2.4. LetD and U be the Dirichlet map and a separable Hilbert space, respectively.
Then

D ∈ L (H−α(Γu;U),L2(U,D(A−α
2 +

1
4 ))) for α ∈

[
−1
2
,0

)
.

Proof. To begin, recall that Hs(Γu;U) = L2(U,Hs(Γu)) for all s ∈ R, see section 1.3. Hence,
due to the ideal property of Hilbert–Schmidt operators, it is enough to consider the scalar case
U= R.

By complex interpolation, the estimates in theorem 2.3 yield

D : H2θ− 1
2 (Γu)→H2θ (O) for all θ ∈ (0,1) .

Hence, the claim now follows from the description of the fractional power of A in
lemma 2.1.

2.3. Deterministic Navier–Stokes equations

Let us consider the deterministic Navier–Stokes equations with homogeneous boundary
conditions 

∂tu+ u ·∇u+∇π =∆u+ f, on (0,T)×O,
divu= 0, on (0,T)×O,

u= 0, on (0,T)× (Γb ∪Γu) ,

u(0) = u0, on O.

(2.9)

Define the trilinear form

b(u,v,w) =
2∑

i,j=1

ˆ
O
ui∂ivjwj dxdz=

ˆ
O
(u ·∇v) ·wdxdz (2.10)

which is well–defined and continuous on Lp×H1,q×Lr by Hölder’s inequality, whenever

1
p
+

1
q
+

1
r
= 1.

Finally, we introduce the operator

B : Lp×Lr → X−1/2,Aq′

defined by the identity

〈B(u,v) ,φ〉X−1/2,Aq′
,X1/2,Aq

=−b(u,φ,v) =−
ˆ
O
(u ·∇φ) · vdxdz

for all φ ∈ X1/2,Aq . Moreover, if u ·∇v ∈ Lr
(
O;R2

)
for some r ∈ (1,∞), it is explicitly

given by

B(u,v) = P(u ·∇v) .

We have to define our notion of a weak solution for problem (2.9).

11
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Definition 2.5. Given u0 ∈ H and f ∈ L2 (0,T;V∗), we say that

u ∈ C([0,T] ;H)∩L2 (0,T;V)

is a weak solution of equation (2.9) if for all φ ∈ D(A) and t ∈ [0,T],

〈u(t) ,φ〉−
ˆ t

0
b(u(s) ,φ,u(s)) ds

= 〈u0,φ〉−
ˆ t

0
〈u(s) ,Aφ〉 ds+

ˆ t

0

〈
f(s) ,φ

〉
V∗,V

ds.

The well-posedness of (2.9) in the sense of definition 2.5 is a well-known fact. Indeed the
following theorem holds, see for instance [45, 62, 63].

Theorem 2.6. For every u0 ∈ H and f ∈ L2 (0,T;V∗) there exists a unique weak solution of
Equation (2.9). It satisfies

‖u(t)‖2 + 2
ˆ t

0
‖∇u(s)‖2L2 ds= ‖u0‖2 + 2

ˆ t

0

〈
u(s) , f(s)

〉
V∗,V

ds.

If (un0)n∈N is a sequence in H converging to u0 ∈ H and
(
f
n
)
n∈N

is a sequence in L2 (0,T;V∗)

converging to f ∈ L2 (0,T;V∗), then the corresponding unique solutions (un)n∈N converge to
the corresponding solution u in C([0,T] ;H) and in L2 (0,T;V).

We end this section with the following lemma, which generalizes [31, Lemma 1.14] to the
Lpt L

q
x setting. In particular, [31, Lemma 1.14] corresponds to the specific case p= q= 4.

Lemma 2.7. If q> 2 and p⩾ 2q
q−2 , u ∈ C([0,T];H)∩L

2(0,T;V), v ∈ Lp(0,T;Lq), then

B(u,v) ∈ L2 (0,T;V∗) , (2.11)

B(v,u) ∈ L2 (0,T;V∗) . (2.12)

In particular for each t ∈ [0,T], ε, ε ′ > 0 and φ ∈ L2(0,T;V) it holds

ˆ t

0
|〈u(s) ·∇φ(s) ,v(s)〉|ds

⩽ ε‖φ‖2L2(0,t;V) + ε ′
ˆ t

0
‖u(s)‖2V ds+

C

ε
q

q−2 ε ′
2

q−2

ˆ t

0
‖u(s)‖2‖v(s)‖

2q
q−2

Lq ds, (2.13)

ˆ t

0
|〈v(s) ·∇φ(s) ,u(s)〉|ds

⩽ ε‖φ‖2L2(0,t;V) + ε ′
ˆ t

0
‖u(s)‖2V ds+

C

ε
q

q−2 ε ′
2

q−2

ˆ t

0
‖u(s)‖2‖v(s)‖

2q
q−2

Lq ds, (2.14)

where C is a constant independent from ε, ε ′.

12
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Proof. By Hölder inequality, Sobolev embedding theorem and interpolation, for each φ ∈ V
we have

|〈B(u(s) ,v(s)) ,φ〉|= |〈u(s) ·∇φ,v(s)〉|
⩽ ‖φ‖V‖v(s)‖Lq‖u(s)‖L2q/(q−2)

≲q ‖φ‖V‖v(s)‖Lq‖u(s)‖D(A1/q)

⩽ ‖φ‖V‖v(s)‖Lq‖u(s)‖1−
2
q ‖u(s)‖

2
q

V .

Therefore for eachˆ t

0
|〈u(s) ·∇φ(s) ,v(s)〉|ds

⩽ ε‖φ‖2L2(0,t;V) +
C
ε

ˆ t

0
‖v(s)‖2Lq‖u(s)‖

2(1− 2
q )‖u(s)‖

4
q

V ds

⩽ ε‖φ‖2L2(0,t;V) +
C
ε

(ˆ t

0
‖u(s)‖2V ds

)2/q(ˆ t

0
‖u(s)‖2‖v(s)‖

2q
q−2

Lq ds

) q−2
q

⩽ ε‖φ‖2L2(0,t;V) + ε ′‖u‖2L2(0,t,V) +
C

ε
q

q−2 ε ′
2

q−2

ˆ t

0
‖u(s)‖2‖v(s)‖

2q
q−2

Lq ds.

The relation above implies (2.11) and (2.13). The proof of (2.12) and (2.14) is analogous and
we omit the details.

2.4. Stochastic convolutions with fractional noise

Definition 2.8. Let U be a separable Hilbert space. A U-cylindrical fractional Brownian
motion (WH(t))t⩾0 with Hurst indexH ∈ (0,1) is defined by the formal series

WH (t) =
∞∑
n=1

bHn (t)en,

where {en} is an orthonormal basis inU and (bH(t))n∈N is a sequence of independent standard
one-dimensional fractional Brownian motions, i.e. E[bHn (t)] = 0 and

E
[
bHn (t)bHn (s)

]
=

1
2

(
t2H + s2H − |t− s|2H

)
, s, t⩾ 0.

For H= 1/2 one obtains a cylindrical Brownian motion. However for H 6= 1/2 the fbm
exhibits a totally different behavior, in particular is neither Markov nor a semimartingale.

For our aims in proposition 3.1, we need the following results on the regularity of stochastic
convolutions established in [23, corollary 3.1] and [24, proposition 11.6].

Lemma 2.9. ([23, corollary 3.1] and [24, proposition 11.6]) Let A be the generator of an
analytic C0-semigroup (S(t))t⩾0 on a separable Hilbert space U1, Φ ∈ L (U,U1). Assume
that

‖S(t)Φ‖L2(U,U1) ⩽ t−γ for γ <H. (2.15)

Then the stochastic convolution
´ t
0 S(t− s)Φ dWH(s) has P-a.s. γ1-Hölder continuous tra-

jectories in D(Aγ2), for 0⩽ γ1 + γ2 <H− γ. If Φ ∈ L2(U,U1), then the assumption (2.15) is
satisfied for γ= 0.

13
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3. Global well-posedness

Here we prove theorem 1.3(1). This section is organized as follows. Firstly, in section 3.1 we
prove that the solution wg of the 2D Stokes equations with boundary noise (1.4) satisfies (1.6).
Secondly, in section 3.2, we prove the existence of a q-solution to (1.2) by studying the aux-
iliary Navier–Stokes problem (1.5) for a given forcing term w= wg satisfying the regularity
assumption as in (1.6) for a given q. Finally, in section 3.3, we prove the uniqueness of solutions
to (1.2) therefore concluding the proof of theorem 1.3(1). Recall that (q-)solutions of (1.2) are
defined in definition 1.2.

3.1. Stokes equations

As discussed in section 1.1, we start by considering the linear problem (1.4). According to
[21] and [22, chapter 15], the mild solution wg of the former problem is formally given by

wg (t) = A
ˆ t

0
S(t− s)D [g] dWH (s) . (3.1)

Here A is (minus) the Stokes operator with homogeneous boundary conditions as defined in
section 2.1.

Next, we prove that wg is well-defined in sufficiently regular function spaces therefore
allowing us to treat the nonlinearity in the Navier–Stokes equations.

Proposition 3.1. Let assumption 1.1 be satisfied. Then the process wg is well-defined, pro-
gressively measurable, and for all T> 0 and ε> 0,

wg ∈ Lp
(
Ω;C

(
[0,T] ;D

(
AH− 3

4−
s
2−ε

)))
for all p ∈ (1,∞) . (3.2)

In particular, for all r ∈ (2,2qH),

wg ∈ C([0,T] ;Lr) a.s. (3.3)

Proof. Note that, thanks to corollary 2.4

Dg ∈ L2

(
U,D

(
A

1
4−

s+ε
2

))
.

Hence, by lemma 2.9, a.s.

wg = A
3
4+

s+ε
2

ˆ ·

0
S(· − s)A

1
4−

s+ε
2 DgdWH (s)︸ ︷︷ ︸

∈C
(
[0,T];D

(
AH− ε

2
))︸ ︷︷ ︸

∈C
(
[0,T];D

(
AH− 3

4−
s
2−ε

))

.

The arbitrariness of ε> 0 yields (3.2). To prove (3.3), note that, by lemma 2.1,

D
(
AH− 3

4−
s
2−ε

)
⊂ H2H− 3

2−s−2ε
(
O;R2

)
.

14
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The above space embeds into Lr(O;R2) for some r> 2 provided

2H− 3
2
− s− 2ε > 0.

The above is exactly our assumption due to the arbitrariness of ε> 0. In particular, by the
arbitrariness of ε and Sobolev’s embedding we can choose whatever r< 2qH.

Remark 3.2 (Necessity of the Lp-setting for v). In the setting of proposition 3.1, we have
2H− 3

2 − s< 1
2 . Therefore, for all choices of H and s in assumption 1.1, it follows that

H2H− 3
2−s−2ε

(
O;R2

)
6↪→ L4

(
O;R2

)
.

Thus, (3.3) holds with r< 4 and therefore B(wg,wg) 6∈ L2(0,T;V∗). In particular, in the
next subsection, we cannot avoid the use of Lp-setting in space, cf the comments below
assumption 3.6.

Remark 3.3. Previous results with white noise boundary conditions [1, 10] exploited
stochastical maximal Lp regularity techniques to study the linear part of the problem. Here
is worth mentioning that we employed the more standard Hilbert value framework because
it produces the sharpest result on the regularity of the stochastic convolution in terms of the
Hurst parameter H. Indeed, assuming just for simplicity the case s= 0 and g ∈ Lp(Γu;U) for
some p ∈ [2,+∞), then by corollary 2.4, [18, Proposition 4.5] and arguing as above we have

wg ∈ C
(
[0,T] ;D

(
A
H−1+ 1

2p−ε
p

))
.

In particular wg ∈ C([0,T];Lr) for some r> 2 if H> 1− 1
2p . Therefore the right-hand side is

minimized and we can use the rougher noise for p= 2.

We end this subsection showing a lemma concerning the relation between the mild and the
weak formulation of (1.4) as defined below.

Definition 3.4. Let assumption 1.1 be satisfied. A stochastic process w is a weak solution
of (1.4) if it is F-progressively measurable with P− a.s. paths in

wg ∈ C(0,T;Lr)

for some r⩾ 2, and P− a.s. for all φ ∈ D(A) and t ∈ [0,T],

〈wg (t) ,φ〉=−
ˆ t

0
〈wg (s) ,Aφ〉ds−〈g, n̂ ·∇φ〉H−s(Γu),Hs(Γu)W

H
t . (3.4)

As above, n̂ denotes the exterior normal vector field on ∂O. Since g is time-independent,
the last term in (3.4) can be rewritten as a stochastic integral as

〈g, n̂ ·∇φ〉H−s(Γu),Hs(Γu)W
H
t =

ˆ t

0
〈g, n̂ ·∇φ〉H−s(Γu),Hs(Γu) dW

H
s .

Lemma 3.5. Let assumption 1.1 be satisfied. There exists a unique weak solution of (1.4) in
the sense of definition 3.4 and it is given by the formula (3.1).

15
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Proof. We split the proof into two steps.

Step 1: There exists a unique weak solution of (1.4) and it is necessarily given by the mild
formula (3.1). Letψ ∈ C1([0,T];D(A)). Arguing as in the first step of the proof of [31, theorem
1.7], see also [46, Lemma 3], one can readily check that wg satisfies

〈wg (t) ,ψ (t)〉=
ˆ t

0
〈wg (s) ,∂sψ (s)〉ds−

ˆ t

0
〈wg (s) ,Aψ (s)〉ds

−
ˆ t

0
〈g, n̂ ·∇ψ (s)〉H−s(Γu),Hs(Γu) dW

H
s (3.5)

for each t ∈ [0,T], P− a.s. The stochastic integral in the relation above is well-defined as a
real-valued stochastic integral. Indeed, recalling that (WH

t )t⩾0 is a U-cylindrical fractional
Brownian motion we observe that 〈g, n̂ ·∇ψ(s)〉H−s(Γu),Hs(Γu) is given by the linear operator
on U

h ′ 7→ 〈gh ′, n̂ ·∇ψ (s)〉H−s(Γu),Hs(Γu) = Lψ (gh
′) ,

where Lψ := 〈·, n̂ ·∇ψ(·)〉H−s(Γu),Hs(Γu). By the ideal property of the Hilbert–Schmidt operat-
ors we have L2(U,H−s(Γu)) = H−s(Γu;U) and obtain that

‖〈g, n̂ ·∇ψ (s)〉H−s(Γu),Hs(Γu)‖U∗ ≲ ‖g‖H−s(Γu)‖∇ψ (s)‖Hs(Γu) a.e. on Ω× (0,T) .

In conclusion, the stochastic integral in (3.5) is well-defined as a real-valued one (see [23,
(2.16)]), since

E
∣∣∣ˆ t

0
〈g, n̂ ·∇ψ (s)〉H−s(Γu),Hs(Γu) dW

H
s

∣∣∣2
⩽H (2H− 1)

ˆ t

0

ˆ t

0
‖〈g, n̂ ·∇ψ (s)〉‖U∗‖〈g, n̂ ·∇ψ (v)〉‖U∗ |s− v|2H−2 ds dv

⩽H (2H− 1)‖g‖2H−s(Γu;U)

ˆ t

0

ˆ t

0
‖∇ψ (s)‖Hs(Γu)‖∇ψ (v)‖Hs(Γu)|s− v|2H−2 ds dv,

which is finite since ψ ∈ C1([0,T];D(A)) and H> 1/2. Now consider φ ∈ D(A2) and use
ψt(s) = S(t− s)φ, s ∈ [0, t] as test function in (3.5) obtaining

〈wg (t) ,φ〉=−
ˆ t

0
〈g, n̂ ·∇S(t− s)φ〉H−s(Γu),Hs(Γu) dW

H
s . (3.6)

Recalling the definition of the Dirichlet map D, (3.6) can be rewritten as

〈w(t) ,φ〉=
ˆ t

0
〈D [g] ,AS(t− s)φ〉dWH

s . (3.7)

Then, exploiting the self-adjointness property of S and A we have that weak solutions of (1.4)
satisfy the mild formulation. Therefore they are unique.
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Step 2: The mild formula (3.1) is a weak solution of (1.4) in the sense of definition 3.4. We
begin by noticing thatwg has the required regularity due to proposition 3.1. Let us test our mild
formulation (3.1) against functions φ ∈ D(A2). It holds, exploiting self-adjointness property
of S and A

〈w(t) ,φ〉=
ˆ t

0
〈D [g] ,AS(t− s)φ〉dWH

s

=

ˆ t

0
〈g, n̂ ·∇S(t− s)φ〉H−s(Γu),Hs(Γu) dW

H
s P− a.s.,

where in the last step we used the definition of Dirichlet map. To complete the proof of this
step it is enough to show that

ˆ t

0
〈g, n̂ ·∇S(t− s)φ〉H−s(Γu),Hs(Γu) dW

H
s =−

ˆ t

0
〈wg (s) ,Aφ〉ds

+ 〈g, n̂ ·∇φ〉H−s(Γu),Hs(Γu)W
H
t P− a.s. (3.8)

The relation (3.8) is true. Indeed,

ˆ t

0
〈wg (s) ,Aφ〉ds=

ˆ t

0
ds
ˆ s

0
〈D [g] ,S(s− τ)A2φ〉dWH (τ) P− a.s. (3.9)

The double integrals in (3.9) can be exchanged via stochastic Fubini’s theorem, see [3, 50].
Therefore the double integral in the right-hand side of (3.9) can be rewritten as

ˆ t

0
ds
ˆ s

0
〈D [g] ,S(s− τ)A2φ〉dWH

τ

=

ˆ t

0
dWH (τ)

ˆ t

τ

〈D [g] ,S(s− τ)A2φ〉ds

= 〈D [g] ,Aφ〉WH
t −
ˆ t

0
〈D [g] ,AS(t− τ)φ〉dWH

τ

= 〈g, n̂ ·∇φ〉H−s(Γu),Hs(Γu)W
H
t

−
ˆ t

0
〈g, n̂ ·∇S(t− τ)φ〉H−s(Γu),Hs(Γu) dW

H
τ P− a.s.

Inserting this expression in (3.9), (3.8) holds and the proof is complete.

3.2. Auxiliary Navier–Stokes type equations

Motivated by the auxiliary problem (1.5) and by the results of the previous subsection, here
we study the well-posedness of the following abstract PDE{

∂tv+Aqv+B(v+w,v+w) = 0, t ∈ [0,T] ,

v(0) = uin,
(3.10)

with Aq is the Stokes operator on Lq and B is the bilinear nonlinearity as in section 2.3. Finally,
q= r/2 and (w, r) satisfies the following

17
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Assumption 3.6. w ∈ C([0,T];Lr) for some r ∈ (2,4).

Note that the above assumption is satisfied P− a.s.withw= wg, as it follows from proposi-
tion 3.1. Moreover, the limitation r< 4 is motivated by remark 3.2. In particular, the arguments
used in [1] do not apply to (3.10). Indeed, if assumption 3.6 holds, then

B(w,w) 6∈ L2
(
0,T;H−1

(
O;R2

))
.

Hence, the (potential) energy of solutions for (3.10), i.e.

ˆ t

0

ˆ
O
|∇v|2 dxds for t> 0,

is ill-defined even in absence of the terms B(v,v),B(w,v) and B(v,w). In particular, one cannot
expect energy (or Leray’s) type solutions for (3.10) to be defined and the analysis carried on
in [1] does not work in our framework. However, B(v,v) ∈ L∞(0,T;H−1,q(O;R2)) for some
q> 1 as r> 2, and therefore Lq-theory for (3.10) can be built.

Next, let us describe the main idea behind our construction of a solution to (3.10). In what
follows, the subcriticality of L∞(0,T;Lr) with r> 1 for the 2D Navier–Stokes equations (cf
the discussion below definition 1.2) plays a central role. Indeed, by subcriticality, given q0 = r

2 ,
the solution v0 to{

∂tv0 +Aq0v0 +B(w,w) = 0,

v0 (0) = 0,

satisfies v0 ∈ Lp(0,T;Lr0(O;R2)) for some r0 > r and each p<+∞. Hence, we obtained a
small gain of space regularity. In particular, v1 = v− v0 solves

∂tv1 +Aq1v1 +B(v1,v1)+B(v1,w+ v0)+B(w+ v0,v1)

+B(v0,w+ v0)+B(w,v0) = 0,

v1 (0) = uin,

In the above, we would like to take q1 > q0 due to the increased regularity of the forcing terms.
Indeed, as v0 ∈ Lp(0,T;Lr0(O;R2)) for some r0 > r and each p<+∞ one obtains that the
terms B(w+ v0,v0) and B(w,v0) belong to Lp(0,T;H−1,q1(O;R2))where 1

q1
= 1

r0
+ 1

r satisfies
q1 > q0. In particular, the terms appearing in the problem above are more regular in space than
B(w,w). This opens the door to a further iteration. In particular, by considering the solution v1
to {

∂tv1 +Aq1v1 +B(v0,w+ v0)+B(w,v0) = 0,

v1 (0) = 0,

and studying the problem for v2 = v1 − v1, one can check that the above procedure leads to
a further improvement. The idea is to stop the iteration whenever the forcing terms appear-
ing in the procedure are regular enough to build Leray-type solutions to the corresponding
PDE. Before going further, let us stress that the above procedure is reminiscent of the so-
called ‘DaPrato–Debussche trick’ introduced in [20] and now is widely used in the context of
stochastic PDEs.

18
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Let us now turn to the construction of a solution to (3.10). The above argument motivates
the following splitting. Let N be a positive integer such that

r ∈
[
2(N+ 2)
N+ 1

,
2(N+ 1)

N

)
(3.11)

then we search of a solution v to (3.10) given by a sum of N+ 1 terms

v=
N−1∑
i=0

vi+ v (3.12)

where vi and v solve the following system of PDEs on [0,T]:

∂tv0 +Aq0v0 +B(w,w) = 0,

∂tvi+Aqivi+B

vi−1,w+
i−1∑
j=0

vj

+B

w+
i−2∑
j=0

vj,vi−1

= 0,

∂tv+Av+B(v,v)+B

v,w+
N−1∑
j=0

vj

+B

w+
N−1∑
j=0

vj,v


+B

vN−1,w+
N−1∑
j=0

vj

+B

w+
N−2∑
j=0

vj,vN−1

= 0,

vi (0) = 0,

v(0) = uin,

(3.13)

where,
∑−1

j=0 := 0, i ∈ {1, . . . ,N− 1} and

qi =
2r

r+ 2+(i+ 1)(2− r)
. (3.14)

Note that vi for i ∈ {1, . . . ,N− 1} solves a (linear) Stokes problem, while the problem for v is
a modified version of the Navier–Stokes equations.

At least formally, it is clear that v solves (3.10). The latter fact is a straightforward con-
sequence of the following identity involving B(v+w,v+w) (letting v−1 = w, vN := v for
simplicity)

B(v+w,v+w) =
N∑

i,j=−1

B(vi,vj)

=
N∑

i=−1

B(vi,vi)+
N∑

i=−1

i−1∑
j=−1

B(vi,vj)+
N∑

j=−1

j−1∑
i=−1

B(vi,vj)

= B(v,v)+
N−1∑
i=−1

B(vi,vi)+
N−1∑
i=−1

B(v,vi)+
N−1∑
i=−1

i−1∑
j=−1

B(vi,vj)

+
N−1∑
i=−1

B(vi,v)+
N−1∑
j=−1

j−1∑
i=−1

B(vi,vj)
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= B(v,v)+
N−1∑
i=−1

B(vi,v)+
N−1∑
i=−1

B(v,vi)

+
N−1∑
i=−1

i∑
j=−1

B(vi,vj)+
N−1∑
j=−1

j−1∑
i=−1

B(vi,vj)

=

B(v,v)+B

w+
N−1∑
j=0

vi,v

+B

v,w+
N−1∑
j=0

vj


+B

vN−1,w+
N−1∑
j=0

vj

+B

w+
N−2∑
j=0

vj,vN−1


+

N−2∑
i=−1

B
vi,w+

i∑
j=0

vj

+B

w+
i−1∑
j=0

vj,vi

 .
Looking at the last line, we can formally identify the first bracketed term as the one appear-
ing in the equation for v and the ith summand as the one appearing in the equation for
vi+1, i+ 1 ∈ {0,1, . . . ,N− 1}. To show rigorously that v given in (3.12) with (v0, . . . ,vN−1,v)
solving (3.13) is a solution to (3.10) we need to check that v0, . . . ,vN−1 and v are sufficiently
regular. The appropriate regularity class for v in (3.12) to obtain a solution is given in the
following definition, see also remark 3.8 below.

Definition 3.7. Given r ∈ (2,4), N given by (3.11), p⩾ 2N r
r−2 , we say that

(v0, . . . ,vN−1,v)

is a (p, r)-solution of (3.13) if

vi ∈W1,p/2i
(
0,T;X−1/2,Aqi

)
∩Lp/2

i
(
0,T;X1/2,Aqi

)
,

v ∈ C([0,T] ;H)∩L2 (0,T;V) ,
(3.15)

where qi is as in (3.14), and for each(
φ0, . . . ,φN−1,φ

)
s.t. φi ∈ D

(
Aq ′

i

)
, φ ∈ D(A)

we have, for all t ∈ [0,T],

〈v0 (t) ,φ0〉=−
ˆ t

0
〈v0 (s) ,Aq ′

0
φ0〉ds+

ˆ t

0
〈w(s)⊗w(s) ,∇φ0〉ds, (3.16)

〈vi (t) ,φi〉=−
ˆ t

0
〈vi (s) ,Aq ′

i
φi〉ds+

ˆ t

0
〈vi−1 (s)⊗ vi−1 (s) ,∇φi〉ds (3.17)

+

ˆ t

0

〈
vi−1 (s)⊗

w(s)+
i−2∑
j=0

vj (s)

 ,∇φi

〉
ds

+

ˆ t

0

〈w(s)+
i−2∑
j=0

vj (s)

⊗ vi−1 (s) ,∇φi

〉
ds,
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〈v(t) ,φ〉= 〈uin,φ〉−
ˆ t

0
〈v(s) ,Aφ〉ds+

ˆ t

0
〈v(s)⊗ v(s) ,∇φ〉ds

+

ˆ t

0

〈
v(s)⊗

w(s)+
N−1∑
j=0

vj (s)

 ,∇φ

〉
ds

+

ˆ t

0

〈w(s)+
N−1∑
j=0

vj (s)

⊗ v(s) ,∇φ

〉
ds

+

ˆ t

0

〈
vN−1 (s)⊗ vN−1 (s) ,∇φ

〉
ds

+

ˆ t

0

〈
vN−1 (s)⊗

w(s)+
N−2∑
j=0

vj(s)

 ,∇φ

〉
ds

+

ˆ t

0

〈w(s)+ N−2∑
j=0

vj(s)

⊗ vN−1(s),∇φ

〉
ds. (3.18)

Remark 3.8. We observe that qi > 1 for all i ∈ {0, . . . ,N− 1} and is increasing in i. As an
immediate consequence of definition 3.7, Sobolev embedding theorem and interpolation we
have that

vi ∈ Lp/2
i

(0,T;Lri)∩C([0,T] ;H) , ri =
2r

(i+ 1)(2− r)+ 2
.

In particular, ri > 2 for all i ∈ {0, . . . ,N− 1} and is increasing in i. Therefore one can eas-
ily check that all the duality pairings in definition 3.7 are well defined. Moreover, for all
i ∈ {1, . . . ,N− 1},

vi,v ∈ L
2r
r−2 (0,T;Lr) .

Indeed, the above assertion for vi follows from p⩾ 2N r
r−2 . While for vwe can use the standard

interpolation inequality L2(0,T;H1)∩L∞(0,T;L2)⊆ L2/θ(0,T;Hθ)with θ = r−2
r ∈ (0,1) and

the Sobolev embedding Hθ(O) ↪→ Lr(O).
In particular, if (v0, . . . ,vN−1,v) is a (p, r) solution of (3.13), then, given v :=

∑N−1
i=0 vi+ v,

u= v+w is a r/2-solution of (1.2) in the sense of definition 1.2.

The following yields the well-posedness of (3.10) in the sense of definition 3.7.

Theorem 3.9. Let assumption 3.6 be satisfied. For each uin ∈ H, p⩾ 2N r
r−2 there exists a

unique (p, r)-solution (v0, . . . ,vN−1,v) of (3.13) in the sense of definition 3.7. Moreover v sat-
isfies the energy relation
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‖v(t)‖2 + 2
ˆ T

0
‖∇v(s)‖2L2 ds= ‖uin‖2 + 2

ˆ t

0

〈
v(s) ·∇v(s) ,w(s)+

N−1∑
j=0

vj (s)

〉
ds

+ 2
ˆ t

0

〈
vN−1 (s) ·∇v(s) ,w(s)+

N−1∑
j=0

vj (s)

〉
ds

+ 2
ˆ t

0

〈w(s)+
N−2∑
j=0

vj (s)

 ·∇v(s) ,vN−1 (s)

〉
ds. (3.19)

If (unin)n∈N is a sequence in H converging to uin ∈ H and (wn)n∈N is a sequence
in C([0,T];Lr) converging to w ∈ C([0,T];Lr), then the corresponding unique solutions
((vn0, . . . ,v

n
N−1,v

n))n∈N converge to the corresponding solution (v0, . . . ,vN−1,v), each one in
the topologies of definition 3.7.

Proof. We exploit strongly the triangle structure of (3.13) and split the proof in several steps.

Step 1: Linear part of (3.13). We argue by induction and exploit maximal Lp regularity tech-
niques, see [55, chapter 3]. The existence and uniqueness of v0 satisfying the corresponding
PDE in the sense of definition 3.7 and the continuous dependence from data, i.e. w in the
topology of C([0,T];Lr), follows if

B(w,w) ∈ Lp
(
0,T;X−1/2,Aq0

)
.

The claim is true, indeed q0 = r
2 and by Hölder’s inequality we have

ˆ T

0
‖B(w(s) ,w(s))‖pX−1/2,Ar/2

ds⩽
ˆ T

0
‖w(s)‖2pLr ds⩽ T‖w‖2pC([0,T];Lr).

Now assumewe have already proved the existence and uniqueness of (vi)i∈{0,...,l−1}, l⩽ N− 1
solving (3.13) in the sense of definition 3.7 and depending continuously from the data, i.e. w
in the topology of C([0,T];Lr). Let us check that there exists a unique vl solving the corres-
ponding PDE in (3.13) in the sense of definition 3.7 and depending continuously from w in
the topology of C([0,T];Lr). Again, due to maximal Lp regularity techniques, it is enough to
show that

B(vl−1,vl−1)+B

vl−1,w+
l−2∑
j=0

vj

−B

w+
l−2∑
j=0

vj,vl−1

 ∈ Lp/2
l
(
0,T;X−1/2,Aql

)
.

The claim is true, indeed due to remark 3.8

w, vi ∈ Lp/2
l−1

(0,T;Lr) if i ∈ {0, . . . , l− 2}

and by induction hypothesis

vl−1 ∈ Lp/2
l−1

(0,T;Lrl−1) .
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Moreover all vi, i ∈ 1, . . . , l− 1 depends continuously fromw ∈ C([0,T];Lr) in the correspond-
ing topologies. Therefore by Hölder’s inequality we have

ˆ T

0

∥∥∥∥∥∥B
vl−1 (s) ,w(s)+

l−2∑
j=0

vj (s)

∥∥∥∥∥∥
p/2l

X−1/2,Aql

ds

⩽
ˆ T

0

∥∥∥∥∥∥vl−1 (s)⊗

w(s)+
l−2∑
j=0

vj (s)

∥∥∥∥∥∥
p/2l

Lql

ds

≲p,l

ˆ T

0
‖vl−1 (s)‖p/2

l

Lrl−1

‖w(s)‖p/2
l

Lrl−1 +
l−2∑
j=0

‖vj (s)‖p/2
l

Lrl−1

 ds

≲ ‖vl−1‖p/2
l−1

Lp/2l−1 (0,T;Lrl−1 )
+ ‖w‖p/2

l−1

Lp/2l−1 (0,T;Lq)
+

l−2∑
j=0

‖vj‖p/2
l−1

Lp/2l−1 (0,T;Lr)
.

Step 2: Introduction to the nonlinear part of (3.13). First, we observe that due to Step 1 we
have that

f=−B

vN−1,w+
N−1∑
j=0

vj

−B

w+
N−2∑
j=0

vj,vN−1

 ∈ L2 (0,T;V∗) , (3.20)

ṽ= w+
N−1∑
j=0

vj ∈ Lp/2
N−1

(0,T;Lr) . (3.21)

Therefore we are left to study the well-posedness in the weak setting of the following PDE{
∂tv+Av+B(v,v)+B(v, ṽ)+B(ṽ,v) = f,

v(0) = uin.
(3.22)

This can be treated similarly to [1, section 3.2] and is the object of the remaining steps.

Step 3: Uniqueness. Let v(i) be two solutions. The function z= v(1) − v(2) satisfies hence

〈
z(t) ,φ

〉
+

ˆ t

0

〈
z(s) ,Aφ

〉
ds−

ˆ t

0
〈z(s) ·∇φ,z(s)〉ds=

ˆ t

0

〈̃
f(s) ,φ

〉
ds

where

f̃=−B
(
v(2) + ṽ,z

)
−B

(
z,v(2) + ṽ

)
.

By lemma 2.7, f̃ ∈ L2 (0,T;V∗). Then, by theorem 2.6 ,

‖z(t)‖2 + 2
ˆ t

0
‖∇z(s)‖2L2 ds= 2

ˆ t

0
〈z(s) ·∇z(s) ,v(2) (s)+ ṽ(s)〉ds.
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Again by lemma 2.7, we have

ˆ t

0
〈z(s) ·∇z(s) ,v(2) (s)+ ṽ(s)〉ds

⩽
∣∣∣∣ˆ t

0
〈z(s) ·∇z(s) ,v(2) (s)〉ds

∣∣∣∣+ ∣∣∣∣ˆ t

0
〈z(s) ·∇z(s) , ṽ(s)〉ds

∣∣∣∣
⩽ 2ε‖z‖2L2(0,t;V) +

C
ε3

ˆ t

0
‖z(s)‖2‖v(2) (s)‖4L4 ds

+ 2ε‖z‖2L2(0,t;V) +
C

ε
r+2
r−2

ˆ t

0
‖z(s)‖2‖ṽ(s)‖

2r
r−2

Lr ds

= 4ε
ˆ t

0
‖∇z(s)‖2L2 ds+

C

ε
r+2
r−2

ˆ t

0
‖z(s)‖2

(
‖v(2) (s)‖4L4 + ‖ṽ(s)‖

2r
r−2

Lr

)
ds.

Applying the above with 4ε= 1
2 and renaming the constant C, it follows that

‖z(t)‖2 +
ˆ t

0
‖∇z(s)‖2L2 ds⩽ C

ˆ t

0
‖z(s)‖2

(
‖v(2) (s)‖4L4 + ‖ṽ(s)‖

2r
r−2

Lr

)
ds.

We conclude z= 0 by the Grönwall lemma, using (3.21) and the integrability properties
of v(2).

Step 4: Existence. Define the sequence (vn) by setting v0 = 0 and for every n⩾ 0, given vn ∈
C([0,T] ;H)∩L2 (0,T;V), let vn+1 be the solution of equation (2.9) with initial condition uin
and with

f =−B(vn, ṽ)−B(ṽ,vn)+ f.

In particular

〈
vn+1 (t) ,φ

〉
+

ˆ t

0

〈
vn+1 (s) ,Aφ

〉
ds−

ˆ t

0

〈
vn+1 (s) ·∇φ,vn+1 (s)

〉
ds

=
〈
uin,φ

〉
+

ˆ t

0
〈f(s) ,φ〉ds

for every φ ∈ D(A). The above is well-defined as

B(vn, ṽ) ,B(ṽ,vn) , f ∈ L2 (0,T;V∗)

by lemma 2.7 and (3.20).
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Then let us investigate the convergence of (vn). First, let us prove a bound. From the pre-
vious identity and theorem 2.6 we get

‖vn+1 (t)‖2 + 2
ˆ t

0
‖∇vn+1 (s)‖2L2 ds

= ‖uin‖2 + 2
ˆ t

0

(
b
(
vn,vn+1, ṽ

)
+ b

(
ṽ,vn+1,vn

)
+ 〈 f,vn+1〉

)
(s) ds.

It gives us using lemma 2.7 and (3.20)

‖vn+1 (t)‖2 +
ˆ t

0
‖∇vn+1 (s)‖2L2 ds= ‖uin‖2 + ε

ˆ t

0
‖vn (s)‖2V ds

+Cε

ˆ t

0
‖vn (s)‖2‖ṽ(s)‖

2r
r−2

Lr ds+Cε

ˆ t

0
‖ f(s)‖2V∗ ds.

Choosing a small constant ε, one can find R> ‖uin‖2 and T small enough, depending only
from ‖uin‖ and ‖ṽ‖

L
2r
r−2 (0,T;Lr)

, such that if

sup
t∈[0,T]

‖vn (t)‖2 ⩽ R,
ˆ T

0
‖vn (s)‖2V ds⩽ R (3.23)

then the same inequalities hold for vn+1.
Set zn = vn− vn−1, for n⩾ 1. From the identity above,

〈
zn+1 (t) ,φ

〉
−
ˆ t

0

(
b
(
vn+1,φ,vn+1

)
− b

(
vn,φ,vn

))
(s) ds

=−
ˆ t

0

〈
zn+1 (s) ,Aφ

〉
ds−

ˆ t

0

〈(
B(vn, ṽ)−B

(
vn−1, ṽ

))
(s) ,φ

〉
ds

−
ˆ t

0

〈(
B(ṽ,vn)−B

(
ṽ,vn−1

))
(s) ,φ

〉
ds.

Since

b
(
vn+1,φ,vn+1

)
− b

(
vn,φ,vn

)
− b

(
zn+1,φ,zn+1

)
= b

(
vn,φ,zn+1

)
+ b

(
zn+1,φ,v

n
)

we may rewrite it as

〈
zn+1 (t) ,φ

〉
−
ˆ t

0
b
(
zn+1 (s) ,φ,zn+1 (s)

)
ds

=−
ˆ t

0

〈
zn+1 (s) ,Aφ

〉
ds−

ˆ t

0

〈
(B(zn, ṽ)+B(ṽ,zn))(s) ,φ

〉
ds

+

ˆ t

0

(
b
(
vn,φ,zn+1

)
+ b

(
zn+1,φ,v

n
))

(s) ds.
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One can check as above the applicability of theorem 2.6 and get

‖zn+1 (t)‖2 + 2
ˆ t

0
‖∇zn+1 (s)‖2L2 ds

= 2
ˆ t

0
(b(zn,zn+1, ṽ)+ b(ṽ,zn+1,zn))(s) ds

+ 2
ˆ t

0
b(zn+1,zn+1,v

n)(s) ds.

As above, thanks to lemma 2.7 we deduce that

ˆ t

0
|b(zn+1,zn+1,v

n)(s)|ds⩽ 1
4

ˆ t

0
‖zn+1 (s)‖2V ds+C

ˆ t

0
‖zn+1 (s)‖2‖vn (s)‖4L4 ds.

But

ˆ t

0
|b(zn,zn+1, ṽ)(s)+ b(ṽ,zn+1,zn)(s)|ds

⩽ 1
4

ˆ t

0
‖zn+1 (s)‖2V ds+

1
8

ˆ t

0
‖zn (s)‖2V ds+C

ˆ t

0
‖zn (s)‖2‖ṽ(s)‖

2r
r−2

Lr ds.

Hence

‖zn+1 (t)‖2 +
ˆ t

0
‖∇zn+1 (s)‖2L2 ds⩽ C

ˆ t

0
‖zn+1 (s)‖2‖vn (s)‖4L4 ds

+
1
4

ˆ t

0
‖zn (s)‖2V ds+C

ˆ t

0
‖zn (s)‖2‖ṽ(s)‖

2r
r−2

Lr ds.

Now we work under the bounds (3.23) and deduce, using the Grönwall lemma, for T, depend-
ing only from ‖uin‖ and ‖ṽ‖

L
2r
r−2 (0,T;Lr)

, possibly smaller than the previous one,

sup
t∈[0,T]

‖zn+1 (t)‖2 +
ˆ T

0
‖zn+1 (s)‖2V ds⩽

1
2

 sup
t∈[0,T]

‖zn (t)‖2 +
ˆ T

0
‖zn (s)‖2V ds

 .

Now we can proceed as in the second step of the proof of [1, theorem 3.3], showing that the
sequence (vn) is Cauchy in C

([
0,T

]
;H

)
∩L2

(
0,T;V

)
. Its limit v is a weak solution of (3.22)

on [0,T] and , hence, by the previous step, it is the unique solution. We refer the reader to
[1, theorem 3.3] for further details. After proving existence and uniqueness in [0,T] we can
reiterate the existence procedure and in a finite number of steps cover the interval [0,T].

Step 5: Continuity dependence on the data Let vn (resp. v) the unique solution of (3.22) with
data unin, f̄

n, ṽn (resp. uin, f̄, ṽ). Since un0 → u0 in H (resp. f
n → f in L2(0,T;V∗), ṽn → ṽ in

Lp/2
N−1

(0,T;Lr)) the family (unin)n∈N is bounded in H (resp. the family (f
n
)n∈N is bounded in

L2(0,T;V∗), the family (ṽn)n∈N is bounded in Lp/2
N−1

(0,T;Lr)), by (3.19) one can show easily
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that the family (vn)n∈N is bounded in C([0,T];H)∩L2(0,T;V). Moreover for each t ∈ [0,T],
zn = vn− v satisfies the energy relation

1
2
‖zn (t)‖2 +

ˆ t

0
‖∇zn (s)‖2L2 ds=

1
2
‖unin − uin‖2

+

ˆ t

0
b(zn (s) ,zn (s) ,v(s)) ds

+

ˆ t

0
b(vn (s) ,zn (s) , ṽn (s)− ṽ(s)) ds

+

ˆ t

0
b(zn (s) ,zn (s) , ṽ(s)) ds

+

ˆ t

0
b(ṽn (s)− ṽ(s) ,zn (s) ,v(s)) ds

+

ˆ t

0
〈 f n (s)− f(s) ,zn (s)〉ds. (3.24)

Thanks to lemma 2.7, we can easily bound the right-hand side of relation (3.24) by Young’s
inequality and Hölder’s inequality obtaining

1
2
‖zn (t)‖2 + 1

2

ˆ t

0
‖∇zn (s)‖2L2 ds⩽

1
2
‖unin − uin‖2 +

ˆ t

0
‖ f n (s)− f(s)‖2V∗ ds

+C
ˆ t

0
‖zn (s)‖2

(
‖v(s)‖4L4 + ‖ṽ(s)‖

2r
r−2

Lr

)
ds

+C‖ṽn− ṽ‖2
L

2r
r−2 (0,T;Lr)

‖vn‖
2(r−2)

r
C([0,T];H)‖v

n‖
4
r

L2(0,T;V)

+C‖ṽn− ṽ‖2
L

2r
r−2 (0,T;Lr)

‖v‖
2(r−2)

r
C([0,T];H)‖v‖

4
r

L2(0,T;V). (3.25)

Applying Grönwall’s inequality to relation (3.25) the claimed continuity follows.

Remark 3.10. Freezing the variable ω ∈ Ω and solving (3.10) for each ω does not allow us
to obtain information about the measurability properties of v. However, the measurability of
v with respect to the progressive σ-algebra follows from the continuity of the solution map
with respect to uin and w. Therefore we have the required measurability properties for vwith w

being the mild solution of (1.4). In particular v has P-a.s. paths in C(0,T;H)∩L
2q
q−1 (0,T;L2q)

for each r ∈ (1,qH), it is progressively measurable with respect to these topologies.

Combining proposition 3.1, lemma 3.5, theorem 3.9 and remark 3.10 we get immediately
the existence of a q-solution of equation (1.2) in the sense of definition 1.2 for each q ∈ (1,qH).

3.3. Proof of theorem 1.3(1)

As discussed above, the results of section 3.1, section 3.2 provide the existence of a q-solution
of equation (1.2) in the sense of definition 1.2 for each q ∈ (1,qH), moreover such a solution is
adapted with paths in C([0,T];H) due to remark 3.8. Here we are left to discuss the problem of
uniqueness. In order to reach our goal, we start providing a lemma which shows equivalence
of q-solutions in the sense of definition 1.2 and those of the form u= wg+ v as described by
lemma 3.11 below. Then we conclude the proof by providing uniqueness for solutions of the
form u= wg+ v.
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Lemma 3.11. Let T<∞, uin ∈ L0F0
(Ω;L2), q ∈ (1,qH) and assuming assumption 1.1. Then

u is a q-solution to (1.2) in the sense of definition 1.2 with paths in C([0,T];L2)P− a.s. if and
only if v := u−wg is progressively measurable with paths in L2q

′
(0,T;L2q)∩C([0,T];L2)P−

a.s. and it solves, for all divergence-free ϕ ∈ C∞(O;R2) such that ϕ= 0 on Γb ∪Γu and a.e.
t ∈ (0,T),

ˆ
O
v(x, t)ϕ(x) dx−

ˆ
O
uin (x)ϕ(x) dx (3.26)

=

ˆ t

0

ˆ
O
(v ·∆ϕ + [(v+wg)⊗ (v+wg)] :∇ϕ) dxds.

Proof. The proof is a trivial consequence of the notion of q-solution in definition 1.2, the
regularity of wg in case of assumption 1.1, i.e. proposition 3.1, and the equivalence between
weak and mild solutions for the linear stochastic problem, see lemma 3.5.

We call a v progressively measurable with paths in L2q
′
(0,T;L2q)∩C([0,T];L2)P− a.s.

satisfying (3.26) in the sense of lemma 3.11 an auxiliary q-solution of (3.10). The uniqueness
of auxiliary q-solutions and their independence on q is the content of the following result,
which, combined with lemma 3.11, concludes the proof of the first item in theorem 1.3.

Proposition 3.12 (Uniqueness). Let v1 be an auxiliary q1-solution of (3.10) and v2 be an
auxiliary q2-solution of (3.10). Then v1 ≡ v2.

The uniqueness result in the Ladyzhenskaya–Prodi–Serrin class of proposition 3.12 might
be known to experts. Here, for completeness, we provide a relatively short proof relying on
maximal Lp-regularity techniques which seem not standard even in the absence of noise.

Proof of proposition 3.12. We split the proof into two cases.

Case q1 = q2 = q. Letting δ := v1 − v2, for all divergence free vector field ϕ ∈ C∞(O;R2)
such that ϕ= 0 on Γb ∪Γu and a.a. t ∈ (0,T), we have

〈δ (t) ,ϕ〉−
ˆ t

0
〈δ (s) ,∆ϕ〉ds

=

ˆ t

0
b(δ (s) ,ϕ,v1 (s)+wg (s)) ds+

ˆ t

0
b(v2 (s)+wg (s) ,ϕ,δ (s)) ds.

As vi ∈ L2q
′
(0,T;L2q(O;R2)) for i ∈ {1,2}, we obtain

B(δ,v1 +wg) ,B(v2 +wg, δ) ∈ Lq
′ (
0,T;X−1/2,Aq

)
P− a.s.

Hence, by the density of divergence-free ϕ ∈ C∞(O;R2) such that ϕ= 0 on Γb ∪Γu in the
domain of the Stokes operator Aq and from the maximal Lq-regularity of Aq, it follows that

δ ∈W1,q ′ (
0,T;X−1/2,Aq

)
∩Lq

′ (
0,T;X1/2,Aq

)
⊂ C

(
[0,T] ;B1−2/q ′

q,q ′

(
O;R2

))
P− a.s.

where in the last step we used the trace embedding [55, theorem 3.4.8] applied with A= Aq.
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By real interpolation (see e.g. [8, chapter 6]), we obtain(
B1−2/q ′

q,q ′ (O) ,H1,q (O)
)
1/2,1

↪→ B1−1/q ′

q,1 (O) ↪→ L2q (O)

where in the last step we applied the Sobolev embedding and 1− 1
q ′ − 2

q =− 1
q . In particular,

‖ f‖L2q(O) ≲ ‖ f‖1/2
B1−2/q ′
q,q ′ (O)

‖ f‖1/2H1,q(O)
(3.27)

for all f for which the right-hand side is finite.
Hence, by maximal Lq-regularity of Aq, again the trace embedding [55, theorem 3.4.8] as

well as the Hölder inequality, there exists a constant C0 > 0 independent of v1,v2 and δ such
that, for all t ∈ [0,T] and P− a.s.,

sup
r∈[0,t]

‖δ (r)‖q
′

B1−2/q ′
q,q ′

+

ˆ t

0
‖δ (r)‖q

′

H1,q dr

⩽ C0

ˆ t

0

(
max
i

‖vi (r)‖q
′

L2q + ‖wg (r)‖q
′

L2q

)
‖δ (r)‖q

′

L2q dr

⩽ C1

ˆ t

0

(
max
i

‖vi (r)‖2q
′

L2q + ‖wg (r)‖2q
′

L2q

)
‖δ (r)‖q

′

B1−2/q ′
q,q ′

dr+
1
2

ˆ t

0
‖δ (r)‖q

′

H1,q dr

where in the last step we used the Young inequality and (3.27).
Now the conclusion follows from the Grönwall lemma and the integrability conditions on

v1,v2 and wg ∈ C([0,∞);L2q) for all q< qH by proposition 3.1.

Case q1 6= q2. In the case of q1 6= q2 we start by observing that by previous case and the results
of section 3.2, for k ∈ {1,2}, we have that vk =

∑Nk−1
i=1 vk,i+ vk where (vk,0, . . . ,vk,Nk−1,vk) is

the (pk,rk)-solution of (3.13) in the sense of definition 3.7 with pk = 2Nk qk
qk−1 and rk = 2qk. The

claim is then a particular case of lemma 3.13 below on the compatibility of the (p, r) solutions
of (3.10) in the sense of definition 3.7.

Lemma 3.13 (Compatibility). Let w ∈ C([0,T];Lr) for some r ∈ (2,4) and 2< r̃⩽ r. If
(v0, . . . ,vN−1,v) is a solution of (3.13) in the sense of definition 3.7 with

p⩾ 2N
r

r− 2
, qi =

2r
r+ 2+(i+ 1)(2− r)

and (ṽ0, . . . , ṽÑ−1, ṽ) is a solution of (3.10) in the sense of definition 3.7 with

p̃⩾ 2Ñ
r̃

r̃− 2
, q̃i =

2̃r
r̃+ 2+(i+ 1)(2− r̃)

then v= ṽ.

Proof. The case of r= r̃ is obvious since in such a case N= Ñ, qi = q̃i and our construc-
tion does not rely on the choice of p so far that p⩾ 2N r

r−2 . In the general case we have two

sequences (v0, . . . ,vN−1,v) and (ṽ0, . . . , ṽÑ−1, ṽ). If N= Ñ the claim is still trivial since our
construction does not rely on the choice of p so far that p⩾ 2N r

r−2 and of the precise choice

of the qi since Sq̃i(t)|Lqi = Sqi(t). If Ñ> N arguing as above we have

vi = ṽi ∀i ∈ 0, . . . ,N− 1
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and we are left to show that v=
∑Ñ−1

i=N ṽi+ ṽ=: v̂. Due to previous steps we can assume

that v is (p̃,r) solution since p̃⩾ 2Ñ r̃
r̃−2 > 2N r

r−2 . We observe that due to definition 3.7 and
remark 3.8,

v, v̂ ∈ C([0,T] ;H)∩L
2̃r
r̃−2

(
0,T;Lr̃

)
, f := w+

N−1∑
i=0

vi ∈ L
2̃r
r̃−2

(
0,T;Lr̃

)
. (3.28)

Therefore either v and v̂ satisfy for all divergence free vector field ϕ ∈ C∞(O;R2) such that
ϕ= 0 on Γb ∪Γu equation (3.18). Therefore, denoting by δ(t) = v− v̂ we have that δ satisfies

〈δ (t) ,ϕ〉−
ˆ t

0
〈z(s) ,∆ϕ〉 ds

=

ˆ t

0
b(δ (s) ,ϕ,v(s)+ f(s)) ds+

ˆ t

0
b(v̂(s)+ f(s) ,ϕ,δ (s)) ds.

Denoting by q̃= r̃
2 ∈ (1,2), due to relation (3.28)

B(δ,v+ f) , B(v̂+ f, δ) ∈ Lq̃
′ (
0,T;X−1/2,Aq̃

)
.

Now the proof proceeds as in the first case of proposition 3.12 and we omit the details.

4. Interior regularity

As announced at the end of section 1.1, we prove theorem 1.3(2). To this end, we first prove the
interior regularity ofwg and afterwards the one of v by exploiting the decomposition introduced
in section 3.2.

4.1. Stokes equations

Let (v0,v1, . . . ,vN−1,v) be the (p, r)-solution to (3.13) as defined in definition 3.7 given by
theorem 3.9. Let N0 be the P null measure set where at least one between

wg /∈ C([0,T] ;Lr) , vi /∈W1,p/2i
(
0,T;X−1/2,Aqi

)
∩Lp/2

i
(
0,T;X1/2,Aqi

)
,

v /∈ C([0,T] ;H)∩L2 (0,T;V) ,

(3.16)–(3.18), (3.4) is not satisfied. In the following, we will work pathwise in Ω \N0 even if
not specified. Thanks to the weak formulation guaranteed by lemma 3.5 we can easily obtain
the interior regularity of the linear stochastic problem (1.4). Indeed, we are exactly in the same
position of [1, corollary 4.4] and the following holds. We omit the proof as it follows verbatim
the one of [1, corollary 4.4].

Lemma 4.1. Let assumption 1.1 be satisfied. Let wg be the unique weak solution of (1.4)
in the sense of definiion 3.4. Then, for all 0< t1 ⩽ t2 < T, x0 ∈ O, ρ> 0 such that
dist(B(x0,ρ),∂O)> 0,

wg ∈ C
(
[t1, t2] ,C

∞ (
B(x0,ρ);R2

))
P− a.s.
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4.2. Auxiliary Navier–Stokes equations and proof of theorem 1.3(2)

To deal with the interior regularity of (3.10) we perform a Serrin type argument, see [43, 60].
In contrast to [1], as wg /∈ C([0,T];L4), we cannot work directly on v. However, recalling that
the solution v to (1.2) proven in section 3.3 satisfies

v=
N−1∑
i=0

vi+ v (4.1)

where, again, (v0, . . . ,vN−1,v) is the (p, r)-solution to (3.13), cf section 3.2. The advantage of
having the splitting (4.1) at our disposal is that vi satisfies a linear problem where the forcing
terms only depend on v0, . . . ,vi−1. Thus, by lemma 4.1 and an induction argument, we can
prove that vi is smooth inside (0,T)×O. While to prove the corresponding statement for v,
we can exploit that v is a Leray solution (i.e. it has finite energy) and therefore the Serrin
regularization can be adjusted to our situation.

We begin with analyzing the interior regularity of vi for i ∈ {0, . . . ,N− 1}.

Lemma 4.2. Let assumption 1.1, r ∈ (2,4) and p⩾ 2N r
r−2 . Let (v0, . . . ,vN−1,v) be the (p, r)-

solution of (3.13) in the sense of definition 3.7. Then for all i ∈ {0, . . . ,N− 1}, 0< t1 ⩽ t2 <
T, x0 ∈ O, ρ> 0 such that dist(B(x0,ρ),∂O)> 0,

vi ∈ C
(
[t1, t2] ,C

∞ (
B(x0,ρ);R2

))
P− a.s.

Proof. As in the first step of the proof of theorem 3.9 we argue by induction exploiting strongly
the linear and triangle structure of (3.13). Before starting we observe that, by [55, theorem
3.4.8], it follows that

vi ∈ C([0,T] ;Lqi)∩Lp/2
i
(
0,T;X1/2,Aqi

)
. (4.2)

Step 1: Interior regularity of v0. First let us observe that, since dist(B(x0,ρ),∂O)>
0, 0< t1 ⩽ t2 < T, we can find ε small enough such that 0< t1 − 2ε < t1 ⩽ t2 < t2 + 2ε <
T, dist(B(x0,ρ+ 2ε),∂O)> 0. As described in lemma 3.5, arguing as in the proof of [31, the-
orem 7], we can extend the weak formulation satisfied by v0 to time dependent test functions
φ ∈ C1([0,T];Lq ′

0 )∩C([0,T];D(Aq ′
0
)) obtaining that for each t ∈ [0,T]

〈v0 (t) ,φ(t)〉=
ˆ t

0
〈v0 (s) ,∂sφ(s)〉ds−

ˆ t

0

〈
v0 (s) ,Aq ′

0
φ(s)

〉
ds

+

ˆ t

0
b(wg (s) ,φ(s) ,wg (s)) ds P− a.s.

Choosing φ =−∇⊥χ, χ ∈ C∞
c ((0,T)×O) in the weak formulation above and denoting by

ω0 = curlv0 ∈ C
(
[0,T] ;H−1,q0 (O)

)
∩Lp (0,T;Lq0 (O)) ,

ωw = curlwg ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) P− a.s.

it follows that

−
ˆ t

0
〈ω0 (s) ,∂sχ(s)〉+ 〈ω (s) ,∆χ(s)〉ds=

ˆ t

0
〈curl(wg (s)⊗wg (s)) ,∇χ(s)〉ds.
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This means that ω0 is a distributional solution in (0,T)×O of the partial differential
equation

∂tω0 =∆ω0 − divcurl(wg (s)⊗wg (s)) .

Let us consider ψ0 ∈ C∞
c ((0,T)×O) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε) such that

it is equal to one in [t1 − ε/2, t2 + ε/2]×B(x0,ρ+ ε/2). Let us denote by ω∗
0 = ω0ψ0 ∈

Lp(0,T;Lq0(R2)) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε), then ω∗
0 is a distributional solu-

tion in (0,T)×R2 of

∂tω
∗
0 =∆ω∗

0 + h0 (4.3)

with

h0 = ∂tψ0ω0 − 2∇ψ0 ·∇ω0 −∆ψ0ω0 −ψ0wg ·∇ωw.

Due to lemma 4.1

h0 ∈ Lp
(
0,T;H−1,q0

(
R2

))
P− a.s.

Then, again by maximal Lp-regularity techniques for the heat equation (see e.g. [55, theorem
4.4.4] [39, theorems 10.2.25 and 10.3.4]) and the trace embedding of [55, theorem 3.4.8],

ω∗
0 ∈ C

(
[0,T] ;Lq0

(
R2

))
∩Lp

(
0,T;H1,q0

(
R2

))
.

Therefore,

ω0 ∈C([t1 − ε/4, t2 + ε/4] ,Lq0 (B(x0,ρ+ ε/4)))

∩Lp
(
t1 − ε/4, t2 + ε/4,H1,q0 (B(x0,ρ+ ε/4))

)
P− a.s.

Introducing φ0 ∈ C∞
c (B(x0,ρ+ ε/4)) equal to one in B(x0,ρ+ ε/8), since ω0 = curlv0, then

φ0v0 satisfies

∆(φ0v0) =∇⊥ω0φ0 +∆φ0v0 + 2∇φ0 ·∇v0, (φ0v) |∂B(x0,ρ+ε/4) = 0. (4.4)

From the regularity of ω0, by standard elliptic regularity theory (see for example [64, chapter
4]), it follows that φ0v0 ∈ C([t1 − ε/4, t2 + ε/4];H1,q0(B(x0,ρ+ ε/4);R2))∩Lp(t1 − ε/4, t2 +
ε/4;H2,q0(B(x0,ρ+ ε/4);R2)) P− a.s. Therefore, since φ0 ≡ 1 on B(x0,ρ+ ε/8)

v0 ∈C
(
[t1 − ε/16, t2 + ε/16] ;H1,q0

(
B(x0,ρ+ ε/16) ;R2

))
∩Lp

(
t1 − ε/16, t2 + ε/16;H2,q0

(
B(x0,ρ+ ε/16) ;R2

))
P− a.s. (4.5)

Reiterating the argument, i.e. considering for each j ∈ N, j⩾ 0, first ψj ∈ C∞
c ((0,T)×

O) supported in [t1 − ε/24j, t2 + ε/24j]×B(x0,ρ+ ε/24j) identically equal to one in [t1 −
ε/24j+1, t2 + ε/24j+1]×B(x0,ρ+ ε/24j+1) and φj ∈ C∞

c (B(x0,ρ+ ε/24j+2)) identically equal
to one in B(x0,ρ+ ε/24j+3) we get iteratively that P−a.s.
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ω0 ∈C
([
t1 − ε/24j+2, t2 + ε/24j+2

]
,Hj,q0

(
B
(
x0,ρ+ ε/24j+2

)))
∩Lp

(
t1 − ε/24j+2, t2 + ε/24j+2,Hj+1,q0

(
B
(
x0,ρ+ ε/24j+2

)))
v0 ∈C

([
t1 − ε/24( j+1), t2 + ε/24( j+1)

]
,Hj+1,q0

(
B
(
x0,ρ+ ε/24( j+1)

)
;R2

))
∩Lp

(
t1 − ε/24( j+1), t2 + ε/24( j+1),Hj+2,q0

(
B
(
x0,ρ+ ε/24( j+1)

)
;R2

))
.

and the claimed interior regularity for v0 follows.

Step 2: Inductive step. Assume that we have already shown that the claim holds for vj, j ∈
{0, l− 1}, and l⩽ N− 1. Now let us prove that it holds also for vl. Since dist(B(x0,ρ),∂O)>
0, 0< t1 ⩽ t2 < T, we can find ε small enough such that 0< t1 − 2ε < t1 ⩽ t2 < t2 + 2ε <
T, dist(B(x0,ρ+ 2ε),∂O)> 0. As described in lemma 3.5, arguing as in the proof of [31,
theorem 7], we can extend the weak formulation satisfied by vl to time dependent test functions
φ ∈ C1([0,T];Lq ′

l )∩C([0,T];D(Aq ′
l
)) obtaining that for each t ∈ [0,T]

〈vl (t) ,φ(t)〉=
ˆ t

0
〈vl (s) ,∂sφ(s)〉ds−

ˆ t

0

〈
v0 (s) ,Aq ′

l
φ(s)

〉
ds

+

ˆ t

0
b

vl−1 (s) ,φ(s) ,w(s)+
l−1∑
j=0

vj (s)

 ds

+

ˆ t

0
b

w(s)+
i−2∑
j=0

vj (s) ,φ(s) ,vi−1 (s)

 ds P− a.s.

Choosing φ =−∇⊥χ, χ ∈ C∞
c ((0,T)×O) in the weak formulation above and, for i ∈

{0, . . . , l− 1}, denoting by

ωl = curlvl ∈ C
(
[0,T] ;H−1,ql (O)

)
∩Lp/2

l

(0,T;Lql (O)) ,

ωi = curlvi ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) ,

ωw = curlwg ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) P− a.s.

arguing as in Step 1 it follows that ωl is a distributional solution in (0,T)×O of the partial
differential equation

∂tωl =∆ωl− divcurl(vl−1 (s)⊗ vl−1 (s))

− divcurl

vl−1 (s)⊗

wg (s)+ l−2∑
j=0

vj (s)


− divcurl

wg (s)+ l−2∑
j=0

vj (s)

⊗ vl−1 (s)

 .

Let us consider ψ0 ∈ C∞
c ((0,T)×O) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε) such that

it is equal to one in [t1 − ε/2, t2 + ε/2]×B(x0,ρ+ ε/2). Let us denote by ω∗
l = ωlψ0 ∈

Lp(0,T;Lql(R2)) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε), then ω∗
l is a distributional solu-

tion in (0,T)×R2 of

∂tω
∗
l =∆ω∗

l + hl (4.6)
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with

hl = ∂tψ0ωl− 2∇ψ0 ·∇ωl−∆ψ0ωl−ψ0wl−1 ·∇ωl−1

−ψ0wl−1 ·∇

ωw+ l−2∑
j=0

ωj

−ψ0

wj+ l−2∑
j=0

vj

 ·∇ωl−1.

Due to lemma 4.1 and the inductive hypothesis

hl ∈ Lp
(
0,T;H−1,ql

(
R2

))
P− a.s.

Now we can argue as in Step 1 obtaining the claim. We omit the easy details.

Nowwe are in the position to apply similar ideas of [1, section 4.2] for the equation satisfied
by v. For the sake of completeness, we provide some details.

Lemma 4.3. Let assumption 1.1, r ∈ (2,4) and p⩾ 2N r
r−2 . Let (v0, . . . ,vN−1,v) be the (p, r)-

solution of (3.13) in the sense of definition 3.7. Then, for all 0< t1 ⩽ t2 < T, x0 ∈ O, ρ> 0
such that dist(B(x0,ρ),∂O)> 0,

v ∈ C
(
[t1, t2] ,H

3/2
(
B(x0,ρ);R2

))
P− a.s.

Proof. First let us observe that, since dist(B(x0,ρ),∂O)> 0, 0< t1 ⩽ t2 < T, we can find ε
small enough such that 0< t1 − 2ε < t1 ⩽ t2 < t2 + 2ε < T, dist(B(x0,ρ+ 2ε),∂O)> 0. To
simplify the notation let us call

ṽ= w+
N−1∑
j=0

vj, ω̃ = curl ṽ.

As described in lemma 3.5, arguing as in the proof of [31, theorem 7], we can extend the weak
formulation satisfied by v to time-dependent test functions φ ∈ C1([0,T];H)∩C([0,T];D(A))
obtaining that for each t ∈ [0,T]

〈v(t) ,φ(t)〉− 〈uin,φ(0)〉=
ˆ t

0
〈v(s) ,∂sφ(s)〉ds−

ˆ t

0
〈v(s) ,Aφ(s)〉 ds

+

ˆ t

0
b(v(s)+ ṽ(s) ,φ(s) ,v(s)) ds

+

ˆ t

0
b(v(s) ,φ(s) , ṽ(s)) ds

+

ˆ t

0
b(vN−1 (s) ,φ(s) , ṽ(s)) ds

+

ˆ t

0
b(ṽ(s)− vN−1 (s) ,φ(s) ,vN−1 (s)) ds P− a.s.
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Choosing φ =−∇⊥χ, χ ∈ C∞
c ((0,T)×O) in the weak formulation above and, for i ∈

{0, . . . ,N− 1}, denoting by

ω = curlv ∈ C
(
[0,T] ;H−1

)
∩L2 ((0,T)×O) ,

ωi = curlvi ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) ,

ωw = curlw ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) P− a.s.

it follows that

−
ˆ t

0
〈ω (s) ,∂sχ(s)〉+ 〈ω (s) ,∆χ(s)〉ds

=

ˆ t

0
〈curl(vN−1 (s)⊗ ṽ(s)) ,∇χ(s)〉ds

+

ˆ t

0
〈curl((ṽ(s)− vN−1 (s))⊗ vN−1 (s)) ,∇χ(s)〉ds

+

ˆ t

0
〈curl(v(s)⊗ ṽ(s)) ,∇χ(s)〉ds

+

ˆ t

0
〈curl(ṽ(s)⊗ v(s)) ,∇χ(s)〉ds

+

ˆ t

0
〈ω (s) ,v(s) ·∇χ(s)〉ds.

This means that ω is a distributional solution in (0,T)×O of the partial differential equation

∂tω+ v ·∇ω =∆ω− div(curl(vN−1 (s)⊗ ṽ(s))

+ curl(ṽ(s)− vN−1 (s)⊗ vN−1 (s))

+curl(ṽ(s)⊗ v(s))+ curl(v(s)⊗ ṽ(s))) .

Let us consider ψ ∈ C∞
c ((0,T)×O) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε) such that

it is equal to one in [t1 − ε/2, t2 + ε/2]×B(x0,ρ+ ε/2). Let us denote by ω∗ = ωψ ∈
L2((0,T)×R2) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε), then ω∗ is a distributional solution
in (0,T)×R2 of

∂tω
∗ =∆ω∗ − v ·∇ω∗ − ṽ ·∇ω∗ + h (4.7)

with

h= ∂tψω− 2∇ψ ·∇ω−∆ψω+ v ·∇ψω+ ṽ ·∇ψω−ψ (ṽ− vN−1) ·∇ωN−1

−ψ v ·∇ω̃−ψ vN−1 ·∇ω̃.

Due to lemma 4.1 and lemma 4.2 the terms

ṽ ·∇ψω−ψ (ṽ− vN−1) ·∇ωN−1 −ψ v ·∇ω̃
−ψ vN−1 ·∇ω̃ ∈ L2

(
(0,T)×R2

)
P− a.s.

Therefore h ∈ L2(0,T;H−1(R2))+ L1(0,T;L2(R2)) P− a.s. Then, arguing as in the first step
of the proof of [43, theorem 13.2], the fact that ω∗ is a distributional solution of (4.7) implies
that ω∗ ∈ C([0,T];L2(R2))∩L2(0,T;H1(R2)). Therefore
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ω ∈C
(
[t1 − ε/4, t2 + ε/4] ,L2 (B(x0,ρ+ ε/4))

)
∩L2

(
t1 − ε/4, t2 + ε/4,H1 (B(x0,ρ+ ε/4))

)
P− a.s.

Introducing φ ∈ C∞
c (B(x0,ρ+ ε/4)) equal to one in B(x0,ρ+ ε/8), since ω = curlv, then φv

satisfies

∆(φv) =∇⊥ωφ+∆φv+ 2∇φ ·∇v, (φv) |∂B(x0,ρ+ε/4) = 0. (4.8)

From the regularity of ω, by standard elliptic regularity theory (see for example [5]), it follows
thatφv ∈ C([t1 − ε/4, t2 + ε/4];H1(B(x0,ρ+ ε/4);R2))∩L2(t1 − ε/4, t2 + ε/4;H2(B(x0,ρ+
ε/4);R2)) P− a.s. Therefore, since φ≡ 1 on B(x0,ρ+ ε/8)

v ∈C
(
[t1 − ε/16, t2 + ε/16] ;H1

(
B(x0,ρ+ ε/16) ;R2

))
∩L2

(
t1 − ε/16, t2 + ε/16;H2

(
B(x0,ρ+ ε/16) ;R2

))
P− a.s. (4.9)

Let us now consider ψ̂ ∈ C∞
c ((t1 − ε/16, t2 + ε/16)×B(x0,ρ+ ε/16)) such that it is equal to

one in [t1 − ε/32, t2 + ε/32]×B(x0,ρ+ ε/32). Let us denote by ω̂ = ωψ̂ ∈ C([0,T];L2(R2))∩
L2(0,T;H1(R2)) supported in (t1 − ε/16, t2 + ε/16)×B(x0,ρ+ ε/16), then ω̂ is a distribu-
tional solution in (0,T)×R2 of

∂tω̂ =∆ω̂+ ĥ (4.10)

with

ĥ=−v ·∇ω̂− ṽ ·∇ω̂+ ∂tψ̂ω− 2∇ψ̂ ·∇ω−∆ψ̂ω+ v ·∇ψ̂ω+ ṽ ·∇ψ̂ω

− ψ̂ (ṽ− vN−1) ·∇ωN−1 − ψ̂v ·∇ω̃− ψ̂vN−1 ·∇ω̃.

By lemma 4.1, lemma 4.2 and relation (4.9) it follows that

ĥ ∈ L2
(
0,T;H−1/2

(
R2

))
P− a.s.

Therefore ω̂ ∈ C([0,T];H1/2(R2))∩L2(0,T;H3/2(R2)) P− a.s. and arguing as above

v ∈C
(
[t1 − ε/64, t2 + ε/64] ,H3/2

(
B(x0,r+ ε/64);R2

))
∩L2

(
t1 − ε/64, t2 + ε/64,H5/2

(
B(x0,ρ+ ε/64);R2

))
P− a.s.

This concludes the proof of lemma 4.3.

Corollary 4.4. Let assumption 1.1, r ∈ (2,4) and p⩾ 2N r
r−2 . Let (v0, . . . ,vN−1,v) be the (p, r)-

solution of (3.13) in the sense of definition 3.7. Then, for all 0< t1 ⩽ t2 < T, x0 ∈ O, ρ> 0 such
that dist(B(x0,ρ),∂O)> 0,

v ∈ C
(
[t1, t2] ;C

∞ (
B(x0,ρ);R2

))
P− a.s.

36



Nonlinearity 38 (2025) 075023 A Agresti et al

Proof. Since dist(B(x0,ρ),∂O)> 0, 0< t1 ⩽ t2 < Twe can find ε small enough such that 0<
t1 − 2ε < t1 ⩽ t2 < t2 + 2ε < T, dist(B(x0,ρ+ 2ε),∂O)> 0 and ψ ∈ C∞

c ((0,T)×O) suppor-
ted in [t1 − ε, t2 + ε]×B(x0,ρ+ ε) such that it is equal to one in [t1 + ε/2, t2 + ε/2]×B(x0,ρ+
ε/2). From lemma 4.3 and Sobolev embedding theorem we know that v ∈ C([t1 − ε, t2 +
ε];L∞(B(x0,ρ+ ε);R2)) P− a.s. Denoting, as in lemma 4.3 by

ṽ= w+
N−1∑
j=0

vj, ω̃ = curl ṽ,

ω = curlv ∈ C
(
[0,T] ;H−1

)
∩L2 ((0,T)×O) ,

ωi = curlvi ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) ,

ωw = curlw ∈ C([t1 − 2ε, t2 + 2ε] ,C∞ (B(x0,ρ+ 2ε))) P− a.s.

and ω∗ = ωψ ∈ L2((0,T)×R2) supported in [t1 − ε, t2 + ε]×B(x0,ρ+ ε), then, arguing as in
the proof of lemma 4.3, it follows that ω∗ is a distributional solution in (0,T)×B(x0,ρ+ ε)
of

∂tω
∗ =∆ω∗ + h̃ (4.11)

with

h̃=−v ·∇ω∗ − ṽ ·∇ω∗ + ∂tψω− 2∇ψ ·∇ω−∆ψω+ v ·∇ψω+ ṽ ·∇ψω
−ψ (ṽ− vN−1) ·∇ωN−1 −ψv ·∇ω̃−ψvN−1 ·∇ω̃.

From the regularity of ω, v, ω̃, ṽ, ωN−1,vN−1, then h̃ ∈ L2(t1 − ε, t2 + ε;H−1(B(x0,ρ+
ε))) P− a.s. By standard regularity theory for the heat equation, see for example Step 2 in
[43, theorem 13.1], a solution of (4.11) with h̃ ∈ L2(t1 − ε, t2 + ε;Hk−1(B(x0,ρ+ ε))), k ∈ N,
belongs to C([t1 − ε/2, t2 + ε/2];Hk(B(x0,ρ+ ε/2)))∩L2(t1 − ε/2, t2 + ε/2;Hk+1(B(x0,ρ+
ε/2))). Therefore

ω∗ ∈ C
(
[t1 − ε/2, t2 + ε/2] ;L2 (B(x0,ρ+ ε/2))

)
∩L2

(
t1 − ε/2, t2 + ε/2;H1 (B(x0,ρ+ ε/2))

)
P− a.s.

which implies

ω ∈ C
(
[t1 + ε/4, t2 − ε/4;L2 (B(x0,ρ+ ε/4))

)
∩L2

(
t1 − ε/4, t2 + ε/4;H1 (B(x0,ρ+ ε/4))

)
P− a.s.

since ψ ≡ 1 on (t1 − ε/2, t2 + ε/2)×B(x0,ρ+ ε/2). Considering now φ ∈ C∞
c (O) supported

on B(x0,ρ+ ε/4) such that φ≡ 1 on B(x0,ρ+ ε/8), since curlv= ω then φv satisfies

∆(φv) =∇⊥ωφ+∆φv+ 2∇φ ·∇v, (φv) |∂B(x0,ρ+ε/4) = 0. (4.12)

Since

∇⊥ωφ+∆φv+ 2∇φ ·∇v ∈ C
(
[t1 + ε/4, t2 − ε/4;H−1

(
B(x0,ρ+ ε/4) ;R2

))
∩L2

(
t1 − ε/4, t2 + ε/4;L2

(
B(x0,ρ+ ε/4) ;R2

))
P− a.s.,
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by standard elliptic regularity theory (see for example [5]),

φv ∈ C
(
[t1 + ε/4, t2 − ε/4;H1

(
B(x0,ρ+ ε/4) ;R2

))
∩L2

(
t1 − ε/4, t2 + ε/4;H2

(
B(x0,ρ+ ε/4) ;R2

))
P− a.s..

Since φ ≡ 1 on B(x0,ρ+ ε/8) then

v ∈ C
(
[t1 + ε/16, t2 − ε/16;H1 (B(x0,ρ+ ε/16))

)
∩L2

(
t1 − ε/16, t2 + ε/16;H2 (B(x0,ρ+ ε/16))

)
P− a.s.

Reiterating the argument as in Step 3 in [43, theorem 13.1] the claim follows.

Proof of theorem 1.3(2). The claim follows by lemma 4.1, lemma 4.2 and corollary 4.4 and a
localization argument. To begin, recall from the proof of theorem 1.3(1) in section 3.3 that there
exists a solution (1.2) on the time interval [0,T+ 1] and it is given by ũ= wg+

∑N−1
i=0 vi+ v

where (v0, . . . ,vN−1,v) is the (p, r)-solution to (3.13) on [0,T+ 1] for r< 2qH, N as in (3.11)
and p⩾ 2N r

r−2 . Then, by lemma 4.1, lemma 4.2, corollary 4.4 and a standard covering argu-
ment, for all t0 ∈ (0,T), O0 ⊂O such that dist(O0,∂O)> 0,

ũ ∈ C
(
[t0,T] ;C

∞ (
O0;R2

))
P− a.s. (4.13)

Now, let u be the unique solution (1.2) provided by theorem 1.3(1) on [0,T]. By uniqueness,
we have u= ũ|[0,T] and the conclusion follows from (4.13).
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