
Faculty of Electrical Engineering, Mathematics and Computer Science

Microwave Sensing,
Signals and Systems

Mekelweg 4,
2628 CD Delft
The Netherlands

https://radar.tudelft.nl/

MS3-2025

M.Sc. Thesis

Combined ego-motion estimation and
multiple extended object tracking with

automotive radar

Taoyue Wang

Abstract

Automotive radar can provide robust measurements that are cru-
cial for autonomous driving localization and perception tasks, espe-
cially under adverse weather, low-light, and long-range conditions.
This thesis proposes two radar-only, combined estimation methods
that both provide ego-motion information and track multiple extended
objects. The key to achieve this is addressing the challenge of distin-
guishing static and moving targets, using either radar raw signals or
radar point clouds.

The raw signal based method is validated in its theoretical fea-
sibility through simulations, while the point cloud based method is
shown to improve ego-motion estimation in practical dynamic driv-
ing scenarios. With simulation of such scenarios generated using a
dedicated MATLAB tool, the proposed approach outperforms the
RANSAC-based baseline by reducing the APE metric by 2.00 m/s
and the RTE metric by 1.58 m, and achieves accurate position and
size estimates for tracked objects. Further validations on the experi-
mental RadarScenes dataset show average APE reductions of 25.9%
over entire scenes and 56.9% in critical 10-second segments across 7
dynamic traffic scenes. These results demonstrate the effectiveness
of radar-only combined estimation of ego-motion and multiple object
tracks, for robust localization and perception in complex traffic sce-
narios.





Combined ego-motion estimation and multiple
extended object tracking with automotive radar

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Taoyue Wang
born in Jilin, China

This work was performed in:

Microwave Sensing, Signals and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright © 2025 Microwave Sensing, Signals and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a the-
sis entitled “Combined ego-motion estimation and multiple extended object
tracking with automotive radar” by Taoyue Wang in partial fulfillment of the
requirements for the degree of Master of Science.

Dated: August, 2025

Chairman:
dr. F. Fioranelli

Daily supervisor:
dr. S. Yuan

Committee Member:
dr. R.T. Rajan



iv



Abstract

Automotive radar can provide robust measurements that are crucial for autonomous
driving localization and perception tasks, especially under adverse weather, low-light,
and long-range conditions. This thesis proposes two radar-only, combined estimation
methods that both provide ego-motion information and track multiple extended objects.
The key to achieve this is addressing the challenge of distinguishing static and moving
targets, using either radar raw signals or radar point clouds.

The raw signal based method is validated in its theoretical feasibility through simu-
lations, while the point cloud based method is shown to improve ego-motion estimation
in practical dynamic driving scenarios. With simulation of such scenarios generated us-
ing a dedicated MATLAB tool, the proposed approach outperforms the RANSAC-based
baseline by reducing the APE metric by 2.00 m/s and the RTE metric by 1.58 m, and
achieves accurate position and size estimates for tracked objects. Further validations
on the experimental RadarScenes dataset show average APE reductions of 25.9% over
entire scenes and 56.9% in critical 10-second segments across 7 dynamic traffic scenes.
These results demonstrate the effectiveness of radar-only combined estimation of ego-
motion and multiple object tracks, for robust localization and perception in complex
traffic scenarios.
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Introduction 1
This chapter begins with the background and motivation of the thesis in Section

1.1. In the context of automotive radar signal processing, the combined problem of ego-
motion estimation and multiple object tracking is then described in Section 1.2. Next,
Section 1.3 presents the general contributions of this work, while Section 1.4 outlines
the overall structure of the thesis, with the proposed methodology broadly divided into
two parts.

1.1 Background and motivation

In autonomous driving and mobile robotics applications, Frequency Modulated Con-
tinuous Wave (FMCW) Multiple-Input Multiple-Output (MIMO) automotive radar
offers significant capabilities in both localization and perception tasks [1–4]. By trans-
mitting FMCW waveforms and leveraging MIMO antenna technology, it can accurately
measure the range, relative velocity, azimuth, and elevation angle of multiple objects,
enabling full three-dimensional situational awareness. Compared with camera and Light
Detection and Ranging (LiDAR), radar is notably more robust under adverse weather
conditions (e.g., rain, fog, smoke) and in low-light environments, and it provides direct
Doppler-based velocity measurements. Moreover, radar systems can achieve long-range
coverage exceeding 300 meters [1]. These attributes collectively make radar an essen-
tial sensor for safe, reliable, and robust autonomous decision-making in complex and
dynamic environments.

Measuring the vehicle’s own motion with radar, namely ‘ego-motion estimation’, is a
fundamental self-localization task in autonomous driving systems. Accurate ego-motion
estimates are crucial for downstream modules such as multiple object tracking and
environment mapping [5]. A variety of sensor modalities, including Global Navigation
Satellite System (GNSS), Inertial Measurement Unit (IMU), wheel encoders, cameras,
and LiDAR, have been used to address this task [6]. However, radar-based ego-motion
estimation is gaining increasing attention due to its unique advantages. Unlike inertial
sensors or wheel odometry, radar is not prone to drift or slippage, making it more stable
over time. It also operates reliably in challenging conditions such as rain, fog, low light,
and in environments like urban canyons or tunnels, where vision, LiDAR, and GNSS
systems often face limitations [3, 6]. Furthermore, unlike cameras and LiDAR, radar
provides velocity measurements via the Doppler effect, enabling ego-motion estimation
using only one data frame.

Despite these advantages, ego-motion estimation with radar remains challenging
in dynamic environments, where a significant portion of surrounding objects may be
moving [7–9]. In principle, ego-motion estimation relies on the measurements of static
objects in the scene. However, when the environment contains a high ratio of moving
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objects, the accuracy of ego-motion estimation can deteriorate significantly. Thus, the
core challenge lies in reliably distinguishing between static and moving objects from
radar measurements, especially when the sensor itself is in motion.

In addition to localization, environment perception for autonomous driving systems
involves detecting and tracking moving objects within the sensor’s field of view [2].
For common road participants such as vehicles, bicycles, and pedestrians, automotive
radar typically produces multiple spatially distributed detections per object [10]. Based
on these detections, the task of Multiple Extended Object Tracking (MEOT) aims
to jointly estimate the kinematic states and spatial extents of multiple objects over
time. Traditionally, MEOT has been treated as a separate, downstream task that
assumes access to accurate ego-motion estimates. Indeed, existing radar-based MEOT
algorithms commonly rely on ego-motion information from external sensors such as
GNSS or IMU. However, these sources may be unreliable or unavailable in challenging
environments such as urban canyons, tunnels, or cost-constrained systems.

To address these challenges, this thesis investigates the integration and combination
of ego-motion estimation and MEOT into a unified radar-only estimation framework.
Performing both tasks together can mitigate issues that arise when they are handled
separately. On the one hand, MEOT offers temporally coherent information about
moving objects, which can help distinguish them from static objects. On the other
hand, radar-based ego-motion estimation enables self-contained motion compensation
for MEOT, avoiding dependency on external sensors. This mutual reinforcement en-
hances the overall robustness in complex and dynamic environments. While camera-
and LiDAR-based approaches have explored such combined strategies [11–13], radar-
based methods remain to the best of the author’s knowledge largely underexplored.
Consequently, the key research question of this thesis can be stated as follows: How can
we develop a unified framework that leverages only automotive radar data
to achieve accurate static/moving object segmentation, thereby enabling
combined ego-motion estimation and multiple extended object tracking in
dynamic environments?

1.2 Problem description

In this thesis, the combined problem of ego-motion estimation and multiple extended
object tracking is addressed using measurements from a single automotive radar sensor.
In the context of autonomous driving, when a vehicle is driving on the road, there
are both static and moving objects in its surrounding environment. Static objects
may include roadside trees, buildings, and parked vehicles, while moving objects often
consist of moving cars, bicycles, and pedestrians. This thesis mainly focuses on dynamic
driving scenarios. Unlike static scenarios where most radar detections originate from
stationary structures, dynamic scenarios are characterized by a significant proportion of
reflections from moving objects. Such situations frequently occur in real-world driving,
for example, when large vehicles (e.g., trucks or buses) are approaching the ego-vehicle
on an open road, or when the ego-vehicle is parking with other moving cars in a parking
lot [7, 9].

The input to the problem is the measurement data obtained from a single automotive
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radar mounted on the ego-vehicle. In automotive radar signal processing, two common
forms of radar data are typically used: radar raw signal and radar point cloud. Radar
raw signal refers to the low-level complex signals directly obtained from the radar
receiver channels. These signals retain full phase and amplitude information across
multiple antenna channels. Another format is the radar point cloud, which is widely
applied for object detection, semantic segmentation, tracking and localization [1, 14].
Point clouds are generated by applying signal processing techniques—such as range,
Doppler and angle Fast Fourier Transform (FFT)s—to the radar raw signal, followed
by target detection and optional clustering, resulting in a set of discrete points. Each
point contains information including range, Doppler velocity, azimuth angle, and Radar
Cross Section (RCS).

Table 1.2.1 summarizes the key differences between the two input data formats.
Radar raw signal contains richer information, including noise and background effects,
and enables a faster update rate (i.e., more frequent measurements per second compared
to forming point clouds), which benefits low-latency estimation of ego motion and other
applications such as high-resolution imaging [6]. However, due to its large storage
demands, raw signal is rarely included in public datasets, and few existing ego-motion
estimation and tracking algorithms operate directly on this format. In contrast, radar
point clouds offer lower storage requirements and lower processing complexity, since
only the information of detected targets is preserved after target detection. This format
is also readily available in most public radar datasets, making it a well-established choice
for localization and tracking [14].

In summary, each format has its own advantages and limitations. Raw signal offers
richer data and faster update time, while point cloud is efficient and accessible. There-
fore, this thesis investigates both data formats to explore their respective advantages
in solving the combined problem as stated in the previous section.

Table 1.2.1: Qualitative comparison between two input data formats: radar raw signal and
radar point cloud

Property Radar Raw Signal Radar Point Cloud

Information Richness Full (includes noise and
background)

Limited (only detected
targets)

Storage Space High Low

Update rate Fast Slow

Processing Complexity High Low / Moderate

Algorithm Maturity Low High

Availability in Datasets Rare / Limited Easy

The output of the combined problem consists of two components: ego-motion es-
timation and multiple extended object tracking. Ego-motion estimation refers to esti-
mating the vehicle’s own motion, typically its translational and rotational velocities in
2D plane (without the elevation dimension) or 3D space (with the elevation dimension).
Over time, the trajectory of the ego-vehicle in each dimension is also of interest. This
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task is essential for localization and often serves as the front end of a Simultaneous Lo-
calization and Mapping (SLAM) processing pipeline. Multiple Object Tracking (MOT)
traditionally focuses on estimating the kinematic states (e.g., position and velocity) of
multiple moving objects over time, assuming each object is a point target. This is a
reasonable assumption for example in surveillance radars with relatively low resolution.
In contrast, multiple extended object tracking additionally estimates the spatial extent
(e.g., size and orientation) of each object, accounting for the fact that real-world ob-
jects often generate multiple radar detections in a single frame, which is the common
situation for high-resolution automotive radars. The tracking output therefore includes
the position, velocity, size, and orientation of each moving object, along with their
trajectories across time.

Summarizing, as radar raw signals and point clouds have their own advantages
and disadvantages, both are considered in this thesis. Specifically, Part II presents
a method based on radar raw signals to solve the combined problem of ego-motion
estimation and multiple object tracking. As an earlier-stage effort in the thesis jour-
ney, it focuses more on theoretical formulation and does not include yet spatial extent
estimation.

Next, Part III introduces a method based on radar point clouds, which solves the
combined problem of ego-motion estimation and multiple extended object tracking.
This method incorporates spatial extent estimation and evaluation, making it more
applicable to realistic scenarios in automotive.

1.3 Thesis contributions

The main contributions of this thesis are summarized in the following aspects:

• In this thesis, a novel combined ego-motion estimation and multiple object track-
ing method based on radar raw signals was proposed, demonstrating its theoretical
feasibility through simulation-based validation.

• This work then developed and evaluated a combined estimation framework which
uses only automotive radar point cloud data to perform both ego-motion esti-
mation and multiple extended object tracking. In simulation, it outperformed
the RANSAC-based baseline method [15], by reducing the APE metric by 2.00
m/s and the RTE metric by 1.58 m, with tracking metric GOSPA of 3.70 and
size estimation RMSEs of 1.04 m (major axis), 0.55 m (minor axis), and 8.40°
(orientation).

• The proposed method significantly improved ego-motion estimation performance
in real-world dynamic driving scenarios from the RadarScenes dataset, with APE
reductions of 25.9% (the entire scene) and 56.9% (local segments) over the state-
of-the-art method [15], effectively addressing challenges such as oncoming large
vehicles while driving. Prior tracking information is used to identify and filter out
detections from moving objects, which enhances the reliability of the static point
selection and contributes to more accurate ego-motion estimation.
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• Part of this thesis has been accepted for publication at the European Radar Con-
ference (EuRAD 2025), which will take place in Utrecht, The Netherlands, in
September 2025. The paper text is provided in Appendix.

1.4 Thesis outline

This thesis is organized into four main parts, with Part II and Part III focusing
on the investigation of the proposed raw signal-based and point cloud-based methods,
respectively:

• Part I presents the introduction and related work of this thesis. In Chapter 2,
the related work on ego-motion estimation and multiple extended object tracking
with automotive radar is reviewed.

• Part II proposes a combined method using as input the radar raw signals. It
includes two chapters:

– Chapter 3: This chapter first formulates the combined problem of ego-motion
estimation and multiple object tracking using radar raw signals. Next, the
raw-signal-based method is explained in detail, including signal preprocess-
ing, tracking-aided ego-motion estimation, ego-motion compensation, and
multiple object tracking. Finally, the performance metrics for validating the
combined method are described.

– Chapter 4: This chapter demonstrates simulation results of the proposed raw
signal method, and discusses its advantages and limitations.

• Part III provides another formulated combined method based on radar point
cloud data, aiming to apply the theoretical framework to practical challenges in
dynamic driving scenarios. It contains three chapters:

– Chapter 5: This chapter introduces the practical challenges in radar-based
ego-motion estimation and presents the proposed combined method designed
to address them, with a focus on its differences and improvements over the
method in Part II.

– Chapter 6: This chapter presents simulation results using synthetic radar
point cloud data from a dedicated MATLAB tool, evaluating the performance
of ego-motion estimation and multiple extended object tracking in various
driving scenarios.

– Chapter 7: This chapter validates the proposed method on the real-world
RadarScenes dataset, demonstrating its superior performance over traditional
methods in handling ego-motion estimation in dynamic scenes.

• Part IV serves as a closing discussion for the whole thesis. Chapter 8 summarizes
the main conclusions and outlines potential directions for future work.
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Literature Review 2
This chapter reviews related work on ego-motion estimation and multiple extended

object tracking with automotive radar from the literature. In Section 2.1, previous
methods for estimating the vehicle ego-motion using radar data are introduced. Sec-
tion 2.2 provides a discussion about existing approaches on radar-based MEOT. Next,
Section 2.3 illustrates the combined approaches for ego-motion estimation and MEOT,
focusing primarily on camera- or LiDAR-based methods, as radar-specific approaches
remain scarce in the literature. Finally, Section 2.4 summarizes the key insights and
identifies the research gaps that motivate the proposed work.

2.1 Ego-motion estimation with automotive radar

In recent years, radar-based ego-motion estimation methods have developed rapidly
in the area of autonomous driving and mobile robotics. Existing methods can generally
be divided into two categories: scan-matching methods and instantaneous methods.
These two types of methods differ in the number of input data frames required for each
estimation. While scan-matching methods estimate ego-motion based on the alignment
of measurements from two consecutive radar frames, instantaneous methods require
only the current radar frame as input. The related work on both methods is analyzed
in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Scan-matching methods

The core principle of scan-matching methods is to estimate the relative Euclidean
transformation between consecutive radar point clouds [16]. These approaches leverage
point cloud registration techniques adapted from LiDAR-based methods to exploit
spatio-temporal consistency and perform data association. If the positions of the same
static objects can be reliably identified by matching the point cloud of the current
frame with that of the previous frame, ego motion can be inferred from the positional
differences. Table 2.1.1 summarizes typical scan-matching methods in the literature,
along with their key characteristics.

In 2015, Barjenbruch et al. [16] proposed a joint optimization framework that in-
corporates both spatial and Doppler-based metrics. To compare spatial information,
they represent the reference and the new frame measurements with Gaussian Mixture
Models (GMM) and align them using a robust point set registration algorithm [17].
Building on this approach, Rapp et al. [18] introduced a probabilistic ego-motion es-
timation framework that improves accuracy by employing the Normal Distributions
Transform (NDT) [19] algorithm for more efficient spatial alignment. Their method
reduces computational complexity while demonstrating reliable performance on real-
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Table 2.1.1: Summary of major scan-matching methods for radar-based ego-motion estimation

Paper Year Scenario Sensor Input Data Association
Method

Barjenbruch et al. [16] 2015 Automotive Single-radar point
cloud

Robust point set
registration [17]

Rapp et al. [18] 2017 Automotive Multi-radar point
cloud

NDT [19]

Haggag et al. [20] 2022 Automotive Single-radar point
cloud

Point-to-
distribution
registration

Lu et al. [21] 2020 Robotics Single-radar point
cloud + IMU

Deep learning

world data. Subsequently, to mitigate the local maxima issue induced by the summing
approximation [18], a sophisticated noise model was incorporated into the objective
function in [20]. This enhancement results in credible and robust performance even in
scenarios of high outlier rates.

Despite these advancements, scan-matching methods still exhibit notable limita-
tions. First, since radar point clouds are inherently sparser and more prone to noisy
artifacts compared to those from LiDAR [14], the scintillating behavior observed across
multiple frames complicates precise temporal alignment. Due to multipath effects, har-
monics and other noises, after radar detection, radar point clouds for each frame can
contain lots of false alarms. Moreover, in driving scenarios, the static objects, such
as roadside fence and trees, are typically detected as spread and sparse, which easily
leads to missed detections. As a result, it is difficult to achieve reliable data association
for static objects across multiple radar scans [22]. In order to solve the issue of noisy
correspondences, a data-driven deep learning based approach was proposed in [21].
With Convolutional Neural Network (CNN) feature extractors and Long Short-Term
Memory (LSTM) layers to model the temporal dependency, it can jointly optimize
the ego-motion estimation and perform implicit correspondence association between
consecutive frames. However, deep learning methods require a very large dataset to
train the neural network, and the network architecture design is complicated and less
interpretable.

Second, scan-matching methods exhibit reduced robustness in dynamic environ-
ments, where moving objects and rapid environmental changes may induce misalign-
ments. For example, if there are substantial changes in local scenes (e.g., turning, up-
slope), such methods are less robust and prone to error accumulation [23]. Moreover,
the computational burden of these methods —particularly those involving probabilis-
tic optimization or iterative registration— can hinder real-time performance, which is
critical in autonomous driving applications. Given these limitations, this thesis focuses
on instantaneous methods, which are better suited for radar data and will be discussed
in the following section.

10



2.1.2 Instantaneous methods

Compared to other competitive sensors such as camera and LiDAR, radar has the
unique advantage of directly measuring the velocity of targets via the Doppler effect.
This capability enables ego-motion estimation using a single radar frame, eliminat-
ing the need to compare measurements across multiple consecutive frames as in scan-
matching methods. Instantaneous methods exploit the sinusoidal relationship between
Doppler or velocity and the azimuth angle of a stationary object to estimate motion.
As illustrated in Figure 2.1.1, for all points detected on static objects, the Doppler ve-
locity (green arrows) is a projection of the true ego velocity (blue arrows) in the radial
direction between the stationary point and the radar sensor line of sight (indicated by
black dashed lines). Therefore, the Doppler/velocity is a sinusoidal function of azimuth
angle and ego-vehicle velocity.

Figure 2.1.1: Sketch showing the key idea behind instantaneous methods: the sinusoidal
relationship between the Doppler/velocity and the azimuth angle of static targets (from [15])
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In real driving scenarios, radar detections include not only reflections from static
objects, but also those from moving targets and clutter caused by multipath propaga-
tion, possible interference, and hardware imperfections [24,25]. Therefore, the primary
objective is to identify the detections truly originating from stationary objects (i.e.,
inliers). Once the inliers have been identified, the ego-vehicle velocity can be inferred
using appropriate estimation techniques. Table 2.1.2 provides a summary of representa-
tive instantaneous methods. Different approaches adopt various techniques to segment
static detections and perform robust motion estimation. Based on the table, the follow-
ing discussion is organized around three key aspects: static target detection method,
estimation solver, and sensor input.

1. Static target detection method
The first instantaneous ego-motion estimation method was proposed by Kell-
ner et al. [15] in 2013. Their approach employs RANdom SAmple Consen-
sus (RANSAC) [26] to identify stationary targets and estimate the ego-motion.
Originally developed for image processing, RANSAC is an iterative method for
robustly estimating model parameters from data containing outliers, effectively
serving as an outlier detection technique. Assuming a predominantly static en-
vironment and an Ackermann-steered vehicle with no lateral displacement, their
approach requires at least two measurements from static targets to compute a
valid 2 Degree of Freedom (DoF) solution for the ego-motion estimation problem.
In a subsequent study [27], the method is extended to incorporate multiple radar
sensors, enabling the estimation of the complete 2D motion state (3 DoF) of the
ego-vehicle, including longitudinal and lateral velocities as well as yaw rate.

Kellner’s method serves as a foundational instantaneous approach and remains a
widely recognized benchmark in the field of radar-based ego-motion estimation.
By employing RANSAC, the method can achieve high accuracy under a majority
of driving conditions. However, it relies on the assumption that most radar detec-
tions originate from static objects, with only a small fraction attributed to moving
targets and clutter. This assumption makes the method vulnerable in situations
with a high outlier ratio (i.e., when more than 50% of detections are outliers) [8].
For instance, the RANSAC solution may fail when most of the radar detections
come from large moving objects such as trucks or buses. Similar failure cases can
occur in parking lots where multiple vehicles are in motion [9].

Recently, several instantaneous methods have been proposed to enhance robust-
ness in dynamic environments containing large moving objects. Some approaches
[7, 28] leverage the prior that radar returns from the ground are always static.
Park et al. [28] placed two radar sensors orthogonally to ensure more returns from
the static ground. In [7], both Doppler and geometric characteristics of the ground
were used to robustly identify ground points from radar point clouds. Assuming
that the ground forms a horizontal plane at a certain height, the authors designed
a joint algorithm to simultaneously detect ground points and estimate radar veloc-
ity. However, unlike LiDAR sensors, real radar data often exhibit sparse ground
returns and poor elevation resolution [14], making it difficult to segment ground
points based on height and use them for accurate motion estimation.
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Table 2.1.2: Summary of major instantaneous methods for radar-based ego-motion estimation

Paper Year Scenario Sensor
Input

Static
Target

Detection
Method

Estimation
Solver

Kellner et al. [15] 2013 Automotive Single-radar
point cloud

RANSAC [26] LS

Kellner et al. [27] 2014 Automotive Multi-radar
point cloud

RANSAC LS, WLS,
ODR

Park et al. [28] 2021 Robotics Multi-radar
point cloud +

IMU

Ground
segmentation,
RANSAC

LS

Chen et al. [7] 2023 Robotics Single-radar
point cloud +

IMU

Ground
segmentation

LS

Zhu et al. [5] 2023 Automotive Single-radar
point cloud

Deep learning WLS

Zhu et al. [8] 2025 Automotive Multi-radar
point cloud

Deep learning WLS

Herraez et al. [9] 2024 Automotive Single-radar
point cloud

RANSAC
with initial
filtering step

LS

Lovett et al. [29] 2025 Robotics Single-radar
point cloud

TEMPSAC,
TWLSQ

LS, WLS

Kramer et al. [30] 2020 Robotics Single-radar
point cloud +

IMU

Cauchy
robust loss

Levenberg-
Marquardt
optimizer

Huang et al. [31] 2024 Robotics Multi-radar
point cloud +

IMU

Cauchy
robust loss

Levenberg-
Marquardt
optimizer

Zhuang et al. [23] 2023 Robotics Single-radar
point cloud +

IMU

GNC [32] LS

Kim et al. [33] 2024 Automotive Single-radar
point cloud

ME-LSQ LS

Doer et al. [34] 2020 Robotics Single-radar
point cloud +

IMU

RANSAC LS

Galeote et al. [35] 2024 Automotive Single-radar
point cloud

RANSAC LS

Yuan et al. [6] 2023 Automotive Single-radar
raw signal

None LS

Yuan et al. [36] 2024 Automotive Single-radar
raw signal

Iterative
method

LS
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Other methods [5, 8] employ deep learning techniques to learn the probability of
each detection being static based on real-world data. In [5], Zhu et al. used neural
networks to extract complex features from radar point clouds to predict pointwise
weights and offsets. The weights represent the likelihood of a point being a static
inlier. Once the weights are learned, ego-motion is estimated using the Weighted
Least Squares (WLS) approach. In their follow-up work [8], they incorporated
radar data from multiple sensors via homogeneous late fusion, addressing practi-
cal issues such as non-zero vehicle acceleration and low inlier availability. Their
method demonstrates promising results, outperforming RANSAC especially in
high outlier ratio scenarios (i.e., > 50%). However, deep learning methods typ-
ically require large-scale training datasets with carefully annotated labels from
other sensors. Moreover, these methods often suffer from limited interpretability,
making it difficult to understand or trust their internal decision processes.

A different research direction is to improve on RANSAC or adopt alternative out-
lier rejection strategies [9, 23, 29–31, 33]. To improve RANSAC, most methods
incorporate the temporal information from previous estimates to reject outliers.
For instance, Herraez et al. [9] introduced an initial filtering step before RANSAC
that adopts a constant velocity model to filter out outliers. The method predicts
ego-motion from two previous frames and retains only samples that match the
predicted motion within a certain margin. Similarly, Lovett et al. [29] proposed
two RANSAC-based variants: TEMPoral SAmple Consensus (TEMPSAC) and
Temporally Weighted Least SQuare (TWLSQ), which estimate ego-motion over a
temporally weighted sliding window. While TEMPSAC adopts weighted sampling
based on their temporal proximity, TWLSQ uses random sampling with a tem-
porally WLS estimator. These methods achieve a 27% improvement in position
accuracy over standard RANSAC in cluttered indoor environments.

In [30, 31], the use of Cauchy robust loss function and the nonlinear Levenberg-
Marquardt optimizer was proposed to mitigate the effect of large residuals, thus
improving estimation robustness. Zhuang et al. [23] replaced RANSAC with the
Graduated NonConvexity (GNC) method [32], a more robust non-minimal solver
capable of handling up to 80% outliers. Moreover, Kim et al. [33] adopted the M-
Estimated Least SQuare (ME-LSQ) method, which is based on the M-estimation
[37]. By initializing with the previous motion estimate, the algorithm can better
filter noise and inconsistencies caused by moving objects, resulting in smoother
and more reliable trajectory estimation.

While these approaches significantly improve robustness by leveraging the tempo-
ral consistency of ego-motion estimates, they generally ignore the temporal con-
tinuity of surrounding moving objects. Incorporating such information through
object tracking could further mitigate the impact of dynamic outliers, which mo-
tivates the combined approaches proposed in this work.

2. Estimation solver
Given sufficient Doppler and azimuth angle measurements of static targets, the
ego-motion estimation problem can be formulated as a linear estimation or curve
fitting problem. Most instantaneous methods [7, 9, 15, 23, 28, 33–35] adopt Least
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Squares (LS) to estimate ego-motion from the detected static points due to its
simplicity and efficiency. To enhance robustness, some approaches [5,8,29] apply
WLS, where each point is weighted according to its likelihood of being static,
derived from learning-based models or temporal consistency. A few studies [27]
explore Orthogonal Distance Regression (ODR) to account for errors in both de-
pendent and independent variables. While ODR can theoretically improve accu-
racy, its increased computational cost often outweighs the marginal performance
gains demonstrated in automotive scenarios, making it less commonly used [34].

3. Sensor input
The type and configuration of input sensors play a critical role in determining the
feasibility and accuracy of instantaneous ego-motion estimation. While a single
radar sensor is generally sufficient to estimate translational velocity, estimating
rotational velocity is more challenging due to the limited observability of rota-
tional motion. To address this, some works [5, 15, 33] assume the vehicle satisfies
the Ackermann kinematic model, under which lateral and vertical velocities are
neglected. This assumption allows the yaw rate to be derived directly from trans-
lational velocity and sensor geometry. Other studies improve observability and
robustness by employing multi-radar fusion [8, 27, 31] or integrating radar and
IMU data [28, 30, 34]. These methods rely on sensor fusion techniques, often im-
plemented within filtering or graph optimization frameworks and implying some
form of synchronization between the different sensors.

While most existing methods take radar point clouds as input, a recent trend
explores the use of raw radar signals (i.e., baseband signals prior to range-Doppler
processing). In [6], a two-stage optimization method leverages phase differences
between chirp groups within a single frame to estimate ego-velocity. Building
on this, [36] proposes an iterative approach to detect static targets, enhancing
robustness in dynamic environments. Compared to point-cloud-based methods,
which depend on multiple signal processing stages, raw-signal-based approaches
enable faster estimation—potentially within a single frame or even from chirp
to chirp. Moreover, they offer better compatibility with high-resolution imaging
or automotive Synthetic Aperture Radar (SAR) algorithms [6]. Despite these
advantages, evaluating such methods on real-world datasets remains challenging,
as raw radar signals are rarely available due to their large storage requirements.

2.2 Radar-based Multiple Extended Object Tracking (MEOT)

In recent years, Multiple Extended Object Tracking (MEOT) has gained increasing
attention in radar-based perception, particularly in the context of autonomous driving
and intelligent transportation systems [10, 38, 39]. Building upon conventional MOT
frameworks, which models each object as a single point, MEOT accounts for the fact
that radar returns from one object may consist of multiple detections per frame, re-
flecting the object’s shape and size information. This is especially true for automotive
radar systems, where vehicles or pedestrians often generate multiple radar detections
across their surface due to the high resolution of the radar and the relatively short
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wavelength.
To effectively handle such data, MEOT algorithms jointly estimate the kinematic

state (e.g., position, velocity) and the spatial extent (e.g., size, shape, orientation) of
each object. Given the complexity of the task, three core challenges must be addressed:

1. Handling multiple detections and estimating spatial extent: Since ex-
tended objects often generate multiple detections per frame, robust modeling is
required to infer the object’s physical dimensions and shape from scattered and
noisy detections.

2. Clutter removal and false alarm suppression: Radar data often contain false
alarms due to multipath propagation, interference, and sensor noise [14], which
must be suppressed in the tracking module to isolate true object measurements
from false detections.

3. Tracking multiple targets: In complex dynamic environments, tracking of
multiple objects requires solving data association problems (i.e., how to assign
measurements to multiple existing tracks) and state estimation problems (i.e.,
how to accurately infer object states from noisy observations) accurately and
efficiently.

Existing approaches to these challenges are analyzed in the following discussion:

1. Handling multiple detections and estimating spatial extent
Radar returns from an extended object typically consist of multiple detections
per frame due to the distributed scattering nature of radar sensing [40]. These
detections encode the shape and size information of the object. For the processing
of multiple detections, a widely adopted solution is spatial clustering, especially
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clus-
tering algorithm [41] which is proven to be effective for many automotive radar
tracking applications [42].

After detections are grouped into different clusters, the spatial extent information
of each cluster is estimated according to a certain shape model. A widely used
shape model is the Random Matrix Model (RMM) proposed by Koch [43–45],
in which the extent of an object is represented by a symmetric positive-definite
matrix that models the object shape as an ellipse or ellipsoid. The combined
state is estimated using a joint Gaussian-inverse Wishart distribution. This model
provides an analytically tractable framework for simultaneously updating the state
and extent based on the spread of associated measurements.

Recently, another approach to process multiple detections utilizes deep learning
techniques to follow the tracking-by-detection paradigm [46,47]. Such a paradigm
involves first performing object detection with a deep neural network in each frame
independently, and then linking these detected object types and 3D bounding
boxes across consecutive frames to form continuous object trajectories. In [47],
the PointPillars [48] neural network is for example adopted for object detection.
With input point clouds, this network can predict the position, size, and type of
each object by assigning a 3D bounding box.
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2. Clutter removal and false alarm suppression
Clutter is a significant challenge in radar-based tracking systems, arising from
multipath propagation, sidelobe effects, possible interference, and hardware im-
perfections. A common strategy to remove clutter is to use pre-filtering tech-
niques, where radar detections are thresholded based on Doppler or velocity val-
ues and RCS. For instance, in [49], detections with low radial velocity or low RCS
are discarded as probable clutter before tracking begins. While efficient, such
heuristics may also remove valid weak detections, especially for vulnerable tar-
gets like pedestrians. More principled approaches incorporate gating techniques
using the Mahalanobis distance between the predicted target state and incom-
ing measurements. This allows elliptical gating regions that adapt to the shape
and uncertainty of each target, improving robustness compared to fixed-radius
gating [44].

3. Tracking multiple targets
To track multiple targets simultaneously, there are mainly two steps. The first
step solves the data association problem, where the associations between the new
measurements and the existing tracks are established. The second step handles
the state estimation problem, where the hidden states of each track are estimated
based on the assigned data association hypothesis.

Data association is a combinatorial optimization problem that aims to determine
the most likely assignment between measurements and existing tracks. Existing
solutions include the Hungarian algorithm [50], which computes the optimal one-
to-one assignment and discards all other possibilities, and Murty’s algorithm [51],
which generates a ranked list of the top-K most likely association hypotheses
based on their likelihood scores.

State estimation involves inferring the hidden state of targets (e.g., position, ve-
locity) from noisy measurements. The Kalman Filter is the standard solution
for linear Gaussian systems. For nonlinear systems, the Extended Kalman Fil-
ter (EKF) and the Unscented Kalman Filter (UKF) provide first- and second-order
approximations. In highly nonlinear and non-Gaussian environments, the Particle
Filter offers better flexibility by representing the posterior with a set of weighted
samples.

Several classic multi-target tracking algorithms integrate data association and
state estimation. The Global Nearest Neighbor (GNN) algorithm [52] is a de-
terministic method that approximates the multi-target posterior by selecting the
single most likely association hypothesis at each update. In contrast, the Joint
Probabilistic Data Association (JPDA) filter [53] considers all feasible associa-
tions, merging their contributions into a single Gaussian distribution. As a result,
even hypotheses with lower likelihoods are partially retained, improving robust-
ness in cluttered environments. The Multiple Hypothesis Tracking (MHT) al-
gorithm [54] further extends this idea by maintaining a Gaussian mixture, where
each component corresponds to a global association hypothesis. This allows MHT
to explicitly propagate uncertainty over multiple time steps, offering higher accu-
racy at the cost of increased computational complexity.
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More recently, algorithms based on Random Finite Set (RFS) theory have gained
attention for their principled handling of an unknown and time-varying number
of targets. The Probability Hypothesis Density (PHD) filter [55] propagates the
first-order moment of the target set, offering efficient multi-target tracking without
explicit data association. The Poisson Multi-Bernoulli Mixture (PMBM) filter
[56] further models both detected and undetected targets explicitly and provides
a full Bayesian solution with scalable approximations, achieving state-of-the-art
performance in challenging tracking scenarios.

In summary, existing radar-based MEOT algorithms tackle key challenges such as
extent estimation, clutter suppression, and multi-target tracking. Recent advances
combine model-based filtering with clustering and deep learning, enabling accurate
perception in dynamic environments.

2.3 Combined ego-motion estimation and MEOT approaches

Accurate scene understanding of a dynamic environment requires estimating the
motion of both the ego vehicle and surrounding moving objects. Traditionally, ego-
motion estimation and MEOT have been treated as two separate modules. Solutions
usually rely on certain assumptions, such as the static environment assumption for
ego-motion estimation and the accurate ego velocity assumption for MEOT. However,
in complex dynamic environments, it is difficult or even impossible to satisfy these
assumptions [57].

To guarantee the performance of both tasks under such conditions, combined ego-
motion estimation and MEOT approaches have gained increasing attention in recent
years. These methods leverage the inherent interdependence between the two tasks to
achieve mutual benefits. On the one hand, considering the impact of moving objects
enables better segmentation between moving and static objects, thereby improving
the robustness of ego-motion estimation. On the other hand, accurate ego-motion
estimation results can provide a stable reference for more consistent and precise object
tracking.

A foundational effort in this direction was laid in 2007 when Wang et al. [11] intro-
duced a groundbreaking Bayesian-based theory of Simultaneous Localization, Mapping,
and Moving Object Tracking (SLAMMOT). This work formulates the combined prob-
lem as a unified state estimation task, and proposes a solution using two decoupled
estimators based on simplified assumptions. However, this approach oversimplifies the
complex interactions between static and dynamic targets in real-world environments,
limiting its applicability in practical scenarios.

Since then, ego-motion estimation and multiple object tracking have increasingly
been treated as a combined problem, with extensive research showing that these two
tasks can mutually benefit from each other. Most existing methods have been devel-
oped utilizing either camera or LiDAR sensors rather than radar [12, 13, 58–60], and
are reviewed in the rest of this section. There are two primary challenges in solving
this combined problem: accurate separation of static and moving objects and strong
coupling between the two tasks.
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First, the accurate separation of static and dynamic objects is crucial. Ego-motion
estimation relies on static objects’ features, while tracking requires correctly identifying
and associating moving entities. Misclassification can lead to errors in localization and
fragmented or incorrect target trajectories. Camera-based methods typically leverage
semantic and texture information to perform feature matching across multiple consecu-
tive frames. For instance, VDO-SLAM [12] employs the Mask R-CNN semantic segmen-
tation neural network to segment dynamic objects, while DynaSLAM II [58] combines
semantic information with multi-view geometry to detect moving regions. LiDAR-
based approaches rely more on geometric consistency in 3D point clouds to perform
instance segmentation and object detection. DL-SLOT [13] and IMM-SLAMMOT [59]
both use the 3D object detection neural network PointRCNN [61] to identify poten-
tially dynamic objects and filter out their corresponding points prior to ego-motion
estimation.

Second, the strong coupling between ego-motion estimation and tracking introduces
a major algorithmic challenge. Ego-motion is used to compensate for sensor motion
and stabilize tracking, while accurate tracking can improve motion segmentation and
provide feedback for localization. When treated independently, the two tasks may
propagate errors to one another. To address this, many existing methods adopt graph
optimization or joint filtering frameworks. In VDO-SLAM [12], both the camera and
object trajectories are jointly refined using bundle adjustment in a graph-based back-
end. Similarly, LIO-SEGMOT [60] presents a dynamic LiDAR SLAMMOT method
based on factor graph optimization. Another approach is joint filtering. In IMM-
SLAMMOT [59], the motion of the ego vehicle and the tracked objects are simulta-
neously estimated using Interacting Multiple Models (IMM) filters, enabling real-time
feedback between localization and tracking modules.

2.4 Summary of research gaps

In this section, based on the literature reviewed in this chapter, the key research
gaps are summarized in terms of radar-based ego-motion estimation, multiple extended
object tracking, and combined methods.

Ego-motion estimation: Although many methods have been proposed to enhance
the robustness of RANSAC in dynamic environments, such as using static ground priors,
deep learning, and advanced outlier rejection techniques, most of them only leverage the
temporal consistency of the ego vehicle data by incorporating the previous estimates.
However, to the best of the author’s knowledge, existing methods typically ignore the
temporal consistency of surrounding moving objects, which can be obtained from the
MEOT task. With prior tracking information, the positions, shapes, and sizes of mov-
ing objects can be determined, making it possible to exclude their negative effects in
ego-motion estimation. This could further mitigate the challenges caused by large mov-
ing objects and enhance the accuracy of static target detection. Therefore, this thesis
aims to develop a radar-only framework that integrates MEOT into ego-motion esti-
mation, thereby improving the robustness of ego-motion estimation in outlier-intensive
scenarios.

Multiple extended object tracking: Recent advances in MEOT tackle key chal-

19



lenges such as clutter suppression, data association, and extended object state estima-
tion. Nevertheless, the existing radar-based MEOT systems typically assume externally
provided ego-motion information to compensate the motion of radar sensors, which re-
lies on GNSS, IMU, or LiDAR. As a result, the tracking accuracy may degrade when
ego-motion estimation is inaccurate or unavailable. Therefore, a key open challenge is
to develop radar-only MEOT frameworks that incorporate ego-motion estimation and
tracking, particularly in dynamic and cluttered environments.

Combined methods: Although significant progress has been made for Camera and
LiDAR-based systems, to the best of the author’s knowledge, not much literature is
available on automotive radar data for combined ego-motion estimation and MEOT. As
discussed in Sections 2.1 and 2.2, most radar-based approaches address the two tasks
independently, without exploiting their inherent coupling. Developing a radar-only
method is crucial because it enables robust perception in challenging environments,
such as low light, fog, rain, or snow, where camera and LiDAR sensors may fail or
degrade significantly. Moreover, compared to LiDAR systems, radar is cost-effective,
making it attractive for large-scale development.

The lack of radar-specific combined methods can be attributed to several inherent
limitations. First, radar data is typically sparse and low-resolution [14], making it dif-
ficult to extract stable semantic or geometric features for cross-frame matching. Sparse
point clouds generated by radars, with only a few points on pedestrians and a small
number on cars, are insufficient for accurately outlining object contours and extract-
ing detailed shape information [62]. Second, radar can generate a high rate of false
detections, which directly affect the accuracy of motion segmentation and data associ-
ation. Due to the characteristics of millimeter-wave propagation, radar measurements
are highly susceptible to clutter and noise from various sources, including multi-path
propagation, inter-radar interference, and hardware imperfections [24,25]. These effects
can degrade the precision and reliability of radar measurements.

Given these limitations, it is challenging to directly adapt existing approaches de-
veloped for camera or LiDAR to radar. Instead, it is essential to design dedicated
frameworks that consider the unique characteristics of radar data. This thesis addresses
the identified research gap by proposing a radar-only framework that performs com-
bined ego-motion estimation and MEOT, leveraging the mutual constraints between
the two tasks—without dependence on external localization systems or high-resolution
sensors.
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Part II

Raw Signal based Combined
Method

Some sections of this part are supposed to be published in: S. Yuan, T. Wang, A. Yarovoy
and F. Fioranelli, ”Joint ego-motion estimation and multiple object tracking using automotive
radar”, 2025 22nd European Radar Conference (EuRAD).(Submitted). See Appendix A for
the full version of this paper.
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Methodology 3
This chapter illustrates the proposed raw signal based method for combined ego-

motion estimation and multiple object tracking. Section 3.1 formulates the combined
problem as a Bayesian filtering task. Section 3.2 provides an overview of the algorithm,
which is structured into two main phases: an initialization phase and a combined esti-
mation phase. From Section 3.3 to Section 3.6, the four modules of the proposed method
are presented in detail, including signal preprocessing, tracking-aided ego-motion esti-
mation, ego-motion compensation, and multiple object tracking. Finally, Section 3.7
introduces the evaluation metrics used to assess the performance of both ego-motion
estimation and multiple object tracking.

3.1 Problem formulation

In this section, the combined problem of ego-motion estimation and multiple object
tracking is formulated as a Bayesian filtering problem. As introduced in Section 1.2,
the objective is to estimate the motion states of both the ego vehicle and surrounding
moving objects over time, based on sequential radar measurements.

At each discrete time step k (corresponding to radar frame k), the system state
consists of two parts:

• Ego vehicle state:

xk
ego =

[
pk
ego

vk
ego

]
(3.1.1)

where pk
ego is the position of the ego-vehicle, and vk

ego is the translational velocity
of the ego-vehicle. It is worth noting that in this thesis, rotational velocity is not
estimated.

• Moving object states: Assume there are Mk moving objects in total, for each
object j ∈ {1, . . . ,Mk}, its state also includes the position and velocity vectors:

xk
j =

[
pk
j

vk
j

]
, j ∈ {1, . . . ,Mk} (3.1.2)

where pk
j is the position of the j-th object, and vk

j is the translational velocity of
the j-th object.

Based on the above two equations, the full system state Xk is defined as:

Xk =
[
xk
ego, x

k
1, . . . ,x

k
Mk

]
(3.1.3)
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At each time step, the radar measurements are represented by Zk, which can be
either raw signals or processed point clouds. These measurements may originate from
static or moving objects, and typically encode range, Doppler velocity, and angle infor-
mation.

The ego vehicle state is assumed to follow a discrete-time motion model as follows:

xk
ego = fego(x

k−1
ego ) +wk

ego, wk
ego ∼ N (0,Qk

ego) (3.1.4)

where fego(·) denotes the motion transition function, and wk
ego is zero-mean Gaussian

process noise with covariance Qk
ego. Similarly, each moving object evolves according to:

xk
j = f j

obj(x
k−1
j ) +wk

j , wk
j ∼ N (0,Qk

j ), j ∈ {1, . . . ,Mk} (3.1.5)

where f j
obj(·) denotes the motion transition function of the j-th object, with the zero-

mean Gaussian process noise wk
j with covariance Qk

j .
Each radar measurement is modeled as a function of both the ego vehicle state and

the object state. The measurement model is defined as:

zk,j = h(xk
ego,x

k
j ) + nk,j, nk,j ∼ N (0,Rk) (3.1.6)

where h(·) transforms the global position and velocity states into the radar measurement
domain (e.g., range, angle, Doppler), and nk,j is the additive observation noise with
covariance Rk.

Given a sequence of radar measurements up to time k, denoted by Z1:k =
{Z1, . . . ,Zk}, the goal is to estimate the posterior distribution over all system states:

p(Xk | Z1:k) = p
(
xk
ego, {xk

j}Mk
j=1

∣∣Z1:k

)
(3.1.7)

This posterior encapsulates the uncertainty in both ego-motion and object states,
given noisy sensor observations and uncertain data associations. In practice, the final
state estimate X̂k is typically obtained by applying a Bayesian inference criterion. A
common choice is the Minimum Mean Squared Error (MMSE) estimator, defined as:

X̂MMSE
k = E [Xk | Z1:k] (3.1.8)

Alternatively, the Maximum A Posteriori (MAP) estimate may be used:

X̂MAP
k = argmax

Xk

p(Xk | Z1:k) (3.1.9)

If both the motion and measurement models are linear and corrupted by Gaussian
noise, the resulting posterior distribution is also Gaussian. In this case, the MMSE
estimate is the same as the MAP estimate.

Since the input originates from a single radar sensor in the scenarios considered in
this thesis, the estimation problem is inherently under-constrained. To make the prob-
lem tractable, an important assumption is that radar measurements originating from
static objects in the environment can be reliably distinguished from those correspond-
ing to moving objects. These static measurements serve as environmental references
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and provide essential constraints for ego-motion estimation. Therefore, the separation
of static and dynamic measurements is a critical component of the combined estimation
algorithm.

Although the ideal solution involves joint estimation of the full state variables,
this is difficult for a single radar due to limited observability. Therefore, a sequential
estimation approach is adopted in this work: ego-motion state xk

ego is first estimated
from static detections, followed by ego-motion compensation, and then moving object
states xk

j are estimated. This strategy reduces both the computational complexity and
the design difficulty of the overall algorithm. However, the proposed method enhances
the coupling between ego-motion estimation and object tracking by incorporating the
estimated motion states of moving objects from the previous frame xk−1

j , into the ego-

motion estimation process at the current frame xk
ego. This temporal interaction serves

as a promising step toward achieving joint and simultaneous state estimation in future
work.

Finally, this part of the thesis solves the combined problem of ego-motion estima-
tion & multiple object tracking directly by using raw radar signals, which introduces
additional challenges. Unlike point clouds, which are intuitive and compact represen-
tations, raw radar data contain complex I/Q signals that require more sophisticated
signal processing techniques, especially the utilization of phase information. Moreover,
the data volume of raw signals is substantially larger, increasing demands on mem-
ory and computational resources. These issues have limited the use of raw signals in
past work. To address these challenges, this thesis proposes an innovative combined
algorithm, which will be overviewed in Section 3.2.

3.2 Algorithm overview

This work proposes a radar-only algorithm for combined ego-motion estimation and
multiple object tracking, operating in a frame-by-frame manner. For each frame, the
algorithm takes raw radar signals as input and outputs the motion state of both the
ego vehicle xk

ego and the surrounding moving objects xk
j .

In temporal order, the algorithm is divided into two phases: the initialization phase
and the combined estimation phase. Each phase consists of four key modules: signal
preprocessing, ego-motion estimation, ego-motion compensation, and multiple object
tracking. The primary difference between the two phases lies in the ego-motion es-
timation module. In the combined estimation phase, a tracking-aided mechanism is
incorporated into ego-motion estimation, referred to as ”tracking-aided ego-motion es-
timation”, which enhances the robustness and accuracy of the overall estimation. This
difference also leads to a variation in the way static and moving measurements are
separated. In the initialization phase, the separation relies solely on Doppler and angle
information, whereas in the combined estimation phase, it utilizes Doppler, velocity,
and position information. The overall processing pipeline is illustrated in Figure 3.2.1.
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Figure 3.2.1: The overall processing pipeline of the raw signal based combined method for
ego-motion estimation & multiple object tracking, with the 2 phases of initialization on Ninit

frames and combined estimation on the generic frame K at steady state.
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As the figure shows, the core innovation of the proposed algorithm lies in the com-
bined estimation phase, where the tracking results from the previous frame are utilized
to guide the ego-motion estimation in the current frame. This design allows ego-motion
estimation and object tracking to benefit from each other in a more integrated manner.
By doing so, the negative impact of moving targets on ego-motion estimation is sig-
nificantly reduced. Meanwhile, ego-motion compensation and multiple object tracking
can fully rely on the ego-motion derived from radar data.

To address the state estimation problem described in Section 3.1, a Kalman filter is
employed for both the ego vehicle and each moving object to perform state prediction
and update. In this thesis, both the ego vehicle and moving targets are assumed to
move in 3D space with constant velocity. Therefore, the 3D Constant Velocity (CV)
motion model is adopted, which is suitable for steady-state moving cars without brisk
acceleration or deceleration. Mathematically, the model can be expressed in Equation
3.2.1:

xk
ego = Fxk−1

ego +wk
ego

xk
j = Fxk−1

j +wk
j

(3.2.1)

Where F is the state transition matrix, with T the update time:

F =




1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(3.2.2)

The process noise vectors wk
ego and wk

j represent the process uncertainties for the ego
vehicle and the j-th moving object, respectively. Both are modeled as zero-mean Gaus-
sian random variables with identical constant covariance matrix Q, given by:

Q = σ2
q




T 4

4
0 0 T 3

2
0 0

0 T 4

4
0 0 T 3

2
0

0 0 T 4

4
0 0 T 3

2
T 3

2
0 0 T 2 0 0

0 T 3

2
0 0 T 2 0

0 0 T 3

2
0 0 T 2




(3.2.3)

In this chapter, the update time T is set to 10.24 milliseconds, which corresponds to
the radar frame interval in the implemented simulation framework in Chapter 4. This
value can be adjusted depending on the specific radar configuration, and so the method
discussed in this chapter remains valid even in those cases. The process noise variance
σ2
q is set to 3 based on empirical tuning.
In terms of the measurement model, for the ego vehicle, the 3D CV model is adopted.

Since the velocity is directly observed through ego-motion estimation, it is used as the
measurement. Mathematically, the model can be expressed in Equation 3.2.4:

zkego = Hegox
k
ego + vk

ego (3.2.4)
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Where Hego is the measurement matrix for the ego vehicle:

Hego =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 (3.2.5)

vk
ego is the measurement noise vector, a Gaussian variable with zero mean and covariance

matrix Rego = σ2
r,ego× I3×3. The measurement noise variance σ2

r,ego is set to 0.2 through
parameter tuning.

For moving objects, the state estimation relies on position measurements. Therefore,
the 3D CV measurement model becomes:

zkj = Hobjx
k
j + vk

j (3.2.6)

Where Hobj is the measurement matrix for moving objects:

Hobj =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 (3.2.7)

vk
j is the measurement noise vector, a Gaussian variable with zero mean and covariance

matrix Robj = σ2
r,obj × I3×3. The measurement noise variance σ2

r,obj is set to 1 through
parameter tuning.

Next, the initialization phase and the combined estimation phase are described in
detail in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Initialization phase

Since ego-motion estimation depends on the tracking results from the previous
frame, the algorithm requires an initialization phase to bootstrap the tracker before
entering the combined estimation phase. During this phase, which processes the first
Ninit frames, no prior knowledge about the motion of the ego vehicle or surrounding
objects is assumed. In particular, ego-motion estimation is performed without relying
on any tracking feedback. The algorithm assumes that during the first frames, the
environment contains primarily static objects, and the influence of moving targets is
negligible. Under this assumption, ego-motion estimation and object tracking can be
performed independently and still yield reliable results.

As illustrated in Figure 3.2.1, for each frame, the pipeline consists of the following
four modules, executed sequentially as follows:

1. Signal preprocessing
For each radar frame, the raw signals are first processed using 2D FFT and a
Cell-Averaging Constant False Alarm Rate (CA-CFAR) detector [63] to extract
detections in the range-Doppler domain. Angle information is subsequently esti-
mated via an optimization-based approach [6]. The resulting detections serve as
inputs to the downstream estimation modules.
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2. Ego-motion estimation
By using a signal-based iterative optimization method [36], the static and moving
measurements are separated, and the ego vehicle’s translational velocities are
estimated with all static measurements. This velocity estimate is used to initialize
a Kalman filter based on a constant-velocity motion model, enabling recursive
prediction and correction of the ego vehicle state across frames.

3. Ego-motion compensation
Points that significantly deviate from the expected Doppler profile of a static
scene are identified as candidate moving points. These points are compensated
for ego-motion and integrated over several frames to accumulate a dense point
cloud representing dynamic targets.

4. Multiple object tracking
A DBSCAN clustering algorithm [41] is applied first to the compensated point
cloud to generate object-level measurements. These measurements are then used
to initialize a multi-object tracker based on a Gaussian mixture implementation
of the Global Nearest Neighbor algorithm [52], with Kalman filtering used to
estimate the state of each object also under the constant-velocity model.

The covariance matrices of both the ego-vehicle and moving-object Kalman filters
are initialized with large values to account for the high initial uncertainty, and are
progressively reduced as the tracks are initialized and confirmed. After a sufficient
number of frames, which is set in this work to Ninit = 10 (i.e., 0.1 s in terms of time)
according to empirical verifications, the tracker reaches a stable state, allowing the
system to transition to the combined estimation phase, where ego-motion estimation
and multiple object tracking interact in a tightly coupled manner.

3.2.2 Combined estimation phase

Following the initialization phase, the algorithm transitions into the combined esti-
mation phase, which is applied to all subsequent frames. While maintaining the same
four-module pipeline, the main improvement lies in ego-motion estimation, where a
tracking-aided approach leverages previous tracking results to better separate static
and dynamic points, improving robustness in dynamic scenes.

As illustrated in Figure 3.2.1, for each frame K, the following steps are performed:

1. Signal preprocessing
Identical to the initialization phase, radar raw signals undergo 2D FFT processing,
followed by CA-CFAR detection and angle estimation to extract target detections.
This module is detailed in Section 3.3.

2. Tracking-aided ego-motion estimation
In addition to the ego-motion estimation method utilized in the initialization
phase, which will be detailed in Section 3.4.2, this module incorporates a tracking-
aided segmentation step to identify and exclude dynamic targets, as described
in Section 3.4.1. The separation of static and moving measurements is jointly
accomplished by the processes in Sections 3.4.1 and 3.4.2: in Section 3.4.1, position
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information is used to eliminate obvious dynamic measurements, while in Section
3.4.2, the remaining measurements are further classified based on Doppler/velocity
and angle information. The final set of static points is then used to estimate the
ego vehicle’s translational motion. A Kalman filter is employed to recursively fuse
the estimates over time, ensuring smooth and consistent ego-motion trajectories.

3. Ego-motion compensation
Similar to the initialization phase, points identified as moving are compensated
based on the estimated ego-motion to remove the influence of the ego vehicle’s
motion and align them across frames. This step is further described in Section
3.5.

4. Multiple object tracking
Consistent with the initialization phase, the compensated point cloud is clustered
using DBSCAN to remove clutter and generate object-level measurements. These
measurements are then associated with existing tracks using the GNN algorithm,
and states are updated with the Kalman filter. Details are provided in Section
3.6.

3.3 Signal preprocessing

This section describes the signal preprocessing module that transforms raw signals
into detected point clouds with range, Doppler, and angle information. These detected
point clouds serve as partial input to downstream modules.

When using an FMCW MIMO automotive radar system, the radar raw signal refers
to the In-phase and Quadrature (I/Q) Intermediate-Frequency (IF) signals directly
obtained from each receiver channel after the Analog-to-Digital Converter (ADC) and
before the FFT signal processing. As shown in Figure 3.3.1, the transmit antenna
emits a frequency-modulated chirp signal generated by a synthesizer, and the reflected
signal is captured by the receive antenna. This received signal is mixed with a copy
of the transmitted signal to generate the IF signal, which encodes range and Doppler
information. After passing through a low-pass filter and an ADC, the complex I/Q
samples are digitized. These digitized signals are referred to as the ‘raw signals’, and
they serve as the input to the proposed method. In a MIMO radar system, where
multiple transmit and receive antennas are employed, the I/Q samples are collected
independently from each receive channel and subsequently combined to form a multi-
channel data cube for further processing. If there are I receive channels in the azimuth
dimension and J channels in the elevation dimension, with each chirp containing M
fast-time samples and each frame consisting of N chirps, the resulting four-dimensional
complex data cube can be represented as z(I, J,M,N).

In a radar signal processing pipeline, the first step is to convert the raw signals from
the time domain to the frequency domain with the FFT. Since ego-motion estimation
relies on the spatial alignment between different chirp groups, two chirp groups u0 and
u1, one from chirp u0 to chirp N

2
+ u0, and the other from chirp u1 to chirp N

2
+ u1, are

extracted. The original four-dimensional data cube z(I, J,M,N) is therefore split into
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Figure 3.3.1: Hardware high-level block diagram of an FMCW MIMO automotive radar [64]

two subsets as follows:

z(I, J,M,N) −→
{
zu0(I, J,M, N

2
), zu1(I, J,M, N

2
)
}

(3.3.1)

For each chirp group and each antenna channel, aM -point FFT is first applied along
the fast-time dimension to obtain the range profile, followed by a N

2
-point FFT along

the slow-time dimension to extract the Doppler information. This two-dimensional
FFT yields the Range-Doppler Spectrum (RDS) Z, computed as:

Zu0(I, J,M, N
2
) = 2D-FFT

(
zu0(I, J,M, N

2
)
)

(3.3.2)

Zu1(I, J,M, N
2
) = 2D-FFT

(
zu1(I, J,M, N

2
)
)

(3.3.3)

For each chirp group and each antenna channel, the RDS is a matrix of range-
Doppler bins, where each bin [m,n] is identified by a range index m ∈ {0, 1, . . . ,M−1}
and a Doppler index n ∈ {0, 1, . . . , N

2
−1}. Each bin corresponds to a specific combina-

tion of range and Doppler values, and its complex amplitude reflects the signal response
from targets at the associated distance and relative velocity. These bins provide the
basis for subsequent target detection and angle estimation procedures.

Next, a target detection algorithm is employed to determine which range-Doppler
bins contain target reflections. The two-dimensional CA-CFAR [63] is implemented on
the RDS to detect targets and reduce false alarms. The method works by dynamically
adjusting the detection threshold based on an estimate of the background noise. As
illustrated in Figure 3.3.2, for each Cell Under Test (CUT), two types of cell are defined:
the guard cells and training cells. Training cells are the surrounding cells used to
estimate the background noise level. In CA-CFAR, these cells are averaged to get
the noise estimate. To ensure the noise estimate is not biased by the target signal,
guard cells are introduced immediately adjacent to the CUT. These guard cells are
excluded from the noise estimation to prevent interference from the target’s energy
or other strong signals nearby. This separation ensures accurate threshold calculation
and reliable target detection. The noise estimate from the reference cells is scaled by
a factor corresponding to the desired false alarm rate, and this scaled value is used as
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the detection threshold. If the signal in the CUT exceeds the threshold, a target is
detected.

Figure 3.3.2: Concept of 2D CA-CFAR detector applied on a range-Doppler matrix

In the specific implementation, the magnitude of RDS is taken, accumulated across
all antennas, and normalized. The number of training cells is set to 2 for both dimen-
sions, and the number of guard cells is set to 1 for both dimension. The scaling factor
is set to 5. With these empirically-selected parameters, the detector can make a good
balance between robust detection of targets and a low false alarm rate.

After finding the range-Doppler bins corresponding to detected targets, the algo-
rithm adopts an optimization approach to estimate the azimuth and elevation angles
of each bin. Assume that inside one short radar frame (equivalent to approximately
0.01 s), a target will be in the same range-Doppler bin. Moreover, since the spacing
between antenna elements is very small compared to the radar-to-target distance, we
can also assume a target will be in the same range-Doppler bin for different antennas.
Then at the same slow time, for different antennas, the phase difference between the
RDS contains the angle information of targets.

Assume the k-th target scatter ok exists in the range-Doppler bin [mk, nk], and
u0 is the starting index of the first chirp group, the relationship between the RDS
of the antenna element [i, j] (i.e., the ith element in the azimuth dimension and the
jth element in the elevation dimension) Zu0(i, j,mk, nk) and the RDS of the reference
antenna element Zu0(1, 1,mk, nk) can be written in Equation 3.3.4:

Zu0(i, j,mk, nk) ∝ Zu0(1, 1,mk, nk) exp
[
jΦ(ok, i, j, u0)

]
(3.3.4)
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Essentially, these RDSs only differ in a phase difference Φ(ok, i, j, u0) defined in

Equation 3.3.5. The phase difference depends on the azimuth angle of target θ̂ok(u0),

the elevation angle of target ϕ̂ok(u0), the spacing between adjacent antennas in both
azimuth dimension and elevation dimension d, and the radar center frequency f0:

Φ(ok, i, j, u0) = 2πf0

(
id

c
sin θ̂ok(u0) cos ϕ̂ok(u0) +

jd

c
sin ϕ̂ok(u0)

)
(3.3.5)

Based on the above equations, the azimuth angle θ̂ok(u0) and elevation angle ϕ̂ok(u0)
of the detected targets can be estimated from the phase difference in the presence of
noise. This task can be formulated as an optimization problem which fits the measure-
ment data to a known signal model with unknown parameters.

From the Equation 3.3.4, the measured data in a matrix form X ∈ CNa×Ne can be
obtained:

X =
Zu0(i, j,mk, nk)

Zu0(1, 1,mk, nk)
+Nx (3.3.6)

where Na and Ne denote the number of antenna elements along the azimuth and ele-
vation dimensions, respectively, with i ∈ {1, . . . , Na} and j ∈ {1, . . . , Ne}. The ratio
is computed element-wise across all antenna positions. Nx ∈ CNa×Ne is the complex-
valued noise matrix.

The signal model Y ∈ CNa×Ne , which is a function of the azimuth angle θ̂ok(u0) and

elevation angle ϕ̂ok(u0), can be represented as:

Y(θ̂ok(u0), ϕ̂ok(u0)) = exp

(
j2πf0

(
id

c
sin θ̂ok(u0) cos ϕ̂ok(u0) +

jd

c
sin ϕ̂ok(u0)

))

(3.3.7)
The problem of angle estimation then becomes an unconstrained optimization prob-

lem as in 3.3.8, with the objective defined in Equation 3.3.9.

arg min
θ̂ok (u0),ϕ̂ok

(u0)
f(θ̂ok(u0), ϕ̂ok(u0)) (3.3.8)

where

f(θ̂ok(u0), ϕ̂ok(u0)) = [Y −X]H [Y −X] , with X,Y ∈ CNa×Ne . (3.3.9)

This optimization problem can be solved with the pattern search [65] algorithm
in the Matlab Global Optimization toolbox [66]. This algorithm does not require the
calculation of gradient, making it suitable for functions that are noisy, discontinuous,
or non-differentiable. It is also robust to non-convex functions and complex search
spaces. After solving the optimization problem, the azimuth and elevation angles of
each detected target ok are obtained. Combined with the range and Doppler values cor-
responding to the range-Doppler bin [mk, nk], the range, velocity, and angle information
for each target is all estimated.

In summary, the signal preprocessing module processes raw radar signals through
a sequence of operations including chirp group separation, two-dimensional FFT, CA-
CFAR-based target detection, and angle estimation. Assuming a total of N targets are
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detected, the output is a detected point cloud including the four values of estimated
range, Doppler velocity, azimuth angle, and elevation angle of all targets. The point
cloud P is formally represented as:

P = {(R̂i, V̂D,i, θ̂i, ϕ̂i)}Ni=1 (3.3.10)

3.4 Tracking-aided ego-motion estimation

After signal preprocessing, the tracking-aided ego-motion estimation module uti-
lizes both the raw signals and the detected point cloud to estimate the ego-motion.
The point cloud is used to identify the range-Doppler bins associated with static ob-
jects. These bins are then referenced back to the raw signal domain, where a robust
ego-motion estimation is performed using only the static objects. This module con-
sists of three key steps. As described in Section 3.4.1, previous tracking results are
employed to guide the segmentation of static and moving objects. In Section 3.4.2,
an iterative algorithm estimates the ego-motion directly from the raw signals, using
only the previously identified static objects bins. Finally, Section 3.4.3 converts the
estimated ego-velocity of the radar to the ego-velocity of the vehicle, and updates the
Kalman filter for the ego vehicle using the estimated velocity. It is worth noting that
during the initialization phase, when tracking information is not yet available, only the
steps in Section 3.4.2 and Section 3.4.3 are executed.

3.4.1 Tracking-aided segmentation

To ensure robust ego-motion estimation in dynamic environments, it is essential
to distinguish static points from those belonging to moving objects. Tracking-aided
segmentation is the first step of the ego-motion estimation. During the segmentation,
the range-Doppler bins associated with moving objects are excluded and passed to
the subsequent tracking module, while those remaining bins are retained for iterative
ego-motion estimation detailed in Section 3.4.2.

This segmentation strategy is based on the assumption that objects that were previ-
ously tracked as moving are likely to continue moving in the current frame. Moreover,
their positions can be reliably predicted using the state estimates from the tracking
module. This assumption leverages the temporal continuity of object motion, which is
commonly observed in real-world driving scenarios. By exploiting the predicted motion
of tracked objects, the algorithm is able to proactively remove potential moving points
from the radar point cloud, thereby reducing their interference with the ego-motion
estimation process.

After the initialization phase, the system obtains the tracks of both the ego ve-
hicle and moving objects. Each track contains position and velocity of the moving
entity. During the combined estimation phase, for each radar frame, the input to the
segmentation module consists of:

• the current radar point cloud

• the ego vehicle track from the previous frame
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• the moving object tracks from the previous frame

The output of the module is the point cloud segmentation result, which includes:

• the indices of points classified as static

• the indices of points classified as moving

The segmentation algorithm consists of three main steps: prediction, compensa-
tion, and gating, as detailed in Algorithm 1 and following text.

Algorithm 1 Tracking-Aided Segmentation

Require: Detected point cloud at the current frame P = {(R̂i, V̂D,i, θ̂i, ϕ̂i)}Ni=1; ego vehi-
cle track from the previous frame {x̂ego,Pego}; object tracks from the previous frame
{x̂j ,Pj}Mj=1; the rotation matrix Rr2v and the translation vector tr2v from radar to vehi-
cle coordinate system; the rotation matrix Rv2w from vehicle to world coordinate system

Ensure: Static point indices Istatic, moving point indices Imoving

Step 1: Prediction
1: Predict the ego vehicle state x̂−

ego and covariance matrix P−
ego using Kalman filter

2: Extract predicted position of the ego vehicle xego = x̂−
ego(1:3)

3: for each object track j = 1 to M do
4: Predict object state x̂−

j and covariance matrix P−
j using Kalman filter

5: Extract predicted position µj = x̂−
j (1:3)

6: end for
Step 2: Compensation

7: Convert point cloud P to Cartesian coordinates pir = (xi, yi, zi)
8: Switch from the radar coordinate to the vehicle coordinate: piv ← Rr2v · pir + tr2v
9: Apply ego-motion compensation: pi ← Rv2w · piv + xego

Step 3: Gating
10: Initialize Istatic ← {1, 2, . . . , N}
11: for each point pi do
12: for each object j = 1 to M do
13: Compute Euclidean distance d2 = (pi − µj)

⊤(pi − µj)
14: if d2 < γ then
15: Point pi is inside the gating region
16: Mark point pi as moving: remove i from Istatic
17: break
18: end if
19: end for
20: end for
21: Imoving ← indices not in Istatic
22: return Istatic, Imoving

Step 1: Prediction This step aims to predict the spatial relationship between the
ego vehicle and moving objects based on their previous states and motion models. As
described in Section 3.2, both the ego vehicle and each tracked object are modeled using
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Kalman filters. Therefore, it is straightforward and convenient to apply the Kalman
prediction step to solve the task. In this method, a 3D CV motion model is selected
for all entities. The prediction of the state and covariance is computed as in Equation
3.4.1 and 3.4.2:

x̂−
k|k−1 = Fx̂k−1 (3.4.1)

P−
k|k−1 = FPk−1F

⊤ +Q (3.4.2)

Where x̂−
k|k−1 and P−

k|k−1 are the predicted state and covariance at time step k, and

x̂k−1 and Pk−1 are the estimated state and covariance at time step k − 1.

Step 2: Compensation This step compensates for ego-motion, in order to remove its
influence on the observed radar point cloud. The compensation method is the same as
described later in Section 3.5, with the only difference being that it uses the predicted
vehicle position instead of the updated one. More details on this compensation method
can be found in Section 3.5.

After this step, all detected points are transformed to the world coordinate system,
enabling correct comparison with predicted object positions.

Step 3: Gating The objective of this step is to classify radar detections as either
moving or static by evaluating their spatial proximity to previously tracked moving ob-
jects. To accomplish this, we adopt a Euclidean gating strategy, a technique commonly
used in Multiple Object Tracking algorithms for data association [10,38]. In this work,
Euclidean gating is adapted to address the point cloud segmentation problem, enabling
the separation of dynamic and static measurements prior to ego-motion estimation.

In the context of tracking, gating is a method used to constrain the number of
feasible associations between predicted object states and new detections. It defines a
bounded region around each predicted track, and only detections falling within this
region are considered as viable association candidates. This effectively reduces com-
putational complexity and improves the robustness of data association, especially in
cluttered environments.

Here, the same principle is applied to segment the radar point cloud. For each
detection pi, the Euclidean distance to the predicted center µj of each tracked moving
object is computed. Assume there are M tracks, if the distance between the detection
and any track is smaller than a threshold, the point is considered as belonging to a
moving object. Otherwise, it is labeled as static as:

{
Label moving target if minj∈1,...,M(pi − µj)

⊤(pi − µj) < γ

Label static target if minj∈1,...,M(pi − µj)
⊤(pi − µj) ≥ γ

(3.4.3)

The threshold radius γ defines the spatial extent of the gate, and is empirically set
to 4 meters in this implementation. This gating-based segmentation effectively filters
out candidate moving points from the ego-motion estimation process, while preserving
them for use in the subsequent tracking module. In Chapter 5, this gating strategy
is further extended to adaptively consider the spatial extent of each object, enabling
more accurate segmentation in the presence of size variations.
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3.4.2 Iterative ego-motion estimation

Based on the segmentation result from Section 3.4.1, a subset of radar detections
is classified as static. These static indices Istatic are then used to identify the corre-
sponding range-Doppler bins in the raw signal domain. To be specific, for each static
index k ∈ Istatic, the estimated range R̂k and Doppler values V̂D,k are mapped back to
its range-Doppler bin [mk, nk]. Only the raw signals in these bins are extracted and
used to perform a robust ego-motion estimation. For the initialization phase, since no
segmentation is performed, all range-Doppler bins associated with detected targets are
used in ego-motion estimation.

The major principle of ego-motion estimation with radar is to utilize measurements
from static targets within the field of view and estimate the motion of the radar platform
in reverse, i.e., based on the indirect motion of the static targets. Although the tracking
information in Section 3.4.1 helps exclude moving targets, the remaining static range-
Doppler bins may still contain detections of clutter or newly-appeared moving objects.
To ensure a more reliable segmentation between moving and static objects, and to
perform ego-motion estimation using only strictly static targets, a robust method is
needed.

In this section, the iterative ego-motion estimation method proposed in [36] is
adopted and implemented. The method iteratively recognizes static targets and uses the
phase difference at different chirp groups inside one frame to estimate the ego-velocity.

This method contains two main processing steps: initial ego-motion estimation
and iterative ego-motion estimation. In the initial ego-motion estimation step, an
initial rough ego-velocity estimation based on optimization is conducted based on the
information of all static range-Doppler bins from Section 3.4.1. After that, in the
iterative ego-motion estimation step, the algorithm iteratively labels the range-Doppler
bin based on the results of the last ego-motion estimation, and uses the information
of all static range-Doppler bins to perform a new estimation. After several iterations,
the results converge and the final estimated ego-velocity is obtained. Moreover, the
algorithm also outputs the moving point cloud for the subsequent tracking task.

The principle of the initial ego-motion estimation is similar to the angle estimation
approach in Section 3.3, as both methods optimize based on phase differences from
different parts of the raw signals. This method relies on the fact that for the same
antenna, at different slow time, the phase difference between the RDS contains the
ego-velocity information of the vehicle. The relationship between the RDS of the first
chirp group Zu0(i, j,mk, nk) and the RDS of the second chirp group Zu1(i, j,mk, nk)
can be written in Equation 3.4.4:

Zu1(i, j,mk, nk) ∝ Zu0(i, j,mk, nk) exp
[
jΓ(ok, u1, u0)

]
(3.4.4)

Similar to Equation 3.3.4, these RDSs only differ in a phase difference Γ(ok, u1, u0)
detailed in Equation 3.4.5, which depends on the relative velocity between the radar
and the targets v̂rx, v̂ry, v̂rz, the time difference (u1 − u0)T (with T denoting the Pulse

Repetition Interval (PRI)), the azimuth angle of target θ̂ok(u0), the elevation angle of

target ϕ̂ok(u0), and the center frequency f0:

Γ(ok, u1, u0) = 4π
drokf0

c
(3.4.5)
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where drok denotes the displacement of target ok projected onto its line of sight, and is
given by:

drok = v̂rx · (u1 − u0) cos θ̂ok(u0) cos ϕ̂ok(u0)T

+ v̂ry · (u1 − u0) sin θ̂ok(u0) cos ϕ̂ok(u0)T

+ v̂rz · (u1 − u0) sin ϕ̂ok(u0)T

(3.4.6)

The relative velocity v̂rx, v̂ry, v̂rz can also be estimated by solving an optimization
problem. The measured data can be obtained and written as the measurement matrix
P ∈ CNk×NeNa in Equation 3.4.7. Only the static range-Doppler bins [mk, nk] are used
to construct the measurement matrix, where Nk denotes the number of static bins.
The ratio is computed for each antenna positions, where Na and Ne denote the number
of antenna elements along the azimuth and elevation dimensions, respectively, with
i ∈ {1, . . . , Na} and j ∈ {1, . . . , Ne}.

P =
Zu1(i, j,mk, nk)

Zu0(i, j,mk, nk)
+Np (3.4.7)

where Np ∈ CNk×NeNa is the complex-valued noise matrix.
The signal model is designed as Q ∈ CNk×NeNa :

Q(v̂rx, v̂ry, v̂rz) = exp

(
j 4π

f0(u1 − u0)T

c

(
v̂rx cos θ̂ok cos ϕ̂ok

+ v̂ry sin θ̂ok cos ϕ̂ok + v̂rz sin ϕ̂ok

))
· ones(1, NeNa)

(3.4.8)

The problem of estimating the relative velocity v̂rx, v̂ry, v̂rz becomes another opti-
mization problem as in 3.4.9, with the objective function defined in Equation 3.4.10:

arg min
v̂rx,v̂ry ,v̂rz

f(v̂rx, v̂ry, v̂rz) (3.4.9)

where
f(v̂rx, v̂ry, v̂rz) = [Q−P]H [Q−P] (3.4.10)

This problem is also solved with pattern search [65] to estimate v̂rx, v̂ry, v̂rz.
After the initial estimation is completed, the algorithm enters a two-step feedback

loop: divide targets into static or moving categories, and perform ego-motion estimation
again with the above method based only on static targets. After several iterations, a
given stopping criterion is met and the final estimated ego-velocity is obtained.

Assume the vector [v̂irx, v̂
i
ry, v̂

i
rz] is the velocity estimation results from the i-th iter-

ation. In the (i+1)-th iteration, for the k-th target, the ego-motion induced Doppler
can be calculated as:

V i+1
induced = v̂irx cos θ̂ok cos ϕ̂ok + v̂iry sin θ̂ok cos ϕ̂ok + v̂irz sin ϕ̂ok (3.4.11)

If the target is static, this ego-motion induced Doppler should be close to the mea-
sured Doppler. By obtaining the measured Doppler V (mk, nk) from the RDS detections,

38



the difference between the ego-motion induced Doppler and the measured Doppler can
be calculated. If this velocity difference is smaller than a given threshold, the target is
labelled as a static target. Otherwise, it is labelled as a moving target:

{
Label moving target if

∣∣V (mk, nk)− V i+1
induced

∣∣ > Thresholdi+1

Label static target if
∣∣V (mk, nk)− V i+1

induced

∣∣ ≤ Thresholdi+1 (3.4.12)

In this work, the threshold is set to the mean of velocity difference for all static
targets from the last iteration, as:

Thresholdi+1 = mean(
∣∣V (mk, nk)− V i

induced

∣∣), for all
∣∣V (mk, nk)− V i

induced

∣∣ ≤ Thresholdi

(3.4.13)
In this way, a new list of static targets is obtained. Using these [mk, nk], the mea-

surement matrix P in Equation 3.4.7 can be formed and the optimization problem in
Equation 3.4.9 can be solved. The results are the velocity estimation results from the
(i+1)-th iteration: [v̂i+1

rx , v̂i+1
ry , v̂i+1

rz ].
After several iterations, the list of static targets will remain unchanged and the loop

can be exited. The criterion for the breaking point is that the velocity difference for
all static targets should be smaller than the radar velocity resolution:

max(|V (mk, nk)− Vinduced|) < ∆v (3.4.14)

The velocity resolution is given by:

∆v =
λ

2TNDoppler

(3.4.15)

where λ is the wavelength, T is the PRI, and NDoppler denotes the number of chirps
used for Doppler processing. In this method, NDoppler equals to

N
2
.

Once the iteration ends, the relative velocity estimation results [v̂rx, v̂ry, v̂rz] becomes
the final ego-velocity estimation results [v̂ego,radarx , v̂ego,radary , v̂ego,radarz ].

3.4.3 Velocity transformation and state update

The velocity estimated in Section 3.4.2 corresponds to the motion of the radar sen-
sor. However, since the radar is rigidly mounted on the vehicle with a certain angle
and position offset, it is necessary to convert the estimated radar velocity into the ego
vehicle’s velocity in the vehicle coordinate system. This requires a coordinate trans-
formation between the radar observation coordinate system and the vehicle coordinate
system. Before describing the conversion process, the relevant coordinate systems are
first introduced.

In autonomous driving, three kinds of coordinate systems are commonly involved
in localization and tracking tasks: world coordinate system, vehicle coordinate system,
and radar observation coordinate system [67]. Figure 3.4.1 visualizes the concept and
spatial relationship among these coordinate systems.

1. World Coordinate System
The world coordinate system serves as a fixed, global reference frame, with its
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Figure 3.4.1: Concept and spatial relationship among three coordinate systems

origin defined at an arbitrary point on the Earth’s surface. The proposed combined
estimation algorithm in this thesis aims to estimate the state of both the ego
vehicle and surrounding moving objects in the world coordinate frame. Generally,
the axes follow the East-North-Up convention:

• X-axis (Xw) points east,

• Y-axis (Yw) points north,

• Z-axis (Zw) points upward, perpendicular to the local ground plane.

2. Vehicle Coordinate System
The vehicle coordinate system is defined relative to the ego vehicle and typically
follows the ISO 8855 standard: Road vehicles — Vehicle dynamics and road-
holding ability — Vocabulary [68], which is widely adopted in the autonomous
driving industry [67]. The axes are defined as follows:

• X-axis (Xv): forward along the vehicle’s longitudinal direction (i.e., driving
direction),

• Y-axis (Yv): to the left of the vehicle (i.e., lateral direction),

• Z-axis (Zv): upward, normal to the road surface.

3. Radar Observation Coordinate System
The radar observation coordinate system is specific to each radar sensor and is
defined according to the geometry of its transceiver array:
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• x-axis (Xr): points outward along the radar beam (sensing direction),

• y-axis (Yr): aligns with the azimuthal (horizontal) direction of the MIMO
antenna array,

• z-axis (Zr): aligns with the elevation (vertical) dimension of the MIMO an-
tenna array.

The radar’s measurement data, including both raw signals and point clouds, are
defined in this coordinate system.

To obtain the velocity of the ego vehicle, it is necessary to transform the velocity
vector estimated in the radar observation coordinate system into the vehicle coordinate
system. Given a known radar installation angle, this can be achieved by applying a
rotation matrix: 


v̂ego,vehiclex

v̂ego,vehicley

v̂ego,vehiclez


 = Rr2v ·



v̂ego,radarx

v̂ego,radary

v̂ego,radarz


 (3.4.16)

where Rr2v is the rotation matrix from radar to vehicle coordinate system defined in
Equation 3.5.3.

Once the velocity of the vehicle is obtained, it is used to update the Kalman filter
which estimates the ego vehicle’s motion state. The state and covariance matrix are
updated using the Equations 3.4.17 to 3.4.19:

Kk = P−
k|k−1H

⊤(HP−
k|k−1H

⊤ +R)−1 (3.4.17)

x̂k = x̂−
k|k−1 +Kk(zk −Hx̂−

k|k−1) (3.4.18)

Pk = (I−KkH)P−
k|k−1 (3.4.19)

In this case, the measurement vector zk contains the estimated ego-velocity in the
vehicle coordinate system, and the observation matrix H maps the state vector to the
measured velocity components. The formulation is given in Equation 3.4.20.

zk =



v̂ego,vehiclex

v̂ego,vehicley

v̂ego,vehiclez


 , H =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 (3.4.20)

3.5 Ego-motion compensation

In Section 3.4, the ego-motion is estimated using all static targets. Meanwhile, this
module also achieves the separation of moving and static targets and outputs the point
cloud associated with moving targets. The point cloud of moving objects consists of
two parts: the first part includes points identified as moving targets using tracking
information in Section 3.4.1, and the second part includes all remaining points that are
not used in the final ego-motion estimation in Section 3.4.2. These moving points will
be used in the subsequent ego-motion compensation and multiple object tracking.

Ego-motion compensation refers to the process of removing the influence of the sen-
sor platform’s own motion from sensor measurements. In autonomous driving, onboard
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sensors such as radar or LiDAR capture the relative motion of surrounding objects.
However, since the ego vehicle itself is moving, these measurements contain compo-
nents caused by both the ego-motion and the motion of objects. Once the ego-motion
is estimated, ego-motion compensation aims to isolate the true motion of objects as
if the sensors were stationary. This step is essential for accurate tracking of moving
objects.

For radar measurements, especially detected point clouds, ego-motion compensa-
tion is implemented through coordinate system transformation. This transforms all
measurements from the radar observation coordinate system to the world coordinate
system. Since only position information is used as measurement input in the mul-
tiple object tracking algorithm, only the measured positions are compensated. The
ego-motion compensation procedure can be divided into two steps:

• Step 1: Coordinate Conversion from Radar Frame to Vehicle Frame.
The detected radar points are first converted from spherical coordinates (range,
azimuth, elevation) to 3D Cartesian coordinates. Then, the points are trans-
formed from the radar observation coordinate system to the vehicle coordinate
system. This transformation accounts for the radar’s installation position and
orientation on the vehicle. If the extrinsic calibration parameters are known, the
transformation can be represented as:

xveh = Rr2v · xradar + tr2v (3.5.1)

where xradar is the position measurement in Cartesian coordinates obtained from
the detected radar point cloud:

xradar =



R̂ cos ϕ̂ cos θ̂

R̂ cos ϕ̂ sin θ̂

R̂ sin ϕ̂


 (3.5.2)

Rr2v is the rotation matrix and tr2v is the translation vector from radar to vehicle
coordinate system. Specifically, these are defined as:

Rr2v =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 , tr2v =



tx
ty
tz


 (3.5.3)

Here, θ denotes the rotational angle between radar and the vehicle in the horizontal
plane, while tx, ty, tz represent the radar’s position offset along the vehicle’s x,
y, and z axes, respectively. These parameters are obtained according to sensor
characteristics through sensor calibration.

• Step 2: Compensation from Vehicle Frame to World Frame.
To remove the ego-motion effect, the points are further transformed from the
vehicle coordinate system to the world coordinate system, using the current vehicle
position estimated in Section 3.4. The transformation can be represented as:

xworld = Rv2w · xveh + tv2w (3.5.4)
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where Rv2w is the rotation matrix and tv2w is the translation vector from vehicle
to world coordinate system. Specifically, these are defined as:

Rv2w =




cosα sinα 0
− sinα cosα 0

0 0 1


 , tv2w =



x̂ego

ŷego

ẑego


 (3.5.5)

Here, α denotes the rotational angle between the vehicle’s heading direction and
the East direction, while x̂ego, ŷego, ẑego are the 3D estimated positions of the ego
vehicle obtained from Section 3.4.

The output of the ego-motion compensation module is the compensated position
measurement xworld of each moving point, which serves as the input to the multiple
object tracking module described in the subsequent Section 3.6.

3.6 Multiple object tracking

Given a radar point cloud after ego-motion compensation, the goal of MOT algo-
rithms is to determine the number of moving objects and their state over time. The
state variable of each object xk

j includes its 3D position pk
j and velocity vk

j . The output
is a set of tracking trajectories for all moving objects, each associated with a unique
object identity.

Figure 3.6.1 shows the functional modules within MOT algorithms. First, clustering
is performed to group the detections of the same object and remove the clutter. For
each time step, gating rejects invalid detections that are too far from the existing
object tracks. Only valid detections enter the data association module, which assigns
detections to each track. With the prediction step, assigned tracks are updated with
the corresponding detections inside the state estimation module. Unassigned tracks are
kept, only performing prediction but without updates. Unassigned detections are sent
to the track management module for track initialization. Tracks after state estimation
are also sent to the track management module for track confirmation and deletion.
Finally, the estimated states for each confirmed object track are provided in the output.
The submodules of the tracking system are described in detail in Sections 3.6.1 to
3.6.4, namely clustering, state estimation, gating and data association, and tracking
management.

3.6.1 Clustering

As one target can cause multiple detections (i.e., extended target), it is necessary to
group these detections into clusters and compute their centroid positions before passing
them to the tracker. Additionally, radar point clouds often contain a large number of
spurious points caused by noise or environmental clutter. These noisy points are typi-
cally spatially isolated and can be effectively removed using a clustering algorithm. In
this work, the DBSCAN clustering algorithm [41] is employed to group multiple detec-
tions belonging to the same physical object and suppress clutter. DBSCAN identifies
clusters of arbitrary shape based on the density of surrounding points. It is particularly
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Figure 3.6.1: High-level block diagram of MOT algorithms with related submodules

effective for noisy radar point clouds, as it naturally clusters high-density regions while
ignoring sparse areas that resemble noise. Compared to traditional K-means clustering,
DBSCAN does not require the number of clusters to be specified in advance and can
detect clusters of varying shapes and sizes. These properties make it highly suitable
for radar-based tracking applications in autonomous driving.

Figure 3.6.2 shows the concept of DBSCAN algorithm. There are two hyperparame-
ters: radius ε and minimum number of points minPts in this algorithm. If the number
of points inside the circle with radius ε is minPts or more, the center point is denoted
as a core point (the red point in the left figure). For each core point (red points in
the right figure), the cluster can be expanded by including all points inside the circle.
If the new point is also a core point, it can include all points inside its circle as well.
However, if the new point is not a core point (i.e., the number of points inside the circle
with radius ε is less than minPts), this is termed as a border point (blue points in
the right figure). The border point cannot add other points to the cluster. After all
clusters are formed, points that are not part of any cluster are labeled as noise points
(yellow points in the right figure).

In this thesis, after tuning the hyperparameters based on the clustering performance,
the radius ε is set to 2 meters, and the minimum number of points minPts is set to
5. Since the radar point cloud is very sparse for a single frame, the point cloud of
4 adjacent frames are integrated for each time step in the subsequent simulations to
perform clustering.

After DBSCAN, the noisy points are discarded, and the centroid of each cluster is
calculated as an average of all points inside the cluster. Now each target can generate
at most one detection. As in equation 3.6.1, the clustered detection for target i at time
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Figure 3.6.2: Concept of DBSCAN algorithm [42], with core points (red), border points (blue)
and noise points (yellow).

step k includes the measured position of each dimension:

zik =



px
py
pz


 (3.6.1)

where px, py, and pz denote the Cartesian coordinates of the centroid of the object in
3D space.

For each time step, clustered detections are collected and formed as the measurement
matrix in Equation 3.6.2, which is the input of the following step of the MOT algorithm.
M(k) denotes the number of detections at time step k, which can be different for each
time step.

Zk = [z1k, z
2
k, . . . , z

M(k)
k ], k = 1, . . . , K (3.6.2)

3.6.2 State estimation: Prediction and Update

After clustering, detections in Equation 3.6.2 are obtained to perform state esti-
mation. As illustrated in Section 3.1, the goal is to estimate the state matrix xk

j in
Equation 3.1.2 for all time steps. This problem is addressed within the Bayesian in-
ference framework. It assumes the state variable is a random variable characterized
by a Probability Density Function (PDF). Recursive Bayesian filters are employed
to iteratively predict and update this PDF based on the system’s motion model and
measurement model. The final state estimate is derived as:

• The mean of the posterior PDF when using the MMSE estimator

• The mode of the posterior PDF when using the MAP estimator
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In this work, both the motion model and the measurement model are assumed to
be linear with additive Gaussian noise. Under these assumptions, the Kalman filter
provides the optimal solution by recursively estimating the state mean and covariance.

In the prediction step, the predicted mean x̂k|k−1 and covariance Pk|k−1 are calcu-
lated according to Equation 3.6.3 and 3.6.4.

x̂k|k−1 = Fx̂k−1|k−1 (3.6.3)

Pk|k−1 = FPk−1|k−1F
⊤ +Q (3.6.4)

In the update step, the posterior mean and covariance are corrected based on the
incoming measurements, according to Equation 3.6.5, 3.6.6 and 3.6.7.

Kk = Pk|k−1H
⊤ (

HPk|k−1H
⊤ +R

)−1
(3.6.5)

x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)
(3.6.6)

Pk|k = (I−KkH)Pk|k−1 (3.6.7)

Here, Kk is the Kalman gain, x̂k|k is the state estimate (mean vector), and Pk|k is
the covariance matrix.

Moreover, after the prediction step, the mean and covariance of the predicted mea-
surement can be obtained in Equation 3.6.8 and 3.6.9, which is useful in gating and
data association in the next section.

ẑk = Hx̂k|k−1 (3.6.8)

Pz,k = HPk|k−1H
⊤ +R (3.6.9)

3.6.3 Gating and data association

In this sub-section, the gating and data association steps are described.

3.6.3.1 The Number of Hypotheses

After detections are obtained, they are assigned to multiple objects to perform state
estimation. If the task is tracking a single target with no clutter, it is extremely simple
to solve by obtaining only one detection per time step and utilizing this detection
to update the state with one Kalman filter as described in Section 3.6.2. However, as
illustrated in Section 3.1, the multiple object tracking problem is much more challenging
because there are multiple detections per time step and the source of each detection
is not known as a priori. Each detection can be originated from any existing target,
a new target, or clutter, and all possibilities should be taken into consideration. It is
thus necessary to include a step to determine the association from detections to targets
before state estimation. Each possibility can generate a distinct hypothesis, and the
final association is determined based on those hypotheses. In this section, the number
of hypotheses is first calculated.
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A hypothesis is a specific joint association which associates each detection with a
target or clutter identity. Consider there are m(k) detections and n(k) targets at time
step k; the number of possible hypotheses is then shown in Equation 3.6.10:

N(m(k), n(k)) =

min(m(k),n(k))∑

p=0

Cp
n(k)C

p
m(k)A

p
p =

min(m(k),n(k))∑

p=0

m(k)!n(k)!

p!(m(k)− p)!(n(k)− p)!

(3.6.10)
For different values of m(k) and n(k), the total number is listed in Table 3.6.1 for

an intuitive display:

Table 3.6.1: Number of hypotheses for m(k) detections and n(k) targets
m(k)\n(k) 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

2 3 7 13 21 31 43 57

3 4 13 34 73 136 229 358

4 5 21 73 209 501 1045 1961

5 6 31 136 501 1546 4051 9276

6 7 43 229 1045 4051 13327 37633

7 8 57 358 1961 9276 37633 130922

The above table is just the number of hypotheses from a single time step. Theoret-
ically, if all hypotheses are considered at each time step, the total number of possible
hypotheses will depend on all previous time steps, and this will increase very fast with
time step k as:

Nk =
k∏

t=1

N(m(t), n(t)) (3.6.11)

Therefore, considering all possible hypotheses is not computationally tractable, and
approximation methods should be used to reduce the number of hypotheses [69]. Prun-
ing methods aim to reduce the number of hypotheses by eliminating less likely or
irrelevant hypotheses early in the process. Essentially, pruning methods cut down the
search space, focusing only on the most probable or relevant associations. The Gating
and GNN data association method are two possible pruning methods.

3.6.3.2 Gating

Gating is a common technique in tracking algorithms. The concept is to build a
gate around the predicted measurement of each target and only accept the detections
inside the gate for the following data association. In this way, the method can prune
unlikely hypotheses where the distance between the predicted measurement and the
detection becomes too large.

In this thesis, Mahalanobis gating [38] is implemented since the predicted density
and posterior density are assumed to be Gaussian. First, a validation matrix is ini-
tialized with each row representing a target and each column representing a detection.
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If a detection is inside the gate of a target, the corresponding element will be set to
1. Otherwise, it will be set to 0. Next, the approach to decide if a detection is inside
the gate is calculating the Mahalanobis distance between the predicted measurement
of the state and the detection, and comparing the distance with a gating threshold γ.
The Mahalanobis distance is shown in Equation 3.6.12:

di,j =
√

(zj − ẑi)T (Pi
z)

−1(zj − ẑi) (3.6.12)

where zj is the detection, ẑi is the predicted measurement of the state given in Equation
3.6.8, and Pi

z is the covariance matrix for the predicted state given in Equation 3.6.9.
A common strategy to select the gating threshold γ is to first determine the gating

probability PG, which is the probability that a measurement originated by the target
is inside the gate. [38]. Then the gating threshold γ can be set with the cumulative
chi-square distribution. In this thesis, the gating probability PG is set to 0.5.

After the validation matrix is determined, the detections that do not fall inside any
gates are labeled as unassigned detections and deleted from the list of valid detections.
In this way, the size of the cost matrix to be calculated in the data association step will
be much smaller, decreasing both the computational complexity and the space storage.

3.6.3.3 Global Nearest Neighbor

Global Nearest Neighbor [52] is a simple but effective data association method. It
performs global optimization in accordance with the maximum likelihood criteria. For
each time step, it finds the single hypothesis with the largest likelihood, pruning all
other hypotheses. This algorithm is simple to implement and has low computational
complexity.

First, this algorithm calculates a cost matrix for each target and each valid de-
tection. It also takes missed detections into consideration. The cost is the negative
log-likelihood of assigning a detection to a target or deciding the target is not detected.
In case of detection, the cost relates to the Mahalanobis distance between the predicted
measurement and the detection as shown in Equation 3.6.12, and also the clutter in-
tensity λc. Compared with the euclidean distance which only considers position, the
Mahalanobis distance also considers the uncertainty and correlation of the prediction.
The larger a distance is, the less likely an association will be. It also considers the
existence of false alarms, with clutter intensity λc representing the number of false
alarms per unit volume. After some derivations, the cost in case of detection can be
represented as:

ℓi,j = −log(PD

λc

) +
1

2
log(det(2πPi

z) +
1

2
(di,j)2 (3.6.13)

where PD is the probability of detection, λc is the clutter intensity, Pi
z is the covari-

ance matrix for the predicted measurement defined in Equation 3.6.9, and di,j is the
Mahalanobis distance calculated in Equation 3.6.12.

In case of missed detection, the cost relates to the probability of detection PD:

li,0 = −log(1− PD) (3.6.14)
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Assuming m detections and n targets, the cost matrix L can be represented in
Equation 3.6.15:

L =




ℓ1,1 ℓ1,2 · · · ℓ1,m ℓ1,0 ∞ · · · ∞
ℓ2,1 ℓ2,2 · · · ℓ2,m ∞ ℓ2,0 · · · ∞
...

...
. . .

...
...

...
. . .

...
ℓn,1 ℓn,2 · · · ℓn,m ∞ ∞ · · · ℓn,0


 (3.6.15)

In this thesis, after some empirical verifications, the clutter intensity λc is set to
10−6, and the probability of detection PD is set to 0.9.

After the cost matrix is formulated, the algorithm finds the best assignment by
solving a linear assignment optimization problem. The assignment decision is encoded
in an assignment matrix A. As shown in Equation 3.6.16, this has the same dimensions
as the cost matrix, with each element representing if the detection is assigned to the
target.

A =




A1,1 A1,2 · · · A1,m A1,m+1 0 · · · 0
A2,1 A2,2 · · · A2,m 0 A2,m+2 · · · 0
...

...
. . .

...
...

...
. . .

...
An,1 An,2 · · · An,m 0 0 · · · An,m+n


 (3.6.16)

Then, an optimization problem can be formulated as in Equation 3.6.17. The op-
timization goal is to find the assignment matrix A which minimizes the total cost, or
maximizes the total likelihood. There are three constraints on the assignment matrix.
First, the value must be ‘1’ (assigned) or ‘0’ (not assigned). Second, each target must
be assigned to a detection or labeled as missed detection, so each row should have only
one ‘1’. Finally, each detection can be assigned to at most one target, so each column
should have zeroes or one ‘1’.

minimize tr(ATL)

subject to Ai,j ∈ {0, 1}, i, j ∈ {1, . . . , n} × {1, . . . , n+m},
n+m∑

j=1

Ai,j = 1, i ∈ {1, . . . , n},

n∑

i=1

Ai,j ∈ {0, 1}, j ∈ {1, . . . , n+m}.

(3.6.17)

This optimization problem can be solved using the Munkres algorithm, which is an
extension of the Hungarian algorithm. The Hungarian algorithm is developed by Harold
Kuhn in 1955 based on the work of two Hungarian mathematicians. It is designed to
solve the linear assignment problem for square matrices. In 1957, James Munkres re-
viewed this algorithm and developed a version suitable for rectangular matrices. This
has polynomial time complexity: O(n3). In this thesis, the Munkres algorithm imple-
mented by [70] is used to find the best assignment matrix.

After determining the assignment matrix, the algorithm can output three variables:
assigned target-detection pairs, unassigned target tracks, and unassigned detections.
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Then the Kalman filter can update each assigned track with the corresponding detec-
tion. Unassigned tracks will be kept without update, while unassigned detections will
lead to track initialization in the track management module.

3.6.4 Tracking management

In multiple object tracking problems, the number of targets is unknown and time
varying. Approaches using the GNN without tracking management are practical only
when the number of targets is known [69], whereas in real cases, it remains a problem
to establish how many targets exist in the field of view of the radar sensor. Moreover,
since the field of view is finite and the sensor can be moving, targets can appear and
disappear from the area of interest, leading to a time varying number of tracks. To
solve these problems, the tracking management module is implemented and integrated
into the GNN method.

Tracking management involves the function of track initialization, confirmation,
and deletion. There are two types of decision logic: history-based logic and score-
based logic [71]. In the history-based logic, the tracker counts the number of detections
assigned to a track in several recent updates. If enough detections are assigned, the
track is confirmed. If the track is not assigned to any detection for enough updates, it
is deleted. In the score-based logic, the tracker maintains a score for each track, which
represents the likelihood of a real target. A high positive track score means that the
track is very likely to be of a real target. A very negative track score means that the
track is likely to be false. As a result, a threshold for confirming a track can be set if
the score is high enough. If the score is low, the track is deleted.

For simplicity, in this thesis, history-based logic is implemented. Next, its imple-
mentation is illustrated in detail.

• Track struct array: The tracker maintains a list of tracks as time evolves. Each
track is a struct variable containing the following elements:

1. Track index: the distinctive index of the track, depending on the order of
appearance;

2. Track age: the total time steps during which the track is assigned detections
to;

3. Track state: the mean vector and covariance matrix of the estimated state;

4. Track status: tentative or confirmed;

5. Track logic state: a logical vector recording the recent track logical states.
True (1) values indicate hits (detection), and false (0) values indicate misses
(missed detection). For example, [1 0 1 1 1] represents four hits and one miss
in the last five updates;

6. Track appearance frame: the frame index when the track first appears.

• Track initialization: After data association, unassigned detections can start a new
track. At first, it is unclear whether this track represents a true target or false
alarm, so the track status is set to ‘tentative’. Only after the confirmation logic
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condition is met, the track status becomes ‘confirmed’. There are two types of
unassigned detections for GNN. The first type are the detections that do not fall
inside any gates, also called invalid detections. The second type are the detections
not assigned to any target in the optimal assignment.

After a new track is initialized, it is added to the end of the track struct array.
The state mean vector sets the detection as its position, and assumes zero initial
velocity. The covariance matrix is set to 100 × I6×6, where I6×6 is the identity
matrix. The initial track logic state is a zero vector, and the initial track status
is ‘tentative’.

• Track confirmation: In this thesis, the confirmation logic is defined as 2 assigned
detections in the recent 3 time steps. If a track is confirmed, the status will be
changed into ‘confirmed’. Only confirmed tracks are considered in the performance
analysis.

• Track deletion: In this thesis, the confirmation logic is defined as 3 missed de-
tections in the recent 3 time steps. Starting from the third step after track
appearance, the track deletion logic becomes valid. If a track remains unassigned
for 3 consecutive steps, it will be deleted from the track struct array.

3.7 Performance metrics

To quantitatively evaluate the performance of the proposed combined ego-motion
estimation and multiple object tracking method, three metrics derived from the lit-
erature are adopted: Absolute Pose Error (APE), Relative Trajectory Error (RTE),
and Generalized Optimal Sub-Pattern Assignment (GOSPA). The evaluation crite-
ria for ego-motion estimation and tracking are presented in Sections 3.7.1 and 3.7.2,
respectively.

3.7.1 Ego-motion estimation metrics

In this thesis, similar with [36], two metrics are used to evaluate the performance of
ego-motion estimation algorithms: APE and RTE. APE measures the pose difference
between the estimation and the true motion. As shown in Equation 3.7.1, it calculates
the Root Mean Square Error (RMSE) between the estimated poses and the actual
poses. In this thesis, the pose refers to the translational velocities in three dimensions.

ϵAPE =

√√√√ 1

m

m∑

i=1

∥Pest(i)− Pactual(i)∥2 (3.7.1)

where m is the total number of frames, Pest and Pactual are the estimated velocities and
actual velocities, respectively. L-2 norm is used to calculate the Euclidean distance.

For the results presented in Chapters 6 and 7, the APE for each frame is also calcu-
lated for better analysis on the frame level, without a very long (temporally speaking)
averaging:

ϵAPE,i = ∥Pest(i)− Pactual(i)∥ (3.7.2)
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where i is the frame index.
While APE focuses on the instantaneous velocity estimation error, RTE measures

the long-term localization error. Absolute Trajectory Error (ATE) is a common long-
term error metric, which measures the RMSE between the estimated positions and
actual positions. However, since it is computed over the entire trajectory, it is more
sensitive to early errors [5]. Different from ATE, RTE measures the relative position
error over short segments. This is the RMSE of the differences between the relative
displacements over a small period in the estimated trajectory and the actual trajectory.

As in Equation 3.7.3, Test and Tactual are the estimated positions and actual posi-
tions, respectively. N is the segment interval, which is a parameter of the metric. In
this project, N is chosen as 10 frames for better comparison of results.

ϵRTE =

√√√√ 1

m−N

m−N∑

i=1

(∥Test(i+N)− Test(i)∥ − ∥Tactual(i+N)− Tactual(i)∥)2

(3.7.3)

3.7.2 Multiple object tracking metrics

In this thesis, the GOSPA [72] metric is used to evaluate the performance of the
proposed multiple object tracking method quantitatively. The output of the multiple
object tracking method at every time step is a list of estimated target 3D position
vectors. Each element represents the tracking position of one target. The GOSPA
metric measures the difference or error between the output list and the ground truth
list.

As shown in Figure 3.7.1, GOSPA measures three types of error. The first error is
the localization error between the estimated target position and actual target position
if a target is detected correctly (e.g., the lower left target in the figure). However,
considering the challenges mentioned in Section 2.2, there are other two error types
caused by missed detections and false alarms. They are measured by the number of
targets which are not correctly detected in the ground truth list (the upper left target)
and the number of targets which do not appear in the ground truth list but appear
in the output list (the lower right targets). These error types together contribute to a
comprehensive evaluation for the tracking result.

Equation 3.7.4 shows the GOSPA metric between the output list X and the ground
truth list Y. γ is the global association hypothesis which assigns elements from X
to Y. Γ is the set of all possible global association hypotheses. There are three
hyperparameter choices for the metric: the order of distance p, the distance metric
d(x, y), and the maximum allowable localization error c. In this thesis, in order to
make the localization error component the same as the RMSE, p is set to 2. The
Euclidean distance is chosen as the distance metric d in a conventional manner. c
determines the trade-off between the localization error component, and the missed
detection and false alarm number component. This can be considered as the distance
where the designer wants to penalize a false or missing estimate. In this theis, c is set
to 10 meters, the same choice as in some literature in automotive vehicle perception
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Figure 3.7.1: Concept of GOSPA metric with three cases contributing to the overall error
metric.

applications [69,73,74].

GOSPA(X,Y) =


min

γ∈Γ


 ∑

(i,j)∈γ

d(xi, yj)
p +

cp

2
(|X| − |γ|+ |Y| − |γ|)






1/p

(3.7.4)

The GOSPA metric measures the tracking performance for each time frame. In this
thesis, the mean of GOSPA from all time frames is used to evaluate the performance
across time. This evaluation metric is thus denoted by Mean GOSPA, and it is measured
for multiple object tracking algorithms.

In this chapter, the raw signal based combined method is explained in detail. Af-
ter the initialization phase in which tracks are established, the tracking information
from the previous frame is incorporated to guide the ego-motion estimation of the cur-
rent frame. The proposed design integrates ego-motion estimation and multiple-object
tracking in a tightly coupled manner. In the next chapter, this method will be validated
using simulated raw signals.
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Simulation Results 4
To validate the performance and show the feasibility of the proposed raw signal

based combined method for ego motion estimation & multiple object tracking, a series
of tests based on simulations are conducted. In this chapter, results and discussions of
these simulations are presented. First, in Section 4.1, the adopted automotive radar
simulator and some general simulation settings are introduced. Next, the simulation
results and discussions are provided in Section 4.2.

4.1 Simulation Setup

When facing a lack of relevant experimental data, simulation is always regarded
as a strong supplementary data source for radar research, especially in automotive
applications [75]. In this thesis, the radar simulator used to generate raw signals is
implemented based on the framework proposed in a previous MSc project [75]. This is
done due to the lack of well-documented and complete datasets in the literature that
can also offer raw radar data and not just point clouds.

An automotive MIMO radar with eight virtual array elements for azimuth and
eight for elevation estimation is considered here. An omnidirectional antenna pattern
is considered for the transmitter and receiver. A typical parameter setting is used
for the FMCW waveform, with 77.25 GHz centre frequency, 40µs PRI and 0.5 GHz
bandwidth. The range resolution under this setting is equal to 0.3 m, and the Doppler
resolution is 0.191 m/s. The time interval between two radar frames is 10.24 ms. The
selected radar parameters for this simulation are listed in Table 4.1.1.

Table 4.1.1: Radar parameters in the simulations in Chapter 4
Parameters Value

Center Frequency fc (GHz) 77.25

Bandwith B (GHz) 0.5

Slope µ (MHz/µ s) 62.5

Chirp duration Td (µ s) 16

PRI T (µ s) 40

Number of samples per chirp Nrange 512

Number of chirps per frame NDoppler 256

Number of virtual array elements in azimuth Na 8

Number of virtual array elements in elevation Ne 8

Spacing between adjacent antennas in both dimensions d (m) 0.0019

Frame time Tframe (ms) 10.24

While radar parameter estimation algorithms estimate the range, Doppler velocity,
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azimuth and elevation angle from the raw radar signals, the goal of the implemented
radar simulator is to generate the raw signals assuming these measurements are known.
As shown in Equation 4.1.1, given the radar measurements of point target i: (with
Range: Ri, Doppler velocity: vi, Azimuth angle: θi, Elevation angle: ϕi), the radar
simulator can generate the received raw signals in the form of a 4-dimensional tensor:

ẑi(l, b, p, q) = αi∗exp(j2πa(θi, ϕi)p)∗exp(j2πe(ϕi)q)∗exp(j2πfd(vi)l)∗exp(j2πfr(Ri)b)
(4.1.1)

where

a(θi, ϕi) = f0
d

c
sin(θi)cos(ϕi), e(ϕi) = f0

d

c
sin(ϕi), fd(vi) = −

2vif0
c

T, fr(Ri) = −
µ2Ri

fsc
(4.1.2)

f0 is the center frequency of the radar, d is the distance between adjacent antenna
elements, T is the PRI including chirp duration and settle time, µ is the slope of
frequency change of the radar waveform, and fs is the sampling frequency.

For simplification of subsequent signal processing, the 4-dimension tensor has to
be reshaped to the 3-dimensional tensor by stacking azimuth and elevation dimensions
together as:

Zi(l, b, pNe + q) = ẑi(l, b, p, q) (4.1.3)

In this thesis, one radar raw signal unit of information contains a single frame of
simulated radar data, where its three axes correspond to the fast-time (K = 512), slow-
time (L = 256), and number of channels combining azimuth and elevation (P = 64). In
each simulation, raw radar data of 500 frames is generated in total. The total simulation
time is 5.12 seconds.

The simulated scenario consists of a car equipped with a front-corner radar moving
at a constant speed, alongside multiple static and moving objects. The front-corner
radar is widely adopted in automotive industry to enable detection of objects in both
the forward and lateral directions for functions such as Cross Traffic Alert (CTA) and
Precrash [76]. It is also particularly suitable for validating the combined method of
ego-motion estimation and multiple object tracking, as ego-motion estimation typically
relies on roadside static targets, while multiple object tracking focuses on the detection
of critical moving objects in front of the vehicle. For simplicity, the ego vehicle is
modeled as a point target, and the radar is assumed to be located at the same position.
The radar beam is oriented at an angle of 45 degrees to the right relative to the vehicle’s
forward direction in the horizontal plane, and 0 degrees in the vertical plane.

In this chapter, six parallel simulation scenarios are conducted, with the ego vehicle
moving at constant speeds of 8, 9, 10, 11, 12, and 13 m/s, respectively. The ego vehicle
is assumed to have zero velocity in both the cross-forward and elevation directions, an
assumption that can align with real-world driving conditions on well-maintained roads.

Within the radar’s field of view, 16 objects are generated in each simulation—8
static and 8 moving objects—representing a dynamic scenario with 50% of moving
objects. Each object is modeled as a collection of scatterers randomly distributed in
3D space. The range of these scatterers is selected from [0, 35] meters, the azimuth angle
from [−60, 60] degrees, and the elevation angle from [−30, 30] degrees. The amplitude
of all scatterers is drawn from the uniform distribution αo ∼ U(0, 300). According
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to the Swerling Model I the amplitude can be seen as constant during one coherent
processing interval [63]. The scatterers are also assumed to be isotropic and provide
constant amplitude and phase during the processing period. The static objects in this
scenario represent common roadside elements such as trees, traffic signs, or parked
vehicles. The 8 moving objects include a mixture of 2 cars (moving at 9-10 m/s, i.e.,
32.4–36 km/h), 4 bicycles (moving at 3–4.5 m/s, i.e., 10.8–16.2 km/h), and 2 pedestrians
(moving at 1.5–2 m/s, i.e., 5.4–7.2 km/h). These targets exhibit diverse trajectories
and Doppler signatures, providing a challenging setting for ego-motion estimation and
multiple object tracking algorithms.

The simulation begins by determining the 3D initial position and velocity of the ego
vehicle and each object. Next, in each frame, the position of the vehicle (i.e., of the
radar as well) is updated first according to the constant velocity motion model. Then,
the positions of moving targets are updated in the world coordinate. With the known
positions and velocities of both radar (prx, pry, prz, vrx, vry, vrz) and targets (assuming
one scattering point i of the target: pitx, p

i
ty, p

i
tz, v

i
tx, v

i
ty, v

i
tz), the range Ri, velocity vi,

azimuth angle θi, and elevation angle ϕi for each target will be measured in the radar
coordinate system. The measurement equations for this are given from Equation 4.1.4
to 4.1.7:

Ri =
√

(pitx − prx)2 + (pity − pry)2 + (pitz − prz)2 (4.1.4)

vi = (vrx−vitx)∗cos(θi)∗cos(ϕi)+(vry−vity)∗sin(θi)∗cos(ϕi)+(vrz−vitz)∗sin(ϕi) (4.1.5)

θi = arcsin(
pity − pry

Ri ∗ cos(ϕi)
) (4.1.6)

ϕi = arcsin(
pitz − prz

Ri

) (4.1.7)

Finally, the measurements are sent to the raw data synthesis module, which outputs
the measured raw signals for that frame based on Equation 4.1.1 to 4.1.3. To make
the simulation a bit closer to the reality, white Gaussian noise with zero mean and
+20 dB Signal-to-Noise Ratio (SNR) is added manually to the data, generating the
final simulated radar data which is the input to the combined method illustrated in
Chapter 3. A relatively low noise level has been selected for better performance in the
examples here. For results in noisier scenarios, please refer to the EuRAD 2025 paper
in Appendix A of this thesis.

4.2 Results and Discussions

To evaluate the precision and robustness of the proposed combined method, simu-
lations were performed in six scenarios with the ego-velocity ranging from 8 m/s to 13
m/s. Each simulation lasted 5.12 s (equivalent to 500 consecutive frames). The quan-
titative performance metrics defined in Section 3.7 for different ego-vehicle velocity are
shown in Table 4.2.1.

As shown in the table above, both ego-motion estimation and multiple object track-
ing achieve accurate and stable performance across different ego-velocities. Compared
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Table 4.2.1: Performance evaluation with different ego-velocity in 3D space
Ego-velocity (m/s) APE (m/s) RTE (cm) Mean GOSPA

8 0.35 2.37 12.68
9 0.39 2.18 11.20
10 0.25 1.64 11.19
11 0.27 1.66 14.49
12 0.28 1.59 12.02
13 0.29 1.73 13.51

to the results reported in [6] and [36], the APE and RTE values are similar. However,
the GOSPA scores are higher than those reported in [69]. In the first set of simulations
involving relatively simple scenarios in [69], typical GOSPA values are in the range of
2 to 3. As the following discussion will explain, this increase here is primarily due to
missed detections and false alarms for certain moving objects.

For an example of visual evaluation, the estimated trajectories for the ego-vehicle
and moving objects when the ego-velocity is 10 m/s are shown in Fig. 4.2.1. The figure
only displays results in the X and Y dimensions for simplicity in visualization, while
all quantitative metrics are computed in the full 3D space.

For the ego-vehicle (labeled as ”Ego”), the estimated trajectory closely matches the
ground truth, indicating that the ego-motion estimation method described in Section
3.4 is capable of effectively distinguishing between static and moving objects, and then
accurately estimating the ego-motion based on observations of static targets.

In the right part of the scene, five moving objects (labeled as ‘1’ to ‘5’) are accurately
tracked after ego-motion compensation and multiple object tracking. No false tracks
are observed in their vicinity. Although the simulation does not incorporate object size
modeling, the tracking performance remains accurate for objects with various velocities,
with objects 1 and 4 representing cars, object 2 representing a bicycle, and objects 3
and 5 representing pedestrians.

However, in the left part of the scene, where three moving objects (labeled as ‘6’ to
‘8’) are located closer to the ego-vehicle, the tracking results show noticeable deviations
from the ground truth. For objects 6 and 7, missed detections occur during the initial
phase of their motion. This is because their movement directions are nearly perpendic-
ular to the line of sight of the radar, resulting in a Doppler radial velocity component
close to zero. Consequently, these objects are initially misclassified as static and not
included in the tracking process. As the relative geometry between object and radar
changes during motion, the Doppler component increases, enabling the algorithm to
recognize them as dynamic and begin outputting their trajectories.

For object 8, tracking is accurate in the early phase, but deviates from the ground
truth in the later phase. Moreover, several false alarms emerge near this object, leading
to false tracks that degrade tracking performance and worsen the value of the GOSPA
metric. This issue is likely caused by limitations of the radar simulator described in
Section 4.1. In real-world settings, a corner radar mounted at the front-left of a vehicle
has a limited field of view, and can only observe objects within this region. During the
simulation, object 8 is gradually overtaken by the ego-vehicle, and eventually exits the
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Figure 4.2.1: Ground truth and estimated trajectories for the ego-vehicle and eight moving
objects from an example scenario when the ego-velocity is 10 m/s

radar’s FoV. As a result, no measurements should be available for this object in the
latter frames. However, the simulator in its current version lacks logic to determine
whether an object lies within the radar’s FoV and instead assumes all objects are
always observable. This discrepancy between simulated and realistic observations leads
to confusing input data and, consequently, inaccurate tracking estimates.

Overall, the simulation results demonstrate the good performance of the combined
method proposed in Chapter 3 for both ego-motion estimation and multiple object
tracking. As discussed in Section 1.2, methods based on radar raw signals are highly
innovative and show great potential for future research. The algorithm presented in
this part provides a preliminary validation of the effectiveness of a combined estimation
framework.

However, the work on the raw-signal-based method developed in this part of the
thesis has some limitations. It is so far theoretical and shows a noticeable gap from real-
world driving scenarios. First, due to the lack of comprehensive real-world datasets, the
algorithm is only evaluated using simulated data. As discussed previously, the radar
simulator itself also introduces unrealistic assumptions. Second, the algorithm does not
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account for the varying shapes and sizes of objects, which is not realistic for real-world
applications.

Rather than focusing on improving the simulator, which would lead to an entire
different research direction, and to address the discussed limitations while enhancing
the practical applicability of the proposed approach, Part III introduces a novel point-
cloud-based combined method. This method can be more easily validated using both
simulated and real-world radar data, aiming to bridge the gap between theoretical
development and real-world deployment.
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Part III

Point Cloud based Combined
Method
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Methodology 5
In Part II of this thesis, a combined method based on radar raw signals was in-

troduced. However, this approach faces several limitations when applied to real-world
driving scenarios. To address this, Part III explains and validates another proposed
method for combined ego-motion estimation & multiple object tracking that operates
on radar point clouds. This approach is more practically applicable and better suited
for deployment in real driving environments.

This chapter details the point cloud based combined method, with a particular focus
on its differences and improvements against the method introduced in Chapter 3. Sec-
tion 5.1 discusses the advantages of using point cloud as algorithm input and formulates
the problem that the proposed method aims to solve. Section 5.2 provides an overview
of the overall method. Subsequently, Sections 5.3 and 5.4 describe the tracking-aided
ego-motion estimation and multiple extended object tracking modules, respectively,
highlighting the key enhancements made over the raw signal based approach.

5.1 Problem formulation

Although the raw signal based combined method described in Part II demonstrated
promising performance in both ego-motion estimation and tracking, it faces two major
limitations in real-world driving scenarios. First, it neglects the extent and shape vari-
ations of different moving objects. The method neither estimates geometric properties
including size, shape, and orientation, nor leverages them for dynamic object removal.
This becomes particularly problematic when tracking extended targets like trucks or
buses, where their spatial structure is essential for accurate data association. Second,
as discussed in Section 1.2, raw radar signals are rarely included in public automotive
datasets due to their high storage and bandwidth requirements. This severely limits
the applicability of raw signal based algorithms on real-world data.

These limitations motivate the development of another combined approach based
on preprocessed radar point clouds. While this format sacrifices some low-level sig-
nal details, it is widely used in practice and enables efficient implementation, dataset
compatibility, and scalable evaluation.

As discussed in the literature review of Chapter 2, existing research on automotive
radar typically treats ego-motion estimation and multiple extended object tracking
as two separate tasks. Most methods use radar point cloud data as input. While
ego-motion estimation focuses on using detections from static objects to infer the ego
vehicle’s motion, tracking assumes known ego-motion and aims to associate and track
the moving objects over time for environment perception. However, these two tasks are
inherently interrelated, as both rely heavily on accurate segmentation between static
and dynamic points.
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In current radar-based ego-motion estimation, the most widely adopted method
for static and moving point segmentation is RANSAC [26], which detects static points
based on the sinusoidal relationship between Doppler/velocity and azimuth angle. This
approach works well in typical driving scenarios where the majority of radar reflections
originate from static objects, and only a small portion come from moving targets.
However, as also observed in [9], the robustness of RANSAC degrades significantly in
highly dynamic environments where moving points dominate.

A representative example of such cases arises when a large vehicle, such as a truck
or a bus, approaches the ego vehicle from the opposite lane. During such encounters,
the large physical size of the object generates a dense cluster of moving reflections
while simultaneously occluding many static structures in the scene. Figure 5.1.1 shows
a camera image from scene 1 of the RadarScenes dataset [77], where a large oncoming
vehicle on the left is about to pass by the ego vehicle. As illustrated in Figure 5.1.2, for
this example frame, the RANSAC method fails to correctly fit the curve corresponding
to static reflections, due to the high proportion of moving points. As a result, many
dynamic reflections from the moving truck are mistakenly classified as static (blue),
while a significant portion of actual static reflections are incorrectly labeled as moving
(red). This misclassification directly leads to a distorted curve fit and a substantial
degradation in ego-motion estimation accuracy during this period.

Figure 5.1.1: An image captured by camera in RadarScenes: scene 1, frame 1143, where a
large vehicle on the left is about to pass by the ego vehicle

To address this issue, a tracking-aided combined method is proposed, which lever-
ages historical object-level tracking information to enhance point cloud segmentation
and ego-motion estimation. Considering the continuity and predictability of vehicle
motion, prior tracking information from the previous frame can be utilized to identify
potential dynamic points at the current time step, enabling a pre-filtering process. After
removing the dynamic points, RANSAC can be applied to achieve accurate ego-motion
estimation. This strategy significantly improves the robustness of ego-motion estima-
tion in dynamic scenarios, while simultaneously producing accurate multiple extended
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Figure 5.1.2: The problem of RANSAC algorithm for static vs dynamic points segmentation,
as observed using the example frame in Figure 5.1.1

object tracking results.
In practical driving scenarios, the implementation of the combined method faces

several challenges, including:

1. How to effectively use tracking information to guide the segmentation of moving
and static points, thereby improving ego-motion estimation accuracy. In other
words, the key question is how to exploit the point cloud from only a single radar
to enhance the coupling between ego-motion estimation and multiple extended
object tracking.

2. As discussed in Chapter 2, radar point cloud inherently contains a certain level
of clutter due to the sensor characteristics. An essential design objective is to
suppress the influence of clutter on the overall estimation performance.

3. Due to the sparsity of radar point clouds, estimating the physical extent (i.e.,
size and orientation) of moving targets remains a challenging and active research
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problem.

Due to constraints in time and available datasets for this thesis, in contrast to the
raw signal based method introduced earlier, the point cloud based method presented
here in part III focuses on solving the problem in 2D plane (x- and y-axis). Specifically,
it is assumed that radar point clouds do not include elevation angle measurements, and
thus vertical (z-axis) motion estimation is not considered. This fits well with the data
collected in the previously mentioned RadarScenes dataset, that will be used for the
validation of the work in this part of the thesis. Extending the proposed method to
solve the problem in a full 3D space is left for future work.

5.2 Algorithm overview

To enhance the robustness of RANSAC-based ego-motion estimation in dynamic
driving scenarios while simultaneously addressing the problem of multiple extended ob-
ject tracking, a frame-by-frame combined ego-motion estimation and multiple extended
object tracking algorithm is proposed, which takes radar point clouds as input. The
overall processing pipeline is illustrated in Figure 5.2.1. For each frame, the algorithm
takes the radar point cloud as its input, and outputs the motion states of both the ego
vehicle and the surrounding moving objects.

Similar to the raw signal based method overviewed in Section 3.2, the algorithm is
divided into two phases in temporal order: the initialization phase and the combined
estimation phase. The initialization phase ensures the establishment of initial object
trajectories, which are required for assisting point cloud segmentation and ego-motion
estimation in the combined estimation phase. For each frame, the combined estima-
tion phase sequentially executes three modules: tracking-aided ego-motion estimation,
ego-motion compensation, and multiple extended object tracking. While this method
follows the overall structure introduced in Chapter 3, it differs in several key aspects:

1. Since this method uses radar point clouds as input, which have already under-
gone signal processing and target detection steps, it does not require a signal
preprocessing step.

2. There are two differences with respect to the tracking-aided ego-motion estimation
module of Chapter 3. In the tracking-aided segmentation step in Section 3.4.1,
Euclidean gating is used to identify moving points, with each object gated using a
uniform spherical threshold. However, this ignores the diversity in size and shape
of moving targets in real-world road environments. Therefore, the method in this
chapter improves the gating strategy by employing Mahalanobis gating with an
adaptive covariance matrix, allowing the gating region to adapt to the shape and
size of each tracked object. This leads to more accurate segmentation of static and
dynamic points, and is better suited to real-world scenarios. Moreover, instead of
the iterative ego-motion estimation based on raw signals described in Section 3.4.2,
this method applies the RANSAC algorithm to estimate ego-motion from point
cloud data after tracking-aided segmentation. These differences are explained in
details in Section 5.3.

66



Figure 5.2.1: The overall processing pipeline of the point cloud based combined method for
ego-motion estimation & multiple extended object tracking
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3. In the multiple object tracking module of Chapter 3, each moving object was
modeled as a point target, and only its position and velocity were estimated,
without considering its spatial extent (e.g., size, shape, and orientation). To
better support real-world driving applications, this method incorporates multiple
extended object tracking, which additionally estimates the size and orientation
of moving objects based on point cloud measurements. Size estimation not only
enables a finer-grained understanding of the surrounding environment (which can
be useful for later perception tasks), but also supports more precise segmentation
in subsequent frames. Details of this improvements are provided in Section 5.4.

5.3 Tracking-aided ego-motion estimation

This section outlines two key differences compared to the raw signal based ego-
motion estimation method introduced in Section 3.4. Specifically, Section 5.3.1 presents
an adaptive Mahalanobis gating approach that accounts for the size and shape of each
tracked object. Next, Section 5.3.2 describes the use of the RANSAC algorithm to
perform ego-motion estimation based on the static points obtained from the tracking-
aided segmentation.

5.3.1 Tracking-aided segmentation: adaptive gating

Motivation In radar-based ego-motion estimation, a crucial step is to distinguish
between static and dynamic points in the point cloud. In the raw signal-based method
introduced in Section 3.4, this is achieved using simple Euclidean distance-based gating,
where each predicted object is associated with a fixed-radius spherical region to filter
potential dynamic points. However, this approach assumes that all moving objects
share the same size and shape, which is not consistent with real-world driving scenarios,
where moving vehicles such as sedan cars, buses, and trucks vary significantly in spatial
extent and orientation.

To address this limitation, an adaptive Mahalanobis gating strategy is proposed in
this work, inspired by shape-aware data association and extended object tracking tech-
niques in [38,78,79]. By incorporating each object’s estimated size and orientation, the
Mahalanobis distance allows the gating region to adapt to the object’s actual geometry
and uncertainty, significantly improving the accuracy of dynamic point identification.

The Mahalanobis distance is adopted over Euclidean distance for two main reasons:

• Shape adaptation: Mahalanobis distance defines elliptical gating regions that
naturally align with the estimated shape and orientation of each object, unlike
the isotropic and fixed-size spheres used in Euclidean gating.

• Uncertainty awareness: Mahalanobis distance incorporates the extent covari-
ance, accounting for estimation uncertainty and enabling more robust point-to-
object association under noise and partial occlusion.

Mathematical formulation Let pi = (xi, yi) denote the Cartesian coordinates of the
i-th radar detection point after ego-motion compensation. For each tracked object j
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in the previous frame, its predicted centroid position in 2D µj ∈ R2 is obtained from
the Kalman filter, and its 2D spatial gating region using an adaptive covariance matrix
Σj ∈ R2×2 is constructed. This matrix takes into account both the uncertainty of the
estimated position and the spatial extent of the object.

The total covariance is computed as a summation of two components:

Σj = P−
j + Ej (5.3.1)

where P−
j is the predicted positional covariance matrix of object j from the Kalman

filter, and Ej is the object’s spatial extent matrix estimated by the method as in Section
5.4 (typically modeled as a 2D ellipse).

The squared Mahalanobis distance between the radar detection pi and object j is
defined as:

d2(i,j) = (pi − µj)
⊤Σ−1

j (pi − µj) (5.3.2)

This metric essentially quantifies how likely the detection pi belongs to the distribu-
tion of spatial measurements associated with object j, under the Gaussian assumption.

A detection pi is labeled as a moving point if it lies within the elliptical gating
region of any object, i.e., there exists at least one object j for which:

d2(i,j) ≤ γ (5.3.3)

where γ is the gating threshold, usually determined based on a chi-squared distribution
with 2 degrees of freedom [38].

Otherwise, if d2(i,j) > γ for all j, the point pi is classified as static. This gating process
is repeated for each detection in the point cloud, resulting in two disjoint subsets: Pstatic

and Pmoving. The static set provides input to the RANSAC-based ego-motion module
of Section 5.3.2, while the moving set is passed to the ego-motion compensation and
tracking modules.

Compared to Euclidean gating, which applies a uniform radius to all objects re-
gardless of their geometry, Mahalanobis gating defines object-specific elliptical gating
regions that are both shape-aware and uncertainty-aware. This allows for more precise
segmentation, particularly in dynamic environments where vehicles may vary in size,
orientation, or occlusion state.

Implementation Algorithm 2 summarizes the proposed tracking-aided segmentation
approach based on adaptive Mahalanobis gating. The procedure includes three stages:
prediction, compensation, and gating, which follow the structure of the raw signal-
based approach. In the specific implementation, the gating threshold γ is set to 3.22,
which corresponds to the gating probablity of 0.8, as determined by the inverse chi-
squared distribution χ2

2(0.8). This relatively loose threshold is selected in this work via
hyperparameter tuning to balance recall (capturing valid moving points) and precision
(excluding static points).
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Algorithm 2 Tracking-Aided Segmentation (Point Cloud Approach)

Require: Detected point cloud at the current frame P = {(R̂i, V̂D,i, θ̂i}Ni=1; ego vehi-
cle track from the previous frame {x̂ego,Pego}; object tracks from the previous frame
{x̂j ,Pj ,Ej}Mj=1; the rotation matrix Rr2v and the translation vector tr2v from radar to
vehicle coordinate system; the rotation matrix Rv2w from vehicle to world coordinate
system

Ensure: Static point indices Istatic, moving point indices Imoving

Step 1: Prediction
1: Predict the ego vehicle state x̂−

ego and covariance matrix P−
ego using Kalman filter

2: Extract predicted position of the ego vehicle xego = x̂−
ego(1:2)

3: for each object track j = 1 to M do
4: Predict object state x̂−

j and covariance matrix P−
j using Kalman filter

5: Extract predicted position µj = x̂−
j (1:2)

6: Compute inflated covariance Σj = P−
j +Ej

7: Compute inverse Σ−1
j

8: end for
Step 2: Compensation

9: Convert point cloud P to Cartesian coordinates pir = (xi, yi)
10: Switch to the vehicle coordinate: piv ← Rr2v(1:2, 1:2) · pir + tr2v(1:2)
11: Apply ego-motion compensation: pi ← Rv2w · piv + xego

Step 3: Gating
12: Initialize Istatic ← {1, 2, . . . , N}
13: for each point pi do
14: for each object j = 1 to M do
15: Compute Mahalanobis distance d2(i,j) = (pi − µj)

⊤Σ−1
j (pi − µj)

16: if d2 < γ then
17: Point pi is inside the gating region
18: Mark point pi as moving: remove i from Istatic
19: break
20: end if
21: end for
22: end for
23: Imoving ← indices not in Istatic
24: return Istatic, Imoving

5.3.2 Ego-motion estimation with RANSAC

Motivation After removing dynamic points through tracking-aided segmentation, the
ego-motion estimation task is performed using the RANSAC algorithm [26], which is
well-known for its robustness to outliers.

Originally developed for computer vision tasks, RANSAC is designed to handle
datasets contaminated with a significant portion of outliers. In radar-based ego-motion
estimation, even after segmentation, the remaining static points may still include resid-
ual clutter or misclassified points. Unlike least squares estimation, which is sensitive
to such errors, RANSAC is able to identify a consensus set of inliers that best fits the
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assumed motion model. This makes it especially suitable for urban or dynamic highway
environments, where partial occlusion, clutter, and radar artifacts are common.

Mathematical Formulation Each static point after segmentation in frame k is rep-
resented as a triplet (R̂k

i , θ̂
k
i , V̂

k
D,i), where R̂

k
i is the measured range, θ̂ki is the measured

azimuth angle (in radians), and V̂ k
D,i is the observed radial velocity. The goal of instan-

taneous ego-motion estimation is to use these segmented static points to estimate the
ego vehicle’s 2D velocity vector in the radar observation coordinate system, i.e.:

v̂k =

[
v̂ego,radarx

v̂ego,radary

]
(5.3.4)

where v̂ego,radarx and v̂ego,radary denote the velocity components along the radar’s local x
and y axes.

For a static target located at azimuth angle θ̂ki , the expected velocity due to ego-
motion follows the radial projection:

V̂ k
D,i = −a⊤

i v̂k + ϵi, with ai =

[
cos(θ̂ki )

sin(θ̂ki )

]
(5.3.5)

where ϵi represents measurement noise, and the unit vector ai describes the direction
of the detection from the radar. The negative sign reflects the convention that Doppler
is positive when the object is approaching.

By stacking N such measurements, a linear system is obtained:

d = −A · v̂k + ϵ (5.3.6)

where

d =




V̂ k
D,1

V̂ k
D,2
...

V̂ k
D,N


 , A =




cos(θ̂k1) sin(θ̂k1)

cos(θ̂k2) sin(θ̂k2)
...

...

cos(θ̂kN) sin(θ̂kN)


 (5.3.7)

Without outliers, the optimal velocity can be estimated using the ordinary least
squares method as:

v̂k = −(A⊤A)−1A⊤d (5.3.8)

However, since outliers may exist due to clutter or misclassified dynamic points,
the RANSAC algorithm is employed to robustly estimate v̂k. In the r-th iteration,
RANSAC performs the following steps:

1. Randomly select a minimal subset of M anchor points.

2. Estimate velocity v̂
(r)
k using Equation 5.3.8.

3. Compute residuals V̂ k
D,i + a⊤

i v̂
(r)
k and determine inliers under a threshold τ .

4. If the number of inliers exceeds the previous iterations, retain the current inlier,
set as the best inlier set.
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Once the best inlier set is determined, a final least-squares estimation is performed
using only the inlier points to produce the final ego-motion estimate. This RANSAC-
based estimation greatly improves robustness against outliers, especially in dynamic
and clutter-intensive scenarios.

Compared to the iterative raw signal based method in Section 3.4.2, this RANSAC-
based estimation is simpler, more efficient, and directly compatible with point cloud
data. It avoids the need for Doppler FFT alignment or complex angle optimization.
Moreover, thanks to the segmentation step using historical tracking, the RANSAC
model receives a cleaner subset of static points, making the estimation more reliable.

Implementation In the proposed implementation, the key hyperparameters in
RANSAC are configured as follows:

• The number of anchor points used in each iteration is set to M = 5.

• The desired inlier probability is Pinlier = 0.99, indicating a 99% confidence that
at least one of the iterations yields a valid model.

• The assumed inlier ratio is w = 0.3, meaning at least 30% of the data is expected
to be consistent with a correct model.

• The maximum allowable velocity residual error for inliers is τ = 0.1 m/s.

Given the above configuration, the total number of RANSAC iterations K is com-
puted using the standard probabilistic RANSAC formula:

K =

⌈
log(1− Pinlier)

log(1− wM)

⌉
(5.3.9)

With the chosen hyperparameters, RANSAC can yield highly accurate velocity es-
timates and consistently converge to a stable estimate.

After RANSAC enables to compute the ego-vehicle velocity in the radar observation
coordinate, as illustrated in Section 3.4.3, velocity transformation and state update are
performed to obtain the final ego-motion estimation results.

5.4 Multiple extended object tracking

This section illustrates the implemented method for spatial extent estimation of
moving objects, which enables the estimation of each moving object’s size and orien-
tation angle. For ego-motion compensation and kinematic state tracking of moving
objects, the same approach as the one described for the raw signal method in Sections
3.5 and 3.6 is adopted.

Motivation Accurate estimation of the size and orientation of moving objects plays
a crucial role in understanding the scene geometry and supporting perception tasks
such as tracking, behavior prediction, and motion planning. In radar-based automotive
systems, each object often produces multiple detection points, forming clusters that
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reflect the object’s spatial extent. Estimating the extent of each object allows the
system to go beyond point-target models and better characterize real-world vehicles,
especially in denser traffic scenarios.

Compared to simpler point-based representations, extended object models allow for
more accurate data association and better gating in subsequent frames. Inspired by
methods in extended object tracking in the literature [38, 44], this work proposes an
efficient and robust size estimation method that relies on Minimum Volume Enclosing
Ellipse (MVEE) fitting [80] and exponential smoothing. To better approximate the real
shapes of objects in road scenarios, each object in this work is modeled as an ellipse.
The spatial extent estimation then focuses on estimating the ellipse’s major axis, minor
axis, and orientation angle.

Mathematical Formulation Let Ck = {zi = (xi, yi)}Nk
i=1 denote the set of Nk radar

detection points in the k-th cluster associated with a moving object, after DBSCAN
clustering as illustrated in Section 3.6.1. The objective is to estimate a compact ellip-
tical region that tightly encapsulates the spatial distribution of these points.

Each object is modeled as an ellipse in 2D space, defined by a center µk ∈ R2 and
a symmetric positive-definite matrix Σk ∈ R2×2, called the extent matrix. The center
µk is at the intersection of the major axis and minor axis of the ellipse. The ellipse can
be mathematically expressed as:

Ek =
{
z ∈ R2 | (z− µk)

⊤Σ−1
k (z− µk) ≤ 1

}
(5.4.1)

The matrix Σk encodes the size and orientation of the ellipse. Specifically, its
eigenvalue decomposition is shown in Equation 5.4.2:

Σk = RΛR⊤, where Λ =

[
a2 0
0 b2

]
, a ≥ b > 0 (5.4.2)

where:

• a: semi-major axis length

• b: semi-minor axis length

• θ: orientation angle, obtained from the rotation matrix R. The rotation matrix R
is constructed using the eigenvectors of Σk, and θ is the angle between the x-axis
and the eigenvector corresponding to a.

To estimate the extent matrix Σk, the MVEE of the point set Ck is computed. This
corresponds to the smallest-area ellipse (in 2D plane) that contains all the points. The
MVEE is defined by the set:

Ek =
{
z ∈ R2 | (z− c)⊤A(z− c) ≤ 1

}
(5.4.3)

where A ∈ R2×2 is positive-definite and c is the center. The relationship to the extent
matrix is:

Σk ≈ A−1, µk = c (5.4.4)
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The MVEE is obtained by solving the following convex optimization problem [80]:

min
A≻0, c

log detA−1 (5.4.5)

s.t. (zi − c)⊤A(zi − c) ≤ 1, ∀zi ∈ Ck (5.4.6)

This problem can be efficiently solved using the Khachiyan’s algorithm [80].
In each frame, all clusters identified as moving objects are processed to estimate

the measurements, including the center position and the extent matrix. Unlike Section
3.6.1, where the center position of each cluster was estimated using the mean value
of all points, this chapter uses the center of the MVEE as the center position of the
clusters. This choice provides better stability in the presence of partial observations
or non-Gaussian point distributions. The resulting measurements are then associated
with existing tracks through the state estimation, gating and data association, and
tracking management modules, as described in Section 3.6.

Considering the history estimates, for each associated track, its extent matrix is
updated using exponential smoothing as:

Σ
(t)
k = (1− ρ) ·Σ(t−1)

k + ρ · Σ̂MVEE
k , ρ ∈ [0, 1] (5.4.7)

where:

• Σ̂MVEE
k is the newly estimated MVEE extent matrix from the current cluster,

• Σ
(t−1)
k is the previous extent of the track at time t− 1,

• Σ
(t)
k is the updated extent at the current time t,

• ρ is the smoothing factor.

This update strategy enables gradual refinement of each object’s size estimate over
time, accounting for new observations while preserving stability against frame-to-frame
noise and scintillation effects in the radar point clouds due to changes of scatterers
locations on the targets.

Implementation In this work, the smoothing factor is set to ρ = 0.5 after hyperpa-
rameter tuning. A larger value of ρ gives more weight to the most recent observation,
allowing the extent estimation to quickly adapt to shape changes (e.g., when a vehicle
appears from occlusion). However, it also increases sensitivity to noisy or incomplete
measurements. Conversely, a smaller ρ stabilizes the estimate but may lag behind rapid
changes. Empirically, the chosen value provides a good trade-off between adaptivity
and robustness in dynamic driving scenarios.

In the specific implementation, there is also a fallback strategy to avoid that there
are too few points in one cluster. If a cluster contains too few points (e.g., Nk < 5),
solving MVEE may be unstable. In such cases, the fallback strategy is to compute the
sample covariance matrix of the points as:

Σk = cov(Ck) + ϵI (5.4.8)
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where ϵ > 0 is a small regularization constant to ensure Σk remains positive-definite.
In this implementation, it is set to 10−3.

In summary, this chapter first describes the ego-motion estimation challenge caused
by large oncoming vehicles in practical driving scenarios. Next, the point cloud based
combined method is presented in detail, focusing on the differences from the method
presented in Chapter 3 which used raw data. Moving objects are modeled as ellipses,
with their size and orientation angles estimated using the MVEE algorithm, thereby
solving the full MEOT problem. With the available extent information, the tracking-
aided ego-motion estimation utilizes adaptive Mahalanobis gating to precisely filter
out moving points, leading to robust estimates. In the following Chapters 6 and 7, the
method is validated through both simulation and a real dataset.
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Simulation Results 6
To validate the feasibility and performance improvement of the point cloud based

combined method for ego-motion estimation & multiple extended object tracking pro-
posed in Chapter 5, this chapter conducts a series of tests using simulated radar point
clouds. Section 6.1 introduces the simulation environment and the adopted evaluation
metrics. In Sections 6.2 and 6.3, the method is tested on two representative autonomous
driving simulation scenarios, with both qualitative and quantitative analyses provided.
Finally, Section 6.4 extends the evaluation to a broader set of test cases to examine the
generalizability of the proposed method.

6.1 Simulation Setup and Performance Metrics

To validate the performance of the combined method proposed in Chapter 5, a set
of simulations were conducted based on realistic driving environments. To enhance the
realism of the simulation, the Driving Scenario Designer application provided by MAT-
LAB [81] is utilized for generating radar point cloud data under various autonomous
driving scenarios.

The Driving Scenario Designer application, part of the MATLAB Automated Driv-
ing Toolbox [82], enables users to create synthetic and well-structured traffic scenes
involving multiple road actors, road networks, and sensor configurations. This tool pro-
vides an intuitive interface for positioning vehicles, defining trajectories, and emulating
sensor detections such as radar, LiDAR, and cameras. The underlying toolbox also sup-
ports perception, sensor fusion, motion planning, and control algorithm testing, making
it a comprehensive platform for simulating and validating Advanced Driver Assistance
Systems (ADAS) and autonomous driving systems. Several recent studies [83,84] have
adopted the Driving Scenario Designer application and Automated Driving Toolbox
for prototyping and testing radar-based or vision-based perception pipelines, highlight-
ing its effectiveness for algorithm development and early-stage validation in controlled
conditions.

The basic simulation environment used in this Chapter is illustrated in Figure 6.1.1.

The simulated road is straight, with a total length of 150 meters and a total width
of 14.55 meters. It consists of four lanes—two lanes in each direction—with a lane
width of 3.6 meters. To emulate static roadside objects, ten metal guardrails (each 5
meters long, 0.43 meters wide, and 0.75 meters high) are placed symmetrically on both
sides of the road with a constant interval of 30 meters.

The ego vehicle is modeled as a typical mid-size sedan with dimensions of 4.7 meters
in length, 1.8 meters in width, and 1.4 meters in height. It travels in the left fast lane
of the forward direction, starting from the position (1, –1.75) meters in the world
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Figure 6.1.1: The basic simulation environment: road, static guardrails, and the ego vehicle
in blue on the left-hand side

coordinate system. To simplify the analysis, the ego vehicle maintains a constant
velocity of 12 m/s (equivalent to 43.2 km/h) along the forward direction (X-axis), with
zero velocity in the lateral direction (Y-axis).

A single front corner automotive radar is installed on the front left part of the ego
vehicle. To ensure realism and maintain consistency with the real-world dataset, the
radar parameters are selected to be similar with those of Radar 3 in the RadarScenes
dataset [77], which will be used in Chapter 7 for real-data validation. The detailed
radar parameters used in the simulation are summarized in Table 6.1.1. As illustrated
in Figure 6.1.2, the radar sensor is mounted with an azimuth angle of 25 degrees relative
to the forward driving direction. The position offset from the vehicle center is 2.35
meters forward and 0.5 meters to the left. Compared to other mounting configurations
such as forward-looking or side-looking radars, a front-corner radar is better suited
for validating the proposed combined method, as it can simultaneously detect moving
targets in front of the vehicle and static background objects along the roadside. The
radar has a maximum detection range of 100 meters and an azimuth field of view of 120
degrees, providing broad angular coverage for both central and peripheral detections.
To simulate the effects of missed detections, clutter, and measurement uncertainty in
realistic radar point clouds, the simulation sets the detection probability to 0.9 and the
false alarm rate to 1× 10−7. Each simulation trial covers 10 seconds, corresponding to
100 radar frames at a frame rate of 10 Hz.

To evaluate the performance of the proposed method in Chapter 5, six performance
metrics are selected in total. For ego-motion estimation, the same two metrics used in
the raw signal method are adopted, namely the APE and the RTE, as defined in Section
3.7.1. These metrics reflect the estimation accuracy of the instantaneous velocity and
the long-term relative trajectory, respectively.

For multiple extended object tracking, a key distinction arises between the proposed
raw signal method of the previous part of this thesis, and the point cloud method as-
sessed here. While the former only tracks the kinematic states of objects, including
their position and velocity, the latter is capable of estimating not only these kinematic
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Table 6.1.1: Radar parameters in the 2D simulations run in Chapter 6
Parameters Value

Angle with respect to the forward direction (degree) 25

Offset in the forward direction (m) 2.35

Offset in the lateral direction (m) 0.5

Maximum detectable range (m) 100

Range resolution (m) 0.15

Maximum detectable Doppler velocity (m/s) 30

Velocity resolution (m/s) 0.028

Field of view for azimuth angle (degree) 120

Azimuth angle resolution (degree) 1

Detection probability 0.9

False alarm rate 1× 10−7

Frame rate (Hz) 10

Figure 6.1.2: Installation configuration of the front-corner radar with its field of view

attributes but also the size and orientation of multiple extended targets. As a result,
performance evaluation must include both kinematic tracking accuracy and size estima-
tion accuracy. To assess the kinematic tracking accuracy, the GOSPA metric described
in Section 3.7.2 is used again. Then, to assess the accuracy of shape estimation for
multiple objects, each extended object is modeled as an ellipse, and three additional
metrics are introduced:
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1. The RMSE of the estimated semi-major axis length a

RMSEa =

√√√√ 1

m

m∑

i=1

1

n(i)

n(i)∑

j=1

∥â(i, j)− a(j)∥2 (6.1.1)

where m denotes the total number of frames containing at least one extended
object, and n(i) represents the number of extended objects present in frame i.
The terms â(i, j) and a(j) refer to the estimated and ground truth semi-major axis
lengths of object j at frame i, respectively. The Euclidean distance is computed
using the L2 norm.

2. The RMSE of the estimated semi-minor axis length b

RMSEb =

√√√√ 1

m

m∑

i=1

1

n(i)

n(i)∑

j=1

∥b̂(i, j)− b(j)∥2 (6.1.2)

where b̂(i, j) and b(j) refer to the estimated and ground truth semi-minor axis
lengths of object j at frame i, respectively.

3. The RMSE of the estimated orientation angle θ

RMSEθ =

√√√√ 1

m

m∑

i=1

1

n(i)

n(i)∑

j=1

∥θ̂(i, j)− θ(j)∥2 (6.1.3)

where θ̂(i, j) and θ(j) refer to the estimated and ground truth semi-minor axis
lengths of object j at frame i, respectively.

To compute these metrics, ground truth values for the three above parameters must
be obtained. This is done by uniformly sampling 1000 points along the actual visible
contour of each object and applying the MVEE fitting algorithm introduced in Section
5.4, to extract the semi-major axis length, semi-minor axis length, and orientation
angle.

In the simulations, two types of extended targets are considered: cars and trucks.
Considering the occlusion effect of the radar, the actual observed contour of a vehicle
depends on its relative position to the ego vehicle. For example, as visualized in Figure
6.1.3, when a car (i.e., 4.7 m in length, 1.8 m in width) is located in front of the ego
vehicle and to its right, due to partial occlusion, the radar can only receive reflections
from the two exposed side edges. In this case, 1000 points are sampled along these edges
and an ellipse is fitted to compute the ground truth values. The same method is applied
for cars located in the left-front direction, as well as for trucks in both left-front and
right-front positions. The resulting ground truth parameters for all four configurations
are summarized in Table 6.1.2.

In the following simulation results, two representative scenarios are selected for
detailed analysis: one involving a single oncoming truck, and another involving mul-
tiple oncoming trucks for example in a highway. As discussed in Section 5.1, the
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Figure 6.1.3: Example of ground truth generation for shape estimation: a right-front car, of
which only two sides are visible to the radar on the ego-vehicle

Table 6.1.2: Ground truth values of shape estimation parameters

Object type Position
semi-major
axis length

(m)

semi-minor
axis length

(m)

orientation angle
(◦)

Car Right 3.19 1.02 12.11

Car Left 3.19 1.02 -12.11

Truck Right 5.53 1.43 9.31

Truck Left 5.53 1.43 -9.31

RANSAC-based ego-motion estimation method is prone to failure in scenarios where
large oncoming objects, such as trucks, dominate the radar measurements. In such
cases, the proposed combined method is expected to demonstrate significant perfor-
mance improvements with respect to conventional approaches. In addition to these
two core scenarios, the proposed method is also evaluated under a wider variety of road
scenarios and ego-vehicle motion patterns. The results of these extended simulations
will be presented in Section 6.4.
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6.2 Scene 1: A Single Truck

As shown in Figure 6.2.1, the first scenario contains four vehicles distributed across
four different lanes. This setting is designed to simulate a typical driving scenario,
where the ego vehicle meets oncoming vehicles, overtakes slower vehicles in the same
direction, and coexists with multiple surrounding moving objects on a multi-lane road.

On the first oncoming lane closest to the ego vehicle, there is a yellow truck with
dimensions of 8.2 meters in length, 2.5 meters in width, and 3.5 meters in height.
It moves at a speed of 9 m/s, starting from the position (147, 1.5) m and eventually
intersects with the ego vehicle. In the slow lane in the same direction as the ego vehicle,
there is a red sedan with the same dimensions as the ego vehicle, moving at 8 m/s.
It starts from (36, −5) m and is overtaken by the ego vehicle during the simulation.
Additionally, on the second oncoming lane, there is another green sedan traveling at
6 m/s, with a starting position of (80, 5) m. It also meets the ego vehicle during the
simulation. All vehicles move with constant velocities along straight-line trajectories.
Their trajectories and endpoints are illustrated in the figure using lines and solid circles,
respectively.

The simulation lasts for 10 seconds, corresponding to 100 radar point cloud frames.
The simulated radar point cloud consists of a set of measurements including range,
azimuth angle, and velocity which serve as the input to the combined method for ego-
motion estimation & multiple extended object tracking:

P = {(Ri, θi, VD,i)}Ni=1 (6.2.1)

Figure 6.2.1: Simulated Scene 1: a single truck and two sedans

The results of the combined method proposed in Chapter 5 are presented next,
from two perspectives: ego-motion estimation and multiple extended object tracking,
in Sections 6.2.1 and 6.2.2, respectively. For ego-motion estimation, the combined
method is compared with the RANSAC-based method to demonstrate the performance
improvements brought by the combined approach, especially in separating static and
moving targets. For multiple extended object tracking, both trajectory estimation and
object size estimation are evaluated.
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6.2.1 Ego-motion estimation

As discussed in Section 5.1, the performance of ego-motion estimation heavily relies
on the accurate separation of static and moving targets. In highly dynamic scenes,
such as when encountering an oncoming truck, a large portion of the detected radar
point cloud originates from moving objects. In such cases, conventional RANSAC-
based radar ego-motion estimation methods often fail to fit a correct model, resulting
in significant degradation in terms of estimation accuracy.

To address this issue, the combined method proposed in Chapter 5 enhances the
accuracy and robustness of ego-motion estimation by incorporating spatiotemporal in-
formation from object tracking to remove dynamic points. In the following, the seg-
mentation results of static and moving targets obtained by the combined method are
first presented, followed by a comparative evaluation of ego-motion estimation accuracy
against the RANSAC-based method.

In the combined method, after the initialization phase, ego-motion estimation pro-
ceeds through three stages: tracking-aided segmentation of static and moving point
clouds, ego-motion estimation via RANSAC, and coordinate transformation and state
update. Figure 6.2.2 illustrates a representative frame where a large truck passes by the
ego vehicle. The point cloud has been segmented using tracking information from the
previous frame. Red circles indicate points identified as moving, while blue circles rep-
resent points classified as static. It can be observed that most of the points generated
by the truck (located in the lower-left area) are correctly identified as moving by Ma-
halanobis gating. In contrast, the majority of points associated with static guardrails
are accurately classified as static. It is worth noting that by the time the large truck
meets the ego vehicle, the red and green sedans of this simulation have already moved
behind the ego vehicle and thus fall outside the radar’s field of view, resulting in no
detections for these two objects in this frame. In summary, this effective separation of
moving points helps eliminate their influence on subsequent model fitting, highlighting
a key advantage of the proposed method.

In the second stage of ego-motion estimation, the method feeds all initially seg-
mented static points into the RANSAC algorithm to estimate the ego vehicle’s motion.
Figure 6.2.3 compares the curve fitting results in the Doppler–azimuth plane obtained
using the conventional RANSAC-based method (blue line) and the proposed combined
method (red line). For the conventional approach that applies RANSAC directly to
all detected points without tracking-aided segmentation, the curve fitting process fails
when a large oncoming truck is present. In this case, more than 50% of the detections
originate from dynamic objects, causing RANSAC to be biased and fit a curve that
does not represent the static background. In contrast, the combined method success-
fully removes the majority of dynamic points through tracking-aided segmentation. As
a result, RANSAC is able to fit a curve corresponding to truly static targets, leading
to a more accurate ego-motion estimate.

As described in Section 6.1, ego-motion estimation performance is quantitatively
evaluated using two metrics: APE and RTE. Table 6.2.1 compares the results obtained
by the conventional RANSAC-based method and the proposed combined method for
the entire scene. To account for the inherent randomness of the RANSAC algorithm,
each result is averaged over 100 Monte Carlo trials. It can be observed that the proposed
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Figure 6.2.2: The tracking-aided segmentation results for an example frame: 2D positions of
point cloud

combined method achieves a significant improvement over the conventional approach
across the entire simulation period. Specifically, the APE is reduced from 1.79 m/s to
0.01 m/s, and the RTE is reduced from 111.58 cm to 0.37 cm. The substantial reduction
in both metrics highlights the importance of correctly identifying and removing dynamic
points during ego-motion estimation.

Table 6.2.1: Performance metrics of ego-motion estimation: a comparison between RANSAC-
based method and combined method

Method APE (m/s) RTE (cm)

RANSAC-based method 1.79 111.58
Combined method 0.01 0.37

Absolute difference -1.78 -111.21

To further analyze the results in greater detail, the APE of each individual frame
over time is shown in Figure 6.2.4. For clarity and better visualization of variations,
the APE is plotted on a logarithmic scale. As the figure shows, between frames 60 and
70, the large oncoming truck is approaching and overtaking the ego vehicle. During
this highly dynamic interaction, the performance of the RANSAC-based method dete-
riorates significantly, with APE reaching values on the order of 102 m/s. Such large
estimation errors are clearly unacceptable in practical autonomous driving applications.

In contrast, the proposed combined method maintains a stable estimation perfor-
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Figure 6.2.3: The RANSAC curve fitting results for an example frame (in the Doppler-azimuth
plane)

mance across all frames, with APE consistently below 0.01 m/s. This demonstrates the
method’s robustness under challenging dynamic conditions. The key to this improve-
ment lies in the effective removal of dynamic points using tracking-aided segmentation.
Overall, the combined method can provide accurate and consistent ego-motion esti-
mates.

6.2.2 Multiple extended object tracking

The performance of multiple extended object tracking is evaluated from two per-
spectives: kinematic state tracking and size estimation. Table 6.2.2 summarizes the
performance metrics of the proposed combined method in the simulated Scene 1. For
kinematic tracking, as introduced in Section 3.7.2, the GOSPA metric—widely used
in radar tracking tasks—is employed. This metric jointly considers localization errors,
false alarms, and missed detections, providing an overall performance assessment rather
than individual target-level errors. For shape estimation, both the overall RMSE of the
ellipse parameters and per-target RMSEs are reported. To ensure statistical reliability,
all metrics represent the average over 100 Monte Carlo tests.

As shown in the table, in terms of kinematic tracking, the combined method per-
forms accurately in this relatively simple scenario where objects are spatially well-
separated and trajectories do not cross. The GOSPA score of 2.69 is consistent with
results reported in [69] for the first simple scenario, where GOSPA typically lies be-
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Figure 6.2.4: APE per frame for Scene 1: RANSAC-based method and proposed combined
method (visualized in logarithmic scale)

Table 6.2.2: Performance metrics of multiple extended object tracking for simulated Scene 1
Mean GOSPA RMSEa (m) RMSEb (m) RMSEθ (◦)

All objects 2.69 1.19 0.46 6.12

Object 1 (Red sedan) 0.25 0.46 6.05
Object 2 (Yellow truck) 1.96 0.42 3.71
Object 3 (Green sedan) 1.54 0.41 6.88

tween 2 and 3. However, as also shown in [69], in more complex scenes—such as those
with intersecting trajectories—the GNN-based data association used in the combined
method tends to degrade, leading to higher GOSPA scores. To handle such challenges,
more advanced multi-target tracking filters such as the PHD filter [73] or the PMBM
filter [74] may be required, which will be considered in the future work.

For shape estimation, the RMSEs of the semi-major axis (a), semi-minor axis (b),
and orientation angle (θ) are 1.19 m, 0.46 m, and 6.12◦, respectively. These results
indicate that the proposed method can accurately estimate the dimensions of vehicles
with different sizes, orientations, and velocities within an acceptable margin of error. A
closer inspection of the per-target results shows that the accuracy of b and θ estimation
remains fairly consistent across all three objects. However, the estimation of a varies
significantly.
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The vehicle in the same direction as the ego vehicle (red sedan) exhibits much lower
a error compared to the vehicles in the opposite direction (yellow truck and green
sedan). This may be attributed to the fact that same-direction vehicles are generally
closer to the ego vehicle, resulting in denser radar point clouds. Moreover, they remain
in the radar’s field of view for a longer period of time, which facilitates more stable and
accurate estimation of object shape and size.

To visualize the tracking performance qualitatively, Figure 6.2.5 shows the estimated
trajectories (solid red lines) and ground truth trajectories (solid green lines) for all three
vehicles. The estimated ego-trajectory is also shown with a red dashed line, serving as
a reference for ego-motion compensation. When the ego vehicle’s motion is accurately
tracked, the trajectories of other vehicles can also be consistently tracked by ego-motion
compensation.

As the figure shows, all three vehicles are tracked with high accuracy during most
of the frames, validating the feasibility and effectiveness of the proposed combined
method. For the red sedan traveling in the same direction, two notable trajectory
drifts are observed, along with a false alarm in the early phase. These errors are due to
two short stationary guardrails located at 45–50 m and 75–80 m, with a lateral distance
of only 2.2 m from the ego vehicle. When the red sedan passes near these structures, the
combined method may mistakenly group them as one object and classify parts of the
guardrail as moving, resulting in degraded tracking accuracy. For the yellow truck and
green sedan, the estimated trajectories initially estimate the y-position with a slightly
large error and gradually converge to the true values. This effect is more pronounced
for the truck. A possible explanation is that when the objects first appear in the
radar’s field of view, the number of available detections is limited and their spatial
distribution may be sparse. Additionally, occlusion effects can cause uncertainty in
lateral localization.

6.3 Scene 2: Multiple Trucks

As shown in Figure 6.3.1, different from the first scenario, the second simulated
scenario features a multi-truck setting. It includes three trucks (yellow, green, and
purple) traveling in the opposite direction of the ego vehicle.

The trucks are equally spaced as in a sort of platoon and move at a constant velocity.
Their initial positions are (150, 2) m, (120, 1.5) m, and (90, 1.8) m, respectively, with
an inter-vehicle spacing of 30 m. All vehicles travel in straight lines at a constant
speed of 6 m/s. To facilitate visualization of the tracking results, the y-coordinates of
the trucks differ slightly, though they all occupy the same lane. The trajectories and
endpoints of the trucks are shown as straight lines and solid circles, respectively. During
the simulation, the three trucks sequentially pass by the ego vehicle. The simulation
duration is 10 seconds, resulting in 100 frames of radar point cloud data.

As in the previous scenario, the results of the proposed method are presented from
two perspectives: ego-motion estimation and multiple extended object tracking, in
Sections 6.3.1 and 6.3.2, respectively.
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Figure 6.2.5: Tracking results for simulated Scene 1: ground truth and estimated trajectories

Figure 6.3.1: Simulated Scene 2: three equally-spaced trucks

6.3.1 Ego-motion estimation

In terms of ego-motion estimation, the combined method first utilizes tracking in-
formation from the previous frame to perform adaptive gating, thereby preliminarily
segmenting the radar point cloud into static and moving points. Figure 6.3.2 illustrates
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the segmentation result when the purple truck is passing by the ego vehicle. As the fig-
ure shows, the method is able to correctly identify the detections generated by the three
trucks as dynamic, while recognizing the surrounding static guardrails as stationary.
Furthermore, Mahalanobis gating adaptively generates elliptical gating regions based
on each truck’s estimated size. For the purple truck on the far left, although part of its
body lies outside the radar’s field of view due to proximity, its estimated size remains
consistent. This is because the proposed size estimation employs a sliding average that
incorporates historical data. For the yellow truck on the far right, the front-side edge
points are missing from detection. This is due to occlusion by the purple and green
trucks ahead, resulting in a reduction of the estimated elliptical gating region.

Figure 6.3.2: The tracking-aided segmentation results for an example frame: 2D positions of
point cloud

Subsequently, Figure 6.3.3 presents the curve fitting results of the combined method
compared with the RANSAC-based method. It can be observed that after removing
most of the dynamic points using tracking-aided segmentation, RANSAC is able to cor-
rectly select the remaining static points and fit a sinusoidal curve that closely matches
the ground truth.

Table 6.3.1 compares the APE and RTE metrics of the RANSAC-based method
and the proposed combined method over all frames in the scenario of simulated scene
2. Due to the repeated interactions between the ego vehicle and the three oncoming
trucks, the performance of the RANSAC-based method degrades, resulting in increased
APE and RTE compared to scene 1. In contrast, the combined method maintains very
low APE and RTE values by leveraging historical tracking information, significantly
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Figure 6.3.3: The RANSAC curve fitting results for an example frame (in the Doppler-azimuth
plane)

improving the accuracy and robustness of ego-motion estimation.

Table 6.3.1: Ego-motion estimation performance comparison between RANSAC-based
method and combined method for simulated scene 2

Method APE (m/s) RTE (cm)

RANSAC-based method 3.16 270.90
Combined method 0.03 1.29

Absolute difference -3.13 -269.61

Next, the frame-wise APE and RTE are plotted in Figure 6.3.4 using logarithmic
scale for better visualization. Due to the sequential encounters with three oncoming
trucks, the RANSAC-based method produces three distinct peaks in APE, each cor-
responding to a large estimation error, with peak values approaching 102 m/s. The
width of these peaks gradually decreases, because during the former truck encounters,
subsequent trucks still far in space also contribute dynamic points, increasing the num-
ber of frames dominated by moving objects. In contrast, during the later encounters,
the previous trucks have already passed, resulting in less interference. When using the
proposed combined method, the ego-motion errors induced by all three trucks are ef-
fectively suppressed, maintaining the velocity estimation error below 0.1 m/s across all
frames. This further demonstrates the improved effectiveness of the combined method
in highly dynamic driving scenarios.
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Figure 6.3.4: APE per frame for simulated Scene 2: RANSAC-based method and proposed
combined method (visualized in logarithmic scale)

6.3.2 Multiple extended object tracking

In terms of tracking performance, Table 6.3.2 presents the GOSPA score and the
RMSE values of the three size estimation parameters. The trajectory tracking results
for the three trucks are illustrated in Figure 6.3.5. It can be observed that the trajec-
tories along the x-axis are accurately estimated. However, in the y-axis, the estimated
positions tend to be initially biased toward lower values, with the estimation errors
gradually reducing over time. This phenomenon is more pronounced for the rear trucks
compared to the front ones, which is attributed to the occlusion effect. Due to the
large physical size of the trucks and their relatively close spacing, the front truck can
block the radar’s view of the front surface of the rear trucks. As a result, only the left
side surface of the rear trucks is visible to the radar in the early frames, leading to
underestimated y positions. As time progresses and the front trucks move out of the
radar’s field of view, the occlusion is reduced, and the tracking accuracy of the rear
trucks improves accordingly.

This occlusion-induced bias contributes to a relatively larger GOSPA score of 3.46
compared to scene 1 and also affects the accuracy of size estimation. The per-object
RMSE analysis shows that the estimation errors in all three parameters (semi-major
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axis, semi-minor axis, and orientation angle) are higher for the rear trucks than for the
front ones. This is because partial occlusion in the early stage limits the accuracy of
size estimation for the rear targets.

Overall, for Scene 2, the proposed combined method achieves robust performance
in both trajectory tracking and shape estimation.

Table 6.3.2: Performance metrics of multiple extended object tracking for simulated scene 2
Mean GOSPA RMSEa (m) RMSEb (m) RMSEθ (◦)

All objects 3.46 1.31 0.76 6.30

Object 1 (Purple truck) 0.45 0.20 1.63
Object 2 (Green truck) 0.70 0.70 6.03
Object 3 (Yellow truck) 2.06 1.05 8.60

Figure 6.3.5: Tracking results for simulated Scene 2: ground truth and estimated trajectories

6.4 Evaluation on More Scenes

To further evaluate the adaptability of the proposed method in more diverse scenar-
ios, in this section the configurations of Scene 1 and Scene 2 are extended to generate

92



a total of 20 simulated scenes, each lasting 10 seconds. The following variations were
applied across the different scenes:

• Varying the ego-velocity within the range of 8 to 13 m/s.

• Changing the position of the ego-vehicle from the fast lane to the slow lane in a
2-lanes road as those considered so far.

• Adjusting the positions of moving objects by moving them from the fast lane to
the slow lane or vice versa.

Table 6.4.1 and 6.4.2 summarize the average performance of ego-motion estimation
and multiple extended object tracking across these 20 scenarios. The results indicate
that the proposed method achieves consistently accurate and robust performance, and
exhibits strong generalization capability under various scene configurations.

Table 6.4.1: Ego-motion estimation performance: averaged among 20 diverse scenes
Method APE (m/s) RTE (cm)

RANSAC-based method 2.02 158.14
Combined method 0.02 0.53

Absolute difference -2.00 -157.61

Table 6.4.2: Multiple extended object tracking performance: averaged among 20 diverse
scenes

Mean GOSPA RMSEa (m) RMSEb (m) RMSEθ (◦)

All objects 3.70 1.04 0.55 8.40

This chapter validates the performance of ego-motion estimation and multiple ex-
tended object tracking using simulated point cloud generated by a dedicated MATLAB
tool. Various simulation results demonstrate that the proposed combined method can
significantly improve the ego-motion estimation robustness in the presence of large on-
coming vehicles, while also yielding good tracking results. After addressing the problem
with well-controlled simulation data, the next chapter moves on to test the performance
on a real-world dataset.
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Real Dataset Results 7
In addition to the simulation-based evaluations presented in Chapter 6, this chap-

ter validates the proposed combined method for ego-motion estimation & multiple
extended object tracking using real-world radar data. The RadarScenes dataset [77], a
publicly available benchmark containing annotated automotive radar measurements, is
utilized for this purpose. Since the ground-truth trajectories and sizes of moving objects
are not directly accessible from this dataset, the evaluation focuses primarily on the
performance of ego-motion estimation. Both quantitative comparisons and qualitative
visualizations are provided to demonstrate the effectiveness of the proposed approach
under real driving conditions.

In this chapter, Section 7.1 first introduces the RadarScenes dataset and describes
the selected scenarios for evaluation. In Section 7.2, the ego-motion estimation results
of the proposed method are presented and compared with the conventional RANSAC-
based approach.

7.1 RadarScenes Dataset

The RadarScenes dataset [77] is a publicly available large-scale dataset designed
to support research on automotive radar perception tasks. It consists of over 10,000
labeled frames captured across various driving environments, including urban streets,
highways, and suburban roads. The dataset was collected using a production vehicle
equipped with four automotive-grade Continental radars, and it includes rich metadata
such as ego-vehicle odometry, semantic annotations, and sensor calibration parameters.
RadarScenes emphasizes real-world challenges such as multipath reflections, clutter,
occlusion, and sparse detections, making it well-suited for evaluating the robustness
and generalizability of radar-based perception and ego-motion estimation algorithms.

As illustrated in Figure 7.1.1, the RadarScenes dataset provides measurements from
four 77 GHz automotive radars mounted on the test vehicle. In this work, data from
corner Radar 3 is utilized to evaluate the proposed method, as it can observe both the
front region (typically occupied by moving objects) and the side region (where static
objects often appear). This radar is mounted at the front-right corner of the vehicle
and oriented with a 25◦ angular offset from the forward driving direction. Radar 3
operates at 77 GHz with a maximum range of 100 m, offering a range resolution of
0.15 m and Doppler resolution of 0.3 m/s. Its azimuth field of view is ±60◦ with 0.5◦

resolution, and it records frames at 17 Hz. These specifications enable accurate and
temporally dense sensing of surrounding dynamic objects. The detailed parameters are
listed in Table 6.1.1.

To comprehensively evaluate the robustness of the proposed combined method, two
categories of real-world scenarios are selected from the RadarScenes dataset. The first
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Figure 7.1.1: Radar configuration and field of view on the test vehicle [77]

Table 7.1.1: Parameters of corner Radar 3 in RadarScenes dataset
Parameters Value

Center frequency (GHz) 77

Maximum detectable range (m) 100

Range resolution (m) 0.15

Doppler resolution (m/s) 0.36

Field of view for azimuth angle (°) ±60

Azimuth angle resolution (°) 0.5

Angle with respect to the forward direction (°) 25

Frame rate (Hz) 17

category contains dynamic scenes that reflect the challenges described in Section 5.1,
where one or more large vehicles approach the ego vehicle from the opposite lane.
A total of seven representative scenarios are selected, namely: Scene 1, 67, 76, 104,
125, 127, and 146. These scenes cover a variety of road types including urban and
suburban roads, as well as diverse weather conditions including clear, cloudy, and rainy
environments. The second category consists of five static scenes, where no large vehicles
approach the ego vehicle in the opposite direction. These scenarios are used to verify
that the combined method can maintain consistent and accurate performance also
in ordinary environments, where conventional RANSAC-based approaches typically
operate reliably.

7.2 Ego-motion Estimation
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Since obtaining the ground truth trajectories and dimensions of surrounding moving
objects from RadarScenes is complex due to the lack of provided labelled information
in the dataset, this chapter focuses on evaluating the performance of ego-motion esti-
mation. To provide a quantitative assessment, APE as illustrated in Section 3.7.1 is
adopted as the evaluation metric. In order to highlight the performance improvement
during the short interval when large vehicles pass the ego vehicle, a 10-second segment
is extracted for additional evaluation.

For the selected seven dynamic scenes, Table 7.2.1 reports the APE over the full
scene, while Table 7.2.2 shows the APE ‘zooming-in’ during the 10-second short in-
tervals. A comparison against the baseline RANSAC-based method is conducted. To
account for the stochastic nature of RANSAC, each experiment is repeated 100 times
for each method and scene.

Across all seven dynamic scenes, the proposed combined method consistently out-
performs the conventional RANSAC-based method in terms of ego-motion estimation
accuracy. As shown in Table 7.2.1, the APE over the full duration of each scene is sig-
nificantly reduced by the proposed method. On average, a performance improvement
of 25.9% is observed. Furthermore, when focusing on the 10-second short window cen-
tered around the large vehicle encounter event, the advantage of the combined method
becomes more pronounced. As reported in Table 7.2.2, the average APE reduction
reaches 56.9%, demonstrating the method’s robustness under challenging dynamic
conditions. These results confirm that the integration of tracking-aided segmentation
and adaptive gating effectively mitigates the failure cases commonly encountered by
RANSAC.

Table 7.2.1: APE (m/s) over the full scene: comparison between RANSAC-based method
and combined method

Method
Scene

1
Scene
67

Scene
76

Scene
104

Scene
125

Scene
127

Scene
146

Mean

RANSAC-based
method

0.55 0.60 0.55 0.39 0.80 0.32 0.54 0.54

Combined
method

0.50 0.57 0.42 0.34 0.28 0.19 0.51 0.40

Absolute
difference

-0.05 -0.03 -0.13 -0.05 -0.52 -0.13 -0.03 -0.14

The improvement in ego-motion estimation accuracy can be primarily attributed
to the effective removal of moving points at the current frame, guided by historical
tracking information. Recall from Section 5.1 that in the scenario shown in Figure
5.1.2, the RANSAC-based method failed to fit an accurate sinusoidal curve due to heavy
interference from moving objects. For the same scenario, Figure 7.2.1 illustrates the
curve fitting result of the combined method after tracking-aided segmentation has been
applied to filter out dynamic points. It can be observed that the static points retained
after segmentation are well aligned with the ideal sinusoidal pattern. As a result, the
RANSAC algorithm is able to robustly fit a curve that closely matches the expected
theoretical relationship between velocity and azimuth angle for static scatterers. This
significantly reduces the estimation error of ego-motion.
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Table 7.2.2: APE (m/s) during the 10-second encounter window with large vehicles: compar-
ison between RANSAC-based method and combined method

Method
Scene

1
Scene
67

Scene
76

Scene
104

Scene
125

Scene
127

Scene
146

Mean

RANSAC-based
method

1.72 1.03 1.20 0.90 1.33 1.25 0.67 1.16

Combined
method

1.56 0.51 0.46 0.25 0.17 0.26 0.32 0.50

Absolute
difference

-0.16 -0.52 -0.74 -0.65 -1.16 -0.99 -0.35 -0.66

Figure 7.2.1: RANSAC fitting results after tracking-aided segmentation for the same frame
analyzed in Figure 5.1.2

To further evaluate the generalizability of the proposed method, Table 7.2.3 reports
the ego-motion estimation results for five selected static scenes where no large oncoming
vehicles are present. In these scenes, ego-motion estimation mainly relies on static
roadside targets, and the interference from moving objects is minimal.

The results show that in static scenes, the combined method yields comparable
performance to the baseline RANSAC-based method, with a slight increase in average
APE. This observation suggests that while the combined method is specifically designed
to mitigate the influence of large moving objects, other factors can also affect ego-motion
estimation accuracy in real-world driving scenarios. For instance, in cases of strong ego
acceleration or deceleration, or during turning maneuvers with significant rotational
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Table 7.2.3: APE (m/s) for static scenes: comparison between RANSAC-based method and
combined method

Method Scene 77 Scene 87 Scene 92 Scene 101 Scene 130 Mean

RANSAC-based
method

0.30 0.34 0.13 0.25 0.28 0.26

Combined
method

0.31 0.33 0.16 0.26 0.29 0.27

Absolute
difference

+0.01 -0.01 +0.03 +0.01 +0.01 +0.01

velocity, the underlying motion model may deviate from the assumptions used in the
algorithm [8]. As the combined method is a model-based approach, such deviations can
reduce its effectiveness. In contrast, the RANSAC method may occasionally offer better
results since it does not link the ego-motion from consecutive time steps. To address
these limitations, future work may explore more expressive motion models that capture
non-linear vehicle dynamics, or leverage data-driven approaches such as deep learning
models that can learn complex motion patterns from large-scale radar datasets.

In summary, the proposed combined method has been evaluated on multiple real-
world driving scenarios containing significant incoming large vehicles, using data from
the public RadarScenes dataset. These scenarios include highway environments, where
large trucks often appear one after another in platoon formations, and urban settings,
where combinations of buses, trucks, and vans are frequently encountered. Experimen-
tal results demonstrate clear improvements in ego-motion estimation accuracy when
compared to the baseline RANSAC-based approach. This highlights the method’s
practical value in handling complex dynamic environments in real-life driving situa-
tions.
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Part IV

Closing Remarks
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Conclusion and Future Work 8
This chapter summarizes the main conclusions of the thesis and outlines possible

future research directions. Section 8.1 presents the conclusions and key findings, while
Section 8.2 discusses limitations and potential improvements in the future research.

8.1 Conclusion

This thesis explores a novel integration of ego-motion estimation, a localization task,
and multiple extended object tracking, a perception task, within a unified framework,
using only automotive radar as the sensor input. Looking at the open literature in the
field, establishing such connection is relatively innovative, especially when relying solely
on a single automotive radar. Two combined estimation methods were proposed and
validated throughout this thesis, differing primarily in the form of radar input data.

The first method, developed in the early stage of the thesis, operates directly on
raw radar signals, aiming to leverage low-level information and validate the theoretical
feasibility of the framework. The second method, developed in the later stage, is based
on radar point cloud data, a more common data format in publicly available datasets,
and focuses on addressing practical challenges in dynamic driving scenarios.

In Part II, the radar raw signals-based method demonstrated the feasibility of per-
forming combined ego-motion estimation and object tracking directly on low-level radar
data. Simulation results under various ego-velocity showed that the method can effec-
tively distinguish between static and moving targets, enabling accurate motion state es-
timation of both the ego-vehicle and surrounding moving objects. However, the method
did not estimate object size or orientation, and was not practical yet for deployment in
real-world scenarios.

In Part III, to bridge the gap toward practical applications, a second method based
on radar point cloud data was proposed. This framework was designed to address
key challenges in dynamic driving environments, particularly the presence of oncoming
large vehicles, which is common in real-life scenarios like highways with platoons of
trucks or urban roads with buses, trucks, and vans. In simulations generated with
a dedicated MATLAB tool, the proposed method outperformed the state-of-the-art
RANSAC-based baseline in terms of ego-motion estimation [15], reducing the APE
metric by 2.00 m/s and the RTE metric by 1.58 m. In terms of multiple extended
object tracking, it also achieved a GOSPA score of 3.70 and provided accurate size
estimates of tracked objects, with RMSEs of 1.04 m (major axis), 0.55 m (minor axis),
and 8.40° (orientation).

Validation on the real-world RadarScenes dataset demonstrated further improve-
ments in real traffic scenarios. On average across seven dynamic driving scenes, the
proposed method reduced APE by 25.9% over the entire scene and by 56.9% in 10-
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second critical segments compared to the RANSAC-based baseline [15]. By leveraging
prior tracking information to filter out moving object detections, the method enhanced
static point selection and improved the robustness of ego-motion estimation.

In summary, both methods demonstrate the effectiveness of radar-only systems for
achieving accurate and robust localization and perception in complex, dynamic traffic
scenarios.

8.2 Future work

Despite the effectiveness of the proposed methods, several limitations remain and
suggest promising directions for future research:

1. Extension to 3D space using 4D imaging radar:
In part III, due to time constraints and the limitation of the RadarScenes dataset
whose radar sensor lacks elevation angle measurements, the proposed method was
only evaluated on the 2D plane. Future work could extend the current pipeline to
3D space, incorporating the position and velocity estimation in the z (elevation)
dimension. Moreover, advanced automotive radar systems such as 4D imaging
radars, which offer higher angular resolution and denser point clouds, are be-
coming increasingly available in industry compared to the radars used to record
RadarScenes [85, 86]. Investigating and evaluating the proposed method on such
datasets with elevation angle information and improved detection quality will be
critical for validating its performance in realistic driving scenarios.

2. Adoption of more advanced tracking algorithms:
In both the raw signal-based and point cloud-based methods, the tracking mod-
ule relies on the computationally efficient but relatively simple data association
algorithm GNN. As discussed in Section 6.2.2, GNN performs adequately in mod-
erately dynamic scenes but may struggle in more complex situations, such as when
multiple targets are spatially close or their trajectories intersect. To overcome this
limitation, future studies could investigate more sophisticated multi-target track-
ing frameworks, particularly those based on RFS theory. Promising candidates
include the PHD filter [55], the PMBM filter [56], and the sum-product algo-
rithm [39]. These approaches are expected to provide improved robustness and
accuracy under challenging tracking situations.

3. Development of more realistic simulators and comprehensive radar
datasets for raw signals:
For radar algorithm research, realistic simulators and comprehensive datasets are
crucial. Currently, most radar datasets only provide point cloud data [1,14]. The
algorithm and data ecosystem based on raw radar signals is still in its early stage.
An important future task is to design simulators for raw radar signals that more
accurately reflect real-world scenarios. Equally important is overcoming storage
limitations and collecting more comprehensive datasets that include raw radar
signals, which can be widely adopted by the academic community.
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4. Design of joint ego-motion estimation and tracking algorithms:
Within each frame, the combined method proposed in this thesis solves the two
tasks sequentially, in which ego-motion is estimated first, followed by tracking.
While this decoupled design simplifies the implementation, it may limit the ex-
ploitation of mutual information between ego-state and dynamic objects. As
suggested in [12, 13], jointly estimating ego-motion and object states in a tightly
coupled framework can improve the overall estimation accuracy and robustness,
especially in highly dynamic environments. Challenges remain in capturing the
motion dynamics of various road participants and effectively utilizing sparse and
noisy radar point clouds. Future research could focus on developing frameworks
to simultaneously infer ego-motion and surrounding object states in a coherent
manner.
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[72] A. S. Rahmathullah, Á. F. Garćıa-Fernández, and L. Svensson, “Generalized op-
timal sub-pattern assignment metric,” in 2017 20th International Conference on
Information Fusion (Fusion). IEEE, 2017, pp. 1–8.
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Abstract — The problem of joint ego-motion estimation and
multiple object tracking (MOT) in automotive multiple-input
and multiple-output (MIMO) radar has been studied. The 3D
ego-motion estimation is performed based on phase changes of
the raw signal caused by relative movement between objects and
the radar, and the ego-motion-induced velocities are compared
with the detected ones to label static vs moving objects. The
static objects are used for ego-motion estimation again to improve
the accuracy, while the moving objects are used for MOT. The
performance of the algorithm has been studied on simulated data
and evaluated using different tracking algorithms, proving the
feasibility of this approach.

Keywords — Ego-motion estimation, Multiple object tracking,
MIMO radar, signal processing.

I. INTRODUCTION

RADAR can provide accurate and direct measurements
of the range, relative velocity, and angle of multiple objects,
as well as a long-range coverage of over 200 meters even
in challenging weather or lighting conditions, outperforming
other sensors, namely, camera and Lidar. Thus, radar has
attracted significant importance for autonomous driving.

To measure the vehicle’s own motion with radar,
namely ‘ego-motion estimation’, state-of-the-art methods
can be mainly divided into detection point cloud-based
[1], [2] and intermediate frequency signal-based approaches
[3], [4]. Performing ego-motion estimation starting from
the lower signal level (i.e., the radar base-band signal
before range-Doppler processing) can be beneficial in
automotive scenarios. Firstly, the ego-motion estimation can be
performed fast, within one frame. Secondly, using algorithms
implemented directly at the signal level, it is easier to combine
them with other high-resolution imaging algorithms.

For self-driving vehicles, the problem of multiple object
tracking (MOT) for moving objects in proximity is a critical
component to ensure situational awareness and safe planning
and control [5]. Various MOT algorithms are used in different
tracking applications, the most popular ones being GNN
(Global Nearest-Neighbor) [6], JPDA (Joint Probabilistic
Data Association) [7], MHT (Multiple Hypotheses Tracking)
[8], as well as deep learning methods [9]. GNN, JPDA,
and MHT are conventionally used in MOT systems. These
methods utilize pruning and merging techniques to manage
the growing complexity of tracking multiple objects and to
ensure computational efficiency.

However, jointly estimating ego-motion and the movement
of objects into a single process can be beneficial for

performance improvement and efficiency. Extensive research
has been conducted on Camera and LIDAR [10], [11].
However, to our knowledge, not much literature is available
on radar data, especially those operating at a raw signal
level in the automotive context. One of the challenges is
that the estimation of the ego-motion is based on a single
frame, while the MOT is done based on the processing of
multiple frames. Meanwhile, ideal ego velocity estimation
considers static objects, while MOT focuses on only moving
objects. This paper addresses this joint problem by tackling the
challenges associated with the proposed processing pipeline.
The proposed pipeline is verified with numerical simulations
and related metrics, showing the feasibility of this approach.

The rest of the paper is organized as follows. In Section
II, the fundamental of ego-motion estimation and MOT is
discussed. The proposed method and evaluation metrics are
given in Section III. The simulation results are provided in
Section IV. Finally, conclusions are drawn in Section V.

II. FUNDAMENTALS

A. Radar-based ego-motion estimation

The ego-motion estimation is implemented based on the
approach in [3], as shown in Fig. 1. The whole process
is divided into two steps, initial estimation and iterative
estimation. For initial estimation, 2D FFT (Fast Fourier
Transform) and 2D CA-CFAR (Cell Averaging Constant False
Alarm Rate) detection are performed for the first group of
chirps, locating the detected objects. Then, an optimization is
performed to find the azimuth and elevation angles of such
objects. The same operations are performed for another chirp
group, and an initial, coarse value of ego velocity is estimated
based on the information of all detected objects, including
static and moving ones, as detailed in [4]. However, the moving
objects introduce extra Doppler components, degrading the
estimation of the ego velocity. Thus, an iterative ego-motion
estimation is proposed by comparing the value of object
velocity derived from the ego-motion estimation with each
detected velocity, thus improving the distinction between static
vs moving objects. The static objects are used in the next step
of ego-motion estimation until a certain threshold is met and
a final value of ego velocity is obtained.

B. Multiple object tracking (MOT)

Given a radar point cloud after detection, the goal of
MOT algorithms is to determine the number of moving objects



Fig. 1. Block diagram of the ego-motion estimation algorithm inspired by
[3].

and their state over time. The state variable of each object
includes its 3D position and velocity. The output is a set of
tracking trajectories for all moving objects, each associated
with a unique object identity. Fig. 2 shows the functional
modules within MOT algorithms. First, clutter removal is
typically implemented to reduce the contributions caused by
static objects, together with a conversion of the detections from
the radar coordinate to the world coordinate. Next, clustering is
performed to group the detections of the same object. For each
time step, gating rejects invalid detections that are too far from
the existing object tracks. Only valid detections enter the data
association module, which assigns detections to each track.
With the prediction step, assigned tracks are updated with the
corresponding detections inside the state estimation module.
Unassigned tracks are kept, only performing prediction but
without updates. Unassigned detections are sent to the track
management module for track initialization. Tracks after state
estimation are also sent to the track management module for
track confirmation and deletion. Finally, the estimated states
for each confirmed object track are provided in the output.

Fig. 2. Block diagram of a typical MOT algorithm

III. PROPOSED METHOD & EVALUATION METRICS

As discussed in Section II, ego-motion estimation considers
only static objects, while MOT considers moving objects.

Thus, there is an advantage in formulating a joint approach
for both problems, using all objects wisely and providing the
trajectory of both the ego-vehicle and the moving objects at
the output.

A. Proposed method

This paper proposes a systematic processing pipeline
to jointly approach ego-motion estimation and MOT in
automotive radar. The proposed pipeline is shown in Fig. 3. An
initial ego-motion estimation is first implemented to estimate
coarse ego velocities for each time step and generate the point
cloud for the MOT algorithm.

Fig. 3. Block diagram of the proposed joint algorithm for ego-motion
estimation & MOT

For this joint formulation where multiple moving & static
objects exist in the environment and tracking moving objects
is also a part of the main task, static objects act as a major
clutter source. To remove them, an object labelling step is used
to distinguish moving objects from static objects, which is also
used in the iterative ego-motion estimation. The decision logic
is to compare the velocity difference between the detected
velocity and the ego-motion-induced velocity with a fixed
threshold, as follows:{

Label moving object if |V − Vinduced| > Threshold
Label static object if |V − Vinduced| ≤ Threshold

(1)
where the ego-motion-induced velocity Vinduced is calculated
by projecting the ego-motion estimation results to the objects’
directions, and V denotes the velocity directly obtained after
Doppler processing. The threshold is chosen as 1.25 m/s after
empirical verifications. Using only the detections of static
objects, an iterative ego-motion estimation is performed to
obtain the final ego-motion estimation results.

After extracting all detections labelled as moving objects,
the clutter caused by static objects is removed. Before
using these point clouds in the MOT algorithm, ego-motion
compensation is needed. Since the point cloud measures
objects in the moving radar coordinates, the detections
corresponding to moving objects should be compensated
for the radar ego-motion to convert the detections into the
world coordinates. In Equation (2), detections after ego-motion
compensation are obtained with known ego-motion estimation
results in [V ego

x , V ego
y , V ego

z ].
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Specifically, each detection consists of the 3D position
[dx, dy, dz], the Doppler velocity vd and the reflected power
po. It is worth noting that object labelling and ego-motion
compensation link jointly the ego-motion estimation algorithm
and MOT. The performance of ego-motion estimation will
directly affect the performance of MOT. In this paper, two
different MOT algorithms are implemented for comparisons:
GNN [6] based on hypotheses pruning, and JPDA [7] based
on hypotheses merging.

B. Evaluation metrics

Two metrics are used to evaluate the performance of
ego-motion estimation algorithms in 3D space: Absolute Pose
Error (APE) and Relative Trajectory Error (RTE).

APE measures the pose difference between the estimation
and the true motion for each frame. As shown in (3), it
calculates the RMSE between the estimated poses and the
actual poses.

ϵAPE =

√√√√ 1

m

m∑

i=1

∥Pest(i)− Pactual(i)∥2 (3)

where m is the total number of frames, Pest and Pactual are
the estimated velocities and actual velocities, respectively. L-2
norm is used to calculate the Euclidean distance.

While APE focuses on the instantaneous velocity
estimation error, RTE measures the long-term localization
error. It measures the relative position error over short
segments. This is the RMSE of the differences between the
relative displacements over a small period in the estimated
trajectory and the actual trajectory. As in Equation (4), Test

and Tactual are the estimated positions and actual positions,
respectively. N is the segment interval, which is set to 10
frames (0.05 seconds) in this study.

ϵRTE =

√√√√ 1

m−N

m−N∑

i=1

(
Test(i+N)− Test(i)

−Tactual(i+N)− Tactual(i)

)2

(4)
To evaluate the MOT results, the Generalized Optimal

Sub-Pattern Assignment (GOSPA) [12] metric is used. A list
of estimated object 3D position vectors is obtained from the
MOT method. Each element represents the tracking position
of one object. The GOSPA metric measures the difference or
error between the output list and the ground truth list, as:

GOSPA(X,Y) =

minγ∈Γ


 ∑

(i,j)∈γ

d(xi, yj)
p
+

cp

2 (|X| − |γ|+ |Y| − |γ|)





1/p

(5)

where X and Y are two data lists; γ is the global association
hypothesis which assigns elements from X to Y . Γ is the
set of all possible global association hypotheses. There are
three hyperparameter choices for the metric: the order of
distance p, the distance metric d(x, y), and the maximum
allowable localization error c. The hyperparameter p is set to
2 to make the localization error component the same as the
RMSE. The Euclidean distance is chosen as distance metric
d. The hyperparameter c determines the trade-off between
the localization error component and the missed detection
and false alarm number component, and can be considered
as the distance where the designer wants to penalize a
false or missing estimate. In automotive vehicle perception
applications, c is commonly set to 10 meters [13].

IV. RESULTS AND DISCUSSION

To validate the performance and show the feasibility of the
proposed method, results based on simulations are presented.

An automotive MIMO radar with eight virtual array
elements for azimuth and eight for elevation estimation
is considered here. The omnidirectional antenna pattern is
considered for the transmitter and receiver. A typical parameter
setting is used for the FMCW waveform, with 77.5 GHz centre
frequency, 20µs pulse repetition time and 1 GHz bandwidth.
The range resolution under this setting is equal to 0.15 m, and
the Doppler resolution is 0.378 m/s.

The simulated scenario consists of a car equipped with
a side-looking radar moving at a constant speed, alongside
multiple static and moving objects. The ego-vehicle is assumed
to travel forward at a constant velocity of 12 m/s (43.2 km/h),
with zero velocity in both the cross-forward and elevation
directions, an assumption that aligns with real-world driving
conditions on well-maintained roads. Within the radar’s field
of view, 15 static objects and 3 moving objects are generated.
Each object is modeled as a collection of scatterers randomly
distributed in 3D space. The range of these scatterers is
selected from [0, 35] meters, the azimuth angle from [−60, 60]
degrees, and the elevation angle from [−30, 30] degrees.
The amplitude of all scatterers is drawn from the uniform
distribution αo ∼ U(0, 300). According to the Swerling Model
I the amplitude can be seen as constant during one coherent
processing interval. The scatterers are also assumed to be
isotropic and provide constant amplitude and phase during
the processing period. The static objects in this scenario
represent common roadside elements such as trees, traffic
signs, or parked vehicles. Additionally, three moving objects
are simulated, representing a car, a bicycle, and a pedestrian.
These objects move at constant speeds of 9.11 m/s (33 km/h),
4.12 m/s (15 km/h), and 1.41 m/s (5 km/h), respectively. Their
trajectories are designed to capture diverse interactions with
the ego-vehicle: the car moves in a nearly parallel direction,
the bicycle approaches from the opposite direction, and the
pedestrian crosses perpendicularly to the vehicle’s path.

To evaluate the precision and robustness of the
proposed joint algorithm, simulations were performed in four
independent scenarios at SNR levels ranging from +20 dB



to -5 dB, and the results were averaged at each level. In
each scenario, the positions of static and moving objects
were randomly generated and each simulation lasted 2.56
s (equivalent to 500 consecutive frames). The quantitative
performance metrics defined in Section III-B for different SNR
levels are shown in Table 1. With the proposed joint method,
both the estimation of ego-motion and the tracking of multiple
objects can perform a decent estimation even under high noise
condition, i.e., SNR = 0 dB. It can be observed that while both
the estimation of ego-motion and the performance of MOT
decrease with decreasing SNR as expected, the estimation
of ego-motion is more stable compared with MOT. The
GNN algorithm outperforms JPDA in high-SNR scenarios, but
performs worse in low-SNR scenarios. Since the ego-motion
estimation remains consistent over consecutive frames and the
clutter removal step effectively identifies most static objects,
the data association problem is simplified, and both GNN and
JPDA MOT algorithms yield good performance.

Table 1. Performance evaluation with different SNR in 3D space

SNR (dB) APE RTE Mean GOSPA Mean GOSPA
(m/s) (m) (GNN) (JPDA)

+20 0.3058 0.0090 2.868 2.995
+15 0.3204 0.0094 3.239 3.681
+10 0.3349 0.0102 3.413 3.283
+5 0.3557 0.0102 3.765 4.698
0 0.4740 0.0123 4.582 5.024
-5 0.8418 0.0213 15.474 13.303

For visual evaluation, the estimated trajectories for the
ego-vehicle and moving objects from an example scenario at
the 20 dB SNR level are shown in Fig. 4. The figure only
displays results in the X and Y dimensions for simplicity
in visualization, while all quantitative metrics are computed
in the full 3D space. Since the GNN and JPDA algorithms
provide similar results, only the results of GNN are visualized
here. One can observe the trajectories of the ego-vehicle and
three moving objects are all accurately estimated, with small
deviations from the ground truth and no false tracks.

Fig. 4. Ground truth, detections and estimated trajectories for the ego-vehicle
and moving objects from an example scenario at the +20 dB SNR level

V. CONCLUSION

A processing pipeline is proposed to solve the problem
of joint ego-motion estimation and MOT in automotive
MIMO radar. This pipeline links ego-motion estimation
with MOT by labeling static and moving objects to
perform ego-motion compensation. Static objects are used
for ego-motion estimation, while moving ones are used for
MOT algorithms. The performance of the proposed approach
has been studied in simulations and the evaluation has been
implemented on GNN and JPDA algorithms for feasibility.
Promising results are shown for the feasibility of the proposed
method.More detailed results can be found in [14]. Future work
will involve adopting more realistic motion models, as well
as expanding the pipeline to support multiple extended object
tracking.
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[13] Á. F. Garcı́a-Fernández, J. L. Williams, K. Granström, and
L. Svensson, “Poisson multi-bernoulli mixture filter: Direct derivation
and implementation,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 54, no. 4, pp. 1883–1901, 2018.

[14] T. Wang, “Combined ego-motion estimation and multiple extended
object tracking with automotive radar,” Master’s thesis, Delft University
of Technology, 2025.


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	I Introduction and Related Work
	Introduction
	Background and motivation
	Problem description
	Thesis contributions
	Thesis outline

	Literature Review
	Ego-motion estimation with automotive radar
	Scan-matching methods
	Instantaneous methods

	Radar-based Multiple Extended Object Tracking (MEOT)
	Combined ego-motion estimation and MEOT approaches
	Summary of research gaps


	II Raw Signal based Combined Method
	Methodology
	Problem formulation
	Algorithm overview
	Initialization phase
	Combined estimation phase

	Signal preprocessing
	Tracking-aided ego-motion estimation
	Tracking-aided segmentation
	Iterative ego-motion estimation
	Velocity transformation and state update

	Ego-motion compensation
	Multiple object tracking
	Clustering
	State estimation: Prediction and Update
	Gating and data association
	Tracking management

	Performance metrics
	Ego-motion estimation metrics
	Multiple object tracking metrics


	Simulation Results
	Simulation Setup
	Results and Discussions


	III Point Cloud based Combined Method
	Methodology
	Problem formulation
	Algorithm overview
	Tracking-aided ego-motion estimation
	Tracking-aided segmentation: adaptive gating
	Ego-motion estimation with RANSAC

	Multiple extended object tracking

	Simulation Results
	Simulation Setup and Performance Metrics
	Scene 1: A Single Truck
	Ego-motion estimation
	Multiple extended object tracking

	Scene 2: Multiple Trucks
	Ego-motion estimation
	Multiple extended object tracking

	Evaluation on More Scenes

	Real Dataset Results
	RadarScenes Dataset
	Ego-motion Estimation


	IV Closing Remarks
	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Appendix


