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Abstract

In recent years, large-scale systems have become mainstream at a very high pace.
Typical examples of large-scale systems are MANETSs, Wireless Sensor Networks,
Pervasive Computing, Swarm Robotics, etc. These systems distinguish them-
selves by the large number of devices they embody, and emergent behaviors they
exhibit: Behavior that is globally perceivable, but that is made up of only local
interactions of the system elements.

Because of the vast amount of devices that make up a large-scale system, it is
infeasible to exhibit centralized control. As an alternative, we need to leverage
distributed algorithms to create and control emergent behaviors for the global
goal we want the system to exhibit.

Since there is no linear mapping from local interactions to global behavior,
we present a global-to-local compiler to automatically generate these distributed
algorithms for large-scale systems. By using Genetic Programming to combine
already known building blocks from other distributed algorithms, we provide a
high-level, goal-driven framework for algorithm designers to design distributed
algorithms.

Evaluation shows that the framework we present is indeed a valuable tool for
designing distributed algorithms for large-scale systems. Improving the develop-
ment speed, allowing the designer to be agnostic to the underlying details, but
nevertheless providing a flexible interface, to acquire the algorithm desired.
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CHAPTER 1

Introduction

The current technological advances have lead to the creation of engineered com-
puting systems characterized by high complexity in terms of software [32], sys-
tem engineering [[14] and expected quality of service [13]. Most of these systems
are made out of a large number of structural elements that have complex depen-
dencies and emergent properties. Some of them exhibit a tight-coupling between
their structural elements, that are split across a large number of layers [10], while
others are less hierarchical while being topologically distributed over large phys-
ical spaces [[60]].

The scale of the computing systems, measured in terms of the number of con-
stituent elements, the complexity of the software stack required to control them,
the tolerance to failures, etc., require novel programming paradigms. [3]] Besides
that, a well-known property of large-scale systems is that above a certain size,
global properties occur somewhat unexpectedly out of simple, local interactions.

In most cases emergent behavior has mainly negative effects [33]]. In some other
cases, there are positive properties that can be put to good use, like synchro-
nization algorithms [52]], clustering schemes [43]], distributed feedback mecha-
nisms [9] etc. Looking at these properties from a constructive point of view,
there is a high interest in programming in terms of emergent behavior, using gen-
erative local behaviors (both computation-wise as well as communication-wise),
since such programs scale-up very well for large systems [2]].

Since large-scale systems are vast networks of devices, controlling all of them
centrally is simply infeasible. The classic way to write a program for such a
system is to manually define local interactions. Current distributed algorithms
that produce global (aggregate) behaviors like synchronization, clustering, and
leader election, were created by algorithm designers in a bottom-up manner by
testing various local behaviors that produce interesting global patterns. Many
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algorithm designers however, are interested in aggregate behaviors and cannot
easily decompose them into local interaction.

We propose a so-called “Global-to-local compiler” [59]] to automatically gene-
rate distributed algorithms by combining local (inter)actions. These local interac-
tions can be a pair-wise exchange of state information in one-hop neighborhoods
using gossiping, or an update of the local state based on neighboring informa-
tion. Since there is no linear mapping between the two (global and local) levels,
this has proven to be a very complex problem [38]. Previous attempts to create
a global-to-local compiler, like BehaviorSearch[48] or ABM[31]], have not suc-
ceeded in offering a high-level, and flexible interface to the user, and therefore
they have not succeeded in becoming popular tools. Our approach to solve the
problem at hand is to use Genetic Programming in order to discover algorithms
that fulfill the desired global behavior. A large number of combinations of lo-
cal behaviors is evaluated in order to determine how well they map onto this
behavior.

What differentiates this project from other projects?

e It focuses on the world of large-scale systems. Since these systems have
shown to behave differently from other networked systems, it is important
to incorporate these differences in the design phase of algorithms. Differ-
ences include emergence properties, scalability issues, restricted commu-
nication, and geographical relevance for some problems.

e The project takes a holistic, top-down approach to designing complex
global behaviors; It tries to come up with a solution for the full problem, so
the user does not have to break up the problem into subproblems.

e The algorithm designer is agnostic on how the building blocks he provides
are put together to generate the algorithm.

e It uses a generic agent-based system simulator that is very flexible; It’s not
bound to a certain simulation scenario or network topology.

o We test the project with the discovery of already known large-scale dis-
tributed algorithms, to show that our approach is well equipped to speed
up the discovery of these kinds of algorithms.

To achieve our goals, we make sure that our global-to-local compiler tailors
programs to be executed on the target systems(i.e. not use functionalities the
systems are not capable of). Envisioned platforms are embedded networked plat-
forms like Wireless Sensor Networks, MANETSs, swarm robotics, sensors, the in-
ternet of things, and pervasive computing. Offering algorithm designers a way
to think in global behaviors for these kinds of systems will speed up the im-
plementation tremendously. This opens up the possibility of easier high-level
programming of such systems.
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1.1 Problem Statement

The main goal for the thesis is to start from a description of the global behavior
of the large-scale system, and automatically discover local rules that compose it.
The thesis answers the following research questions:

1. What Genetic Programming techniques can we use to invent algorithms? What
are the drawbacks? Can we solve these? We take a look at the current state
of Genetic Programming techniques, consider their advantages and disad-
vantages, and pick a technique to tailor to our needs. Then we build the
system and analyze its performance. Based on these findings we come
up with a number of enhancements in order to find better solutions, in-
cluding pattern detection and protection of good algorithm structures, and
syntactic-aware genetic operators.

2. How can we build a Global-to-Local compiler for Large-Scale Systems using
Genetic Programming? We investigate in already known large-scale dis-
tributed algorithms, and define a number of rules for what this class of
algorithms can and cannot do, and how we can use that knowledge in Ge-
netic Programming.

1.2 Organization

This thesis is organized as follows. In Chapter 2| we look at some background
information like the multiple subjects involved, related projects, and auxiliary
thoughts on this project. Next, in Chapter [3) we look at Genetic Programming
as a technique for discovering programs. Then, in Chapter [4] we look at the en-
hancements we added to the Genetic Programming process in order to increase
the effectiveness of the algorithm discovery process. Subsequently, in Chapter
we look at large-scale systems to define what they are, and how that influences
the discovery of algorithms. In Chapter [6] we look at the implementation of the
MetaCompiler, our framework for algorithm discovery for large-scale systems.
In Chapter [7] we look at the experimental results, and see if our enhancements
have had any effect. Chapter [§] contains a discussion on the previous chapters.
In Chapter[9] we conclude the thesis and look at possibilities for future improve-
ment.
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CHAPTER 2

Background

This chapter serves to give background information information about the Meta-
Compiler, which is the name for our global-to-local compiler, and subjects related

(see Figure[2.1).

2.1 History

The MetaCompiler is part of a bigger project called the Snowdrop project (http:
//code.google.com/p/snowdrop/). The project was started by Stefan Dulman
and Andrei Pruteanu in order to construct a set of well connected MSc projects
in the academic year of 2011-2012. Its main goal is to ease the development of
large-scale networks, improving both the ease of software development for such
systems, as well providing a hardware platform to run the software on. Typical
large-scale systems we aim for are embedded networked systems, like robotics,
sensors, the internet of things, or pervasive computing.

Steffan Karger, a MSc student in Electrical Engineering, has been working on
software for a hardware platform that enables programs written in the MIT devel-
oped Proto language, to be able to run on a hardware platform. Agostino di Figlia
has been working on an interface for designers to program distributed systems,
and translate their programs to eLua, a version of Lua that runs on embedded
devices. Another outcome of his project is a so-called state chart compiler that
allows a designer to think in program states for each system rather than in low-
level programming. Both projects aim to ease the process of letting the developer
develop programs in a bottom-up approach.

The Snowdrop project acknowledges that the projects mentioned above are
necessary programming methodologies for large-scale systems, but it also reco-
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Figure 2.2: protoSPACE 3.0

gnizes that there is still a big gap between the knowledge of non-IT users, the
usual designers of systems (architects), and the necessary software development
skills. One part of the gap is the obvious lack of programming skills, which we
would like to solve by offering a more visual approach and other simple interfaces
that designers can more easily understand and leverage. The other part of the gap
resides in the observation that people, when thinking of systems, like to think of
the big picture rather than the cogs that make it run. This contradicts the fact that
when we want to write a program for such a network of agents, we have to make
the leap to programming this local behavior. The Snowdrop project tries to close
this gap with a framework called the MetaCompiler. The MetaCompiler tries to
come up with a program consisting of local actions and rules for all separate
elements of the network, that achieve the global goal set by the designer of a
system.

The MetaCompiler uses building blocks that are either provided by the user or
are readily defined in default libraries. Genetic Programming is used to combine
these building blocks, and assess how good the programs are. Because of the vast
amount of combinations of building blocks, and the fact that every generated
program has to be thoroughly tested, this takes up a large amount of computing
time.

In order to reduce this computing time, another subproject project aims to
speed up the simulations. Daniel Turi, another MSc student in our group, has
worked on developing a way to run NetLogo programs on the GPU architecture
CUDA by Nvidia, rather than the default way of running simulations on the CPU.
Because a GPU has many more separate cores that can run programs in parallel
than a CPU, this model should be a more natural fit to all the agents running their
programs in parallel, each maintaining their own state.
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Figure 2.3: protoDECK

One of the envisioned user-communities for such systems are designers of in-
teractive buildings. First and foremost is alive and keeps on growing. Over the
last couple of years, there is an interest from architects and designers to embed
smart components into buildings, but the knowledge about technology has been
a bottleneck for a lot of projects, so there is the incentive to help bridging this
gap. Secondly, there is a lot of feedback in the creativity-process. In our experi-
ence, designers are always pushing or asking for new features once you expose
them to the current features, so this gives a really natural way of seeing whether
the platform we are building is useful, and where it lacks functionality.

As a test case for the Snowdrop project, we have been working together with
the faculty of Architecture from the TU Delft. They have instated a lecture room
that serves to experiment with interactive environments. ProtoSPACE 3.0 (Fig-
ure , as the lecture room is called, contains beamers, a complex sound sys-
tem, and several interactive objects. All of which can be used to immerse the
user into a interactive experience. Serving as a pilot, the Snowdrop project got
involved[20] with the distributed embedded systems part of the protoSPACE that
is named protoDECK (Figure . ProtoDECK is an interactive floor system, con-
sisting of 189 tiles, each embedded with a simple processing unit, a pressure sen-
sor for input purposes, and a light for feedback purposes.

2.2 Related work

Since this project combines a few fields of Computer Science, there related work
is also spread over a number of fields. Here we will look at a brief overview
of the work related to this thesis. To start, we would like to mention that this
thesis is in many ways an extension on the previously published paper[51] for
the GECCO’12 EcoMASS workshop.
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2.2.1 Genetic Programming and Grammatical Evolution

In this project we use a technique called Genetic Programming[22] [23] 24] as
introduced by Koza in 1990. We have considered different versions of GP, de-
fault tree GP by Koza, Strongly-Typed Tree GP[34] by Montana, and Context-Free
Grammar GP by Whigham([53]. Eventually we chose Grammatical Evolution[6]
by Ryan, Collins and O’Neill. Later on, when we wanted to improve the results,
we have also looked at Tree-adjunct grammatical evolution[36] by Murphey et
al., mGrammatical Evolution[39] by O’Neill et al. and many other alternatives.
For genetic operators, we looked through much research, but 2 important papers
that provided us with the LHS Replacement Crossover[17, [18]. The distributed
dispatcher is probably mostly inspired by botnet articles in 2600 magazine[54]].
The software we used to build the server and clients IRC bots is [37].

In searching for a good software framework to help us with the Genetic Pro-
gramming implementation, we have considered a number of alternatives. Some
alternatives were ECJ[26]], JGAP[29]], Watchmaker[12]]. Eventually we chose EpochX[41]].
All of these are Java frameworks implementing at least Genetic Programming, for
more information please refer to Section|[6.2}

2.2.2 Pattern Detection

For implementing a pattern detection mechanism on the programs our frame-
work generated, we took inspiration from existing mechanisms. Most popularly,

it has been covered in Automatically Defined Functions[24]] by Koza. Other ap-
proaches are module acquisition (MA)[1] by Angeline, adaptive representation
(AR)[46] by Rosca and Ballard, and adaptive representation through learning(ARL)[4]],
also by Rosca and Ballard. Also we looked at tools like diff|28] to determine the
differences and similarities in the training set.

2.2.3 Distributed Algorithms

For simulating distributed algorithms we use an agent-based simulator called
NetLogo[[49]. Another simulator used in the Snowdrop project is Proto[[7].

For inspiration on what distributed algorithms look like, we have used a num-
ber of already existing examples. The Firefly algorithm[52]] by Werner-Allen et
al., aims to synchronize distributed systems much in the same way as real fireflies
synchronize the illumination of their backsides. Ant-foraging[[42] by Panait and
Luke, simulates the gathering of food and spreading pheromones to find food
by ants. Leader election[15] tries to elect one leader in an otherwise uniform
ring-shaped network. Failure detection[45] by Pruteanu et al., tries to detect the
percentage of communication packages that get dropped during transmission be-
tween nodes. Churn detection[44] by Pruteanu et al., tries to measure the amount
of churn in a network.
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2.2.4 Global to local compilation

There have been a number of attempts in the last couple of years to build a global-
to-local compiler. An interesting approach called ABM[31]] was done by Miner.
This system tries to predict the parameters a system must have to fulfill some
behavior provided by the user. It does this by doing simulations for a number of
combinations of parameter settings, and tries to interpolate the behavior happen-
ing for the other parameter settings. The simulations are referred to as forward
mapping, or bottom-up approach, and the interpolations are called reverse map-
ping, or top-down approach. The difference with our system is that it is param-
eter based, and does not allow freedom in the program structure of the agents.
BehaviorSpace, a plugin for NetLogo[50]], also uses this bottom-up approach and
allows users to record system properties while running the provided model many
times for different parameter settings. BehaviorSearch[48], also a NetLogo plu-
gin, allows the user to provide a goal for the system properties, much like a fitness
function in Genetic Algorithms or Genetic Programming. The difference with our
approach is that the models do not change and hence there is again only param-
eter variation possible to get the desired result. A system proposed by Luke et
al.[27] proposes also a bottom-up approach, but it is different in the sense that
it measures the parameter space more concisely where the programs are rapidly
changing behavior, in order to better see the influence of different parameters.
Notice that all of these approaches are changing the parameters, whereas we are
changing the program structure to achieve the desired behavior of a system.
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term

explanation

context-free grammar

(Language Design) Defines the valid structure of a
language. A computer program that complies with
the grammar is a syntactically correct program.

terminal

(Language Design) One of the two structural ele-
ments of a context free grammar. A terminal is a
final and concrete part of a program.

non-terminal

(Language Design) The other of the two struc-
tural elements of a context free grammar. A non-
terminal is a structural element in a program, that
has to be filled with one or more terminals to be
concrete.

semantics

(Program Interpretation) High level interpretation
of meaningfulness of a program. What the program
actually does and why it works.

syntax

(Program Interpretation) Refers to what we can ex-
press in a language, how we write down a program.

encoding

(Genetic Programming) Refers to how a program is
encoded in Genetic Programming. What a program
looks like before it is converted into a syntactical
representation.

phenotype

(Genetic Programming) Refers to the program in its
syntactical form (see syntax), the outcome version
of an individual that is tested for fitness.

genotype

(Genetic Programming) Refers to the program in
its encoded state (see encoding), this is the ver-
sion of an individual that lives in the Genetic Pro-
gramming process, and goes through mutation and
crossover processes to evolve.

generative grammar

(Genetic Programming) A grammar that is used to
transfer an encoded program (see encoding) into a
syntactical representation (see syntax) of that pro-
gram.

parsing grammar

(Language design) A grammar that is used to con-
vert a (generated) program into a representation
meaningful for the computer (parse-tree). Mostly
used to interpret programs or translate them into
runnable code.

GP library

(Genetic Programming) A software library that
contains a full implementation of the Genetic Pro-
gramming process. We have built our framework
upon this library (EpochX).

Lexicon for Chapter




CHAPTER 3

Genetic Programming

Genetic Programming is a technique that comes from the family of Evolutionary
Computation. In Section[3.1]} we look briefly at this family. In Section[3.2] Genetic
Programming is fully described, and we explain why we think this approach is
suitable for achieving distributed algorithm discovery. The Genetic Programming
flavor we use for the MetaCompiler is called Grammatical Evolution, which is de-
scribed in Section 3.3} Of course there are also some challenges in using Genetic
Programming, which are described in Section 3.4]

3.1 Evolutionary Computation and Evolutionary Al-
gorithms

Evolutionary Computation (EC) is a field of Computer Science that takes inspira-
tion from evolutionary strategies as posed by Charles Darwin in On the Origin of
Species: By Means of Natural Selection or the Preservation of Favoured Races in the
Struggle for Life[11]] [19]. These strategies are used to search for solutions to prob-
lems that are often hard to solve but possible to approximate. One requirement
of EC is that individuals (a possible solution generated by EC) can be assessed on
how good they solve the problem at hand. This property is the so-called fitness
of an individual.

Evolutionary algorithms (EA) are a prominent subfield of the of Evolutionary
Computation. Algorithms in EA use the mechanisms of reproduction, crossover,
mutation and selection to achieve evolution of individuals over multiple genera-
tions. See Figure [3.1]for a typical EA lifecycle.

The biggest difference in variations in EA is usually what an individual en-
codes, and hence what is evolved over the generations. This can range from pa-

13
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report best
fitness for
generation

report best
fitness for run

Figure 3.1: A typical Evolutionary Algorithms / Genetic Programming lifecycle
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rameters used for the solution to a problem in Genetic Algorithms, to the encod-
ing of a finite state machine in Evolutionary Programming, to a whole computer
program in Genetic Programming.

3.2 Genetic Programming

The method we use for algorithm discovery is called Genetic Programming (GP)[[22]] (23] [[24]].
In GP, computer programs are evolved by mutation and crossover in order to find
a program that fulfills a user defined task. We have chosen this method from the
family of EC and EA, because it allows a very big freedom in solution represen-
tation. Because we have little or nu clue what a typical solution may look like for
any problem specified by the user, and every problem may need a very differently
structured solution, we need this freedom to support the domain of problems we
want to cover with our framework.
In Table the terms used in GP are briefly explained for use further in the
thesis.

3.2.1 Initialization of a population

In the beginning of the Genetic Programming lifecycle (Figure 3.1), the GP library
has to come up with an initial population of individuals. In the other parts of
the lifecycle, this happens by evolving the previous population, but since this is
the beginning, there is no previous population yet. This problem is solved by a
process called initialization. Initialization comes up with a set of individuals to
serve as the current population. The way in which these programs are generated
is very dependent on the specific type of Genetic Programming at hand, but there
are a few requirements for a good initialization process.

The first requirement is that the programs it generates should not be useless.
For example, if the process would generate programs that are syntactically in-
correct, these programs are useless, and the Genetic Programming process will
suffer from this lack of diversity (it can only use the good programs), in later
generations.

The second requirement is that the initialization process should generate a
diverse set of programs. The diversity of programs in future generations, and
consequently the fitness of the final solution, is partly dependent on the diversity
of the first generation.

Since computer programs are often expressible in trees, a common way to sat-
isfy both requirements is to impose requirements on the generated trees. By
generating trees of which all child and parent nodes are compatible with each
other, the syntactical correctness requirement is often already granted. To fulfill
the diversity requirement, a common strategy is to impose depth requirements
on the generated trees. Two strategies are full, which generates a so-called “full
bushy” tree, of which all leaf-nodes (the ultimate child nodes) are at the depth
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term

explanation

fitness function

A function returning a numerical value that describes how well
a individual fulfills its goal. In our case, the lower the value, the
better the goal is fulfilled (implementation dependent), with the
value 0 denoting that a perfect solution was found.

individual

A single computer program

population

The set of individuals during one generation

generation

One of the iteration units in a Genetic Programming run, each
having their own population

run

A single unit containing the whole Genetic Programming life-
cycle, the run ends when the number of generations reaches its
maximum, or whenever the perfect solution is found

crossover

A method to create 2 new individuals from 2 “parent” individu-
als by interchanging parts between their individuals. Crossover
serves to combine good properties of individualss (Figure [3.4).
Crossover is usually applied in 90% of the productions of a new
individual.

mutation

A method to randomly change a part of an individual, this can
range from changing the entire individual to changing one of
its very specific aspects. Mutation serves in two ways, to refine
existing individuals (Figure[3.2), and to find completely or partly
novel individuals (Figure[3.3). Mutation is usually applied in 10%
of the productions of a new individual.

reproduction

Reproduction makes a copy of the individual without permuta-
tions, and transfers it to the next generation. Reproduction is
usually ignored as an option in GP.

selection

The process of picking out candidates for muta-
tion/crossover/reproduction. Common ways to do selection
are: Tournament selection, where for each selection, a number
of randomly picked individuals compete and the one with the
best fitness wins. Roulette wheel selection, where the chance of
being picked is related to the fitness of an individual, increasing

the odds of good individuals.

Table 3.1: Terms generally used in Genetic Programming
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specified, and grow, which only requires minimally one node to be at the speci-
fied depth. These two strategies are combined in a popular initialization method
called the ramped half-and-half initializer[47]. This initializer tries to generate
an equal amount of programs for each possible tree depth between the minimum
and maximum depth, with as many programs derived by the full as the grow
method for each depth. This method gives a relatively diverse initial population,
and we have chosen it to be the default initialization method for our framework.
In Section[4.1} we talk more about the influence of initialization.

3.2.2 Genetic operators: Crossover, Mutation, Reproduction, and
Selection

For the GP process to be able to evolve from one population to a new one, likely
a better one, there are some mechanisms in place. Crossover, mutation, and re-
production all use a mechanism called selection in order to pick good individuals
from the current population. Selection enforces the Survival of the fittest princi-
ple, by decreasing the likelihood that descendants of weak individuals will end up
in the next population. Selection is most commonly done through Tournament
Selection, in which a few individuals are randomly selected, and the one with
the best fitness wins, or Roulette Wheel Selection, where individuals are selected
from the whole population, but their chance of selection is dependent on their
fitness.

The first, and most simple way to create a new individual for the new popu-
lation is reproduction, which copies an individual, picked by selection, from one
generation to the next generation. Reproduction is usually not used in the GP
process.

The seconds mechanism is mutation, which transforms parts of programs ran-
domly to achieve two goals. One is coming up with novel (sub)programs (Fig-
ure 3.3), and the other one is to refine small parts of programs (Figure [3.2). Mu-
tation is done by selecting an individual from the current population through
selection, and modifying its genetic structure such that a new individual is de-
rived. The similarity of the genetic structure of the new and old individual can
be very high or very low, depending on which part was mutated.

The third mechanism is crossover (Figure [3.4), which should combine the ge-
netic structure of 2 parents acquired through selection in order to generate 2 new
children for the new population. This serves to combine the good properties of
2 individuals in order to create individuals that contain the good properties of
both, and thus have a better fitness.

3.3 Grammatical Evolution

One thing we can say about the definition of GP is that it is general. For example,
it leaves it entirely up to the programmer/scientist how the encoding of programs



18 AvuTtoMATIC DISCOVERY OF DISTRIBUTED ALGORITHMS FOR LARGE-SCALE SYSTEMS

parent

conditional statement

condition | actions I

| action 1 I action 2

| child I

conditional statement

condition actions

I expression I |action1 I laction2|

Figure 3.2: Small mutation of a program



Chapter 3. Genetic Programming 19

conditional statement

condition

e

e

I <

child I

conditional statement

condition conditional statement

w w w ! condition I actions
u l e l w I action 3 I I action 4 I

Figure 3.3: Mutation on a subtree of a program




20 AvutomATic DISCOVERY OF DISTRIBUTED ALGORITHMS FOR LARGE-SCALE SYSTEMS

arent 1

conditional statement

t--—a
>

= 7
1~ N 7
1
1

!

\ r/
\ ]
condition |/ | actions AN | action ction 4
AN
1

Nem—m———

i

condition ction:

-
-
-
<

\ l action 1 I | action 2 l
\\
\

Al
1
I
I
I
I
1
1
1
1

' child 1 l

conditional statement

tion. l iiniitiinal ititimint '

| condition I i W W | iiii'iii I actions
I ﬁtiini l ' iiiin 4 ' action 1 ' action 2 '

Figure 3.4: Crossover

A

H



Chapter 3. Genetic Programming 21

should be. Related to that, typical operations like crossover and mutation are also
left up to the programmer/scientist to figure out.

There are many encodings possible for Genetic Programming. The GP library
we use comes with 3 representations by default:

o Strongly-Typed Tree GP[34] expands on the default program-tree imple-
mentation proposed by Koza in the original Genetic Programming publication[22]].
The original tree was only allowed to use one data-type for all nodes in the
tree, to ensure having compatible input and output types for all nodes in
the program-tree. This property is called closure, which states that any
non-terminal should be able to handle as an argument any data type and
value returned from a terminal or non-terminal[34]]. In practice, this clo-
sure property was often satisfied by letting a program gracefully fail when-
ever types of parents and their children were not compatible, returning a
bad fitness value. However, this is bad for the search process because a lot
of programs will already fail on a syntactical level, before they are evalu-
ated semantically. STGP fixes this by adding types to all nodes, and spec-
ifying the types their children should have. In this way, compatibility of
tree-nodes can be checked whenever the tree is modified, enabling trees
that are always syntactically valid before evaluating them, and thus judg-
ing them purely on their semantic qualities. The GP framework lets the
developer encode every different node type and its functionality in a new
Java class, and forces the developer to specify the types of the child nodes.

o Context-Free Grammar GP is a technique published by Whigham[53]. CFG-
GP uses a context-free grammar to explore the program space. It uses the
grammar to generate parse trees and later on guide their adaptation. CFG-
GP evolves the grammar during a run to steer the discovery of new parse
trees. This effectively also takes care of the closure property, because gram-
mars are syntactically valid by nature because they define the syntax. The
GP framework allows the grammar to be provided as a Java string. Func-
tionality is not included in this string, and thus there is usually an external
parser needed to evaluate the programs.

e Grammatical Evolution, a widely used[25] encoding method in GP, intro-
duced by O’Neill and Ryan in [6]], is similar to CFG-GP, except for 2 aspects.
GE does not create or evolve the parse-tree directly, but rather works on a
sequence of integers that encode the parse-tree. To read more about this
separation, read Section The other difference between GE and CFG-
GP is that GE does not evolve the grammar during the GP process.

Next to these three already implemented encodings, there is a multitude of
alternatives. These alternatives are usually developed by identifying a prob-
lem with an existing encoding and improving upon that. A few examples are
TAGE[36], which replaces Context-free grammars in Grammatical Evolution by
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the more advanced Tree-adjunct grammars, because it recognizes that type of
grammar could help guide the search process. Christiansen Grammar Evolution
(CGE)[40] replaces the context-free grammar, by a so-called Christiansen Gram-
mar, which adds semantic to syntactic rules in the grammar. The authors of
Linear Genetic Programming (LGP)[8]] recognize that it is not always desired to
have a tree-structured program like the encodings above. Therefore they came up
with a encoding that creates linear programs, much like a sequence of processor
instructions, to be able to generate code that runs directly on a processor.

3.3.1 Why Grammatical Evolution?

For a few reasons we have picked GE to be the encoding of individuals in our
framework. Looking through literature, we have not found a widely spread tech-
nique that has been picked up by the community as the definitive replacement for
GE. As mentioned above, the alternative encodings usually deal with a problem
in one of the existing representations, and improve upon that problem. However,
for us it was not yet clear which problems were going to occur, so we decided GE
would be a good option for the first version of our framework. Another reason
that we picked GE is that it is easy. The way in which programs are encoded into
GP, and translated into programs (see Section is straightforward, and the
result is readable source code.

Another advantage of GE is that, through adjusting the grammar, we can adjust
the likelihood a programming structure ending up in a program. We have used
this technique a couple of times to balance the chances of discovery of program
structures. There are two ways in which it is possible is to adjust the likelihood
of a terminal or non-terminal to be picked. One way is to try to eliminate the
number of non-terminals it takes to get to the (non-)terminal you want to pro-
mote, however if that is done for too many (non-)terminals the grammar will
eventually get a very flat structure, in which it the odds of (non-)terminals being
picked are again equalized. Another way to promote a (non-)terminal is to use
redundancy in the grammar. By referring to the same (non-)terminal in different
parts of the grammar, the odds of it being used in a program is increased. This
is an advantage of separating the generative grammar and the parser grammar,
since in a parsing grammar, every (non-)terminal is usually only defined once to
prevent code duplication and parsing ambiguity.

During the development process, we found the readability of the grammar a
nice feature to overview the way in which the GP library builds up programs. A
couple of times it has helped us to debug the generative process, and in combi-
nation with adjusting the grammar as described above, to cut corners for discov-
ering certain language constructs. We think this kind of insight lacks in a purely
programming oriented approach like Strongly-Typed Tree GP.
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3.3.2 Encoding in GE

In this technique, programs are encoded through a given BNF grammar, and a
sequence of integers denoting choices in the grammar, starting from the start
rule.

If we have the following grammar:

<program> := <expr>
<expr> =<a> | <b>
<a> =c | d
<b> = e | <expr>

And a sequence of integers:
15 67 54 30
Then this will encode a program as follows:

<program> 15 % 1 == 0 == <expr>
<expr> 67 % 2 == 1 == <b>
<b> 54 } 2 == 0 ==

So the combination of grammar and integer sequence effectively encodes the
program £, leaving the value 30 unused.

3.3.3 Genetic Operators in GE

The example above plainly describes how a program is encoded in GE, but says
nothing about how we can evolve programs using that notation. To actually
evolve programs, we have to look at what the MetaCompiler can do to change
programs (mutation), and interchange parts between programs (crossover), doing
that in GE is an actual challenge. We looked in the literature for more informa-
tion.

For mutation, the default operators for GE work on the sequences of integers
that, in combination with a grammar, encode a certain program. In the first de-
fault mutation operator, single point mutation, a random position in the current
integer sequence is picked, and the value on that position is exchanged with a
random other value. Note that it might be possible that this value in the integer
sequence is not part of the program generation process, because not all integers
are always used (as can be seen in the example above). In the other default mu-
tation operator for GE, point mutation, each of the codons can be changed to a
random other value with probability pointProbability.

For both of those methods, it can easily be seen that even though the conse-
quences for the integer sequence are small to moderate (if pointProbability is
small), the ramifications for program creation based on grammars are a lot bigger.
This is especially true because a change in one value can carry through the rest
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parent 1 parent 2
15 /67\ 54 20
<program> | | <expr> | | <b> | <program> | | <expr>

A\
<expr> | | <b> | e <expr> | | <a> | c

child 1 child 2
<program> <expr> <expr> | <program> <expr>

A 47 A4 A4 A A4

| <expr> | | <b> | | <expr> | | <a> | d | <expr> | | <a> | c

Figure 3.5: Standard one-point crossover in Grammatical Evolution

of the program creation. In other words, the integer values represent choices be-
tween different alternatives in one part of the program, but the integers right of
the changed value are also influenced by the change, leading to a chain of various
“different choices”.

For the default crossover operator in GE, the process is a bit similar. The default
operator is the one-point crossover (see Figure[3.5), in which the integer sequence
for both programs is divided into two parts, a left and a right part. For both
programs, this division happens at random points. Two new programs are created
from the combinations of the left part of one program, with the right part of the
other program. The other method, called fixed point crossover, is very similar to
one point crossover. The only difference is that the crossover point (i.e. cutting
point in the integer sequence) is the same for both programs.

Much in the same way as in mutation, these two operators change the pro-
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grams by adjusting the underlying integers that make it up. Mutation completely
changes a (part of a) program, because mutation should take care of radical
change on one hand, and refinements on the other hand. However, for crossover,
which should interchange useful parts between programs, the default operators
implemented by the GP library do not make much sense.

3.4 Challenges in Genetic Programming

In this section, we review some of the downsides and dangers of using Genetic
Programming. Some of these problems may not be specific to Genetic Program-
ming, but it is important to mention them here, as they are influencing the out-
come of our work.

3.4.1 Premature convergence

One of the main dangers of using GP, and other searching techniques is the dan-
ger of premature convergence. In other words, having the search heuristic con-
verging to a solution that is never going to work in the first place. Because
candidate solutions to a problem are weighed trough a fitness function, their rep-
resentation for the search heuristic is in the end, a number. If this number is good
enough, the search heuristic will consider this a good solution. Even worse, it is
a relative evaluation. If all other solutions are entirely bad, the chance that the
program with a relatively good fitness will be used in the crossover and mutation
phase of a generation is very large. This problem is really fundamental to heuris-
tic search methods, because having a solution that is “half-good” does not imply
that we are on a path to a good solution.

What we can do about this is first to manually adjust the fitness function to
“punish” bad behavior of programs. Secondly, it is important to maintain diver-
sity in the population. This can be done through adjusting of the fitness function
not to be too high (bad) for bad solutions, and not to be too low (good) for moder-
ately good solutions. As long as good programs have lower (better) fitness values
than bad programs, good programs will always win. In the meanwhile, other
solutions stay in the population to maintain diversity.

Another way would be to create a multi-objective fitness function. It avoids
expressing the fitness as a single number, but rather value aspects of the fitness
separately. Doing this creates the possibility of introducing hierarchy between
separate parts of the fitness function and thus control the way separate parts of
the wanted functionality are discovered. It must be noted that this sort of hier-
archy can be introduced through means of adjusting the fitness function. The
big difference with embedding it into the framework is that you could use multi-
objective fitness evaluation to maintain variety in the population by making sure
that programs that are fulfilling different important properties do not suddenly
disappear in the next generation. Another strategy that it enables is to deliber-
ately crossover programs fulfilling different requirements, in the hope that the
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combination will have indeed the best of both worlds. These are typically things
we cannot do with “simple” fitness functions.

3.4.2 Search traps

While experimenting, we ran into a couple of problems that are rooted in the way
Genetic Programming works. In short, the Genetic Programming process is free
to do whatever it wants, as long as it plays by the rules indicated by a grammar in
our case. While this may sound a bit childish, even though the GP process always
plays by the rules, it can (and will!) still generate unwanted combinations.

One case we ran into was that very often, the MetaCompiler would generate
programs in which a lot of variables would be assigned all sorts of convenient but
trivial values. Even though the MetaCompiler played by the rules, since variable
assignments were allowed at all times according to the grammar, the programs it
created look erratic, and were very simple. Very often, every agent would have
the same value for specific variables.

However, sometimes having all agents assign a value to a variable would give
unwanted results. One very simple example to demonstrate this problem was
when we tried to invent a synchronization algorithm using the building blocks
of the Firefly synchronization algorithm (see Section [5.3| for more information).
What the MetaCompiler came up with effectively granted our wishes to have
every agent in the system be synchronized: reset the clock of every agent to 0 at
every round.

To prevent this kind of behavior we introduced “conditional assignments” in
our grammar, which is basically an if-statement and an assignment combined. If
the condition of the if-statement can be fulfilled, the assignment will be made.
What we hoped to achieve with this measure was that assignments would only
fire on certain conditions, and that it would bring some diversity among the
agents in terms of variable values. Unfortunately, the condition that would be
generated for the conditional assignment would often be very trivial, and the
MetaCompiler seemed to circumvent the barrier we introduced. For example,
as a condition it would use 1 == 1 or 1 < 2, or anything similar, and thus sit-
uations like the one described above were still to easy to get into. Effectively,
adding conditional assignments did not help solving the problem, but it was a
nice shortcut to having and if-statement and assignment combined, and hence
we did decide to keep it. We also reintroduced (normal) assignments, for the gen-
eral purpose assignments, or for use within existing if-statements. In the process
we also figured out that sometimes, it is nice to be able to read a certain variable,
but not to overwrite it, and hence we introduced the “volatile” keyword in the
configuration file to indicate a variable may be used to store values in.
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3.4.3 Use of a dynamic runtime

One case we regularly ran into while testing the MetaCompiler was that our ex-
amples would be too static. Because each generated program is evaluated a num-
ber of times, and the outcomes are (by default) evaluated by taking the mean of
all outcomes, we want to leverage this in order to see if the program does well un-
der a number of circumstances. Even more important, sometimes it is mandatory
to use dynamic elements in the runtime of programs. For example, in examples
where we wanted the MetaCompiler to come up with an estimate for a network
property (e.g. failure rate detection, churn detection, or network size estimation)
based on the local variables, it would often happen that the MetaCompiler would
just estimate a static value. Obviously, if the values that should be estimated are
the same in every experiment, it is very easy for the MetaCompiler to find a pro-
gram that returns a good value. Through every generation it can adapt the value
to return, and gradually move it to the right answer.

A (partial) solution to this problem is to vary the value to estimate at every
simulation. In this way, every static value will be wrong a number of times for
every program, and this should discredit picking the static value. It should be
noted that having an outcome with a static value does not help us in any way be-
cause we aim to generate algorithms that are usable in real-life scenario’s, where
system properties are dynamic Unfortunately, dynamic runtime properties are
only guiding us in the right direction of finding a good algorithm, but there are
still other problems. What we regularly found after the introduction of dynamic
variables at runtime, was that the MetaCompiler would aim for a value that was
as close to all possible values as possible: the mean. Of course, this is also a
dependent on the fitness function; If estimates that are off in a simulation are
strongly discouraged by the fitness function, this could change the situation, but
in our experience picking a static value was still easier than having a very com-
plicated estimation function that has to be gradually discovered over generations
of the MetaCompiler, and thus the static value would often be dominant.

Of course there are other ways to introduce dynamicity into an environment,
for example by changing the way nodes are distributed in the simulation world,
changing the size of this world, or changing the population size. All of these
options are possible in the MetaCompiler, and encouraged if it gives a more stable
algorithmic outcome. In addition, it should also be noted that adding dynamicity
does not come at any cost except for a slightly more complicated configuration
file.

Another interesting approach to capture and discredit the cases that use static
values could be to apply deep analysis (i.e. semantic evaluation) on the gener-
ated programs. There are a few things we can conclude after having giving it
some thought. First, the deep analysis of generated programs would add a whole
new layer to the MetaCompiler, and in a way abandon the Genetic Programming
approach, where each program is evaluated against the same fitness function.
Second, static values can come in many forms, they might be a numerical value,
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a variable that never changes, or a numerical function that for some reason al-
ways evaluates to the same result, and hence it can be hard to detect. In addition,
for some programs, using static values can be essential. For instance, a program
that tries to reach consensus in a network might demand that a node looks at
least at 3 neighboring nodes before setting a variable. In that case, the value of
3 is essential for the algorithm to work, it should not be able to be 1 or 2, and
hence it should be a static value. In conclusion, we would like to say that static
analysis of generated programs is interesting, but at the same time difficult, and
not applicable everywhere.
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’ term

explanation

(Program) node

(Language design & Genetic Programming) When
expressing a computer program as a tree, each node
of a tree is contains a code construct. This con-
struct is in turn part of the construct of the parent
node, and maybe it contains constructs of its own,
as childs in the tree

EpochX

(Genetic Programming) The library we have built
the MetaCompiler upon, that implements the Ge-
netic Programming process, also sometimes re-
ferred to as “GP library”

context-free grammar

(Language Design) Defines the valid structure of a
language. A computer program that complies with
the grammar is a syntactically correct program.

terminal

(Language Design) One of the two structural ele-
ments of a context free grammar. A terminal is a
final and concrete part of a program.

non-terminal

(Language Design) The other of the two struc-
tural elements of a context free grammar. A non-
terminal is a structural element in a program, that
has to be filled with one or more terminals to be
concrete.

semantics

(Program Interpretation) High level interpretation
of meaningfulness of a program. What the program
actually does and why it works.

Lexicon for Chapter




CHAPTER 4

Genetic Programming Enhancements

After we implemented the MetaCompiler using the default Genetic Programming
approaches, we found that there were some issues (some of which are described
in Section[3.4). We have implemented a few countermeasures to try to overcome
these challenges, which we will describe in this chapter. For each countermea-
sure, we first introduce the actual problem, followed by our intuition on why this
happens, followed by the countermeasure we came up with.

4.1 Initial generations

One of the first problems we encountered when the MetaCompiler was up and
running, was that the solutions it provided were often very simple and short. In
the genetic programming process, all the programs that are generated are derived
from the programs of the first generation, either through mutation, or crossover,
but most often, both. Since the programs in the first generation were already
very simple, the odds of finding advanced programs were not very high.

If we think about this some more, we find that this is also due to the nature of
the selection process in Genetic Programming, not only the evolution.

Especially crossover between two simple programs often yields other simple
programs. Since it uses genetic material from two simple programs, the new
program is also likely to be simple. Because the newly created programs are
probably not distinguishing themselves functionally, or are even programs that
were discovered before, the pool of new and potent programs quickly runs dry. In
turn, this will propagate to the next generation and the one thereafter. Obviously,
this will have a gigantic impact on the discovery of good solutions for a given
problem, and thus this must be solved.

31
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In the process of finding out why this happens, we looked at papers that deal
with the initialization problems in Grammatical Evolution. Important papers on
this subject are [[16], and [35].

What we found was that the initialization methods were not much more ad-
vanced than ours, and that there was likely another issue causing the problem of
generating programs that are too simple. However, we had to solve the problem
in order to continue working on the MetaCompiler. Since implementing another
initialization method would not solve it and take up valuable time, we decided to
solve it in another way. What we did was to change the fitness function in the
first N generations (we called “expansion generations”) not to look at the fitness
of the solution but at the actual size of the program. By doing that, we were able
to create a more diverse base of programs before starting the search for programs
that fulfill the actual fitness function as provided by the user.

There was a small problem with this approach that we did not foresee di-
rectly and could cause a very strange outcome of the Genetic Programming pro-
cess. Since we dynamically change the fitness evaluation without consent of the
EpochX framework, the values it gathers for the fitness are undistinguishable
for the framework, and hence, if the “expansion fitness” gives lower values than
the user provided fitness, big programs would win instead of good programs.
What we did to overcome this was to define a fitness function that returns val-
ues ranging from 0 to 1, while the “expansion” fitness was allowed to use the
range from 1 to infinity. However, this imposes a very strict limitation on the
designer since the upper bound of values is not always known, and thus it is
hard to scale to a 0-1 interval. Another problem with this is that normally this
would cause the framework to return a value of INFINITY for faulty programs,
while now we should put all programs into a 0-1 interval, should that include
the faulty programs? The last problem we ran into a couple of times while test-
ing was that, because the restriction for fitness values was not made explicit, and
was conditional (i.e. without the expansion generations, there was no need for
the restriction), we made the mistake of using arbitrary fitness values, which got
then entangled with the “expansion fitness” values, giving random big programs
as a result for the genetic programming process.

Unfortunately we only found out later that the initialization problem was mostly
happening due to a bug in the code (mostly, because we find the existing initial-
ization methods are still very simple). The problem was that we were setting up
the maximum initialization tree depth, that determines how deep programs may
get in the initialization process (i.e. how many non-terminals may happen before
the grammar finds a terminal value). However, we forgot to subsequently adapt
the maximum depth for programs, so the initialization process was actually able
to generate programs that were rejected by (the parser of) the GP framework, be-
cause that decided the program was deeper than allowed, and thus the programs
would end up being null values in the framework. In order to solve this, we
automatically set the maximum tree depth to the maximum initialization depth,
but the user may override this in the configuration file if desirable.
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With hindsight, because the fitness function of the “expansion generations”
becomes entangled with the user defined function, using them is discouraged, but
because it is disabled by default, we decided to let it up to the designer whether
he or she wants to use it or not.

4.2 Tree-based operators

Due to the problems of the default operators for Grammatical Evolution (see Sec-
tion we have decided to improve them in order to smoothen the process
of finding new algorithms. As mentioned, the genetic operators for Grammat-
ical Evolution operate on the integer sequence that in turn encodes a program.
Because the operators do not consider the syntactic structure of the programs
that they encode, there is a big difference between the syntactic program that is
encoded before and after the operation is done.

We wanted to improve on that such that the transitions that happened in pro-
grams would become more incremental. To shortly repeat their purpose as stated
in Chapter 3] the main goal of crossover is to exchange useful parts between two
programs, and the main purposes of mutation are to refine bits of programs, and
come up with total new structures or even whole programs.

In the process of finding out what would be the best approach, we searched
for papers that also had this problem and maybe even solved it. We did not
find many. This is surprising since Grammatical Evolution is such a widely used
method for Genetic Programming, and the problems with the operators, espe-
cially the crossover operator, are so obvious.

During the GECCO 2012 conference we asked Una-May O’Reilly from MIT, a
prominent researcher in the Genetic Programming, her opinion on incremental
changes by mutation and crossover. We mentioned that crossover is designed to
mix the behaviors of 2 parent programs, but often the child programs are func-
tionally very different from either parent program. She asserted this statement,
and noted that in practice, crossover is sometimes abandoned, leaving all evo-
lutionary tasks in the GP process to the mutation operator. Even though this is
almost an approach opposite to the pattern detection and protection we discuss in
Section [4.3] because mutation will happen very often in every structure, it would
be an interesting approach to try.

4.2.1 Attempt 1: “Random tree node”

Sometimes it is very hard to find research papers meaningful to a problem you
run into. In this case, because we did not find any paper that would solve our
problem, we made an attempt to solve the problem at hand ourselves. To do so,
we have defined a few requirements we wanted the operator to comply with:

e There should not be a disruption in the “right side” (or ripple) of the pro-
gram when an intermediary block is replaced. This is a common artifact of
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operators for GE, but the effect is not good for the search.

e The programs that are generated should be able to reach every part of the
grammar, because we want the framework to be able to recombine all build-
ing blocks, as long as it is syntactically valid

e Preferably, it should be more or less compatible with the current GE imple-
mentation (the more compatible, the less code should be rewritten, which
would be nice)

o Crossing over a part of the program should yield straightforward results
(i.e. the part that is crossed over should yield the exact same code that it
did in the old program). This seems obvious, but it was not true for the old
GE operators.

e There should be possibility to slightly adjust bits of programs in order to
gradually move towards a better solution, in order to be able to evolve a
given program towards a, possibly local, optimum

In one case we seemed to have found a viable candidate for the structure that
fulfilled a few of these points. It was based on the following observation: the
grammar contains the non-terminal called programRule, which is basically the
beginning for every standalone statement in the program. The best Computer
Science term to describe it would probably be an expression. Our idea was that
since this programRule is the most basic building block in the grammar, you
could write each program with random seeds. These random seeds would in
turn stand for a sequence of choices that are made in the grammar, starting
from the programRule. Whenever a programRule would recursively call an-
other programRule, a new random seed would be used to build up the child
programRule.

What this representation does well is that it encodes pieces of the program
that are sensible units, like one expression, or a block of expressions. These units
could be used for crossover in programs, in a way to protect the unit, as well as
the information in the other units situated around it. Also, mutation could be
done by just changing the integer that is the seed of the random generator, thus
creating a whole new programRule.

Unfortunately, there are also some disadvantages of the representation that
eventually kept us from implementing it. One disadvantage is that the granu-
larity of the units created by the random number generator might be too big.
For instance, an if-statement (excluding the recursive call to one or multiple pro-
gramRules), would be encoded with one random seed. If one random seed rep-
resents grammar choices that form if (x<23), and a good solution would need
if (x<25), then you would expect this problem to be solved by mutation, which
should be able to only change the compare value from 23 to 25. If the mutation
operator would only have to replace the number 23 by 25 by guessing the right
random number, this could be likely to happen in a number of generations (if the
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program with the value 23 already scored a decent fitness), and a good solution
would be found. However, because the mutation operator would have to come
up with a random seed that also generates the choices for if, x, <, and of course
25, the odds of getting the good solution reduces quickly.

One other slightly more theoretical disadvantage was that there is no guaran-
tee that certain parts of the grammar can be traversed, because this would imply
that the range of all possible seeds covers all choices in the grammar, something
we do not know theoretically, but it is likely to be true because of the large num-
ber of possibilities.

Even though the separate programRules are protected against unwanted de-
struction in this scheme, the hierarchy of the program is not. Since every recur-
sive call to a programRule is fulfilled by the next seed in the sequence of random
seeds that represents a program, the hierarchy of the program is not maintained
whenever an programRule gets replaced by another one with a different num-
ber of recursive calls to programRule. In the worst case, a programRule that is
very important for a program, and is at the top-level of the program (i.e. not
conditional but always called), could end up in a very niche or even impossible
location, making the important programRule effectively non-existent. The other
way around, a very destructive program rule, or something that should happen
rarely might suddenly become very prominent in the program. Even though
these kinds of radical changes are allowed in Genetic Programming, but we think
it deserves mentioning.

Because of the reasons provided above, we are very skeptical about the method
that seemed to be nice at first. Therefore, we decided not to implement the so-
lution, and to try to think of another better suited approach, and also look for
solutions in literature again.

4.2.2 LHS Replacement Crossover Operator

Where we were not able to find a good representation in the first attempt, we
did succeed this time and found [17]. This paper describes the Left Hand Side
Replacement Crossover operator or LHS crossover, that implements a tree type
crossover similar to crossover types found in program representations other than
Grammatical Evolution, namely Strongly Typed Genetic Programming. Further-
more, the paper shows very positive results for the LHS crossover operator after
having compared it to several other types of operators for GE crossover, so that
was a good reason to choose for the implementation LHS crossover.

The LHS crossover operator operates on the tree representation of a program
rather than on the integer sequence encoding it. It starts out by building up the
tree representation for the combination of a grammar and an integer sequence.
Once it has made this representation for the two crossover candidate programs,
it selects a random node in the first program.

It is important to remember that every node in the tree stands for a non-
terminal rule and number to pick a production from that non-terminal rule. In
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Figure 4.1: LHS Replacement Crossover

order words, the tree represents a program, and every node in that tree is a choice
made in the grammar in order to achieve that program. For implementation
specifics, please see Section|[6.5] The non-terminal decides the syntactical type of
the node, so each node we would swap it with, having the same non-terminal,
is of syntactically the same type, and thus the program remains syntactically
correct after having swapped the 2 nodes between the programs. This gives us
the same benefits as Strongly Typed Genetic Programming(34], but without any
extra administration because it is taken care of by the grammar. It is quite logi-
cal, and argued in [34]], having types tightly restricted has a positive effect on the
search space, because only syntactically correct programs exist in the population,
keeping it “clean” and diverse. On the other hand no effort is required in order to
evaluate programs that will never be able to run in the first place.

When doing crossover with the usual two parent programs, after having se-
lected the node of a particular type in program one, we want to find a node of a
matching type in program 2. We do this by putting all of the nodes of the pro-
gram tree of program 2 into a list that we randomly shuffle with the Fisher-Yates
algorithm[56]. Next, we go through all elements of the list to see if there is a
node of the same type as the selected node in program 1. As soon as we find a
similar node, we proceed with crossing over their subtrees between the program

(Figure [4.1).

After having done the crossover, we have 2 new program trees. By traversing
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the tree in a depth-first manner, we can rebuild the Grammatical Evolution inte-
ger sequence, such that the new crossover method is compatible with the rest of
the framework.

If we look at the requirements for a good crossover operator as we stated in
we see that this operator scores well for all criteria:

e Ripple effect: as the LHS crossover operator preserves the structure of the
program and only replaces the subtree of the selected nodes, and goes back
to the integer sequence representation of programs, there is no

e The encoding of a program should be able to reach all parts of the gram-
mar: since this crossover only goes to program structures already known
in the population, so this task is left to the mutation operator to deal with,
see Section for information on the LHS-like mutation operator that
handles this.

e Compatibility with GE: since the LHS crossover operator only uses an in-
termediary representation of the program during the process, and reverts
back to the default GE representation before finishing, it is fully compat-
ible with GE. It does assume and check that depth first traversal of the
grammar is being used by GE, other traversal methods will require extra
implementation.

e Results should be straightforward: Because the operator transfers nodes
with subtrees, the programs will be the same as the original, except for the
exchanged parts, very straightforward indeed.

e Possibility to slightly adjust the program: The size of the subtree depends
on the node selected in the program, but it can change very fine-grained
pieces of the program if it picks a node with a very small subtree, making
it possible.

4.2.3 LHS-like mutation operator

Because we were not yet satisfied with the default mutation operator, we have
also looked for a suitable candidate to replace it. After having implemented the
LHS crossover operator, we were still looking for this replacement, and we de-
cided to make a mutation operator that was inspired by LHS crossover. To reit-
erate what the mutation operator should do (Table [3.1): it should alter existing
programs, and find novel program structures. Since the default operator usually
breaks the structure of the program because it radically changes the path that
is chosen when traversing the grammar, it probably changes the whole program
from the point of mutation.

After having seen the effect of LHS crossover, we envisioned that a good way
to do mutation could be to start from a random program node, dispose its chil-
dren, and randomly pick grammar productions from there in order to make new
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child nodes. In this way we are both able to refine programs, when mutations
take place on nodes with few or no children, or to come up with new structures,
when doing mutation on a node with a bigger number of children. After the mu-
tation has taken place, we can again reconstruct the integer sequence for GE by
traversing the program tree, to make it compatible with the rest of the framework.
Because this approach was more likely to preserve the program structure and im-
prove on the programs than the default mutation operators, we implemented it
to work together with the LHS crossover operator.

4.2.4 Genotype-Phenotype Mapping

One aspect of Genetic Programming we have not touched up until now is the
notion of separating the genotype and phenotype representation. In our case, the
genotype is the integer sequence that encodes each program. The phenotype is
the actual outcome program. If we look at the way programs are encoded in inte-
ger sequences, we see that there is room for integers that are not used to construct
the program, because all non-terminals in the grammar have already been ful-
filled (see Section [3.3). Some papers, including [5], [21]], and [30] argue strongly
that it is important to include some redundancy in the genotype-phenotype map-
ping. The redundancy in this case is the part of the genotype that does not get
used to create the phenotype, but is altered by the genetic programming process.
By having this, advanced structures are able to evolve before ending up in the
phenotype. This is important because undeveloped structures may exhibit a very
bad fitness until they are fully developed, effectively meaning they will be erased
from the population if they were directly visible in the phenotype.

With the LHS-operators, we employ a direct mapping from the genotype to
phenotype, and thus we miss this redundancy in order to develop hidden struc-
tures. In other words, the LHS crossover and mutation operators are both unable
to operate on the part of the integer sequence that does not belong to the pro-
gram tree, and they are not able to change the program in such a way that it
suddenly makes use of previously unused parts of the genotype. We do however
keep track of the remaining integers that are not used in building up the program,
and we append them back to the program whenever we revert back from the tree
to the integer sequence representation. In this way we enable future extensions
to make use of this redundancy. One simple solution would be to mix crossover
operators at runtime, such that both LHS operators, as well as the simple opera-
tors for GE are used, but this would lead again to some regression in maintaining
the structure of programs, something we wanted to use the LHS operators for in
the first place.

4.3 Pattern Detection and Protection

Even though we have implemented crossover and mutation operators that are
nowhere near as destructive as the default GE operators, there is still a high
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chance that important structures of the program are altered. We would like to
detect patterns that exist across the best programs and encapsulate or at least
strengthen them such that they are unlikely to be changed, and to increase the
chance of other parts of the program being adapted. We were not the first one to
think of this strategy. Already in the original Genetic Programming paper[22]],
encapsulation was mentioned as an additional genetic operator, to capture some
subtree of a program one unbreakable element. Most popularly, it has been cov-
ered in Automatically Defined Functions[24]]. Other approaches are module ac-
quisition (MA)[1]], adaptive representation (AR)[46]], and adaptive representation
through learning(ARL)[4].

Because of our particular program structure and grammar based approach, we
have implemented a similar approach suited to our software that exhibits the
same kind of behavior as the works references above. We found out that it is
very hard to quantify the similarity of 2 programs, or sub-structures in a pro-
gram. Checking for equal structures can easily be done by trying to match as
much of a structure as possible while traversing the program tree in two pro-
grams. However, this gets more difficult whenever parts of the overall structure
are slightly different. A greedy matching algorithm would stop finding simi-
larities on the first encounter of a difference, and thus the search for structural
elements that are important for good programs would already stop at the first
inconsistency between two programs. We have also considered using a “diff” al-
gorithm (software that is able to compare 2 files and output the differences) to
capture the similarities and differences between programs, but since this would
only consider the source code that was output, it would be unable to consider the
underlying structure of non-terminals in the grammar.

Since we were unable to find suitable solutions in literature we came up with
our own approach (Figure to detect and protect patterns in the programs.
Based on the observation that approaches mentioned above are top-down ap-
proaches, we decided to look at a bottom-up approach to solve this problem.
First we take the N best programs of a generation as a training set, a configurable
number to determine the strength of the pattern detection algorithm. Then for
each program in the population, including the best programs, the algorithm sim-
ply looks at every program node in the program tree, and its parent. If that
parent-node relationship also exists in a program from the training set the con-
nection is strengthened. If it exists multiple times in best programs, the connec-
tion is strengthened just as many times.

While every step is very granular, we think it works because every step adds
very little protection, but it works on a large scale. The last step of the algorithm
is to normalize the protection to a 0-1 interval, in which 0 is unprotected, and
1 is the strongest protection a connection has, being unmodifiable. When the
mutation or crossover operator try to adjust the program node, a random number
between 0 and 1 is picked. If that random number is bigger than the strength of
the connection, the operator may succeed, if it is smaller the operator tries to
find a new program node to apply mutation or crossover. In this way, it protects
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Figure 4.2: Pattern detection

from breaking important structures, and instead tries to change other parts of the
program.

A possible downside of using this pattern protection mechanism, is that it can
protect patterns that have not yet been fully developed. In that case, it will be-
come almost impossible for the mutation and crossover operators to modify that
pattern to become better, and the GP process gets stuck at a suboptimal point.
We test the influence of pattern detection and protection in Chapter

4.4 Distributed dispatcher

The number of experiments we need to run to get a result from the MetaCompiler
are roughly runs X generations X population size X simulations per program, ex-
cluding the caching of results for already known programs. Over the course of
the project, we have been running experiments to assess the functional perfor-
mance of the MetaCompiler. For most of the experiments, we could use a to see if
it performed as expected, but for more serious experiments we needed more time
and computing power.

Some differences are that to get stable measurements we will want to do our
experiments multiple times (runs). To know for sure that a program is valid, we
will want to have a good number of simulations per program. And, to invent
useful algorithms, we will usually want to increase the population size.
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Figure 4.3: Distributed dispatcher

The default way to run the MetaCompiler is to use a single machine, possibly
with multiple cores, which are fully used. We found it is often difficult to find
a machine on which there is both time you can use, and there is sufficient com-
puting power. Also, if a computer is powerful, often someone else is in control
of it, and we have experienced multiple times that our task was suddenly killed,
with unknown reason. Another option was to use my own laptop, which is quite
powerful, but this was not really practical with as well.

To solve these problems, we have built an extension to the MetaCompiler to
distribute tasks over multiple computers (Figure [4.3). The system is designed to
have two types of computers: servers, that delegate tasks, and clients, that re-
ceive and process tasks, and return the results to servers afterwards. Also, it is
designed to be multi-server and multi-client, such that we can run multiple ex-
periments in parallel on the same base of clients. To get a good trade-off between
communication and distribution of experiments, we chose to send each separate
program, but let it run on one client as many times as needed to get a stable
measurement (the simulations_per_program setting).

The system is also resilient to failures on the client-side. Each client is allowed
to fail at any time, such that it cannot return the result of an experiment anymore.
In this case, the server will delegate the experiment to another client, and wait for
the result to come back from either one of them. Also, servers are allowed to lose
their internet connection or go in standby mode, they will reconnect afterwards
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and continue delegating experiments. The only thing we really need to take care
of is that the server-process does not get killed, or we will have to start it again.
One important note that has to be made with regards to the usability of the
distributed dispatcher, is that there is some overhead time between the starting
of a server and the actual execution of jobs, and returning results by clients.
See Section [6.6] for details on the implementation of the distributed dispatcher.
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term ‘ explanation

fitness (Genetic Programming) A score for how well a pro-
gram fulfills a given task. Usually expressed in a
single number.

parsing (Language Design) The process of processing a

string of text (a program generated by our frame-
work in this case) and converting it into a more
meaningful representation for a computer.

parse tree (Language Design) The result of parsing, in which
the program is represented as a tree structure.

node (Large-Scale Systems)A separate, autonomous ele-
ment of a Large-Scale System
round (Large-Scale Systems) The programs that run on

nodes of Large-Scale Systems run for an indefinite
amount of time, each time repeating the same code.
Each repetition of executing the code is called a
round.

NetLogo (Large-Scale Systems) A simulator for multi-agent
systems. The MetaCompiler uses NetLogo to run
the code our framework comes up with, and evalu-
ate its fitness.

GP library (Genetic Programming) A software library that
contains a full implementation of the Genetic Pro-
gramming process. We have built our framework
upon this library. (EpochX)

MetaCompiler | The global-to-local compiler we present

Lexicon for Chapter



CHAPTER 5

Distributed Algorithms for Large-Scale Systems

5.1 Defining Large-Scale Systems

In order for us to build a framework that tries to come up with distributed algo-
rithms for large-scale systems, it is important to specify what we mean by these
terms. Typical large-scale systems we aim for are embedded networked systems,
such as Wireless Sensor Networks, MANETS, swarm robotics, sensors, the inter-
net of things, or pervasive computing. These kinds of systems have some im-
portant properties. The systems are composed of a vast number of autonomous
elements. Since maintaining a connection to every component of the system from
a single point is infeasible, there is a lack of central control of the system. Usu-
ally system components are geographically restricted in communication because
of radio signal strength and interference, and thus for every element there is lim-
ited capability to communicate with other elements of the system. Because of the
distributed nature of the systems, components lack a full view of the system and
consequently they are only able to act upon local information. Also, embedded
systems are usually simple devices, both on a hardware, as a software level, such
that they can only do relatively simple tasks.

5.2 Structure of generated programs

In order to let the MetaCompiler generate programs that are useful for large-scale
systems, we have to provide it with guidelines about what kinds of programs
it can come up with. We do this by providing the GP framework with a so-
called language definition it can use to generate programs with. Because we
have influence on what programs the GP framework is allowed to generate, this

45
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is an important place to target the GP framework towards our problem domain
of large-scale systems by creating a simple custom language. In designing the
language we have made a couple of important decisions.

One decision that influences the flow of programs enormously is whether or
not loops or jumps are allowed, specifically while- and for-loops. Because nodes
in our definition are supposed to “infinitely” rerun the same code (a round), the
programs already have a loop-like structure. We would like our simulations to
end in a finite number of rounds, if a round takes forever to execute, this will
cause the simulation to run forever. In other words, nodes can behave repeti-
tively over multiple round, but at least rounds will progress. Hence, we decided
not to include loop or jump structures in our language. In Turing machine terms,
this influences the graph of state transitions: since there is no way to jump back
to a prior state, and the number of states is finite[58], the graph of state tran-
sitions is a tree, and the program will eventually finish as long as the program
progresses from one state to the next. It should be noted though that since we
allow runtime libraries, loops or jumps can still be used, and thus still be an issue
in our programs. At least it will not happen because the GP combinatorial nature
created such a program structure.

Another important decision in designing the language was the strict separa-
tion of global information and actions from node (individual) information and
actions. We wanted to prevent the GP library to come up with programs that use
either global information or global actions to achieve the goal set by the designer.
As mentioned above, individuals in a system (nodes) lack a full system view, and
therefore global information is non-existent for a node. Obviously global actions
are also non-existent in such a system, because everything is the result of the
composite of node actions. We have however maintained the ability for the de-
signer to use global information and actions to be called at the beginning or end
of every round, for administrative purposes, because we noticed that without
them, measuring the fitness of a program was often very hard. Next to these
“static” calls to global functions, we also allow static calls to node functions. This
is very helpful when we want force a node execute some code every round, for
example to force movement, or to simulate decreasing battery life by decreasing
a counter every round.

Once we have this language, we can give it to the GP library to generate pro-
grams we can translate into code running on our simulator, in order to assess
the fitness of the generated programs. The lifecycle of a simulation is depicted in

Figure
5.3 Example Algorithms
While assessing the performance of the MetaCompiler, we were confronted with

the question: what do we want to test our software with? Clearly, the software
allows designers to input a specific aggregate behavior and get an algorithm in
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Figure 5.1: The lifecycle of a simulator run

return, but we needed examples. We decided to start with algorithms we already
know, and try to re-discover them. Since we already know these algorithms, we
have a good idea of how to convert them into configuration files and libraries for
our software. This conversion mainly consists of two steps:

e Breaking the algorithm down into logical building blocks that can be re-
combined to reform the initial structure;

e Thinking of a fitness function that describes what the algorithm actually
tries to do.

Additionally, programming these examples gave us useful feedback on addi-
tional features we needed in the framework in order to use it for other examples.
Especially the first examples we wrote gave a lot of inspiration for must-have or
nice-to-have features. Since new changes were not necessary, we are confident
that our software supports the majority of scenarios it was designed for.

The following sections mention example algorithms that we have tested. Each
section explains what the algorithm is supposed to do, and what building blocks
we used to compose it.

Firefly

The Firefly algorithm[52], aims to synchronize distributed systems much in the
same way as real fireflies synchronize the illumination of their backsides. Each
node has an on and off state, depending on the value of its wrap-around clock.
Nodes are in the on-state in the first N ticks of its period, whereas the off-state
takes up the rest of the time until the timer expires. At any point in time, each
node monitors how many of its neighbors are in the on-state. If this number
reaches a certain threshold, and the node is not in the on-state itself, it will reset
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its clock to be in on-state. It is important that every node has the same value in
order for them to transition to 0 at the same time, maintaining synchronization.

Once the threshold is reached somewhere in the network, meaning that there
were at least a few nodes in the on-state, the cluster of synchronized nodes be-
comes larger, spreading to the unsynchronized parts of the network. There may
however be conflicts when reaching other separately synchronized parts of the
network, making it hard for the whole network to be synchronized.

Ant foraging

In order to test our framework we have also implemented the ant-foraging problem[42]
to see if the framework was able to discover the solution. Ant-foraging tries to
simulate the behavior that ants exhibit in nature, spreading pheromone trails for
other ants, in order to find the shortest path to a non-depleted food source. In

this way, the gathering of food by ants is shorter, and thus the time required to
gather all the food located in the field is decreased.

Leader election

Leader election[15] tries to elect one leader in an otherwise uniform ring-shaped
network. It works by communicating the ID’s of nodes, and picking the node
with the largest ID to be a leader.

Failure detection

Failure detection[45] tries to detect the percentage of communication packages
that get dropped during transmission between nodes.

Churn estimation

Churn is a term that describes the flow of incoming and outgoing nodes in a
network. It is an important property for dynamic networks such as peer-to-peer
networks and large-scale systems, because it shows that nodes, and the infor-
mation they keep, do not remain in a network forever, and fresh nodes will also
enter the network. Churn detection[44] tries to measure the amount of churn in
a network.

5.4 Notes on realism of the simulations

Synchronicity

The first note that should be made on the realism of simulations is a simulator
specific one. In a real-world case, nodes will very likely be in different parts of
the round than their neighbors due to differences in startup time, clock drifts and
execution paths (see next item). In other words, the nodes are all unsynchronized.
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Thinking of them as being synchronized is an acceptable idealization for some
application domains.

However, in NetLogo, the ask command, which is used to control execution
for a set of nodes, is synchronized; It goes from over all nodes in predefined
order (ordered by ID), and executes the code there sequentially. Calling this syn-
chronized is debatable, but at least at any point in time, most of the nodes are
in idle state, between the end of the last round, and the beginning of the next.
Only one node is really executing its code. Of course, in reality, all nodes work
concurrently, and thus this simplified execution model’s realism is questionable.

NetLogo also offers an alternative to the ask statement: the ask-concurrent
statement. In somewhat similar fashion, code is executed sequentially from, go-
ing from node to node, but the turn will go over whenever an node changes the
state of the system (for example: changing a global variable). Because the nodes
in our framework are not allowed to change global variables, this will not hap-
pen that often. Another way in which a node can change the state of the global
system is by moving, which is possible in our framework, but overall using the
ask-concurrent statement is not likely to give very different results than the
ask statement.

Execution time depends on execution path

Even if we assume that systems are using the same hardware, and that they were
at one point synchronized, there is another reason why the assumption of syn-
chronicity is not realistic. Generated programs often contain conditional logic to
distinguish one node from another, execution paths among nodes are different,
and thus execution times also differ. If we assume a round-based paradigm in
which all nodes wait for the others to enter the next round, this is valid. Other-
wise, this would lead to some nodes being slower than others, in the sense that
they run less iterations than others, only adding to the asynchronous nature of
the program execution. Hence, NetLogo executing the code for every system be-
fore moving on the the next round is an assumption that can be true for some
systems, but may not be applicable to others.

Round length

In the programs that are generated by the MetaCompiler, program code for each
system is supposed to be executed repeatedly for a large number of rounds. For
some programs it is important that the fitness quickly converges, or in other
words, that the aggregate behavior of all programs quickly exhibits the desired
behavior. Another requirement of the MetaCompiler is that the simulations take
only a certain amount of rounds to run. For these requirements to be fulfilled, we
have introduced the property of simulation length, which indicates how many
cycles a program should run before returning the fitness value.

Because the grammar uses the depth of the parse tree as a maximum length



50 AUTOMATIC DISCOVERY OF DISTRIBUTED ALGORITHMS FOR LARGE-SCALE SYSTEMS

indicator for a program, the program is free to grow within the boundaries of
this limitation. For some programs, some actions, especially “expensive actions”
might be implicitly related to the simulation length.

For instance, we came across a problem when letting the framework invent
an ant trail and ant foraging algorithm. In both examples there are a number of
mobile nodes that need gather food, that was spread over the virtual field at the
start of the program. A designer setting a simulation length of 200 rounds for
this program might expect that these nodes are not able to move more than 200
times because there are no more than 200 rounds. This is however not true, and
if moving is an action related to the success of the algorithm, the chances nodes
will move for over 200 times are very big.

The fitness of these generated programs was related to the number of pieces
of food the nodes had gathered when the number of rounds had reached the
simulation length and the simulation stopped. In other words, the better the
mobile nodes were able to gather the food, the better the score of the generated
program was. In turn, the simulation length was related to the initial number of
pieces of food located on the field, in order to stimulate the creation of an efficient
in terms of food collection speed. However, what the MetaCompiler came up
with was an algorithm that would let nodes move a couple of times, every round.
The effect over multiple cycles was that each node looked much like a Tasmanian
Devil cartoon, running around randomly, accidentally gathering up all the food.
For the MetaCompiler, this meant only one thing: mission accomplished, but of
course this can not be the case because this behavior is unwanted.

To avoid this behavior, we extended the code to register the number of moves
made by the nodes. This was incorporated into the fitness function, such that
for programs in which the number of moves was much higher than the number
of collected food pieces, we could give a very bad (high) fitness score in order to
effectively disqualify this program from the selection process.



CHAPTER 6

Implementation

This chapter describes the implementation of the MetaCompiler. It describes
the actual design choices and the motivation behind them. In Section [6.1] we
look at the full MetaCompiler, what it contains and how it is structured. In the
Section we look at EpochX, a genetic programming framework, the main
building block of the MetaCompiler, and why we favored this framework over
its competitors. NetLogo is an agent based simulator, very popular in the aca-
demic world. In Section we look at how it is loosely integrated into our
framework. For a multitude of reasons, we have chosen to build a small language
targeted towards Agent Based Systems. In Section [6.4 we describe it and provide
our motivation, as well as usage experiences. One of the improvements we have
implemented, as mentioned in Section are tree-based operators for Gram-
matical Evolution. In Section[6.5 we will look at their implementation details. In
Section [6.6] we will take a look at the implementation details of the Distributed
Dispatcher.

6.1 MetaCompiler System Architecture

The software toolchain we have built is fairly complex in that it expands the
used EpochX (Section library in a number of ways. To describe the system
architecture we first enumerate what functionality we have built, followed by
how this is integrated into the system, to look at the separate parts of the system
in the following sections.

We have implemented the following functionality:

e A BNF grammar containing our agent specific language to use as an input
grammar for Grammatical Evolution

51
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e A parser grammar to parse the generated programs to a generic AST

e A tree parser grammar to translate the AST to the target language (we
have built one for NetLogo, but there can be other ones for other target
languages)

e A Grammatical Evolution to Tree transformer that builds up a tree out of
the EpochX Grammatical Evolution Integer sequence that encodes a pro-
gram

e An implementation of LHS crossover operator for the tree representation
mentioned above

e A pattern detection and protection mechanism, that works on the tree rep-
resentation

e An implementation of an LHS like mutation operator, that works on the
tree representation

e An implementation of random search, also using the tree implementation

e A dispatcher interface, to offload simulation of programs to different com-
putational units, of which we have written a CPU implementation, and a
distributed dispatcher, that dispatches tasks to a pool of other machines. A
GPU implementation is in the making by another student.

e The full MetaCompiler, which integrates all components into a single pack-
age, and uses a configuration file as input

6.2 EpochX

Because the main target of our project is to use Genetic Programming to dis-
cover algorithms, it makes sense to look at what other people have done in
this area, and see whether we can make use of tools that are already avail-
able. Since Genetic Programming has been around for a while, there have been
many projects that have programmed it for a specific language or scenario. Some
prominent frameworks in the field are ECJ[26], JGAP[29], Watchmaker[12]], and
EpochX[41]], but there are many others (See this pageﬂ for an overview).

ECJ

ECJ is possibly the most well-known Evolutionary Computation framework, writ-
ten in Java. It supports a lot of different variations of EC, making it interesting

'Overview of GP frameworks: http://www.tc33.org/genetic-programming/
genetic-programming-software-comparison/
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when you want to try a lot of different techniques. We were however mostly in-
terested in Genetic Programming, and therefore we preferred a framework with
a little more focus. Also, having looked at the code, the Genetic Programming
process was not that comprehensible because of the size of the framework. ECJ
offers a permissive Academic Free License, which is nice because it even allows
our software to be made proprietary, if that would be a future direction of our
project.

JGAP

JGAP mixes Genetic Programming and Genetic Algorithms into one software
package written in Java. Unfortunately it offers only one variation of GP: Tree
GP, which requires that all code to be used in generating programs is written
in Java. Furthermore it is highly integrated with the graphical user interface,
the code for GP is often mixed with code for the GUI, lacking a neat distinction.
The code is very clean and simple, so it can be a good inspiration for writing a
new framework, but it was not what we were looking for because it lacked good
extension possibilities. Also, because it uses a Lesser GPL license, source code
modifications are supposed to be communicated back to the original author.

Watchmaker

Watchmaker is an Evolutionary Computation framework written in Java. Much
like ECJ, it supports a lot of different Evolutionary Computation approaches.
Downsides of this framework are that due to the freedom in EC approach there is
a lot of code to implement by the user before he can use GP. Also, the last updates
of the code happened 2 years ago. Watchmaker has a permissive Apache license,
which would allow our project to go in all directions.

EpochX

The framework we finally picked is called EpochX. It is not the most well known
framework in the field but it suited our project very well. The framework pro-
vides a number of different GP implementations, which allowed us to play with
different approaches of code generation and pick the solution we preferred (GE,
see Chapter [3.3.1). Also EpochX is built only for Genetic Programming, leading
to a lean set of classes only supporting what we needed. The code is really clean
and built around the logical steps of the GP process, making it very intuitive to
look through.

The best feature of the framework is that it is built to extend in 3 major ways.
The code is full of places the system designer can add hooks at important mo-
ments of the GP process, to intervene with it, for example by changing the pop-
ulation just before the selection process. It also offers adding monitor functions,
mostly at the same parts as the hooks, for example to get the result of the gener-
ation that just finished. There is a rich structure of extensible and implementable
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Java classes, but there is always a default behavior, such that the system designer
can always get the behavior he wants, but usually does not have to.

In these ways the framework is highly incorporable in other frameworks with-
out ever having to touch the source of EpochX itself (unless you find a bug in
EpochX). We also liked the fact that everything happens in runtime and without
Java reflection, so there are no strange config files we have to include or error-
prone class loading errors.

Unfortunately the support was not as good as we had thought, there is a forum
but it takes a long time to get an answer. Also, we have uncovered 1 important
bug in the framework, and it is acknowledged by the author of EpochX, but still
there has been no release with the bug fixed. There we did need to adjust the
source code ourselves.

It has a Lesser GPL license, but because there is usually no need to adjust the
source code yourself this is in practice no different from permissive Apache or
BSD licenses.

6.3 NetLogo

NetLogo[[50] is a programming and simulation environment for multi-agent sys-
tems. It it especially targeted towards education and according to its website it
is used by tens of thousands of students, teachers, and researchers worldwide.
Because NetLogo is targeted towards eduction, it is very straightforward to write
code and model systems in it, and understand code from other authors. Because
of these properties, the Embedded software department has been using NetLogo
for the last couple of years to test distributed algorithms.

For the Genetic Programming process to work, there has to be an element that
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is able to compute the fitness of a generated program. The MetaCompiler trans-
lates a generated program to NetLogo, runs the code, and evaluate its fitness. A
nice advantage of NetLogo is that it offers a graphical user interface (Figure
for each of the generated programs, helping to envision and debug what a gener-
ated program does.

The MetaCompiler is designed to be agnostic towards the output language and
the corresponding simulator. As noted in Section the NetLogo simulator is
in some cases not a realistic simulator. Having another simulator that takes care
of these concerns delivers more reliable and realistic fitness values, and possibly
algorithms. Also, it should be noted that NetLogo is not optimized for speed,
so running a lot of generated programs could probably be much faster in an-
other simulator. However, since we have used NetLogo from the beginning of
the project, we have developed a number of tools that are NetLogo specific (see
Figure [6.1), making the its use very convenient. Redeveloping these tools for
another language and simulator will take some development effort.

6.4 A custom agent based language

In Chapter 5| we have set a number of properties that define the Multi-Agent
Systems models we make use of. It is important for Grammatical Evolution to
produce a program in a certain target language, but we want to design our system
to be able to generate programs for various platforms. In order to achieve this,
we decided to design a custom internal language to tightly fit our needs. This
section will only cover the implementation of the language. To read more about
the motives behind the custom language, please refer to Chapter
The language implementation consists of 3 separate parts:

1. A BNF grammar to be used for program generation in EpochX

2. An LL(*) grammar to parse the programs generated by EpochX to an Ab-
stract Syntax Tree

3. A tree parser grammar that converts the generated AST to an output pro-
gram

Looking at this from a language design perspective, one might think you could
either implement parts 1, 2, and 3 into a single part, or more elegantly (and more
common in language design) combine parts 1, and 2, and leave 3 as a separate
module. However, there are a few reasons we have picked this design.

First, a very pragmatical issue, EpochX only understands BNF grammars. BNF
stands for Backus-Naur Form[55]], that is a very commonly used method to en-
code grammars. There is one main advantage of BNF to other representations,
and that is that it is simplicity. This makes the grammars expressed in BNF very
simple to understand for humans and straightforward to parse by computers. Un-
fortunately, BNF grammars are not the most natural way to describe context-free
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languages, because it does not support optional statements, and repeating state-
ments. Two reasons for it being used in EpochX are possibly the fact that the
parsing is easy, and that it is expressive enough for simple examples.

For parsing the programs output by EpochX, we wanted to use an industry
standard parser generator, preferably in Java. One very popular parser-generator
for Java is ANTLR. Additionally, we had previous experience with this software,
it seemed convenient to use it for our project. ANTLR uses a grammar system
called EBNF, which extends BNF with regular expression like constructs that al-
low users to use optional and repeating statements to more elegantly design a
language.

Because EBNF is an extension of BNF, the developer is ultimately allowed to
use just BNF, but it is unlikely to do so. Additionally, all statements that can be
expressed in EBNF can be rewritten to BNF. These two facts were nice to know
in advance when developing a language with 2 separate tools.

An unforeseen positive consequence of separating the generative grammar and
the parsing grammar was that we were able to play around with the generative
grammar to change the odds of a production being picked, for example by using
redundant productions, or reducing and increasing the number of non-terminals
that need to get picked before we get to a terminal. Because the parsing gram-
mar is separate, that grammar still contains the clean structural description of all
possible agent programs, while the generative grammar is tweaked to optimize
the performance of the Genetic Programming process.

After the program is generated by EpochX, it is parsed by the parser grammar,
giving us an abstract syntax tree. This AST is then parsed by the tree grammar in
order to generate the output program. Because we want to run the generated code
in NetLogo for simulation, we have made a tree grammar to generate NetLogo,
but because the abstract syntax tree is very simplistic, adding a new tree grammar
for another output language is an easy thing to do.

6.5 Tree based operators for Grammatical Evolution

To implement the LHS operator and adjoining mutation operator as described
in we have converted the default Grammatical Evolution integer sequence
representation into a tree representation. To reiterate, the default encoding of a
program consists of an sequence of integers that is used to pick productions in a
grammar until either the integer sequence runs out, or there are no non-terminals
in the grammar to fulfill. There are two methods to do the traversal, breadth first
and depth first, the latter one being the default mode for EpochX.

Since we want the operators to seamlessly integrate with the EpochX Gram-
matical Evolution implementation we decided to make it resemble the depth first
search traversal of the integer sequence, such that all operations in EpochX agree
on the cohesion between the encoding. Unfortunately, we were unable to use the
depth first implementation of EpochX, so we had to meticulously resemble its
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implementation to match its behavior, which might give some problems in future
upgrades of the EpochX framework. Fortunately, we were able to fully use the
implementation of the grammar interpretation provided by EpochX.

EpochX distinguishes between 4 types of relevant Java classes in the interpre-
tation of the grammar:

e GrammarProduction a class that encodes the left hand side of a grammar
rule, possibly containing multiple GrammarNodes.

e GrammarRule This class encodes a non-terminal rule at the right-hand side
of the grammar, depth first traversal will first expand this rule before con-
tinuing to the next part of the current grammar production

e GrammarNode A superclass of GrammarRule, and GrammarLiteral

e GrammarLiteral an actual terminal symbol, a “dead end” for depth first
traversal

To encode a tree that is based on the depth first traversal and the grammar, we
have added two Java classes:

e ProgramNode encodes a single node in the the ProgramTree. Every in-
stance has a reference to a parent node, which in the case of the root is
null. Every ProgramNode is instantiated with a GrammarRule, and an in-
teger called the codon value. This value determines the choice made in
the GrammarRule, giving the instance a GrammarProduction. Also, ev-
ery node has one or more children, if the GrammarProduction contains a
non-terminal that needs to be expanded, otherwise the list of children is
empty.

e ProgramTree is used to encode the tree as a full object to easily couple it to
the corresponding program in EpochX. It has a pointer to the ProgramNode
instance that is the root of the tree, and it has extra methods to retrieve
specific nodes, random nodes, or all nodes from the tree, which is useful in
the crossover and mutation operators.

Now that we have a way to transform the typical GE encoding, a sequence of
integers, into a tree representation, we can do transformations on this tree to do
mutation and crossover. For the LHS crossover operator (Section [4.2.2), and the
corresponding mutation (Section[4.2.3), we were now able to copy ProgramTrees
and replace ProgramNodes in order to get new programs. After this transforma-
tion the ProgramTree could return a sequence of integers encoding to feed the
generated program back to the GP library again.

For the pattern detection on ProgramTrees, we simply request all of the nodes
of the best programs (the training set), and compare the nodes of all ProgramTrees
of the current population to these nodes, and if a similar parent-child pair is found
the connection between that pair is strengthened. While this comparison of all
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nodes is a bit brute-force, and could be optimized, it did not lead to performance
or memory problems.

While searching for similar parent-child pairs, the weight of the most protected
connection is registered, such that we can map back all connection weights to a
0-1 interval. If pattern detection is used, this connection weight denotes the odds
of a connection being able to be changed, with 0 being always able to be changed,
and 1 being unable to be changed. We do this by generating a random number. If
that number is bigger than the connection weight, the transformation is allowed
to happen.

6.6 Distributed Dispatcher

Inspired by so-called bot nets used by hackers to coordinate big computer net-
works, we decided to make a tool to delegate our experiments to other computers
to parallelize the most computation and time intensive part of the MetaCompiler.
Because bot nets often use the IRC chat protocol to delegate tasks, we decided
to also take a look at using this. IRC has a number of nice features that make it
suitable for controlling a network of computers:

e Channels, where all the bots are gathered, so they are easily addressible

e Broadcasting messages over the channel, in order to address all the bots on
the channel, for example to signal there are jobs available, or that a new
generation has started

e Private messaging, to address a specific bot with a specific task, for example
to send a specific experiment, or do a handshake between server and client

e File transfer possibility, to transfer executables, unfortunately we were un-
able to use this due to firewall issues, so we have built a small fileserver to

handle this

To start, we implemented a layer on top of Java IRC bot implementation PircBot[37]],
in order to transfer object instead of messages. A disadvantage of IRC is the fixed
length of messages, which is about 500 bytes. Since serialized objects in Java are
usually much bigger than that, sending objects takes a few IRC messages, and
overloading the IRC server is a risk that has to be avoided. We then implemented
a simple handshake protocol with a couple of encrypted challenges such that
only clients with the right key can contact servers with the right key and vice
versa. We used an asymmetric key protocol to assure that experiments (from
servers), are sure to come from a verified source, and do not contain malicious
code. The other way around, the server knows that results for these experiments
come from a client that has the right key, but since clients run on external com-
puters, we cannot fully guarantee that the key has not been copied to another
machine with a fake client returning bogus results.
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Since clients are usually busy executing jobs, we found it makes more sense
for the clients to request jobs than for the servers to push jobs, since the servers
have no knowledge of how busy clients are. Once the handshake process is done,
a client will request a job from the server and will try to execute another job
while waiting for the response from the server. In this way, the request process
is pipelined with the execution of jobs, and the result in practice is a virtually
constant execution of jobs by clients. Also, since jobs for multiple servers are
sequentially executed, a request for a job to a certain server even has more time to
be responded to, preventing an overflow of messages on the IRC server. Figure[6.3|
show the program flow for clients, and Figure shows the program flow for
servers.
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CHAPTER 7

Experimental Results

This chapter shows the experiments we have done to assess the performance
of the MetaCompiler. Each experiment is introduced with the necessary back-
ground information, and some intuitions about the results. In the results for each
experiment we highlight the differences and similarities of the results, as well as
highlighting other notable properties. Each of the experiments is done 8 times to
get a stable measurement value, unless otherwise mentioned. Because testing the
combination of all possible settings is impossible, and the influence of individ-
ual settings would be hard to see, most experiments refrain to adjusting a single
setting and looking at its influence.

7.1 Influence of settings on fitness

7.1.1 Influence of Genetic Operators

In the following experiment, we try to discover the failure rate estimation algo-
rithm for all of the different types of genetic operators we have: random search,
old operators (the default Grammatical Evolution operators), tree operators, and
tree operators with pattern detection with the 10 best programs as a training set
(see Section[4.3). Our expectations are that the random search operator will per-
form the worst, followed by the simple operators. It must be noted that we do
not know this for a fact. Random search starts each generation with a clean sheet
of programs, giving it the possibility to land upon a good program many times,
while the simple operators (while not very capable) can refine good solutions to
come up with better solutions. Obviously, both have some advantage over the
other, so it is hard to say which one will be better in the end.

63
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population size 150
number of agents per program | 50
simulations per program 8
fitness evaluation median

number of runs per experiment | 8

Table 7.1: experiment settings for the discovery of a failure rate algorithm

population size 50
number of agents per program | 20
simulations per program 8
fitness evaluation median

number of runs per experiment | 8

Table 7.2: experiment settings for the discovery of an ant foraging algorithm

For both tree operators, we expect the ones with pattern detection to outper-
form the operator without pattern detection. We expect this because the pattern
detection should maintain viable program structures, and focus the operators to
change other parts of the program in order to enhance the working of the good
programs. However, the downside of this pattern protection is that good patterns
that should be adjusted to become better, are protected too well, and thus it will
not evolve as it should.

Experimental Results

This experiment was done with the settings in Table After having run the
experiments described above (Figure[7.1) we can see a few interesting things. The
first one is that the old operators almost outperform the best genetic operators:
the tree operator without pattern detection. We find this somewhat surprising
because when we analyzed the old operators in Section we expected it to
break the programs so often, that it would not be able to much better than ran-
dom search. One possible reason that the old operators have a more loosely
coupled genotype to phenotype mapping, as explained in Section [4.2.4] With this
advantage it might be able to develop the structures needed to solve the problems.

Another interesting finding is that the tree operators with pattern detection
are outperformed by tree operators without pattern detection. This could be the
effect of the fact that it uses only the 10 best programs of the population as an
example for pattern detection. We test this more elaborately in Section [7.1.2]

A positive and expected finding is that the developed genetic operators easily
outperform random search. Random search was implemented in the same way
as the LHS-like mutation operator works (Section[4.2.3). It starts every time from
the root of a new program. In this way it creates random but syntactically correct
programs.
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An important note on this experiments is the population size. Even though 8
runs for each of the experiments show clear distinctions between the different
genetic operators, the results might be different for larger population sizes, when
the number of diverse programs is bigger. The recombination and refinement of
program parts might become more important and the difference between the old
operators and tree operators could change. The same accounts for the different
types of programs our framework can handle. In this experiment we have only
tested the discovery of the failure detection algorithm, but other algorithms could
perform differently with the genetic operators, changing the differences between
the different types of genetic operators.

7.1.2 Influence of training set size on pattern detection

To assess what the effect of pattern detection in the tree operator is, we have
conducted a test (Table that runs the same program with different training
set sizes. The level of pattern detection is determined by the number of programs
that serve as a training set for what patterns are good. The more programs that
are part of the training set, the more gradual the eventual edge weights will be.
Looking at the relationship between the experiment with no pattern detection
and the other experiments, it is hard to say on beforehand to which what is
mostly equal to no pattern protection. On one end, we have the pattern detection
with only the best program in the training set (Pattern Detection 1). If a pattern
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Figure 7.2: Average fitnesses for different training set sizes for pattern detection

exists in the best program, it will be protected against the crossover and mutation
processes. If however the pattern did not exist in that particular program, there
is no protection against crossover or mutation. On the other end, if all programs
in the population would serve as a training set, the patterns that are be protected
are the patterns that are most common throughout the whole population. The
question is how big a training set should be for achieving a helpful training set
size.

Experimental Results

This experiment was done with the settings in Table[7.1] The results of the exper-
iment described above are displayed in Figure We can see that only training
set sizes 20 and 40 of pattern detection are able to outperform the tree operators
without pattern detection. This indicates that a training set size close to 20 or 40
is an optimal setting of pattern detection for this particular experiment.

Also important, there is a trend visible that shows that the tree operators with-
out pattern detection are closest to the tree operators with pattern detection that
use a large training set. If the training set is large, there are a lot of different
patterns detected in the population of programs. This decreases the strength of
detected patterns because the strength is related to the dominance of the pattern
in the best programs. If there are many different patterns, the relative occurrence
of particular patterns decreases.
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This experiment confirms the thought that pattern detection and protection
can obstruct the search process rather than help it, but is helpful with the right
training set size. It should be noted that again, results may differ for different
algorithms. If the structure of a solution is important, protecting patterns can
become a more important feature, more protection can give a better result than
unprotected tree operators. Also, as noted in the previous section, the popula-
tion size is of importance, because a bigger population may result in more rich
structures, on which pattern detection can be of importance.

7.1.3 Influence of Population Size

In this experiment we investigate the influence of the population size on the
average fitness through multiple generations. We expect that a bigger population
size leads to a faster convergence, because the number of evaluated programs is
bigger, the variety in programs is bigger, and there is more space to crossover and
mutate programs for the next generation.

Experimental Results

This experiment was done with the settings in Table Figure [7.3| shows that
the bigger the population size is, the faster the convergence to a good fitness
happens. Also notable is that bigger population sizes start with a better fitness.
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Because the initialization process generates more programs for bigger population
sizes, the odds of finding a good program are already higher when the population
size is bigger. Since this “head start” possibly gives an advantage to the rest of the
generations, it is hard to conclude that bigger population sizes also have benefits
in generations following the initialization, but in general, we can conclude that
bigger population sizes are beneficial for the discovery process. In hard problems,
bigger population sizes can even make the difference between being able or not
being able to discover a solution.

7.1.4 Influence of Minimum Initialization Tree Depth

The initialization process in Genetic Programming should create a set of pro-
grams from scratch. This only happens in the first generation. The process has
two important parameters, minimum depth and maximum depth of generated
programs. The depth is in this case the number of steps that have to be taken to
get to a terminal (see Section for more information). The default initializa-
tion process used by Grammatical Evolution is called a Ramped-Half-And-Half
Initializer. This initializer is designed to provide an equal amount of programs
between the minimum and maximum initialization depth. Since the initializa-
tion process is important for the following generations, this can influence the
programs discovered throughout the whole run.

In the following experiment, we investigate the influence of the minimum ini-
tialization depth of programs on the fitness progress. We expect that if the mini-
mum depth is set too low, the initialization process will deliver programs that are
too simple, and the GP process will have problems finding a well suited solution.
On the other hand, if the minimum depth is set too high, a lot of programs of
which the depth is too low, will be disposed, and the population will lack vari-
ation. Consequently the GP process will again have problems finding a suited
solution.

Experimental Results

This experiment was done with the settings in Table In Figure we see
the positive effects of increasing the minimum tree depth, because the higher the
minimum depth, the faster the GP process converges to finding solutions. We
are however still convinced that setting a minimum depth too high is bad for the
initial population and the generations that come after it, but apparently a value
of 25 did not yet reach that threshold.

7.1.5 Influence of Maximum Initialization Tree Depth

We have also tested the influence of the maximum tree depth setting. Since the
initialization process tries to generate an equal amount of programs for depth
values between the minimum and maximum initialization depth, having a value
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too close to the minimum depth will create a population with very similar pro-
gram depths and structure. This is bad for the variety in the population, and
therefore we think that it will result in difficulties for finding a good solution.
Setting the value too high will try to force the creation of very “deep” programs.
If the initialization process fails to find these deep programs, the first population
will contain only a few (or no!) individuals. This will result in a lack of variety in
the population and consequently in problems of finding a good solution.

Experimental Results

This experiment was done with the settings in Table Figure[7.5|shows results
that are different than our intuitions about this experiment. The experimental
results for maximum tree depth 40 could show that the initialization succeeded
in finding varied populations (the experiments were repeated 8 times), and hence
finding good solutions. However, the results for maximum tree depth 60 and
higher do not support this statement. The idea that picking a maximum tree
depth too small is bad for the population is also not supported by the experiments.
Hence there is nothing we can conclude on the influence of tree depths on the
fitness, and we should run more experiments to be able to do this.
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7.2 Granularity of building blocks

In this experiment we test the influence of the granularities of building blocks,
we have done a test in which we take a set of building blocks (level 1), and test
how well they perform in finding the given goal. Then we cut the building blocks
into more granular building blocks (level 2) and test how well these perform in
finding the goal. Cutting up these building blocks is done by taking a predefined
value out of a building block and making it a parameter, such that the GP process
has to try to find the right parameter to succeed.

We expect that the difficulty of converging to a good fitness is a lot higher with
the level 2 blocks,

Experimental Results

The algorithm we did this experiment with was churn detection with a popu-
lation size of 200. Unfortunately we were only able to do 4 runs for the level
1 building blocks, and 3 runs for the level 2 building blocks, so the results are
not considered stable. However, Figure [7.6| clearly shows that level 2 has more
difficulty finding the right goal. In the last generations, we can see that the ex-
periment for level 2 building blocks improves the result, but it is having a very
hard time doing this. We will need to work with larger population sizes to get
results similar to the results for level 1 building blocks.
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Figure 7.6: Average fitness for different granularities

7.3 Ability to discover new programs

An important property of genetic operators is how well they are able to explore
the search space. To assess this property, we have measured how many programs
are on average evaluated for fitness in each generation for each type of genetic
operator. Since the MetaCompiler caches results for already evaluated programs
in one Genetic Programming run, finding a new program in generation N means
that it was not found in the N — 1 generations before it.

7.3.1 Different genetic operators

For this experiment, we expect random search to find the largest amount of pro-
grams on average, because it does not try to modify “legacy” programs that could
restrict its search for programs. We expect the old operators to find about the
same number of programs as the tree operators, because they both have “legacy”
programs that they modify without a bias towards grammar rules. Lastly, we
expect the genetic operators with pattern detection to be somewhat restricted in
their search process, and thus to find fewer programs because they are biased to
modifying only parts of a program, more often resulting in duplicate programs
than more unbiased genetic operators.
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Figure 7.7: New programs discovered in each generation for different genetic
operators

Experimental Results

This experiment was done with the settings in Table Figure|7.7|shows the re-
sults for the different types of genetic operators. The first thing to notice is that
except for Random Search, all the other operators seem to find a reduced amount
of new programs in the second generation. We think this is due to the initializa-
tion phase, that fails to generate a lot of programs on itself (see Section [4.1), and
probably mutation and crossover take some time to come up with totally new
programs afterwards.

We notice that Random Search has overall the most steady number of new
programs, however it is unexpectedly outperformed by the tree operator in the
number of new programs that were found. Even though the tree operator only
shows a very small victory in Figure we find it interesting that the tree op-
erator is able to come up with a lot of programs every generation, because it is
good for the diversity of the population, and the exploration of the search space.
This is different from what we see from the old operators, that are less successful
in coming up with new programs, from which we can conclude that it is bounded
too much by the “legacy” programs it has to evolve from.

As expected, the genetic operators with pattern detection are more restricted
in exploring the search space.

One pragmatical note we want to make is that since the tree operators come
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Figure 7.8: New programs discovered in each generation for different training set
sizes

up with more programs, runs with the tree operators usually take up a lot more
time because many more unique programs have to be evaluated.

7.3.2 Influence of training set size on discovering new programs

We have tested for seven different training set sizes for pattern detection. We ex-
pect that the number of discovered programs will become less whenever pattern
protection is stronger, since the GP process is not allowed to change every part
of the program, restricting the search space.

Experimental Results

This experiment was done with the settings in Table[7.1} In Figure[7.8] we see the
results for different training set sizes. We see that having pattern detection based
on less programs, making the detected patterns stronger, restricts the searching
process. Even though this is effect is not perfectly clear, a correlation is visible.

Another important difference that is apparent from the graph, is that the ge-
netic operators without pattern detection are the only operators that show an
upward trend towards discovering new programs. For the other operators, there
seems to be a correlation between the strength of the pattern detection and the
downward trend in finding new programs.
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Figure 7.9: Average program complexity for different population sizes

7.4 Program Complexity

One aspect of programs in the Genetic Programming process that usually changes
throughout a run is the program complexity. The MetaCompiler measures pro-
gram complexity by counting the number of nodes that are necessary to encode
it into a tree (see Section [6.5). In the following sections, we assess the influence
of different settings on the program complexity, and how it evolves over time.

7.4.1 Influence of population size

Since the initialization process does not create very complicated programs, the
crossover operator creates more complex programs, unless the very simple pro-
grams have an especially good fitness. If the solution the MetaCompiler is search-
ing for is a complex one, having a bigger population size helps increasing aver-
age complexity of programs in a population faster. It is unknown whether the
population size influences the complexity if the solution does not require a very
complex solution, possibly it will converge to the required complexity faster.

Experimental Results

This experiment was done with the settings in Table[7.2] In Figure[7.9] we see the
influence of the population size on the program complexity for the Ant Foraging
problem (Table [7.2). There is no visible relationship between the population size
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and the complexity of the programs. Instead, each of different experiments for
different population sizes stabilizes at another program complexity, not related to
the population size (100-300-200 in order of increasing complexity).

7.4.2 Influence of initialization tree depth on complexity

In this experiment we vary the minimum initialization tree depth to see how that
influences program discovery. Our expectation is that using a minimum depth
that is too low will deliver too many simple programs, and hence the discovery
process in the following generations will have problems discovering more com-
plex programs. On the other hand, when having a minimum depth that is too
large, the variety of programs will suffer, because the initialization process only
accepts programs with a depth that may be difficult to reach in the grammar.

Next, we vary the maximum initialization depth, that provides an upper bound
for the depth of programs provided by the initialization process. As mentioned
above (Section[7.1.4), the initialization process tries to provide an equal amount of
programs for all depths between the minimum and maximum initialization tree
depth. Setting the maximum depth too close to the minimum depth will result
in very similar programs, resulting in a population that lacks diversity and con-
sequently exploratory power. Hence it is recommended to leave enough space
between the minimum and maximum depth. Setting the maximum depth too
large however might give problems for the initializer to come up with programs
that are in the larger spectrum of tree depths. When this fails, the default im-
plementation of the GP library is to return no program for that depth, resulting
in a population that is only partially filled with programs, because it did not add
programs for depths that were too large. This results in a population that lacks
diversity, so it is important to pick the right maximum depth.

Experimental Results

This experiment was done with the settings in Table In Figure we see
a clear relation between the minimum tree depth and the average program com-
plexity. Hence, if it is expected that a fitness function set by the user can only be
acquired by complex behavior, it is important to pay attention to the minimum
initialization depth. It must be noted that the evolution of program complexity
throughout the generations is also very dependent on the fitness function The
influence of the minimum initialization depth on the program complexity is un-
mistakable.

In Figure [7.11] we see the influence of the maximum tree depth setting. Even
though it takes a number of generations to display, there is a clear inverse rela-
tionship visible between the maximum depth and program complexity. A pos-
sible explanation for this is that the initialization process had difficulties finding
programs with depth > 40, or maybe already for depth = 40. Hence, the higher
the value of maximum depth, the less programs were discovered by the initializa-
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tion process, which has consequences for the discovery of programs in following
generations.

7.5 Execution Time

An important aspect of every Genetic Programming process is the execution time
of an experiment. Since every experiment has multiple runs x multiple genera-
tions X multiple programs to evaluate X number of evaluations per program, the
execution time of an experiment quickly grows. Clearly, the time of evaluating
a program is the most dominant here, so it is interesting to look at the cost of
evaluating one single program.

7.5.1 CPU Dispatcher

The CPU dispatcher is the most straightforward method to evaluate programs
with the MetaCompiler. For each separate program, it uses a so-called NetLogo
headless workspace (i.e. a version of NetLogo without the overhead of a graphical
user interface), to run the code. Since it is impossible to run multiple programs
in one headless workspace, a new one has to be instantiated for every program
execution, even if one program is executed multiple times in order to get a stable
measurement. We suspect there is a lot of overhead in this instantiation. Also,
the static methods that are imposed by the user are part of the overhead execution
time, because they are called regardless what the Genetic Programming process
has generated. See Section [5.2] for the structure of a program generated by the
MetaCompiler.

The following data was extracted from the experiment investigating the influ-
ence of initialization tree depths in Ant Foraging (Section[7.4.2|and Table[7.2). We
compare the execution times of programs of different complexities in order to see
the impact of program complexity and workspace instantiation overhead on the
execution time. To get a fair measurement, the execution times of this experiment
were measured on the same machine (2GHz Intel Core i7), that was not running
other heavy tasks at the moment of execution. The values were calculated by tak-
ing the total execution time of one generation divided by the number of program
instances ran in that generation, to spread the overhead of the Genetic Program-
ming process over multiple instances to make it insignificant. Because both the
execution time and the complexity are not reproducible, the values are the values
were not measured multiple times as in other experiments.

Experimental Results

In Figure[7.12|we see the overhead imposed by instantiating the headless NetLogo
workspace. We see that the minimal cost to run a program with low complexity
is about 350ms. If we consider an experiment with 8 runs x 20 generations x 200
programs to evaluate per generation on average X 8 evaluations per program X
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350ms workspace instantiation, this overhead execution time already amounts to
more than 180 minutes for that experiment.

The relationship between execution time and program complexity is also clearly
visible. For the most complex programs the execution time doubles. Since other
experiments in this chapter have already shown the complexity of programs can
be influenced by other settings, the execution time is also indirectly influenced
by other settings.

It must be noted that the discovery for Ant Foraging is a relatively lightweight
program to execute, it has no time consuming static methods, and the methods
that can be used by the MetaCompiler to generate a program are also not heavily
time consuming. Other examples like Failure Detection and Churn Detection take
considerably more time to run, especially due to time consuming static methods.
In these cases, the relative amount of overhead will be even bigger than for Ant
Foraging, having a vast influence of the execution time of an experiment.

7.5.2 Distributed Dispatcher

In this experiment we assess the runtime of the distributed dispatcher as opposed
to the cpu dispatcher. The decreased runtime is only one of the advantages of the
advantages of the distributed dispatcher, but it would be nice to see it at work.
Because at the time of the experiment there were only 9 clients connected, and
there is overhead in the communication process of servers and clients, we do
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Figure 7.13: Average program complexity for different population sizes

expect a decrease in runtime, but not an enormous difference.

Experimental Results

This experiment was done with the settings in Table with 4 runs for the
distributed dispatcher, and 1 run for the cpu dispatcher. It must be noted that the
cpu dispatcher is much more stable in terms of runtimes (small overhead of task
delegation etc.) so doing 1 run suffices. At the time of running the distributed
dispatcher, there were 9 active clients connected to the network and no other
servers, so the clients were only running this experiment.

The experiment with the cpu dispatcher was conducted on a 16 core using its
full capabilities. For the distributed dispatcher, the clients only use N/2+ 1 cores
in order to try to keep the machine usable for the user running it.

In Figure we can see that the distributed dispatcher has better runtimes
than the CPU dispatcher. What is also interesting is that the distributed dis-
patcher shows a spike at the second generation. This is due to the fact that the
second generation usually has a small number of programs, and the distributed
dispatcher has some overhead in distributing the programs and waiting for re-
sults. The spike occurs because this overhead time is divided over running only a
few programs in that generation as opposed to many in the other generations. We
think that overall this is a very nice and promising result, especially because the
communication process can be optimized much further, making it more efficient.
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CHAPTER 8

Discussion

This chapter gives an overview of the points open to discussion. As these points
are highly related to the major topics of the thesis, they are organized per topic.

8.1 Distributed Algorithms for Large Scale-Systems

8.1.1 Simulation realism

As already noted in Section|[5.3] there is a lack of realism in NetLogo simulations.
By having a deterministic way of traversing over all the nodes and executing
their code sequentially, we miss the aspect of chaos that is inherently important
for large-scale systems. This is not to say that NetLogo does not produce random
behaviors. The factors that are currently random in our simulations are espe-
cially the distribution of nodes in a virtual field, and the initialization of state
variables (either global or local) that are set to be random by the user. We already
do multiple experiments per program we execute because of these random fac-
tors, but if we were to replace NetLogo by a more realistic simulator, we would
probably have to do more experiments per program to get a stable measurement.
Nevertheless, the framework is designed to be agnostic to the kind of simulator,
making this a nice possibility to extend the MetaCompiler.

8.1.2 A unified language for Large-Scale Systems

One yet unaddressed point of discussion is the lack of a unified way to express
goals (i.e. the fitness function), and building blocks for the MetaCompiler. Dur-
ing the work we have done on the MetaCompiler, we have often used existing
distributed algorithms like the ones mentioned in Section [5.3|to test the system.

81
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Even though we have worked to define the field of computing for which we want
to generate algorithms, we were never able to achieve a generic language to ex-
press the building blocks or fitness functions.

Why is this important? The envisioned goal for the MetaCompiler is to provide
a very high level interface for algorithm designers to define a global goal, and let
the framework generate a local program to achieve this behavior. However, right
now implicit knowledge of the algorithmic building blocks is needed to define
the fitness function. For example, what variable is adjusted by a building block,
such that we know what variable to ask for in the fitness function. Also, the con-
nectivity between building blocks suffers from the lack of a common language. If
we build a library from all the building blocks defined in the examples, we could
make a fitness function that describes behaviors of all of the examples by joining
the example specific fitness functions together in one function.

However, it would already be a lot harder to define something that is not yet
covered in the examples but possible with the building blocks. The algorithm
designer would have to look up the variables used by the examples. This al-
ready defeats the global-to-local purpose because the designer has to use his own
knowledge of the local algorithms. For somebody who has no knowledge of the
building blocks, also a targeted user of the MetaCompiler, it would be impossible
at this moment to provide the framework with a global goal.

Even though we have not been able to solve this problem, we think it should
be possible to design a library of building blocks that are more coherent than the
current examples. For example, a library of building blocks that is focused on the
subject of movement and positioning could provide a lot of building blocks re-
garding movement actions and information about the position of a node relative
to other nodes. This would already be helpful in solving geographical cluster-
ing problems, and the algorithm designer only has to have knowledge of a few
keywords used by this library.

In short, having a totally coherent way of defining global goals and consistency
between building blocks may be difficult, but it should be possible to do better
than the current state of the examples we use.

8.2 Genetic Programming

8.2.1 The problems of defining a good fitness function

One of our most profound challenges in using the framework we created, has
been to design fitness functions that guide the search process well. Whenever we
managed to design a fitness function that worked, it became more apparent that
there is nothing magical about a good fitness function. It is mostly trading in the
task of designing local behavior for designing and refining the global behavior,
because there are often aspects in the generated result the designer did not fore-
see in the first iteration. This is however not in contradiction to the goals of the
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MetaCompiler, and after all there is no such thing as a free lunch[57], but it takes
some time getting used to.

The difficulty of defining a fitness function has multiple reasons, described in
the following sections.

It’s an iterative process

As mentioned above, the MetaCompiler will often come up with a solution that
contains aspects you would not have thought of in the first iteration, in other
words a program with a good fitness is not good per definition. Designers can
refine the fitness function and try it again. The problem here is that the Genetic
Programming process at this moment takes too long to run, making iterating a
bit of a cumbersome process. A positive aspect of these iterations is that they are
very insightful for the designer, often the results are logical consequences of the
provided global goal. If experiments could be done in less time, we think these
iterations on the fitness function are no problem and maybe even good for the
designer.

A good fitness function is often multi-objective

As described above, a good fitness function is often a collection of wanted and
unwanted behavior captured as a single goal. The fitness function does however
return a single value for all of the subgoals combined. This creates a problem be-
cause if in program 1 only subgoal A scores well, and in program 2 only subgoal
O scores well, we are effectively comparing A and O when we express every-
thing in one value. It is the problem for the designer to decide how the different
subgoals are weighed against each other, while he probably wants to achieve all
goals instead of prioritizing them. To solve this problem, we should use a tech-
nique called Multi-Objective Optimization, which recognizes there are different
subgoals, and tries to optimize all of them instead, maintaining a diverse popula-
tion, which is good for program discovery.

Some things are not a gradient

Genetic Programming (and other EC strategies) work best if they can gradually
work towards a solution. In this way there is direct feedback to the GP process
whether the mutation or crossover it just did worked or not, and it can gradu-
ally move to a better solution. Often times however a goal is just boolean, it is
achieved or not. In these cases it is hard for Genetic Programming to have a clue
whether it is close to finding the good solution and it will possibly never find
it. The designer is left with the task to try to define a gradual value to solutions
that are not good but close to achieving the goal. The problem here is that even
though this could sometimes be possible, this challenge may lead the designer to
think about the local behavior rather than the global behavior, which is of course
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not the intention of the MetaCompiler, where designers are ought to think about

the global behavior.

8.3 Genetic Programming Enhancements

8.3.1 Initialization

Our initialization tactic of optimizing for size before optimizing for functionality
(Section had some issues. We discourage its use but recognize that there
are still problems with the initialization process, as can be seen in Figure
and Figure Resolving these issues would be good for the diversity of the
population and hence the overall results generated by the MetaCompiler.

8.3.2 Tree-based operators

We strongly believe that our tree based operators are better at fulfilling the func-
tions of crossover and mutation. The experiments have however not convinc-
ingly shown that this is true or that it results in better fitnesses. The only reason
we know for this difference is the lack of an advanced genotype-phenotype map-
ping (Section [4.2.4), so we should add this to the genetic operators and test the
performance again to see if they match our expectations better, or that there are
other problems.

8.3.3 Quality of pattern detection

The experimental chapter has shown that the way in which the MetaCompiler
does pattern detection and protection is in some cases helpful for the process of
achieving a better fitness, but it is very dependent on the size of the training set.
If the size of the training set is not at its optimal setting, the experiments have
shown that using pattern detection causes more damage than it does good.

It is nice that our simple implementation of pattern detection has shown to
have worked, but we would need to do more testing to obtain guidelines for how
to use it. We would have preferred to use a scientifically proven, and thoroughly
tested method if it would be applicable in our framework, but we were unable
to find it in literature. Also, the fact that our pattern protection approach only
uses the current population as a knowledge base is something that could probably
be improved upon by building up a knowledge base of well performing patterns
in other problems, with a side note that well performing patterns may be very
problem specific, in which case that would not work.
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8.4 Implementation

8.4.1 A year of iterative implementation

The first and only take on the MetaCompiler has been under development for
almost a year. The good thing is that the initial design is still nearly the same.
Because we have built the MetaCompiler mostly upon EpochX, and EpochX is
built for extension, we were able to extend especially the GP part without hav-
ing to write dirty code. Also almost all of the statistics we gather were already
embedded into EpochX, and the statistics that were specific to the MetaCompiler
were easily added to EpochX.

What the code does need is a descent cleanup. Especially the first phase of the
project, where (because the design was already known) many parts were built
in parallel, resulted in a lot of code put together in only a few classes. In the
following phases, a lot of tweaks were incrementally added to the code following
our experiences with early versions of the MetaCompiler. It would be good for
the future if the functionality was split up in well-defined modules, now that the
tweaking phase is over. Because of the very specific nature of the MetaCompiler,
we do not believe that these modules will ever be off-the-shelf modules for other
projects, but it will merely help in maintaining the code. The parts that were
added to the MetaCompiler later, like the new operators, pattern detection, and
the distributed dispatcher, have been built up more modularly, so they need no
extra attention.

8.5 Experimental Results

8.5.1 Search space

Since the MetaCompiler takes an holistic approach to algorithm design, it will
have to search through a combination of many building blocks to find the right
solution. In our examples, we used sets of building blocks that were relevant
to discovering the algorithm the example was targeted at. The experiment in
Section shows that finding a combination of the right building blocks can
be difficult. We expect that we will have to work with very large population
sizes in order to generate real world solutions, in which there are many building
blocks available for the MetaCompiler to use. Fortunately we have already found
a way to fully parallelize the evaluation phase of a population with the distributed
dispatcher (see Section [8.5.2), so with enough computers to back up this process,
having large populations is feasible.

8.5.2 Execution time

In the experiments, we have shown that the current execution times of the Meta-
Compiler are still too high, and increase drastically with problem complexity,
population size, the number of generations, and the number of runs. Because
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every generation is dependent on the previous generation, different generations
are not parallelizable, but everything within one generation is, and separate runs
of the GP process are as well. The distributed dispatcher already parallelizes pro-
gram executions within one generation, but at this point the overhead of com-
munication is still too high to make a profound difference. Since there is still a
lot of room for optimization in the distribution process, this approach remains
promising. Also, execution of experiments on the GPU is in the making. We ex-
pect that reducing the execution time of the MetaCompiler will change the user
experience, and is very important for making it an interesting and accessible tool
for designers.

8.5.3 Abundance of Parameters

The MetaCompiler offers a number of settings that can be adjusted by the user,
and the experiments have clearly shown is that each of these settings is of very
big importance to the search process. The experiments were deliberately done
on each parameter separately, to show their influence, but when using the Meta-
Compiler, we will have to set all parameters at once. Foreseeing the influence
of that particular combination of settings is very hard, especially for a novice
user like a designer, which is in the end the envisioned user for the MetaCom-
piler. In addition, the settings are also very dependent on the problem at hand,
complicating the parameter issue even more.

We think that adding automatic parameter tuning would help the user be-
cause the MetaCompiler would be able to automatically adapt the settings in
order to achieve a good solution without user intervention. The problem with
automatic parameter tuning is however that it will increase the runtime of the
MetaCompiler because multiple parameter configurations are tested to see which
one works best. Automatic parameter tuning remains interesting, but will only
be really useful if the runtimes of the MetaCompiler are drastically decreased.



CHAPTER 9

Conclusions and Future Work

9.1 Conclusions

The main goal of this thesis was to develop a global-to-local compiler for gen-
erating distributed algorithms for large-scale systems. We have done so by inte-
grating Genetic Programming and large-scale system specific algorithm design.

For Genetic Programming we have used the Grammatical Evolution approach
because of its flexibility and adaptivity in creating arbitrary target languages. To
target our global-to-local compiler to large-scale systems, we have written a cus-
tom language that can be used to describe typical algorithms designed for these
kinds of systems. In combination with Grammatical Evolution, we are able to ex-
plore the search space of these algorithms, creating solutions that are specifically
applicable to large-scale systems.

To increase the usability of the glocal-to-local compiler, we have enhanced
the Genetic Programming process in three major ways: The first enhancement
is the use of new genetic operators that are used to evolve populations through
the Genetic Programming process. Since the new genetic operators are a better
match to the structure of the generated programs than the old genetic operators,
they are able to find new programs more intelligently.

The second enhancement is a pattern detection algorithm that works on the
generated programs. It serves to protect valuable structures in good programs,
and to diverge the search to enhance other structures. The experiments have
shown this can indeed enhance the search process, in order to find better pro-
grams more quickly.

The third enhancement is a way to offload the computing power Genetic Pro-
gramming needs to evaluate programs to other computers. This helps to decrease

87
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the computing time immensely, and makes the process resilient to individual ma-
chine failures, two very important properties when using Genetic Programming.

In conclusion, we have created a full global-to-local compiler generating dis-
tributed algorithms for large-scale systems, and we have optimized it to be usable
by algorithm designers. We have achieved a holistic approach, allowing the algo-
rithm designer to be agnostic to the algorithm specifics, increasing the speed of
algorithm design, but never at the cost of flexibility.

9.2 Future Work

The work we have done allows for future work in a couple of directions.

To better establish that the global-to-local is fit for real-life applications there
needs to be more testing.

The first scenario to test is trying to invent new algorithms with the global-to-
local compiler. We have tested a number of existing examples to test our frame-
work, but we have not yet had an idea for a new algorithm we wanted to discover.
Trying to do this may give more insight on how to make well connecting building
blocks, and the computing power that is needed to develop advanced algorithms
with these building blocks.

Another interesting test is to see how well discovered algorithms run on real-
life hardware. Since the Snowdrop project has already brought forth a hardware
platform to run large-scale applications, this is perfectly possible. To fully au-
tomate this process, the next step can be to automatically translate generated
programs into programs for the target platform, something the global-to-local
compiler is designed to be able to do.

Another part that needs more testing is the pattern detection mechanism we
have built. The experiments have shown that pattern detection can be of advan-
tage, but only in some cases. To be really useful, we need to know when, and
on what kinds of algorithms the pattern detection works well in order to benefit
from it.

This also extends to other parameters for the global-to-local compiler, and thus
automatic parameter tuning is a good feature to build into it.

Since computing time is always valuable time, every attempt for decreasing
this time helps to make the global-to-local compiler a more usable and hopefully
popular tool.
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