

Delft University of Technology

DECANTeR
DEteCtion of Anomalous outbouNd HTTP Traffic by Passive Application Fingerprinting
Bortolameotti, Riccardo; van Ede, Thijs; Caselli, Marco; Everts, Maarten; Hartel, Pieter; Hofstede, Rick;
Jonker, Willem; Peter, Andreas
DOI
10.1145/3134600.3134605
Publication date
2017
Document Version
Final published version
Published in
Proceedings - 33rd Annual Computer Security Applications Conference, ACSAC 2017

Citation (APA)
Bortolameotti, R., van Ede, T., Caselli, M., Everts, M., Hartel, P., Hofstede, R., Jonker, W., & Peter, A.
(2017). DECANTeR: DEteCtion of Anomalous outbouNd HTTP Traffic by Passive Application
Fingerprinting. In Proceedings - 33rd Annual Computer Security Applications Conference, ACSAC 2017
(Vol. Part F132521, pp. 373-386). ACM. https://doi.org/10.1145/3134600.3134605
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3134600.3134605
https://doi.org/10.1145/3134600.3134605

DECANTeR: DEteCtion of Anomalous outbouNd HTTP TRaffic
by Passive Application Fingerprinting

Riccardo Bortolameotti

University of Twente

r.bortolameotti@utwente.nl

Thijs van Ede

University of Twente

t.s.vanede@gmail.com

Marco Caselli

Siemens AG

marco.caselli@siemens.com

Maarten H. Everts

University of Twente and TNO

maarten.everts@tno.nl

Pieter Hartel

Delft University of Technology

pieter.hartel@tudelft.nl

Rick Hofstede

RedSocks Security B.V.

rick.hofstede@redsocks.nl

Willem Jonker

University of Twente

w.jonker@utwente.nl

Andreas Peter

University of Twente

a.peter@utwente.nl

KEYWORDS
Anomaly Detection, Data Exfiltration, Data Leakage, Application

Fingerprinting, Network Security

ACM Reference Format:
Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Maarten H. Everts,

Pieter Hartel, Rick Hofstede, Willem Jonker, and Andreas Peter. 2017. DE-

CANTeR: DEteCtion of Anomalous outbouNd HTTP TRaffic by Passive

Application Fingerprinting. In Proceedings of ACSAC 2017. ACM, New York,

NY, USA, 14 pages.

https://doi.org/10.1145/3134600.3134605

Abstract
We present DECANTeR, a system to detect anomalous outbound

HTTP communication, which passively extracts fingerprints for
each application running on a monitored host. The goal of our

system is to detect unknown malware and backdoor communica-

tion indicated by unknown fingerprints extracted from a host’s

network traffic. We evaluate a prototype with realistic data from

an international organization and datasets composed of malicious

traffic. We show that our system achieves a false positive rate of

0.9% for 441 monitored host machines, an average detection rate

of 97.7%, and that it cannot be evaded by malware using simple

evasion techniques such as using known browser user agent val-

ues. We compare our solution with DUMONT [24], the current

state-of-the-art IDS which detects HTTP covert communication

channels by focusing on benign HTTP traffic. The results show

that DECANTeR outperforms DUMONT in terms of detection rate,

false positive rate, and even evasion-resistance. Finally, DECANTeR

detects 96.8% of information stealers in our dataset, which shows

its potential to detect data exfiltration.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACSAC 2017, December 4–8, 2017, Orlando, FL, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5345-8/17/12.
https://doi.org/10.1145/3134600.3134605

1 INTRODUCTION
The latest Verizon Data Breach Investigation Report [31] has shown

once again that enterprises across all industries are victim of cyber-

attacks. The majority of these attacks is caused by external actors,

who are increasingly using malware to exfiltrate data (e.g., steal

credentials), spyware to gather information from the victim, and

backdoors to communicate with their victims [31]. This highlights

the need to identify anomalous outbound traffic.

Most of current network security devices use malware character-

istics to identify malicious communication. Predominantly, this is

achieved in two different ways. Signature-based techniques rely on

a dataset of known malware samples and they extract known pat-

terns that characterize the malware. These techniques can also be

automated, generating signatures from clusters of malware [20–22].

The difference compared to classic signatures is that automatically

generated signatures are more robust against malware variants,

because they encode certain traffic characteristics shared by one or

more sets of malware. This technique works because much malware

shares pieces of the same code. The second category of techniques

is anomaly-based detection. The main goal is to create a network

traffic model based on a set of features that characterizes a specific

threat, such as botnets [4, 10, 11] or web attacks [16]. Most of the

related work belongs to a subcategory of anomaly detection, that

we refer to as threat-specific anomaly detection, because all these

works either create models trained with malicious data, or focus

on specific threats identifiable by specific patterns.

These techniques are the core part of security tools available

today, and they have been successful in identifying infected hosts

within networks. However, there are two problems with these tech-

niques. Firstly, classifiers or signatures generated based on a set of

malware cannot identify new, unknownmalware that does not have

commonalities with that set. Secondly, there are certain threats,

such as data exfiltration or generic backdoors, that are very hard to

model due to a lack of clear patterns. For instance, data exfiltration

can be an obfuscated transmission of a database in small chunks

within hours, or a cryptographic key pair within a single request.

To tackle these issues, researchers have proposed anomaly-based

detection approaches that generate models only from the benign

373

https://doi.org/10.1145/3134600.3134605
https://doi.org/10.1145/3134600.3134605

network data of each specific machine [5, 24]. We refer to this cat-

egory as host-specific anomaly detection, which differs from the

commonly known term ‘host-based’ used for techniques that an-

alyze the internal state of a machine. Unfortunately, the existing

approaches do not provide strong detection performance in realistic

scenarios, because they are either easy to evade, or they do not

adapt to the host behavioral changes over time, or they trigger too

many false positives (FPs).

In this work, we propose DECANTeR, a system that uses a pas-
sive application fingerprinting technique to model benign traffic

only, and hence not relying on any malicious sample. DECANTeR,

for each monitored host, passively generates fingerprints for each
application communicating from the host. The fingerprints are com-

posed of different HTTP request features that describe the network

behavior of an application. Our solution uses a hybrid approach,

since the set of features for fingerprints is dynamically adapted to

the type of the application, and the content of the features repre-

sents static patterns extracted from the traffic. The intuition is that

hosts are characterized by a set of installed applications. There-

fore, if malware runs on the host it may generate new fingerprints

that show different patterns from those representing host applica-

tions. We have evaluated DECANTeR with different datasets—one

of which contained traffic of an international organization—and

we have compared the results with the current state of the art solu-

tion DUMONT [24], showing a clear improvement in the detection

performance.

We have chosen to focus on HTTP traffic, since it is a commonly

used protocol by malware [28, 34]. We discuss this choice in more

detail in Section 2. The novelty of this work lies in passively mod-

eling the benign behavior by identifying different HTTP-based

applications of a host from its network traffic, and use these mod-

els to identify anomalous behavior in the host communication. In

summary, we make the following contributions:

• Wepresent DECANTeR, a solution to detect outbound anoma-

lous HTTP connections, which is based on a passive ap-
plication fingerprinting technique. Our approach automati-

cally generates fingerprints from network traffic, identify-

ing anomalous communications from the monitored hosts.

We also discuss how DECANTeR can adapt to behavioral

changes of a host over time.

• We have implemented prototypes of DECANTeR and DU-

MONT [24] in Python, the current state of the art regard-

ing host-specific anomaly detection. We have evaluated and

compared them with different datasets. We show that our ap-

proach provides better detection performance and is harder

to evade.

• We make publicly available both the dataset of data exfiltra-

tion malware samples, that we used in our research, and the

implementations of DECANTeR and DUMONT.

2 SYSTEM AND THREAT MODEL
We consider a scenario where an enterprise monitors the network

traffic of its hosts by routing all traffic through a network monitor

that cannot be bypassed. We assume that the network monitor can-

not be compromised by an attacker. This is a common assumption

because access to the monitor is assumed to be restricted. We also

assume there is a security operator that analyzes the alerts pro-

duced by the network monitor. The attacker can, however, infect

one or more enterprise monitored hosts with malware.

We assume the malware uses HTTP to communicate over the

network. We focus on HTTP traffic mainly for two reasons: 1) a

large majority of malware uses HTTP [28, 34], either to commu-

nicate with their C&C server or to exfiltrate data, because it can

camouflage within benign traffic and avoid detection; 2) many en-

terprise firewalls implement strict filtering rules that block non-web

traffic, which forces malware to avoid customized protocols and to

use HTTP or HTTPS. Moreover, many enterprises deploy TLS man-

in-the-middle (TLS-MITM) proxies in their network [8]. This makes

our approach applicable also to HTTPS-based malware, although

it is not an optimal solution due to security and privacy concerns.

HTTPS-based malware with certificate pinning capabilities that

decides not to communicate if it detects a man-in-the-middle at-

tempt, will fail to run in enterprise networks with similar settings.

Lastly, HTTP is also used as a protocol for data exfiltration because

large quantities of data blend in with the vast amount of benign

HTTP data. This makes the detection of data exfiltration extremely

challenging for signature-based approaches, especially if the mal-

ware obfuscates the data, in fact HTTP-based data exfiltration is

still considered an open problem. We assume that a malware can

transform data using any combination of compression, encoding

or encryption to hide the content.

3 OUR APPROACH
The intuition of our work is the following: all traffic generated by

a specific host is the consequence of network activities produced

by a set of applications A = {a1, . . . ,an } installed on the host.

Each application ai has specific network characteristics, and it

is possible to create a fingerprint Fai for each application. The

network traffic of a host H can then be defined as the union of

all application fingerprints: H =
⋃n
i=1 Fai . Malware is also an

application and is likely to have its own fingeprint. This also holds

in case of malicious add-in software (e.g., browser add-ons produce

a different fingerprint than the browser itself). Therefore, when the

malware infects the host and communicates with the outside world,

it should be possible to distinguish its traffic because it should differ

from the set of benign applications A installed on that host.

Although the intuition seems straightforward, there are several

challenges to address. Traditional fingerprinting solutions create

fingerprints from offline and often complete datasets, where an

application is dynamically analyzed according to different inputs

in order to trigger all possible behavior embedded in it [30]. In

our setting this would require an analysis a priori of all existing

HTTP clients (not only browsers), which is unrealistic. Therefore,

one challenge is to generate fingerprints of applications from live

traffic, which is likely to be incomplete (due to limited capture

time) and heterogeneous (due to differing messages of the same

application over time). Secondly, the system should provide an

updating mechanism in case new fingerprints are created owing to

new software installed on the host. In this work we address both

challenges.

374

3.1 System Overview
DECANTeR has two different modes: training and testing. The
training mode is a setup phase, where the system for a fixed amount

of time passively learns for each host its set of fingerprints. Once the

training has finished, the testing phase starts. The testingmode runs

systematically everyX minutes, whereX is a timeout determined in

the system setup. During this period requests are grouped, labeled

and fingerprints are passively extracted from the network. When

the timeout occurs, DECANTeR determines whether any of the

newly extracted fingerprints are anomalous or not in comparison

with the trained fingerprints.

The training mode is divided into two modules: labeling and fin-

gerprint generation. The labeling module groups information from

HTTP requests in different clusters and labels each cluster with its

application type (i.e., browser or background). Then, the fingerprint
generation creates the fingerprint according to the application type

of the cluster and its HTTP requests. The outcome of the training

mode is a set of fingerprints for each monitored host. There are two

options to avoid malicious data in the training phase: the training

is done when the host is in a malware-free state (e.g., just formatted

or new); or the training phase excludes all the requests that are

labeled as malicious by external threat intelligence.

The testing mode has three modules: labeling, fingerprint gen-

eration and detection. The first two modules work the same as in

training mode. The labeling and the fingerprint generation mod-

ules extract the set of fingerprints seen in the network in the last

X minutes. Next, the detection module verifies through different

similarity checks whether these newly extracted fingerprints are

anomalous or not.

Our solution focuses on outgoing HTTP requests only, and more

specifically, GET and POST requests, as these are most commonly

used. However, our method can be easily extended to other request

types.

3.2 System Details
In this section we discuss the details of each module of DECANTeR.

3.2.1 Labeling. The labeling module takes as input HTTP re-

quests and clusters them according to their User-Agent header

field, because we want to isolate request generated from distinct

applications. Benign applications often use the User-Agent to be
recognized by web servers, so there is almost a guarantee that all

those requests have been generated by the same application, and

therefore it is a very efficient way of aggregating during traffic

analysis. Each cluster is then analyzed and a label is assigned to it

according to its application type. This module runs for a specific

timeout that we call aggregation time t . During testing mode, t is a
fixed time window of X minutes, while in training mode, t matches

the length of the training period. When t ends, each labeled cluster

is passed to the next module.

Application Types: Background vs. Browser.We have identified two

types of HTTP applications: background and browser. The back-
ground type represents those applications which traffic content and

destination are not directly influenced by user inputs (e.g., an an-

tivirus update query). These applications have predictable behavior,

and show fixed patterns in their communication. They often use

the same structure of HTTP headers, the communication is often

with the same set of domains, and the size and content of the re-

quests is rather similar. The browser type represents web browsers,
which generate HTTP traffic whose content is unpredictable and

dynamic because it directly depends on both user actions and the

specific visited web sites, especially considering the widespread

use of dynamic web content.

The Labeling Method. The goal of the labeling method is to distin-

guish between background and browser application clusters. We

achieve this by leveraging the dynamic behavior of browser traffic.

For example, when a user visits a website, the browser generates a

request for a web page (usually HTML). Once the HTML page has

been downloaded, the browser generates additional HTTP requests

to retrieve extra information such as images, scripts, CSS and others.

This information is needed to properly render the webpage. This

behavior is unique to browsers, and it is not present in background

applications, therefore it can be used to distinguish clusters from

these two application types.

Several researchers have already proposed some solutions [17, 32,

35] to encode the dynamic behavior of a browser into a graph data

structure known as Referrer Graph. Nonetheless, none of them are

directly applicable to our setting. ReSurf [32] and ClickMiner [17]

focus on reconstructing the user browsing activities from network

traffic into a graph by connecting all requests that have been gen-

erated by user input, and consequently discarding all the other

requests. The Triggering Relation Graph (TGR) [35] connects re-

quests to user input in order to detect stealthy malware activities

(i.e., identified by disconnected nodes). User input is collected by

an agent hooking browser functions. The TGR approach cannot

be used because it requires access to the host, which is outside of

our system model. The ClickMiner approach could be used, but

processing all servers responses would be too resource demanding

for live traffic analysis. Additionally, DECANTeR needs to identify

all requests generated from the browser and not only from the user,

as ReSurf and ClickMiner do. For these reasons, we introduce a

new approach to generate a Referrer Graph (see Appendix A.2),

introducing the concept of head nodes.
Figure 1 shows an overview of the labeling method. For each

request we check based on the CONTENT-TYPE header if it accepts
HTML, javascript, CSS or flash content. If so, we consider it as a head
node. A head node is a request that may lead to the generation of

other requests. Once we have identified all head nodes in a cluster,

we link to them all requests that they have spawned; thereby a

graph is created. Requests are linked to head nodes if their REFERER
or ORIGIN domain value matches with the HOST value of the head
node. Head nodes may spawn other head nodes. If at least one graph

is present, the connected nodes are moved to a new cluster, which

is labeled as browser. The algorithm is depicted in Algorithm 2

in Appendix A.2. Disconnected nodes are further analyzed by an

exfiltration filter (Algorithm 3 in Appendix A.2), because we want

to check if there are hidden malicious request exfiltrating data with

similar header values to the host’s browser. Firstly, the exfiltration

filter marks all the disconnected requests that are POST or GETwith

parameters. Secondly, it looks for repeating requests by aggregating

all requests with the same URI (without parameters), and verifying

that their header fields and values are similar over time. All requests

375

HTTP DATA
Aggregation
In Clusters

1

...

n

Labeling the ith cluster

A) B) <browser>

<background>

<background>

Exfiltration filter

Labelled clusters

Figure 1: Overview of different cases for the DECANTeR labeling method. A) represents the case of a background application
cluster. B) represents the case of a browser application cluster, where two requests are considered suspicious of exfiltrating
data and not being a browser. In the figure, each circle represents a request. Black circles are head nodes, outlined circles are
requests spawned by head nodes, dashed circles are disconnected nodes, and dashed circles with a pattern are requests that
may exfiltrate data.

that are both POST or GET with parameters and repeating over

time, are considered as background requests and they are inserted

into a new cluster. The other disconnected nodes are inserted in

the browser cluster. In case no nodes are connected, we check if

the disconnected nodes connect to the graph of the previous time

slot t − 1. This is needed because requests may be spawned by

the head node between the end of one slot, and the beginning of

another. If they connect to the previous node, we continue as we

discussed above. Otherwise, we label all nodes in the cluster as

background. Essentially, this labeling procedure identifies browser

and background clusters, and it identifies suspicious background

traffic that is hiding within browser traffic.

3.2.2 Fingerprint Generation. This module takes as input the

labeled clusters from the labeling module, and for each cluster it

generates a fingerprint by extracting a specific set of features, which

changes according to the cluster label. We inspect each request in

the cluster and we extract the following features:

(1) Host: the set of domains that are stored in the HTTP field

Host. More specifically, we consider only the top and sec-

ond level domains. Intuition: we have observed that many

applications, which often operate as background services,

mostly communicate with the same set of domains.

(2) Constant Header Fields: the set of header fields always present
in the cluster requests. Intuition: many applications, espe-

cially non-browser applications, systematically use a fixed

set of header fields for each request they generate, making

it a unique characteristic. This feature is not new, but previ-

ously it was used to model malicious communication [18],

while we use it to model benign software communication.

(3) Average Size: the average size of an HTTP request, computed

from the sizes of all HTTP requests (including both header

and body size). Intuition: although the content may vary per

request, some applications often generate requests of very

similar sizes, especially when they are generated systemati-

cally.

(4) User Agent: the string of the request field User-Agent. Intu-
ition: this value is often unique for each benign application.

(5) Language: a set of string values present in the Accept -

Language HTTP field. Intuition: web browsers use this field
to advertise which natural languages they prefer in theHTTP

response. This field characterizes not only the instance of

the browser, but also the user settings.

(6) Outgoing Information: a close approximation of the total

amount of information transmitted by all the requests be-

longing to the cluster. This feature is used only during testing

phase. Intuition: we want to keep track of how much infor-

mation the requests within a cluster have transmitted.

It has been already shown that methods relying on single fea-

tures, such as the User-Agent string, are not effective [15]. There-

fore, we want to create fingerprints that rely on several characteris-

tics of an application network traffic. So, even if the malware makes

the right guess of User-Agent, we can still identify the malicious

fingerprint as anomalous because the other features may not match

with the real application fingerprint.

Outgoing Information. The way the amount of information is cal-

culated is relevant, especially for the case of data exfiltration. If

an application periodically generates HTTP requests that always

have the exact same content (e.g., antivirus requesting updates), the

amount of outgoing information should be the only information

contained in the first request. Instead, if an attacker exfiltrates a

data item through several HTTP requests, those requests should

contain different information, and the amount of outgoing infor-

mation should be as close as possible to original the item. A naïve

approach that quantifies the outgoing information by summing

the size of HTTP requests would fail to address these two cases,

because it would miss the content differences between requests.

Therefore, we introduce a new method to compute a more pre-

cise amount of outgoing information (OI). Given a set of requests

REQ
1
. . . REQn in cluster i ,

OIi = size(REQ
1
) +

n∑
i=2

LevenshteinDist(REQi , REQi−1).

The intuition behind it is that the content of the first request should

be considered new information, while the next requests add new

information only if they contain new (different) data than their

prior request. The full algorithm and its explanation can be found

in Appendix A.1.

Different Set of Features for Different Types. The traffic patterns of

background and browser applications are almost poles apart. This

376

diversity is the main reason why we decided to have a different

set of features to represent the fingerprints of these two types.

Tailoring the set of features according to the characteristics of

an application and its type, strengthens the fingerprint against

malicious emulation attempts.

We model background applications using the following features:

Host (1), Constant Header Fields (2), Average Size (3), User-Agent (4)
and Outgoing Information (6). We model browser applications by
inspecting the User-Agent (4), Language (5) and Outgoing Infor-
mation (6). These features capture fixed communication patterns

that are characteristics of background and browser applications,

respectively.

3.2.3 Detection. The detection module takes as input a set of

application fingerprints Ftest = {Fa1 , . . . , Fan }. Each fingerprint

Fai is compared against the fingerprints generated during the train-

ing mode Ftrain = {Fb1 , . . . , Fbz }. The comparison is done by

computing specific similarity functions, which are application-type

dependent. In case Fai is not similar to any of the fingerprints in

Ftrain, DECANTeR considers Fai as a new application. Once a new

application is found, DECANTeR verifies if the new fingerprint is

a software update (see Section 3.2.4). If Fai is not an update, an

alert is raised if one of these two conditions are satisfied: 1) the

amount of outgoing information of Fai is above a threshold σ , or 2)
the user-agent in Fai resembles a browser user-agent string. 2) is

checked by simply verifying if strings such as ‘Firefox’, ‘Chrome’,

etc. are in the user-agent string.

The detection checks 1) and 2) are used for the following reasons:

with 1) we want to know if new applications on the machine are

transmitting too much data over the Internet. This may be a sign of

a malware installed on the hosts that starts exfiltrating data; with

2) we want to identify those applications that are trying to imitate

a browser. This check is based on a common malware behavior,

which tries to use user-agent strings of known browsers to hide

themselves [23, 34]. Therefore, new browser-looking fingerprints

should be considered as anomalies.

3.2.4 Fingerprint Updates. When the detection module finds

a new application, it is possible that a false positive is triggered.

This can happen for different reasons: a new application has been

installed, the application did not communicate during the training

phase, or an existing application has been updated. These are events

that may happen over time during live monitoring, therefore it is

very important that DECANTeR learns from its mistakes.

Common browsers, such as Chrome, often update themselves

without user interaction.When a browser is updated, its User-Agent
string changes, leading to a new different fingerprint. DECANTeR

addresses this issue by verifying for every new fingerprint if the

User-Agent string is similar to any of the existing fingerprints.

DECANTeR computes the edit distance between the two strings,

it divides the outcome with the length of longest string, and it

obtains a final value between 0 and 1. If the value is smaller than

0.1, DECANTeR consider the strings to be similar. We have deter-

mined this threshold empirically. Therefore, only if a small part

of the string changes, they are considered similar (e.g. increased

software version). If the strings are similar, DECANTeR runs the

similarity functions (again) according to its type, and it automati-

cally assigns the maximum score for similarity function s4, which is

the similarity function for the user-agent feature (see Appendix B).

If the fingerprints are considered similar, the older fingerprint is

updated with the new information. The other main causes of false

positives are the installation of new software, and software that

did not communicate during the training mode. In these cases, DE-

CANTeR learns with the help of the security operator. Once he

flags an alert as a false positive, DECANTeR can simply add the

flagged fingerprint in its pool of trained fingerprints. This method

of updating is computationally efficient, because DECANTeR only

needs to add an element into a set.

3.2.5 Background Similarity Function. A fingerprint is repre-

sented by a set of features. Let us consider Fa and Fb to be two

background application fingerprints generated in Ftest and Ftrain,
respectively. Fa and Fb have the same label. The background sim-

ilarity function verifies whether Fa and Fb are representing the

traffic of the same application or not. The function is defined as

s
back
(Fa , Fb) =

4∑
i=1

si (Fai , Fbi),

where si represents a function that checks the similarity of the ith
feature (see Section 3.2.2). Fa and Fb are considered similar if and

only if s
back
(Fa , Fb) ≥ α , where α is the similarity threshold for

s
back

.

Function s1 assigns 1 point if all the Host domains visited by Fa
were also seen by Fb , and 0 otherwise. We require all domains to be

present because background applications often talk with the same

set of domains. If the domain set differs, it might be an indication

that the two fingerprints are not representing the same application.

Function s2 assigns 1 point if the Constant Header Fields found
in Fa traffic matches those in Fb , 0.5 if they are a superset of the

headers of Fb , and 0 otherwise. HTTP headers are often repeated in

background applications requests. However, sometimes the same

application generates requests with additional header fields. This

case is addressed giving half of the similarity points. In case any of

the header fields observed during training phase is not present, the

fingerprints may not represent the same application. Function s3
assigns 1 point if the absolute difference between Fa and Fb—the

Average Size—is lower than ϵ , where ϵ =
Fb

3

3
. If it is lower than

2ϵ , 0.5 and 0 otherwise. An exact match is almost impossible to

find. Therefore, we use two different intervals that depend on ϵ ,
which represents an error rate, so we address the case where the

average size may have changed due to some dynamic properties

of the application communication. If the average size is not within

the intervals, the fingerprints are likely not generated by the same

application. Function s4 assigns 1 point if the User-Agent of the two
fingerprints matches, and 0 otherwise. In case there is no match,

applications are likely different. An overview of these functions is

depicted in Appendix B.

These functions describe patterns that we have observed on real

traffic and are tailored to some HTTP characteristics. Through the

combination of these four features it is possible to correctly iden-

tify the fingerprints sharing the same applications despite small

changes in behavior, for example a change in User-Agent or com-

munication with a different domain. The ‘similarity threshold’ α
also plays an important role, because it guarantees a certain flex-

ibility. From our empirical evaluation, α = 2.5 is the best value

377

that allows us to match different fingerprints from the same appli-

cations, and to distinguish them from those of other applications.

Such threshold makes sure that a fingerprint should match with

at least three features. The 0.5 is given by a partial match of the

constant header features. Lower scores would match fingerprints

that do not represent the same application, because they may share

the same headers and size, but they communicate with completely

different services (e.g., using distinct hosts and user-agents). Higher

values do not guarantee flexibility towards changes in the requests.

This can be a problem when fingerprints are trained on little data,

which contains only a specific subset of the requests generated by

the application.

3.2.6 Browser Similarity Function. The browser similarity func-

tion is easy to compute, because there are only two features to

evaluate:

s
brow
(Fa , Fb) = s4(Fa4 , Fb4) + s5(Fa5 , Fb5)

where s4 is the same as in the background setting. Function s5
assigns 1 point if the Language of the two fingerprints matches,

and 0 otherwise.

Fingerprints Fa and Fb are considered similar if and only if

s
brow
(Fa , Fb) = β , where β is the similarity threshold for s

brow
. For

browsers both features should exactly match, thus β = 2. A lower

β would result in a more permissive check, allowing one of the two

features to not match, which would lead in an easier evasion for

the attacker.

4 EVALUATION
In this section we describe the datasets we used to evaluate DE-

CANTeR. We discuss how the main system parameters aggregation

time t and threshold σ are chosen. We evaluate the detection per-

formance of DECANTeR and compare it with DUMONT [24]. We

have implemented a Python version of DECANTeR and DUMONT
1
,

because its original implementation was not available. In this eval-

uation, we consider alerts triggered by malware to be true positive,

while false positives are those alerts triggered by benign software.

4.1 Datasets
4.1.1 User Dataset (UD). We have collected data from 9 re-

searcher machines at an international university. An overview of

the dataset is shown in Appendix C. We used real data to avoid

possible biases by capturing data in a lab (e.g., a fixed set of installed

applications). The collection of this data is highly privacy sensitive,

because it contains all web activities during working hours of the

researchers. The period of time of collection varies per user, as it

spans from three working days to a few weeks. The dataset con-

tains 123,766 HTTP requests and represents more than 493 hours

of network traffic
2
.

4.1.2 OrganizationDataset (OD). DECANTeR has been deployed

to an international organization monitoring outgoing HTTP traffic
3

on a network link with thousands of hosts. The traffic was inspected

using Bro [19], which created ad-hoc HTTP logs that have then

1
Both implementations are available at https://github.com/rbortolameotti/decanter

2
This research has been performed under strict guidance and formal approval by the

Ethics Committee of the Faculty of Computer Science at our university.

3
Traffic was filtered on destination port 80.

been processed by DECANTeR. From the organization, we have ob-

tained 307,053 fingerprints (representing 3,773,106 HTTP requests)

generated by DECANTeR for 441 partially self-managed hosts that

communicated for a period of a month: 291 employee workstations,

and 150 infrastructure machines.

4.1.3 Data Exfiltration Malware (DEM). We analyzed hundreds

of malware samples within a virtual machine (VM) for roughly

60 minutes per sample using Cuckoo
4
. In our VM, we have in-

stalled known software, stored account credentials for real services

(e.g., Gmail, LinkedIn), and placed some decoy documents of dif-

ferent format containing sensitive information, which we obtained

from Wikileaks. We have removed all network data samples that

generated less than 100 bytes of HTTP traffic. This resulted in 59

traffic malware samples known for their exfiltration capabilities.

The samples belong to 8 families of information-stealer malware:

iSpy, Shakti, FareIT, CosmicDuke, Ursnif, Pony, Dridex, and SpyEye.

The main reason why the number is low is because the (fresh) mal-

ware we evaluated was able to detect the VM, and therefore it did

not perform any communication. Despite the relatively low number

of samples, we believe this dataset can have an important value

for the community, because there are two requirements needed to

collect it that are not easy to fulfill for all researchers: 1) access

to fresh malware samples from specific malware families, because

(even few months) old malware may not be able to communicate

anymore, and 2) connect the VM to the Internet, which may not be

allowed due to risks the infrastructure may incur by running live

malware. The collection of this dataset has been approved by the

IT department, and the dataset will be public, together with both

implementations, to foster research on data exfiltration.

4.1.4 Ransomware (RAN). This dataset consists of ransomware

traffic. We obtained 290 pcaps from the authors of FSShield [7]
5
,

and the virtual machine used in their analysis. The VM is used to

label benign and malicious traffic (see Section 4.2). We removed

those pcaps that did not generated at least 100 bytes of HTTP

traffic, obtaining a total of 287 samples. These samples belong to

5 different families of ransomware: CryptoWall, CryptoDefense,

Critroni, TeslaCrypt, and Crowti.

4.2 Evaluation Setup
The UD, RAN, and DEM datasets are network traffic files (pcap).

Each file is analyzed with Bro [19] to generate a log file, which con-

tains the HTTP headers and additional metadata for each request.

The OD dataset is a set of log files.

We have labeled malicious and benign requests in our datasets

as follows. In UD, we have manually labeled requests as malicious if

they were showing user-agent values not matching any application

installed on the machine (e.g., iPhone user-agent on a Windows

machine). In RAN and DEM, we have generated network traffic

with the VMs (without running malware) and we labeled as benign

all requests that had same user-agent as the applications found

in the VMs traffic. The other requests are considered malicious,

including browser requests because we know that during the anal-

ysis only the malware could have used the browser to generate

4
https://cuckoosandbox.org/

5
The RAN dataset can be requested from the authors of [7].

378

https://cuckoosandbox.org/

traffic. We have manually labeled the OD dataset after analyzing

it with the help of external threat intelligence services
6
and with

indicators of compromise we have obtained from a professional

threat intelligence provider.

In all experiments with the UD dataset we have used the traffic of

the first working day for training and the rest has been used for test-

ing. The training mode—as any setup phase—is trusted, therefore

we manually checked if there were malicious fingerprints, and if so

we removed them. In the experiments with RAN and DEM we used

the VMs traffic generated without malware for training, and all

malicious samples are used for testing. In case of the OD dataset, we

have trained DECANTeR using the first week of traffic, and the rest

was used for testing. In our evaluations, we assume that DECANTeR

updates its fingerprints. Thus, if DECANTeR would raise a false

positive for five consecutive time slots, and these are identical to

each other, only the first is counted as a false positive and the rest is

considered true negatives. This represents the real scenario where

an operator flags the first alert as a false positive and DECANTeR

adds the new fingerprint to its trained set of fingerprints.

4.2.1 Parameter Selection. σ is the system parameter in the

detection module that decides whether to trigger an alert or not,

depending on the amount of new information generated by a finger-

print. We have evaluated the number of false positives (FP) σ would

raise on the UD according to different values. Figure 2 suggests that

the number of FPs is proportionally inverse to the threshold value.

A high threshold produces few FP. Obviously, a too high threshold

can also lead to a low detection of anomalous traffic. We suggest

σ = 1000 bytes, because the decrease of FP is less significant for

higher thresholds. Moreover, 1000 bytes is still a low value that

could detect an exfiltration of very small but sensitive data items

such as cryptographic keys (e.g., a .pem file with a 2048-bit RSA

key has a size of 1700 bytes).

Another relevant parameter of DECANTeR is the aggregation

time t during the testing mode. The advantages of a long detection

time are: the lower number of FP, because more requests are ag-

gregated in the same fingerprint; and an attacker, who wants to

remain undetected, must severely decrease its communication. If

we set t = 30 minutes and σ = 1000 bytes it means that the attacker

cannot transmit more than 1000 bytes within half an hour. The dis-

advantage is slow detection, because the detection is performed less

often and an attacker can transmit more data before it is detected. A

low detection time has the opposite advantages and disadvantages.

We have tested DECANTeR with σ = 1000 and three different t
values to understand the relation between t and the number of FP

triggered. We used t = 1, 10 and 30 minutes. The overall number of

FPs DECANTeR triggered was 116, 73, and 63 respectively. Showing

a clear relation between time and FP reduction. Both 10 and 30 min-

utes cases give an acceptable number of FP, however we consider

10 minutes a better tradeoff because it still provides enough time to

the operator to verify the alert, and it provides quicker detection. If

having low FPs is a necessity, 30 or more minutes as t values is a
better option. For the rest of the paper, we use t = 10 minutes and

σ = 1000 bytes.

6
We have used the information provided by ThreatCrowd (https://www.threatcrowd.

org/) and VirusTotal (https://virustotal.com/).

0

5

10

15

20

25

30

100 500 1000 2000

Fa
ls

e
Po

si
ti

ve
s

(C
o

u
n

t)

Threshold Size (bytes)

Figure 2: Represents the number of false positives generated
from the traffic of 9 users (i.e., UD dataset) for different val-
ues of σ , and aggregation time t = 10 minutes. Error bars
show the outliers.

4.2.2 Detection Performance. We have evaluated the detection

performance of DECANTeR against the UD, RAN, andDEMdatasets.

We have trained and testedDECANTeR for each dataset as discussed

in Section 4.2. The analysis evaluates the number of fingerprints

that are correctly classified (or not) by DECANTeR. Fingerprints are

labeled as malicious if they contain at least one request previously

labeled as malicious, otherwise they are considered benign. The

results are shown in Table 1.

In the UD dataset, DECANTeR detected 117 malicious finger-

prints for a specific user despite the use of a known antivirus soft-

ware. The user was infected by an adware, which explains the

presence of many different fingerprints. Many requests contained

distinct user-agent values (even mobile strings), header fields and

domains. Possibly, the malware wanted to emulate various requests,

as they were generated from distinct hosts, to increase the number

of visits (or clicks) to specific ads links. Although adware may not

seem very harmful, we know that they also have data exfiltration

capabilities [29]. The FNs were all unknown fingerprints, meaning

that they did not match any of the existing fingerprints. However,

DECANTeR did not trigger an alert because they transmitted fewer

bytes than the threshold σ (i.e., 1000 bytes) during the aggregation

period (i.e., in our evaluation is 10 minutes). Additionally, those

fingerprints did not have a user-agent value of a known browser,

which is the last check that triggers alerts in case of fingerprints

that transmit little data. In Section 5 we explain additional evasion

techniques that malware can use against DECANTeR, despite we

did not encounter many of them in our analyses. The FPs were

mainly caused by applications that were not fingerprinted during

training mode. For instance, traffic generated by a Windows VM on

a Linux host. Other FPs were triggered due to labeling ‘mistakes’,

where some browser requests were considered as background. This

mainly happened in case of web scripts, which do not reference to

previous requests and send out information through GET with pa-

rameters (or cookies), or OSCP POST requests. Nonetheless, when

DECANTeR is updated, it learns the background fingerprints of

these scripts, and next time they are triggered DECANTeR will not

raise a FP. Since we do not know the amount of malicious soft-

ware running on the infected host, we do not know the number of

malicious samples DECANTeR has detected.

379

https://www.threatcrowd.org/
https://www.threatcrowd.org/
https://virustotal.com/

Table 1: Detection performance for different datasets with
σ = 1000 and t = 10 minutes. Malware Detection indicates
the percentage of detected samples by DECANTeR. For the
classification performance, the values represent the number
of fingerprints classified as true positives (TP), false nega-
tives (FN), true negatives (TN) or false positives (FP). FPR
indicates the false positive rate FPR = F P

FP+T N , while TPR
indicates the true positive rate TPR = T P

T P+FN .

Dataset Malware
Detection

Classification Performance

TP FN TN FP FPR TPR

UD - 117 36 4291 73 1.6% 76.4%

RAN 98.6% 3348 438 4257 2 0% 88.4%

DEM 96.8% 237 67 24 1 4% 77.9%

In RAN and DEM datasets, DECANTeR classifies most of the

fingerprints correctly. DECANTeR on average detects 8 malicious

fingerprints out of 10 (see Table 1). Considering that a malicious

sample is successfully detected if at least one TP is triggered to the

operator, our system detected 98.6% and 96.8% of malicious sample

from the RAN and DEM dataset, respectively. The FPR for the DEM

dataset seems very high, but only 1 FP has been in fact triggered

by DECANTeR.

Similarly to the UD dataset, FNs are mostly caused by malware

that have fingerprints with low outgoing information. Moreover,

a few malware samples (i.e., Ursnif family
7
), which were success-

fully detected, generated additional browser-like traffic that was

not properly classified. The samples in question turned out to gen-

erate traffic that matched the browser traffic of our VM, because it

generated a Referrer Graph and it has been analyzed accordingly

by DECANTeR. Therefore, the communication was considered as a

FN. However, this was only noise created by the malware, which

communicated with its C&C through other requests that had dif-

ferent user agents and were not connected in any graph. This led

to the generation of background fingerprints that have been then

triggered by DECANTeR as anomalous, resulting in a successful

detection of the sample. Another technique used by other Ursnif

samples, was to exfiltrate data using ‘Microsoft Crypto API 6.3’ as

user-agent and exfiltrated the data (3000 bytes per request) through

a header field. This seemed to be a mimicking attempt. DECANTeR

detected this case as well, because the OS fingerprint for the crypto

API was version 6.1, the size of the fingerprints was around few

hundred bytes instead of thousands as for Ursnif, and the constant

headers were different.

4.2.3 Comparison with DUMONT. The closest host-specific re-
latedwork toDECANTeR areWebTap[5] andDUMONT [24]. In [24]

the authors have already compared these two solutions, showing

that WebTap suffers of a high false positive rate, and the detection

rate drops significantly in case malware would use simple evasion

techniques. Therefore, we compare DECANTeR with DUMONT.

DUMONT creates a one-class SVM from HTTP requests accord-

ing to 17 different numerical features that involve different metrics

7
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=

Win32/Ursnif

such as entropy, length of header fields, and temporal traffic charac-

teristics. During a testing phase, DUMONT verifies if the features

of each new requests are within a certain distance from the sphere

represented by the one-class SVM. Since the data used to evaluate

DUMONT was not available, and nor it was the implementation,

we have implemented it ourselves and we used our datasets for

the comparison. Our implementations takes as input only HTTP

headers, therefore DUMONT cannot use the entropy features for

HTTP POST. Considering that the number of POSTs in the network

are by far lower than GET requests, we do not consider this a rele-

vant issue. For each experiment, we have followed the procedure

discussed in [24], by calibrating the model with malicious data

(from both RAN and DEM datasets), and tested it with different

parameters (i.e., one-class SVM soft margin) to find a suitable ratio

of false positive and detection rate. In our results, we discuss two

different values used to compute the optimal soft margin: 0.1 that

triggers a low number of FPs, and 0.6 that gives a reasonable ratio

between FPs and TPs.

For a fair comparison we have evaluated the correct classifica-

tion of requests, in contrast to fingerprints since DUMONT works

only on requests. We considered for DECANTeR all requests in

malicious fingerprints to be malicious, and similarly for those la-

beled as benign. After all, fingerprints are abstractions of a group of

requests. The results are shown in Table 2. The first observation is

that the detection performance of DECANTeR are better than those

shown in Table 1. The different results between the two evaluations

are related to the distribution of requests across the fingerprints.

For example, for two fingerprints, one classified as TP containing 5

requests, and one FN with 1 request, the TPR becomes 0.83, while

if we consider only the fingerprints the TPR is 0.5. The second

observation is that DECANTeR clearly outperforms DUMONT in

all three detection aspects: FPR, TPR and Malware Detection (as

shown in the tables). One of the biggest differences lies in the de-

tection of malicious sample, where DECANTeR shows consistent

detection independently from the underlying malicious data, while

DUMONT detection strongly suffer this depedency.

The low detection performance of DUMONT is explainable by

the fact that many malicious requests are not structured (e.g., length

of header fields) much differently than benign requests, therefore

it likely misses those requests. DECANTeR overcomes this issue by

using semantic information and different features per application

type, leading to a higher specificity. A surprising result is the high

number of FPs in the UD dataset triggered by DUMONT. This may

be caused by two different behaviors. Firstly, the training set did not

contained all possible applications, so requests generated in testing

phase by VMs, new browsers, and other applications may have

influenced DUMONT. Secondly, many benign requests contain big

amount of data (e.g., COOKIE), which are bigger than average HTTP

requests. DECANTeR deals with these behaviors by adapting over

time through the update mechanism, and by modeling the traffic

according to its application type.

4.2.4 OD Dataset Analysis. DECANTeR detected 8 machines

with actual anomalous behavior. Half of these machines showed

traffic patterns known to be caused by malware according to differ-

ent sources. The other half has shown known anomalous patterns

related to advertisement websites, which suggests the presence of

380

https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Ursnif
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Ursnif

Table 2: Comparison between DECANTeR and DUMONT,
evaluated over our three datasets. We show the results for
DUMONT according to two different threshold, one (0.1)
that is conservative and tries to raise the least number of FPs,
and the other (0.6) that shows a better ratio FPs and TPs.

System Dataset Malware
Detection

Classification Performance

TP FN TN FP FPR TPR

UD - 928 51 90566 3378 3.5% 94.7%

DECANTeR RAN 98.6% 81910 1123 13520 10 0% 98.6%

DEM 96.8% 4887 2643 352 3 0.8% 65%

UD - 49 930 87003 6959 7.4% 5%

DUMONT .1 RAN 81.8% 17426 65607 13529 4 0% 20%

DEM 4% 20 7513 351 4 1% 0.2%

UD - 164 815 64824 29138 31% 16.7%

DUMONT .6 RAN 100% 81708 1325 1203 12330 91.1% 98.4%

DEM 40.5% 2688 4845 132 223 62.8% 35.6%

some type of adware, perhaps browser haijackers. Unfortunately,

we could not check directly the host machine to get further proofs.

In one case, DECANTeR has identified a malicious IP address be-

fore being blacklisted by VirusTotal. Overall the FPR
8
is 0.9%. The

specific FPR values per each machine category are: 1% for work-

stations and 0.3% for servers. These values are expected, because

workstations produce much more outgoing HTTP traffic.

4.2.5 The Evasion Test. As we know malware tries to imitate

browser user-agents strings [23, 34]. A malware can choose an

existing and valid browser user-agent or even copy the same as its

victim’s browser, by inspecting the OS (e.g., Windows Registry) or

by sniffing the network. We evaluated how DECANTeR performs

in case malware would use the same user-agent as its victim, and

even its language. A similar test was performed in [24]. We give the

malware the exact features needed to bypass our browser similarity

check. We have modified all malicious requests in the DEM and

RAN logs by substituting the original user-agent value with the

one of the VM browser, which in this case was the victim. We did

the same for the accept-language header, and if it was not present

we have injected it in the log. We have tested both DECANTeR

and DUMONT, and again for fair comparison we considered the

requests. The results shown in Table 3 ironically shows an increase

in detection for DECANTeR, even though one may expect a drop of

detection. The reason lies in the labeling method. Although part of

the content of the message is exactly the same as the real browser,

malicious requests are still labeled as background, because they do

not create a referrer graph. Moreover, since they all share the same

user agent, their amount of outgoing information adds up and it

always exceeds σ . The results also show that DECANTeR is more

robust than DUMONT against these simple evasion attempts.

5 EVASION
The evasion test has shown that DECANTeR is not easy to evade

with simple evasion techniques such as spoofing user agent or other

header values. However, this does not make DECANTeR impossible

to evade.

The first type of evasion is to exploit σ and t , by communicat-

ing little data in each time slot without triggering the threshold,

8
Also in this scenario we assume an operator is updating DECANTeR.

 Table 3: Evasion test against DECANTeR and DUMONT

System Dataset TPR Malware Detection

DECANTeR (requests) RAN 99.9% 100%

DEM 99.2% 100%

DUMONT .1 RAN 4.3% 25.6%

DEM 0.4% 5.5%

DUMONT .6 RAN 58.4% 100%

DEM 15.8% 62.1%

and using a non-browser user-agent string. This type evasion is

inherent in anomaly detection, because it relates to the thresholds

and timeouts used for detection. It still possible to reduce the risk

of FNs by reducing σ and t , however this could lead to a larger

number of FPs as well. Lastly, randomizing σ and t within a certain

range of values can make the system less predictable to the attacker,

and therefore may lead him to make mistakes that can cost him

the detection. Nonetheless, the attacker can still evade using the

lowest values of σ and t .
A malware can evade DECANTeR by mimicking the dynamic

behavior of a browser and bymodifying its user-agent and language

strings as the victim’s browser. These changes require malware to

evolve from the simple techniques they use today. If any of these two

conditions fails, the malware is likely to be detected either because

labeled as a background application, or because it would generate a

different fingerprint than the victim browsers. An example are the

Ursnif samples, where the malware generated browser traffic from

Firefox installed on the VM only to create noise and hide its real

C&C communication. However, the real malicious communication

did not show any dynamic pattern and did not have any shared

characteristics with the VM browser. Therefore, the communication

has been successfully detected despite the noise.

Another way of evading DECANTeR is to emulate an installed

background application. However, assuming the malware can spoof

the correct user agent and host values for the target application,

this evasion has two main disadvantages: 1) the malicious client

should adapt the constant headers of its request, which may create

compatibility issues with the server implementation; 2) the average

size of background application is often small, therefore to avoid

detection malware should also generate small requests. This slows

down possible data exfiltration, even though HTTP is used for its

capabilities of transfer a lot of data in short amount of time. An

example is again Ursnif samples that tried to emulate the HTTP

requests of the Microsoft Crypto API, but the headers, the average

size and the user-agents of the requests did not match the character-

istics of the Microsoft Crypto API version of the victim, therefore

it has been successfully detected.

A more advanced technique is to create a request with Referrer

field matching a head node request generated by the real browser. In

this case the malicious request would be connected to the graph and

it would be white-listed. This attack would bypass the main mecha-

nism of distinction between background and browser applications,

allowing the attacker to exfiltrate the data while camouflaging as

browser. However, this attack is quite advanced since the malware

should be able to monitor the network and to adapt its content

according to live traffic details.

381

Lastly, the attacker can try to poison the fingerprint update mech-

anism by convincing DECANTeR to update a benign fingerprint

with a malicious one. For example, the malware can start generating

HTTP requests with a user-agent similar to the victim browser, and

same language feature. This would trigger an update, and future

connections of the malware will not be detected. However, DE-

CANTeR can detect this by monitoring the old user-agent string

(before the update take place). In case DECANTeR detects requests

with the old user-agent, then a poisoning attack has been detected.

This works because, once it updates, benign software does not

switch back to the old value.

6 DISCUSSION
6.1 Fingerprinting Technique
A central component in DECANTeR is the Referrer Graph, which

tries to abstract the browser dynamics to distinguish between back-

ground and browser applications by leveraging the requests gener-

ated by browsers to download the website resources.

There are two situations that might be problematic for DE-

CANTeR, but in practice they are infrequent.

The first is when websites do not require further resources other

than the HTML itself, in which case a graph does not exist for

these requests. In case the browser has accessed only this ‘type’

of websites within t , DECANTeR would generate a background

fingerprint, and it would trigger an alert (i.e., FP) because, despite

the low outgoing information, the fingerprint has a known browser

user-agent. However, it is more likely that, within t , the browser
accesses also other websites with additional resources to download.

In this case, there would be at least one graph for the cluster, and

a browser label would be assigned to it. The disconnected nodes

(e.g., the requests to websites without extra downloadable content)

would be checked against the exfiltration filter (see Algorithm 3)

as discussed in Section 3.2.3. These requests probably do not show

signs of exfiltration, therefore they are just assigned to the cluster

previously labeled as browser.

The second problematic situationmay happenwhen non-browser
applications use the REFERER field (e.g., cloud storage or chat clients).
Do note that we did not find any example of such an application in

our analyses, probably because they were encapsulated in TLS and

we did not use a TLS proxy. In such cases a Referrer Graph would

be present and the application would be labeled as a browser, but

it will likely have a different fingerprint because, for example, the

user-agent will differ from the host browsers. This should not pose

a problem as the fingerprint would also be create in the training

phase, or updated after the first FP, which means that a tested ap-

plication is matched with this fingerprint. In case a browser is used

to upload data on a cloud storage service (e.g., Google Drive) or

a messaging service (e.g., Facebook Chat), DECANTeR generates

fingerprint that matches the browser fingerprint. This happens

because the presence of REFERER and ORIGIN fields generate a Re-

ferrer Graph for the cluster, and user-agent and language match

those of the browser. This can be checked using a tool that intercept

HTTP/HTTPS requests, such as Burp Suite
9
.

9
https://portswigger.net/burp/

6.2 Passive Application Fingerprinting
The detection evaluation has shown that DECANTeR is capable of

detecting malicious communication with high success rate, despite

being trained without malicious sample, while at the same time

producing a FPR of 1% and 1.6% on the OD (see Section 4.2.4) and

UD datasets (see Section 4.2.2), respectively. These results are a

consequence of the passive application fingerprinting technique

(PAF). Fingerprints are abstract representations of web requests

and they encode some semantic information about the connections.

These abstractions allow DECANTeR to classify sets of requests

correctly despite possible changes in their structure or content,

which are quite common in heterogeneous protocols such as HTTP.

Solutions such as DUMONT suffer such changes. An additional

benefit of PAF is the simple and intuitive mechanism it provides

for updating. This is essential in host-specific approaches, where

traffic may change over time.

DECANTeR can be considered as a significant step to bring

host-specific anomaly-based detection into practice. The results

have shown a great improvement with respect to the current state

of the art, and they have shown this approach can be practical.

At the current stage, we believe the best use of DECANTeR is

to monitor a subset of hosts, especially those that are known to

store sensitive data or to perform sensitive activities (e.g., board

members workstations, admins). DECANTeR can be improved in

many ways. For example, we could improve the labeling method or

the way fingerprints are compared and generated, which are still

in an experimental stage. Another idea would be to cross-check

background with browser profiles (or viceversa), but this would

also increase the risk of FNs, therefore we do not consider it as a

good option.

6.3 Use-case: Data Exfiltration
DECANTeR has detected 96.8% of data exfiltration malware and

also detected a tool specialized in data exfiltration (i.e., Data Exfil-

tration Toolkit)
10
. We believe DECANTeR is a good fit for detecting

data exfiltration because the detection works indepedently from

the content of the communication (i.e., payload), which is often

obfuscated by attackers (e.g., using steganography [36]) as main

mechanism to avoid detection over the network.

From the network perspective it is impossible to determine

whether a specific communication contains sensitive data when it is

obfuscated. This is the main reason why current solutions [2, 12, 14,

25–27] fail, as they try to identify and stop sensitive data when it is

transmitted over the network, but data has been already obfuscated

and it cannot be identified. Approaches that try to detect anomalous

encrypted outbound communication [1, 13] also fail, because they

rely on the high entropy values of encryption or compression. How-

ever, when malware uses encoding after encryption, the entropy

drastically drops and the exfiltration is not detected. An approach

that quantifies the amount of leaked information seems more appro-

priate [6]. DECANTeR combines a leakage quantification approach

with application fingerprinting to detect new software exfiltrating

data. This combination has shown good performance by detecting

96.8% of info stealers samples, where the current state of the art

host-specific approach reached only 40%.

10
https://github.com/sensepost/DET

382

https://github.com/sensepost/DET

7 RELATEDWORK
In this section we discuss the related work regarding threat-specific

and host-specific approaches.

Threat-Specific Approaches. Automated Signature Generation
fromMalware Clusters: researchers have proposed several approaches
to cluster malware samples according to network features, and

generate signatures from these clusters [18, 20–22]. Rafique and

Caballero proposed FIRMA [22], a tool that aggregates malware

samples into families based on similar protocol (e.g., HTTP, SMTP,

and IRC) features and generates a set of network signatures for

each family. Perdisci et al. [20, 21] proposed a technique that clus-

ters malware according to URL similarities, and from the URL it

extracts subtokens that are used to identify malicious communica-

tions on the network. Nelms et al. [18] present a technique based

on adaptive templates that are created from observations of known

botnet traffic, which can be used to detect bots on live networks

and even identify to what family they belong. Zand et al. [33] pro-

pose a method to generate signatures by identifying and ranking

the most relevant and frequent strings in malicious traffic. Zarras

et al. [34] propose BOTHOUND, a system that extracts all header

chains (i.e., set of header fields in an HTTP request) for benign and

malicious software, and malicious requests are identified if their

header chains are different than known benign software, or if they

match, but their HTTP template matches an existing malicious

template. DECANTeR differs from these techniques because it does

not create signatures from sets of known malware samples.

Anomaly-based Threat-specific Detection: several research studies

have explored anomaly-based techniques to identify botnet traffic

in a network [4, 10, 11]. These techniques leverage specific network

patterns shown by botnets and use malicious samples to train their

detection models. For instance, multiple hosts within a network

infected by the same bot have common communication patterns.

Bartos et al. [3] build a classifier that recognizes malicious behavior

and is optimized to be invariant to malware behavioral changes.

However, this approach also requires malware during the training

of the classifier. Many other studies have proposed anomaly-based

detection techniques that analyze different features that can rep-

resent the behavior of a specific threat. It is applied in the context

of web-attacks [16], distributed denial of services [9], encrypted

data exfiltration [13], and others. Although we also use an anomaly-

based detection approach, we use neither particular features to

detect specific threats, nor known malicious samples to train our

models. DECANTeR focuses on modeling only benign behavior,

and it identifies malicious traffic by observing anomalies.

Host-Specific Approaches. This category contains approaches

that model only the normal network behavior generated by a host,

without additional knowledge of threats or known malware sam-

ples. In [35], Zhang et al. propose a user-intention based approach

to detect communication of stealth malware. The proposed method

monitors network and host activities, and it creates a triggering

relation graph (TRG), a graph that binds a set of HTTP requests

to the user action that has triggered them. This approach detects

malware because its HTTP traffic does not correlate with user ac-

tivities. However, it uses host-based information (e.g., process id),

which is outside our system model. WebTap [5] is a tool that creates

a statistical model of the browsing behavior of a user according to

different features (e.g., header information, bandwidth, request size,

and request regularity).WebTap uses this information to identify un-

known HTTP traffic and to detect covert communication. However,

it has a high false positive rate of 12% because the tool only models

browser traffic, so background traffic is treated as anomalous. This

makes WebTap not practical. Schwenk and Rieck proposed DU-

MONT [24], a system to detect covert communication over HTTP.

The general approach is similar to WebTap, however they use a

one-class SVM classifier to build the HTTP-traffic model of users.

DUMONT uses several numerical features of HTTP headers only,

with the ultimate goal of characterizing the ‘average’ HTTP request

for each use. The detection performance is worse (89.3% average

detection rate) than WebTap, however DUMONT generates a much

lower number of false positives, and it suffers less simple evasion

attempts. DECANTeR differs from WebTap and DUMONT because

it models benign traffic with a new technique: passive application

fingerprinting. Moreover, in contrast with WebTap and DUMONT,

DECANTeR provides some mechanisms to adapt fingerprints to

changes of hosts behavior.

8 CONCLUSION
In this work we have shown how HTTP-based applications can be

fingerprinted and used to detect anomalous communications. This

technique can be usedwithout using malicious data during the train-

ing phase, therefore it avoids any possible bias from specific mal-

ware samples. Moreover, the proposed technique detects anomalous

communication independently from their payload, thereby being

a promising solution for data exfiltration and unknown malware.

This distinguishes our work from most of the existing solutions,

which often model network traffic to detect specific attacks or mal-

ware behavior (extracted from clusters of known malware), or tries

to identify sensitive data within the network payload. We have

implemented this technique in a system called DECANTeR, and

we have evaluated it, showing better detection performance than

other state of the art solutions.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers for their

insightful comments on the work. A special thanks to Geert Jan

Laanstra, Jeroen van Ingen, Reza Rafati and Adrianus Warmen-

hoven. This work was supported by the THeCS project as part of

the Dutch national program COMMIT/.

REFERENCES
[1] Areej Al-Bataineh and Gregory White. 2012. Analysis and detection of malicious

data exfiltration in web traffic. In 7th International Conference on Malicious and
Unwanted Software, MALWARE 2012, Fajardo, PR, USA, October 16-18, 2012. IEEE
Computer Society, 26–31.

[2] Sultan Alneyadi, Elankayer Sithirasenan, and Vallipuram Muthukkumarasamy.

2015. Detecting Data Semantic: A Data Leakage Prevention Approach. In 2015
IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Volume 1.
IEEE, 910–917.

[3] Karel Bartos, Michal Sofka, and Vojtech Franc. 2016. Optimized Invariant Rep-

resentation of Network Traffic for Detecting Unseen Malware Variants. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016. USENIX Association, 807–822.

[4] Leyla Bilge, Davide Balzarotti, William K. Robertson, Engin Kirda, and Christo-

pher Kruegel. 2012. Disclosure: Detecting Botnet Command and Control Servers

through Large-Scale NetFlow Analysis. In 28th Annual Computer Security Ap-
plications Conference, ACSAC 2012, Orlando, FL, USA, 3-7 December 2012. ACM,

129–138.

383

[5] Kevin Borders and Atul Prakash. 2004. Web Tap: Detecting Covert Web Traffic.

In Proceedings of the 11th ACM Conference on Computer and Communications
Security, CCS 2004, Washington, DC, USA, October 25-29, 2004. ACM, 110–120.

[6] Kevin Borders and Atul Prakash. 2009. Quantifying Information Leaks in Out-

bound Web Traffic. In 30th IEEE Symposium on Security and Privacy (S&P 2009),
17-20 May 2009, Oakland, California, USA. IEEE Computer Society, 129–140.

[7] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,

Alessandro Barenghi, Stefano Zanero, and Federico Maggi. 2016. ShieldFS: a

Self-Healing, Ransomware-aware Filesystem. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA,
December 5-9, 2016. ACM, 336–347.

[8] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie

Bursztein, Micheal Bailey, J. Alex Halderman, and Vern Paxson. 2017. The Security

Impact of HTTPS Interception. In Proceedings of the Network and Distributed
System Security Symposium, NDSS, San Diego, California, USA, 26th February - 1st
March, 2017. The Internet Society.

[9] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred.

2003. Statistical Approaches to DDoS Attack Detection and Response. In 3rd
DARPA Information Survivability Conference and Exposition (DISCEX-III 2003),
22-24 April 2003, Washington, DC, USA. IEEE Computer Society, 303.

[10] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. BotMiner:

Clustering Analysis of Network Traffic for Protocol and Structure-Independent

Botnet Detection. In Proceedings of the 17th USENIX Security Symposium, July
28-August 1, 2008, San Jose, CA, USA. USENIX Association, 139–154.

[11] Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. BotSniffer: Detecting Botnet

Command and Control Channels in Network Traffic. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2008, San Diego, CA, USA, 10th
February - 13th February 2008. The Internet Society.

[12] Michael Hart, Pratyusa K. Manadhata, and Rob Johnson. 2011. Text Classifica-

tion for Data Loss Prevention. In Privacy Enhancing Technologies - 11th Interna-
tional Symposium, PETS 2011, Waterloo, ON, Canada, July 27-29, 2011. Proceedings.
Springer, 18–37.

[13] Gaofeng He, Tao Zhang, Yuanyuan Ma, and Bingfeng Xu. 2014. A Novel Method

to Detect Encrypted Data Exfiltration. In Second International Conference on
Advanced Cloud and Big Data, CBD 2014, Huangshan, China, November 20-22,
2014. IEEE Computer Society, 240–246.

[14] Gilad Katz, Yuval Elovici, and Bracha Shapira. 2014. CoBAn: A Context-based

Model for Data Leakage Prevention. Information Sciences 262 (2014), 137–158.
[15] Nizar Kheir. 2012. Analyzing HTTP User Agent Anomalies for Malware Detec-

tion. In Data Privacy Management and Autonomous Spontaneous Security, 7th
International Workshop, DPM 2012, Pisa, Italy, September 13-14, 2012. Springer,
187–200.

[16] Christopher Krügel and Giovanni Vigna. 2003. Anomaly Detection of Web-

based Attacks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, Washington, DC, USA, October 27-30, 2003.
ACM, 251–261.

[17] Christopher Neasbitt, Roberto Perdisci, Kang Li, and Terry Nelms. 2014. Click-

Miner: Towards Forensic Reconstruction of User-Browser Interactions from

Network Traces. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. 1244–1255.

[18] Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. 2013. ExecScent: Mining

for New C&C Domains in Live Networks with Adaptive Control Protocol Tem-

plates. In Proceedings of the 22th USENIX Security Symposium, Washington, DC,
USA, August 14-16, 2013. USENIX Association, 589–604.

[19] Vern Paxson. 1999. Bro: a System for Detecting Network Intruders in Real-time.

Computer Networks 31, 23-24 (1999), 2435–2463.
[20] Roberto Perdisci, Davide Ariu, and Giorgio Giacinto. 2013. Scalable Fine-grained

Behavioral Clustering of HTTP-based Malware. Computer Networks 57, 2 (2013),
487–500.

[21] Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behavioral Clustering

of HTTP-Based Malware and Signature Generation Using Malicious Network

Traces. In Proceedings of the 7th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA. USENIX
Association, 391–404.

[22] M. Zubair Rafique and Juan Caballero. 2013. FIRMA: Malware Clustering and

Network Signature Generation with Mixed Network Behaviors. In Research in
Attacks, Intrusions, and Defenses - 16th International Symposium, RAID 2013,
Rodney Bay, St. Lucia, October 23-25, 2013. Proceedings. Springer, 144–163.

[23] Christian Rossow, Christian J Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten

Van Steen, Felix C Freiling, and Norbert Pohlmann. 2011. Sandnet: Network

traffic analysis of malicious software. In Proceedings of the First Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security. ACM,

78–88.

[24] Guido Schwenk and Konrad Rieck. 2011. Adaptive Detection of Covert Commu-

nication in HTTP Requests. In Seventh European Conference on Computer Network
Defense, EC2ND 2011, Gothenburg, Sweden, September 6-7, 2011. IEEE Computer

Society, 25–32.

[25] Xiaokui Shu and Danfeng Yao. 2012. Data Leak Detection as a Service. In Security
and Privacy in Communication Networks - 8th International ICST Conference,
SecureComm 2012, Padua, Italy, September 3-5, 2012. Springer, 222–240.

[26] Xiaokui Shu, Danfeng Yao, and Elisa Bertino. 2015. Privacy-Preserving Detection

of Sensitive Data Exposure. IEEE Trans. Information Forensics and Security 10, 5

(2015), 1092–1103.

[27] Xiaokui Shu, Jing Zhang, Danfeng Yao, and Wu-chun Feng. 2016. Fast Detection

of Transformed Data Leaks. IEEE Trans. Information Forensics and Security 11, 3

(2016), 528–542.

[28] Aditya K. Sood, Sherali Zeadally, and Richard J. Enbody. 2016. An Empirical

Study of HTTP-based Financial Botnets. IEEE Trans. Dependable Sec. Comput. 13,
2 (2016), 236–251.

[29] Veronica Valeros. 2016. In plain sight: Credential and data

stealing adware. (2016). http://blogs.cisco.com/security/

in-plain-sight-credential-and-data-stealing-adware

[30] Shobha Venkataraman, Juan Caballero, Pongsin Poosankam, Min Gyung Kang,

and Dawn Xiaodong Song. 2007. Fig: Automatic Fingerprint Generation. In

Proceedings of the Network and Distributed System Security Symposium, NDSS
2007, San Diego, California, USA, 28th February - 2nd March 2007. The Internet
Society.

[31] Verizon. 2016. Data Breach Investigations Report. (2016). http://www.

verizonenterprise.com/verizon-insights-lab/dbir/2016/

[32] GuowuXie,Marios Iliofotou, Thomas Karagiannis, Michalis Faloutsos, and Yaohui

Jin. 2013. ReSurf: Reconstructing Web-Surfing Activity from Network Traffic.

In IFIP Networking Conference, 2013, Brooklyn, New York, USA, 22-24 May, 2013.
IEEE, 1–9.

[33] Ali Zand, Giovanni Vigna, Xifeng Yan, and Christopher Kruegel. 2014. Extracting

Probable Command and Control Signatures for Detecting Botnets. In Symposium
on Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28,
2014. 1657–1662.

[34] Apostolis Zarras, Antonis Papadogiannakis, Robert Gawlik, and Thorsten Holz.

2014. Automated Generation of Models for Fast and Precise Detection of HTTP-

based Malware. In 2014 Twelfth Annual International Conference on Privacy, Secu-
rity and Trust, Toronto, ON, Canada, July 23-24, 2014. 249–256.

[35] Hao Zhang, Danfeng (Daphne) Yao, Naren Ramakrishnan, and Zhibin Zhang.

2016. Causality Reasoning about Network Events for Detecting Stealthy Malware

Activities. Computers & Security 58 (2016), 180–198.

[36] Elzbieta Zielinska,WojciechMazurczyk, and Krzysztof Szczypiorski. 2014. Trends

in Steganography. Commununications of ACM 57, 3 (2014), 86–95.

A ALGORITHMS
A.1 Outgoing Information

Algorithm 1 Computation of Outgoing Information

Require: the current request REQi , the latest request REQi−1 trans-
mitted by the same application.

1: procedure ComputeOutInfo(REQi , REQi−1)
2: OI ← 0 ▷ Initialize counter

3: for all hj in REQi do ▷ hj is the jth header in REQ
4: if hj in REQi−1 then
5: OI += edit_dist (REQi .hj , REQi−1.hj)
6: else
7: OI += length(REQi .hj)
8: end if
9: end for
10: OI += edit_dist(REQi .body, REQi−1.body)
11: updateCache(REQi .huser-agent, REQi)
12: return OI
13: end procedure

The outgoing information is computed through ComputeOutInfo,
which takes as input two values: the new incoming request REQi ,
and the latest analyzed request REQi−1, which is stored in a cache

(i.e., hash table) that uses the user-agent strings as keys. The func-

tion verifies if there are headers (including URI) present in REQi
that are also present in REQi−1 (line 3-4). If so, it computes the edit

384

http://blogs.cisco.com/security/in-plain-sight-credential-and-data-stealing-adware
http://blogs.cisco.com/security/in-plain-sight-credential-and-data-stealing-adware
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/

distance (i.e., Levenshtein distance) between the two header values.

The result is the new information introduced by the specific header

value of REQi and it is added to the counter of outgoing information

(line 5). For those headers that are present in REQi but not in REQi−1,
we consider their values as new information (line 7). Then the edit

distance between the body of the requests is computed and is added

toOI (line 10). Once all headers have been analyzed, we update the

cache by substituting REQi−1 with REQi (line 11), because now REQi
is the last analyzed request.

A.2 Labeling Algorithms

Algorithm 2 Graph creation

1: procedure CreateGraph(requests)
2: дraph ← {}
3: headNodes ← []
4: for r in requests do
5: if r .content-type == HTML or

6: r .content-type == CSS or

7: r .content-type == JavaScript or

8: r .content-type == Flash then
9: headNodes ← r
10: end if
11: end for
12: for r in requests do
13: дraph.addNode(r)
14: for head in reversed(headNodes) do
15: if r .referrer == head .host then
16: дraph.addEdge(head, r)
17: break
18: end if
19: end for
20: end for

return дraph
21: end procedure

The labeling method considers a cluster of HTTP requests to be

a browser-type application if there is at least one Referrer Graph

connecting the requests. The Algorithm 2 describes how a Referrer

Graph is built from a set of requests. For each request, we check

if in its CONTENT-TYPE header has a known value (i.e., html, css, js,

flash). If so, that request is considered a head node. The second step

is to iterate over the requests once again, and verify if each request

is linked with a head node. A request is linked to a head node if

its REFERER or ORIGIN header value matches with the HOST header

value of a head node. A graph is created if at least one request is

connected to a head node.

All requests that are not connected into a graph are represented

by disconnected nodes. These nodes are further analyzed to de-

tect potential data exfiltration. For instance, a malware can have

the same user-agent of the victim’s browser, and it exfiltrates data

through some HTTP requests. To identify these potential anom-

alies we inspect disconnected nodes with an exfiltration filter. Al-

gorithm 3 describes the details of the filter. First, the algorithm

identifies requests that are POSTs or GET with parameters (see

Line 5- 10). These type of requests are commonly used to upload

Algorithm 3 Disconnected node filter

1: procedure ExfiltrationFilter(дraph,τ)
2: alerts ← []
3: ex f iltration ← set()

4: connections ← map(tuple→ set())

5: for node in graph do
6: if node.method == POST or

7: node.method == GET then
8: ex f iltration ← node
9: end if
10: connections[(method, uri)] ← node
11: end for
12: for connection, requests in connections do
13: score ← SIMILAR(requests)
14: if score > τ then
15: alerts ← ex f iltration ∪ requests
16: end if
17: end for

return alerts
18: end procedure
19: procedure similar(requests)
20: score ← 0

21: for i = 0 to requests .length-1 do
22: score+ =dist(requests[i], requests[i + 1])
23: end forreturn score
24: end procedure

data, and most of the time they are connected into a graph. Second,

these requests are checked for similar behavior (see Line 19- 23).

Requests are considered similar if they have the same method and

URI, and their header values are almost the same. The requests

that are considered similar, are then triggered as alert because they

represent a repeated attempt of uploading information.

B SIMILARITY FUNCTIONS

s1(Fa1 , Fb1) =

{
1 if Fa1 ⊆ Fb1 ,

0 otherwise;

(1)

s2(Fa2 , Fb2) =


1 if Fa2 = Fb2 ,

0.5 if Fa2 ⊃ Fb2 ,

0 otherwise;

(2)

s3(Fa3 , Fb3) =


1 if |Fa3 − Fb3 | ≤ ε,

0.5 if |Fa3 − Fb3 | ≤ 2ε,

0 otherwise;

(3)

s4(Fa4 , Fb4) =

{
1 if Fa4 = Fb4 ,

0 otherwise.
(4)

s5(Fa5 , Fb5) =

{
1 if Fa5 = Fb5
0 otherwise

(5)

385

 C USER DATASET (UD)

Table 4: User Dataset Overview.

User ID HTTP
Requests

Total
Hours
Traffic

Training
Time

(hours)

Testing
Time

(hours)

Trained
Finger-
prints

1 6739 27 10 17 8

2 4709 48 7 41 3

3 10250 18 7 11 9

4 4480 30 8 22 7

5 20075 35 9 26 93

6 3296 47 9 38 6

7 18525 17 7 10 20

8 41527 125 5 120 8

9 14165 146 10 135 11

386

