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Summary

The goal of this thesis research has been the improvement of a validated, robust low-thrust
optimization tool for interplanetary trajectory design, written during the author’s internship.
This improved tool has then been applied to design crewed Martian flyby missions. Such
a mission is a crucial step within the flexible path scenario for human and robotic space
exploration, formulated “in support of the Exploration Beyond LEO committee of the Review
of US Human Space Flight Plans Committee commissioned by President Obama” [Korsmeyer
et al., 2010]. This mission would provide critical experience in preparation for a Mars landing
without the actual risk of the landing itself. Several technologies could be validated on this
kind of mission such as new countermeasures for radiation shielding, better regenerative life
support systems, further investigation of the effect of deep-space isolation on the human
psyche, etc.

This thesis was the follow-up of previously conducted research during the author’s internship
for which a basic Sims-Flanagan based low-thrust optimization tool was written. The first
goal of this thesis was the improvement of this existing code. Therefore, the code has been
extensively profiled and analyzed to identify and remove bottlenecks. Furthermore, advantage
has been taken from the sparsity of the Jacobian to further decrease the run time. Depending
on the scenario, gains in run time of up to a factor 10 have been observed. Additionally,
different representations of the Sims-Flanagan transcription have been investigated. It was
found that compared to a throttled representation, the classical thrust representation is slower,
but more robust.

The second goal of this thesis was the addition of time-optimization capabilities. Therefore,
methods to analytically derive the Jacobian elements with respect to time have been estab-
lished. However, numerical difficulties arose from this method. To circumvent this problem,
a forward finite-difference method has been written. Furthermore, several representations
to couple ephemeris to time have been set up and compared. These time-optimization ca-
pabilities have been tested on Earth-Mars-Earth flyby missions launching in 2018. Based
on previous results, those time-optimization capabilities could be validated for two different
objective functions: minimized launch mass and maximized final mass. Finally, the latter
objective function has been selected for this research.



vi

The third goal of this thesis was the automation of the addition and optimization of additional
legs. Therefore, automation algorithms have been set up throughout the program. These and
the previously established time-optimization capabilities have been tested on Earth-Venus-
Mars-Earth flyby missions. During these tests, issues with local optima arose. Therefore, a
multi-start method has been implemented and tested. This multi-start method circumvents
the majority of those local optima issues.

Using the added and validated capabilities, several launch windows for crewed Martian flyby
missions have been identified for different SEP power levels, different launcher configurations
and different payload masses in 2018, 2019 and 2021. In addition, an opportunity for a crewed
Venus and Martian flyby mission has been identified launching in 2021.
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Chapter 1

Introduction

Mankind has always been fascinated with our planetary neighbor Mars. A long history of
speculation about life on Mars exists. When the planet was mapped through telescopes, a
series of what looked like channels were observed [Schiaparelli, 1895]. It was thought that
these were dug out by an intelligent life form. Furthermore, before the first flybys of the
red planet in the sixties, scientists were convinced that there was vegetation on Mars. This
belief was based on Mars’ spectrum in the near infrared, which appeared to show signs of
chlorophyll [liveScience, 2012]. This belief in alien life forms on Mars was further intensified
by science fiction. Remember for instance the famous radio play ‘The War of the Worlds’ by
Orson Welles in 1937. However, after almost 60 years of satellite and robotic exploration of
Mars, the question of life on Mars and many others remain unanswered.

Another source of fascination for Mars lies within the very nature of mankind itself. Since
the dawn of mankind, humans have always had the urge to explore, which has made us leave
Africa’s cradle and sail the oceans. This resulted in human presence on each continent, even
Antarctica. Through the ages, technology enabled us to go faster and further. We developed
steam boats, cars, planes and even spacecraft. The latter enabled us to set foot on the Moon
in the late sixties. The logical big next step seems to be the human exploration of Mars.

To achieve this goal, some trajectory design problems must be overcome to which the author
would like to contribute. During the author’s thesis work, the trajectory for a crewed Solar
Electric Propulsion (SEP) flyby mission to Mars will be designed. Such a mission would
provide critical experience in the preparation for a Mars landing without the actual risk of
the landing itself. Several technologies could be validated on this kind of mission such as
new countermeasures for radiation shielding, better regenerative life support systems, further
investigation of the effect of deep-space isolation on the human psyche, etc. The motivation
to fly a crewed Martian flyby mission will be elaborated further upon in Chapter 2.

No mission can be designed without “standing on the shoulder of giants”. Therefore, Chapter
3 will investigate previously flown or designed low-thrust missions. This chapter will also
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investigate different forms of SEP systems and will give an overview of important SEP-related
concepts along with an overview of realistic capabilities of SEP.

As this thesis work is a follow-up study, the previous research will be introduced in Chapter 4.
The utilized method, the Sims-Flanagan low-thrust transcription, will be described in Chapter
5. The developed tool has three main modules: the propagation module, the constraint
module and the Jacobian module which will be discussed in Chapters 6, 7 and 8 respectively.
Readers familiar with the Sims-Flanagan method can skip Chapter 5 upto 8. This will be
followed by a discussion on the main results from this previous work in Chapter 9. From this
discussion, the main thesis goals can be derived in Chapter 10.

The first research goal that will be identified is the improvement of the previously written
code. Therefore, in Chapter 11, bottlenecks in the existing code will be identified and removed
to improve the run time of the code. In Chapter 12, a comparison between two different
representations of the Sims-Flanagan transcription, throttled versus thrust representation,
will be made and one representation will be selected.

The second identified research goal is the addition of time-epoch optimization capabilities.
Crucial for time of flight optimization is the proper connection between time and ephemeris.
Therefore, in Chapter 13, two options to couple time and ephemeris will be set up and
compared. After this chapter, the structure of the state vector and the constraint vector,
and hence of the Jacobian, will be fixed. Hence, the sparsity of the Jacobian can then be
implemented to further reduce the run time of the code. This will be done in Chapter 14.
Finally, the added capabilities will be tested and validated in Chapter 15 on an Earth-Mars-
Earth flyby mission. This will be done for two different objective functions, after which a
comparison between them will be made and one objective function will be selected.

The third identified research goal is the automation of the addition of extra legs. Therefore,
several different types of control nodes will be set up in Chapter 16. The entire problem
structure including the state vector set-up and propagation, constraints and Jacobian set-up
and calculation will then be automated based on the type of control nodes and the number of
legs in an input file. This automation will be tested on an Earth-Venus-Mars-Earth scenario
in Chapter 17 combined with an additional test case for the time-optimization capabilities of
the tool. In this chapter, problems due to convergence on local optima will arise. Therefore,
it also explains the implementation of a multi-start method to overcome these problems.

Throughout the performed research, continuous validation effort has been performed. Chapter
18 will summarize these efforts. Then, Chapter 19 will show how the previously added and
validated capabilities have been used to generate the final results. Here, launch windows
identified in Chapter 9 are elaborated further upon by making the total time of flight variable.
Furthermore, a scenario with a Venus and Martian flyby will be discussed. Chapter 20
will summarize the conclusions. Finally, Chapter 21 will identify future work and will list
recommendations on how to realize this suggested work.

Besides applying and testing the written code on crewed Martian flyby missions, the tool
has also been extensively used during the 7th Global Trajectory Optimization Competition
[Casalino and Colasurdo, 2014]. Appendix H introduces the problem, explains how it provided
an additional test bed for the tool and how the tool has been used to find a solution.
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Chapter 2

Mission motivation

In 2009, a flexible path scenario for human and robotic space exploration was formulated
“in support of the Exploration Beyond LEO committee of the Review of US Human Space
Flight Plans Committee commissioned by President Obama” [Korsmeyer et al., 2010]. The
goal of this flexible path is to gradually increase experience in human exploration for missions
ranging from weeks to several years, which ultimately would enable a crewed Mars surface
mission [Korsmeyer et al., 2010]. The committee has identified a nominal sequence for this
flexible path exploration composing of 8 steps, listed in Korsmeyer et al. [2010]. Note that
all of these missions shown below are assumed to be crewed, except as noted.

1. An uncrewed circumlunar mission utilizing only the Orion Crew Exploration Vehicle
(CEV) and an in-space propulsion stage.

2. A circumlunar mission utilizing only the Orion CEV and an in-space propulsion stage.

3. A mission to the Earth-Moon L1 Lagrange point, to demonstrate the ability to perform
crewed operations and emplace and service assets stationed there.

4. A mission to the Sun-Earth L2 Lagrange point, to demonstrate the ability to emplace
and service scientific assets stationed there.

5. A mission to the Sun-Earth L1 Lagrange point for additional deep-space exploration
preparation (i.e. experience with the interplanetary radiation environment outside the
Earth’s magnetosphere, which is not the case at the Sun-Earth L2 point) and to emplace
and service scientific assets stationed there.

6. Several missions to rendezvous with NEOs of different composition (e.g. metallic, car-
bonaceous chondrites, etc.) for exploration, scientific instrument emplacement and the
return of samples.

7. A free return mission to Mars, with a flyby, but no major manoeuvring in the vicinity
of Mars.
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8. A mission to the moons of Mars (Phobos and/or Deimos) combined with the return of
samples from a robotic mission to the Martian surface.

The main step of interest for this thesis work is step 7, a Martian flyby mission. Such a
Martian flyby mission would be a reduced-risk crewed Mars mission. This mission would
provide critical experience in preparation for a Mars landing without the actual risk of the
landing itself [Korsmeyer et al., 2010]. Several technologies could be validated on this kind of
mission such as new countermeasures for radiation shielding, better regenerative life support
systems, further investigation of the effect of deep-space isolation on the human psyche, etc.

Besides governmental interest for a visit to Mars, a number of private companies have similar
plans. Based on the promising discussion of free-return trajectories to Mars discussed in Patel
et al. [1998] and based on flexible path step 7 describing a free-return flyby mission to Mars
[Korsmeyer et al., 2010], Inspiration Mars wants to perform a crewed Mars flyby mission
launching as soon as 2018 [Tito et al., 2013]. At the moment of writing, Inspiration Mars
only considers the use of chemical propulsion. Taking into account that this mission relies on
a very specific planetary alignment to achieve a feasible final payload mass, the next launch
opportunity would only be in 2031 [Tito et al., 2013].

Meanwhile, major improvements in Solar Electric Propulsion (SEP) are expected by the end
of the decade. NASA even states that the top technical challenge for in-space propulsion is
the “development of high-power electric propulsion system technologies to enable high ∆V
missions with heavy payloads" [Meyer et al., 2012]. This improvement in propulsion systems
could be used to aid the planetary exploration of Mars.

This research will therefore investigate how solar electric propulsion could be used to facilitate
crewed missions much like Inspiration Mars. This research will as such focus on Mars flyby
missions and will contribute to the trajectory design of Inspiration Mars or a similar mission.
Such a mission can be used as a test bed or a technology trigger to develop and test several
different new technologies that will later enable humankind to land on Mars, without having
the risk of the actual Mars landing.
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Chapter 3

Mission heritage and SEP systems

In this chapter, previous low-thrust missions will be discussed. This discussion will be followed
by an explanation of the working principles of solar electric propulsion. First of all, the
different types of low-thrust mechanisms and hardware utilized to produce the low thrust will
be discussed. Afterwards, a brief discussion on important concepts and current capabilities
of low-thrust systems will be given.

3-1 Previous low-thrust missions

In this section, previous low-thrust missions will be discussed. Each mission will be shortly
described in terms of trajectory, the method of trajectory design (if available), SEP capabilities
for this mission, etc.

3-1-1 Deep Space 1

The Deep Space 1 mission was the first mission to use ion propulsion as a primary form
of propulsion. During this mission, ion propulsion and 11 other technologies were validated
[Rayman and Williams, 2002]. It was planned for launch in July or August 1998, after
which it would perform an asteroid flyby on McAuliffe and perform a comet flyby on West-
Kohoute-Ikemura where it would arrive after 2 years. This trajectory, visualized in Figure
3-1, was designed with the Solar Electric Propulsion Trajectory Optimization Pro-
gram (SEPTOP), which optimizes the thrust profile, the magnitude and direction of the
manoeuvres, as a function of time. This initial estimate obtained by SEPTOP was then later
refined by the Computer Algorithm for Trajectory Optimization (CATO) [Rayman et al.,
1999]. The actual mission was slightly different: it was launched in October 1998, and flew
by asteroid 9969 Braille and the Borelly comet [Rayman and Williams, 2002].

An interesting feature of this mission that is also of importance for the crewed Mars flyby
mission is the notion that the power to the spacecraft was not constant due to its varying
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Figure 3-1: Planned trajectory of Deep Space 1, actual dates differ [Rayman et al., 1999].

heliocentric distance. This in combination with the required thrust profile for the mission
requires the engine to be throttled. Since the power, thrust and specific impulse are directly
related for a SEP system, as will be explained in Section 3-3, this power throttling affects
the thrust and the specific impulse of the engine. The engine selected for this mission could
be throttled between 525 and 2500 W for which it delivered 19 and 92 mN of thrust with a
specific impulse of 1900 and 3100 s respectively [Rayman and Williams, 2002]. For the mission
baseline mass of 480 kg, this thrust level translates to an acceleration of between 4.0 � 10�5

and 1.9 � 10�4 m/s2.

3-1-2 Dawn

Another groundbreaking mission regarding low-thrust propulsion is the Dawn mission. This
mission visits the two largest asteroids: Vesta and Ceres. The mission trajectory can be seen
in Figure 3-2. The trajectory was designed using the Mystic tool [Rayman et al., 2006].

Just like the Deep Space 1 mission, the engines were throttled. At the maximum power input
of 2.6 kW, a thrust of 92 mN is developed, while for 0.5 kW, the thrust is 19 mN. The specific
impulse ranges from 3200 to 1900 s [Rayman et al., 2006]. These numbers are quite similar
to those of Deep Space 1, as the ion engines for the Dawn mission were inherited from the
NSTAR engines validated during the Deep Space 1 mission. For the spacecraft mass of 1240
kg, this translates to an acceleration of between 1.5 � 10�5 and 7.4 � 10�5 m/s2.

3-1-3 Jupiter Icy Moons Orbiter

The Jupiter Icy Moons Orbiter (JIMO) mission is a canceled NASA mission, which was
designed to orbit Callisto, Ganymede and Europa. The immense ∆V budget required for
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Figure 3-2: Planned trajectory of Dawn, actual dates differ [Rayman et al., 2006].

this mission, which is in the order of 30 km/s, makes the use of a highly efficient propulsion
system necessary [Whiffen, 2003]. This mission relies on an engine which we are not yet
able to design. It had to deliver 3.353 N using 148 kW of power with a specific impulse of
9000 s. Using the mass estimate of 9 tons, the acceleration would be around 3.8 � 10�4 m/s2.
In Whiffen [2003], the trajectory design process, which has been done using the Mystic
tool, has been explained along with the difficulties that were encountered. One of these
difficulties was that multiple capture and escape trajectories around Jupiter’s moons had to
be included in order to enter and leave low-altitude science orbits around those moons [Sims,
2006]. This means that they had to optimize an interplanetary trajectory with a planet-
centered spiral trajectory. As such, there are large time and distance scaling differences,
which create difficulties for optimization. Furthermore, a multi-body force model had to be
included adding further optimization difficulty. However, the inclusion of multi-body force
models also has advantages: it can show opportunities to increase performance compared to
nominal two-body force models. To minimize the problems with optimization of this complex
trajectory, it was optimized in parts.

3-2 Solar Electric Propulsion mechanisms

For classical chemical propulsion systems, the propellant is at the same time the power source
through the chemical reaction and the medium that is being expelled [Wakker, 2010]. How-
ever, for electric propulsion, there is a separate power source with which the exhaust medium
is being accelerated [Wakker, 2010]. How this medium is accelerated depends on the type of
electric propulsion. In this section, the focus will be on Solar Electric Propulsion (SEP), as
other forms of power such as nuclear are currently inapplicable to space applications. There-
fore, several technologies listed in Table 3-1 require power levels that are not yet achievable
on spacecraft.
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3-2-1 Electrothermal

Electrothermal thrusters increase the enthalpy of the expellant, which is then converted into
kinetic energy using a nozzle [Fortescue et al., 2003]. Simply put, propellant is heated
electrically after which the hot gas can expand and accelerate through a nozzle [Wakker,
2010]. There are two main types of electrothermal propulsive systems: resistojets and arcjets
[Wakker, 2010]. In resistojets, the propellant is heated through electrically heating high-
resistance metal parts. Arcjets heat the propellant directly by passing it through an electric
arc discharge [Wakker, 2010]. The commonly used propellants for electrothermal thrusters
are hydrogen, nitrogen, ammonia and hydrazine [Fortescue et al., 2003].

3-2-2 Electrostatic

In electrostatic thrusters, the positively charged propellant particles (ions) are accelerated in
a static electric field between the ion source and accelerating electrode(s) [Fortescue et al.,
2003, Wakker, 2010]. After acceleration of the ions, the ions are neutralized using electrons
in the exhaust beam. This is necessary to avoid a negative charge build-up on the spacecraft
[Fortescue et al., 2003]. The ions can be created by electron bombardment or by passing atoms
through an extremely thin slit in an emitter in which an electrical field causes the propellant
atoms to become unstable and ionize [Wakker, 2010]. The most well-known electrostatic
thrusters are the Kaufman thruster, the Radiofrequency Ion Thruster (RIT) and the Field
Emission Electric Propulsion (FEEP) thruster. Common propellants are inert gasses such as
argon and xenon [Fortescue et al., 2003].

3-2-3 Electromagnetic

Electromagnetic thrusters use highly ionized propellant plasma [Wakker, 2010]. Crossed elec-
tric and magnetic fields induce a Lorentz force on this plasma, causing it to accelerate. Again,
after the acceleration, the ions are neutralized to avoid a charge build-up on the spacecraft.
Hall thrusters use the Hall effect to generate this electrostatic field. Magnetoplasmadynamic
thrusters use an electric arch discharge, pulsed plasma thrusters utilize the interaction be-
tween an electric arc current and a self-induced magnetic field. Pulsed inductive thrusters use
the interaction between a current and a magnetic field from a coil current [Wakker, 2010].

3-3 Characteristics

First of all, some major characteristics of low-thrust systems will be explained.

Thrust Thrust is the force that propels the spacecraft. The thrust T in a vacuum can be
calculated from

T � 9mVj (3-1)

where 9m and Vj are the mass flow and the exhaust velocity of the propellant respectively.
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Exhaust velocity and specific impulse As can be seen from Equation 3-1, the exhaust
velocity has a linear effect on the thrust. A parameter that has a similar effect is called the
specific impulse Isp.

Isp �
³
Tdt³
9mdt

� Vj
g0

(3-2)

where g0 is the gravitational acceleration at the Earth’s surface.

Quite often, the exhaust velocity and specific impulse are used as parameters indicating the
mass efficiency of the rocket as can be seen by rewriting the Tsiolkovsky equation:

Mf

M0
� e

�∆V
Vj � e

� ∆V
g0Isp (3-3)

with Mf and M0 the final mass after and the initial mass before the manoeuvre respectively.
From this equation, one can see that for a given ∆V, a higher exhaust velocity or specific
impulse results in a larger Mf{M0 fraction. Therefore, the greater the exhaust velocity or
specific impulse, the less propellant is required for a certain manoeuvre.

Power-related characteristics For chemical propulsion, the exhaust velocity is limited and
dependent on the type of chemical reaction between the propellants. For electric propulsion,
there is no theoretical upper limit on the exhaust velocity. However, in practice, the achievable
exhaust velocity is limited due to a limit in available power, as can be seen from the following
equation fromWakker [2010], which has been established by combining the law of conservation
of energy and the thrust equation in Equation 3-1:

Pjet � ηjetP0 � 1
2 9mV 2

j � 1
2TVj �

1
2Tg0Isp (3-4)

where Pjet is the jet power, the power of the exhaust jet, P0 is the electrical power supplied
by the power source at 1 AU and ηjet is the power conversion efficiency, also known as
the jet efficiency assumed to be 60% [Jacobson et al., 2005].

Since the available electrical power is limited, the exhaust velocity is limited as well. However,
to obtain a high mass efficiency, the exhaust velocity should be high. Therefore, SEP operates
at low thrust levels.

The mass of the SEP system MP0 can be estimated based on the value of P0:

MP0 � P0 � kP0 (3-5)

where kP0 is the power-to-mass ratio of the SEP system.

Trade-off between mass of the propellant and of the power system As has been explained,
a high exhaust velocity results in less propellant mass. However, to achieve higher exhaust
velocities, more power is required, which means an increase in power system mass. Therefore,
a trade-off needs to be done to determine the optimum mission exhaust velocity where the
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combined mass of the propellant and of the power system are minimal. This concept has been
visualized in Figure 3-3.

Figure 3-3: Trade-off between mass of the propellant and of the power system [Elvik, 2004].

3-4 Realistic values for Solar Electric Propulsion

Realistic values for different types of SEP have been listed in Table 3-1, categorized by the
type of thruster. Despite being based on a document from 2003, it is still accurate and lists
similar capabilities as the more recent source Oh et al. [2013], which shows the capabilities of
existing engines and is hence very specific. Therefore, it has been decided to show the more
general listing from Frisbee [2003].

Table 3-1: Capabilities of different Solar Electric Propulsion technologies [Frisbee, 2003].

Thruster Typical electric power range Isp (s) Vj (km/s)
Electrothermal

Resistojets 100s of W 300-400 3-4
Arcjets

Hydrazine kW 500-600 5-6
Hydrogen 10s of kW 900-1200 9-12
Ammonia kW to 10s of kW 600-800 6-8

Electrostatic (Xe propellant)
Gridded ion engines W to 100 kW 2000-10000 20-100
Stationary plasma thrusters 100s of W to 10s of kW 1000-2500 10-25
Thruster with anode layer 100s of W to 10s of kW 1000-4000 10-40

Electromagnetic
Magnetoplasmadynamic

Steady-state, lithium 100s of kW to MW 3000-9000 30-90
Steady-state, hydrogen >MW 9000-12000 90-120

Pulsed plasma thruster 10s to 100s of W 1000-1500 10-15
Pulsed inductive thruster 10s of kW 3000-8000 30-80
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Chapter 4

Introduction to previous research

Low-thrust trajectory optimization can be done using a multitude of different methods and
tools. A few examples are SEPTOP/VARITOP [Sauer, 2003], Sims-Flanagan/MALTO [Sims
et al., 2006], Mystic [Whiffen, 2006], etc, each with their own level of complexity and accuracy
[Polsgrove et al., 2006]. The previously performed research during the author’s internship re-
quired a tool to perform preliminary, proof-of-concept studies. Hence, the speed with which
the developed software could scan the search space was considered more important than the
level of fidelity of the method. Therefore, the usage of a fast, low-fidelity, low-thrust optimiza-
tion procedure was preferred. The selected optimization procedure is known in literature as
the Sims-Flanagan method [Sims et al., 2006]. The most well-known implementation of this
method is JPL’s MALTO tool. Due to governmental ITAR (International Traffic in Arms
Regulations) restrictions, the usage of MALTO is restricted to US citizens. Therefore, the
author implemented a self-written version of the Sims-Flanagan method based on the work of
Herman [2012]. For reasons that will be explained in the next chapter, the author developed
a, to his knowledge, new variant of the Sims-Flanagan transcription using a TNC coordinate
system instead of a Cartesian coordinate system. The developed code has then be validated
using existing low-thrust tools.

This previous research resulted in a conference paper entitled Preliminary Design of a Crewed
Mars Flyby Mission using Solar Electric Propulsion [De Smet et al., 2014]. The research
method and results of this previously conducted research will be explained in the next six
chapters: Chapter 5 will explain the utilized low-thrust optimization method: the Sims-
Flanagan method. Chapters 6, 7 and 8 will each treat one of the main modules of the
software: the propagation module, the constraints calculation module and the Jacobian mod-
ule. Chapter 9 will summarize the results of the previous research. Finally, Chapter 10 will
explain how the previously conducted research fits in with this thesis research and will set up
the research goals.
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Chapter 5

Sims-Flanagan method and program
structure

In this chapter, the Sims-Flanagan method will be explained. Additionally, the structure of
the state vector and of the program will be explained.

5-1 Sims-Flanagan method

The Sims-Flanagan method discretizes the thrust profile using multiple impulsive manoeu-
vres as an approximation of a continuous thrust profile. The trajectory is cut up into different
legs, which are bounded by control nodes that allow for a constrained discontinuous state.
Such a control node can have any physical meaning such as a rendez-vous or a flyby of a
celestial body, a probe being released in deep space, etc. This has been visualized in Figure
5-1 for a trajectory consisting of two legs where the control nodes represent the spacecraft’s
encounters with planetary bodies. The control nodes bounding the first leg represent the
launch from Earth and the arrival at Mars. Between the first and second leg of the trajectory,
a Martian flyby is modeled as an instantaneous change in the hyperbolic excess velocity. The
control nodes bounding the second leg represent the departure from Mars and the arrival at
Earth.

Each of those legs is discretized into 2N segments. The thrust in a segment is represented
by an impulsive manoeuvre at the midpoint of that segment, of which two have been depicted
in Figure 5-1. These impulsive manoeuvres influence the forward and backward propagation
of the leg starting respectively at the initial and final control node of the leg. These two
propagations meet each other in the middle of the leg at a so-called match point. The
heliocentric coordinates and velocities, the hyperbolic excess velocities and the spacecraft
mass at the control nodes are used as the starting point for these propagations. The mass
profile throughout the propagation is required, as it connects the thrust on each segment to the
allowable size of the manoeuvre, as will be shown in Subsection 7-2-2. These initial conditions
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Figure 5-1: Structure of the Sims-Flanagan formulation on a generic EME trajectory (adapted
from Sims et al. [2006]).

are then propagated using the control parameters on each segment, which are the magnitude
and direction of the manoeuvre along with the specific impulse. The propagation between the
impulsive manoeuvres is done using a two-body model and an RK7(8)13M integrator, also
known as DOPRI8 [Prince and Dormand, 1981]. This integrator has been chosen based on the
discussion in the author’s literature study and in Montenbruck [1992], its widespread usage,
and in-house knowledge on how to write such an integrator. These forward and backward
propagations have to be consistent in heliocentric coordinates, velocities and mass at the
match points in order to ensure a continuous trajectory at the match points.

5-2 Structure of the state vector

Based on the Sims-Flanagan trajectory representation, the state vector X for a single-leg
trajectory has been established. The structure of this vector will now be explained. The
first 23 elements are the initial and final mass M0 and Mf , the initial and final coordinates
x0, y0, z0, xf , yf and zf , initial and final velocities 9x0, 9y0, 9z0, 9xf , 9yf and 9zf and initial
and final hyperbolic excessive velocities V8,x0 , V8,y0 , V8,z0 , V8,xf , V8,yf and V8,zf of the
control nodes. Furthermore, those 23 elements also include the mass of the propulsion unit
MP0 and the times t0 and tf at the initial and final control node. Those 23 elements are not
always independent. For instance, in the scenario where a control node represents a planetary
encounter, the control node time must be properly coupled to the coordinates and velocities of
that control node. Hence, in that scenario, certain elements could be removed from the state
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vector. Both the coupling and removal method will be discussed in Chapter 13. For now, it
has been decided to leave all 23 elements in the state vector to make the representation as
generic as possible; certain optimization problems do not require the coupling between time
and coordinates and velocities at the nodes. An example is the optimization of a trajectory
to reach a fixed point in an orbit. Here, the coordinates and velocities would have to be
kept constant while the time at the final control node would be allowed to change. Those 23
elements are followed by 4N elements representing the ∆V vectors and the specific impulse for
manoeuvres 1 up to N (the forward propagation). The last 4N elements are the ∆V vectors
and the specific impulse for manoeuvres N+1 up to 2N (the backward propagation). So in
total, 2N manoeuvres are applied to the trajectory.

Note that the author chose to represent the ∆V vectors in a TNC coordinate frame instead
of a classic Cartesian coordinate frame, as it is expected that the usage of a Cartesian coor-
dinate system will result in convergence issues with the optimizer when one tries to optimize
control node times. For instance if the initial time changes, the positions of the midpoints
of the segments where the impulses are applied change. As such, the three elements of the
∆V vector also change considerably in a Cartesian reference frame. Hence, the optimizer
needs several iterations to adjust the ∆V vector each time the initial or final time is shifted,
resulting in an overall slow convergence. Based on the discussion of the body-centered refer-
ence frame Tangential, Normal and Cross-track (TNC) in Vallado [2003] - where the
Tangential direction is parallel to the velocity vector, the Normal direction is in the orbital
plane perpendicular to the velocity vector and the Cross-track direction is parallel with the
angular momentum vector - it is expected that the three elements of the ∆V vector expressed
in the TNC reference frame change less. Hence, the convergence onto an optimal solution
would be sped up utilizing a TNC representation of the ∆V vectors.

5-3 Structure of the program

The structure of the program developed by the author has been visualized in Figure 5-2. The
majority of the code has been written in C++. In this C++ part, the main program first
initializes and sets up the optimization problem. In order to do so, it generates an initial state
vector X0 and it sets boundaries on the state vector and on constraints. These initial guesses
and boundaries are passed on to the SNOPT tool. This tool calls the function usrfg. In this
function, the initial guess for the state vector is propagated, from which the constraints can be
calculated as well as the derivatives of each constraint with respect to each element of the state
vector. These constraints and derivatives are returned to the SNOPT program after which
SNOPT updates the state vector using a Sequential Quadratic Programming (SQP)
algorithm [Gill, 2008]. This updated state vector is then passed to the usrfg function, which
again propagates it and calculates the constraints and derivatives. This iterative method to
update the state vector is repeated until certain termination criteria are met to ensure that
the resulting state vector is (locally) optimal. Upon meeting the termination criteria, the
SNOPT program passes the optimal state vector back to the main program. In this program,
the optimal state vector is used to generate output text files. These files are then read in by
a Matlab program, which creates several plots. In the next three chapters, the propagation
module, the set-up of the constraint vector F and the calculation of the Jacobian matrix
G will be explained.
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Chapter 6

Propagation module

Within the written usrfg function, three modules can be identified in Figure 5-2. One of them
is responsible for the propagation of the state vector. The structure of this propagation will
be described in the next section, which will be followed by a discussion on its implementation.

6-1 Structure of the propagation

The propagation module uses the inputted state vector X to propagate the state using a for-
ward and a backward propagation towards the match point. Before explaining the structure
of the propagation, visualized in Figure 6-1, it is important to note that the used terminol-
ogy has been described in Sections 5-1 and 5-2. The forward propagation starts at control
node 0 and propagates towards the forward match point. The initial mass M0, the initial
coordinates x0, y0 and z0, the initial velocities 9x0, 9y0 and 9z0 and the initial hyperbolic
excess velocities V8,x0 , V8,y0 and V8,z0 are used as starting points for the propagation and
influenced by manoeuvres 1 up to N. The sum of the initial and excess velocities form the
initial spacecraft velocity, as can be seen from Equation 8-9. The same procedure is used
for the backward propagation loop between control node f and the backward match point,
but then with the final mass, final coordinates, velocities and excess velocities, which are also
propagated to the match point and influenced by manoeuvres N+1 up to 2N.

Figure 6-1: Structure of the propagation.
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The propagation itself is done step-wise; the coordinates, velocities and State Transition
Matrix (STM) elements are propagated up to the first manoeuvre. At this manoeuvre, the
velocities and the mass are updated. These updated elements are then used for the next
integration step up to the next manoeuvre and finally to the match point. Before explaining
how the actual propagation works, it is necessary to explain the concept of a State Transition
Matrix, which will be done in the next section.

6-2 State Transition Matrix

STM’s are often used to propagate the state in linear time-varying systems. From Jain and
Lande [2012], it is known that such systems are of the form

9xptq � Aptqxptq �Bptquptq
yptq � Cptqxptq �Dptquptq (6-1)

where xptq is the state vector with dimension n, uptq is the control input vector with
dimension m and yptq is the system output vector with dimension p. A, B, C and D
are four coefficient matrices of the linear system with dimensions nxn, nxm, pxn and pxm
respectively [Antsaklis and Michel, 2007]. They are called state or system matrix, input
matrix, output matrix and feedthrough or feedforward matrix respectively. However,
systems do not always vary linearly with time. Therefore, one often needs to perform a
linearization to obtain such a system.

The STM Φpt, t0q within a linear or linearized system satisfies the following relation [Jain and
Lande, 2012].

BΦpt, t0q
Bt � AptqΦpt, t0q (6-2)

If the state space system in Equation 6-1 has B � D � 0, the solution is [Jain and Lande,
2012]

xptq � Φpt, t0qx0
yptq � CptqΦpt, t0qx0

(6-3)

As such, the STM can be defined as the linearized approximation of the change in the state
at a certain time t, based on a difference in the initial state at t0. The STM can be used to
solve the state space system in Equation 6-1. Therefore, it can be used to propagate x in
time. In order to obtain an STM, some properties of STM’s must be understood [Jain and
Lande, 2012]

Φpt, tq � I

Φpt0, t1q � Φ�1pt1, t0q
Φ�1pt1, t0q � ΦT pt1, t0q
Φpt2, t0q � Φpt2, t1qΦpt1, t0q

(6-4)

STM’s can be found using different methods like the infinite series method, the similar-
ity transformation method, the Cayley-Hamilton Theorem method, the Laplace transform
method, etc which can all be found in Antsaklis and Michel [2007].
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6-3 Propagation between manoeuvres

As explained above, the propagation of the 36 STM elements and the 6 Cartesian coordinates
and velocities between two consecutive manoeuvres has been performed using a numerical
integrator. Therefore, a high-order embedded Runge-Kutta formula, the DOPRI8 integra-
tor, also known as RK8(7)-13M integrator, has been written and applied to a two-body
integration scheme. Both will be explained in the following subsections.

6-3-1 DOPRI8 numerical integrator

In general, numerical integration solves the initial-value problem of
dX̄

dt
� F̄ pt, X̄q (6-5)

X̄pt0q � X̄0 (6-6)

where X̄0 is the initial state vector and F the derivative function, dependent on the time t
and the state vector X̄. Numerical integrators give an approximate solution of X̄ at certain
points in time: the mesh points. These mesh points are separated in time by a certain value
called the step size hn. Here, an approximate solution for mesh point tn will be denoted as
X̄n while the exact solution is X̄ptnq.

The DOPRI8 integration scheme only uses the previous mesh point and is therefore called a
single-step method where tn�1 is found based on tn only. The DOPRI8 integration scheme
updates the step size based on the difference between an 8th and a 7th order Runge-Kutta
scheme with 13 stages, hence the name RK8(7)-13M.

For the new time tn�1 found from
tn�1 � tn � hn (6-7)

one can find the updated state from the 7th-order Runge-Kutta scheme

¯̂
Xn�1 � ¯̂

Xn �
13̧

i�1
b̂iK̄i (6-8)

and the updated state from the 8th-order Runge-Kutta scheme

X̄n�1 � ¯̂
Xn �

13̧

i�1
biK̄i (6-9)

where

K̄1 � hnF̄
�
tn,

¯̂
Xn

�
(6-10)

K̄i � hnF̄

�
tn � ci � hn, ¯̂

Xn �
i�1̧

j�1
aijK̄j

�
with i=2, 3, . . . , 13 (6-11)

The ci, aij, b̂i and bi parameters are known and fixed for this specific integration scheme.
They can be found in Table 6-1. The derivative function F̄ that is utilized for this numerical
integration will be explained in the next subsection.
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As already mentioned, the 8th-order Runge-Kutta scheme is used to estimate the error in
the propagated state using the 7th-order Runge-Kutta scheme. If the error is smaller than
a certain tolerance, the propagated state for tn�1 from the 7th-order Runge-Kutta scheme is
accepted and the initial time is updated.

If the error is larger than the tolerance, the propagated state for tn�1 from the 7th-order Runge-
Kutta scheme is not accepted and the initial time is not updated. The same integration step
is repeated with a different time step, which has been adjusted based on the error:

hn�1 � 0.9 � hn
�
allowable error
| ¯̂
Xn�1 � X̄n�1|

�1{15

(6-12)

If the error is larger than the tolerance, the new time step will be smaller, resulting in a smaller,
acceptable error for the next integrator call. This time step update is not only performed
when the error is larger than the tolerance. If the error is smaller than the tolerance, it means
that the time step has been too small, as a larger time step would still result in acceptable
errors. Therefore, it is more efficient to use a larger time step.

The implementation of this scheme has been validated by comparing the output of several
different integration steps to the output of other validated integration schemes such as ode45
in Matlab, a Python based version of the RK8(7)-13M integrator written by Jon Herman
[2012], etc. Very similar or identical results were obtained, validating the implementation of
this scheme.

6-3-2 Two-body force model derivative function

In order to know the STM and coordinates and velocities as a function of time, one needs to
know the derivative function F̄ of the 36 STM elements and the 6 Cartesian coordinates and
velocities. The numerical integration can be performed solely using a two-body force model.
Based on simulations in the author’s literature study, it is known that gravity field, atmo-
spheric drag, electromagnetic, third-body, radiation pressure, and relativistic perturbations
do not need to be taken into account. Furthermore, the thrust does not need to be included
into the numerical integration, since it is modeled as an impulsive manoeuvre at the end of
each integration step. For a two-body model, the derivatives of the Cartesian coordinates and
velocities can be found using:

�
�������

9x
9y
9z
:x
:y
:z

�
�������
�

�
�������

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�µ
R3 x 0 0 0 0 0
0 �µ

R3 y 0 0 0 0
0 0 �µ

R3 z 0 0 0

�
�������

�
�������

x
y
z
9x
9y
9z

�
�������

(6-13)

The derivative of the 36 STM elements can be found using the following formula
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9Φt,t0 �

�
��������

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
B2Ω
Bx2

B2Ω
BxBy

B2Ω
BxBz 0 0 0

B2Ω
BxBy

B2Ω
By2

B2Ω
ByBz 0 0 0

B2Ω
BxBz

B2Ω
ByBz

B2Ω
Bz2 0 0 0

�
��������

Φt,t0 (6-14)

from Schaub and Junkins [2009], where

Ω � µ

R
B2Ω
Bx2 � 3 µ

R5x
2 � µ

R3

B2Ω
By2 � 3 µ

R5 y
2 � µ

R3

B2Ω
Bz2 � 3 µ

R5 z
2 � µ

R3 (6-15)

B2Ω
BxBy � 3 µ

R5xy

B2Ω
BxBz � 3 µ

R5xz

B2Ω
ByBz � 3 µ

R5 yz

where µ is the standard gravitational parameter of the Sun and R is the radial distance from
the Sun which can be obtained from the propagated x, y and z coordinates.

6-4 Application of the manoeuvre

The propagated Cartesian velocities before the application of the manoeuvre are then up-
dated based on the magnitude and direction of the ∆V vector. However, the ∆V vector is
expressed in a TNC coordinate system. As such, one first needs to convert [∆VT ,∆VN ,∆VC ]
into [∆Vx,∆Vy,∆Vz]. This transformation procedure can be found in Appendix A. The
Cartesian velocities and the mass after the manoeuvre can then be calculated. The precise
implementation depends on whether it is a forward or backward propagation.

9% after manoeuvre � 9% before manoeuvre �∆V% with %� x, y, z (6-16)
9% before manoeuvre � 9% after manoeuvre �∆V% with %� x, y, z (6-17)

The mass can be updated using Tsiolkovsky’s law for the forward and backward propagation
respectively. In the backward propagation scenario, the mass after the manoeuvre is already
known, and one wants to obtain the mass before the manoeuvre.

forward: mass after manoeuvre � mass before manoeuvre � e�
∆V
Isp�g0 (6-18)

backward: mass before manoeuvre � mass after manoeuvre � e
∆V
Isp�g0 (6-19)



27

Chapter 7

Constraints

To ensure realistic trajectories, constraints have to be imposed. These constraints on a trajec-
tory for the Sims-Flanagan method depend on the type of control nodes on the legs. However,
some constraints are present for all types of control nodes. Constraints are grouped in a con-
straint vector F, which can be calculated using the outputs of the propagation module.

7-1 Cost function

The first element of the constraint vector is the cost function, the function that needs to be
minimized. So, the exact implementation depends on what the goal of the optimization is.

7-2 General constraints

Several constraints are always present, independent of the types of control nodes bounding
the leg. These are the match point and thrust constraints.

7-2-1 Match point constraints

In each Sims-Flanagan problem, constraints must be imposed such that the heliocentric coor-
dinates and velocities and the spacecraft mass from the forward and backward propagation at
the match points are equal to ensure a continuous trajectory. These will be called the seven
match point constraints:

F∆M �Mmatch point,forward �Mmatch point,backward P r�ε, εs
F∆% � %match point,forward � %match point,backward P r�ε, εs (7-1)
F∆ 9% � 9%match point,forward � 9%match point,backward P r�ε, εs
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where % represents the general Cartesian coordinates x, y and z. These constraints, after
proper scaling, must have values between -ε and ε with ε being a small value.

7-2-2 Thrust constraints

In Section 3-3, it has been explained that solar electric propulsion is power limited. Hence,
the magnitude of the manoeuvre applied at the midpoint on each segment is also limited. It
must be ensured that the magnitude of this manoeuvre does not exceed the maximum that
the spacecraft can provide during the duration of that specific segment with a certain power
level. The thrust on a segment can be translated into an impulsive manoeuvre using

T � ∆ViMi

∆t (7-2)

with the duration of the segment ∆t, the size of the manoeuvre ∆Vi and the mass of the
system before the manoeuvre Mi.

The thrust constraints can be found by combining Equations 7-2 and 3-4 into Equation 7-3.
If the power is independent of heliocentric distance, for instance using a nuclear power source,
the thrust is constrained as

Pjet   ηjetP0
∆ViMiIspg0

2DT   ηjetP0 (7-3)

where P0 is the available electrical power. As such,

FT,i � ∆ViMiIspg0
2P0ηjetDT

P r0, 1s (7-4)

If the available power is dependent on heliocentric distance, which is the case for solar electric
propulsion, the thrust constraints change and become

FT,i � ∆ViMiIspg0R
2
i

2P0ηjetDTAU2 P r0, 1s (7-5)

where P0 is the available power at a heliocentric distance of 1 AU and Ri is the heliocentric
distance.

7-3 Leg-specific constraints

Besides the node-independent general constraints, there are also control-node specific con-
straints. Those can be found in this section for three different types of control nodes: depar-
ture, flyby and return nodes.
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7-3-1 Departure-node constraints

The departure at Earth adds several launcher-specific constraints.

Launch mass constraints There is a relation between the excessive velocities V8x0
, V8y0 and

V8z0 and the maximum mass that can be launched by the launcher, ML,max, which can be
found from Equation 9-2. Hence, it must be enforced that the initial mass cannot be higher
than this maximum launch mass for a certain V8. Therefore:

FLM �ML,max �M0 P r0,Mmax,C3�0s (7-6)

which must be between 0 and the maximum launch mass Mmax,C3�0 for that launcher.

C3 constraint The launch vehicle performance coefficients in Table 9-2 used in Equation 9-2
to find the maximum launch mass are found using a polynomial fit for a certain region of C3
values. As such, the launch vehicle performance coefficients are only valid within this region
of C3 values. Hence, it must be enforced that the C3 value calculated by

FC3 � V 2
8,x0 � V 2

8,y0 � V 2
8,z0 P r0, C3,maxs (7-7)

is smaller than the upper C3 value for the polynomial fit for a certain launcher.

7-3-2 Flyby-node constraints

An unpowered planetary flyby adds several specific constraints. In this discussion, the inbound
and outbound leg of the flyby will be indicated by the superscripts I and II respectively.

Mass-equality constraints The mass before and after the flyby must be equal in magnitude,
since for an unpowered flyby, no manoeuvre is performed during the planetary flyby.

Fmass flyby �M0II �MfI P r�ε, εs (7-8)

Relative velocity equality constraint From Cornelisse et al. [1979], it is known that the
incoming and outgoing relative velocities must be equal in magnitude for an unpowered flyby.

Frelative velocities flyby � |V8II | � |V8I | P r�ε, εs (7-9)

Flyby altitude A restriction on the periapse altitude of the flyby has been set to ensure that
the spacecraft does not impact the planet or enters its atmosphere [Ellison et al., 2013]:

Fhfly � rperiapse � prplanet � hsafetyq ¥ 0

Fhfly � µplanet
V II2
8

�
1

sin
�
α
2
� � 1

�
¥ prplanet � hsafetyq (7-10)
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where µplanet is the standard gravitational parameter of the flyby planet, hsafety is a safety
altitude above the flyby planet surface and α is the deflection angle defined by

α � arccos
� ÝÑ
V I
8 � ÝÝÑV II

8

|V I
8||V II

8 |

�
(7-11)

This equation has a singularity for α � 0: the 1
sin
�
α
2

� term results in a division by 0. In

reality, the equation still holds when α approaches 0. When the deflection angle goes to zero,
it can be reasoned that no flyby has been performed. The limit for Fhfly for α going to 0 is
found to be 8. It can be reasoned that a flyby at infinite distance indeed corresponds with
not performing a flyby and indeed having a zero degree deflection angle.

7-3-3 Return-node constraint

Re-entry is a critical phase for any crewed mission. An important design parameter for re-
entry systems is the re-entry velocity. If this velocity surpasses the design value for the re-entry
system, the heat load produced by the deceleration throughout the atmosphere can destroy
the spacecraft and result in loss of crew. Therefore, a constraint on the re-entry velocity has
to be imposed. This constraint can be translated into a constraint on the incoming hyperbolic
excess velocity using the vis-viva equation:

V 2
8,max

2 � V 2
re-entry,max

2 � µEarth
rre-entry

(7-12)

So,
Fre-entry � V8 P r0, V8,maxs (7-13)
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Chapter 8

Jacobian

SNOPT is a gradient-based optimization program. Hence, it requires the derivative of every
constraint with respect to each element of the state vector. All of these derivatives were found
analytically and will be briefly discussed here. A more complete explanation can be found in
Appendix C.

8-1 Cost function

The derivative(s) of the cost function depend(s) on the definition of the cost function, which
depends on the goal of the optimization.

8-2 Mass match point F∆M

Looking at the following equations for the mass at the match points, one can see that the
mass mismatch at the match point is influenced by M0, Mf and all the ∆V elements and
specific impulses.

Mmatch point,forward � M0 � exp
�
�
°N
i�1

∆Vi
Isp,i

g0

�
(8-1)

Mmatch point,backward � Mf � exp
�°2N

i�N�1
∆Vi
Isp,i

g0

�
(8-2)

Considering Equation 7-1, one can see that

B∆M
BM0

� Mmatch point,forward
M0

(8-3)

B∆M
BMf

� �Mmatch point,backward
Mf

(8-4)
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For the ∆V elements and specific impulses for the first N manoeuvres, representing the forward
propagation, the derivatives are

B∆M
B∆Vκ,i

� �Mmatch point,forward
Isp,i � g0

� ∆Vκ,i
∆Vi

(8-5)

B∆M
B∆Isp,i

� Mmatch point,forward �∆Vi
I2
sp,i � g0

(8-6)

with i=1, 2, . . ., N and κ=T, N or C.

For the ∆V elements and specific impulses for the last N manoeuvres, representing the back-
ward propagation, the derivatives are

B∆M
B∆Vκ,i

� �Mmatch point,backward
Isp,i � g0

� ∆Vκ,i
∆Vi

(8-7)

B∆M
B∆Isp,i

� Mmatch point,backward �∆Vi
I2
sp,i � g0

(8-8)

with i=N+1, N+2, . . ., 2N and κ=T, N or C.

8-3 State match point constraints F∆x, F∆y, F∆z, F∆ 9x, F∆ 9y ,F∆ 9z

The derivatives of the state match point constraints can be subdivided into four categories:
derivatives with respect to the elements making up the initial state, elements making up the
final state, elements defining the forward manoeuvres and elements defining the backward
manoeuvres.

8-3-1 Derivatives with respect to the initial node’s coordinates, velocities and
hyperbolic excess velocities

To obtain the derivatives of the match point constraints with respect to the initial node’s
coordinates, velocities and excess velocities, one must understand how a change in those
initial conditions is propagated up to the match point. This will be explained through Figure
8-1.

First of all, one needs to realize that the initial Cartesian state, indicated by the s for “space-
craft state” subscript, is set up by a combination of the initial node’s coordinates, velocities
and excess velocities. These are indicated by the 0 for “initial node” subscript, according to

initial node spacecraft state �

�
�������

xs,0
ys,0
zs,0
9xs,0
9ys,0
9zs,0

�
�������
�

�
�������

x0
y0
z0

9x0 � V8,x0

9y0 � V8,y0

9z0 � V8,z0

�
�������

(8-9)
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Figure 8-1: Propagation of a change in initial conditions to the match point.

This initial state is numerically propagated up to the state at point 1� in Figure 8-1, indicating
the Cartesian state before the application of the manoeuvre. From Equation 6-3, it is known
that a change in the initial state can be converted into a change in the Cartesian state at
point 1� using the STM between point 0 and 1�, Φ1�,0, which has been calculated and stored
in the propagation module. So,

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�

� Φ1�,0 �

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

0

(8-10)

The directions of the manoeuvres expressed in TNC coordinates depend on the location of
the manoeuvre. As such, a change in the state at point 1� influences the directions in which
the manoeuvres are applied. As such, an additional transformation matrix is required that
transforms the change in the state over the manoeuvre from point 1� to point 1� . Therefore,
the transformation matrix TNC1�,1� explained in Appendix B can be used, which has been
calculated and stored in the propagation module.

�
�������
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∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�

� TNC1�,1� �

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�
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So, a change in the initial state can be propagated to a change of coordinates and velocities
at the match point using:
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�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������
MP,forward

� ΦMP,N� � TNCN�,N� � . . . � Φ2�,1� � TNC1�,1� � Φ1�,0 �

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

0

(8-12)

This matrix product ΦMP,N� �TNCN�,N� � . . . �Φ2�,1� �TNC1�,1� �Φ1�,0 will be called ΨMP,0,
mapping the change from state at point 0 to the state at point MP.

From the previous discussion, the derivatives of the match point constraints with respect
to the initial coordinates, velocities and initial hyperbolic excess velocities can be found by
realizing that

ΨMP,0 �
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�����������
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The derivatives in the ΨMP,0 matrix are not yet the derivatives of the match point constraints
with respect to the initial coordinates, velocities and excess velocities. Those can however
easily be found from the derivatives in the ΨMP,0 matrix, as shown in Appendix C.

8-3-2 Derivatives with respect to the final node’s coordinates, velocities and
hyperbolic excess velocities

These derivatives can be found using a similar method as for the derivatives with respect
to the initial node’s coordinates, velocities and excess velocities. Therefore, they will not be
discussed here but can be found in Appendix C.

8-3-3 Derivatives with respect to the forward velocity components

The derivatives with respect to the ∆V’s can be found using a similar method. An example
will be given for the derivatives with respect to the first manoeuvre, which has been visualized
in Figure 8-2.

Imagine a change in one of the ∆V components of the first manoeuvre. This will result in a
change in the state after the first manoeuvre, still indicated by 1�.
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Figure 8-2: Propagation of a change in manoeuvre 1 to the match point.

From Equation A-1, it is known that the change in the ∆V components of the first manoeuvre
can be transformed into the change of the state after the first manoeuvre using the ∆TNC1�,1
matrix, which has been derived in Appendix A.
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�������
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This change of the state after the first manoeuvre can then be propagated to the change of
the state at the match point using matrix ΨMP,1� defined as

ΨMP,1� � ΦMP,N� � TNCN�,N� � . . . TNC2�,2� � Φ2�,1� (8-15)

Combining ∆TNC1�,1 and ΨMP,1� , one can see that
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�������
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As such, the derivatives can be found from

ΨMP,1� �∆TNC1�,1 �

�
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From the definitions of ∆xMP up to ∆ 9zMP in Equation 7-1, it is known that the derivatives
of xs,MP for up to 9zs,MP for are equal to the derivatives of ∆xMP up to ∆ 9zMP . As such,
ΨMP,1� �∆TNC1�,1 contains those derivatives.

8-3-4 Derivatives with respect to the backward velocity components

The derivatives with respect to the backward ∆V’s can be found using a similar method as
for the forward ∆ V’s. As such, they will not be discussed here but can be found in Appendix
C.

8-4 Thrust constraints

The exact definition of the thrust constraints depends on whether or not the power is con-
stant or dependent on the heliocentric distance. Depending on this definition of the thrust
constraints, the derivatives change. Neither scenario impose large difficulties in the derivation
of the derivatives, but are very lengthy. As such, it has been decided to skip their derivations
here. The interested reader is referred to Appendix C-4.

8-5 Leg-specific constraints

The derivatives of the leg-specific constraints are trivial. As such, they will not be given here
but can be found in Appendix C-5.
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Chapter 9

Summary previous results

In the previous chapters, the main elements of the Sims-Flanagan method have been discussed.
In this chapter, it will be explained how the Sims-Flanagan method can be applied to the
optimization of low-thrust Martian flyby trajectories.

9-1 Set-up of the optimization problem and goals

To optimize low-thrust Earth-Mars-Earth trajectories, a set-up is required that includes two
legs. Looking at Figure 5-1, one can see that the first and second leg are Earth-Mars and
Mars-Earth respectively. The initial control node of the first leg is the departure at Earth.
The constraints of such a departure node have been explained in Subsection 7-3-1. The final
node of leg 1 and the departure node of leg 2 are flyby nodes and are subsequent to the
constraints explained in Subsection 7-3-2. Finally, the final node of leg 2 is a re-entry node
to which the constraints explained in Subsection 7-3-3 are applicable.

The goal of this research is to show that launch windows in 2018, 2019 and 2021 can be opened
up or expanded using realistic assumptions on Solar Electric Propulsion (SEP) capabilities.
The main research goal is to identify several launch windows in different years, for different
power levels, payload mass and launchers. Typically, these are presented in the form of two-
dimensional grid searches with the launch date on the x-axis and the flyby date on the y-axis.
This research limits itself to launch windows for a constant total time of flight of 501 days,
based on Inspiration Mars [Tito et al., 2013], as the tool lacks time optimization capabilities
at this stage. The addition of this third dimension would lead to an unmanageable large grid
search. For each point in the grid search, the launch date, flyby date and arrival date are
kept constant for the optimization of a single trajectory. These dates can then be translated
into the control nodes’ heliocentric coordinates and velocities using Meeus’ polynomials
[Meeus, 1991], which remain fixed throughout the optimization of this trajectory. These
Meeus’ polynomials are explained in Appendix G. Besides the dates, also the available power
and the dry mass of the spacecraft are kept constant. This dry mass is the payload of the
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mission, based on the Inspiration Mars system [Inspiration Mars Foundation, 2013]. As such,
the final mass at Earth return, which can be found using the following equation, is fixed:

MEarth return � Mdry �MP0 (9-1)
� Mdry � P0 � kP0

whereMP0 is the mass of the SEP system, including the power supply as well as the propulsion
system itself. kP0 is the power-to-mass ratio of the SEP system and is assumed to be 30 kg
per kW [Landau and Strange, 2011]. P0 is the the available power for the SEP subsystem at
a heliocentric distance of 1 AU.

The objective of the optimization procedure is to minimize the mass at Earth departure; the
launch mass. The parameters which can be changed to minimize the launch mass are: the
mass at Mars arrival, the mass at Mars departure (which has to be equal to the mass at Mars
arrival), the departure hyperbolic excess velocity vector at the Earth’s launch, the incoming
and outgoing velocity vector at the Mars flyby, the incoming hyperbolic excess velocity vector
at Earth arrival and the magnitude and direction of the manoeuvres. The specific impulse
remains constant and has been set to 2000 s.

For simple cases, the optimization procedure does not require an initial guess of the state
vector. However, since the optimization procedure does not optimize for launch, flyby and
re-entry date, it has been decided to first narrow down the search space by finding feasible,
chemical trajectories using Copernicus [Ocampo, 2002]. These trajectories are then used as
an initial guess. This approach allows for a faster convergence towards a solution and for a
quick assessment of the search space.

Based on this initial guess trajectory generated with Copernicus [Ocampo, 2002], a two-
dimensional grid search can be performed where the launch and flyby date vary. The re-entry
date at Earth is then determined by the total mission duration length of 501 days [Inspiration
Mars Foundation, 2013]. These grid searches demonstrate which combinations of launch and
flyby date are feasible and as such determines several launch windows for this mission. These
launch windows will be further elaborated upon in Section 9-5.

9-2 Operational considerations

Being a crewed mission, the solution must be made robust and operationally achievable.
Therefore, some operational considerations need to be made.

First of all, it has been decided to put a higher level of restriction on the thrust level using
a 90% duty cycle. Normally, one would expect the highest allowable thrust level to be the
maximum achievable thrust level on that segment. However, it has been decided to restrict
it to 90 percent of what is actually achievable. Such a margin has been shown to effectively
prevent negative consequences of missed thrust [Oh et al., 2013]. Furthermore, this 90%
does not only account for missed thrusts, it also accounts for tasks that may interfere with
thrusting periods such as uploads & maintenance and communications & tracking [Oh et al.,
2013].
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Furthermore, it is unwise to have manoeuvres near planets. The reason from an operational
point being to avoid additional tasks to be performed during the critical phases near the
planets during the mission. From an astrodynamical point of view, it is important to avoid
a dependency on manoeuvres near planets. Manoeuvres near planets have a much larger
effect than heliocentric manoeuvres. If the thrusters fail during these crucial manoeuvres,
the system might not be able to recover from this failure. Therefore, 3 coast arcs have been
imposed on the trajectory. A 5-day coast arc has been imposed upon leaving Earth to account
for the early checkout phase, a coast arc 2 weeks prior and 2 days after the Martian flyby for
pre- and post-flyby operations and a final coast arc of 2 weeks prior to arrival at Earth for
re-entry operations.

As mentioned in Subsection 7-3-2, there are also considerations with respect to the flyby
altitude. The flyby altitude has a lower bound of 200 km since it must not impact Mars, but
also avoid the Martian atmosphere. Besides this lower bound, also an upper bound has been
imposed. Considering that the purpose of this mission is to be the first human visit to Mars,
it is assumed to be desirable to make a close visit to Mars. Therefore, the upper bound has
been set to an altitude of 2000 km. In practice however, the majority of the solutions does
not approach this upper bound.

Finally, the spacecraft has to be able to withstand the re-entry heat load, which is strongly
related to the re-entry velocity. Inspiration Mars sets a boundary at 14.2 km/s or lower
[Inspiration Mars Foundation, 2013]. This has been translated to a hyperbolic excess velocity
limit of 8.969 km/s using Equation 7-12 assuming a re-entry altitude of 200 km.

The combination of all these margins make all of the presented solutions extremely robust,
in order to ensure the safe return of the crew.

9-3 Mission parameters and launcher configurations

In order to obtain realistic results, several design parameters have to be obtained or assumed.
So far, several design parameters have been assumed and operational considerations have
been made. In this section, other mission parameters will be listed and summarized in Table
9-1. Furthermore, the launcher performance will be explained.

This mission is based on the Inspiration Mars concept. Hence, the payload mass of this mission
will be extensively used for the remainder of this thesis work. First of all, the baseline payload
mass is estimated to be 13.139 tons [Inspiration Mars Foundation, 2013]. The fully margined
payload mass; the payload mass including several margins such as average contingency margin,
average mass growth allowance, etc is 19 tons [Inspiration Mars Foundation, 2013].

The Inspiration Mars mission assumes it will use the Space Launch System (SLS) currently
under development by NASA [Donahue and Sigmon, 2013]. Hence, for this research, two
different launch performance curves for the SLS rocket will be used: one for the SLS/iCPS
1xRL10B2 and another one for the SLS/LUS 4xRL10C2, which will from now on be
abbreviated to 1RL and 4RL respectively. These launch curves influence the launch mass
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Table 9-1: Important design parameters and assumptions.

SEP and method related parameters
Power to mass ratio SEP system [Landau and Strange, 2011] 30 kg/kW
Jet efficiency [Jacobson et al., 2005] 60%
SEP system duty cycle [Oh et al., 2013] 90%
Specific impulse 2000 s
Number of segments entire mission 120 segments � 4 days/segment
Mission related parameters
Launch vehicles [Donahue and Sigmon, 2013] SLS/iCPS 1xRL10B2

SLS/LUS 4xRL10C2
Total mission duration [Inspiration Mars Foundation, 2013] 501 days
Maximum re-entry velocity [Inspiration Mars Foundation, 2013] 14.2 km/s
Payload mass [Inspiration Mars Foundation, 2013] 13.139 - 19 tons

Table 9-2: Launch vehicle performance coefficients.

Parameter SLS/iCPS 1xRL10B2 SLS/LUS 4xRL10C2
a0 +2.3432926311306 101 +3.7535441522694 101

a1 -2.85737186333384 10�1 -5.73908125974506 10�1

a2 -1.04274819488625 10�3 +4.1479910698052 10�3

a3 +2.8496453601933 10�5 -1.87085855662388 10�5

a4 -1.07472836774709 10�7 +3.7024176005762 10�8

constraint in Equation 7-6 as ML,max; the maximum launch mass for a certain C3 value, is
determined by the launch curve:

ML,max � a0 � a1 � C3 � a2 � C2
3 � a3 � C3

3 � a4 � C4
3 (9-2)

where the parameters a0 up to a4 have been obtained through a polynomial fit of the launch
curve obtained from Figure 9-1 from Donahue and Sigmon [2013] and have been listed in
Table 9-2 where the resulting launch mass is in tons for C3 values expressed in km2/s2.

9-4 Initial guess generation

The Sims-Flanagan method often performs better with an initial guess that is in the vicinity of
a feasible solution. Initial guesses may be generated using a variety of methods. In some cases,
one can use a Lambert solver to build approximate transfers from one planet to another. The
Lambert solutions occasionally generate real interplanetary transfers, where no manoeuvres
are required anywhere. In other cases, the Lambert solutions arrive at Mars with a different
energy than they depart, requiring a manoeuvre.

An alternate strategy has been implemented to generate initial guesses in this study. The
idea behind direct transcription problems like the Sims-Flanagan method is to define control
points at each planet and then optimize their states along with the thrust profile to generate a
feasible trajectory. Initial guesses may be generated by defining the same control points, but
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Figure 9-1: Launch performance curves for the SLS/iCPS 1xRL10B2 and SLS/LUS 4xRL10C2
configurations [Donahue and Sigmon, 2013].

assuming ballistic transfers in every leg. The same optimizer, e.g., SNOPT, may be used to
optimize the states of the control points in order to make the trajectory continuous in position
- that is, the goal is to reduce the position discontinuities between each leg to zero, but permit
the velocity discontinuities to be non-zero. Indeed, the velocity discontinuities between legs
can be large: on the order of a kilometer per second or more. But electric propulsion has
time to execute this ∆V, so even a large velocity discontinuity may be acceptable in an initial
guess.

Johnson Space Center’s Copernicus mission design tool [Ocampo, 2002] has been used to
generate the initial guesses. Copernicus uses a variety of optimizers; SNOPT was used in
this case. Copernicus modeled the motion of each planet using the DE421 Planetary and
Lunar Ephemerides provided by the Jet Propulsion Laboratory. The Earth departure has
been modeled as a hyperbolic departure with a periapse altitude of 185 km and an inclination
of 28.5 degrees. All other aspects of the trajectory have been permitted to vary in the
optimization routine. The Earth departure was propagated for about 100 days, depending
on the scenario - about halfway to Mars. A control state has been defined at Mars at the
closest approach of the hyperbolic flyby. The periapse altitude has been constrained to be
no lower than 200 km and the state was propagated back to the time of the end of the
Earth departure leg, and also forward to the approximate halfway point to the next event:
the Earth return. In this way, the Mars flyby is continuous but the trajectories don’t meet
perfectly between Earth and Mars, and in any planetary transfer. The control point at the
Earth return was placed at a periapse altitude of 60 km to simulate an Earth atmospheric
entry. The optimizer was permitted to vary most aspects of each control state in order to
drive the position discontinuities between each planetary encounter to zero, and to minimize
the velocity discontinuities. The dates of the key events were also permitted to vary, with the
constraint that the entire mission be 501 days
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Using Copernicus, three nominal chemical thrust scenarios in 2018, 2019 and 2021 have been
identified. Those scenarios have been summarized in Table 9-3 including the magnitude of the
Deep Space Manoeuvre (DSM) representative for the velocity discontinuities, if applicable.

Table 9-3: Nominal scenarios identified using Copernicus.

Launch date Launch C3 DSM1 Flyby date DSM2 Return V8
(mm-dd-yyyy) (km2/s2) (m/s) (mm-dd-yyyy) (m/s) (km/s)
01-05-2018 37.45 N.A. 08-20-2018 N.A. 8.89
12-13-2019 58.37 647.31 09-02-2020 517.28 6.10
12-10-2021 21.44 1650.41 09-18-2022 2227.85 5.17

9-5 Results

Around each nominal chemical scenario, a low-thrust grid search has been performed using
these nominal scenarios as an initial guess. An overview of all these cases has been given in
Table 9-4. In the next subsections, the grid searches for these cases will be analyzed.

Table 9-4: Investigated low-thrust grid search cases.

Case Scenario Power SEP system Payload Fixed final Launcher
level mass mass mass configuration
(kW) (tons) (tons) (tons)

1 2018 10 0.3 19 19.3 SLS/LUS 4xRL10C2
2 2018 10 0.3 13.139 13.439 SLS/LUS 4xRL10C2
3 2018 10 0.3 13.139 13.439 SLS/iCPS 1xRL10B2
4 2018 25 0.75 15 15.75 SLS/iCPS 1xRL10B2
5 2019 10 0.3 13.139 13.439 SLS/LUS 4xRL10C2
6 2021 25 0.75 13.139 13.889 SLS/LUS 4xRL10C2

The results of these optimization runs have been verified using an independent propagation.
This propagation tool has been written by Jonathan Herman, which he successfully used to
assess the feasibility of CCAR’s solution to the 6th Global Trajectory Optimization Competi-
tion and which he modified for this application. This propagation was fed with the optimized
output to quantify that it corresponded to a feasible trajectory.

9-5-1 Earth-Mars-Earth flyby mission in 2018

Inspiration Mars Foundation [2013] identified a 12-day launch window between the 14th of
December, 2017 and the 4th of January, 2018 using classical chemical propulsion. This launch
window takes into account a fully margined payload mass, explained in Section 9-3, of 19 tons
[Inspiration Mars Foundation, 2013]. Based on this window, the first nominal scenario has
been identified in Copernicus in Table 9-3.
Using low-thrust SEP, this launch window can be substantially increased for a payload mass
of 19 tons using the SLS/LUS 4xRL10C2 launch configuration. Remember that this payload
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mass does not include the mass of the propulsion subsystem. Figure 9-2 shows the grid
search which has been performed around the nominal scenario. On the horizontal axis, the
variation of the launch date with respect to the launch date of the nominal scenario has been
plotted. On the vertical axis, the flyby date has been plotted with respect to the nominal
scenario launch date. The color scale represents the minimized launch mass in tons for each
combination of launch and flyby dates. The largest dot represents the combination of launch
and flyby date resulting in the lowest minimized launch mass. As can be seen from Figure
9-2, this launch window would be increased from 12 to around 57 days between the 8th of
December, 2017 and the 3th of February, 2018, using only 10 kW.

Figure 9-2: Launch opportunities for Case 1: 2018 - 10 kW - 19 tons - 4RL10.

The final mass at Earth arrival, which is the sum of the payload mass and the mass of the
SEP system, is fixed for a certain grid search. For Case 1, the fixed final mass is 19.3 tons
of which 19 tons payload mass and 300 kg SEP subsystem mass for 10 kW as can be seen in
Table 9-4. Since this final mass at Earth arrival is fixed, the difference in minimized launch
mass in Figure 9-2 can be attributed to the difference in required propellant mass for each
launch-flyby date combination. One can see from Figure 9-2 that most data points have a
launch mass quite close to the fixed final mass of 19.3 tons, indicating that there are hardly
any manoeuvres and hence propellant required. This does not really comes as a surprise,
since the reference trajectory from Copernicus in 2018 is a free-return trajectory. An example
of such a trajectory for tdep=3 and tflyby=233 with hardly any manoeuvres can be seen in
Figure 9-3.
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(a) Trajectory.

(b) Thrust profile.

Figure 9-3: Low ∆V trajectory for tdep=3 and tflyby=233 for Case 1: 2018 - 10 kW - 19 tons -
4RL10.

Some data points in Figure 9-2 however are further away from this 19.3 tons. Those data
points represent trajectories that require more manoeuvres. An example of such a trajectory
for tdep=29 and tflyby=245 has been plotted in Figure 9-4a. In Figure 9-4b, one can also
observe the effect of the coast arc near the Martian flyby. Around 0.65 years, the coast arc is
clearly visible.
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(a) Trajectory.

(b) Thrust profile.

Figure 9-4: High ∆V trajectory for tdep=29 and tflyby=245 for Case 1: 2018 - 10 kW - 19 tons
- 4RL10.

The launch window could be much larger if it is assumed that the vehicle can be constructed
much closer to the baseline payload mass than the fully margined payload mass. To illustrate
the potential impact of this, Case 2 is identical to Case 1 but instead uses the baseline payload
mass of 13139 kg [Inspiration Mars Foundation, 2013] as can be seen in Table 9-4. The launch
window could then be increased to 124 days between the 10th of October, 2017 and the 11th
of February, 2018, again using only 10 kW. This can be seen in Figure 9-5.
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Figure 9-5: Launch opportunities for Case 2: 2018 - 10 kW - 13.139 tons - 4RL10.

The previous two cases require the more complex SLS/LUS 4xRL10C2 upper stage. It is not
entirely sure that this upper stage will be finished by 2018. Therefore, it has been investigated
if the baseline SLS/iCPS 1xRL10B2 upper stage configuration can be used for this mission.
Using the baseline payload mass of 13139 kg and using only 10 kW (Case 3 in Table 9-4), the
launch window for this configuration would become 44 days between the 25th of December,
2017 and the 7th of February, 2018, as can be seen in Figure 9-6.

Figure 9-6: Launch opportunities for Case 3: 2018 - 10 kW - 13.139 tons - 1RL10.

44 days is still a relative big launch window. Therefore, the payload mass has been gradually
increased to identify what the largest mass would be with a sufficient launch window of at
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least 20 days. For a payload mass of 13.5 tons, the launch window has decreased to 33 days
between the 1st of January, 2018 and the 3th of February, 2018. For a payload mass of 13.75
tons, this decreases to a 21 day launch window between the 16th of January, 2018 and the 6th
of February, 2018. For a payload mass of 14 tons, no launch window at all could be identified.
This relation between payload mass and size of the launch window behaves non-linear.

One could further increase the payload mass if the available power for the SEP system is
higher. Considering the fact that NASA states that the top technical challenge for in-space
propulsion is the development of high-power electric propulsion system technologies to enable
high ∆V missions with heavy payloads [Meyer et al., 2012], it is not unreasonable to assume
that power levels beyond 10kW will be achievable in the near future. As an example, a
payload mass of 15 tons with 25 kW of available power (Case 4 in Table 9-4), is used. As can
be seen in Figure 9-7, a launch window of 36 days between the 10th of January, 2018 and the
15th of February, 2018 can be opened up. This payload mass can be increased up to 15250
kg for a launch window of 22 days between the 16th of January, 2018 and the 7th of February,
2018.

Figure 9-7: Launch opportunities for Case 4: 2018 - 25 kW - 15 tons - 1RL10.

9-5-2 Earth-Mars-Earth flyby mission in 2019

First of all, it has been investigated if the baseline SLS/iCPS 1xRL10B2 upper stage config-
uration can be used for this mission. However, the 1RL10 configuration could not provide
enough energy to even launch the baseline payload mass of 13139 kg. In order to establish
how high the payload mass could be while still having a feasible launch window of at least 20
days, several cases have been run. Using 10 kW, the maximum payload mass would be 9700
kg for a launch window of 23 days. This mass is not even close to the required 13139 kg.
Therefore, the same scenario has been run with a higher power level. Still, using a power level
of 25 kW, the maximum achievable payload mass is 11830 kg with a 24-day window between
the 1st of November, 2019 and the 25th of November, 2019.
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Figure 9-8: Launch opportunities for Case 5: 2019 - 10 kW - 13.139 tons - 4RL10.

As this shows that the 1RL10 configuration has great difficulty with the 2019 scenario, cases
using the 4RL10 configuration have been run. For 13139 kg and using 10 kW, the launch
window becomes 108 days between the 22nd of November, 2019 and the 9th of March, 2020
as can be seen in Figure 9-8. Hence, there is quite some margin to increase the payload
mass. Therefore, the payload mass has been gradually increased until a launch window of
approximately 20 days was encountered. This was the case for 15750 kg, in which a 20-day
launch window has been identified between the 1st of February, 2020 and the 21st of February,
2020. Note that this is still included under the umbrella “2019 launch window”.

Figure 9-9: Launch opportunities for Case 6: 2021 - 25 kW - 13.139 tons - 4RL10.
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9-5-3 Earth-Mars-Earth flyby mission in 2021

Much like the 2019 scenario, the 1RL10 configuration has great difficulty with the 2021
scenario. Therefore, cases using the 4RL10 configuration have been investigated. It was
found to be impossible to launch the baseline payload mass of 13139 kg using 10 kW. This
can be attributed to the large required DSM’s, as can be seen from Table 9-3. These DSM’s
can be translated into a substantial ∆V requirement for the SEP system. Hence, a higher
power level is required to enable these high ∆V’s. Therefore, the power level had to be
increased to 25 kW to make this scenario feasible. In the end, a launch window of 33 days
can be observed in Figure 9-9 between the 20th of November, 2021 and the 23th of December,
2021. If the payload mass is increased to 13.3 tons, the window becomes 22 days between the
26th of November, 2021 and the 18th of December, 2021.

9-6 Conclusion

During this research, it has been shown that SEP can be used to significantly improve crewed
flyby missions of Mars. Using a modest amount of SEP, less performance is required by the
upper stage of the launch vehicle, giving more margin for development of the system, and
possibly allowing for the use of a smaller upper stage altogether. All of the results so far have
been based on existing versions of the software.

In order to give a quick overview of the capabilities of SEP, the combination of parameters
that lead to preliminary launch windows of 20 days have been listed in Table 9-5. Note
that the last column for the payload mass using chemical propulsion has been calculated by
translating the required C3 for the nominal scenario’s in Table 9-3 into the maximal launch
mass using Equation 9-2. Using the DSM’s in Table 9-3 and assuming a specific impulse of
340 s, the maximal launch mass can be translated into maximal payload mass.

Table 9-5: Limiting cases: 20-days launch window for fixed TOF of 501 days.

Scenario Power level Launcher configuration Payload mass Payload mass
(kW) low-thrust (ton) chemical (ton)

2018 10 SLS/LUS 4xRL10C2 21.5 20.95
2018 10 SLS/iCPS 1xRL10B2 13.75 12.55
2018 25 SLS/iCPS 1xRL10B2 15.25 12.55
2019 10 SLS/iCPS 1xRL10B2 9.70 5.38
2019 25 SLS/iCPS 1xRL10B2 11.83 5.38
2019 10 SLS/LUS 4xRL10C2 15.75 10.49
2021 25 SLS/LUS 4xRL10C2 13.30 8.42
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Figure 9-10: Comparison maximal payload masses for chemical and low-thrust trajectories for
Earth-Mars-Earth missions in 2018, 2019 and 2021 for different power levels and different launch
configurations with a fixed TOF of 501 days.

The results in Table 9-5 have also been visualized in Figure 9-10. In this figure, the payload
mass for the low-thrust and for the chemical reference trajectories have been plotted on the
x- and y-axis respectively. A black line has been drawn that indicates where both masses are
equal. If a point lies on the right side of this line, it shows that the payload mass for the low-
thrust scenario is higher than the one for the chemical reference trajectory. From this figure,
one can see that the trajectories utilizing SEP have a consistently higher feasible payload
mass than the chemical trajectories. One can also see that the 4RL configuration results in
larger payload masses than for the 1RL configuration. This does not comes as a surprise
since the maximum launch mass in the launch performance curve of the 4RL configuration is
substantially higher than the 1RL configuration. In this figure, one can also see that for the
investigated scenarios, an increase in power level also results in a higher low-thrust payload
mass. This is not always the case, as will be explained in Subsection 19-1-2.

Hence, this study has demonstrated that SEP improves the launch period and mission per-
formance of a mission to flyby Mars and return within 501 days. Many parameters may still
be adjusted, which may open up further mission concepts and improve the performance even
more. This warrants further study, that would undoubtedly create even further improvements
on those discussed here.
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Chapter 10

Thesis research goals

Now that the status and the methods of the research performed during the author’s internship
have been explained, the research goals will be established based on the experience gained
during this internship. During this internship, a basic version of the tool has been written
and has been used to perform a first analysis.

This previously conducted research was limited to grid searches utilizing only one fixed time
of flight, as the code was not capable of optimizing time. However, there may be a significant
potential for improvement when the mission duration is allowed to change. So far, it has
always been kept fixed at 501 days according to the rules of Inspiration Mars [Tito et al., 2013],
but allowing variable flight time might create more opportunities. Therefore, the capability
to optimize the epochs of important events should be added. Besides improving the current
results, different mission concepts could be investigated. For instance, an additional Venus
flyby could be introduced to increase the scientific return of the mission and to open up new
launch windows.

During this thesis project, both potential improvements will be investigated. In order to
facilitate this pursuit, three research goals can be set up. Each of them will be shortly
described in the next three sections.

10-1 Research goal 1

Although the run-time of the program has always been kept into account during the devel-
opment of the code during the internship, the limited duration of the internship and the
time pressure of the paper deadline prevented the author from optimizing the entire code for
run-time. Therefore, the first research goal is to profile the existing code, identify bottlenecks
and remove them. Throughout this effort, changes will be implemented to facilitate the ad-
dition of extra legs to the trajectory. Furthermore, a promising different representation of
the Sims-Flanagan transcription will be implemented and will be compared to the current
representation.
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10-2 Research goal 2

The second research goal is to expand the written program to include the optimization of the
control nodes’ times. This enables the creation of grid searches with the launch date on the
x-axis and the total time of flight on the y-axis. For each grid point, the Martian flyby date
will then be optimized.

10-3 Research goal 3

The changes to facilitate the addition of extra legs will help for the third research goal: the
automation of the addition of extra legs. This will be tested through the optimization of
a three-leg Earth-Venus-Mars-Earth mission. The main goal here is again to enable grid
searches with the launch date on the x-axis and the total time of flight on the y-axis. For
each grid point, the Martian and Venus flyby dates will then be optimized.



Part III

Research goal 1: Improvements to
previous work
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Chapter 11

Profiling

In this chapter, the basic version of the tool will be profiled. This has been done using the
free program VerySleepy [Codersnotes.com]. This program identifies how much time is spent
in each (sub-)function of the tool. Do note that this profiling increases the run time. As
such, the resulting run times are not entirely representative. However, the ratios of the time
spent in the sub-functions are, which enables the determination of so-called bottlenecks:
inefficient points in the code that require a large amount of processing time.

First of all, such bottlenecks will be identified for a one-leg scenario. Next, those bottlenecks
will be removed by implementing several adaptations to the basic version of the tool. The
established adaptations will then be applied to a two-leg scenario to see if similar improve-
ments can be observed. To avoid drawing conclusions based on only 1 one-leg and 1 two-leg
scenario, a grid search will be performed around the nominal two-leg scenario.

11-1 One-leg scenario

First of all, a basic version of the tool will be profiled. It was decided to profile a one-
leg rendez-vous scenario with Mars. This discussion will start by explaining and profiling
a nominal test case, after which the program’s function structure encountered in the profile
tree will be explained. From the nominal scenario profile tree, several bottlenecks will be
identified. In the next subsections, adaptations to the code are explained which remove those
bottlenecks. Finally, a comparison of the actual run times for the tool using the implemented
adaptations will be given and discussed.

11-1-1 Nominal one-leg scenario

The case that was investigated for this scenario is a one-leg rendez-vous scenario with Mars,
inspired by the recent MAVEN mission. Both the launch and arrival date were modeled after
MAVEN and are the 1st of December, 2013 and the 22nd of September, 2014 respectively. The
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Figure 11-1: Thrust profile and trajectory for the nominal MAVEN reference mission.

hyperbolic excess velocity at the launch date was initially set to [116,-6176,-716] m/s, also
based on MAVEN. The arrival hyperbolic excess velocity was set constant to [0,0,0] m/s as it is
a rendez-vous mission. The power level was set to 50 kW, to ensure a feasible trajectory. The
specific impulse was set constant to 2000 s. There is a one-week coasting arc after launch and
a two-week coasting arc before Mars arrival for launch checkout and pre-arrival operations.
Although it was not used for the MAVEN launch, the Advanced Upper Stage of the SLS
was used, as this launch vehicle curve was already available in the tool. The resulting thrust
profile and trajectory for this reference mission based on MAVEN can be found in Figure
11-1.

In Figure 11-2, one can see the profiling tree of this scenario. At the top of this profiling
tree, functions related to the SNOPT optimization procedure such as s8iqp and s6srch can
be found. The latter function is the most interesting for this profiling; this is the function
in SNOPT that calls the usrfg function. As explained in Chapter 5, within this function,
the state vector is propagated, the constraints are calculated and the derivatives of each
constraint with respect to each state vector element are calculated. The most computationally
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Figure 11-2: Profiling of the nominal MAVEN mission: listing of run time per (sub)function.

intensive functions within the usrfg function have been listed. The most time consuming
function is StateVectorPropagation. This function gets the initial state vector elements and
propagates them. As the constraint calculations hardly consume any time, they are not
included in this profiling tree. The same holds for the derivatives with one major exception:
the derivatives with respect to time are obtained using a finite-difference method for reasons
that will be explained in Chapter 13. Therefore, a variant on the StateVectorPropagation,
StateVectorPropagation2 has been written.

As the StateVectorPropagation and StateVectorPropagation2 functions are the most compu-
tationally intensive, the structure within those functions will be explained. The function
StateVectorPropagation calls the NumericalPropagator function twice: once for a forward
propagation and once for a backward propagation. In this NumericalPropagator function,
several dynamic arrays are (de-)allocated using new and free, the trajectory is propagated
between the different manoeuvres using IntegratorFunction, the manoeuvres are applied and
the mass is updated. A similar function NumericalPropagator2 has been written based on
this function, but specifically tailored for the finite-difference method with respect to time.

As can be seen from the profiling tree, both NumericalPropagator and NumericalPropagator2
call the same IntegratorFunction. This IntegratorFunction checks if it is a forward or backward
integration and if the final time for the integration has been reached or not. Depending on
the answers to those questions, it calls the Dopri8Integrator, which does the actual numerical
integration using the DOPRI8 scheme explained in Subsection 6-3-1. The Dopri8Integrator
calls the STMPropagatorFunction, which calculates the derivatives of the STM, coordinates
and velocity elements, explained in Subsection 6-3-2.
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From the profiling tree in Figure 11-2, already some bottlenecks can be identified. A first one
is located within the IntegratorFunction. There, a large amount of time is required in the
new and delete functions for the allocation and de-allocation of arrays.

A second bottleneck is the large amount of time spent in the NumericalPropagator and Nu-
mericalPropagator2 functions to allocate and de-allocate dynamic arrays.

A third bottleneck is the pow function that is called in the DOPRI8Integrator function. pow
is the standard function in C++ to raise a number to a certain power. For instance, x2 in
C++ is powpx, 2.0q. Although being the standard method in C++, it is not efficient.

11-1-2 Adaptation 1: Array allocation moved up in function hierarchy

The first bottleneck was identified to be the (de-)allocation of arrays in the IntegratorFunction.
This could be traced to the (de-)allocation of a specific array every time the IntegratorFunction
is called. This (de-)allocation could be moved one level higher up in the function hierarchy
to the NumericalPropagator and NumericalPropagator2 functions.

As a result, the time spent in new and free within the IntegratorFunction has been removed.
However, the time spent in new and free in the NumericalPropagator and NumericalPropa-
gator2 functions has been slightly increased. As the number of calls to the NumericalPropa-
gator(2) function is lower than the number of calls to the IntegratorFunction, the arrays are
(de-)allocated less often. Hence, the overall effect is a speed up of the NumericalPropagator
and NumericalPropagator2 functions.

11-1-3 Adaptation 2: Array allocation moved out of loop

The second bottleneck was identified to be the large amount of time spent in the Numerical-
Propagator and NumericalPropagator2 function to allocate and de-allocate dynamic arrays.
This bottleneck was traced back to the allocation of several arrays within a loop that goes
through the different propagation steps. Those (de-)allocations have been moved out of the
loop. Hence, they only had to be allocated and de-allocated once.

The effect of this adaptation is a large reduction in the amount of time spent for the allocation
and de-allocation of those arrays within the NumericalPropagator and NumericalPropagator2
functions.

11-1-4 Adaptation 3: Avoid usage of pow function

The third identified bottleneck was the time spent in the pow function in theDOPRI8Integrator
function. However, the profiler is mistaken here. The DOPRI8Integrator does not call the
pow function. The STMPropagatorFunction, in which the derivatives of the STM, coordinates
and velocity elements are calculated, does.

In this function, pow has been replaced by multiplications. It was realized that removing
pow was not the only improvement that could be made to the propagation function. As the
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terms x*x, y*y, z*z, x*y, x*z and y*z are calculated several times, it was decided to create
variables for each of them. This reduces the time spent for multiplication of those elements.
Furthermore, it was realized that it is more efficient to replace r*r by a separate variable. As
such, r5 can be represented as r2 � r2 � r instead of r � r � r � r � r with r2 � r � r.

As a result, the time required for the pow function is entirely removed. There is a small
increase in time spent in the STMPropagatorFunction as the multiplications are now at-
tributed to this function, while before adaptation 3, they were attributed to the pow function
in the DOPRI8IntegratorFunction. The overall effect is a reduction of the time spent in the
DOPRI8Integrator function.

11-1-5 Adaptation 4: Merge multiple arrays into memory pool

Although the main bottlenecks have been identified, it was thought that the (de-)allocation
of the arrays in the NumericalPropagator and NumericalPropagator2 function could be made
even more efficient. Within the NumericalPropagator function, 27 equally-sized arrays are
allocated that are passed on to the IntegratorFunction. Since those arrays are always all
passed on at the same time, they could all be combined into one single, larger array. As such,
not 27 different arrays have to be allocated, passed on to sub-functions and be de-allocated,
but just one array. One disadvantage of this grouping of multiple arrays into one single, larger
array is that many multiplications for indexing have to be performed. For instance, if one
wants to access the jth element of the 25th array called y, instead of calling y[j], one needs to
call k[24*SIZE_ONE_ARRAY +j).

The time required for new and free in the NumericalPropagator function has been substan-
tially reduced. However, there is a substantial increase in the DOPRI8Integrator function, as
expected due to the multiplications performed for the indexing within this function.

11-1-6 Adaptation 5: Move step size initialization

While changing the program code required for adaptation 4, another bottleneck was identified.
It was realized that every time the IntegratorFunction is called, the time step used for the
DOPRI8 integration procedure was reset to its initial value. This means that each propagation
step within a forward or backward propagation starts with the resetted time step, after which
this time step is updated according to the variable step size algorithm utilized in DOPRI8.
Afterwards, the step size is again reset when a new propagation step is started. This is not
as efficient as it could be as for consecutive propagation steps within a forward or backward
propagation, a similar step size could be used. Therefore, the time step should only be reset if
a new forward or backward propagation is started. This means that the resetting of the time
step should be moved from the IntegratorFunction to the start of the NumericalPropagator
and NumericalPropagator2 functions. The effect of this adaptation has been visualized in
Figure 11-3. It is clear that after the initialization during the first 3 propagation steps, there
is a difference in the number of propagation steps required for the two different methods.
For the old method where the time step is reset at the beginning of each new propagation
step, every single propagation step requires 7 steps. However, for the new method which
remembers the propagation time step from the previous propagation step, it only requires 2
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Figure 11-3: Visualization of the different time step systems.

steps per propagation step for this specific case. As such, the DOPRI8Integrator is not called
as often as it used to be, which explains why the latter method is more efficient.

The time spent in the IntegratorFunction is reduced as the number of DOPRI8Integrator calls
is drastically reduced. As such, the time spent in the DOPRI8Integrator is approximately
halved for this specific scenario.

11-1-7 Time comparison

The run time of different versions of the tool with different adaptations active have been listed
in Table 11-1. Do note that the times listed here are actual run times that were obtained
without the interference of the VerySleepy profiler program.

Due to small accuracy differences between the pow and multiplication operations in C++,
small differences in the propagated states occur if adaptation 3 is active. As such, the number

Table 11-1: Comparisons of the effect of the different adaptations for a one-leg scenario.

Adaptations Total Objective Major Calls to
active time [s] function iterations usrfg
None 22.7 0.088841865 279 510
1 19.2 0.088841865 279 510
1 and 2 6.6 0.088841865 279 510
1, 2 and 3 6.1 0.088839385 343 581
1, 2, 3 and 4 4.8 0.088839385 343 581
1, 2, 3, 4 and 5 4.1 0.088837828 399 667
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of iterations required to perform the optimization changes. It depends on the exact scenario
if more or less iterations are required. For this particular scenario, more iterations had to be
done. Independent of an increase or decrease in the number of iterations, the time required
per iteration or call to the usrfg function is smaller using this adaptation, which proves that
the usrfg function itself is sped up due to adaptation 3.

The same reasoning can be applied to adaptation 5: small differences in the propagated states
result in an increase or decrease in the calls to usrfg. Independent of an increase or decrease
in the number of iterations or calls to usrfg, the time required per iteration or call to the usrfg
function is smaller using this adaptation, which proves that the usrfg function itself is sped
up due to adaptation 5.

11-2 Two-leg scenario

Until now, the previously mentioned improvements due to the described adaptations have
only been tested on one-leg scenario’s. In this section, it will be shown that the same adap-
tations also improve two-leg scenario’s. First of all, the reference two-leg scenario will be
explained, followed by a comparison of the actual run times for the tools using the imple-
mented adaptations.

11-2-1 Nominal two-leg scenario

The case that was investigated for this scenario is a two-leg Mars flyby mission, inspired by
the previously conducted Inspiration Mars based research. The scenario for this two-leg case
is based on the 2018 launch window identified in De Smet et al. [2014]. The launch, flyby
and arrival dates are the 2nd of February, 2018, the 7th of September, 2018 and the 21st of
May, 2019 respectively. The power level was set to 10 kW and the payload mass was set to
be 19 tons. The launch vehicle model is based on the SLS 4xRL10, advanced upper stage
launcher. The specific impulse was set constant to 2000 s. There is a one-week coasting arc
after launch, a two-week coasting arc before Mars arrival and a two-week coasting arc before
Earth arrival for launch checkout, pre-flyby and pre-arrival operations. The resulting thrust
profile and trajectory can be found in Figure 11-4.

11-2-2 Time comparison

Table 11-2 gives an overview of the time gains associated with the different adaptations.
Comparing this with Table 11-1, one can see that there is less gain achieved for the two-leg
case. However, this can be explained by looking at Figure 11-5, which shows the profile tree
for the nominal two-leg scenario. One can see that roughly half of the time is spent in the
s8iqp function instead of approximately 8% for the nominal one-leg scenario in Figure 11-2.
This difference can be linked to the difference in number of infeasible iterations. For the
one-leg scenario, the optimizer almost immediately finds a feasible trajectory. The two-leg
scenario remains much longer on an infeasible iteration. As such, the time spent in the s8iqp
function, which tries to minimize the infeasibilities, is much higher in the two-leg than for the
one-leg reference case.
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Figure 11-4: Thrust profile and trajectory for the nominal two-leg Inspiration Mars reference
mission.

Table 11-2: Comparisons of the effect of the different adaptations for a two-leg scenario.

Adaptations Total Objective Major Calls to
active time [s] function iterations usrfg
None 19.8 0.53352949709 432 675
1 19.3 0.53352949709 432 675
1 and 2 18.8 0.53352949709 432 675
1, 2 and 3 14.8 0.53352949683 410 583
1, 2, 3 and 4 14.9 0.53352949683 410 583
1, 2, 3, 4 and 5 13.0 0.53352951115 400 736
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Figure 11-5: Profiling of the nominal two-leg Inspiration Mars reference mission.

As for the one-leg nominal scenario, almost 92 % is spent in the self-written function usrfg
and only about 50 % for the two-leg nominal scenario, it is logical that the adaptations in
the one-leg scenario appear to have a bigger impact than for the two-leg scenario.

One can see that much like for the one-leg scenario, every adaptation reduces the total run
time, except for adaptation 4. The reason is that although the time spent in the new and free
function is reduced with adaptation 4 active, the gain here is smaller than the time increase
in the DOPRI8Integrator function due to the multiplications that have to be done for the
indexing. As such, adaptation 4 is not beneficial for this specific scenario.

11-3 Grid searches

The previous two sections prove that the adaptations are advantageous for both a one-leg and
a two-leg scenario. However, only 1 one-leg and 1 two-leg scenario have been investigated. It
could be that the realized time gains were just a matter of luck. To eliminate this element of
luck, it has been decided to apply the different versions of the tool to a two-leg scenario similar
to the one described in the previous section. However, instead of looking at only one specific
launch date - flyby date - arrival date combination, a grid search was performed in which
the launch and flyby dates were systematically varied, from which the arrival date followed
automatically as the total time of flight was kept constant at 501 days. In doing so, it was
shown that the speed ups achieved from the different adaptations are not just based on mere
luck, but are consistent. The results have been listed in Table 11-3 where also the optimal
departure and flyby date have been listed and the corresponding minimal launch mass.
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Table 11-3: Time comparison for grid searches around two-leg scenario.

Adaptation active Time Minimal launch Optimal departure Optimal flyby
[min] mass [tons] date [days] date [days]

Nominal 31.7 19.31439 10 232
1 31.0 19.31439 10 232
1 and 2 27.2 19.31439 10 232
1, 2 and 3 20.2 19.31440 10 232
1, 2, 3 and 4 19.6 19.31440 10 232
1, 2, 3, 4 and 5 19.5 19.31443 10 232

Although the time gains due to the different adaptations vary throughout the performed grid
searches, it is clear that the gains identified in the previous two sections are not just mere
luck. Due to variations within the grid, the percentage of time gained depends on the actual
grid point. Therefore, no definite number can be attributed to these savings, only on an
individual basis. However, Table 11-3 gives an overview of the time in minutes required to do
the entire grid search. From this, one can conclude that the overall differences in minimized
launch mass are negligible and that the effect on a two-leg scenario is larger than what Table
11-2 would suggest. The main reason is that not all points in the grid search spent a large
amount of time in the s8iqp function minimizing the infeasibilities, as was the case for the
specific data point used to build Table 11-2. If more time is spent in the usrfg function instead
of in the s8iqp function, the effect of the adaptations is larger.

The gain from adaptation 5 is marginal in this grid, which was unexpected. Therefore, the
grid was further examined to see what caused this smaller than expected gain. It was found
that for one grid point, the small differences in the propagation due to adaptation 5 resulted in
a numerical instability, which led the optimization tool SNOPT to iterate until the maximum
allowed number of iterations was achieved. As such, this data point took 130 seconds longer
with adaptation 5 active. Without it, this grid search would be 2.2 minutes faster than the
case where only adaptation 1 up to 4 are active.

11-4 Conclusion

In general, the identified adaptations considerably reduce the run time of the program. In
some cases however, the processing time is increased. This can be traced back to small ac-
curacy differences in the propagated state vector for the different adaptations. These small
accuracy differences result in a different number of iterations required for the SNOPT opti-
mization tool to converge. If this required number of iterations is significantly larger, it might
be that the time gain of an adaptation is canceled out by the additional run time required
for the larger number of iterations. This can lead to an overall larger run time.

The general trend however is a consistent reduction in run time if the identified adaptations are
applied to the program, as shown by the performed grid searches. Therefore, the implemented
adaptations will remain active for the remainder of this thesis research.
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Chapter 12

Throttled versus thrust representation

It must be ensured that the optimal solution does not require more thrust than the SEP system
can provide. Therefore, in Subsection 7-2-2, so-called thrust constraints were introduced.
Remember that these thrust constraints were dependent on the mass of the spacecraft at the
midpoint of each segment. For segment j, this mass depends on the manoeuvres i   j for the
forward thrust constraints and on the manoeuvres i ¥ j for the backward thrust constraints.
As such, the thrust constraints have dense Jacobian entries corresponding to the ∆V decision
variables in the previous time steps [Ellison et al., 2013].

In this chapter, a different representation of the Sims-Flanagan transcription will be evaluated.
First of all, this new transcription called the throttled representation will be explained
and its effect on the sparsity of the Jacobian will be visualized. Then, the changes in the
Jacobian will be derived. This discussion will be followed by a comparison of the throttled
and classical thrust representation for a single-leg trajectory.

12-1 Throttled representation

The dense entries corresponding to the ∆V decision variables in the previous time steps can
be avoided by using a slightly different representation of the Sims-Flanagan transcription.
Instead of representing a manoeuvre using [∆VT , ∆VN , ∆VC ] and using thrust constraints,
one could represent the manoeuvre by using a throttle vector [uT , uN , uC ] and throttle
constraints [Ellison et al., 2013]. These non-dimensional throttle parameters are scaled by
the maximum ∆V that the spacecraft can apply during that segment: ∆Vmax.

∆Vκ � uκ �∆Vmax with κ=T, N, C

The maximum ∆V that can be applied at a segment depends on whether or not the power is
dependent on the heliocentric distance. If it is independent of the heliocentric distance,
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∆Vmax,j � 2ηjetP0DT

Isp,jg0M
�
j

(12-1)

If it is dependent on the heliocentric distance, the following equation applies:

∆Vmax,j � 2ηjetP0DTAU
2

Isp,jg0M
�
j R

2
j

(12-2)

where Rj andM�
j are the heliocentric distance of the spacecraft and the mass of the spacecraft

before the manoeuvre is applied.

This formulation is straightforwardly applicable to the forward propagation. Using the initial
node conditions, ∆Vmax,j can be calculated, from which the ∆V vector in the TNC coordinate
system can be calculated using Equation 12-1. This can be converted into a Cartesian ∆V
vector using Equation A-1, which can then be used to update the Cartesian state and mass
at the manoeuvre point after application of the manoeuvre using Equations 6-16 and 6-18.

However, for the backward propagation, the mass of the spacecraft before the application of
the manoeuvre is unknown, but depends on ∆Vmax,j . In Equation 12-1 and 12-2, one can
see that this ∆Vmax,j also depends on this mass. Rewriting Tsiolkovsky’s law for the last
manoeuvre 2N for the constant power case, one gets.

M2N� �M2N� � exp
�b

u2
T,2N � u2

N,2N � u2
C,2N

Isp,2N � g0
� 2ηjetP0DT

Isp,2N � g0M
�
2N

�
(12-3)

Solving for M2N� , one gets

M2N� �

b
u2
T,2N � u2

N,2N � u2
C,2N

Isp,2N � g0
� 2ηjetP0DT

Isp,2N � g0
� (12-4)

W�1

�b
u2
T,2N � u2

N,2N � u2
C,2N

Isp,2N � g0
� 2ηjetP0DT

Isp,2N � g0
� 1
M2N�

�

where W�1 is the inverse of the Lambert’s function also known as the omega function
or product logarithm, which needs to be calculated using an iterative procedure [Lambert,
1758]. The result of this iterative procedure, the mass before the application of the manoeuvre,
can be used to calculate ∆Vmax,j . From this, the ∆V vector in the TNC coordinate system
can be calculated using Equation 12-1. This can be converted to a Cartesian ∆V vector
using Equation A-1, which can then be used to update the Cartesian state and mass at the
manoeuvre point before application of the manoeuvre using Equations 6-17 and 6-19.

Instead of using thrust constraints, throttle constraints can be used for this representation of
the Sims-Flanagan transcription.

Fthrottle �
b
u2
T � u2

N � u2
C P r0,duty cycles (12-5)



12-2 Comparison of the sparsity of the Jacobian 67

12-2 Comparison of the sparsity of the Jacobian

The throttle constraints on each segment in Equation 12-5 only depend on the throttle pa-
rameters of that segment. As such, the dependency on other manoeuvres has been removed.
This can also be seen from the mapping of the Jacobian in Figures 12-1 and 12-2 where the
red squares indicate Jacobian entries that are always equal to zero.

Figure 12-1: Sparsity pattern of the Jacobian for a single-leg case with 20 segments, thrust
constraints.

Figure 12-2: Sparsity pattern of the Jacobian for a single-leg case with 20 segments, throttle
constraints.
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Comparing the step structure in Figure 12-1 to the block structure in Figure 12-2, one can
see that the dependency on other manoeuvres in Equations 7-4 and 7-5 has been removed.
Furthermore, the initial and final control node conditions no longer affect the throttled con-
straints as can be seen from Equation 12-5. However, the seven match point constraints now
depend on every single variable. For the thrust constraints, the specific impulses did not affect
the six state match point constraints nor did the initial, final and SEP system masses. In
addition, the mass match point now depends on the initial and final states and times. From
the previous figures, it can be deduced that the throttle constraint representation leads to a
much sparser Jacobian.

12-3 Jacobian of the throttled representation of the Sims-Flanagan
transcription

Not only do the location of the Jacobian entries vary for the different representations, also
the derivatives within these entries change. These differences will be explained in this section.
First of all, it will be shown how a change in the initial and final state, initial and final mass
of the spacecraft and the mass of the power subsystem affects the state and mass of the
spacecraft at the match point. This will be followed by an explanation on how changes in the
throttle vector elements and the specific impulse of each manoeuvre are propagated up to the
match point. Finally, the derivatives of the throttle constraints with respect to the throttle
parameters will be derived.

12-3-1 Derivatives of the match point constraints with respect to the initial and
final masses, coordinates, velocities and hyperbolic excess velocities, and
the mass of the SEP system

To find the derivatives of the match point constraints, first of all, it must be understood how
a change in the initial state and mass and power level is propagated up to the match point
for the forward propagation. Similarly, it must be understood how a change in the final state
and mass and power level is propagated up to the match point for the backward propagation.
This will be explained in the next two paragraphs, followed by a paragraph that shows how
the results from those propagations can be used to find the derivatives.

Forward propagation If the initial state, mass and initial power level change, also the mass
and state of the spacecraft before application of manoeuvre 1 change. It can be shown that
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where Φ1�,0 is the STM between points 0 and 1�. This 8x8 matrix will from now on be called
Φext1�,0 .

This difference in state and mass of the spacecraft before the application of manoeuvre 1,
along with the change in the mass of the SEP subsystem and as such the power of the SEP
system, results in a change of ∆Vmax,1. Also, the change in the state of the spacecraft results in
a change in the directions of the TNC coordinate system. As such, a variant of the TNC1�,1�
matrix must be set up to account for these changes. This matrix will be called TNCext1�,1�
and has been derived in Appendix D-1.

Similar to Figure 8-1, Figure 12-3 shows how changes in the initial state and mass of the
spacecraft and the power of the SEP system are propagated up to the match point.

Figure 12-3: Propagation of a change in initial conditions and mass of the SEP system to the
match point.

So,
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This matrix multiplication will be called ΨextMP,0 .

Backward propagation Similar to the forward propagation, the extended version of the
STM and the TNC matrices are required. The extended version of the STM can be set up in
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exactly the same manner as for the forward propagation. However, the TNC extended matrix
for the backward propagation is slightly different and has been derived in Appendix D-2.

Similar to the forward propagation, the matrix ΨextMP,f
is the matrix product of

ΦextMP,N�1�
� TNCextN�1�,N�1�

� . . . � Φext2N�1�,2N�
� TNCext2N�,2N� � Φext2N�,f .

Calculation of the derivatives The matrices ΨextMP,0 and ΨextMP,f
can be used to find the

required derivatives. The derivation is trivial. Therefore, the derivation will not be shown
here but can be found in Appendix F.

12-3-2 Derivatives of the match point constraints with respect to the throttle
parameters and the specific impulses

To find the derivatives of the match point constraints with respect to the throttle parameters
and the specific impulses of each manoeuvre, it must be understood how a change in a forward
throttle parameter and specific impulse is propagated up to the match point in the forward
propagation. Similarly, it must be understood how a change in a backward throttle parameter
and specific impulse is propagated up to the match point in the backward propagation. This
will be explained in the next two paragraphs, followed by a paragraph that shows how the
results from those propagations can be used to find the derivatives.

Forward propagation First of all, one must understand how a change in forward throttle
parameters and specific impulses influences the state and mass after the manoeuvre has been
applied. Therefore, �
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This matrix will be further referenced as ∆TNCext1�,1 and has been derived in Appendix
E. This change in the state and mass after the application of the manoeuvre can then be
propagated up to the match point using
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So, �
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where ΨextMP,1�
� ΦextMP,N�

� TNCextN�,N� . . .Φext2�,1� .
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The last row of this matrix is composed of zeros since the mass of the power subsystem is not
affected by uT , uN , uC and Isp.

Backward propagation First of all, one must understand how a change in backward throttle
parameters and specific impulses influences the state and mass before the manoeuvre has been
applied. Therefore, similarly to the forward propagation, an extended matrix must be defined:
∆TNCext2N�,2N , which will be derived in Appendix E.

This change in the state and mass before the application of the manoeuvre can then be
propagated up to the match point using
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where ΨextMP,2N�
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Calculation of the derivatives Due to the definitions of the match point constraints in the
form of xMP,for � xMP,back, the derivatives of the forward throttle parameters and impulses
are equal to the values of the ΨextMP,1�

�∆TNCext1�,1 matrix product, while the derivatives
of the backward throttle parameters and impulses are equal to the negative values of the
ΨextMP,2N�

�∆TNCext2N�,2N matrix product.

12-3-3 Derivatives of the throttle constraints with respect to the throttle pa-
rameters

Looking at the definition of the throttle constraint in Equation 12-5, one can see that those
derivatives are trivial. The derivative of throttle constraint i with respect to throttle param-
eters uT,j , uN,j and uC,j depends on the relation between i and j. If i � j, they are equal to
zero. If i � j,

BFthrottle,i
BuT,i � uT,ib

u2
T,i � u2

N,i � u2
C,i

BFthrottle,i
BuN,i � uN,ib

u2
T,i � u2

N,i � u2
C,i

(12-15)

BFthrottle,i
BuC,i � uC,ib

u2
T,i � u2

N,i � u2
C,i
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12-4 Comparison of throttled and thrust representations

In this section, a comparison between the two different methods will be made. First of all,
a nominal one-leg scenario will be explained, compared and profiled. Then, the effect of
communicating the sparsity to SNOPT will be explained, after which this representation
will be profiled. Finally, a grid search around the nominal scenario will be performed and
compared for the different representations.

12-4-1 Nominal single-leg scenario

The investigated one-leg nominal scenario is a rendez-vous problem with Mars launching at
the 1st of January 2031 with a fixed flight time of 300 days using 100 kW of power. Upon
arrival at Mars, the spacecraft is injected into a 300x45000 km elliptical orbit around Mars,
based on the Mars Reconnaissance Orbiter mission [Jet Propulsion Laboratory - MRO]. The
size of the injection burn depends on the arrival excess velocity and the required propellant
depends on the size of this burn and on the specific impulse of the orbital injection system,
which was assumed to be 230 s [Benfield and Turner, 2007]. The objective of this optimization
was to maximize the injected payload mass minus the mass of the SEP system.

12-4-2 Convergence issues throttled representation

It was observed that the throttled representation was more sensitive to the initial guess of
the throttle vector. For the thrust representation, an initial guess of the manoeuvre could
converge if the initial guess of the non-dimensional ∆V-vector is [1,1,0.1] for all manoeuvres.
However, for a throttle vector initial guess of [1,0.1,0.1], the throttled representation strug-
gled to converge and repeatedly produced SNOPT output 43: "cannot satisfy the general
constraints". However, upon changing the initial guess to [1,1,1], it converged onto a solution.

This issue can be traced back to the distribution of information within the Jacobian. For
the thrust-constraints representation, visualized in Figure 12-1, the derivatives of the match
point constraints contain information on how a change in the size of a manoeuvre affects
the state of the spacecraft and how this influences the match point. The derivatives of the
thrust constraints contain information on how the size of a manoeuvre influences the allowable
magnitude of the following ones.

For the throttled constraints, visualized in Figure 12-2, the latter information has been moved
to the derivatives of the match point constraints. So, both sources of information are merged
into one single derivative. Hence, instead of having information on the effect on all consecutive
manoeuvres and on the match point, only the latter remains. It is believed that this loss of
data hinders the optimizer to distinguish which part of the match point derivatives are due to
the change in the manoeuvre itself and which are due to the changes in the other manoeuvres
as a consequence of this change. Hence, the optimizer has more trouble identifying which
manoeuvre needs to be adapted, which thwarts the converging onto a solution.
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12-4-3 Validation and profiling of the nominal scenario

Upon running the nominal scenario using the thrust representation, the non-dimensional
optimal objective function value is -5.7814983365E-01. Upon running the nominal scenario
using the throttled representation, the optimal objective function value is -5.7814985825E-01.
These results are very similar and only differ from the 8th decimal number. This corresponds
to a difference of 0.9 grams and is therefore negligible. Furthermore, if plotted, the thrust
profile and trajectory look exactly the same, indicating that both methods have converged
onto the same solution.

Due to a coincidence, the numbers of calls to the usrfg function for this specific scenario
are equal for the thrust and throttled representations. Due to this equality, this scenario is
very suited for a comparison of the run-times. Upon profiling, it became apparent that the
throttled representation requires more time in the StateVectorPropagation function. This does
not come as a surprise, as more calculations have to be performed to establish the extended
transformation matrices. Additionally, the mass before the manoeuvre has to be calculated
using the inverse of the Lambert function, as can be seen in Equation 12-3, which needs to
be solved using an iterative procedure. Also, the larger size of the transformation matrices
increases the computational time to perform the required matrix multiplications to calculate
several derivatives.

However, due to the larger sparsity in the Jacobian for the throttled representation, SNOPT
requires less time in the s8getr function within the s8iqp function. This function is responsible
for calculating several aspects of the reduced Hessian. Since the throttled representation leads
to a much sparser Jacobian, less time is required within these functions. The overall effect
is that the throttled representation is faster: the run times are 1.975 s and 1.655 s for the
thrust and throttled representation respectively.

12-4-4 Sparsity

Up to this point, SNOPT does not know the structure of the sparsity pattern. As such,
SNOPT uses all the elements of the Jacobian, including the elements that are always zero, to
update the state vector. However, if the structure of the Jacobian would be communicated
to SNOPT, it would only utilize the non-zero elements of the Jacobian to update the state
vector, which, depending on the sparsity of the Jacobian, leads to a drastic reduction in
the number of elements that are taken into account and hence the number of computations
that have to be performed. Looking at Figure 12-1, one can see that the proper indexing
of the Jacobian for the thrust constraints representation is rather tricky. Therefore, it had
never been done before. Looking at Figure 12-2, one can see that this indexing is much more
straightforward for the throttled representation. Furthermore, the sparsity of the throttled
representation is much higher than for the thrust constraints representation. As such, the
gain of communicating the sparsity is higher for the throttled representation.

Despite its simpler sparsity pattern, the implementation proved to be tricky; the index of
every single element in the Jacobian had to be updated.
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Upon implementing the sparsity feature into the program, it had to be validated again. The
optimal objective function value is -5.7814990258E-01. As only the 7th decimal number is
different and as the thrust profile and trajectory look exactly the same as for the throttled
case without sparsity implemented, it can be concluded that they converge onto the same
solution.

Due to the inner workings of SNOPT and due to the utilization of the sparsity, the time spent
in the s8iqp_ function is significantly lower, as expected. Utilizing the sparsity pattern, the
run time has been decreased further from 1.655 s to 1.243 s.

12-4-5 Grid search around nominal scenario

Until now, only one specific case has been examined. To avoid drawing conclusions based on
only one case where coincidence can pollute the conclusion, a grid search will be performed
where the initial time is varied between 50 days before and 30 days after the reference epoch
of the 1st of January 2031 with a step size of 5 days, and the time of flight is variable between
280 days and 480 days with a step size of 50 days. The results can be found in Table 12-1.

Table 12-1: Results of the one-leg grid search.

Case Time for grid search [s] Total calls to usrfg [-]
Thrust 124 19856
Throttle, non-sparse 117 19273
Throttle, sparse 88 19267

If one divides the total run time by the number of calls, one gets 6.24 and 6.07 ms per call to
usrfg for the thrust and throttled representation respectively. So, the throttled representation
requires less calls to the usrfg function, and it requires less run time to complete a call to the
usrfg function. If one divides the total run time by the number of calls, one gets 6.07 and
4.57 ms per call to usrfg for the non-sparse and sparse throttled representation respectively.

From these numbers, it appears that the throttled representation is indeed much faster.
However, these numbers alone do not show the entire picture. As explained, the throttled
representation displayed a significant sensitivity to the initial guess. In many scenarios, the
optimization had to be started multiple times with different initial guesses to bypass several
convergence issues. The listed times however do only show the time it takes to perform the
grid search if all throttled optimizations converge on the first effort. As such, the listed times
for the grid search are in fact an utopic representation of the throttled method. If one would
take into account the total time for all the optimization runs, the non-sparse throttled runs
were 36 seconds slower than the thrust runs, while the sparse throttled runs were only 4
seconds faster.



76 Throttled versus thrust representation

12-5 Conclusion

The throttled representation has significant advantages. First of all, the Jacobian becomes
much sparser, which reduces the time spent in the s8sqp function within SNOPT. This leads
to a reduction of approximately 3 % for the ratio of the total run time and the number of
calls. Furthermore, the sparsity pattern for the throttled representation is much simpler than
for the thrust representation. As such, it is much easier to communicate the sparsity pattern
to SNOPT, which further reduces the time spent within the SNOPT functions. The gain
from implementing the sparsity pattern was a reduction of approximately 25 % for the ratio
of the total run time and the number of calls for a one-leg trajectory.

Besides its advantages, there are also disadvantages. The throttled representation is numeri-
cally less stable and requires better scaling and a more accurate initial guess. Several options
to resolve this issue have been tried. One example is the use of an automated scaling method.
However, all those efforts failed to rectify the issue. Up to now, this has been bypassed by
manually adjusting the initial guesses based on the output of the failed optimization. This
adjustment has been mainly based on intuition and experience with the problem at hand. If
this needs to be automated, a large anount of complexity needs to be added to the code. So
as long as the initial-guess sensitivity issue remains, it would be more practical to use the
thrust representation. Besides, the speed of this representation can still be improved by im-
plementing its complex sparsity pattern. This will be done in Chapter 14, after an additional
trade-off on the problem structure has been performed in the next chapter.
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Chapter 13

Coupling between time and ephemeris

The coordinates and velocities at the control nodes must be properly connected to the time
epoch of those nodes. Otherwise, the optimization could result in a trajectory that has
planetary encounters at a certain time and position when the planet is not physically there. In
this chapter, two different coupling methods will be established and compared. As explained
in Section 5-2, the current set-up of the state vector where both coordinates and velocities,
and the control node’s time are present requires proper coupling between those parameters.
This can be done using ephemeris constraints, which will be explained in the next section.
An alternative is to change the structure of the state vector by removing the control node’s
coordinates and velocities from the state vector and calculate them where needed based on
the control node’s time epoch. This will be explained in Section 13-2

13-1 Option 1: Ephemeris constraints

The first method that will be discussed uses ephemeris constraints. In the current set-up
where for each node, there are six coordinates and velocities and a time epoch in the state
vector, there must be six ephemeris constraints of the form:

� ε   αstate vector � αephemerisptq   ε (13-1)

where αstate vector is the coordinate or velocity in the state vector and αephemerisptq is the
coordinate or velocity calculated using Meeus’ polynomials for time t explained in Appendix
G.

13-1-1 Analytical derivatives of ephemeris constraints

The analytic derivatives of these ephemeris constraints must be determined. The derivatives
with respect to the coordinates and velocities in the state vector are trivial to find; they are
all equal to one. The derivatives with respect to the time require lengthy derivations. The
interested reader is referred to Appendix G.
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13-1-2 Analytical derivatives with respect to time

Besides the derivatives of the ephemeris constraints, also the derivatives of the time with
respect to the other constraints must be found. This discussion will mainly focus on the
derivatives with respect to t0. The derivatives with respect to tf can be found similarly. This
discussion will limit itself to the x and 9x state match point constraints. Similar procedures
can be used to find the derivatives of the other match point constraints.

To calculate the derivatives with respect to t0, one must find the difference in the constraints
values when all parameters except t0 remain constant. Since the initial node coordinates and
velocities are directly inputted into the propagation module, t0 only affects the propagation
time step ∆t � tf�t0

2N . If the propagation time step changes, the propagation itself changes
which has an effect on the match point constraints:

B∆x
Bt0 � B∆x
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2N (13-3)

This change in propagation time step has significant consequences. For instance, the STM’s
are not accurate anymore. STM’s are set up to transform a change in coordinates and veloci-
ties before a propagation into the change in coordinates and velocities after said propagation.
These relationships only apply for a specific propagation time step. To obtain accurate an-
alytic derivatives with respect to the propagation time step, one would need to know how
the STM elements change as a function of the propagation time step. Therefore, multiple
methods to adjust the STM elements have been tested. The most promising will now be
discussed.

A chained procedure is used to run through the propagation to find Bxmatch point, forward
B∆t and

B 9xmatch point, backward
B∆t . If the change in propagation time step is small, one can assume that

Bx�1
B∆t � 9x1

2 (13-4)

B 9x�1
B∆t � :x1

2 � �µ
R3

1
x1 � 1

2

Note that the factor 2 is due to the fact that the propagation between point 0 and 1� has
been done using half a propagation time step. As explained in Subsection 8-3-1, the change
before application of the manoeuvre 1� can be converted into the change after application of
the manoeuvre 1� using the TNC1�,1� matrix explained in Appendix B.
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Point 2� where the second manoeuvre is applied does not only shift due to the change in
propagation time step, it also moves as a result of the change in position and velocity at point
1�:

Bx�2
B∆t � 9x�2 (13-5)
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where the derivatives of point 1� with respect to the propagation time step can be found
combining Equation 13-4 with the TNC1 matrix. The derivatives of point 2� with respect to
point 1� can be found from the STM from 1� to 2�: Φp2�, 1�q. This procedure is iterated
until the match point is reached. Note that for the final step between point N� and the
forward match point, the propagation has been done with half a propagation step.

A similar procedure can be set up to find Bxmatch point, forward
B∆t and B 9xmatch point, backward

B∆t . Similar
mechanisms have also been used to obtain the derivatives of the thrust constraints.

Using this first-order method where the STM is adapted based on the first derivative of
the element ( 9x for the x elements and :x for the 9x elements), the derivatives approach the
values obtained from a finite difference method. However, the remaining inaccuracy leads
to numerical difficulties within the optimizer. Therefore, also higher-order methods have
been evaluated. Although they provide higher accuracy, the numerical difficulties prevail.
Furthermore, they require more computing power. Therefore, it was decided to obtain the
derivatives with respect to t0 and tf using a forward finite difference method [Gill et al.,
1981]. Using this method, the derivatives are accurate enough for the optimizer to converge
onto a solution.

13-1-3 Numerical difficulties ephemeris constraints

Although the accuracy of the derivatives with respect to t0 and tf no longer poses a problem,
there are still convergence problems using the ephemeris-constraints representation. Based
on the output of the optimization runs, the problem can be traced back to the ephemeris
constraints. Quite often, the optimization runs into numerical difficulties upon matching the
coordinates and velocities from the state vector with those based on the ephemeris and time.
Therefore, it was opted to investigate another option.
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13-2 Option 2: Remove coordinates and velocities from the state
vector

To avoid the unstable ephemeris constraints, one could remove the coordinates and velocities
from the state vector. As such, instead of passing the control node’s coordinates and velocities
from the state vector to the propagator, they are calculated within the propagator based on
the control node’s time epoch from the state vector using Meeus’ polynomials. If the time
changes, not only the propagation time step changes, also the control node’s coordinates and
velocities change. Since those are used as the starting point of the propagation, the analytic
derivatives become even more unstable. Therefore, it was again decided to use a forward
finite difference method. As this method does not utilize the unstable ephemeris constraints,
the convergence issues encountered for option 1 are avoided. Hence, this method succeeds to
converge on a solution on almost all situations it has been applied to.

13-3 Conclusion

Option 1 needs ephemeris constraints, which introduce numerical difficulties. Furthermore,
the smaller number of constraints and state variables for option 2 reduces the size of the
optimization problem. As such, option 2 should theoretically be faster than option 1. It is
currently impossible to prove this due to the numerical difficulties encountered in option 1.
Hence, it is impossible to obtain an estimate of the time required to converge onto a solution.

However, there is one major disadvantage for option 2. If one would like to optimize a
trajectory to reach a fixed point in an orbit, it would be useful to have the coordinates and
velocities in the state variables. They would have to be kept constant while the time of
flight would be allowed to change. Furthermore, the usage of ephemeris constraints in such
situations is no longer required, which should make the problem more stable and solvable.
Without the coordinates and velocities in the state vector, such a problem would still be
solvable, be it more indirect. One could bypass this problem by using an ephemeris function
that gives a constant position and velocity irrespective of the time.

It can be concluded that the advantages of removing the coordinates and velocities from the
state vector outweigh the disadvantages. Therefore, it was decided to continue with option 2
for the remainder of this thesis work.
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Chapter 14

Sparsity pattern implementation

The sparsity for the thrust representation of the Sims-Flanagan transcription has not yet been
implemented. The main reason to postpone this implementation was a continuous change in
the way the Sims-Flanagan representation was set up. This would always lead to a change in
the sparsity pattern. Therefore, it was opted to first decide upon a fixed problem structure
by trading off throttled versus thrust representations, ephemeris constraints versus removal
of the coordinates and velocities from the state vector, etc. Now that those options have been
compared and final decisions on the structure of the problem have been made, the sparsity
pattern of the Jacobian can be implemented.

Figure 14-1: Sparsity pattern of the Jacobian for a single-leg case with 20 segments, thrust
constraints, coordinates and velocities removed from the state vector.
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In Figure 14-1, one can see the sparsity pattern for the final Sims-Flanagan structure using
the thrust representation where the coordinates and velocities have been removed from the
state vector for a single-leg, 20 segments trajectory.

The sparsity of the problem can be calculated, assuming the constraint vector only consists of
standard match point and thrust constraints. For the mass match point constraint, there are
2� 4 � p2Nq derivatives. For each of the other six match point constraints Fx up to F

9z, there
are 8�3 � p2Nq derivatives. For the forward thrust constraints, there are 7 �N derivatives plus
the N

2 � pN � 1q elements in the step structure. The backward thrust constraints also have
7 �N � N

2 � pN � 1q elements. So in total, there are 8N2+62N+50 derivatives. The size of the
Jacobian is p7 � 2Nq � p11 � 8Nq � 16N2 � 78N � 77 elements. Knowing this, the sparsity
percentage can be calculated for a different number of legs. The results of these calculations
can be seen in Figure 14-2.

Figure 14-2: Sparsity percentage for the removed coordinates and velocities state vector struc-
ture, using thrust constraints for different number of legs and segments.

The same grid search as in Table 12-1 for a constant-time, one-leg scenario has been performed.
Due to small changes in computer settings compared to the runs in Table 12-1, the classical
thrust representation case where the coordinates and velocities are still present in the state
vector now requires 142 seconds of run time. If one removes the coordinates and velocities,
this is reduced to 118 seconds. The difference is caused by the smaller size of the state vector
and hence a smaller Jacobian size. Upon implementing the sparsity pattern for the case where
the coordinates and velocities have been removed, the run time decreases to 98 seconds. One
can conclude that again, the implementation of the sparsity pattern results in significant run
time reductions. Note that this comparison has been performed on a one-leg scenario. From
Figure 14-2, it can be deduced that the gain will be higher for higher-leg scenarios.
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Chapter 15

Two-leg Earth-Mars-Earth test case

In the previous chapters, the control node’s time optimization and increased speed capabilities
of the software have been explained. In this chapter, the time optimization capabilities will
be put to the test. It was decided to first test the optimization of a single epoch on a two-leg
trajectory: a Martian flyby mission. While it would appear logical to first test a single-leg
case, it was decided not to do so. Upon testing a single-leg Martian rendez-vous mission, it
was observed that the higher the time of flight, the lower the launch mass became. Hence,
this case is not very interesting, as the optimum lies on the imposed upper limit of time of
flight. From Chapter 9, it is known that only a limited range of feasible flyby dates for a
certain launch date - time of flight combination exist. Hence, it can be assessed if the tool
truly converges onto the optimal flyby date.

Furthermore, in previous research, two-leg Earth-Mars-Earth launch windows for a variety of
launch configurations, SEP power levels and payload masses have been established [De Smet
et al., 2014]. The main recommendation from this research is to perform two-dimensional
grid searches in launch date and TOF where for each grid point, the flyby date is optimized.
The creation and validation of such plots is the main goal of this chapter.

Such flyby-date optimized grid searches will be produced for two different optimization rep-
resentations: one where the launch mass is minimized and one where the final mass is maxi-
mized. Both options will be described in the next two sections. Finally, a comparison will be
made and one representation will be selected.

15-1 Representation 1: Minimized launch mass

In this optimization problem, the final mass consisting of payload mass and the mass of the
SEP subsystem as explained in Equation 9-1, is kept constant. The objective is to minimize
the launch mass. In the following subsections, the performed flyby-date optimization will be
validated and the results of the example case will be discussed.
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15-1-1 Validation

It must be ensured that for each grid point, the optimizer converges onto the optimal flyby
date. This can be checked using the grid searches established in De Smet et al. [2014]. For
each departure date in the grid search, the flyby date resulting in the minimal launch mass
can be determined. However, due to the limited resolution of the performed grid search,
this optimal flyby date will display a discrete behavior. These optimal flyby dates will be
compared to the results of a one-dimensional grid search in launch date with a constant TOF
of 501 days. For each of those launch dates, the flyby time has been optimized while the
launch date and return date are kept constant. The results of these optimization runs for the
reference scenario in 2018 using 10 kW of SEP on a payload mass of 13.139 tons using the
SLS-4RL launch configuration can be found in Figure 15-1.

Figure 15-1: Flyby date optimization validation of the 2018 - 10 kW - 13 tons - 4RL scenario,
representation 1 where the launch mass is minimized.

Analysis of the grid search Before analyzing the performance of the flyby-date optimization,
an analysis of the grid search will be performed. First of all, one can estimate the maximum
propellant mass for a time of flight of 501 days. The mass flow rate of the SEP system can
be found by rewriting Equation 3-4.

9m � 2Pηjet
pIspg0q2 (15-1)

If one multiplies this mass flow by the time of flight of 501 days and the duty cycle of 90%
and if one assumes that the power is constant at all time to 10 kW, one gets an estimate of
the upper boundary of the total propellant mass of 1215 kg. If one adds the mass of the SEP
system, 300 kg for a 10 kW system, an upper limit on the launch mass of 14.6 tons is obtained.
In reality, this number is lower, since the power is not always equal to 10 kW but decreases
with the square of heliocentric distance. Enforced coast arcs further lower this number.
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Figure 15-2: C3 profile of the 2018 - 10 kW - 13 tons - 4RL scenario , representation 1 where
the launch mass is minimized.

The propellant mass is not the only limiting factor on the maximum launch mass; the required
launch C3 also imposes a boundary. If one looks at Figure 15-2, one can see a trend: the
earlier the departure date, the higher the required C3 becomes. This can be explained by
looking at the problem geometry in Figure 15-3. Note that those trajectory figures have been
stripped down for clarity reasons. The utilized legend and axis are the same as for previous
figures such as Figure 9-3a. In Figure 15-3a, one can see that due to the geometry of the
problem, a sudden and large deviation from the Earth’s orbit is required to make the transfer
to Mars. Hence, a large C3 is required. On the other hand, for a later departure date, the
geometry allows a transfer where the spacecraft stays closer to Earth’s orbit for a longer time.
Hence, it does not need the large instantaneous change and as such only needs a smaller C3.

(a) [t0,tfly]=[-88,201]. (b) [t0,tfly]=[38,255].

Figure 15-3: Trajectories for the 2018 - 10 kW - 13 tons - 4RL scenario, representation 1 where
the launch mass is minimized.
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The lower limit of the departure date at -88 days can be explained through the large C3
requirement at early departure dates. At -88 days, the required C3 is 60 km2/s2. Based
on the launch curves in Figure ??, it is known that for a C3 of 60 km2/s2, the maximum
launch mass is 14.4 tons, the launch mass at the -88 departure date. At departure date -90, a
slightly higher C3 value is required. However, at that point, the launcher is no longer capable
of launching the maximum mass of 14.4 tons required to fulfill the mission.

The observed C3 profile explains the lower departure date cut-off of the launch window.
However, it does not explain the upper departure date cut-off; the required C3 here is ap-
proximately 40 km2/s2, which means that the theoretical upper launch mass limit would be
about 21 tons. The limiting factor here is the allowable hyperbolic return velocity of 8.969
km/s. In Figure 15-4, one can see that the hyperbolic return velocity increases with increas-
ing departure date. The reason for this can again be found from the problem geometry in
Figures 15-3a and 15-3b. One can observe that for the earlier departure date, the geometry
is such that the return leg is more or less parallel with the orbit of the Earth. For later
departure dates, the return leg makes a much larger angle with the Earth’s orbit and has a
higher relative velocity. In order to keep the relative velocity within the allowable 8.969 km/s,
the SEP system has to perform more and more work for increasing departure dates. In the
end, at departure date 38, the SEP system is continuously active, hence the maximal launch
mass of 14.4 tons is reached there. For a later departure date, the SEP system does not have
sufficient time to comply with the relative velocity constraint.

Figure 15-4: Return hyperbolic excess velocity profile of the 2018 - 10 kW - 13 tons - 4RL
scenario, representation 1 where the launch mass is minimized.

Besides explaining the boundaries on the departure date, also the trend within the same
departure date needs to be explained. As an example, departure date 0 will be discussed.
From Figure 9-3, it is known that the trajectory for [3,233] is almost a free return trajectory.
However, if the flyby date is shifted by a few days, the geometry does not allow for a free
return trajectory. Instead, more thrusting is required on both legs. This explains why for
both earlier and later flyby dates than 233 days, the required propellant mass and hence the
launch mass is larger.
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Also the shape needs to be explained. One can observe an upward slope. This is partially
because of the set-up of the figure. For a later departure date, the optimal flyby date becomes
later for a similar time of flight of the first leg. However, this does not capture the entire
picture; the later flyby date does not correlate exactly with the later departure date. One
can see that the time of flight of the first leg becomes shorter. This can be traced back to
the geometry of the problem. On the earlier departure date, a transfer of approximately 300
degrees is required, while for the later departure date, the geometry is more favorable and
allows for transfers of approximately 180 degrees. Logically, the latter transfers are shorter.

Flyby date optimization validation In Figure 15-1, the optimal flyby dates from the vali-
dated two-dimensional grid search are displayed as a cyan square. The optimal flyby dates
from the to be validated one-dimensional grid search in departure dates where the flyby dates
are optimized are displayed as green diamonds. One can see that they are almost identical,
validating the results from the one-dimensional grid search.

To show this is not just mere luck, the same will be done for another scenario in 2018 using
10 kW of SEP on a payload mass of 19 tons using the SLS-4RL launch configuration. The
results can be found in Figure 15-5. Again, the flyby date optimization performs very well.

Figure 15-5: Flyby date optimization validation of the 2018 - 10 kW - 19 tons - 4RL scenario,
representation 1 where the launch mass is minimized.

This grid search shows similar characteristics as for the 13 ton scenario. Hence, the specific
analysis will be skipped here, but a comparison will be made instead. First of all, for both the
13.139 and the 19 ton scenario, the absolute minimum launch mass is found at a departure
and flyby date of respectively 8 and 233 days from the 5th of January, 2018. The reason
for this will be explained in Subsection 19-1-2. An interesting difference is the fact that the
launch window shrinks about 60 days on the left-hand side of the launch window, while it
only shrinks 10 days on the right-hand side. This can be explained by looking at the C3
and the return velocity in Figures 15-2 and 15-4. The maximum C3 for a launch mass of 20
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tons is 40 km2/s2, which is much lower than the 60 km2/s2 for the 14 ton scenario. Hence,
a large range of departure dates becomes infeasible for this higher mass. On the right-hand
side, there is less manoeuvrability on the second leg because of the higher mass. However,
the re-entry velocity constraint stays the same, which explains why the launch window is only
marginally decreased here.

15-1-2 Two-dimensional grid search in departure date and TOF

Now that the flyby date optimization has been validated, the main results of this chapter -
the two-dimensional grid searches in launch date and TOF - can be created. For each of these
grid points, the flyby date has been optimized. The result can be seen in Figures 15-6a and
15-6b. The analysis of these figures will be done in Chapter 19.

(a) Fixed payload mass of 13 tons.

(b) Fixed payload mass of 19 tons.

Figure 15-6: Launch date - TOF grid search with flyby date optimization for 2018 - 10 kW -
4RL, representation 1 where the launch mass is minimized.
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15-2 Representation 2: Maximized final mass

In this representation of the optimization problem, the final mass, known as dry mass, is
maximized. The launch mass, coupled to the launch curve, is free. The minimum allowable
final mass is set to 10.3 ton: 10 tons of payload mass and 0.3 tons of SEP system mass for
the 10 kW scenarios.

The main advantage of the second optimization formulation is that only one run is required to
determine the launch window for different payload masses. If one wants to know the launch
window for a payload mass of 13 tons, one filters out the launch date - TOF combinations
resulting in a payload mass of at least 13 tons out of the bigger 10 ton launch window. For
the first optimization formulation, for each different payload mass, every point had to be
optimized again. On the other hand, the disadvantage of the second formulation is the extra
degree of freedom. For the first representation, the final mass is fixed and the other masses
are allowed to change. For the second representation, also the final mass is allowed to change.
As such, the convergence on an optimal solution will be slightly slower.

15-2-1 Validation

The same validation method as for representation 1 has been applied on the 2018 - 10 kW -
SLS 4RL scenario for a minimum payload mass of 10 tons. From Figure 15-7, one can see that
the flyby date optimization performs well again. The processes within this grid are similar to
the ones explained in the previous subsections and will therefore be skipped here.

Figure 15-7: Flyby date optimization validation of the 2018 - 10 kW - minimal 10 tons - 4RL
scenario, representation 2 where the final mass is maximized.

15-2-2 Two-dimensional grid search in departure date and TOF

Upon validating the flyby-date optimization, the main results of this chapter - the two-
dimensional grid searches in launch date and TOF - can be created. For each of these grid
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points, the flyby date has been optimized. The filtered results for a minimum payload mass
of 13.139 tons and the subset thereof for 19 tons can be seen in Figures 15-8a and 15-8b. If
one compares those to Figures 15-6a and 15-6b, one can see that both representations result
in identical launch windows. The actual analysis of these figures will be done in Chapter 19.

(a) Launch window for a minimal payload mass of 13.163 tons.

(b) Launch window for a minimal payload mass of 19 tons.

Figure 15-8: Launch date - TOF grid search with flyby date optimization for 2018 - 10 kW -
4RL, representation 2 where the final mass is maximized.

15-3 Conclusion

The flyby-date optimization has been validated and produces similar results for both repre-
sentations. While representation 1 requires a computational run for each different payload
mass, representation 2 only needs one, slightly more computational expensive run. Therefore,
the second representation will be used for the remainder of this thesis work.



Part V

Research goal 3: Addition of dynamic
legs
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Chapter 16

Structure of the automated leg
addition

Research goal 3 is to automate the addition of extra legs. Therefore, several changes to the
code had to be made. These will now be briefly explained.

First of all, it was decided to automate the number of legs based on an input file where for
each node, the type and planet number of the control node are specified, along with initial
guesses for the time at the control node, the incoming hyperbolic excess velocity and the
outgoing hyperbolic excess velocities. Also, several boundaries are listed per node, dependent
on the control node type. Examples are the allowable flyby altitudes, the maximum return
hyperbolic excess velocities, etc. Also, based on the number of control nodes, the number of
legs can be set up; if there are x control nodes, there are x-1 legs. An example of such an
input file can be found in Table 16-1.

For now, it was decided to only implement three different types of control nodes: type 1 is
a planetary departure bounded by launcher constraints explained in Subsection 7-3-1. Type
2 is a planetary flyby bounded by the flyby constraints explained in Subsection 7-3-2. Type
3 is a planetary re-entry bounded by the constraint explained in Subsection 7-3-3. If wanted,
additional control node types can be added. However, the explained input file needs to be
altered in order to do so.

In conclusion, the program reads in the input file, determines the number and type of nodes
and the number of legs. Then, it sets up the constraint vector using the following structure:
specific constraints node 1 - general constraints leg 1 - specific constraints node 2 - general
constraints leg 2 - specific constraints node 3 - . . . general constraints last leg - specific
constraints final node. Based on the same structure, the sparsity structure is set up and the
Jacobian is calculated. For this entire process, all the propagation, sparsity, constraints and
derivative functions had to be automated.
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Table 16-1: Example input file for an Earth-Venus-Mars-Earth mission.

Node type Planet number Julian date planetary encounter
1 3 2459540.42042924
2 2 2459616.68271822
2 4 2459834.40504626
3 3 2460040.42042924

Vinf,in,x Vinf,in,y Vinf,in,z
0 0 0
3593.21685 -4350.64041 -1886.23513
2315.91614 -4187.35764 -2413.50897
-1452.52563 -3438.10721 -856.30422

Vinf,out,x Vinf,out,y Vinf,out,z
538.03779 -3319.69797 -1521.13727
3686.10963 -4308.69370 -1801.36522
-847.85336 -4462.35926 -2844.45980
0 0 0

hfly low hfly upper Vreturn limit
0 0 0
200 2000 0
400 2000 0
0 0 8969
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Chapter 17

Three-leg Earth-Venus-Mars-Earth
test case

Based on the automation explained in the previous chapter, a three-leg Earth-Venus-Mars-
Earth mission could be set up. Similar to the two-leg Earth-Mars-Earth scenarios, the ulti-
mate goal of this chapter is to create grid searches for launch date and TOF where for each
grid point, the Venus and Mars flyby dates are optimized. Based on the discussion in Chapter
15, it is decided to only utilize the second optimization representation where the final mass
is maximized.

17-1 Initial trajectory issues

Using Copernicus and a method similar to the one explained in Section 9-4, a nominal chemical
thrust scenario in 2021 has been identified. This scenario has been summarized in Table 17-1.
From initial runs for constant times, it was observed that about 100 kW of SEP power was
required for a payload mass of 15 tons for the reference scenario launching on the 21st of
November, 2021, flying by Venus 77 days later, followed by a Martian flyby day 217 days
later and finally returning to Earth 206 days later for a total time of flight of 501 days. It
was however realized that this was due to the enforced upper boundary of the flyby altitude
at Venus and Mars of 2000 km. While this does not introduce any problems for the Martian
flyby, it is too low for the Venus flyby, since the reference trajectory from Copernicus has
a flyby altitude of 800 000 km. If this 2000 km upper boundary is removed, only 41.3 kW
is required for the same trajectory. For 20 kW, this means that for this launch date - flyby
dates - return date combination, the maximum payload mass is about 7 tons. The trajectory
and thrust profile for this mission can be seen in Figures 17-1a and 17-1b. If on the other
hand, the flyby dates are optimized, about 10.5 tons of payload can be launched. By shifting
the Venus flyby date 16 days, from 77 days after launch for the fixed case to 61 days after
launch, a large difference in required thrust is realized, which can be seen in Figures 17-2a
and 17-2b. By shifting the Venus flyby date, the first leg becomes completely ballistic. The
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difference in required thrust also shows in the required propellant: only 957 kg of propellant
is required for the time optimized case versus 1859 kg of propellant for the time fixed case.

(a) Thrust profile.

(b) Trajectory profile.

Figure 17-1: 20 kW, 7 ton payload Earth-Venus-Mars-Earth mission launching on the 21st of
November, 2021 with a total time of flight of 501 days where the Venus and Martian flyby date
are kept fixed.
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Table 17-1: Nominal Earth-Venus-Mars-Earth 2021 scenario identified using Copernicus.

Launch Launch DSM1 Flyby DSM2 Flyby DSM3 Return
date C3 date 1 date 2 V8

(m-d-y) (km2/s2) (m/s) (m-d-y) (m/s) (m-d-y) (m/s) (km/s)
11-21-2021 13.62 2823 02-5-2022 2931 09-11-2022 1846 3.83

(a) Thrust profile.

(b) Trajectory profile.

Figure 17-2: 20 kW, 7 ton payload Earth-Venus-Mars-Earth mission launching on the 21st of
November, 2021 with a total time of flight of 501 days where the Venus and Martian flyby date
are optimized.
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17-2 Local optima issues

Based on the initial guess obtained from Copernicus for the reference trajectory launching
on the 21st of November, 2021, a grid search in launch date and total TOF where both flyby
dates are optimized has been performed. The results for departure dates -20 and +15 can be
seen in Figure 17-3.

Figure 17-3: Earth-Venus-Mars-Earth grid search in departure date and TOF where both flyby
dates are optimized: 2021 - 20 kW - 4RL, no information passed on.

This grid search has been performed without passing on any information from one point
to the other. It can be observed that this method does not provide good results. There are
large jumps in final mass and there are discontinuities where the trajectory becomes infeasible
from one point to the other. It is believed that the additional flyby creates multiple local
optima, making the optimization difficult. To overcome these issues, several methods have
been tried out where different sorts of data have been passed from one point to the next in
different directions. Those efforts have been done on a more extensive grid search to increase
the number of data points and hence the understanding of the problem.

First of all, a method where information from a point with a lower TOF is passed to a
point with a higher TOF will be explained. Here, one starts at a low time of flight, uses
the initial guess on this first point, passes on all the state variables of the solution to the next
point, increases the time of flight, does the optimization, passes on to the next point, etc. At
each new launch date, the initial guess for the state variables is reset to the initial guess from
Copernicus. The results from these runs can be seen in Figure 17-4.

Although the mass profile in this figure has been cleared of most discontinuities and is changing
more smoothly, there are still large sudden changes in mass. If one looks at the times of flight
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for the individual legs in Figure 17-4b, one can see that the sudden changes in mass are closely
related to sudden changes in this time of flight.

(a) Final mass.

(b) Time of flight leg 1 between Earth and Venus.

Figure 17-4: Earth-Venus-Mars-Earth grid search in departure date and TOF where both flyby
dates are optimized: 2021 - 20 kW - 4RL, information passed from low TOF to higher TOF.

Similarly, a method where information from a point with a higher TOF is passed to a
point with a lower TOF has been tried. One starts at a high time of flight, uses the initial
guess for this first point, passes on all the state variables of the solution to the next point,
decreases the time of flight, does the optimization, passes on to the next point, etc. At each
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new launch date, the initial guess for the state variables is reset to the initial guess from
Copernicus. The results from these runs can be seen in Figure 17-5.

(a) Final mass.

(b) Time of flight leg 1 between Earth and Venus.

Figure 17-5: Earth-Venus-Mars-Earth grid search in departure date and TOF where both flyby
dates are optimized: 2021 - 20 kW - 4RL, information passed from high TOF to lower TOF.

If one compares Figures 17-4a and 17-5a, one can see that both figures are very different.
However, there are some regions where both procedures result in the same final mass. Looking
at Figures 17-4b and 17-5b, one can see that where the final masses are the same on the same
grid point, also the time of flights are the same.
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To find out what is happening at grid points where sudden changes in mass and time of flight
of the first leg occur, it was decided to zoom in on one of those points: the point that will
be examined is located at departure date -10 days and total time of flight of 601 days. The
solutions where both grid searches converge on have been listed in Table 17-2.

Table 17-2: Local optima solutions for [t0,TOF]=[-10,601].

Case Final mass [tons] TOF1 [days] TOF2 [days] TOF3 [days]
Low-to-high TOF 27.7 140.8 213.6 246.6
High-to-low TOF 22.9 70.3 188.8 341.9

To understand the processes active at this grid point, a grid search has been run. On the
x-axis, one can find the TOF of the first leg between Earth and Venus. On the y-axis, one
can find the TOF of the second leg between Venus and Mars. The results of this grid search
can be found in Figure 17-6.

Figure 17-6: Broad grid search on point [t0,TOF]=[-10,601].

It is interesting to note that there are apparently two different feasible windows for the first
time of flight: a region between 60 and 80 days and a second region between 120 and 150
days. Figures 17-7a and 17-7b zoom in on both regions.

The 56-84 day region depicted in Figure 17-7a has a maximum final mass of 22.9 tons at a
TOF1 of 70 days and a TOF2 of 189 days. This almost perfectly corresponds with the optimal
solution found by the high-to-low TOF passed-on case in Table 17-2.

The 116-148 day region depicted in Figure 17-7b is slightly more complex, as there are three
band structures visible. The maximum final mass for this region is 27.7 tons at a TOF1 of
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140 days and a TOF2 of 214 days. Again, this almost perfectly corresponds with the optimal
solution found by the low-to-high TOF passed-on case in Table 17-2.

(a) Window 1.

(b) Window 2.

Figure 17-7: Zoom in on window 1 and 2 of point [t0,TOF]=[-10,601].

As such, it can be reasoned that at the [t0,TOF]=[-10,601] point, the sudden change in
payload mass for the low-to-high TOF passed case is closely related to the sudden change in
time of flight of the different legs. The latter can be attributed to the fact that at this point,
a jump occurs from one local optimum to another. Based on this discussion, it is known
that the optimization gets stuck in local optima. In the next section, a multi-start method
to overcome this problem will be developed and evaluated.
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17-3 Multi-start method

The main idea of a multi-start method is to optimize the same launch date - total time of flight
combination multiple times using different initial guesses. First of all, the working principles
will be explained, followed by an assessment of the performance.

17-3-1 Working principles

For each new departure date, one starts at a low TOF. At each of those first points, four
optimization runs are performed. From the previous optimization runs, it is known that the
time of flight of the first leg varies between 50 and 150 days. The time of flight of the second
leg varies between 140 and 260 days. Therefore, the four different initial guesses for TOF1
and TOF2 are 50 and 140 days, 50 and 260 days, 150 and 140 days and 150 and 260 days. For
each point, these four optimization runs are performed. Upon finishing these optimization
runs, it is checked if at least one of those runs produces a feasible trajectory. If this is not
the case, the optimizer moves on to the next point and tries those four combinations of initial
guesses again. If one or more feasible trajectories are found, the state vector resulting in the
best trajectory is stored and passed on to the next point. There, this state vector is used as
initial guess. Also, the four initial guess cases are run at this point.

As such, at each point, the problem is fed by four initial guesses at four different boundaries
of the TOF1-TOF2 design space. This increases the chance of finding the different local
optima and identifying the best local optimum. Furthermore, the utilization of multiple runs
allows the method to recover from numerical instabilities. Also, by passing on the best found
solution to the next point, the smoothness of the mass profile is ensured. The results for a
launch window in 2021 utilizing 20 kW with a maximum TOF of 621 days has been depicted
in Figure 17-8. For each grid point, the departure date and TOF are fixed while the flyby
dates are optimized.

Figure 17-8: Results multi-start method Earth-Venus-Mars-Earth mission 2021 - 20 kW - 4RL.
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17-3-2 Analysis

One can see that the utilized multi-start method gives smoother results than the single-
start method. Furthermore, the detected final masses are higher. In this subsection, a more
broad discussion on the performance of the utilized multi-start method will be given and the
processes active within the grid will be explained.

First of all, the time of flight of the first leg and the departure C3 have been plotted in Figures
17-9 and 17-10.

Figure 17-9: TOF1 Earth-Venus-Mars-Earth mission 2021 - 20 kW - 4RL.

Figure 17-10: C3 Earth-Venus-Mars-Earth mission 2021 - 20 kW - 4RL.
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Figure 17-11 lists all the solutions from all the different initial guesses. The leftmost line for
each departure date gives the solution based on the previous best. The second, third, fourth
and fifth line are the results of the first, second, third and fourth initial guess respectively.

Figure 17-11: Results of the different runs Earth-Venus-Mars-Earth mission 2021 - 20 kW - 4RL.

On all these figures, four different area’s A, B, C and D have been identified in which tra-
jectories showcase similar characteristics. Furthermore, Point 1 up to 5 have been indicated.
These are examples of points where a transitioning occurs between different areas or an indi-
cation of other interesting behavior. This labeling facilitates the upcoming discussions where
the different area’s and the transitionings between them will be discussed.

Area A Looking at Figure 17-11, one can see that the first optimal solution within the A
area is found using the second initial guess: [TOF1,TOF2]=[50,260]. This corresponds well
with the low TOF1’s that are found in this region. An example of such a first optimal solution
for [t0,TOF]=[-40,541] can be seen in Figure 17-12a. Note that this trajectory figure has been
stripped down for clarity reasons. The legend and axis can be found in previous figures such
as Figure 17-1b.

Looking at Figures 17-9 and 17-10, one can see that the TOF1 drops and the C3 rises for
higher departure dates. This can be understood from Figures 17-12a up to 17-12c showing
the trend from [t0,TOF]=[-40,541] to [t0,TOF]=[0,497] and [t0,TOF]=[20,513]. Comparing
Figure 17-12b with the trajectory for [t0,TOF]=[-40,541] in Figure 17-12a, one can see that
the second and third leg hardly differ as the times of the Venus and Mars flyby are kept
constant. However, the departure date is different requiring a different first leg. This explains
why the TOF of the first leg decreases and why the C3 needs to increase to enable this shorter
leg.
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At one point, the TOF of the first leg cannot be further decreased to keep the Venus flyby
constant due to limits on the achievable C3. Hence, the Venus flyby needs to be moved. Due
to this resulting change in geometry, the trajectory cannot go as deep into Venus’ orbit as
before, as can be seen in Figure 17-12c. This decreases the deliverable thrust by the SEP
system, which reduces the feasible final mass for the higher departure dates, as can be seen
in Figure 17-8.

(a) [t0,TOF]=[-40, 541]. (b) [t0,TOF]=[0, 497].

(c) [t0,TOF]=[20, 513].

Figure 17-12: Trajectories within the A area.

Area A transitioning into area D The aforementioned trend in area A for increasing de-
parture dates is unsustainable for two reasons. One is the ever-increasing C3 requirement
caused by the decrease in TOF of the first leg. The second is the reduction of SEP capabil-
ities resulting from the increasing minimum heliocentric distance. Hence, trajectories of the
same family as those in area A become infeasible between departure date 20 and 30. Here, a
transitioning occurs into a new area D. One can see from Figure 17-9 that in this area D, the
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TOF of the first leg is larger than in the A area. This increase in TOF1 alleviates the large
C3 requirement.

Area C: transitioning from area A through Point 1 From Figure 17-9, one can see that
there is a sudden jump in the TOF of the first leg occuring at Point 1. In order to understand
the processes active here, one needs to look at a zoom in on Figure 17-11: Figure 17-13.

Figure 17-13: Visualization of the multi-start method around Point 1.

From this figure, one can see that the first feasible solution for departure date 0 is found using
the second initial guess at a TOF of 497 days. This solution is passed on throughout the A
area, until it reaches the boundary at a TOF of 535 days. Meanwhile, initial guess 3 and 4
start producing different results at a TOF of 529 days. These solutions are very different from
the previous found solutions and are characterized by a higher TOF of the first leg. However,
those solutions have a lower final mass. Hence, the multi-start method correctly identifies
the first solution family as the optimal. Upon increasing the TOF to 533 days, the second
solution family converges on a higher final mass, but still smaller than the result of the first
solution family. At 537 days, the second family improves further and converges onto a better
solution than the first family. As such, the multi-start method makes the jump from one
solution family to the next, explaining the sudden jump in TOF1. Without this multi-start
method, the first solution family would be passed on to higher TOF’s. As can be seen from
Figure 17-4a, this results in significantly lower final masses.

Area B: transitioning from area A through Point 2 For departure date -30, a first solution
is found in area A at [-30,533]. This solution is passed on throughout area A until it reaches
the boundary with area B between TOF 553 and 557 days. Here, a new family becomes
optimal. This family of solutions in area B is characterized by a significantly higher C3. To
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understand what is happening, Figures 17-14a and 17-14b picture the trajectories for both
families for a TOF of 557 days.

(a) Trajectory of sub-optimal first family. (b) Trajectory of optimal second family.

Figure 17-14: Difference in trajectories between first and second family at the boundary between
area A and B through Point 2 where [t0,TOF]=[-30, 557].

As mentioned, the second family requires a higher C3. This higher C3 is only possible since
the first family has a considerable margin between the actual launch mass and the maximal
possible launch mass; the first family trajectories have a low required C3 and a low final mass,
resulting in a margin of up to 14 tons. One would expect that this margin needs to go to zero
to achieve optimal trajectories. The reason why this does not happen is two-fold.

First of all, the margin of 14 tons for the first family could theoretically be used to increase the
final mass and hence the initial mass while maintaining the same low C3 in the A area. If this
would be feasible, it would mean that this identified A area leading up to the transitioning
would be sub-optimal. However, increasing the final mass is impossible since significant
thrusting is required between the Venus and Mars flyby as seen from Figure 17-14a. Using a
higher final mass, the SEP system cannot provide enough thrust to connect the Venus and
Mars flyby.

Secondly, the margin of 14 tons for the first family could theoretically be used to increase
the C3 on the lower TOF’s trajectories in the A area. However, the required Venus flyby
geometry for those second family trajectories causes the Martian flyby geometry to change as
well. Figure 17-14b show the consequent large thrust requirements on the final leg. For the
low TOF trajectories in area A, there is not enough time available to perform this thrusting.

The previous discussion explains why the second family only appears in area B and shows
that area A is indeed optimal. However, one last peculiarity needs some explanation. From
Figure 17-11, one can see that as soon as a member of this second family appears at 557 days
using initial guess 4, it is better than the other family. One would expect a transitioning
period where both families co-exist, as is the case for Point 1. Although it appears absent,
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this transitioning period is actually there. At 549 days, one can see that initial condition 3
converges onto a solution. Upon checking this solution, it could be attributed to this second
family. However, at 553 days, no solution is visible due to a numerical instability occurring
at initial guess 3 and 4. Therefore, the solution at 557 days was fed back to 553 days and
as expected, a solution of the second family appeared. This shows that there is indeed a
transitioning period leading up to Point 2.

Area C: transitioning from area B through Point 3 Throughout the B area, the margin
between feasible launch mass and actual launch mass gradually goes down to zero by main-
taining a more or less constant C3 while enabling a higher final mass. This causes another
unsustainable trend: at one point, the required C3 needs to be reduced to enable further
growth in final mass. This happens on the boundary with area C, which is characterized by
a lower C3. In order to understand what is happening, Figure 17-15 shows an example of the
C-family. One can see that the TOF of the first leg becomes larger. Hence, there is more
thrusting time on the first leg allowing a reduction in the required C3.

Figure 17-15: C-family trajectory at [t0,TOF]=[-30, 577].

Again, some remark needs to be made about the transitioning period: the identified transi-
tioning between 573 and 577 days is not entirely correct. For the 573-day scenario and initial
guess 4, the optimizer does not converge onto the better C-type family with a TOF1 of 155
days. Instead, it converges onto the sub-optimal B-type family with a TOF1 of 128 days.
This can be explained by looking at the set-up of this initial guess: the initial TOF1 is 150
days. Probably, the optimizer senses an increase in final mass in both directions from this
initial guess of 150 days. Instead of increasing the TOF1 to 155 days, the optimizer ends up
going in the wrong direction and gets stuck in a local optimum. This also explains why there
is a considerable jump in final mass at this transitioning. In reality, this jump is smaller, as
the transitioning actually occurs 4 days earlier than detected by the multi-start method.
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Conclusion on transitioning from area A to B to C So in conclusion, in area A, the
trajectories have a large margin between feasible launch mass and actual mass. This margin
cannot be reduced to zero by increasing the final mass, since the second leg requires significant
thrusting. Then, in area B, this margin is reduced by utilizing a higher C3, which allows for
a higher final mass, but requires more thrusting on the final leg. This made this trajectory
type impossible or sub-optimal in area A. As the margin decreases towards zero and the final
mass increases over the B area, the C3 must be lowered, which happens in area C. However,
this can only happen upon increasing the length of the first leg, which made this trajectory
type impossible or sub-optimal in area B.

Area C: transitioning from area D through Point 4 The processes in this transitioning are
very similar to the ones explained in the previous paragraphs. Therefore, they will not be
discussed here.

Point 5 From Figure 17-11, the role of passing on the previous best solution becomes ap-
parent. One can see that at the TOF’s leading up to Point 5, the results from initial guess
4 and the results from the previous best solution are always very similar. However, at point
5, the optimizer converges onto a sub-optimal solution using initial guess 4. But, the run
based on the previous best result does converge onto the optimal solution. Hence, the utilized
multi-start method is able to recover from such issues and ensure a continuous mass profile.

17-3-3 Conclusion

In the previous subsection, the complex processes active throughout the grid have been ex-
plained. Furthermore, it has been explained why there are discrete jumps in TOF’s of the
different legs, C3, etc. It can be concluded that the multi-start method performs well. Using
the multi-start method, different trajectory families are identified. Additionally, transitioning
periods where different families co-exist but differ in final mass are visible in Figure 17-11.
The points where a transitioning occurs from one family to another are also visible, explaining
the location of the discrete jumps. This all results in a smooth mass distribution throughout
the grid.



Part VI

Validation, results, conclusions and
recommendations
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Chapter 18

Validation

Throughout the author’s internship and thesis work, continuous verification and validation
efforts have been made. It is impossible to list all of those efforts. However, this chapter will
summarize the main validation work performed.

18-1 Basic version code developed during author’s internship

Propagation module The propagation module has been validated on many different levels.
First of all, it has been checked that the state vector elements have been properly translated
into the state of the spacecraft at the initial and final control node. Furthermore, the numerical
integration of the STM elements and Cartesian coordinates and velocities has been validated
comparing the output of several different integration steps to the output of other validated
integration schemes such as ode45 in Matlab, a Python based version of the RK8(7)-13M
integrator written by Jon Herman [2012], etc. Results identical to numerical precision were
obtained, validating the implementation of this integration scheme. Finally, the mass update
step has been validated by comparing the outputted mass profile throughout a trajectory to
what would be expected based on the manoeuvre sizes from the state vector.

Constraints module The constraints module has been validated by manually calculating
the constraint function values based on the validated output of the propagation module.
Those function values corresponded to the values obtained from the constraints module within
numerical precision.

Jacobian module The Jacobian module has been validated using a finite-difference check
build in into SNOPT. Furthermore, a random sample survey has been performed where the
selected derivatives have been checked by hand based on the validated propagation output.

Optimization program set-up and coupling with SNOPT Besides validating the main
modules, also the coupling with SNOPT and the program set-up needed validation. Therefore,
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the implementation of a simple optimization problem for which the answer is known has been
evaluated: the constrained Rosen-Suzuki function [Hock and Schittkowski, 1981].

One-leg scenario The validated modules and SNOPT coupling have been combined into a
single program. This basic version of the code has been validated by comparing its results
for simple scenario’s with the results from Jon Herman’s code [Herman, 2012], which output
has been validated by the Jet Propulsion Laboratory in the context of GTOC 6.

Two-leg EME scenario’s, fixed TOF 501 days For the two-leg EME trajectories, first
of all, the feasibility of the trajectories has been assessed using an independent propagation
tool. This tool has been written by Jon Herman, which he successfully used to assess the
feasibility of CCAR’s solution to the 6th Global Trajectory Optimization Competition and
which he modified for this application. This propagation was fed with the optimized output to
quantify that it corresponded to a feasible trajectory. However, this feasibility check does not
validate the global optimality of the found solution. Due to the large number of state vector
elements, it is impossible to perform a grid search in every single state vector element to
prove the global optimality of the solution. To increase the confidence in the found solution,
optimization runs with a large number of different initial guesses have been performed. The
runs that converged onto a solution all converged onto the same solution.

18-2 Time optimization capabilities

The results from the flyby-date optimized Earth-Mars-Earth have been validated by com-
paring them to the validated fixed-time grid searches. Furthermore, the time optimization
capabilities have been validated through an Earth-Asteroid-Earth rendez-vous mission design
study conducted for Lockheed Martin, shown in Appendix I. The results and launch win-
dows have been compared to results obtained using EMTG, a low-thrust optimization tool
developed by NASA’s Goddard Space Flight Center, which uses evolutionary algorithms to
increase its odds of identifying the global optimum without relying on an initial guess [Eng-
lander et al., 2014]. The identified launch windows from EMTG and the developed code are
almost identical. Furthermore, comparing individual grid points, the obtained trajectories
and thrust profile for both methods are nearly identical, including the optimized time epochs.
Although both methods could potentially be wrong, the fact that they both converge onto
an almost identical solution increases the confidence in the obtained results.

18-3 Additional legs/EVME

The automation of the addition of extra legs has been developed and extensively used during
GTOC 7. The optimized trajectories have been assessed by an external jury, and have been
proven to be feasible, as will be explained in Appendix H.
For the EVME trajectories, optimization runs with a large number of different initial guesses
have been performed. During this process, it was realized that they did not converge onto
the same solution due to local optima issues. This problem was circumvented by developing
a multi-start method. This method has been validated by comparing its identified solution
with the best solution found from the large number of runs with different initial guesses.
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Chapter 19

Results

In this chapter, the final results will be produced using the developed methods described in
the previous chapters i.e. multi-start. Each of the three Earth-Mars-Earth launch windows
identified in Chapter 9 will be discussed in the next sections. This will be followed by a section
in which an Earth-Venus-Mars-Earth launch window will be assessed. Finally, a summary on
the obtained launch windows will be given.

19-1 Earth-Mars-Earth flyby mission in 2018

This scenario has a nominal launch date on the 5th of January 2018, followed by a Martian
flyby 227 days later and Earth return 274 days later. From Chapter 9, it is known that launch
windows exist for both the 1RL and 4RL configuration of the SLS for missions with a total
time of flight of 501 days using 10 kW of SEP. Launch windows for both configurations will be
discussed in the next two subsections. For these optimization runs, the final mass, composed
of the payload mass and the mass of the SEP system, is maximized.

19-1-1 SLS 4RL launch configuration

In this subsection, the Earth-Mars-Earth flyby mission in 2018 using the SLS 4RL configura-
tion will be discussed. First of all, low-resolution results have been produced and are depicted
in Figure 19-1. To establish this grid, at each departure date, the initial guess obtained from
Copernicus for the reference 501 days scenario is used. If a feasible solution is found, it is
passed on to a higher TOF. In this figure, several anomalies can be observed. These will be
discussed in the next paragraphs.
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(a) Final mass.

(b) Time of flight of the Earth-Mars leg.

Figure 19-1: Grid search EME - 2018 - 10 kW - 4RL, low resolution.

Maximum TOF drop-off at -80 The maximum TOF rises smoothly from departure date
-120 up to -90. Around departure date -80, this trend suddenly stops; at -90, the maximum
TOF is 553 days, while for -80, the maximum is 549 days. The explanation for this behavior
can be deduced from Figures 19-2a and 19-2b, showing the feasible TOF1’s for different
TOF’s. For the -80 departure date, there are two diverging windows. Among others, these
are different in flyby altitude. For the lower TOF1 window, the required flyby occurs at a
slightly higher altitude than for the higher TOF1 window. The lower TOF1 window is however
not present for the -90 departure date. This can be attributed to the 2000 km flyby altitude
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upper limit. Due to the planetary geometry, less orbital change from the flyby is required
at departure date -90. Hence, the optimal flyby occurs slightly higher. This phenomenon in
combination with the higher flyby altitude requirement for the lower TOF1 window causes
the lower TOF1 window to disappear.

(a) Departure date -90.

(b) Departure date -80.

Figure 19-2: Time of flight leg 1 vs. total time of flight at departure date -90 and -80.

The presence of this lower TOF1 window at departure date -80 causes the sudden drop-off in
maximum TOF. By passing on the solution from lower TOF’s to higher TOF’s, the optimizer
gets stuck in the local optima at those lower TOF1’s. When this low TOF1 window stops
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around 549 days, the optimizer does not go to the higher TOF1 window, but returns an
infeasibility. Figure 19-2b shows another issue with the performed grid search. The cyan
squares are the results as obtained from Figure 19-1a. The green diamonds are the actual
optimal flyby dates as obtained from the TOF1 vs. TOF grid search. So, the optimizer did
not return the actual optimal solutions, but got stuck in local optima.

(a) Final mass.

(b) Time of flight of the Earth-Mars leg.

Figure 19-3: Grid search EME - 2018 - 10 kW - 4RL, low resolution, increased launch window 1.

The inconvergence issue was tested by performing runs that start at a TOF of 555 days with
an initial guess for TOF1 of 340 days and passing on feasible solutions to lower TOF’s for
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departure date -80 and -70. The results of those runs have been added to the previous results
in Figures 19-3a and 19-3b. One can see that at departure date -80, there are indeed launch
opportunities for a TOF of 551 and 553 days for a TOF1 of 340 days. At departure date -70,
launch opportunities between 551 and 555 days TOF are found for a TOF1 of around 280
days. Interestingly, the launch mass increases again, which is an indication that there might
be a separate launch window above this window.

(a) Final mass.

(b) Time of flight of the Earth-Mars leg.

Figure 19-4: Grid search EME - 2018 - 10 kW - 4RL, low resolution, increased launch window 2.
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Second launch window The existence of a second launch window is assessed by performing
an additional run starting at at TOF of 621 days and passing on information from high to low
TOF’s. The results can be seen in Figures 19-4a and 19-4b. These figures show that there is
indeed a second launch window that interferes with the first launch window.

To understand the dynamics behind the second launch window, a grid search in Figure 19-5
has been performed on departure date -50, where both launch windows meet.

Figure 19-5: Time of flight leg 1 vs. total time of flight at departure date -50.

One can see that there are two distinct windows. For a TOF between 500 and 549 days,
the TOF1 is more or less constant at 270 days. At the low TOF’s, a substantial flyby effect
is visible in Figure 19-6a along with a small thrust requirement on the second leg. For
higher TOF’s, the thruster requirement on the second leg becomes smaller by increasing the
flyby altitude from 200 km to 2000 km while keeping the flyby date more or less constant.
Ultimately, at a TOF of 523 days, a free return trajectory becomes feasible, as shown in
Figure 19-6b. In order to continue this trend, the flyby altitude would need to keep increasing.
However, this altitude is bounded at 2000 km. Hence, more thrust is required on the second
leg to compensate for the sub-optimal flyby geometry. This can be seen comparing Figure
19-6b with 19-6c. The latter figure depicts the situation at the boundary of the first window
at a TOF of 549 days. Here, the second leg needs continuous thrusting.

While the low TOF window ends at 549 days, a new higher TOF window starts here as well.
Since the low TOF region ends, and the higher TOF region starts, with a final mass of 10
tons, there is only a jump in TOf and not in final mass. By increasing the time of flight of the
first leg, the geometry changes, facilitating the return to Earth. At the boundary, the feasible
TOF1 space is limited. Upon further increasing the TOF, a larger coast arc becomes feasible,
widening the feasible TOF1 space again. An example of such a trajectory with a coast arc
can be seen in Figure 19-6d. While in the first launch window, the TOF1 remains more or
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less constant, the TOF1 changes linear with the increase in TOF to continuously adjust to
the change in the return geometry.

(a) TOF=511 days. (b) TOF=523 days.

(c) TOF=549 days. (d) TOF=581 days.

Figure 19-6: Trend in trajectories for increasing time of flight for departure date -50.

Maximum TOF drop-off at -30 The maximum TOF rises smoothly from 40 to -20. How-
ever, at -30, the upper limit on the TOF suddenly drops. The explanation for this behavior
can be deduced from Figures 19-7a and 19-7b.

Similar to the drop-off at -80, the reason for the drop at -30 is due to the sudden stop in one
of two diverging windows. By passing on the solution from lower TOF’s to higher TOF’s,
the optimizer gets stuck in local optima at the high TOF1’s. When this high TOF1 window
stops around 547 days, the optimizer does not switch over to the lower TOF1 window, but
outputs an infeasibility.
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(a) Departure date -30.

(b) Departure date -20.

Figure 19-7: Time of flight leg 1 vs. total time of flight at departure date -30 and -20.

In order to find the feasible points past a TOF of 547 days, additional runs have been per-
formed starting at a TOF of 561 days where the information is passed on from higher to lower
TOF’s with an initial guess of 220 days. The results can be seen in Figures 19-8a and 19-8b.

One can see that the expected upper limit for the TOF is indeed increased for departure
date -50 and -40 with a TOF1 of around 220 days. However, for departure date -70 and -60,
the additional launch window at higher TOF’s identified in Figures 19-4a and 19-4b become
apparent again.
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(a) Final mass.

(b) Time of flight of the Earth-Mars leg.

Figure 19-8: Grid search EME - 2018 - 10 kW - 4RL, low resolution, increased launch window 3.

Figure 19-7a shows another issue with the performed grid search: the optimizer did not
return the actual optimal solutions for TOF 537 up to 553 days. The same thing happens
at departure date -20 for TOF’s between 535 and 537 days, explaining the peculiar jump in
final mass in Figure 19-1a.

High-resolution run Now that it is known what is happening at the high TOF’s, a high-
resolution run will be performed. The result for 38000 feasible trajectories can be seen in
Figure 19-9. Similar features as in Figure 19-1a can be observed with sudden drops around
departure date -80 and -20. Also, interference from the second launch window can be observed.
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Figure 19-9: Grid search EME - 2018 - 10 kW - 4RL, high resolution.

Based on the knowledge obtained from the low resolution runs, additional runs have been
performed to complete the figure and to find a better local optimum wherever it is known
that the initial run returns an inferior local optimum. Note that it has been decided to filter
out any results from the additional launch window since this window is characterized by a
lower payload mass and is therefore of no interest. The results can be seen in Figure 19-10.

Figure 19-10: Grid search EME - 2018 - 10 kW - 4RL, high resolution, cleaned.

Important to note is that instead of plotting the final mass, it was opted to display the payload
mass, which is equal to the final mass minus 300 kg of SEP system mass. This facilitates
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reading the size of a launch window for a certain lower bound of payload mass. For a minimal
payload mass of 10 tons, this launch window is 169 days long between the 6th of September,
2017 and the 22nd of February, 2018. However, 10 tons is insufficient. Remembering from
Chapter 9 that the baseline mass of the Inspiration Mars mission is 13.139 tons, the launch
window becomes 136 days long between the 1st of October, 2017 and the 14th of February,
2018. If on the other hand the fully margined mass of 19 tons is used, the launch window is
even further narrowed down to 65 days between the 13th of November, 2017 and the 6th of
February, 2018. A launch window of 21 days between the 3th of January, 2018 and the 24th
of January, 2018 can be found for a payload mass of 21.8 tons.

Analysis In Section 15-1, an extensive analysis of the results throughout the departure
dates for a TOF of 501 days has been given. In this paragraph, the validity of this analysis
throughout a larger range of TOF’s will be assessed. For this discussion, Figures 19-11, 19-12,
19-13 and 19-14 plotting the TOF1, C3, hyperbolic excess return velocity and flyby altitude
are required.

The observed trends for 501 days re-occur throughout the entire grid. For reasons explained
in Section 15-1, for increasing departure date, the time of flight of the first leg decreases, the
C3 decreases and the return hyperbolic excess velocitiy increases.

Besides trends for increasing departure dates, some trends on a constant departure date can
be observed. For the majority of the departure dates, the time of flight of the first legs remains
more or less constant throughout the feasbile range of time of flights. This trend has already
been explained for departure date -50 in Figure 19-5 by explaining how the flyby altitude
increases for higher TOF’s. This trend can be seen for other departure dates in Figure 19-14.

Figure 19-11: Grid search EME - 2018 - 10 kW - 4RL, high resolution, TOF1.
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Figure 19-12: Grid search EME - 2018 - 10 kW - 4RL, high resolution, C3.

Figure 19-13: Grid search EME - 2018 - 10 kW - 4RL, high resolution, V8,return.

However, regions with sudden changes in the time of flight of the first leg also exist. These
are due to the artificial ‘multi-start’ method utilized to produce the figure. From Figure
19-2b, it is known that at departure date -80, the 17th of October, 2017, at a TOF of 543, the
higher TOF1 window is a better local optima. This point is exactly where the transitioning
occurs in Figure 19-11. Similarly, from Figure 19-7a, it is known that at departure date -30,
the 6th of December, 2017, the transitioning from the high TOF1 window to the low TOF1
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window occurs at a TOF of approximately 535 days. Indeed, in Figure 19-11, the transitioning
occurs at this TOF. This shows that the artificially established multi-start, high-resolution
run, resolves the problems with local convergence explained in the maximum TOF drop-off
at -80 and -30 paragraphs discussed earlier in this section.

Figure 19-14: Grid search EME - 2018 - 10 kW - 4RL, high resolution, hfly.

Conclusion For this specific problem set-up, there are some issues with local optima. How-
ever, using an artificial multi-start method on the regions known to suffer from local optima,
those issues can be resolved. This selective multi-start method requires previous knowledge
on where those problems arise and how the initial guess needs to be adjusted to solve this
problem. It can be reasoned that this is not the most robust set-up. A more generic multi-
start method could be written. However, due to physical time constraints, it has been decided
not to do so. Furthermore, the problematic regions are furthest from the centre where the
payload masses are highest. Hence for this scenario, the implementation of the more generic
multi-start method would only provide improvements to uninteresting regions.

19-1-2 SLS 1RL launch configuration

Based on the large launch window established in the previous subsection for the 2018 - 10
kW - 4RL scenario, it has been realized that the more complex 4RL configuration of the SLS
might not be required to fulfill this mission. Therefore, in this subsection, a similar analysis
will be performed, but this time with the 1RL configuration of the SLS. The results of this
analysis can be seen in Figure 19-15.

In this figure, one can recognize similar problems as for the 4RL scenario such as an abrupt
drop in maximum TOF at a departure date around the 15th of December, 2017. Again, these
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problems occur in the least interesting area where the maximum possible payload masses are
low. Therefore, it has been decided to ignore the numerical instabilities at the high TOF’s,
but zoom in on the region with a minimal payload mass of 13.139 ton, the baseline mass of
the Inspiration Mars mission. The result of this zoom can be seen in Figure 19-16.

Figure 19-15: Grid search EME - 2018 - 10 kW - 1RL.

Figure 19-16: Grid search EME - 2018 - 10 kW - 1RL, payload mass ¥ 13.139 ton.

One can see that the baseline mass of the Inspiration Mars window, 13.139 tons, can be
launched during a 60-day long launch window between the 9th of December, 2017 and the 7th
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of February, 2018. The maximum attainable payload mass is about 14.25 tons at the 17th of
January, 2018. This is the same date as the optimal date for the 4RL configuration. This does
not come as a surprise, looking at the launch curves in Figure ??. The optimal trajectory for
the 4RL configuration requires a C3 of around 30 km2/s2. Using the 1RL, around 15 tons can
be launched for this C3 value. Hence, the same optimal geometry can be flown, resulting in
the same optimal departure date. A launch window of 22 days between the 5th of January,
2018 and the 27th of January, 2018 can be found for a payload mass of 14.1 tons. Hence, the
fully margined mass of 19 tons is not attainable using the 1RL configuration and 10 kW.

One potential way to increase the maximum attainable payload mass to the fully margined
mass of 19 tons could be to increase the power level. However, for the 1RL configuration, this
does not work. The reason for this is that for a C3 of 0 km2/s2, the 1RL configuration is only
capable of launching 23.43 tons. Assuming a payload mass of 19 tons and 300 kg for a 10 kW
SEP system, the maximum attainable C3 would be around 14 km2/s2. This is much lower
than the C3 of 37.45 km2/s2 identified for the nominal scenario in Table 9-3. Furthermore,
this assumes that no SEP propellant is being used at all. If a 10 kW SEP system would
be constantly active, assuming a specific impulse of 2000 seconds and a TOF of 501 days
with a 90% duty cycle, the maximum propellant it could expell during that time would be
approximately 1200 kg, based on Equation 15-1. That means that the maximum launch mass
would be 20.5 tons, which limits the maximum launch C3 even further to 10 km2/s2. For a 20
kW SEP system, the maximum SEP propellant would be approximately 2400 kg. This results
in a maximum launch mass of approximately 22 tons, which means the maximum launch C3
becomes 5 km2/s2. Although the 20 kW SEP system is capabable of providing a larger ∆V,
the low maximum attainable launch C3 makes the launch of 19 tons of payload impossible
for the 1RL configuration, even with a higher power level.

19-2 Earth-Mars-Earth flyby mission in 2019

From Chapter 9, it is known that this launch window only exists for the 4RL configuration.
Hence, only this launcher configuration will be discussed here. Based on the lessons learned in
the previous section, it was decided to start with a broad grid search to identify the presence
of one or more potential launch windows. The results of this grid search can be found in
Figure 19-17.

In this figure, one can see that again, there are two launch windows; the main launch window
at lower TOF’s where the final masses are highest and a second launch window at higher
TOF’s with lower maximal final masses. Based on this broad grid search, it has been decided
to zoom in onto the main launch window at lower TOF’s, since the maximized final masses
are the highest in this region. The results of this zoom-in can be seen in Figure 19-18.

Similar to the 2018 - 10kW - 4RL scenario, one can observe a notch at the high end of the
TOF spectrum. This is an indication of a problem at high TOF’s: the launch window at the
left of the notch is cut off too early. This is probably caused by a similar local optima issue as
in the “Maximum TOF drop-off at -30" paragraph on page 123. Furthermore, the high TOF
in combination with a low final payload mass does not make for a very interesting region.
Therefore, these issues can be neglected.
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Figure 19-17: Grid search EME - 2019 - 10 kW - 4RL, broad search.

Figure 19-18: Grid search EME - 2019 - 10 kW - 4RL, zoom in on main window.

One can see that the baseline mass of the Inspiration Mars window, 13.139 tons, can be
launched during a 119 day long launch window between the 19th of November, 2019 and the
17th of March, 2020. The maximum attainable payload mass is about 17 tons. A launch
window of 24 days between the 7th of February, 2020 and the 2nd of March, 2020 can be
found for a payload mass of 17.2 tons.
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As the fully margined mass of 19 tons is not attainable using the 4RL configuration and 10
kW, it has been checked if the fully margined mass would be attainable upon increasing the
power level. Therefore, another run for 25 kW has been performed, which can be found in
Figure 19-19.

Figure 19-19: Grid search EME - 2019 - 25 kW - 4RL, zoom in on main window.

Increasing the power level to 25 kW results in a feasible launch window for the fully margined
payload mass of 19 tons. The launch window is approximately 74 days long between the 27th
of December, 2019 and the 10th of March, 2020. The maximum attainable payload mass is
about 19.35 tons. A launch window of 25 days between the 26th of January, 2020 and the
20th of February, 2020 can be found for a payload mass of 19.3 tons.

One can further conclude that increasing the power level has more effects than just increasing
the final mass. It also has consequences on the shape of the contour plot and on the location
of the maximum final mass. If there would be a large margin between the maximal feasible
launch mass and the actual launch mass at the optimal location, the optimal geometry could
be flown for the scenario with a higher power level and higher final mass. However, in this
scenario, this margin is small at the location of the maximum final mass. Hence, upon
increasing the power level and final mass, the C3 needs to be reduced. This means that
partially, the increased SEP capabilities from the higher power level are used to compensate
for this loss in C3. The other part can be used to increase the final mass. For the 10 kW
scenario, the optimal scenario requires a C3 of 45 km2/s2. However, for the 25 kW scenario,
this is reduced to 34 km2/s2. Because of this reduction in C3, the time of flight of the first leg
needs to increase from 210 to 230 days. This change in flyby geometry causes the difference
in shape of the contour plot and the change in location of the maximum final mass.
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19-3 Earth-Mars-Earth flyby mission in 2021

First of all, runs have been performed using 10 kW. However, just like observed in De Smet
et al. [2014], no launch windows could be found. Therefore, the power level has been increased
to 20 kW. The results of this run can be seen in Figure 19-20.

Figure 19-20: Grid search EME - 2021 - 20 kW - 4RL, broad search.

In this figure, one can identify two launch windows: the main launch window at higher TOF’s
and an interesting region with low TOF’s. In order to understand what happens at these low
TOF’s, two reference trajectories at the 25th of November, 2021 have been plotted in Figures

(a) Main launch window: TOF=501 days. (b) Second launch window: TOF=391 days.

Figure 19-21: Trajectories of two different Earth-Mars-Earth scenario’s launching on the 25th of
November, 2021 - 20kW - 4RL.
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19-21a and 19-21b. One is situated in the main launch window with a total TOF of 501
days. The other one is located in the second window at a total TOF of 391 days. From these
figures, the presence of the unexpected launch window at low total TOF’s can be understood.
While the first legs between Earth and Mars are almost identical for both situations, there is
a significant difference in the return legs. The much shorter return leg for the shorter TOF
mission is a free return trajectory, while the longer return leg geometry for the main launch
window scenario cannot be performed on a free return trajectory.

Unfortunately, this second, low TOF, launch window does not achieve the minimal baseline
payload mass of 13.139 tons. Therefore, a zoom in on this launch window for a scenario with
25 kW of power has been run which can be seen in Figure 19-22. Using 25 kW, a 28 day long
launch window can be identified between the 6th of November, 2021 and the 4th of December,
2021 for low TOF’s ranging between 380 and 445 days. An obvious feature is a very abrupt
change in payload mass at the lowest TOF for each departure date. This is due to an abrupt
required change in flyby altitude and required C3 value, which limits the payload mass. The
transitioning appears to be very abrupt due to the utilized resolution. In reality, it is more
smooth.

Figure 19-22: Grid search EME - 2021 - 25 kW - 4RL, second launch window.

This low TOF launch window however does not have the highest payload mass. For this
25 kW case, the main launch window has a 25 day window between the 30th of December,
2021 and the 25th of January, 2022 for a payload mass of 14.5 tons. Similarly for the 20 kW
scenario, Figure 19-23 shows a zoom in on this main launch window region. One can see
that the baseline mass of the Inspiration Mars window, 13.139 tons, can be launched during
a 63 day long launch window between the 23th of December, 2021 and the 24th of February,
2022. The maximum attainable payload mass is about 13.5 tons. A launch window of 21 days
between the 15th of January, 2022 and the 5th of February, 2022 can be found for a payload
mass of 13.47 tons.
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Figure 19-23: Grid search EME - 2021 - 20 kW - 4RL, main launch window.

19-4 Earth-Venus-Mars-Earth flyby mission in 2021

The results of a multi-start grid search for an Earth-Venus-Mars-Earth flyby mission in 2021
can be seen in Figure 19-24. This figure is an expanded, higher resolution version of Figure
17-8. Again, the TOF has been cut off at 621 days, as this is a human mission. The trends
within this figure for departure dates between -50, the 2nd of October, 2021 and 40, the 31th
of December, 2021, have already been extensively discussed in Section 17-3. However, some
interesting features in this figure still need some consideration.

First of all, from Figure 19-25, it can be seen that area A and C do no longer appear for
departure dates lower than -55, the 27th of September, 2021. This could be expected from
the trends observed in Figure 17-9. At lower departure dates, the TOF1’s of area A increase
and equal the TOF1’s from area B. Furthermore, the geometry at departure date -55 requires
a higher C3. Hence, the final mass remains lower and the jump to the C area can no longer
be made. As such, for departure dates lower than -55, all solutions are part of area B.

Another interesting feature is the gap at departure date 25, the 16th of December, 2021.
Looking back to Figure 17-9, this gap appears exactly where the boundary between area A
and D occurs. This confirms the transitioning from area A into D at this location.

Another striking feature is the sudden cut-off at departure date 50, the 10th of January,
2022 where the maximum TOF is 605 days. The reasons for this behavior are the very high
required C3 values at this departure date. The optimal TOF here is around 580 days. For
both higher and lower TOF’s, the required propellant mass increase. Due to the very high
C3 requirements here, there is no margin between the maximum feasible launch mass and the
actual launch mass. Therefore, to increase the propellant mass and enable the mission, the
final mass has to drop. Finally, at a TOF of 557 and 609 days, the final mass drops below 10
tons. Hence, the trajectory becomes infeasible there.



19-4 Earth-Venus-Mars-Earth flyby mission in 2021 137

Figure 19-24: Grid search EVME - 2021 - 20kW - 4RL, multi-start method.

Figure 19-25: Grid search EVME - 2021 - 20kW - 4RL, TOF1.

A launch window of 20 days between the 17th of October, 2021 and the 6th of November,
2021 can be found for a payload mass of 27.7 tons. However, this launch window has TOF’s
between 573 and 609 days. Considering this thesis work is performed for crewed missions,
it will be investigated if feasible launch windows for lower total TOF’s exist. Therefore, in
Figure 19-26, one can find the launch window for a minimal payload mass of 19 tons. In this
figure, one can see that with a minimal time of flight of 543 days, 20 day long launch periods
open up between the 21th of November, 2021 and the 11th of December, 2021. Similarly, for
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13.139 tons, a 25-day period opens up between the 16th of November, 2021 and the 11th of
December, 2021 for a TOF of 517 days.

Figure 19-26: Grid search EVME - 2021 - 20 kW - 4RL, payload mass ¥ 19 ton.

19-5 Conclusion

In order to give a quick overview of the different scenarios, the combination of parameters
that lead to preliminary launch windows of approximately 20 days have been listed in Table
19-1. The low-thrust, 501 days TOF payload masses have been obtained from Table 9-5 while
the chemical payload masses have been obtained using a similar method as in Section 9-6.

Table 19-1: Limiting cases: 20 days launch window for variable TOF’s.

Scenario Power Launcher Payload mass Payload mass Payload mass TOF
level configur- low-thrust low-thrust chemical range

ation free TOF 501 days TOF 501 days TOF
(kW) (tons) (tons) (tons) (days)

Earth-Mars-Earth scenarios
2018 10 4RL 21.8 21.2 20.95 500-511
2018 10 1RL 14.1 13.75 12.55 501-513
2019 10 4RL 17.2 15.75 10.49 509-519
2019 25 4RL 19.3 N.A. 10.49 516-524
2021 20 4RL 13.4 N.A. 8.42 538-547
2021 25 4RL 14.6 13.3 8.42 535-545
2021 25 4RL 13.3 13.3 8.42 379-433

Earth-Venus-Mars-Earth scenarios
2021 20 4RL 27.7 N.A. 3.12 573-609
2021 20 4RL 19.0 N.A. 3.12 543
2021 20 4RL 13.1 N.A. 3.12 517
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Figure 19-27: Comparison maximal payload masses for chemical and low-thrust trajectories for
Earth-Mars-Earth missions in 2018, 2019 and 2021 and for an Earth-Venus-Mars-Earth mission
in 2021 for different power levels and different launch configurations for free TOF’s.

Comparison with chemical trajectories The results in Table 19-1 have also been visualized
in Figure 19-27. In this figure, the payload mass for the low-thrust, free TOF cases and for
the chemical reference trajectories have been plotted on the x-and y-axis respectively. From
this figure, one can see that the trajectories utilizing SEP have a consistently higher feasible
payload mass than the chemical trajectories. One can also see that the 4RL configuration
results in larger payload masses than for the 1RL configuration. This does not comes as
a surprise since the maximum launch mass in the launch performance curve of the 4RL
configuration is substantially higher than the 1RL configuration. In this figure, one can also
see that for the investigated scenarios, an increase in power level also results in a higher
low-thrust payload mass. This is not always the case, as explained in Subsection 19-1-2.

From this Figure, one can see that the free TOF, low-thrust scenarios have substantial higher
payload masses than their chemical, 501 days TOF counterparts. For instance, for the EVME-
2021-20kW-4RL scenario, the chemical payload mass is maximal 3.12 ton, while with low-
thrust, this could be increased to 27.7 tons. This large difference can be partially attributed
to the very high ∆V requirement for the chemical DSM’s in Table 17-1. This results in a very
high chemical propellant mass. This can be drastically reduced using the more mass-efficient,
low-thrust propulsion system. The made comparison is not entirely fair, since the low-thrust
scenario has a TOF of upto 609 days. It could well be that the chemical payload mass could
be substantially higher if the TOF would be allowed to increase from 501 to 609 days.

Comparison with low-thrust, fixed 501 days TOF scenarios Table 19-1 and Figure 19-
28 show that opening up the TOF for low-thrust trajectories increases the payload mass
compared to low-thrust, 501 days fixed TOF trajectories. However, it must be noted that the
TOF required for those higher payload masses are in general higher than 501 days. There
is one exception though: for the EME-2021-25kW-4RL scenario, a launch window has been
identified that has a similar payload mass as for the 501 days fixed TOF case, but at a
substantially lower TOF between 379 and 433 days.
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Figure 19-28: Comparison maximal payload masses for low-thrust, fixed 501 days TOF and
variable-TOF, low-thrust trajectories for Earth-Mars-Earth missions in 2018, 2019 and 2021 for
different power levels and different launch configurations.

Besides increasing the payload mass, also new launch windows are opened. An example is
the EME-2021-20kW-4RL scenario. For a fixed TOF of 501 days, the maximal payload mass
was found to be below the Inspiration Mars baseline payload mass of 13.139 tons. Hence, this
window had been assessed infeasible. If the TOF is allowed to change, a launch window for a
payload mass of 13.4 tons becomes feasible for a TOF between 538 and 547 days. Note that
this payload mass is even slightly higher than the payload mass for the 501 days TOF fixed
EME-2021-25kW-4RL scenario.

Besides increasing the payload mass and opening up new launch windows, also new mission
concepts have been identified. The highest payload mass has been found for an EVME-2021-
20kW-4RL. However, this requires a fairly high TOF of upto 609 days. For lower TOF’s,
the achievable payload mass drops considerably. For instance, for a TOF of 517 days, the
maximal payload mass is decreased to 13.1 tons. Compared to the EME-2018-10kW-4RL
scenario, which can achieve 21.8 tons for a lower TOF and only using half of the power, this
might not be desirable.

Conclusion The large differences in payload mass, required power, required flight time, etc.
make it difficult to make comparisons between the different scenarios and to draw conclusions.
Depending on the exact mission requirements, different scenario’s are more attractive. The
following discussion should facilitate the scenario selection for potential future mission design.
If high TOF’s are acceptable, the EVME scenario results in the highest payload masses and
has a higher scientific return, as it flybys an additional planet. If such high TOF’s are
not acceptable, the EME-2018-10kW-4RL scenario is capable of a payload of 21.8 tons while
maintaining a fairly low TOF and power level. If the mission can be build close to the baseline
payload mass of 13.139 tons, the EME-2021-25kW-4RL scenario is attractive due to its low
TOF but requires a power level of 25 kW, potentially rendering it impossible.
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Chapter 20

Conclusions

The conclusions have been categorized based on the different research goals and launch win-
dows.

20-1 Research goal 1

1. Profiling is crucial for an efficient code. The most common bottleneck is the (de-)
allocation of arrays. If possible, this needs to be done as high up in the function
hierarchy. Furthermore, the (de-)allocation must be avoided within iterations and loops.

2. A throttled representation is sparser and faster. However, the re-distribution of infor-
mation within the Jacobian introduces convergence problems. This could be solved by
creating a better initial guess or by writing a smart multi-start method, which offsets
the time gains. Hence, the more stable thrust representation is preferred.

20-2 Research goal 2

1. To connect planetary ephemeris with time, ephemeris constraints can be used. However,
those are unstable. Therefore, the coordinates and velocities at the control nodes have
been removed from the state vector. This avoids the usage of those unstable constraints
and reduces the size of the optimization problem, making it faster.

2. The analytical derivatives of the constraints with respect to time are difficult to find.
The main reason is the inapplicability of STM’s to scenario’s with different propagation
time steps. Therefore, a forward-finite difference method has been written to calculate
those derivatives with respect to time.

3. Communicating the sparsity pattern to SNOPT increases the speed considerably. The
exact gain depends on the sparsity of the problem, largely determined by the number
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of legs and the number of segments per leg, and on the number of infeasible iterations
encountered during the optimization.

4. Maximizing the payload mass is slightly slower than minimizing the launch mass. How-
ever, the latter requires a computational run to determine the launch window for every
different payload mass. When one maximizes the payload mass, the launch windows for
different payload masses can be filtered out of the results of one single computational
run.

20-3 Research goal 3

1. Time epochs have a very large effect on trajectories. Hence, the optimization of those
time epochs introduces local optima problems. Those local optima problems can be
overcome by using a multi-start method. Such a method uses initial guesses on the
boundaries of the expected design space of the time of flights of the different legs.

2. The developed low-thrust optimization tool is versatile. It is easy to adapt the code
to include different type of control nodes and to increase the number of legs using an
automated approach based on an input file. Besides the main thesis goal of optimizing
flyby missions, the tool has been used on asteroid rendez-vous missions, asteroid rendez-
vous and return missions, multiple asteroid tour missions for GTOC7, etc.

20-4 Launch windows

1. A variable flight time increases the feasible payload mass compared to a fixed flight time
of 501 days.

2. A variable flight time opens up previously impossible launch windows.

3. Increasing the power level does not always lead to an increase in maximum payload
mass, as expected from Figure 3-3.

4. Multiple launch windows can be found above each other, grouped by flight time. The
window around the initial guess is optimal for all considered cases.

5. Local optima issues arise for high flight times for E-M-E scenarios. Those could be
resolved using a multi-start method. However, those regions are not interesting, as they
have a high time of flight and a low maximum payload mass.

6. New mission concepts such as an additional Venus flyby open up new launch opportu-
nities with higher payload masses. The highest feasible payload mass has been found
for such an E-V-M-E mission. This launch window however relies on a high flight time
of around 570-610 days.
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Chapter 21

Recommendations

No work is truly ever finished. In this chapter, several interesting regions that could be further
investigated will be listed, as well as some recommendations to facilitate these investigations.

21-1 Earth departure

In this study, Earth departure considerations have been neglected. Instead of depending
entirely on the launch C3 to leave the Earth system, other options could be considered that
could potentially open up new opportunities. A few options are spiral escape trajectories,
lunar flybys, low-energy trajectories to raise the orbit’s apogee, etc. While it is expected that
such options will result in a lower propellant mass than using a chemical upper stage, the
time of flight will increase. This could potentially conflict with the time of flight limitations
for a crewed mission. Other combinations such as launching a small crew vehicle to a larger
cargo module near the Sphere of Influence could also be considered.

21-2 Flyby altitude limit

For the fixed 501 days transfers, the flyby altitude is close to the minimum flyby altitude.
From this, it was incorrectly assumed that the upper flyby altitude limit does not have a
considerable effect on the launch windows. However, for several scenarios, the maximum
Martian flyby altitude is reached at higher TOF’s. The enforced sub-optimal flyby geometry
for higher TOF’s increases the thrust requirements. This decreases the maximum payload
mass or makes the trajectory even infeasible. Therefore, it is suggested that the 2000 km
Martian flyby limit is re-evaluated. Additional research could be performed to determine the
changes in the launch windows using different upper limits. The resulting changes could then
be traded off against the difference in science value of the mission.
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21-3 Higher fidelity of the trajectory design

The fidelity of the trajectory design could be increased. Among others, the force model
could be expanded to include certain perturbations such as third-body effects, solar radiation
pressure, relativistic effects, etc. In addition, existing engines could be modeled into the
optimization. In this research, it was assumed that for all power levels, the specific impulse
of the thruster is constant. However, in reality, the specific impulse achievable for a specific
engine is dependent on the power level.

21-4 Global optimization

For a higher number of flybys, it is expected that the number of local optima will increase. This
would make it difficult for a multi-start method at the boundaries of the solution space to find
the global optimum. Furthermore, the required number of starts for a multi-start method
at the boundaries of the solution space would increase exponentially with the number of
legs. Therefore, it is suggested to investigate different global optimization algorithms such as
genetic algorithms, particle swarm optimization, differential evolution, simulated annealing,
monotonic basin hopping, ant colony optimization, etc.

21-5 Programming platform

At the time of writing, the developed tool only works on a Windows platform within a Visual
Studio environment as the tool needs to communicate with the optimization package SNOPT.
For now, all the libraries and projects have been compiled in Visual Studio and are dependent
on a specific Visual Studio compiler. For future investigations, it would be beneficial to port
the code to a Linux platform and compile the SNOPT libraries and projects using a standard
compiler. Then, more powerful computers than the author’s laptop could be used to run the
code, improving the run time.

21-6 Optimization toolbox

During this research, extensive use has been made of the optimization package SNOPT. The
usage of other optimization packages has never been considered. It is possible that different
optimization packages are more suitable for this problem and are faster. One package that
could be considered is IPOPT [Wächter and Biegler, 2006]. This package is open source, has
excellent documentation and community support, support for multiple CPU core optimization
and parallel solving on the GPU, can be tuned to specific problems to improve the perfor-
mance, etc. Furthermore, it is written in C++, facilitating the connection to the developed
tool written in C++.
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Appendix A

TNC transformation

The TNC function has to convert [∆VT ,∆VN ,∆VC ] into [∆Vx,∆Vy,∆Vz]. In order to do so,
one first needs to know how a Tangential, Normal and Cross-track (TNC) reference frame is
defined.

The TNC reference frame is centered at the satellite’s Center of Mass (COM). The tan-
gential , also known as in-track direction and along-track direction is parallel to the
velocity vector. The normal direction lies in the orbital plane, perpendicular to the veloc-
ity vector. The cross-track direction is normal to the plane defined by the tangential and
normal directions. Hence, it is parallel with the angular momentum vector [Vallado, 2003].

Using the propagated Cartesian coordinates and velocities, the TNC function calculates the
unit vectors T̂ , N̂ and Ĉ that determine the directions of the TNC reference system at that
specific point.

In Vallado [2003], a method to convert the orientations from TNC to their Cartesian orien-
tations can be found. �

�∆Vx
∆Vy
∆Vz

�
� �

�
�Ti Ni Ci
Tj Nj Cj
Tk Nk Ck

�
� �
�
�∆VT

∆VN
∆VT

�
� (A-1)

with

T̂ � 9̄r

| 9̄r|

Ĉ � r̄ � 9̄r

|r̄ � 9̄r| (A-2)

N̂ � T̂ � Ĉ
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As such,

Ti � 9xa
9x2 � 9y2 � 9z2

Tj � 9ya
9x2 � 9y2 � 9z2

(A-3)

Tk � 9za
9x2 � 9y2 � 9z2

Ni � x 9y2 � y 9y 9x� 9x 9zz � x 9z2

a
9x2 � 9y2 � 9z2 �

c�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2

Nj � y 9z2 � z 9z 9y � 9x 9yx� y 9x2

a
9x2 � 9y2 � 9z2 �

c�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2
(A-4)

Nk � z 9x2 � x 9x 9z � 9y 9zy � z 9y2

a
9x2 � 9y2 � 9z2 �

c�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2

Ci � y 9z � 9yzc�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2

Cj � z 9x� 9xzc�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2
(A-5)

Ck � x 9y � 9xyc�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2

The elements Ti up to Ck can then be used to convert [∆VT ,∆VN ,∆VC ] into [∆Vx,∆Vy,∆Vz]
using a simple matrix multiplication:

�
�∆VT

∆VN
∆VC

�
� �

�
�Ti Tj Tk
Ni Nj Nk

Ci Cj Ck

�
� �
�
�∆Vx

∆Vy
∆Vz

�
� (A-6)
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Appendix B

TNC transformation matrix

For the calculation of the Jacobian, a transformation matrix is required mapping how changes
in Cartesian coordinates and velocities before a manoeuvre influence the change in Cartesian
coordinates and velocities after the manoeuvre.

For an impulsive manoeuvre, the Cartesian coordinates do not change during a manoeuvre.
So, a change in Cartesian coordinates before the manoeuvre has a one-on-one relation with
the change in the Cartesian coordinates after the manoeuvre. This can be seen looking at the
following equations where � indicates the state after a manoeuvre and � indicates the state
before a manoeuvre.

∆x� � ∆x�

∆y� � ∆y� (B-1)
∆z� � ∆z�

A change in Cartesian coordinates and velocities before the manoeuvre changes the elements
Ti up to Ck within Equations A-3, A-4 and A-5. Hence, they influence the change in Cartesian
velocities after the manoeuvre.

∆ 9x� � B 9x�

Bx� �∆x� � B 9x�

By� �∆y� � B 9x�

Bz� �∆z� �
B 9x�

B 9x�
�∆ 9x� � B 9x�

B 9y�
�∆ 9y� � B 9x�

B 9z�
�∆ 9z�

∆ 9y� � B 9y�

Bx� �∆x� � B 9y�

By� �∆y� � B 9y�

Bz� �∆z� � (B-2)

B 9y�

B 9x�
�∆ 9x� � B 9y�

B 9y�
�∆ 9y� � B 9y�

B 9z�
�∆ 9z�
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∆ 9z� � B 9z�

Bx� �∆x� � B 9z�

By� �∆y� � B 9z�

Bz� �∆z� �
B 9z�

B 9x�
�∆ 9x� � B 9z�

B 9y�
�∆ 9y� � B 9z�

B 9z�
�∆ 9z�

The established equations can be combined into a single transformation matrix:

�
�������

∆x�
∆y�
∆z�
∆ 9x�

∆ 9y�

∆ 9z�

�
�������
�

�
�������

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
a b c d e f
g h i j k l
m n o p q r

�
�������

�
�������

∆x�
∆y�
∆z�
∆ 9x�

∆ 9y�

∆ 9z�

�
�������

(B-3)

Considering that

9x� � 9x� � T�i ∆VT �N�
i ∆VN � C�

i ∆VC
9y� � 9y� � T�j ∆VT �N�

j ∆VN � C�
j ∆VC (B-4)

9z� � 9z� � T�k ∆VT �N�
k ∆VN � C�

k ∆VC

One can see that

a � B 9x�

Bx� � BT�i
Bx� ∆VT � BN�

i

Bx� ∆VN � BC�
i

Bx� ∆VC

b � B 9x�

By� � BT�i
By� ∆VT � BN�

i

By� ∆VN � BC�
i

By� ∆VC

c � B 9x�

Bz� � BT�i
Bz� ∆VT � BN�

i

Bz� ∆VN � BC�
i

Bz� ∆VC (B-5)

d � B 9x�

B 9x�
� BT�i
B 9x�

∆VT � BN�
i

B 9x�
∆VN � BCi

B 9x�
∆VC � 1

e � B 9x�

B 9y�
� BT�i

B 9y�
∆VT � BN�

i

B 9y�
∆VN � BC�

i

B 9y�
∆VC

f � B 9x�

B 9z�
� BT�i

B 9z�
∆VT � BN�

i

B 9z�
∆VN � BC�

i

B 9z�
∆VC

g � B 9y�

Bx� � BT�j
Bx� ∆VT �

BN�
j

Bx� ∆VN � BC�
j

Bx� ∆VC

h � B 9y�

By� � BT�j
By� ∆VT �

BN�
j

By� ∆VN � BC�
j

By� ∆VC

i � B 9y�

Bz� � BT�j
Bz� ∆VT �

BN�
j

Bz� ∆VN � BC�
j

Bz� ∆VC (B-6)

j � B 9y�

B 9x�
� BT�j
B 9x�

∆VT �
BN�

j

B 9x�
∆VN � BC�

j

B 9x�
∆VC

k � B 9y�

B 9y�
� BT�j

B 9y�
∆VT �

BN�
j

B 9y�
∆VN � BC�

j

B 9y�
∆VC � 1

l � B 9y�

B 9z�
� BT�j

B 9z�
∆VT �

BN�
j

B 9z�
∆VN � BC�

j

B 9z�
∆VC
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m � B 9z�

Bx� � BT�k
Bx� ∆VT � BN�

k

Bx� ∆VN � BC�
k

Bx� ∆VC

n � B 9z�

By� � BT�k
By� ∆VT � BN�

k

By� ∆VN � BC�
k

By� ∆VC

o � B 9z�

Bz� � BT�k
Bz� ∆VT � BN�

k

Bz� ∆VN � BC�
k

Bz� ∆VC (B-7)

p � B 9z�

B 9x�
� BT�k
B 9x�

∆VT � BN�
k

B 9x�
∆VN � BC�

k

B 9x�
∆VC

q � B 9z�

B 9y�
� BT�k

B 9y�
∆VT � BN�

k

B 9y�
∆VN � BC�

k

B 9y�
∆VC

r � B 9z�

B 9z�
� BT�k

B 9z�
∆VT � BN�

k

B 9z�
∆VN � BC�

k

B 9z�
∆VC � 1

So, in order to find the analytical expressions for a up to r, one needs the partial derivatives
of T�i up to C�

k with respect to x�, y�, z�, 9x�, 9y� and 9z�. In the next Equations, these
partial derivatives will be listed. Do note that the � subscript has been omitted for clarity
reasons. Furthermore, the following definitions will be used:

term1 � 9x2 � 9y2 � 9z2

term2 �
�
y 9z � 9yz

	2
�
�
z 9x� 9xz

	2
�
�
x 9y � 9xy

	2

term3 � x 9y2 � y 9y 9x� 9x 9zz � x 9z2 (B-8)
term4 � y 9z2 � z 9z 9y � 9x 9yx� y 9x2

term5 � z 9x2 � x 9x 9z � 9y 9zy � z 9y2

In Equations A-3 up to A-5, the definitions of Ti up to Ck can be found. Using elementary
algebra, the following analytical derivatives could be derived:

BTi
Bx � BTi

By � BTi
Bz � 0 (B-9)

BTi
B 9x

� 9y2 � 9z2a
term3

1
(B-10)

BTi
B 9y

� � 9x � 9ya
term3

1
(B-11)

BTi
B 9z

� � 9x � 9za
term3

1
(B-12)

BTj
Bx � BTj

By � BTj
Bz � 0 (B-13)

BTj
B 9x

� � 9x � 9ya
term3

1
(B-14)
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BTj
B 9y

� 9x2 � 9z2a
term3

1
(B-15)

BTj
B 9z

� � 9y � 9za
term3

1
(B-16)

BTk
Bx � BTk

By � BTk
Bz � 0 (B-17)

BTk
B 9x

� � 9x � 9za
term3

1
(B-18)

BTk
B 9y

� � 9y � 9za
term3

1
(B-19)

BTk
B 9z

� 9x2 � 9y2a
term3

1
(B-20)

BNi

Bx � 1
term1 � term2

�
?
term1 � term2 �

�
9y2 � 9z2

	
� (B-21)

term3 �
�c

term1
term2

�
�
pz 9x� x 9zq � p� 9zq � px 9y � 9xyq 9y

	��

BNi

By � 1
term1 � term2

�
?
term1 � term2 �

�
� 9y 9x

	
� (B-22)

term3 �
�c

term1
term2

�
�
py 9z � z 9yq 9z � px 9y � 9xyq � p� 9xq

	��

BNi

Bz � 1
term1 � term2

�
?
term1 � term2 �

�
� 9x 9z

	
� (B-23)

term3 �
�c

term1
term2

�
�
py 9z � z 9yq � p� 9yq � pz 9x� 9zxq � 9x

	��

BNi

B 9x
� 1

term1 � term2

�
?
term1 � term2 �

�
� y 9y � z 9z

	
� (B-24)

term3 �
�c

term2
term1

� 9x�
c

term1
term2

�
�
pz 9x� x 9zqz � px 9y � 9xyq � p�yq

	��

BNi

B 9y
� 1

term1 � term2

�
?
term1 � term2 �

�
� y 9x� 2x 9y

	
� (B-25)

term3 �
�c

term2
term1

� 9y �
c

term1
term2

�
�
py 9z � z 9yq � p�zq � px 9y � 9xyqx

	��

BNi

B 9z
� 1

term1 � term2

�
?
term1 � term2 �

�
� x 9z � 2x 9z

	
� (B-26)
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term3 �
�c

term2
term1

� 9z �
c

term1
term2

�
�
py 9z � z 9yqy � pz 9x� 9zxq � p�xq

	��

BNj

Bx � 1
term1 � term2

�
?
term1 � term2 �

�
� 9x 9y

	
� (B-27)

term4 �
�c

term1
term2

�
�
pz 9x� x 9zq � p� 9zq � px 9y � 9xyq 9y

	��

BNj

By � 1
term1 � term2

�
?
term1 � term2 �

�
9x2 � 9z2

	
� (B-28)

term4 �
�c

term1
term2

�
�
py 9z � z 9yq 9z � px 9y � 9xyq � p� 9xq

	��

BNj

Bz � 1
term1 � term2

�
?
term1 � term2 �

�
� 9y 9z

	
� (B-29)

term4 �
�c

term1
term2

�
�
py 9z � z 9yq � p� 9yq � pz 9x� x 9zq 9x

	��

BNj

B 9x
� 1

term1 � term2

�
?
term1 � term2 �

�
� x 9y � 2y 9x

	
� (B-30)

term3 �
�c

term2
term1

� 9x�
c

term1
term2

�
�
pz 9x� x 9zqz � px 9y � 9xyq � p�yq

	��

BNj

B 9y
� 1

term1 � term2

�
?
term1 � term2 �

�
� z 9z � x 9x

	
� (B-31)

term3 �
�c

term2
term1

� 9y �
c

term1
term2

�
�
py 9z � z 9yq � p�zq � px 9y � 9xyqx

	��

BNj

B 9z
� 1

term1 � term2

�
?
term1 � term2 �

�
� z 9y � 2y 9z

	
� (B-32)

term3 �
�c

term2
term1

� 9z �
c

term1
term2

�
�
py 9z � z 9yqy � pz 9x� 9zxq � p�xq

	��

BNk

Bx � 1
term1 � term2

�
?
term1 � term2 �

�
� 9x 9z

	
� (B-33)

term5 �
�c

term1
term2

�
�
pz 9x� x 9zq � p� 9zq � px 9y � 9xyq 9y

	��

BNk

By � 1
term1 � term2

�
?
term1 � term2 �

�
� 9y 9z

	
� (B-34)
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term5 �
�c

term1
term2

�
�
py 9z � z 9yq 9z � px 9y � 9xyq � p� 9xq

	��

BNk

Bz � 1
term1 � term2

�
?
term1 � term2 �

�
9x2 � 9y2

	
� (B-35)

term5 �
�c

term1
term2

�
�
py 9z � z 9yq � p� 9yq � pz 9x� x 9zq 9x

	��

BNk

B 9x
� 1

term1 � term2

�
?
term1 � term2 �

�
� x 9z � 2z 9x

	
� (B-36)

term5 �
�c

term2
term1

� 9x�
c

term1
term2

�
�
pz 9x� x 9zqz � px 9y � 9xyq � p�yq

	��

BNk

B 9y
� 1

term1 � term2

�
?
term1 � term2 �

�
� y 9z � 2z 9y

	
� (B-37)

term5 �
�c

term2
term1

� 9y �
c

term1
term2

�
�
py 9z � z 9yq � p�zq � px 9y � 9xyqx

	��

BNk

B 9z
� 1

term1 � term2

�
?
term1 � term2 �

�
� x 9x� y 9y

	
� (B-38)

term5 �
�c

term2
term1

� 9z �
c

term1
term2

�
�
py 9z � z 9yqy � pz 9x� 9zxq � p�xq

	��

BCi
Bx �

�
�
y 9z � 9yz

	
a
term3

2

��
z 9x� 9zx

	
� p� 9zq �

�
x 9y � 9xy

	
9y

�
(B-39)

BCi
By � 1

term2

�
?
term2 � 9z � y 9z � 9yz?

term2
�
��

y 9z � 9yz
	
9z �

�
x 9y � 9xy

	
� p� 9xq

��
(B-40)

BCi
Bz � 1

term2

�
?
term2 � p� 9yq � y 9z � 9yz?

term2
�
��

y 9z � 9yz
	
� p� 9yq �

�
z 9x� 9zx

	
9x

��
(B-41)

BCi
B 9x

�
�
�
y 9z � 9yz

	
a
term3

2

��
z 9x� 9zx

	
� z �

�
x 9y � 9xy

	
� p�yq

�
(B-42)

BCi
B 9y

� 1
term2

�
?
term2 � p�zq � y 9z � 9yz?

term2
�
��

y 9z � 9yz
	
� p�zq �

�
x 9y � 9xy

	
xq
��

(B-43)

BCi
B 9z

� 1
term2

�
?
term2 � y � y 9z � 9yz?

term2
�
��

y 9z � 9yz
	
y �

�
z 9x� 9zx

	
� p�xq

��
(B-44)

BCj
Bx � 1

term2

�
?
term2 � p� 9zq � z 9x� 9zx?

term2
�
��

z 9x� 9zx
	
� p� 9zq �

�
x 9y � 9xy

	
9y

��
(B-45)
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BCj
By �

�
�
z 9x� 9zx

	
a
term3

2

��
y 9z � 9yz

	
9z �

�
x 9y � 9xy

	
� p� 9xq

�
(B-46)

BCj
Bz � 1

term2

�
?
term2 � 9x� z 9x� 9zx?

term2
�
��

y 9z � 9yz
	
� p� 9yq �

�
z 9x� 9zx

	
9x

��
(B-47)

BCj
B 9x

� 1
term2

�
?
term2 � z � z 9x� 9zx?

term2
�
��

z 9x� 9zx
	
z �

�
x 9y � 9xy

	
� p�yq

��
(B-48)

BCj
B 9y

�
�
�
z 9x� 9zx

	
a
term3

2

��
y 9z � 9yz

	
� p�zq �

�
x 9y � 9xy

	
xq
�

(B-49)

BCj
B 9z

� 1
term2

�
?
term2 � p�xq � z 9x� 9zx?

term2
�
��

y 9z � 9yz
	
y �

�
z 9x� 9zx

	
� p�xq

��
(B-50)

BCk
Bx � 1

term2

�
?
term2 � 9y � x 9y � 9xy?

term2
�
��

z 9x� 9zx
	
� p� 9zq �

�
x 9y � 9xy

	
9y

��
(B-51)

BCk
By � 1

term2

�
?
term2 � p� 9xq � x 9y � 9xy?

term2
�
��

y 9z � 9yz
	
9z �

�
x 9y � 9xy

	
� p� 9yq

��
(B-52)

BCk
Bz �

�
�
x 9y � 9xy

	
a
term3

2

��
y 9z � 9yz

	
� p� 9yq �

�
z 9x� 9zx

	
9x

�
(B-53)

BCk
B 9x

� 1
term2

�
?
term2 � p�yq � x 9y � 9xy?

term2
�
��

z 9x� 9zx
	
z �

�
x 9y � 9xy

	
� p�yq

��
(B-54)

BCk
B 9y

� 1
term2

�
?
term2 � x� x 9y � 9xy?

term2
�
��

y 9z � 9yz
	
� p�zq �

�
x 9y � 9xy

	
y

��
(B-55)

BCk
B 9z

�
�
�
x 9y � 9xy

	
a
term3

2

��
y 9z � 9yz

	
y �

�
z 9x� 9zx

	
� p�xq

�
(B-56)
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Appendix C

Jacobian

SNOPT is a gradient-based optimization program. Hence, it requires the derivative of every
constraint with respect to each element of the state vector. Some derivatives have already
been explained in Chapter 8. Here, an extensive overview of all derivatives will be given.

C-1 Cost function

The derivative(s) of the cost function depend(s) on the definition of the cost function, which
depends on the goal of the optimization.

C-2 Mass match point F∆M

Looking at the following equations for the mass at the match points, one can see that the
mass mismatch at the match point is influenced by M0, Mf and all the ∆V elements and
specific impulses.

Mmatch point,forward � M0 � exp
�
�
°N
i�1

∆Vi
Isp,i

g0

�
(C-1)

Mmatch point,backward � Mf � exp
�°2N

i�N�1
∆Vi
Isp,i

g0

�
(C-2)

Considering Equation 7-1, one can see that

B∆M
BM0

� Mmatch point,forward
M0

(C-3)

B∆M
BMf

� �Mmatch point,backward
Mf

(C-4)
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For the ∆V elements and specific impulses for the first N manoeuvres, representing the forward
propagation, the derivatives are

B∆M
B∆Vκ,i

� �Mmatch point,forward
Isp,i � g0

� ∆Vκ,i
∆Vi

(C-5)

B∆M
B∆Isp,i

� Mmatch point,forward �∆Vi
I2
sp,i � g0

(C-6)

with i=1, 2, . . ., N and κ=T, N or C.

For the ∆V elements and specific impulses for the last N manoeuvres, representing the back-
ward propagation, the derivatives are

B∆M
B∆Vκ,i

� �Mmatch point,backward
Isp,i � g0

� ∆Vκ,i
∆Vi

(C-7)

B∆M
B∆Isp,i

� Mmatch point,backward �∆Vi
I2
sp,i � g0

(C-8)

with i=N+1, N+2, . . ., 2N and κ=T, N or C.

C-3 State match point constraints F∆x, F∆y, F∆z, F∆ 9x, F∆ 9y ,F∆ 9z

The derivatives of the state match point constraints can be subdivided into four categories:
derivatives with respect to the elements making up the initial state, elements making up the
final state, elements defining the forward manoeuvres and elements defining the backward
manoeuvres.

C-3-1 Derivatives with respect to the initial node’s coordinates, velocities and
hyperbolic excess velocities

To obtain the derivatives of the match point constraints with respect to the initial node’s
coordinates, velocities and excess velocities, one must understand how a change in those
initial conditions is propagated up to the match point. This will be done through Figure C-1.

First of all, one needs to realize that the initial Cartesian state, indicated by the s for “space-
craft state” subscript, is set up by a combination of the initial node’s coordinates, velocities
and excess velocities. These are indicated by the 0 for “initial node” subscript, according to

initial node spacecraft state �

�
�������

xs,0
ys,0
zs,0
9xs,0
9ys,0
9zs,0

�
�������
�

�
�������

x0
y0
z0

9x0 � V8,x0

9y0 � V8,y0

9z0 � V8,z0

�
�������

(C-9)
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Figure C-1: Propagation of a change in initial conditions to the match point.

This initial state is numerically propagated up to the state at point 1� in Figure ??, indicating
the Cartesian state before the application of the manoeuvre. From Equation 6-3, it is known
that a change in the initial state can be converted into a change in the Cartesian state at
point 1� using the STM between point 0 and 1�, Φ1�,0, which has been calculated and stored
in the propagation module. So,

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�

� Φ1�,0 �

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

0

(C-10)

The directions of the manoeuvres expressed in TNC coordinates depend on the location of
the manoeuvre. As such, a change in the state at point 1� influences the directions in which
the manoeuvres are applied. As such, an additional transformation matrix is required that
transforms the change in the state over the manoeuvre from point 1� to point 1� . Therefore,
the transformation matrix TNC1�,1� explained in Appendix B can be used, which has been
calculated and stored in the propagation module.

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�

� TNC1�,1� �

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�

(C-11)

So, a change in the initial state can be propagated to a change of coordinates and velocities
at the match point using:
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�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������
MP,forward

� ΦMP,N� � TNCN�,N� � . . . � Φ2�,1� � TNC1�,1� � Φ1�,0 �

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������

0

(C-12)

This matrix product ΦMP,N� �TNCN�,N� � . . . �Φ2�,1� �TNC1�,1� �Φ1�,0 will be called ΨMP,0,
mapping the change from state at point 0 to the state at point MP.

From the previous discussion, the derivatives of the match point constraints with respect
to the initial coordinates, velocities and initial hyperbolic excess velocities can be found by
realizing that

ΨMP,0 �

�
�����������

Bxs,MP for
Bxs,0

Bxs,MP for
Bys,0

Bxs,MP for
Bzs,0

Bxs,MP for
B 9xs,0

Bxs,MP for
B 9ys,0

Bxs,MP for
B 9zs,0

Bys,MP for
Bxs,0

Bys,MP for
Bys,0

Bys,MP for
Bzs,0

Bys,MP for
B 9xs,0

Bys,MP for
B 9ys,0

Bys,MP for
B 9zs,0

Bzs,MP for
Bxs,0

Bzs,MP for
Bys,0

Bzs,MP for
Bzs,0

Bzs,MP for
B 9xs,0

Bzs,MP for
B 9ys,0

Bzs,MP for
B 9zs,0

B 9xs,MP for
Bxs,0

B 9xs,MP for
Bys,0

B 9xs,MP for
Bzs,0

B 9xs,MP for
B 9xs,0

B 9xs,MP for
B 9ys,0

B 9xs,MP for
B 9zs,0

B 9ys,MP for
Bxs,0

B 9ys,MP for
Bys,0

B 9ys,MP for
Bzs,0

B 9ys,MP for
B 9xs,0

B 9ys,MP for
B 9ys,0

B 9ys,MP for
B 9zs,0

B 9zs,MP for
Bxs,0

B 9zs,MP for
Bys,0

B 9zs,MP for
Bzs,0

B 9zs,MP for
B 9xs,0

B 9zs,MP for
B 9ys,0

B 9zs,MP for
B 9zs,0

�
�����������

(C-13)

The derivatives in the ΨMP,0 matrix are not yet the derivatives of the match point constraints
with respect to the initial coordinates, velocities and excess velocities. Those can however
easily be found from the derivatives in the ΨMP,0 matrix. As an example, the derivatives of
the x-coordinate match point constraint will be given with respect to initial coordinate x0,
initial velocity 9x0 and initial hyperbolic excess velocity V8,x0 .

B∆xMP

Bx0
�

B
�
xMP forward � xMP backward

	
Bx0

� BxMP forward
Bx0

� 0 (C-14)

� BxMP forward
Bxs,0 � Bxs,0Bx0

� BxMP forward
Bxs,0 � 1

� ΨMP,0r1, 1s

where the definitions of ∆xMP and xs,0 from respectively Equations 7-1 and C-9 have been
used.
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Similarly,

B∆xMP

B 9x0
�

B
�
xMP forward � xMP backward

	
B 9x0

� BxMP forward
B 9x0

� 0 (C-15)

� BxMP forward
B 9xs,0

� B 9xs,0
B 9x0

� BxMP forward
B 9xs,0

� 1
� ΨMP,0r1, 4s

where the definitions of ∆xMP and 9xs,0 from respectively Equations 7-1 and C-9 have been
used.

Similarly,

B∆xMP

BV8,x0
�

B
�
xMP forward � xMP backward

	
BV8,x0

� BxMP forward
BV8,x0

� 0 (C-16)

� BxMP forward
B 9xs,0

� B 9xs,0
BV8,x0

� BxMP forward
B 9xs,0

� 1
� ΨMP,0r1, 4s

where the definitions of ∆xMP and 9xs,0 from respectively Equations 7-1 and C-9 have been
used.

The derivatives with respect to y0, z0, 9y0, 9z0, V8,y0 and V8,z0 can be found in a similar way
to be the second, third, fifth, sixth, fifth and sixth element of the first row of ΨMP,0. The
derivatives of the other match point constraints ∆yMP , ∆zMP , ∆ 9xMP , ∆ 9yMP and ∆ 9zMP can
be found in a similar manner to be the second, third, fourth, fifth and sixth row of ΨMP,0.

C-3-2 Derivatives with respect to the final node’s coordinates, velocities and
hyperbolic excess velocities

First of all, one needs to realize that the final Cartesian state, indicated by the s for “spacecraft
state” subscript, is set up by a combination of the final node’s coordinates, velocities and
excess velocities. These are indicated by the f for “final node” subscript, according to
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final node spacecraft state �

�
�������

xs,f
ys,f
zs,f
9xs,f
9ys,f
9zs,f

�
�������
�

�
�������

xf
yf
zf

9xf � V8,xf
9yf � V8,yf
9zf � V8,zf

�
�������

(C-17)

Based on a similar reasoning as for the derivatives with respect to the initial coordinates,
velocities and excess velocities, the ΨMP,f matrix can be defined as

ΨMP,f � ΦMP,N�1� � TNCN�1�,N�1� � . . . � TNC2N�,2N� � Φ2N�,f (C-18)

Based on a similar reasoning as for the derivatives with respect to the initial coordinates,
velocities and excess velocities, it can be shown that

ΨMP,f �

�
�����������

Bxs,MP back
Bxs,f

Bxs,MP back
Bys,f

Bxs,MP back
Bzs,f

Bxs,MP back
B 9xs,f

Bxs,MP back
B 9ys,f

Bxs,MP back
B 9zs,f

Bys,MP back
Bxs,f

Bys,MP back
Bys,f

Bys,MP back
Bzs,f

Bys,MP back
B 9xs,f

Bys,MP back
B 9ys,f

Bys,MP back
B 9zs,f

Bzs,MP back
Bxs,f

Bzs,MP back
Bys,f

Bzs,MP back
Bzs,f

Bzs,MP back
B 9xs,f

Bzs,MP back
B 9ys,f

Bzs,MP back
B 9zs,f

B 9xs,MP back
Bxs,f

B 9xs,MP back
Bys,f

B 9xs,MP back
Bzs,f

B 9xs,MP back
B 9xs,f

B 9xs,MP back
B 9ys,f

B 9xs,MP back
B 9zs,f

B 9ys,MP back
Bxs,f

B 9ys,MP back
Bys,f

B 9ys,MP back
Bzs,f

B 9ys,MP back
B 9xs,f

B 9ys,MP back
B 9ys,f

B 9ys,MP back
B 9zs,f

B 9zs,MP back
Bxs,f

B 9zs,MP back
Bys,f

B 9zs,MP back
Bzs,f

B 9zs,MP back
B 9xs,f

B 9zs,MP back
B 9ys,f

B 9zs,MP back
B 9zs,f

�
�����������

(C-19)

The derivatives in the ΨMP,f matrix are not yet the derivatives of the match point constraints
with respect to the final coordinates, velocities and excess velocities. Those can however easily
be found from the derivatives in the ΨMP,f matrix. As an example, the derivatives of the
x-coordinate match point constraint will be given with respect to final coordinate xf , final
velocity 9xf and final hyperbolic excess velocity V8,xf .

B∆xMP

Bxf �
B
�
xMP forward � xMP backward

	
Bxf

� 0� BxMP backward
Bxf (C-20)

� �BxMP backward
Bxs,f � Bxs,fBxf

� �BxMP backward
Bxs,f � 1

� �ΨMP,f r1, 1s

where the definitions of ∆xMP and xs,f from respectively Equations 7-1 and C-17 have been
used.
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Similarly,

B∆xMP

B 9xf
�

B
�
xMP forward � xMP backward

	
B 9xf

� 0� BxMP backward
B 9xf

(C-21)

� �BxMP backward
B 9xs,f

� B 9xs,f
B 9xf

� �BxMP backward
B 9xs,f

� 1
� �ΨMP,f r1, 4s

where the definitions of ∆xMP and 9xs,f from respectively Equations 7-1 and C-17 have been
used.

Similarly,

B∆xMP

BV8,xf
�

B
�
xMP forward � xMP backward

	
BV8,xf

� 0� BxMP backward
BV8,xf

(C-22)

� �BxMP backward
B 9xs,f

� B 9xs,f
BV8,xf

� �BxMP backward
B 9xs,f

� 1
� �ΨMP,f r1, 4s

where the definitions of ∆xMP and 9xs,f from respectively Equations 7-1 and C-17 have been
used.

The derivatives with respect to yf , zf , 9yf , 9zf , V8,yf and V8,zf can be found in a similar way
to be the negative of the second, third, fifth, sixth, fifth and sixth element of the first row of
ΨMP,f . The derivatives of the other match point constraints ∆yMP , ∆zMP , ∆ 9xMP , ∆ 9yMP

and ∆ 9zMP can be found in a similar manner to be the negative of the second, third, fourth,
fifth and sixth row of ΨMP,f .

C-3-3 Derivatives with respect to the forward velocity components

The derivatives with respect to the ∆V’s can be found using a similar method. An example
will be given for the derivatives with respect to the first manoeuvre, which has been visualized
in Figure C-2.

Imagine a change in one of the ∆V components of the first manoeuvre. This will result in a
change in the state after the first manoeuvre, still indicated by 1�.
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Figure C-2: Propagation of a change in manoeuvre 1 to the match point.

From Equation A-1, it is known that the change in the ∆V components of the first manoeuvre
can be transformed into the change of the state after the first manoeuvre using the ∆TNC1�,1
matrix, which has been derived in Appendix A.

�
�������

0
0
0

∆ 9xs
∆ 9ys
∆ 9zs

�
�������

1�

� ∆TNC1�,1 �

�
�������

0
0
0

∆p∆VT,1q
∆p∆VN,1q
∆p∆VC,1q

�
�������

1

(C-23)

This change of the state after the first manoeuvre can then be propagated to the change of
the state at the match point using matrix ΨMP,1� defined as

ΨMP,1� � ΦMP,N� � TNCN�,N� � . . . TNC2�,2� � Φ2�,1� (C-24)

Combining ∆TNC1�,1 and ΨMP,1� , one can see that

�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������
MP,forward

� ΨMP,1� �∆TNC1�,1 �

�
�������

0
0
0

∆p∆VT,1q
∆p∆VN,1q
∆p∆VC,1q

�
�������

1

(C-25)
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As such, the derivatives can be found from

ΨMP,1� �∆TNC1�,1 �

�
�����������

0 0 0 Bxs,MP for
B∆VT,1

Bxs,MP for
B∆VN,1

Bxs,MP for
B∆VC,1

0 0 0 Bys,MP for
B∆VT,1

Bys,MP for
B∆VN,1

Bys,MP for
B∆VC,1

0 0 0 Bzs,MP for
B∆VT,1

Bzs,MP for
B∆VN,1

Bzs,MP for
B∆VC,1

0 0 0 B 9xs,MP for
B∆VT,1

B 9xs,MP for
B∆VN,1

B 9xs,MP for
B∆VC,1

0 0 0 B 9ys,MP for
B∆VT,1

B 9ys,MP for
B∆VN,1

B 9ys,MP for
B∆VC,1

0 0 0 B 9zs,MP for
B∆VT,1

B 9zs,MP for
B∆VN,1

B 9zs,MP for
B∆VC,1

�
�����������

(C-26)

From the definitions of ∆xMP up to ∆ 9zMP in Equation 7-1, it is known that the derivatives
of xs,MP for up to 9zs,MP for are equal to the derivatives of ∆xMP up to ∆ 9zMP . As such,
ΨMP,1� �∆TNC1�,1 contains those derivatives.

C-3-4 Derivatives with respect to the backward velocity components

The derivatives with respect to the backward ∆V’s can be found similarly. An example will
be given for the derivatives with respect to the 2Nth manoeuvre.

Imagine a change in one of the ∆V components of the 2Nth manoeuvre. This will result in a
change in the state before the 2Nth manoeuvre, still indicated by 2N�.

From Equation A-1, it is known that the change in the ∆V components of the 2Nth manoeuvre
can be transformed into the change of the state before the 2Nth manoeuvre using the ∆TNC
matrix, which has been explained in Appendix A. However, because the change in the ∆V
components of the 2Nth manoeuvre has to be transformed into the change of the state before
the 2Nth manoeuvre and not after, according to Equation 6-17, the transformation needs to
be performed using ∆TNC2N�,2N � �∆TNC2N�,2N .

�
�������

0
0
0

∆ 9xs
∆ 9ys
∆ 9zs

�
�������

2N�

� ∆TNC2N�,2N �

�
�������

0
0
0

∆p∆VT,2N q
∆p∆VN,2N q
∆p∆VC,2N q

�
�������

(C-27)

This change of the state before the 2Nth manoeuvre can then be propagated to the change of
the state at the match point using matrix ΨMP,2N� defined as

ΨMP,2N� � ΦMP,N�1� � TNCN�1�,N�1� � . . . TNC2N�1�,2N�1� � Φ2N�1�,2N� (C-28)

Combining ∆TNC2N�,2N and ΨMP,2N� , one can see that
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�
�������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs

�
�������
MP,backward

� ΨMP,2N� �∆TNC2N�,2N �

�
�������

0
0
0

∆p∆VT,2N q
∆p∆VN,2N q
∆p∆VC,2N q

�
�������

(C-29)

As such, the derivatives can be found from

ΨMP,2N� �∆TNC2N�,2N �

�
�����������

0 0 0 Bxs,MP back
B∆VT,2N

Bxs,MP back
B∆VN,2N

Bxs,MP back
B∆VC,2N

0 0 0 Bys,MP back
B∆VT,2N

Bys,MP back
B∆VN,2N

Bys,MP back
B∆VC,2N

0 0 0 Bzs,MP back
B∆VT,2N

Bzs,MP back
B∆VN,2N

Bzs,MP back
B∆VC,2N

0 0 0 B 9xs,MP back
B∆VT,2N

B 9xs,MP back
B∆VN,2N

B 9xs,MP back
B∆VC,2N

0 0 0 B 9ys,MP back
B∆VT,2N

B 9ys,MP back
B∆VN,2N

B 9ys,MP back
B∆VC,2N

0 0 0 B 9zs,MP back
B∆VT,2N

B 9zs,MP back
B∆VN,2N

B 9zs,MP back
B∆VC,2N

�
�����������

(C-30)

From the definitions of ∆xMP up to ∆ 9zMP in Equation 7-1, it is known that the derivatives
of xs,MP for up to 9zs,MP for are equal to the negative of the derivatives of ∆xMP up to ∆ 9zMP .
As such, �ΨMP,2N� �∆TNC2N�,2N contains those derivatives.

C-4 Thrust constraints

The exact definition of the thrust constraints depends on whether or not the power is con-
stant or dependent on the heliocentric distance. Depending on this definition of the thrust
constraints, the derivatives change. Both scenarios will be explained in the next subsections.

C-4-1 Constant power

In the constant power case, the thrust constraint on segment j is defined as

FTj �
∆VjMj

P0
(C-31)

where Mj is the mass of the spacecraft before the manoeuvre applied at the midpoint of
segment j, which can be found from:

Mj �M0 � exp
� �∆V1
Isp,1 � g0

	
� ... � exp

� �∆Vj�1
Isp,j-1 � g0

	
(C-32)

for the forward thrust constraints for which j is between 1 and N and

Mj �Mf � exp
� ∆Vj
Isp,j � g0

	
� ... � exp

� ∆V2N
Isp,2N � g0

	
(C-33)

for the backward thrust constraints for which j is between N+1 and 2N.
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C-4-1-1 Derivatives with respect to M0, Mf and MP0

The derivatives with respect to M0 and Mf are straightforward. From Equations C-31, C-32
and C-33, one gets

BFTj
BM0

� ∆Vj
P0

Mj

M0
(C-34)

for the forward thrust constraints and zero for the backward thrust constraints.
BFTj
BMf

� ∆Vj
P0

Mj

Mf
(C-35)

for the backward thrust constraints and zero for the forward thrust constraints.

The influence of MP0 on the thrust constraint is not visible at first. One needs to rewrite
Equation C-31 into

FTj �
∆VjMjkP0

MP0
(C-36)

where kP0 is the power to mass ratio of the SEP system. Using this formulation of the thrust
constraint, one gets

BFTj
BMP0

� �∆VjMjkP0

M2
P0

(C-37)

for both the forward and backward thrust constraints.

C-4-1-2 Derivatives with respect to ∆VT,i, ∆VN,i and ∆VC,i

Taking the derivative of Equation C-31, one gets:

BFTj
B∆Vi

� Mj

P0

B∆Vj
B∆Vi

� ∆Vj
P0

BMj

B∆Vi
(C-38)

There are 3 possible combinations of i and j.

i<j The magnitude of manoeuvre j is not affected by the magnitude of manoeuvre i. As
such, B∆Vj

B∆Vi � 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the magnitude of manoeuvre i. Therefore,
the derivatives for the forward thrust constraints are

BFTj
B∆Vi

� ∆Vj
P0

� �Mj

Isp,i � g0
(C-39)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is not affected by the magnitude of manoeuvre i.
Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆Vi

� 0 (C-40)
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i=j Manoeuvres j and i are the same. As such, B∆Vj
B∆Vi � 1 in this scenario, for both the

forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is not influenced by the magnitude of that manoeuvre.
Therefore, the derivatives for the forward thrust constraints are:

BFTj
B∆Vi

� Mj

P0
(C-41)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is affected by the magnitude of that manoeuvre.
Therefore, the derivatives for the backward thrust constraints are:

BFTj
B∆Vi

� Mj

P0
� ∆Vj

P0

Mj

Isp,j � g0
(C-42)

i>j The magnitude of manoeuvre j is not affected by the magnitude of manoeuvre i. As
such, B∆Vj

B∆Vi � 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is not affected by the magnitude of manoeuvre i.
Therefore, the derivatives for the forward thrust constraints are

BFTj
B∆Vi

� 0 (C-43)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the magnitude of manoeuvre i. Therefore,
the derivatives for the backward thrust constraints are

BFTj
B∆Vi

� ∆Vj
P0

� Mj

Isp,i � g0
(C-44)

Chain rule From these derivatives with respect to ∆Vi, it is straightforward to find the
derivatives with respect to ∆VT,i, ∆VN,i and ∆VC,i using the chain rule:

BFTj
B∆VT,i

� BFTj
B∆Vi

� B∆Vi
B∆VT,i

(C-45)

� BFTj
B∆Vi

� ∆VT,i
∆Vi

(C-46)
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C-4-1-3 Derivatives with respect to Isp

Upon looking at Equation C-31, it seems that the specific impulse does not have an influence
on FTj . However, looking at the entire inequality constraint, the influence of Isp becomes
apparent:

FTj �
∆Vjmj

P0
¤ 2ηjetDT
Isp,j � g0

(C-47)

This can be rewritten into:

FTj �
∆VjmjIsp,j

P0
¤ 2ηjetDT

g0
(C-48)

Taking the derivative of Equation C-48, one gets

BFTj
BIsp,i �

∆Vjmj

P0
� BIsp,jBIsp,i �

∆VjIsp,j
P0

� Bmj

BIsp,i (C-49)

Again, there are 3 possible combinations of i and j.

i<j The specific impulse of manoeuvre j is not affected by the specific impulse of manoeuvre
i. As such, B∆Isp,j

B∆Isp,i
� 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the forward thrust constraints are

BFTj
BIsp,i �

∆Vj∆ViIsp,jMj

I2
sp,i � g0 � P0

(C-50)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is not affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆Isp,i

� 0 (C-51)

i=j Manoeuvres j and i are the same. As such, B∆Isp,j
B∆Isp,i

� 1 in this scenario, for both the
forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is not influenced by the specific impulse of that
manoeuvre. Therefore, the derivatives for the forward thrust constraints are:

BFTj
B∆Isp,i

� ∆Vj �Mj

P0
(C-52)
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Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the specific impulse of that manoeuvre.
Therefore, the derivatives for the backward thrust constraints are:

BFTj
B∆Isp,i

� ∆Vj �Mj

P0
� Mj �∆V 2

j

P0 � Isp,j � g0
(C-53)

i>j The specific impulse of manoeuvre j is not affected by the specific impulse of manoeuvre
i. As such, B∆Isp,j

B∆Isp,i
� 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is not affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the forward thrust constraints are

BFTj
B∆Isp,i

� 0 (C-54)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆Isp,i

� �∆Vj∆ViIsp,jMj

I2
sp,i � g0 � P0

(C-55)

C-4-2 Power dependent on heliocentric distance

For this case, the thrust constraint on segment j is defined as

FTj �
∆VjMjR

2
j

P0
(C-56)

where Mj is the mass of the spacecraft before the manoeuvre applied at the midpoint of
segment j.

C-4-2-1 Derivatives with respect to M0, Mf and MP0

The derivatives with respect to M0 and Mf are straightforward. From Equations C-56, C-32
and C-33, one gets

BFTj
BM0

� ∆VjR2
j

P0

Mj

M0
(C-57)

for the forward thrust constraints and zero for the backward thrust constraints.

BFTj
BMf

� ∆VjR2
j

P0

Mj

Mf
(C-58)

for the backward thrust constraints and zero for the forward thrust constraints.
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The influence of MP0 on the thrust constraint is not visible at first. One needs to rewrite
Equation C-56 into

FTj �
∆VjMjR

2
jkP0

MP0
(C-59)

where kP0 is the power to mass ratio of the SEP system. Using this formulation of the thrust
constraint, one gets

BFTj
BMP0

� �∆VjMjR
2
jkP0

M2
P0

(C-60)

for both the forward and backward thrust constraints.

C-4-2-2 Derivatives with respect to ∆VT,i, ∆VN,i and ∆VC,i

Taking the derivative of Equation C-56, one gets:

BFTj
B∆Vi

� MjR
2
j

P0

B∆Vj
B∆Vi

� ∆VjR2
j

P0

BMj

B∆Vi
� ∆VjMj2Rj

P0

BRj
B∆Vi

(C-61)

where

BRj
B∆Vi

�
B
b
x2
j � y2

j � z2
j

B∆Vi
(C-62)

� 1
2
b
x2
j � y2

j � z2
j

�
�

2xj
Bxj
B∆Vi

� 2yj
Byj
B∆Vi

� 2zj
Bzj
B∆Vi

	

� xj
Rj

Bxj
B∆Vi

� yj
Rj

Byj
B∆Vi

� zj
Rj

Bzj
B∆Vi

Again, there are 3 possible combinations for i and j.

i<j The magnitude of manoeuvre j is not affected by the magnitude of manoeuvre i. As
such, B∆Vj

B∆Vi � 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the magnitude of manoeuvre i. The
location of the midpoint of segment j is affected by the magnitude of manoeuvre i. As such,
the partial derivatives of xj , yj and zj with respect to ∆Vi have to be found, which can
be done by looking at Figure C-2. For instance for the partial derivatives of x2, y2 and z2
with respect to ∆V1, one can see that a change in ∆V1 results in a change in the state of 1�
through transformation matrix ∆TNC1, which is being propagated up to 2� through Φ2,1. So
in general, a change in ∆Vi is propagated up to a change in state at the location of manoeuvre
j through Ψj,i� �∆TNCi.
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Ψj,i� �∆TNCi �

�
���������

0 0 0 Bxj
B∆VT,i

Bxj
B∆VN,i

Bxj
B∆VC,i

0 0 0 Byj
B∆VT,i

Byj
B∆VN,i

Byj
B∆VC,i

0 0 0 Bzj
B∆VT,i

Bzj
B∆VN,i

Bzj
B∆VC,i

. . .

. . .

. . .

�
���������

(C-63)

Therefore, the derivatives for the forward thrust constraints are

BFTj
B∆VT,i

� mjRj∆Vj
P0

�
�Rj

Isp,i � g0
� ∆VT,i

∆Vi
� 2

�
xj
Rj

Bxj
B∆VT,i

� yj
Rj

Byj
B∆VT,i

� zj
Rj

Bzj
B∆VT,i

��

BFTj
B∆VN,i

� mjRj∆Vj
P0

�
�Rj

Isp,i � g0
� ∆VN,i

∆Vi
� 2

�
xj
Rj

Bxj
B∆VN,i

� yj
Rj

Byj
B∆VN,i

� zj
Rj

Bzj
B∆VN,i

��

BFTj
B∆VC,i

� mjRj∆Vj
P0

�
�Rj

Isp,i � g0
� ∆VC,i

∆Vi
� 2

�
xj
Rj

Bxj
B∆VC,i

� yj
Rj

Byj
B∆VC,i

� zj
Rj

Bzj
B∆VC,i

��

where the partial derivatives of xj , yj and zj with respect to ∆VT , ∆VN and ∆VC can be
found in the Ψj,i� �∆TNCi matrix.

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is not affected by the magnitude of manoeuvre i.
Furthermore, the location of the midpoint of segment j is not affected by the magnitude of
manoeuvre i. Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆VT,i

� BFTj
B∆VN,i

� BFTj
B∆VC,i

� 0 (C-64)

i=j Manoeuvres j and i are the same. As such, B∆Vj
B∆Vi � 1 in this scenario, for both the

forward as backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is not influenced by the magnitude of that manoeuvre.
Furthermore, the location of the midpoint of segment j is not affected by the magnitude of
the manoeuvre at that midpoint. Therefore, the derivatives for the forward thrust constraints
are:

BFTj
B∆VT,i

� MjR
2
j

P0
� ∆VT,i

∆Vi

BFTj
B∆VN,i

� MjR
2
j

P0
� ∆VN,i

∆Vi (C-65)

BFTj
B∆VC,i

� MjR
2
j

P0
� ∆VC,i

∆Vi
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Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is affected by the magnitude of that manoeuvre.
Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆VT,i

�
�
MjR

2
j

P0
� ∆VjR2

jMj

P0Isp,jg0

�
� ∆VT,i

∆Vi

BFTj
B∆VN,i

�
�
MjR

2
j

P0
� ∆VjR2

jMj

P0Isp,jg0

�
� ∆VN,i

∆Vi

BFTj
B∆VC,i

�
�
MjR

2
j

P0
� ∆VjR2

jMj

P0Isp,jg0

�
� ∆VC,i

∆Vi

i>j The magnitude of manoeuvre j is not affected by the magnitude of manoeuvre i. As
such, B∆Vj

B∆Vi � 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is not affected by the magnitude of manoeuvre i.
Furthermore, the location of the midpoint of segment j is not affected by the magnitude of
manoeuvre i. Therefore, the derivatives for the forward thrust constraints are

BFTj
B∆VT,i

� BFTj
B∆VN,i

� BFTj
B∆VC,i

� 0 (C-66)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the magnitude of manoeuvre i. The
location of the midpoint of segment j is affected by the magnitude of manoeuvre i. As such,
the partial derivatives of xj , yj and zj with respect to ∆Vi have to be found. For instance
for the partial derivatives of x2N�1, y2N�1 and z2N�1 with respect to ∆V2N , one can see
that a change in ∆V2N results in a change in the state of 1� through transformation matrix
�∆TNC2N , which is being propagated up to 2� through Φ2,1. So in general, a change in ∆Vi
is propagated up to a change in state at the location of manoeuvre j through Ψj,i� ��∆TNCi.

Ψj,i� �∆TNCi � �

�
���������

0 0 0 Bxj
B∆VT,i

Bxj
B∆VN,i

Bxj
B∆VC,i

0 0 0 Byj
B∆VT,i

Byj
B∆VN,i

Byj
B∆VC,i

0 0 0 Bzj
B∆VT,i

Bzj
B∆VN,i

Bzj
B∆VC,i

. . .

. . .

. . .

�
���������

(C-67)
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Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆VT,i

� mjRj∆Vj
P0

�
Rj

Isp,i � g0
� ∆VT,i

∆Vi
� 2

�
xj
Rj

Bxj
B∆VT,i

� yj
Rj

Byj
B∆VT,i

� zj
Rj

Bzj
B∆VT,i

��

BFTj
B∆VN,i

� mjRj∆Vj
P0

�
Rj

Isp,i � g0
� ∆VN,i

∆Vi
� 2

�
xj
Rj

Bxj
B∆VN,i

� yj
Rj

Byj
B∆VN,i

� zj
Rj

Bzj
B∆VN,i

��

BFTj
B∆VC,i

� mjRj∆Vj
P0

�
Rj

Isp,i � g0
� ∆VC,i

∆Vi
� 2

�
xj
Rj

Bxj
B∆VC,i

� yj
Rj

Byj
B∆VC,i

� zj
Rj

Bzj
B∆VC,i

��

where the partial derivatives of xj , yj and zj with respect to ∆VT , ∆VN and ∆VC are the
negatives of the elements within the Ψj,i� �∆TNCi matrix.

C-4-2-3 Derivatives with respect to Isp

Upon looking at Equation C-56, it seems that the specific impulse does not have an influence
on FTj . However, looking at the entire inequality constraint, the influence of Isp becomes
apparent:

FTj �
∆VjmjR

2
j

P0
¤ 2ηjetDTAU2

Isp,j � g0
(C-68)

This can be rewritten into:

FTj �
∆VjmjIsp,j

P0
¤ 2ηjetDTAU2

g0
(C-69)

Taking the derivative of Equation C-69, one gets

BFTj
BIsp,i �

∆VjmjR
2
j

P0
� BIsp,jBIsp,i �

∆VjR2
jIsp,j

P0 � Bmj

BIsp,i (C-70)

Again, there are 3 possible combinations of i and j.

i<j The specific impulse of manoeuvre j is not affected by the specific impulse of manoeuvre
i. As such, B∆Isp,j

B∆Isp,i
� 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the forward thrust constraints are

BFTj
BIsp,i �

∆Vj∆ViIsp,jmjR
2
j

I2
sp,i � g0 � P0

(C-71)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is not affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the backward thrust constraints are

BFTj
B∆Isp,i

� 0 (C-72)
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i=j Manoeuvres j and i are the same.. As such, B∆Isp,j
B∆Isp,i

� 1 in this scenario, for both the
forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeu-
vre applied at the midpoint of segment j is not influenced by the specific impulse of that
manoeuvre. Therefore, the derivatives for the forward thrust constraints are:

BFTj
BIsp,i �

∆VjMjR
2
j

P0
(C-73)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the specific impulse of that manoeuvre.
Therefore, the derivatives for the backward thrust constraints are:

BFTj
BIsp,i �

∆VjMjR
2
j

P0
� ∆V 2

j R
2
jMj

P0Isp,jg0
(C-74)

i>j The specific impulse of manoeuvre j is not affected by the specific impulse of manoeuvre
i. As such, B∆Isp,j

B∆Isp,i
� 0 for both the forward and backward thrust constraints.

Looking at Equation C-32, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is not affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the forward thrust constraints are:

BFTj
B∆Isp,i

� 0 (C-75)

Looking at Equation C-33, one can see that the mass of the spacecraft before the manoeuvre
applied at the midpoint of segment j is affected by the specific impulse of manoeuvre i.
Therefore, the derivatives for the backward thrust constraints are:

BFTj
B∆Isp,i

� �∆Vj∆ViIsp,jMjR
2
j

I2
sp,i � g0 � P0

(C-76)

C-4-2-4 Derivatives with respect to the initial coordinates x0, y0 and z0, the initial ve-
locities 9x0, 9y0 and 9z0 and the initial excess velocities V8,x0 , V8,y0 and V8,z0

In this discussion, the derivatives with respect to x0, 9x0 and V8,x0 will be shown. Using a
similar method, the other derivatives can be found as well.

Using Equation C-56:
BFTj
Bx0

� 2Mj∆VjRj
P0

BRj
Bx0

BFTj
B 9x0

� 2Mj∆VjRj
P0

BRj
B 9x0

(C-77)

BFTj
BV8,x0

� 2Mj∆VjRj
P0

BRj
BV8,x0
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BRj
Bx0

� xj
Rj

Bxj
Bx0

� yj
Rj

Byj
Bx0

� zj
Rj

Bzj
Bx0

BRj
B 9x0

� xj
Rj

Bxj
B 9x0

� yj
Rj

Byj
B 9x0

� zj
Rj

Bzj
B 9x0

(C-78)

BRj
BV8,x0

� xj
Rj

Bxj
BV8,x0

� yj
Rj

Byj
BV8,x0

� zj
Rj

Bzj
BV8,x0

Imagine a change in one of the initial coordinates, velocities or excess velocities. As such,
the initial state defined by Equation C-9 changes. Looking at Figure C-1, this change can be
propagated towards the midpoint of segment j using Ψj�,0 � Φj,j�1 �TNCj�1 �. . .�TNC1 �Φ1,0.
So,

Ψj�,0 �

�
�����������

Bxj
Bxs,0

Bxj
Bys,0

Bxj
Bzs,0

Bxj
B 9xs,0

Bxj
B 9ys,0

Bxj
B 9zs,0

Byj
Bxs,0

Byj
Bys,0

Byj
Bzs,0

Byj
B 9xs,0

Byj
B 9ys,0

Byj
B 9zs,0

Bzj
Bxs,0

Bzj
Bys,0

Bzj
Bzs,0

Bzj
B 9xs,0

Bzj
B 9ys,0

Bzj
B 9zs,0

B 9xj
Bxs,0

B 9xj
Bys,0

B 9xj
Bzs,0

B 9xj
B 9xs,0

B 9xj
B 9ys,0

B 9xj
B 9zs,0

B 9yj
Bxs,0

B 9yj
Bys,0

B 9yj
Bzs,0

B 9yj
B 9xs,0

B 9yj
B 9ys,0

B 9yj
B 9zs,0

B 9zj
Bxs,0

B 9zj
Bys,0

B 9zj
Bzs,0

B 9zj
B 9xs,0

B 9zj
B 9ys,0

B 9zj
B 9zs,0

�
�����������

(C-79)

From this matrix, the required derivatives can be found by remembering the definitions of
xs,0 up to 9zs,0 in Equation C-9.

Bxj
Bx0

� Bxj
Bxs,0 �

Bxs,0
Bx0

� Bxj
Bxs,0 � 1

Bxj
B 9x0

� Bxj
B 9xs,0

� B 9xs,0
B 9x0

� Bxj
B 9xs,0

� 1
Bxj

BV8,x0
� Bxj

B 9xs,0
� B 9xs,0
BV8,x0

� Bxj
B 9xs,0

� 1

C-4-2-5 Derivatives with respect to the final coordinates xf , yf and zf , the final velocities
9xf , 9yf and 9zf and the final excess velocities V8,xf , V8,yf and V8,zf

In this discussion, the derivatives with respect to xf , 9xf and V8,xf will be shown. Using a
similar method, the other derivatives can be found as well.
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Using Equation C-56:

BFTj
Bxf � 2Mj∆VjRj

P0

BRj
Bxf

BFTj
B 9xf

� 2Mj∆VjRj
P0

BRj
B 9xf

(C-80)

BFTj
BV8,xf

� 2Mj∆VjRj
P0

BRj
BV8,xf

BRj
Bxf � xj

Rj

Bxj
Bxf �

yj
Rj

Byj
Bxf �

zj
Rj

Bzj
Bxf

BRj
B 9xf

� xj
Rj

Bxj
B 9xf

� yj
Rj

Byj
B 9xf

� zj
Rj

Bzj
B 9xf

(C-81)

BRj
BV8,xf

� xj
Rj

Bxj
BV8,xf

� yj
Rj

Byj
BV8,xf

� zj
Rj

Bzj
BV8,xf

Imagine a change in one of the final coordinates, velocities or excess velocities. As such, the
final state defined by Equation C-17 changes. This change can be propagated towards the
midpoint of segment j using Ψj�,f � Φj,j�1 � TNCj�1 � . . . � TNC2N � Φ2N,f . So,

Ψj�,f �

�
�����������

Bxj
Bxs,f

Bxj
Bys,f

Bxj
Bzs,f

Bxj
B 9xs,f

Bxj
B 9ys,f

Bxj
B 9zs,f

Byj
Bxs,f

Byj
Bys,f

Byj
Bzs,f

Byj
B 9xs,f

Byj
B 9ys,f

Byj
B 9zs,f

Bzj
Bxs,f

Bzj
Bys,f

Bzj
Bzs,f

Bzj
B 9xs,f

Bzj
B 9ys,f

Bzj
B 9zs,f

B 9xj
Bxs,f

B 9xj
Bys,f

B 9xj
Bzs,f

B 9xj
B 9xs,f

B 9xj
B 9ys,f

B 9xj
B 9zs,f

B 9yj
Bxs,f

B 9yj
Bys,f

B 9yj
Bzs,f

B 9yj
B 9xs,f

B 9yj
B 9ys,f

B 9yj
B 9zs,f

B 9zj
Bxs,f

B 9zj
Bys,f

B 9zj
Bzs,f

B 9zj
B 9xs,f

B 9zj
B 9ys,f

B 9zj
B 9zs,f

�
�����������

(C-82)

From this matrix, the required derivatives can be found by remembering the definitions of
xs,f up to 9zs,f in Equation C-17.

Bxj
Bxf � Bxj

Bxs,f �
Bxs,f
Bxf

� Bxj
Bxs,f � 1

Bxj
B 9xf

� Bxj
B 9xs,f

� B 9xs,f
B 9xf

� Bxj
B 9xs,f

� 1
Bxj

BV8,xf
� Bxj

B 9xs,f
� B 9xs,f
BV8,xf

� Bxj
B 9xs,f

� 1
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C-5 Leg-specific constraints

C-5-1 Departure-node constraints

Launch mass constraints The derivative with respect to the initial mass is trivial:

BFLM
BM0

� �1 (C-83)

The maximum launch mass for a certain excessive velocity can be written as a polynomial:

ML,max � a0 � a1C3 � a2C
2
3 � a3C

3
3 � a4C

4
4 (C-84)

with
C3 � V 2

8,x0 � V 2
8,y0 � V 2

8,z0 (C-85)

Combining these equations, the following derivatives are obtained:

BFLM
BV8,x0

�
�
a1 � 2a2C3 � 3a3C

2
3 � 4a4C

3
3

	 BC3
BV8,x0

(C-86)

�
�
a1 � 2a2C3 � 3a3C

2
3 � 4a4C

3
3

	
2V8,x0

BFLM
BV8,y0

�
�
a1 � 2a2C3 � 3a3C

2
3 � 4a4C

3
3

	 BC3
BV8,y0

(C-87)

�
�
a1 � 2a2C3 � 3a3C

2
3 � 4a4C

3
3

	
2V8,y0

BC3
BV8,z0

�
�
a1 � 2a2C3 � 3a3C

2
3 � 4a4C

3
3

	 BC3
BV8,z0

(C-88)

�
�
a1 � 2a2C3 � 3a3C

2
3 � 4a4C

3
3

	
2V8,z0

C3 constraint The derivatives for this constraint are trivial:

BFC3

BV8,x0
� 2V8,x0 (C-89)

BFC3

BV8,y0
� 2V8,y0 (C-90)

BFC3

BV8,z0
� 2V8,z0 (C-91)

C-5-2 Flyby-node constraints

Mass equality constraint The mass before and after the flyby must be equal in magnitude.
The derivatives of this constraint are trivial:

BFmass flyby
Mf leg 1

� �1 (C-92)

BFmass flyby
M0 leg 2

� 1
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Relative velocity equality constraint The incoming and outgoing relative velocities must
be equal in magnitude. In this discussion, the hyperbolic excess velocity of the inbound and
outbound leg of the flyby will be indicated by the I and II subscripts respectively. The
derivatives of this constraint are trivial:

BFrelative velocities flyby
V8,xI

f

� �V8,xI
f

(C-93)

BFrelative velocities flyby
V8,yI

f

� �V8,yI
f

(C-94)

BFrelative velocities flyby
V8,zI

f

� �V8,zI
f

(C-95)

BFrelative velocities flyby
V8,xII0

� V8,xII0
(C-96)

BFrelative velocities flyby
V8,yII0

� V8,yII0
(C-97)

BFrelative velocities flyby
V8,zII0

� V8,zII0
(C-98)

Pericenter altitude Before listing the derivatives, some intermediate variables will be defined

γ � |V8I |2 � V 2
8Ix

� V 2
8Iy

� V 2
8Iz

(C-99)

β � |V8II |2 � V 2
8IIx

� V 2
8IIy

� V 2
8IIz

(C-100)

The following derivatives have been obtained from Ellison et al. [2013].

BFhfly
BV8Ix

�
�µp cos

�arccosα
2

��
V8IIx V

2
8Iy

� V8IxV8IIy V8Iy � V8IIx V
2
8Iz

� V8IxV8IIz V8Iz

	
pα� 1q?1� α2

a
β3
a
γ3

BFhfly
BV8Iy

�
�µp cos

�arccosα
2

��
V8IIy V

2
8Ix

� V8IyV8IIx V8Ix � V8IIy V
2
8Iz

� V8IyV8IIz V8Iz

	
pα� 1q?1� α2

a
β3
a
γ3

BFhfly
BV8Iz

�
�µp cos

�arccosα
2

��
V8IIz V

2
8Ix

� V8IzV8IIx V8Ix � V8IIz V
2
8Iz

� V8IzV8IIy V8Iy

	
pα� 1q?1� α2

a
β3
a
γ3
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BFhfly
BV8IIx

� µp
β2

�
2V8IIx

�
1� 1

sinparccosα
2 q

�
� cosparccosα

2 q
pα� 1q?1� α2?β?γ ��

V8IxV
2
8IIy

� V8IyV8IIx V8IIy � V8IxV
2
8IIz

� V8IzV8IIx V8IIz

	�

BFhfly
BV8IIy

� µp
β2

�
2V8IIy

�
1� 1

sinparccosα
2 q

�
� cosparccosα

2 q
pα� 1q?1� α2?β?γ ��

V8IyV
2
8IIx

� V8IxV8IIy V8IIx � V8IyV
2
8IIz

� V8IzV8IIy V8IIz

	�

BFhfly
BV8IIz

� µp
β2

�
2V8IIz

�
1� 1

sinparccosα
2 q

�
� cosparccosα

2 q
pα� 1q?1� α2?β?γ ��

V8IzV
2
8IIx

� V8IxV8IIz V8IIz � V8IzV
2
8IIy

� V8IyV8IIz V8IIy

	�

C-5-3 Return-node constraint

The derivatives of the re-entry velocity constraint are trivial:

BRe-entry velocity constraint
V8,xf

� V8,xfb
V 2
8xf

� V 2
8,yf

� V 2
8,zf

(C-101)

BRe-entry velocity constraint
V8,yf

� V8,yfb
V 2
8,xf

� V 2
8,yf

� V 2
8,zf

(C-102)

BRe-entry velocity constraint
V8,zf leg 2

� V8,zfb
V 2
8,xf

� V 2
8,yf

� V 2
8,zf

(C-103)

(C-104)

.
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Appendix D

Extended TNC transformation matrix

D-1 Forward propagation

The change in the state and mass of the spacecraft and in the mass of the power subsystem
before the manoeuvre must be mapped to a change in those elements after the manoeuvre.
Therefore,

�
�����������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs
∆M

∆MP0

�
�����������

1�

�

�
�����������

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
a b c d e f fM fP
g h i j k l lM lP
m n o p q r rM rP
s t u 0 0 0 vM vP
0 0 0 0 0 0 0 1

�
�����������
�

�
�����������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs
∆M

∆MP0

�
�����������

1�

(D-1)

First of all, a, d, fM and fP will be calculated. Using a similar method, elements a up to
rP can be found. Afterwards, s, vM and vP will be calculated. Similarly, t and u can be
calculated.

Considering that

9x� � 9x� �∆Vmax

�
uTTi � uNNi � uCCi



(D-2)
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One can see that

a � B 9x�

Bx� � ∆Vmax

�
uT

BT�i
Bx� � uN

BN�
i

Bx� � uC
BC�

i

Bx�
�
� B∆Vmax

Bx� �
�
uTTi � uNNi � uCCi




d � B 9x�

B 9x�
� 1�∆Vmax

�
uT

BT�i
B 9x�

� uN
BN�

i

B 9x�
� uC

BC�
i

B 9x�

�
� B∆Vmax

B 9x�
�
�
uTTi � uNNi � uCCi




fM � B 9x�

BM�
� B∆Vmax

BM�
�
�
uTTi � uNNi � uCCi



(D-3)

fP � B 9x�

BMP0
� B∆Vmax

BMP0
�
�
uTTi � uNNi � uCCi




Considering that

M� �M� exp
�
�
a
u2
T � u2

N � u2
C

Ispg0
�∆Vmax

�
(D-4)

One can see that

s � BM�

Bx� � �M�

a
u2
T � u2

N � u2
C

Ispg0
� B∆Vmax

Bx�

vM � BM�

BM�
� �M�

a
u2
T � u2

N � u2
C

Ispg0
� B∆Vmax
BM�

(D-5)

vP � BM�

BM�
P0

� �M�

a
u2
T � u2

N � u2
C

Ispg0
� B∆Vmax
BMP0

The partial derivatives for the case where power is independent of the heliocentric distance
are defined as:

B∆Vmax
Bx� � 0

B∆Vmax
B 9x�

� 0

B∆Vmax
BM�

� �∆Vmax
M�

(D-6)

B∆Vmax
BMP0

� ∆Vmax
MP0

The partial derivatives for the case where the power is dependent of the heliocentric distance
are defined as:

B∆Vmax
Bx� � �2∆Vmax

R�
� x

�

R�

B∆Vmax
B 9x�

� 0

B∆Vmax
BM�

� �∆Vmax
M�

(D-7)

B∆Vmax
BMP0

� ∆Vmax
MP0
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D-2 Backward propagation

Again, �
�����������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs
∆M

∆MP0

�
�����������

2N�

�

�
�����������

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
a b c d e f fM fP
g h i j k l lM lP
m n o p q r rM rP
s t u 0 0 0 vM vP
0 0 0 0 0 0 0 1

�
�����������
�

�
�����������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs
∆M

∆MP0

�
�����������

2N�

(D-8)

First of all, a, d, fM and fP will be calculated. Using a similar method, elements a up to
rP can be found. Afterwards, s, vM and vP will be calculated. Similarly, t and u can be
calculated.

Considering that

9x� � 9x� �∆Vmax

�
uTTi � uNNi � uCCi



(D-9)

One can see that

a � B 9x�

Bx� � �∆Vmax

�
uT

BT�i
Bx� � uN

BN�
i

Bx� � uC
BC�

i

Bx�
�
� B∆Vmax

Bx� �
�
uTTi � uNNi � uCCi




d � B 9x�

B 9x�
� 1�∆Vmax

�
uT

BT�i
B 9x�

� uN
BN�

i

B 9x�
� uC

BC�
i

B 9x�

�
� B∆Vmax

B 9x�
�
�
uTTi � uNNi � uCCi




fM � B 9x�

BM�
� �B∆Vmax

BM�
�
�
uTTi � uNNi � uCCi



(D-10)

fP � B 9x�

BMP0
� �B∆Vmax

BMP0
�
�
uTTi � uNNi � uCCi




Considering that

M� �M� exp
�a

u2
T � u2

N � u2
C

Ispg0
�∆Vmax

�
(D-11)

One can see that

s � BM�

Bx� �M�

a
u2
T � u2

N � u2
C

Ispg0
� B∆Vmax

Bx�

vM � BM�

BM�
�M�

a
u2
T � u2

N � u2
C

Ispg0
� B∆Vmax
BM�

(D-12)

vP � BM�

BM�
P0

�M�

a
u2
T � u2

N � u2
C

Ispg0
� B∆Vmax
BMP0
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The partial derivatives for the power independent of the heliocentric distance are defined as:

B∆Vmax
Bx� � 0

B∆Vmax
B 9x�

� 0

B∆Vmax
BM�

� �∆Vmax
M�

� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0

(D-13)

B∆Vmax
BMP0

� ∆Vmax
MP0

� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0

The partial derivatives for the case where the power is dependent of the heliocentric distance
are defined as:

B∆Vmax
Bx� � �2∆Vmax

R�
� x

�

R�
� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0

B∆Vmax
B 9x�

� 0

B∆Vmax
BM�

� �∆Vmax
M�

� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0

(D-14)

B∆Vmax
BMP0

� ∆Vmax
MP0

� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0
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Appendix E

Extended TNC matrix

E-1 Forward propagation

The matrix ∆V NCext,1 introduced in Subsection 12-3-2 will now be derived.

�
�����������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs
∆M

∆MP0

�
�����������

1�

�

�
�����������

0 0 0 0
0 0 0 0
0 0 0 0
a b c d
e f g h
i j k l
m n o p
0 0 0 0

�
�����������
�

�
���

∆uT1
∆uN1
∆uC1
∆Isp1

�
��� (E-1)

Considering that

9x� � 9x� �∆Vmax

�
uTTi � uNNi � uCCi



(E-2)

One can see that

a � B 9x�

BuT � ∆VmaxTi

d � B 9x�

BIsp �
�∆Vmax
Isp

�
�
uTTi � uNNi � uCCi



(E-3)

Considering that

M� �M� exp
�
�
a
u2
T � u2

N � u2
C

Ispg0
�∆Vmax

�
(E-4)
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One can see that

m � BM�

BuT � �M�∆Vmax
Ispg0

� uTa
u2
T � u2

N � u2
C

p � BM�

BuT �M� 2
a
u2
T � u2

N � u2
C∆Vmax

I2
spg0

(E-5)

E-2 Backward propagation

The matrix ∆V NCext,2N introduced in Subsection 12-3-2 will now be derived.�
�����������

∆xs
∆ys
∆zs
∆ 9xs
∆ 9ys
∆ 9zs
∆M

∆MP0

�
�����������

1�

�

�
�����������

0 0 0 0
0 0 0 0
0 0 0 0
a b c d
e f g h
i j k l
m n o p
0 0 0 0

�
�����������
�

�
���

∆uT,2N
∆uN,2N
∆uC,2N
∆Isp2N

�
��� (E-6)

Considering that
9x� � 9x� �∆Vmax

�
uTTi � uNNi � uCCi

�
(E-7)

One can see that

a � B 9x�

BuT � �∆VmaxTi �
�
uTTi � uNNi � uCCi

�B∆Vmax
BuT

d � B 9x�

BIsp � �puTTi � uNNi � uCCiqB∆Vmax
BIsp (E-8)

Considering that

M� �M� exp
�a

u2
T � u2

N � u2
C

Ispg0
�∆Vmax

�
(E-9)

One can see that

m � BM�

BuT � M�

Ispg0
�
�

∆VmaxuTa
u2
T � u2

N � u2
C

�
b
u2
T � u2

N � u2
C

B∆Vmax
BuT

�

p � BM�

BuT � M�

g0

b
u2
T � u2

N � u2
C �
�
�∆Vmax
I2
sp

� 1
Isp

B∆Vmax
BIsp

�

(E-10)

The partial derivatives are calculated to be:
B∆Vmax
BuT � �∆V 2

maxuT

Ispg0
a
u2
T � u2

N � u2
C

� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0

(E-11)

B∆Vmax
BIsp � �∆Vmax

Isp

�
1� ∆Vmax

a
u2
T � u2

N � u2
C

Ispg0

�
� 1

1� Vmax

?
u2
T�u

2
N�u

2
C

Ispg0
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Appendix F

Changes to the Jacobian for the
throttled representation

In this chapter, it will be shown how the throttled representation influences the Jacobian. The
derivatives of the match point constraints with respect to the initial and final coordinates,
the initial and final velocities, the initial and final excess velocities, the initial and final mass
M0 and Mf and mass of the SEP system MP0 will be given here.

Based on the discussion in Subsection 12-3-1, it is known that

Ψext,MP,0 �

�
���������������

Bxs,MP f
Bxs,0

Bxs,MP f
Bys,0

Bxs,MP f
Bzs,0

Bxs,MP f
B 9xs,0

Bxs,MP f
B 9ys,0

Bxs,MP f
B 9zs,0

Bxs,MP f
BM0

Bxs,MP f
BMP0

Bys,MP f
Bxs,0

Bys,MP f
Bys,0

Bys,MP f
Bzs,0

Bys,MP f
B 9xs,0

Bys,MP f
B 9ys,0

Bys,MP f
B 9zs,0

Bys,MP f
BM0

Bys,MP f
BMP0

Bzs,MP f
Bxs,0

Bzs,MP f
Bys,0

Bzs,MP f
Bzs,0

Bzs,MP f
B 9xs,0

Bzs,MP f
B 9ys,0

Bzs,MP f
B 9zs,0

Bzs,MP f
BM0

Bzs,MP f
BMP0

B 9xs,MP f
Bxs,0

B 9xs,MP f
Bys,0

B 9xs,MP f
Bzs,0

B 9xs,MP f
B 9xs,0

B 9xs,MP f
B 9ys,0

B 9xs,MP f
B 9zs,0

B 9xs,MP f
BM0

B 9xs,MP f
BMP0

B 9ys,MP f
Bxs,0

B 9ys,MP f
Bys,0

B 9ys,MP f
Bzs,0

B 9ys,MP f
B 9xs,0

B 9ys,MP f
B 9ys,0

B 9ys,MP f
B 9zs,0

B 9ys,MP f
BM0

B 9ys,MP f
BMP0

B 9zs,MP f
Bxs,0

B 9zs,MP f
Bys,0

B 9zs,MP f
Bzs,0

B 9zs,MP f
B 9xs,0

B 9zs,MP f
B 9ys,0

B 9zs,MP f
B 9zs,0

B 9zs,MP f
BM0

B 9zs,MP f
BMP0

BMMP f
Bxs,0

BMMP f
Bys,0

BMMP f
Bzs,0

BMMP f
B 9xs,0

BMMP f
B 9ys,0

BMMP f
B 9zs,0

BMMP f
BM0

BMMP f
BMP0

0 0 0 0 0 0 0 1

�
���������������
(F-1)
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Ψext,MP,f �

�
����������������

Bxs,MP b
Bxs,f

Bxs,MP b
Bys,f

Bxs,MP b
Bzs,f

Bxs,MP b
B 9xs,f

Bxs,MP b
B 9ys,f

Bxs,MP b
B 9zs,f

Bxs,MP b
BMf

Bxs,MP b
BMP0

Bys,MP b
Bxs,f

Bys,MP b
Bys,f

Bys,MP b
Bzs,f

Bys,MP b
B 9xs,f

Bys,MP b
B 9ys,f

Bys,MP b
B 9zs,f

Bys,MP b
BMf

Bys,MP b
BMP0

Bzs,MP b
Bxs,f

Bzs,MP b
Bys,f

Bzs,MP b
Bzs,f

Bzs,MP b
B 9xs,f

Bzs,MP b
B 9ys,f

Bzs,MP b
B 9zs,f

Bzs,MP b
BMf

Bzs,MP b
BMP0

B 9xs,MP b
Bxs,f

B 9xs,MP b
Bys,f

B 9xs,MP b
Bzs,f

B 9xs,MP b
B 9xs,f

B 9xs,MP b
B 9ys,f

B 9xs,MP b
B 9zs,f

B 9xs,MP b
BMf

B 9xs,MP b
BMP0

B 9ys,MP b
Bxs,f

B 9ys,MP b
Bys,f

B 9ys,MP b
Bzs,f

B 9ys,MP b
B 9xs,f

B 9ys,MP b
B 9ys,f

B 9ys,MP b
B 9zs,f

B 9ys,MP b
BM0

B 9ys,MP b
BMP0

B 9zs,MP b
Bxs,f

B 9zs,MP b
Bys,f

B 9zs,MP b
Bzs,f

B 9zs,MP b
B 9xs,f

B 9zs,MP b
B 9ys,f

B 9zs,MP b
B 9zs,f

B 9zs,MP b
BMf

B 9zs,MP b
BMP0

BMMP b
Bxs,f

BMMP b
Bys,f

BMMP b
Bzs,f

BMMP b
B 9xs,f

BMMP b
B 9ys,f

BMMP b
B 9zs,f

BMMP b
BMf

BMMP b
BMP0

0 0 0 0 0 0 0 1

�
����������������

(F-2)

The derivatives within the matrices Ψext,MP,0 and Ψext,MP,f in Equations F-1 and F-2 can
be used to find the required derivatives. As an example, the derivatives of the x-coordinate
match point constraint will be given with respect to the initial and final coordinate x0 and
xf , initial and final velocity 9x0 and 9xf , initial and final hyperbolic excess velocity V8,x0 and
V8,xf , initial and final mass M0 and Mf and the mass of the SEP system. The derivatives
of the other match point constraints ∆yMP , ∆zMP , ∆ 9xMP , ∆ 9yMP , ∆ 9zMP and ∆MMP with
respect to the other parameters y0, z0, 9y0, 9z0, V8,y0 , V8,z0 , yf , zf , 9yf , 9zf , V8,yf and V8,zf can
then be found in a similar way by utilizing different elements of the Ψext,MP,0 and Ψext,MP,f

matrices.

B∆xMP

Bx0
�

B
�
xMP forward � xMP backward

	
Bx0

� BxMP forward
Bx0

� 0 (F-3)

� BxMP forward
Bxs,0 � Bxs,0Bx0

� BxMP forward
Bxs,0 � 1

� Ψext,MP,0r1, 1s

B∆xMP

Bxf �
B
�
xMP forward � xMP backward

	
Bxf

� 0� BxMP backward
Bxf (F-4)

� �BxMP backward
Bxs,f � Bxs,fBxf

� �BxMP backward
Bxs,f � 1

� �Ψext,MP,f r1, 1s
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Similarly,

B∆xMP

B 9x0
�

B
�
xMP forward � xMP backward

	
B 9x0

� BxMP forward
B 9x0

� 0 (F-5)

� BxMP forward
B 9xs,0

� B 9xs,0
B 9x0

� BxMP forward
B 9xs,0

� 1
� Ψext,MP,0r1, 4s

B∆xMP

B 9xf
�

B
�
xMP forward � xMP backward

	
B 9xf

� 0� BxMP backward
B 9xf

(F-6)

� �BxMP backward
B 9xs,f

� B 9xs,f
B 9xf

� �BxMP backward
B 9xs,f

� 1
� �Ψext,MP,f r1, 4s

Similarly,

B∆xMP

BV8,x0
�

B
�
xMP forward � xMP backward

	
BV8,x0

� BxMP forward
BV8,x0

� 0 (F-7)

� BxMP forward
B 9xs,0

� B 9xs,0
BV8,x0

� BxMP forward
B 9xs,0

� 1
� Ψext,MP,0r1, 4s

B∆xMP

BV8,xf
�

B
�
xMP forward � xMP backward

	
BV8,xf

� 0� BxMP backward
BV8,xf

(F-8)

� �BxMP backward
B 9xs,f

� B 9xs,f
BV8,xf



190 Changes to the Jacobian for the throttled representation

� �BxMP backward
B 9xs,f

� 1
� �Ψext,MP,f r1, 4s

Similarly,

B∆xMP

BM0
�

B
�
xMP forward � xMP backward

	
BM0

� BxMP forward
BM0

� 0 (F-9)

� Ψext,MP,0r1, 7s

B∆xMP

BMf
�

B
�
xMP forward � xMP backward

	
BMf

� 0� BxMP backward
BMf

(F-10)

� �Ψext,MP,f r1, 7s

Similarly,

B∆xMP

BMP0
�

B
�
xMP forward � xMP backward

	
BMP0

� BxMP forward
BMP0

� BxMP forward
BMP0

(F-11)

� Ψext,MP,0r1, 8s �Ψext,MP,f r1, 8s
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Appendix G

Analytical derivatives of ephemeris
constraints with respect to time

For the optimization of realistic scenarios, the departure and arrival time of a trajectory have
to be consistent with the heliocentric coordinates and velocities of the initial and final control
nodes of a trajectory. Therefore, Meeus’ method to calculate the ephemeris at a certain epoch
for a certain planet have been used. This method uses Meeus’ polynomials [Meeus, 1991] to
model the orbital motion of the planets as function of the time T measured in Julian centuries.

a � a0 � a1T � a2T
2 � a3T

3

e � e0 � e1T � e2T
2 � e3T

3

i � i0 � i1T � i2T
2 � i3T

3 (G-1)
L � L0 � L1T � L2T

2 � L3T
3

Ω � Ω0 � Ω1T � Ω2T
2 � Ω3T

3

Π � Π0 �Π1T �Π2T
2 �Π3T

3

where a is the semi-major axis, e the eccentricity, i the inclination, L the mean longitude of
the planet, Ω the longitude of the ascending node and Π the longitude of the perihelion. The
argument of perihelion ω can be found from

ω � Π� Ω (G-2)

The true anomaly θ can be found from

θ � M � Ccen

� L�Π� Ccen

� L�Π�
�

2e� e3

4 � 5
96e

5

�
sin
�
Mrad

��
�

5
4e

2 � 11
24e

4

�
sin
�
2Mrad

�
(G-3)

�
�

13
12e

3 � 43
64e

5

�
sin
�
3Mrad

�� 103
96 e

4 sin
�
4Mrad

�� 1097
960 e

5 sin
�
5Mrad

�
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where M is the mean anomaly. Note that the results of the equations defining angles are in
degrees. However, in the definition of the true anomaly, the sines of M, 2M, . . ., 5M are taken
with respect to the radial value of M. The result of the equation defining the semi-major axis
is in AU.

If one needs to know how the Cartesian coordinates and velocities resulting from this ephemeris
changes with time, several derivatives have to be calculated. First of all, the derivatives of
the Kepler elements have to be found:

Ba
BT � a1T � 2a2T � 3a3T

2 (G-4)

Be
BT � e1T � 2e2T � 3e3T

2 (G-5)

Bi
BT � i1T � 2i2T � 3i3T 2 (G-6)

BΩ
BT � Ω1T � 2Ω2T � 3Ω3T

2 (G-7)

BΠ
BT � Π1T � 2Π2T � 3Π3T

2 (G-8)

The derivative of the argument of perihelion ω can be found from

Bω
BT � BΠ

BT � BΩ
BT (G-9)

The derivative of the true anomaly θ can be found from

Bθ
BT � BM

BT � BCcen
BT

� BL
BT � BΠ

BT � BCcen
BT

� BL
BT � BΠ

BT
�
�

2� 3e2

4 � 25
96e

4

�
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M
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�
2e� e3
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96e

5
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M
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�

5
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3

�
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�
2M
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�
5
4e
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24e

4

�
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�
2M

�

�
�
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4 e

2 � 215
64 e

4

�
sin
�
3M

� Be
BT �

�
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12e
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64e

5

�
3cos

�
3M

�
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24 e

3 sin
�
4M

� Be
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24 e
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�
4M

�
�1097

192 e
4 sin

�
5M

� Be
BT � 1097

960 e
5 cos

�
5M

�
(G-10)

Note that the derivative of the semi-major axis has unit [AU per Julian century]. All the
other derivatives have units [degrees per Julian century].

These derivatives can then be used to find the derivatives of the initial Cartesian coordinates
and velocities if one knows how to convert from Kepler elements to Cartesian elements. This
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conversion can be done using the following equations [Wertz, 2009]:

�
�������

x
y
z
9x
9y
9z

�
�������
�

�
�������

l1 l2 0 0
m1 m2 0 0
n1 n2 0 0
0 0 l1 l2
0 0 m1 m2
0 0 n1 n2

�
�������

�
���
r cos θ
r sin θ
� µ
H sin θ

µ
H pe� cos θq

�
��� (G-11)

where
l1 � cospΩq cospωq � sinpΩq sinpωqcospiq
l2 � � cospΩq sinpωq � sinpΩq cospωqcospiq
m1 � sinpΩq cospωq � cospΩq sinpωqcospiq
m2 � � sinpΩq sinpωq � cospΩq cospωqcospiq
n1 � sinpωq sinpiq
n2 � cospωq sinpiq
H �

a
µap1� e2q

(G-12)

However, this method only works with angles in radians and the semi-major axis in meters.
Therefore, the derivatives in equations G-4 up to G-10 have been converted into units of [m per
Julian century] and [rad per Julian century] for the semi-major axis and angles respectively. In
order to find the derivatives of the initial coordinates and velocities, one can use the following
equations:

Bx
BT � l1

Br cos θ
BT � Bl1

BT r cos θ � l2
Br sin θ
BT � Bl2

BT r sin θ (G-13)

By
BT � m1

Br cos θ
BT � Bm1

BT r cos θ �m2
Br sin θ
BT � Bm2

BT r sin θ (G-14)

Bz
BT � n1

Br cos θ
BT � Bn1

BT r cos θ � n2
Br sin θ
BT � Bn2

BT r sin θ (G-15)

B 9x

BT � �µ
H2

BH
BT

�
� l1 sin θ � l2pe� cos θq

�

µ

H

�
� Bl1
BT sin θ � l1 cos θ BθBT � Bl2

BT pe� cos θq � l2
Be
BT � sin θl2

Bθ
BT

�
(G-16)

B 9y

BT � �µ
H2

BH
BT

�
�m1 sin θ �m2pe� cos θq

�
(G-17)

µ

H

�
� Bm1

BT sin θ �m1 cos θ BθBT � Bm2
BT pe� cos θq �m2

Be
BT � sin θm2

Bθ
BT

�

B 9z

BT � �µ
H2

BH
BT

�
� n1 sin θ � n2pe� cos θq

�

µ

H

�
� Bn1

BT sin θ � n1 cos θ BθBT � Bn2
BT pe� cos θq � n2

Be
BT � sin θn2

Bθ
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(G-18)
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where

Br cos θ
BT � 1

1� e cos θ

�
Ba
BT cos θp1� e2q � a sin θ BθBT p1� e2q � 2ae cos θ BeBT

�

�ap1� e2q cos θ
�

Be
BT cos θ � e sin θ BθBT

�
(G-19)

Br sin θ
BT � 1

1� e cos θ

�
Ba
BT sin θp1� e2q � a cos θ BθBT p1� e2q � 2ae sin θ BeBT

�

�ap1� e2q sin θ
�

Be
BT cos θ � e sin θ BθBT

�
(G-20)

Bl1
BT � � sin Ω cosωBΩ

BT � cos Ω sinω BωBT
� cos Ω sinω cos iBΩ

BT � sin Ω cosω cos iBωBT � sin Ω sinω sin i BiBT (G-21)

Bl2
BT � sin Ω sinωBΩ

BT � cos Ω cosω BωBT
� cos Ω cosω cos iBΩ

BT � sin Ω sinω cos iBωBT � sin Ω cosω sin i BiBT (G-22)

Bm1
BT � cos Ω cosωBΩ

BT � sin Ω sinω BωBT
� sin Ω sinω cos iBΩ

BT � cos Ω cosω cos iBωBT � cos Ω sinω cos i BiBT (G-23)

Bm2
BT � � cos Ω sinωBΩ

BT � sin Ω cosω BωBT
� sin Ω cosω cos iBΩ

BT � cos Ω sinω cos iBωBT � cos Ω cosω sin i BiBT (G-24)

Bn1
BT � cosω sin iBωBT � sinω cos i BiBT (G-25)

Bn2
BT � � sinω sin iBωBT � cosω cos i BiBT (G-26)

BH
BT � 1

2
a
µap1� e2q

B
�
µap1� e2

	
BT

� 1
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�
µ
Ba
BT p1� e2q � 2µae BeBT

�
(G-27)

Note that all these derivatives are with respect to the time in Julian centuries units. In order
to find them with respect to time in seconds, one can use

Bx
Bt � Bx

BT
BT

BJDE
BJDE
Bt

� Bx
BT � 1

36525 �
1

86400 (G-28)
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Appendix H

Global Trajectory Optimization
Competition

During the author’s stay at the University of Colorado, a student team led by dr. Jeffrey S.
Parker participated in the seventh edition of the Global Trajectory Optimization Competition
(GTOC). Throughout this competition, extensive use has been made of the tool developed
for this thesis work. In this appendix, the way the code contributed will be shortly described.

H-1 Problem statement

The global optimization problem that had to be solved for GTOC7 is a multiple-ship mission
to main belt asteroids. A mother ship containing three exploration probes is launched from
Earth anytime between the 1st of January, 2021 and the 31st of December, 2030. Anytime
and anywhere after launch, exploration probes can be released. Upon the release of a probe,
each probe has 6 years to go and rendez-vous with asteroids and then rendez-vous again with
the mother ship. Exactly 12 years after the launch, the last probe has to be back at the
mother ship. For each different asteroid the probe can rendez-vous with and stay with it for
30 days, one point is earned, if the probe makes it back in time to the mother ship. The
second objective and tiebreaker is the sum of the remaining probe masses.

The mother ship can be launched anytime between the 1st of January, 2021 and the 31st of
December, 2030 with an hyperbolic excess velocity between 0 and 6 km/s in any direction,
without a penalty for a higher used hyperbolic excess velocity. Of its 24 tons of mass, 6 is
allocated for structure, 6 to the exploration probes and 12 to propellant. This propellant is
used for the mother ship’s high-thrust nuclear thermal propulsion with an Isp of 900 s.

Each exploration probe weighs 2 tons; 0.8 tons of structure and 1.2 tons of SEP propellant.
The propulsion system for the exploration probes achieve a specific impulse of 3000 s. The
maximum thrust for the probes is limited to 0.3 N. Based on these numbers, they each have
a ∆V capability of about 27 km/s!
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H-2 Strategy

Although the speed with which the developed code can produce feasible trajectories is rel-
atively fast, the sheer size of the problem makes it impossible to calculate every possible
trajectory between two asteroids: a total window of 22 years, 16256 main-belt asteroids to
choose from, countless combinations of asteroid tours, ... Therefore, it was decided to develop
a fast method to estimate the flight time between two asteroids. This method could then be
used to quickly develop entire asteroid tours. The most promising ones could then be assessed
for feasibility using the developed low-thrust code and optimized for final probe mass. To
achieve a feasible trajectory, the optimization tool optimized the flight time between the as-
teroids, the stay time at each asteroid and the trajectory to leave the mother ship and return
to it. Finally, for the best found solution, the optimization tool has been run to generate a
continuous low-thrust profile that meets the stringent accuracy requirements of GTOC. Each
of the different usages of the code will be shortly described in the next sections.

H-3 Validation of single-leg approximation tools

Independently, multiple approximation tools have been written such as linearized low-thrust
dynamics approximations, Edelbaum approximations, modified Clohessy-Wiltshire equations
of motion, chemical Lambert solution approximations, ... Those different approximations
have been traded off based on accuracy and speed. In order to know the accuracy, the
written low-thrust optimization tool has been used to create a database of more than 5000
feasible trajectories between asteroids, of which one can be seen in Figure H-1. Based on
close approximity analysis performed in parallel by other students, the optimization tool got
a combination of two asteroid indexes and a close approximity epoch. Based on this input, the
tool found the shortest transfer possible in terms of time of flight. The different approximation
tools were then fed with the departure date of the transfer and the asteroid indexes and the
estimated time of flight.

Figure H-1: Example of a single asteroid-to-asteroid transfer.
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Based on this comparison, the chemical Lambert solution approximations turned out to be
the most accurate method. However, it was observed that there was a relationship between
the estimated time of flight and the error in ∆V. As such, a curve fit could be developed to
adjust the ∆V from Lambert’s problem as a function of TOF. Upon tweaking the Lambert’s
solutions, all asteroid-asteroid transfers with a transfer time smaller than 180 days for the
complete time window of 22 years with a 10 day resolution were calculated using GPU parallel
computation. This took about 2 days of run-time for approximately 4 trillion transfers. As an
example, the transfers between asteroids 13733 and 15938 for a period of 10 years are shown in
Figure H-2. Based on the thrust level, the specific impulse, the mass of the probe and the time
of flight, one can estimate which ∆V would be feasible for the low-thrust system of the probe.
Those feasible points have been plotted using red stars. For this asteroid, several scenario’s
have been determined feasible using the written low-thrust optimization tool. These points
are plotted as cyan circles. The tweaked Lambert’s solutions with the feasibility assessment
performs very well, at a fraction of the run time of the written low-thrust optimization tool.

Figure H-2: Example of a single asteroid-to-asteroid GLambert grid search.

H-4 Validation of asteroid tours

Using the database of 4 trillion transfers, several search algorithms have been developed
to search through and explore the entire design space for potential asteroid tours. Some
of the considered strategies are populated greedy searches and the traveling salesman ap-
proach. These algorithms needed verification to ensure that they created feasible asteroid
tours. Therefore, the low-thrust optimization tool checked the most promising asteroid tours
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for feasibility. This proved to be an excellent test for the developed software: the dynamic leg
addition capability of the tool was put to the test due to the high number of asteroids visited
in a single asteroid tour. Tours with up to 14 different asteroid visits have been encountered
and successfully optimized. Furthermore, for each leg, the flight and stay time had to be
optimized, which was also an excellent test for the TOF optimization capability of the code.

(a) Example of an infeasible 7 asteroid tour, not optimized for time.

(b) Example of a feasible 7 asteroid tour, optimized for time.

Figure H-3: Trajectories for an asteroid tour visiting 7 asteroids.

As an example, Figures H-3a and H-3b show the effect of the optimization of the flight and
stay time. In Figure H-3a, the trajectory is shown for a 7 point asteroid tour. In this scenario,
the dates fed from the search algorithm have been kept constant. This leads to an infeasible
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trajectory, as there is a discontinuity in the z-coordinate of the match point on the leg between
asteroids 3 and 4. However, if the optimizer is allowed to vary the flight and stay times of the
asteroid, while keeping the probe release and retrieval dates constant, the trajectory becomes
feasible, as can be seen in Figure H-3b. Besides making some infeasible asteroid tours feasible,
the optimization of the flight and stay times result in significant propellant savings, compared
to feasible, non-time optimized asteroid tours.

H-5 Building entire probe solutions

Up to this point, no considerations with respect to the mother ship or on how to connect
different probe tours had been made. In order to save fuel of the mother ship and to reduce
the difficulty level of the problem, it was decided to let all three probes start at the same
asteroid. As such, the mother ship remained in the same orbit and the three probes also had
to return to that orbit.

Using the confidence gained in building asteroid tours, many different three probe tours have
been created using global search algorithms. The most promising were fed back to yet another
version of the low-thrust optimization tool. This version was slightly adapted to include the
probe release and retrieval legs from and to the mother ship. This tool got the deployment
and retrieval time and deployment orbit, along with an estimate of the asteroid rendez-vous
times and departure dates. The code then tried to generate feasible trajectories for all three
probes. For each probe, it would at first try to rendez-vous with all its designated asteroids.
However, this resulted almost always in trajectories for which the probe could not return to
the mother ship in time. As such, an iterative procedure has been set up where systematically,
one of the asteroids was removed from the tour, giving the probe more time to make it back to
the mother ship. At that point, the entire tour became feasible. This proces was repeated for
all three probes, after which the score of the full three probe solution could be determined.
This whole process has been repeated on many different three probe solutions, ultimately
resulting in a 28 point solution. For this best 28 point solution, a high accuracy run had to be
performed to build a submittable solution file. This solution file had to include a continuous
low-thrust profile with at least one output line per day. The required accuracy at each special
event such as deployment, asteroid rendez-vous and departure, and mother ship return had
to be within strict boundaries. The Euclidean norm of the vector differences had to be below
1000 km and 1 m/s for the position and velocity respectively. These accuracy requirements
were checked by the competition’s jury. The code developed for this thesis and adapted for
the competition met all of these accuracy requirements, which is an additional validation of
the accuracy of the written code.

H-6 Conclusion

The developed tool was extensively used throughout this competition in many different set-
ups, indicating the flexibility of the tool. Furthermore, the submitted solution was checked
by an external jury, validating the feasibility and accuracy of the developed tool. In the end,
our final submitted solution, of which the trajectories can be found in Figure H-4, landed us
the 10th place.
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Appendix I

Earth-Asteroid-Earth rendez-vous
mission

In this chapter, it will be shown how the results for an Earth-Asteroid-Earth rendez-vous
mission from the developed code compare to the results from the Evolutionary Mission Tra-
jectory Generator code [Englander et al., 2014], developed by Jacob Englander at NASA’s
Goddard Space Flight center. This Sims-Flanagan based low-thrust optimization tool uses
Monotonic Basin Hopping to circumvent issues with local optima and to avoid the need for
an initial guess.

This mission launches from Earth, flies to an asteroid, rendez-vous with it, stays with it for
at least 30 days and then flies back to Earth. Much like for the EME and EVME scenario’s,
the Earth departure and return date are fixed, while the asteroid rendez-vous and departure
dates are optimized. The actual mission design parameters will intentionally not be disclosed
here, as these are still part of an ungoing investigation.

First of all, an individual point has been investigated. The optimized trajectory for the self-
developed code and the trajectory from EMTG are shown in Figures I-1 and I-2 respectively.
Even though both methods have been started with different initial guesses, they both converge
on almost the same solution. As one can see, they both converge on the same optimal asteroid
rendez-vous and departure dates, the departure C3 is identical, the return hyperbolic excess
velocities are also identical, the size and direction of the applied manoeuvres on each segment
are also very similar. Furthermore, the launch mass, which has been minimized for these
optimizations, only differs by 8 kg, or 0.015 %. These differences are negligibly small and
hence, one can conclude that both tools have converged on the same solution.
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Figure I-1: Earth-Asteroid-Earth trajectory: own code.

Figure I-2: Earth-Asteroid-Earth trajectory: EMTG.
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Besides comparing individual points, also entire launch windows have been compared. An
example can be found in Figures I-3 and I-4. Note that due to a plotting bug, the infeasible
trajectories in Figure I-4 have been accidentally displayed as dark red and can hence be
ignored. One can see that both identified launch windows are nearly identical. They both
start at the 25th of November, 2027 and both end at the 6th of June, 2028. Furthermore, they
both display a sudden jump in TOF around the 17th of April, 2028. Also, the same band
structures where more or less propellant mass is required are visible and also the minimal
possible TOF’s for each departure date are the same everywhere, as is the downward slope
between the 25th of November, 2027 and the 17th of April, 2028.
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Figure I-3: Earth-Asteroid-Earth launch window: own code.

Figure I-4: Earth-Asteroid-Earth launch window: EMTG.
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