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Abstract

In recent years, record-breaking wildfires have occurred globally, with projections indicating a dramatic
increase in their frequency and intensity in the future. These wildfires present serious risks to the envi-
ronment by releasing harmful pollutants and various greenhouse gases, which significantly contribute
to air pollution and climate change. To accurately predict emissions of such gases, a comprehensive
understanding of combustion efficiency is essential. Due to TROPOMI’s capability to measure trace
gases such as NO2 and CO with high spatial resolution and global coverage, it has been used in var-
ious studies to analyse combustion efficiency. The study used NO2 and CO column concentrations
measured by TROPOMI to estimate Mole Density Ratio (MDR), which is a proxy of combustion effi-
ciency, over two devastating wildfires that occurred in California in 2020. By using TROPOMI data,
aggregated to various resolutions using the super-observation approach, the study assessed the spa-
tial and temporal limits of TROPOMI-derived MDR. It evaluated changes in MDR values across various
vegetation types by integrating higher resolution land classification data from MODIS. Additionally, it
explored the relationship between MDR and environmental indicators such as drought conditions and
soil moisture. Super-observations resulted in significantly different MDR values with those estimated
at TROPOMI resolution. The findings indicated that there was loss of information regarding MDR
when super-observations were used. Furthermore, there was no clear link found on the impact of en-
vironmental factors such as soil moisture and drought conditions on MDR. Finally, a detailed land use
characterisation provided deeper insights into the effect of burning various types of vegetation on the
MDR. However, to be able to fully interpret the effect of super-observations and environmental factors
on MDR, a more extensive analysis is suggested.
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1
Introduction

Several record-breaking wildfires have been reported across the globe in recent years, some of which
have reached unprecedented scales and durations. Examples include wildfires in Canada, Greece and
Australia in 2023 [1], and the United States in 2020 [2]. According to a report by the United Nations
Environment Programme, climate change and variations in land use are expected to lead to more
frequent and intense wildfires globally. The report forecasts a potential increase in extreme fires of
up to 14% by 2030, 30% by the end of 2050, and 50% by the end of the century [3]. Furthermore
fires triggered by heat are anticipated to increase substantially [4] due to shifting climatic conditions
characterised by rising heatwaves and drought occurrences [5] which is evident by the recent increase
in large wildfires associated with dry conditions, particularly in the Western USA [6].

Wildfires pose significant risks to human health due to the substantial rise in concentrations of harm-
ful pollutants released in wildfire smoke [7]. The smoke produced by fires contains aerosols such as
volatile organic compounds, particulate matter (PM) and various trace gases such as carbon monox-
ide (CO), nitrogen oxides (NOx). In addition, greenhouse gases such as carbon dioxide (CO2) and
methane (CH4) are also emitted that induce climate change and deteriorate quality of air [8], [9]. There
have been various studies on the negative economic and social effects caused by products emitted
during wildfires. Such wildfires result in growing economic and public health challenges [10]. The total
healthcare expenses, in the United States, associated with mortality and morbidity resulting from expo-
sure to wildfire-related PM2.5 are estimated to be between $11 billion and $20 billion (2010$) per year
[11].

Although wildfires cause significant rise in concentrations of pollutants, there is still considerable
uncertainty in the exact values [12]. Emission factors (EFs) relate the mass of pollutants emitted per
unit of burnt dry biomass. These are essential inputs for emission models used to develop emission
inventories (EI), which help in comprehending the impact of wildland fires on the atmosphere and cli-
mate. These EFs can vary widely depending on fuel composition, fire type and combustion conditions
[13]. Part of the uncertainties in emission estimates is due to the fact that they are not only broadly
defined, but also that they are assumed to be constant in space and time.

The relationship between emission factors and combustion efficiency, which is the fraction of burnt
fuel carbon converted to CO2, shows considerable variability [14]. The study by [15] mentions that
ground based measurements of emission factors are limited by the spatial and temporal representa-
tiveness. Satellite based data have the advantage of filling the gap. Shankar et al. [7] states that it
is crucial to develop region specific approaches for creating wildfire emissions inventories (EIs) that
consider variations in climate and societal factors. This is essential for improving the ability to pre-
dict changes in wildfire emissions and their impacts on air quality as well as for effectively managing
wildfires and mitigating associated health risks over the long term. The scope and duration of such
studies before the satellite era were significantly restricted. However, significant progress has been
made in detecting atmospheric pollution using satellite technology since then [16]. New satellite mis-
sions and integration of diverse data sources could enhance the parameterisation of fuel consumption
in models. For instance, combining data from the extended period of Moderate Resolution Imaging
Spectroradiometer (MODIS) observations, which has a detailed land classification system, with more
recent instruments has the potential to decrease certain uncertainties [17].
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The TROPOspheric Monitoring Instrument (TROPOMI), on board the satellite Sentinel 5-P, is one of
the recent satellite missions to enhance our understanding of the intensity, development and spatiotem-
poral fluctuations in the origins of trace gases and aerosols influencing both air quality and climate [18].
Various studies have demonstrated the capability of TROPOMI to analyse trace gases such as nitro-
gen dioxide (NO2) and carbon monoxide (CO) emitted from wildfires. Van der Velde et al. [15] focused
on comparing the atmospheric enhancements of NO2 and CO measured by TROPOMI over different
fire-prone ecosystems around the world. They aimed to understand combustion characteristics and im-
prove global emission inventories for the fire modelling community to accurately predict fire emissions
by quantitatively assessing the influence of biomass burning on atmospheric chemistry and climate.
They used the ratio between the column enhancements of NO2 and CO, termed as Mole Density Ratio
(MDR), as a proxy for measuring the combustion efficiency (CE) of a fire. The analysis revealed dis-
tinct spatial and temporal patterns in the NO2/CO ratio, indicating regional differences in combustion
efficiency across the globe. The study discovered that variations in the emission factors of nitrogen
oxides (NOx) and CO are influenced by differences in biomass burning behavior, which are caused by
the burning phase of the fire such as flaming versus smoldering combustion. Flaming combustion is
characterised by high temperature oxidation of gas, occuring over the surface of the forest floor and
is widely seen in grassland type of vegetation [15], [19]. On the other hand, smouldering combustion
is low temperature oxidation of solid occuring both above and below forest floor [20]. It is a feature
of forest type of vegetation (see Figure 1.1). Van der Velde et al. [15] concluded that the fraction of
smouldering combustion is much larger for boreal forest fires and peatland fires. These types of fires
cause a much larger increase in CO relative to NO2. Overall, the study suggested that TROPOMI mea-
surements can provide new insights into biomass burning characteristics and combustion efficiency for
different vegetation types.

While [15] studied combustion efficiency (CE) across various vegetation types globally using the
Global Fire Emission Database (GFED), [21] analysed CE at a regional scale. They focused on different
vegetation types in two counties in California affected by wildfires between August and October 2020,
also using GFED data. They used TROPOMI retrievals of carbon monoxide (CO) and nitrogen dioxide
(NO2) column average densities to calculate combustion efficiency, using the same method used as
[15], which was then used to indicate fire characteristics based on Global Fire Emissions Database
(GFED) land use type. When comparing CE to change in vegetation type, they found that change in
CE was linked to change in vegetation. They also highlighted the need for improved land cover maps
to better attribute combustion efficiency to specific fuel source categories.

The study by [22] used TROPOMI retrievals of NO2 and CO to analyse trace gas ratio of NO2/CO, to
understand the evolution of combustion conditions during wildfires. It focused on fifteen large wildfires
in California, Oregon, and Washington during the 2020 and 2021 wildfire seasons. It observed a con-
sistent decrease in trace gas ratio enhancements (ΔNO2/ΔCO) as the wildfires progressed from more
flaming to more smouldering combustion. This decrease was consistent across different fuel types.
Furthermore, the study explored the influence of chemical transformations in the atmosphere on trace
gas ratios, noting that the ratios varied as the bounding box size (domain used for calculating trace gas
ratios) expanded. When comparing observed trace gas ratios at 1°×1° with those at 0.16°×0.16°, the
ΔNO2/ΔCO ratio was underestimated by 25 %, indicating the importance of accounting for combustion
conditions in emission assessments. These findings show the potential of TROPOMI observations
to enhance models and parameterisations for estimating emissions based on changing combustion
dynamics.

TROPOMI, is thus promising but often satellites have a finer spatial resolution than the resolutions
used by models leading to representativeness errors in the model. Super-observations refer to a tech-
nique used in remote sensing and satellite data analysis where data from multiple finer resolution grid
cells are combined with weighted factors to produce a single data point at a coarser resolution grid
cell. Miyazaki et al. [25] used this approach where Ozone Monitoring Instrument (OMI) and SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) NO2 data products
available at finer resolution (13×24 km2, 60×30 km2) were gridded to a resolution of 2.5°×2.5° which
is almost equivalent to the resolution used by the global chemical transport model (CTM), Chemical
Atmospheric GCM for Study of Atmospheric Environment and Radiative Forcing (CHASER). The study
concluded that creating super-observations at a spatial resolution that matches the model grid can
improve data assimilation by providing more representative data, potentially leading to a reduction in
systematic errors within the model. In situations where standard observations were used, the data
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(a) Flaming type of combustion [23] (b) Smouldering type of combustion [24]

Figure 1.1: Different types of wildfire combustion

often showed significant representativeness errors and noise, particularly in polluted regions, which
can constrain the effective and stable reduction of systematic errors in the model. Utilising the super-
observation technique typically yielded data that were more representative and with less random error,
hence the use of super-observations. Additionally, this approach reduces the computational costs of
data assimilation by processing reduced data points [25]. However, there are certain limitations to this
approach. It may not accurately capture small-scale and rapid changes in concentration variations. It
also showed that biases in the satellite retrieval process and the settings of the model employed for
data assimilation largely impact the estimated emissions’ magnitude. In order to understand the effect
of such super-observations on estimation of MDR, in this study, TROPOMI retrievals are regridded at
different resolutions between 0.5°×0.5° and 0.25°×0.25°.

Figure 1.2: The figure indicates the location of the August Lightning Complex Fire and the Sequoia Complex Fire in the region
of California, USA (2020). The blue and red markers denotes fire hotspots (obtained using MODIS active fire product) in the

August Lightning Complex fire and Sequoia Complex fire respectively.
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Figure 1.3: Progression of August Lightning Complex Fire, 2020 : This composite image shows the progression of wildfire
activity in the August Lightning Complex Fire (considered northern region in this study). Each satellite image is marked with
orange dots indicating fire hotspots. The top row represents the dates August 26th, September 4th, and September 13th,

respectively. The bottom row shows the dates September 25th and October 6th. The increasing density and spread of hotspots
highlight the escalation of the wildfire situation over time. The images have been taken from

https://worldview.earthdata.nasa.gov

Figure 1.4: Progression of Sequoia Complex Fire, 2020 : This composite image shows the progression of wildfire activity in
the Sequoia Complex Fire (considered southern region in this study). Each satellite image is marked with orange dots

indicating fire hotspots. The top row represents the dates August 26th, September 4th, and September 13th, respectively. The
bottom row shows the dates September 25th and October 6th. The increasing density and spread of hotspots highlight the

escalation of the wildfire situation over time. The images have been taken from https://worldview.earthdata.nasa.gov
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This research builds upon the work done by [15],[21] and focuses on the 2020 California wildfire
season that witnessed the largest fires in the state’s recorded history. Due to their relative positions,
August Lightning Complex Fire is considered the northern region while Sequoia Complex Fire is con-
sidered the southern region in this study (see Figure 1.2 - Figure 1.4). The region of study is the same
as that in [21]. While the study by [15],[21] used TROPOMI retrievals along with coarser GFED which
has limited land use type for anaylsing MDR, this study aims to investigate how MDR is affected when
TROPOMI data is gridded at different resolutions using the super-observations approach, along with
the use of a higher resolution MODIS land use type. Starting from TROPOMI’s native pixel resolution
of 7×7 km2 for CO and 3.5×7 km2 for NO2 column density at nadir to a gridded representation up to
0.5°×0.5°, that is typically used in climate/meteorological models, the spatial and temporal limits of the
TROPOMI derived MDR are investigated, determining the extent to which fire characteristics (CE) re-
main discernible from space. Furthermore, a higher resolution land classification data (MODIS) with
several land use types is used to obtain a more detailed understanding of changes in MDR values
across several types of vegetation. Specifically, this study aims to answer two research questions:

• What is the impact of spatial resolution of observed NO2 and CO data on the ability to detect
meaningful signals (significant changes) related to combustion efficiency (CE) by estimating Mole
Density Ratio (MDR), as a proxy of CE?

• To what extent do land use characterisation and environmental factors such as droughts and soil
moisture content impact biomass burning CE?

This thesis is structured as follows: a description of the used data and applied methodology is
provided in Chapter 2. Chapter 3 subsequently presents the main results whereas the conclusions and
outlook are included in Chapter 4.



2
Methodology and Data

2.1. Methods
2.1.1. Calculation of background values of NO2 and CO
Firstly, wind components at each location of the fire hotspots are determined. The resultant of the
wind components and its direction is calculated, followed by locating the background sampling region
upwind of the fire hotspots.

Regarding the location of the background in the upwind direction, a distance is preferred such that
it is close enough to catch characteristic of each fire region but far enough that the background is not
influenced by the plume of nearby fire. Proximity of urban areas from the fires is also considered while
choosing these distances to avoid contamination from anthropogenic sources of emissions. The fires in
the northern region are spread apart and covered a larger area. In order to ensure that the background
is not influenced by other fires of the same region, 90 km is considered far enough to remove the
background. For the southern region, fires were closer to each other and covered a smaller area
compared to the northern region, therefore, 30 km is considered close enough to be in the proximity of
the region of interest, but far enough to not be influenced by other fires nearby. Such conditions were
determined and used by [21], therefore, the same conditions are used in this study.

The coordinates of a location 90 km north and 30 km south, upwind of the fire hotspots, are calcu-
lated to determine the sampling location for background values as shown in Figure 2.1. This is done
using Vincenty’s formulae which are a pair of iterative techniques used in geodesy for computing the
distance between two points on an ellipsoidal model of the Earth’s surface. Furthermore, given the
latitude and longitude of a point on the ellipsoid and geodesic distance, Vincenty’s formulae can also
be used to find the finishing point. This method was developed by Thaddeus Vincenty [26]. It is specif-
ically designed for calculations based on the oblate spheroid shape of the Earth. Thomas et al. [27]
recommends the use of Vincenty’s formulae for geodetic calculations as it offers greater accuracy com-
pared to distance calculation methods that assume a spherical earth, such as the great-circle distance
approach.

6



2.1. Methods 7

Figure 2.1: Determination of background sampling location : The red cross represents the location of a fire. The wind
components at the location of the fire are indicated by u and v while R is the resultant wind vector. The background location is

determined by a distance (90 km for the northern region and 30 km for the southern region) along the upwind direction,
represented here by the black marker and denoted as BG.
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2.1.2. Calculation of Mole Density Ratio (MDR)
The Mole Density Ratio (MDR) is the concentration equivalent of the emission factor ratio (EFR) which
is a relative measure indicating the number of millimoles of NOx released into the atmosphere per mole
of CO. It provides a remotely sensed proxy for biomass combustion efficiency [15]. It is the ratio of the
enhancements of column measurements of nitrogen dioxide (∆XNO2) and carbon monoxide (∆XCO)
and can be used to identify fire characteristics (see Equation 2.1). To prevent contamination from
non combustion sources of emissions it is required to derive the regional enhancements in NO2 and
CO relative to the background for which a local sampling method is used. Van Der Velde et al. [15]
used this method for regions where local fires and areas of higher concentration of trace gases were
identified for which background column density upwind of the fires could be determined based on the
wind direction. Once the location of the fires and the background is known, column densities of nitrogen
dioxide (XNO2fire

andXNO2BG
) and carbon monoxide (XCOfire andXCOBG) are sampled at these

locations. The difference of these values are the enhancements ∆XNO2 and ∆XCO. Subsequently, a
mean MDR is derived using Equation 2.1. The same method was also used by [21].

In this study, for each fire period considered, ∆XNO2 and ∆XCO over fire hotspots are randomly
sampled using a Monte Carlo simulation. This method provides a robust statistical estimate of the
MDR values by repeatedly sampling and calculating mean ratios. This approach is further described
in section A.2.

MDR =
∆XNO2

∆XCO
=

XNO2fire
−XNO2BG

XCOfire −XCOBG
(2.1)

2.2. Datasets
2.2.1. TROPOMI Retrievals
The TROPOspheric Monitoring Instrument (TROPOMI) is a spectrometer aboard the Sentinel 5 Precur-
sor (S-5 P) satellite [18]. The S-5 P mission involves a single-payload satellite orbiting low earth that
offers daily global data on concentrations of trace gases and aerosols essential for air quality, climate
influence and ozone preservation. The satellite’s payload is TROPOMI, developed collaboratively by
the Netherlands and the European Spae Agency (ESA). TROPOMI is equipped with bands spanning
ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) wavelengths. It has
a spectral resolution that varies from 1 nm in the shortest UV band, 0.5 nm in the intermediate bands
and to 0.25 nm in the SWIR band. This wavelength selection enables the observation of crucial at-
mospheric constituents, including ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur
dioxide (SO2), methane (CH4), formaldehyde (CH2O), aerosols and clouds. One notable feature of
TROPOMI is its capability to provide simultaneous column densities for various trace gases, such as
NO2 and CO.

Nitrogen dioxide (NO2)
Nitrogen dioxide (NO2) has a short lifespan in the troposphere, ranging from hours to days, and its
emission sources are unevenly distributed. As a result, the spatial and temporal patterns of NO2 have
significant variability. Therefore, enhanced spatial resolution, achieved by TROPOMI, is crucial for NO2
monitoring as it enables the differentiation of concentration variations and facilitates more accurate
quantification of emission sources [28].

The visible band between 405 nm and 465 nm can be used for observations of NO2 and is observed
globally on a daily basis, with a spatial resolution of 3.5×5.5 km2 in nadir (3.5×7 km2 before the 6th
of August 2019). The NO2 retrieval method utilises the Differential Optical Absorption Spectroscopy
(DOAS) technique [29] and is a modified version of the algorithm employed in DOMINO [30]. During
the retrieval process, NO2 slant columns are determined from the measured spectra using the DOAS
method. Subsequently, the tropospheric component of these slant columns density is distinguished
from the stratospheric component. Finally, the tropospheric slant columns are converted into vertical
columns of NO2 using the tropospheric air mass factor (AMF) from the chemistry transport model TM5-
MP. Bias estimates for tropospheric NO2 meet the mission requirement of less than 50 %, while those
for stratospheric NO2 meet the requirement of less than 10 % (see Table 2.1). As a user guideline
for the data quality, a quality assurance value is given with the data. It is recommended to only use
those pixels with a quality assurance value of above 0.75 (0.5 in case cloud covered scenes are of
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Figure 2.2: TROPOMI measurement principle: The instrument functions in a push-broom setup, covering a swath width of
around 2,600 km on the Earth’s surface. It has a nadir spatial resolution of 7×7 km2 for carbon monoxide (CO) and 3.5×7 km2

for nitrogen dioxide (NO2). This figure has been taken from Veefkind et al. [18].

interest) [31]. In this study, the NO2 column density is expressed in units of millimoles per square
metre (mmol/m2).

Carbon monoxide (CO)
Due to its ability to detect changes in carbon monoxide (CO) concentrations in the lower troposphere,
the TROPOMI Short Wave Infrared (SWIR) measurements are well suited for correlating satellite CO
observations with emission sources. The TROPOMI radiancemeasurements in the SWIR range, specif-
ically between 2305 and 2385 nm, show absorption characteristics related to CO. The CO column den-
sity is observed globally on a daily basis with a spatial resolution of 7×7 km2 in nadir. However, the
ground pixel resolution was enhanced to 7×5.5 km2 from the 6th of August, 2019 [32]. The Shortwave
Infrared Carbon Monoxide Retrieval algorithm (SICOR) is employed to convert spectral radiances into
CO column densities [33]. Biases are well within the mission requirement of maximum bias equal to
15% (see Table 2.1). As a user guideline for the data quality, a quality assurance value is given with
the data. It is recommended to only use those pixels with a quality assurance value of above 0.5 [31].
In this study, the CO column density is expressed in units of moles per square metre (mol/m2).

The TROPOMI retrievals of NO2 and CO used in this study are averaged over a 5×5 pixel grid
surrounding the fire locations. This approach, used by [21], addresses the issue of diffused information
and is particularly crucial for NO2, which can exhibit erratic behaviour in smaller pixels.

Table 2.1: NO2 and CO data product requirement

Parameter Data Product Vertical
Resolution

Bias

NO2 Stratospheric NO2 Stratospheric
column

< 10%

NO2 Tropospheric NO2 Tropospheric
column

25-50%

Total column Carbon monoxide (CO) Total column 15%

Super-observations
The spatial resolution of satellite data is significantly finer than that of model grids. To bridge these
spatial scale gaps, [25] provides a framework for generating more reliable and representative data for
data assimilation purposes in models which is called the super-observation approach. In this approach,
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a weighted average method is used to obtain super-observations. A super-observation is created by
averaging all data within a specific grid cell designated for super-observation (see Equation 2.2). The
weighting factor for individual data is estimated based on the coverage area by individual data pixels
and the total coverage area for a super-observation grid.

ȳ =

∑m
l=1 wlyl∑m
l=1 wl

(2.2)

where ȳ represents the concentration of a super-observation, derived from multiple individual data
concentrations yl; m represents the quantity of observations within a super-observation grid; wl is a
weighting factor calculated as the ratio of the coverage area of an individual data point to the total
coverage area of all data used to generate the super-observation grid. This means that data points
with greater coverage are assigned higher weighting factors reflecting greater reliability.

In this study, TROPOMI retrievals are regridded at four different resolutions of 0.5°×0.5°, 0.4°×0.4°,
0.3°×0.3° and 0.25°×0.25° using the super observation approach. A resolution coarser than 0.5°×0.5°
could experience loss of information while finer than 0.25°×0.25° would be close to the retrieval res-
olution and not much difference is expected in the results. Therefore, this study limits the choice of
resolution to between 0.5°×0.5° and 0.25°×0.25°.

2.2.2. Environmental Indicators
Standard Precipitation-Evapotranspiration Index (SPEI)
The Standard Precipitation-Evapotranspiration Index (SPEI) is a multi scalar drought index that uses
precipitation and potential evapotranspiration (PET) to determine drought. In this study, SPEIbase v2.0,
derived from the FAO-56 Penman-Monteith method for estimating PET is used [34]. The difference
between the precipitation (P) and PET for the month i is calculated (see Equation 2.3) which offers a
straightforward measure of the water surplus or deficit (D) for the analysed month.

Di = Pi − PET i (2.3)
The Global SPEI database, SPEIbase provides extensive data on drought conditions at the global

scale with a spatial resolution of 0.5°×0.5° and a monthly temporal resolution. The SPEI can account
for the possible effects of temperature extremes such as heat waves therefore is better than other
drought indexes such as self-calibrated Palmer drought severity index (sc-PDSI) and standardised
precipitation index (SPI) [34]. The multi-scalar aspect of the SPEI allows for the recognition of various
types of drought and their impacts on different systems. The method for computing the SPEI is similar
to that of the SPI. However, the SPEI utilises the ”climatic water balance,” which is the difference
between precipitation and reference evapotranspiration, instead of just precipitation. This climatic water
balance compares the present water with the atmospheric evaporative demand, thereby offering amore
dependable gauge of drought severity than solely relying on precipitation. The study by [34], therefore
recommends the use of SPEI in preference to the sc-PDSI. The SPEI enables the evaluation of drought
severity across different time spans (i.e. over one month, two months, three months, etc.), which is
crucial for understanding the diverse reactions to drought across various hydrological, environmental,
and socioeconomic systems [35]. The SPEI category classification is shown in Table 2.2.

Table 2.2: Agnew’s classification scheme for drought categories [36]

SPEI values Drought category
> 0 No drought

0 to -0.5 No drought
-0.5 to -0.84 Moderate drought
-0.84 to -1.28 Severe drought
-1.28 to -1.65 Extreme drought

< -1.65 Very extreme drought

Soil Moisture (SM)
Global satellite-based surface soil moisture observations were acquired from the Copernicus Climate
Change Service (C3S) surface soil moisture (SSM) product version 202012. C3S SSM is a combined
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dataset that integrates SSM retrievals from 4 active and 10 passive microwave sensors. It contains soil
moisture estimates at a global scale at a daily, 10-day and monthly temporal resolution. Monthly data
has been used in this study to keep it consistent with the SPEI dataset which is available at a monthly
temporal resolution. They provide information regarding the top few centimetres of soil with a spatial
resolution of 0.25°×0.25° [37]. Surface soil moisture is described as content of liquid water in a surface
soil layer of 2 to 5 centimetre depth expressed as the percentage of total saturation.

The C3S soil moisture data can be accessed easily through the Copernicus Climate Data Store
(CDS), and comprehensive details about the C3S dataset and its underlying European Space Agency’s
Climate Change Initiative (ESA CCI) v5 merging algorithm are available in the relevant documentation
[37]. The uncertainty estimates associated with the combined surface soil moisture (SSM) retrievals
in the C3S SSM product were determined using triple collocation analysis (TCA). In this approach,
individual (stationary) uncertainties were initially assessed for each satellite sensor independently to
derive merging weights. Subsequently, uncertainties in the merged SSM estimates were computed
based on the law governing the propagation of uncertainties [38].

2.2.3. Land Cover Data
Global Fire Emission Database (GFED)
The Global Fire Emission Database version 4s (GFED4s), described in [39], provides global estimates
of monthly burnt area, monthly emissions and fractional contributions of different fire types in order to
calculate trace gas and aerosol emissions using emission factors. GFED uses the Carnegie–Ames–
Stanford Approach (CASA) biogeochemical model. Input data includes burned area information from
MODIS, and land cover maps sourced from the annual MODIS MCD12C1 land cover type product,
using the University of Maryland (UMD) classification scheme [17]. Data is available at a spatial res-
olution of 0.25°×0.25°. Compared to the previous version, GFED4s includes algorithm to account for
small fires which enhance the overall burned area estimation, hence the inclusion of the ”s” in the name.
Emissions data are available for various substances including carbon (C), dry matter (DM), carbon diox-
ide (CO2), carbon monoxide (CO), methane (CH4), hydrogen (H2), nitrous oxide (N2O), nitrogen oxides
(NOx), non-methane hydrocarbons (NMHC), organic carbon (OC), black carbon (BC), particulate matter
less than 2.5 microns (PM2.5), total particulate matter (TPM), sulphur dioxide (SO2) and others.

The emissions data files includes the contribution of fire sources to monthly-biomass-burning-dry-
matter emissions which have been used in this study. Fire sources include savanna, grassland and
shrubland (SAVA), boreal forest (BORF), temperate forest (TEMF), deforestation and degradation of
the forests (DEFO), peat land (PEAT) and agricultural waste burning (AGRI) as indicated in Table 2.3.
The uncertainties in the dataset are considerable and challenging to measure [17]. The user guide
mentions that over larger areas, uncertainties in GFED emissions are expected to be around 50 %, but
these uncertainties increase for smaller areas, particularly in regions where peatlands or deforestation
significantly contribute to fire emissions.

Table 2.3: GFED Land Cover Classification System (GFED4s)

Name Description
SAVA Savanna, grassland, and shrubland fires
BORF Boreal forest fires
TEMF Temperature forest fires
DEFO Tropical forest fires [deforestation and degradation]
PEAT Peat fires
AGRI Agricultural waste burning

Moderate Resolution Imaging Spectroradiometer (MODIS)
The MODIS Land Cover Type Product (MCD12Q1) Version 6.1, described in [40] is used in the study
which provides worldwide land cover maps on an annual basis with a spatial resolution of 500 metres,
covering the period from 2001 to the present day. This dataset is created by analysingMODIS Terra and
Aqua reflectance data through supervised classifications. These classifications utilise various schemes
including the International Geosphere-Biosphere Programme (IGBP), University of Maryland (UMD),
Leaf Area Index (LAI), BIOME-Biogeochemical Cycles (BGC), and Plant Functional Types (PFT) to
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identify different land cover types. Following this initial classification, further refinement of specific
classes is achieved through additional post-processing techniques that integrate prior knowledge and
supplementary information. The dataset also includes assessment layers for land cover properties
based on the Food and Agriculture Organization (FAO) Land Cover Classification System (LCCS),
which covers aspects such as land cover, land use, and surface hydrology. The product contains
13 Science Data Sets (SDS) out of which the Food and Agricultural Organisation (FAO)-Land Cover
Classification System (LCCS1) is used in the study. It identifies 17 types of vegetation, 8 of which are
found in the region of study and are shown in Table 2.4.

The estimated global accuracy of the International Geosphere-Biosphere Programme (IGBP) layer
within the MODIS Collection 6 Land Cover Type product (MCD12Q1) is approximately 73.6 %. The
dataset exhibits certain limitations and uncertainties. For instance, wetlands are not adequately repre-
sented. Certain grassland areas are categorised as savannas. Regions characterised by temperate
evergreen needleleaf forests are incorrectly classified as broadleaf evergreen forests in Japan, the Pa-
cific Northwest of North America, and Chile. Likewise, areas featuring evergreen broadleaf forests are
misclassified as evergreen needleleaf forests in Australia and parts of South America. Additionally, in
tropical regions where cropland field sizes are typically smaller than a MODIS pixel, agricultural areas
are occasionally underrepresented [40].

Table 2.4: FAO Land Cover Classification System (LCCS1). It has a total 17 classes of land use type. However, only those
found in the region of study are shown here.

Name Description
Evergreen Needleleaf
Forests

Dominated by evergreen conifer trees (>2m). Tree
cover >60%.

Mixed Broadleaf/Needle-
leaf Forests

Co-dominated (40-60%) by broadleaf deciduous
and evergreen needleleaf trees (>2m). Tree cover
>60%.

Open Forests Tree cover 30-60% (canopy >2m).
Sparse Forests Tree cover 10-30% (canopy >2m).
Dense Herbaceous Dominated by herbaceous annuals (<2m) with at

least 60% cover.
Sparse Herbaceous Dominated by herbaceous annuals (<2m) with 10-

60% cover.
Shrubland/Grassland Mo-
saics

Dominated by woody perennials (1-2m) with 10-60%
cover and dense herbaceous annual understory.

Barren At least 60% of the area is non-vegetated barren
(sand, rock, soil) or permanent snow/ice with less
than 10% vegetation.

2.2.4. Moderate Resolution Imaging Spectroradiometer (MODIS) active fire prod-
uct

Fires are analysed with MODIS aboard the Terra and Aqua satellites. The MODIS Thermal Anoma-
lies/Fire Daily L3 Global Product MOD14A2 (Terra) and MYD14A2 (Aqua) at 1 km spatial resolution is
used to find fire locations. Fire detection is accomplished using a contextual algorithm [41] that utilises
the intense emission of mid-infrared radiation emitted by fires [42], [43]. This algorithm analyses every
pixel within the MODIS swath and categorises each into one of the following classes: missing data,
cloud, water, non-fire, fire, or unknown. Validation of the Terra MODIS active fire product has mainly
been carried out using concurrent, detailed fire maps generated from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) imagery. Given that the accuracy of fire hotspot loca-
tions is limited to 1 km when relying on MODIS active fire data, having land use information at an
extremely detailed resolution of approximately 10 meters as provided by ESA WorldCover may not be
as crucial. Hence, for this investigation, the MODIS Terra+Aqua Combined Land Cover product, avail-
able at a resolution of 500 metres is used since it reasonably matches the spatial resolution of active
fire locations.

The locations of these fires are used in other datasets to determine relevant quantities such as
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column concentrations of NO2 and CO, SPEI, SM and vegetation type. There was no fire detected
in the southern region on the 10th of September, 2020. According to the product user guide, several
reasons could lead to such a situation. The fire might have ignited and extinguished between satellite
passes. It could be too small or too cool to be detected within the 1 km2 MODIS footprint. Additionally,
cloud cover, dense smoke or tree canopy might completely conceal the fire. Therefore, this particular
date has been excluded from the study.

2.2.5. ERA5 Wind
ERA5 is the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanal-
ysis providing global climate and weather data. It provides hourly estimates for a large number of atmo-
spheric, ocean-wave and land-surface quantities which are available at a resolution of 0.25°×0.25° [44].
For this study, hourly, 10 metre wind components data is used to determine appropriate background
location for sampling NO2 and CO to prevent contamination from other sources.



3
Results

3.1. Mole Density Ratio
Scatter plots from the study of [21] have been reproduced as Figure 3.1 to provide a basis for com-
parison with similar scatter plots created using super-observation data at different resolutions. Each
subplot represents a different time period of approximately 10 days, showing the relationship between
enhancements (relative to the background) of nitrogen dioxide (∆NO2) and carbon monoxide (∆CO)
over time for fire hotspots in the northern and southern regions. The first period is the initiation of the fire
where most fire hotspots are concentrated at lower values of ∆NO2 and∆CO. The northern region wit-
nesses rapid spread of fire in the second period indicated by increase in the number of colouredmarkers
which represent fire hotspots. The markers are now more spread showing higher enhancement values.
For the southern region, this spread of fire continues upto the third period. In the subsequent periods,
the fires in both regions gradually diminish, as indicated by the reduced number of coloured markers.
By the final period, the data points are tightly clustered at lower enhancement values which show that
the number of fire hotspots has significantly decreased accompanied by reduction in enhancements
values, indicating the diminishing phase of wildfires. In the northern region, the average Mole Density
Ratio (MDR) values start at 0.52, increases in early September, then decreases, peaks again at the
end of September, and finally decreases to 0.43 in October. In the southern region, the range of MDR
is higher than in the north. It starts at high value of 2.68 in late August, decreases significantly in early
September, then follows a more stable pattern with slight fluctuations through the subsequent periods,
finally reaching a value of 0.71 in October (see Figure 3.1). The reasons for such variations within a
region and between the two regions are explained in the subsequent sections.

Similar scatter plots are created using super-observations at different spatial resolutions (see Fig-
ure 3.2 - Figure 3.5). These scatter plots using super-observations revealed different MDR values when
compared to MDR values obtained using data at TROPOMI resolution. For instance, MDR estimated
using super-observations at a spatial resolution of 0.25°×0.25° (see Figure 3.2), showcase relatively
minor differences in the northern region. In contrast, the southern region displayed much more signif-
icant differences. Throughout the observed periods, the southern region consistently showed lower
MDR values than the MDR values estimated using data at TROPOMI resolution. However, there was
a notable exception in the final period, during which the MDR value increased rather than decreased,
deviating from the previously observed trend.

The resolution of 0.3°×0.3° shows MDR values similar to those of the 0.25°×0.25° resolution, except
for the last period in the southern region where the difference is more than 1.0. The MDR values
obtained at the resolution of 0.4°×0.4° are similar to those of TROPOMI resolution in the northern
region but they differ significantly in the southern region. Both the 0.4°×0.4° and 0.5°×0.5 resolutions
exhibit the lowest MDR values among all resolutions.

Several enhancements were observed to be zero in the southern region, where a distance of 30
km upwind is used to sample background, potentially due to sampling of NO2 and CO from the same
grid cell as the fire. This issue was particularly pronounced at coarser resolutions (see Figure A.1),
resulting in a reduction in the data points available to calculate MDR.

14
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Figure 3.1: Relationship between ∆NO2 and ∆CO over various periods of the wildfire in the northern and southern regions for
data at TROPOMI Resolution (TR). The legend includes the average MDR for each period considered along with the standard
deviation values. The inset plot indicates the outliers. The black square box with error bars represent the mean of ∆NO2 and

∆CO and their standard deviation values.

Figure 3.2: Relationship between ∆NO2 and ∆CO over various periods of the wildfire in the northern and southern regions for
the first set of super observation data at a resolution of 0.25°×0.25°. The legend includes the average MDR for each period

considered along with the standard deviation values. The inset plot indicates the outliers. The black square box with error bars
represent the mean of ∆NO2 and ∆CO and their standard deviation values.
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Figure 3.3: Relationship between ∆NO2 and ∆CO over various periods of the wildfire in the northern and southern regions for
the second set of super observation data at a resolution of 0.3°×0.3°. The legend includes the average MDR for each period
considered along with the standard deviation values. The inset plot indicates the outliers. The black square box with error bars

represent the mean of ∆NO2 and ∆CO and their standard deviation values.
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Figure 3.4: Relationship between ∆NO2 and ∆CO over various periods of the wildfire in the northern and southern regions for
the third set of super observation data at a resolution of 0.4°×0.4°. The legend includes the average MDR for each period

considered along with the standard deviation values. The inset plot indicates the outliers. The black square box with error bars
represent the mean of ∆NO2 and ∆CO and their standard deviation values.

Figure 3.5: Relationship between ∆NO2 and ∆CO over various periods of the wildfire in the northern and southern regions for
the fourth set of super observation data at a resolution of 0.5°×0.5°. The legend includes the average MDR for each period

considered along with the standard deviation values. The inset plot indicates the outliers. The black square box with error bars
represent the mean of ∆NO2 and ∆CO and their standard deviation values. The estimated average MDR in the final period is

nan due to insufficient number of data points while sampling enhancements using Monte Carlo simulation.
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The MDR values estimated using datasets at TROPOMI resolution and different super-observation
resolutions have been summarised in Figure 3.6 for both the northern the southern region.

In the northern region, the temporal trend of MDR across various fire periods remains largely con-
sistent across all resolutions examined. Specifically, the MDR values show an increase from the first to
the second period, followed by a decrease from the second to the third period. This pattern continues
with an increase from the third to the fourth period, and then a subsequent decrease from the fourth to
the fifth period. The discrepancies in MDR estimates across different resolutions during the third and
fifth periods are relatively minor. However, during the other periods, these discrepancies appear to be
considerably more pronounced (see Figure 3.6).

In the southern region, the temporal trend of MDR remains largely consistent across all resolu-
tions examined during the second, third, and fourth periods. Specifically, MDR values decrease from
the second to the third period and then increase from the third to the fourth period. The variations
in MDR estimates across different resolutions during the fourth period are relatively minor. However,
in other periods, these variations are significantly more pronounced, indicating greater discrepancies
(see Figure 3.6). For instance, in the first period, the difference in MDR estimation when using super-
observations compared to data at TROPOMI resolution is approximately 2.0, which is quite substantial.
Similar differences are observed during other periods as well, although these discrepancies are some-
what smaller.

A comparison of these MDR values across different resolutions suggests that there is considerable
discrepancy in MDR estimates when super-observations at the specified resolutions are used. The
temporal variations in MDR estimations are explained in detail in section 3.3.
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Figure 3.6: The bar chart provided shows the variation of MDR values for datasets at different resolutions over various date
ranges through the fire period in the northern (top) and southern region (bottom). Each bar represents the MDR value for a
specific resolution within a particular date range. Each date range has multiple bars, each coloured differently to represent
different resolutions. The error bars on top of each bar are standard deviation values, which indicate the uncertainty in the
MDR values. The MDR for 0.5°×0.5° is absent in the last period due to insufficient number of data points while sampling

enhancements using Monte Carlo simulation.
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3.2. Mole Density Ratio (MDR) and Environmental Indicators
This section provides an analysis of the influence of environmental indicators, such as drought con-
ditions and soil moisture levels, on MDR based on TROPOMI resolution. By examining the interplay
between these environmental indicators and MDR, this analysis aims to discover any significant corre-
lations between them.

3.2.1. MDR link with Standard Precipitation-Evapotranspiration Index (SPEI)
To investigate the effect of drought conditions on MDR, an analysis was conducted on the changes
in the Standard Precipitation-Evapotranspiration Index (SPEI) through the fire periods. Additionally,
the change in average Mole Density Ratio (MDR) for these periods, calculated in section 3.1, was
compared to change in SPEI values to explore any potential correlations between MDR and drought
conditions (see Figure 3.7).

In the northern region, the initial conditions were characterised by dryness, indicated by an SPEI
value of -1.4. Although conditions showed some improvement during the subsequent periods, a dete-
rioration was observed by the end of the wildfire, with the SPEI value dropping further to -1.6.

A similar trend was noted in the southern region. Initially, drought conditions improved, with the
SPEI value increasing from -0.6 in the first period to -0.4 during the intermediate periods. However, the
situation worsened towards the end of the wildfire, with the SPEI reaching a value of -1.0.

The spatial distribution of the wildfire in the northern region (≈ 1°×1°) was more dispersed compared
to the southern region (≈ 0.5°×0.5°) as visible in the satellite images (see Figure 1.3 and Figure 1.4).
This dispersal could be a contributing factor to the greater variation in SPEI observed during the study
period in the northern region. In contrast, the wildfire in the southern region had a more condensed
spatial distribution. Additionally, the low spatial resolution of the SPEI database (0.5°×0.5°), might
explain the relatively small variations observed in SPEI values. Moreover, as the SPEI database are
monthly averages, SPEI values seem to remain consistent within the same month across different fire
periods in the southern region.

Furthermore, it is noted that changes in MDR did not show a consistent pattern corresponding to
changes in SPEI (see Figure 3.7). This lack of consistency suggests that there is no clear or direct
relationship between drought conditions, as measured by SPEI, and the average MDR. Consequently,
it can be concluded that the link between drought conditions and MDR is not evident from the data
analysed.

However, vegetation responses to drought conditions vary among different vegetation types. For
instance, grasslands may be more sensitive to short-term droughts, whereas forests are likely to be
more affected by prolonged drought periods [45]. Not accounting for this variation in sensitivity among
different vegetation types could introduce a source of uncertainty in the analysis.
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Figure 3.7: Time series illustrating the variation in Standard Precipitation-Evapotranspiration Index (SPEI) values alongside
corresponding changes in the average Mole Density Ratio (MDR) in both northern and southern regions. The circular coloured
markers represent SPEI values while the red horizontal bars indicate average MDR values measured on the right Y-axis. The
shaded region is the standard deviation values of the MDR. The left Y-axis represents the number of fire hotspots, while the

X-axis indicates the number of days. A high negative SPEI value indicates a more intense drought condition.

3.2.2. MDR link with Soil Moisture (SM)
Similar to the investigation of the effect of drought conditions on MDR, an analysis was also conducted
on the changes in soil moisture (SM) content across various wildfire periods and its potential correlation
to MDR (see Figure 3.8). In the northern region, the SM values commence at 30 % during the first fire
period. These values increase to 40 % in the second period, followed by a slight decrease to 35 %
in the third period. The fourth period witnesses a marginal increase in SM values, with a further rise
reaching up to 40 % during the final period, marking the end of the fire.

In the southern region, initially, the SM values range between 40 % and 50 %. These values rise to
approximately 60 % during the second period, followed by a slight dip in the third period. Subsequently,
there is a rise in the SM values in the following periods, ultimately reaching up to 65 % during the final
period. The southern region witnesses greater variation and higher values of SM content compared
to the northern region. This could be attributed to the presence of several water bodies and a more
dynamic topography in the southern region; however, the overall trend remains similar to that observed
in the northern region.

Consequently, as evident from Figure 3.8, there is no clear or consistent relationship between the
changes in SM values and the variations in average MDR. Despite the observed fluctuations in soil
moisture across different periods and regions, these changes do not correspond to any detectable
pattern in MDR.
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Figure 3.8: Time series illustrating the variation in soil moisture (SM) values alongside corresponding changes in the average
Mole Density Ratio (MDR) in both northern and southern regions. The circular coloured markers represent SM values while the
red horizontal bars indicate average MDR values measured on the right Y-axis. The shaded region is the standard deviation
values of the MDR. The left Y-axis represents the number of fire hotspots, while the X-axis indicates the number of days. SM

values are in percentage.
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3.3. Mole Density Ratio (MDR) and Land Cover
This section provides an analysis of the influence of various types of vegetation on MDR, based on two
distinct land use datasets: Global Fire Emission Database (GFED) and Moderate Resolution Imaging
Spectroradiometer (MODIS). The analysis explores how different vegetation categories, as classified
by these datasets, affect estimation of MDR based on TROPOMI resolution. By comparing the impacts
of different vegetation types, it aims to identify significant patterns and correlations that contribute to
variations in MDR.

3.3.1. MDR link with GFED Land Cover
In the northern region, temperate forests dominate throughout the period, consistently making up the
majority of the vegetation cover while savanna, grassland, and shrubland are present sporadically and
shows some variation over time. Agricultural waste is relatively small and more or less has a constant
percentage throughout the period. The MDR values remain quite low, typically under 1.0. The last
period where temperate forest is almost the sole vegetation type corresponds to one of the lowest
MDR values (see Figure 3.9). However, the small variations in MDR observed from a period to another
are likely not due to changes in vegetation, as the region maintains a fairly constant vegetation type.
The presence of winds could have played a role in these variations as suggested by [21]. Strong winds
occurred during the second period in the northern region (see section A.3). Windy conditions promote
flaming type of combustion [19], which could explain the increase in MDR from the first to the second
period. The subsequent minor changes in MDR could also be attributed to change in wind conditions.

For the southern region, the variation in vegetation is more prominent. In this region, savanna,
grassland, and shrubland predominates throughout the period, making up the majority of the vege-
tation cover while temperate forests are present intermittently with noticeable fluctuations over time.
Agricultural waste appears occasionally with a more or less constant percentage through the period.
The MDR values vary between 0.5 and 3.0, indicating considerable variation (see Figure 3.9). This
variation in MDR is likely caused by the change in vegetation. The MDR value is high around 2.5 in the
first period when dominant vegetation is savanna, grassland, and shrubland with a bit of agricultural
waste. It significantly decreases during the second and third periods, aligning with an increase in the
percentage of temperate forests. This drop in MDR is due to the fire shifting to Sequoia National Park
(SNP), an area dominated by forests, which causes a transition from flaming to smouldering combus-
tion. These findings are consistent with the results of [21], which show that savanna type of vegetation
is linked to higher MDR and flaming combustion, while temperate forests type of vegetation are linked
to lower MDR and smouldering combustion.
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Figure 3.9: The image illustrates the percentage distribution of various GFED vegetation types alongside average MDR over
specified fire periods in the northern and southern regions. The stacked bar chart shows the percentage of each vegetation
type represented by various colours. Overlaid on this distribution, the red horizontal bars represent the average MDR values

over the same period, measured on the right Y-axis. The shaded region indicates the standard deviation values of the
estimated MDR showcasing uncertainty in the measurement.
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3.3.2. MDR link with MODIS Land Cover
Figure 3.10 is a figure similar to Figure 3.9 but uses a much finer resolution MODIS land-use classifica-
tion instead of GFED. A similar trend in vegetation change is indicated by both figures but Figure 3.10
gives us a more detailed information regarding the change in several vegetation type over the fire
periods.

In the northern region, Evergreen Needleleaf Forests and Mixed Broadleaf/Needleleaf Forests dom-
inate the vegetation cover, with a significant portion throughout the period. Open Forests and Dense
Herbaceous also contribute significantly but vary more over time. Sparse Forests and Sparse Herba-
ceous are present in smaller proportions. The northern region shows a more stable MDR with less
pronounced peaks. However, change in MDR could be attributed to change in vegetation to some
extent unlike Figure 3.9 where it was difficult to correlate vegetation change to MDR. Between the first
and second periods, there is a slight increase in MDR, which correlates with a reduction in Evergreen
Needleleaf Forests and a consistent presence of Dense Herbaceous vegetation. From the second to
the third period, the MDR declines, likely due to the emergence of Mixed Broadleaf/Needleleaf Forests
and a minor decrease in Dense Herbaceous vegetation. Between the third and fourth periods, the
MDR rises again, aligning with a decrease in Evergreen Needleleaf Forests. However, in the final pe-
riod, the MDR drops, corresponding to an increase in Evergreen Needleleaf Forests and disappearance
of Dense Herbaceous vegetation.

In the southern region, Open Forests and Sparse Forests are more prevalent, with Sparse Forests
having a higher percentage than in the northern region. Dense Herbaceous and Sparse Herbaceous
also have a significant presence, with noticeable variations over time whereas Barren is present spo-
radically in small percentages. The southern region exhibits more variability in MDR, indicating a more
dynamic landscape. The significant dip in the MDR value up to the third fire period corresponds to
decrease in percentage of Sparse Forests and dense herbaceous with an increase in percentage of
Evergreen Needleleaf Forests and Open Forests. A similar relationship between MDR and vegetation
type is seen in the last two fire periods where the MDR increases slightly before dipping again.

In both the regions, an increase in less dense vegetation types like Sparse Forests, Sparse Herba-
ceous and Barren tends to be associated with higher MDR values. Dense forest cover like Evergreen
Needleleaf and Mixed Broadleaf/Needleleaf tends to be linked to lower MDR values. Similar to the re-
sults of subsection 3.3.1, this analysis is also in alignment with the study of [21], additionally providing
a more detailed understanding of the effect of various vegetation types on MDR.
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Figure 3.10: The image illustrates the percentage distribution of various MODIS vegetation types alongside average MDR over
specified fire periods in the northern and southern regions. The stacked bar chart shows the percentage of each vegetation type
represented by various colours. Overlaid on this distribution, the red horizontal bars represent the average MDR values over
the same period, measured on the right Y-axis. The shaded region indicates the standard deviation values of the estimated
MDR showcasing uncertainty in the measurement. Compared to Figure 3.9, this figure offers a more detailed analysis of the

effect of vegetation on MDR due to the higher resolution data and a more extensive classification of vegetation types.
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3.3.3. Daily MDR link with MODIS Land Cover
For this analysis, the daily average MDR values based on TROPOMI resolution were calculated instead
of the 10-day average MDR used earlier, to determine if variations in daily average MDR could be
correlated to changes in vegetation according to MODIS land use data (see Figure 3.11). The daily
MDR shows fluctuations between values of approximately 0 and 8 for both the regions. These variations
are less prominent in the northern region compared to the southern region which is also the case in
10-day average MDR due to the presence of more types of vegetation in the southern region. Higher
MDR values often coincide with the low percentage of forest vegetation types and high percentage in
less dense vegetation types like Sparse Forests and Sparse Herbaceous. Days with high coverage of
dense type of vegetation (Evergreen Needleleaf) generally show lower MDR values. There are a few
days where MDR could not be calculated due to unavailability of positive enhancements of NO2 and CO.
On certain days, the standard deviation values are 0 since only one enhancement data was available
for that particular day. For instance, on the day of 24th of August, 2020 (in the northern region) only
one positive enhancement data was available for MDR calculation. A data availability analysis was
performed to identify the days with sufficient information to provide a reasonably accurate estimation
of MDR (see Figure A.2).

Over the span of several days, fires can spread, leading a 10-day average to include a wider range
of vegetation types. When analysing daily MDR, there tends to be less mixing of different regions into
a single estimate. Therefore, the link between MDR and vegetation type is likely to be observed over
shorter time intervals. This analysis suggests that there is a link between change in daily MDR and
vegetation type, with denser and predominantly forest type of vegetation cover contributing to lower
MDR values and vice versa. Therefore, some possibility exists to track daily MDR change with respect
to vegetation.

Figure 3.11: The image illustrates the percentage distribution of various MODIS vegetation types alongside daily average
MDR in the northern and southern regions. The stacked bar chart shows the percentage of each vegetation type represented

by various colours. Overlaid on each distribution, the red horizontal bars represent the average MDR value for that day,
measured on the right Y-axis. The shaded region indicates the standard deviation values of the estimated MDR showcasing

uncertainty in the measurement.



4
Discussion and Outlook

The first part of this work included estimating Mole Density Ratio (MDR), a proxy for combustion effi-
ciency, using TROPOMI retrievals of NO2 and CO during two major wildfires that occurred in the state
of California, USA in the year 2020. The wildfire spanned a duration of 50 days, and the average MDR
values, calculated over approximately 10-day intervals, were used to analyse the changes in MDR over
time. The variation in MDR was more noticeable in the southern region compared to the northern re-
gions. The reasons for such a difference was attributed to the dynamic landscape and the spread of
fire through several types of vegetation in the southern region as explained in section 3.3.

Subsequently, MDR was estimated using super-observations of TROPOMI retrievals of NO2 and
CO at different resolutions. These estimated MDR values were then compared to those derived from
TROPOMI retrievals in the first part of the work. In the northern areas, the MDR across all resolutions
ranged between 0 and 1, whereas in the southern areas, it varied between 0 and 3. While the tempo-
ral trend in the variation of MDR across different fire periods remained consistent across the various
resolutions, when comparing MDR across different resolutions, it was noticeable that the values varied
significantly, particularly in the southern region. TheMDR values derived from super-observations often
did not align closely with those estimated using TROPOMI resolution. Substantial differences in certain
observations suggest a loss of detail in estimation of MDR when super-observations are employed. As
discussed in chapter 1, the study conducted by [22] observed a decrease in the ∆NO2/∆CO ratio as
the number of pixels in the analysis increased. This decrease is attributed to the chemical removal
of NO2. Although they did not use the super-observation approach, some of the observed discrepan-
cies could be attributed to change in number of pixels. Additional factors may also contribute to these
discrepancies. For instance, the plume height of certain fires may exceed 10 metres. Consequently,
using 10-metre wind data in this study could introduce uncertainties into the calculation of NO2 and CO
enhancements and thus affect the determination of MDR.

This was followed by the study of the potential link between MDR and environmental indicators. No
definite conclusion could be drawn regarding the the effect of SPEI and SM on MDR change. While
variations in drought conditions (indicated by SPEI values) and soil moisture values were observed
across different fire periods and across both northern and southern regions, these variations did not
correspond to changes in MDR (see Figure 3.7 and Figure 3.8). This suggests that several other
factors influence MDR during wildfires, and the relationship between these environmental indicators
and MDR requires further investigation to be clearly understood. For instance, vegetation with higher
soil moisture content could result in a lower MDR compared to vegetation with lower soil moisture
content.

Additionally, this study included analysing change in MDR in relation to change in vegetation type
using GFED land use classification. This was repeated with the MODIS land use classification which
is available at a much higher spatial resolution with a more extensive classification of vegetation types
compared to the GFED. While the GFED data did not reveal any significant relationship between MDR
and changes in vegetation in the northern region, MODIS data offered more detailed information re-
garding the correlation between MDR and vegetation types. In the southern region, the MDR values
exhibited significant variation, which could clearly be correlated to changes in vegetation types. Higher
MDR values were observed during periods with a higher percentage of less dense (grassland type of
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vegetation) while periods with higher percentage of dense vegetation (forest type of vegetation) tend
to have lower MDR values. This confirmed past studies which show that vegetation dominated by
grassland is linked to flaming type of combustion and high MDR, while those dominated by forests are
linked to smouldering type of combustion and low MDR. However, it remains challenging to definitively
conclude whether the observed variations in MDR are primarily due to differences in the way of burning
(flaming versus smouldering) or are instead due to changes in fuel type (variations in vegetation).

Finally, daily average MDR was utilised instead of the 10-day average to understand whether fluc-
tuations in daily MDR could reflect changes in vegetation based on MODIS land use. It concluded that
change in vegetation type is also reflected in daily variations in MDR to a certain extent. However,
it is important to consider that factors other than vegetation, such as variation in winds, topography
and the short lifetime of NO2 could also contribute to daily variations in MDR. Furthermore, such an
investigation is subject to sufficient data availability for reasonably accurate estimation of MDR.

While the current study demonstrated a loss of information on MDR when super-observations are
employed and identified no correlation between MDR and SPEI or SM, the following potential research
directions are proposed:

• Further investigation could involve producing super-observations in a different way. Instead of
computing MDR using super-observations of NO2 and CO, it could be worthwhile to create super-
observations of MDR. However, the weights assigned to NO2 and CO are potentially different due
to variations in their pixel sizes, which could introduce complexity to this approach.

• The plume height of the fires could be estimated. As these plume heights typically exceed 10
metres, instead of using 10-metre wind data as used in this study, 100-metre wind data could be
used to calculate the enhancements of NO2 and CO, thereby reducing the uncertainty in MDR.

• The interplay between soil moisture variations and land cover types may also affect MDR. For
instance, vegetation with higher soil moisture content could result in a lower MDR compared to
dry vegetation. By integrating soil moisture variations with land cover classifications, the analysis
can potentially improve the understanding of wildfire behaviour and its contribution to NO2 and
CO emissions.

• As discussed in section 3.1, several enhancements of NO2 and CO in the southern region were
zero. The current study samples the background at a distance of 30 km upwind from the fire in
the southern region. Increasing this distance could help avoid sampling from the same grid cell.
It would be valuable to conduct a study on the effects of altering this distance on combustion
efficiency.

• While sampling background values of NO2 and CO, wind directions may vary when the sampling
distance is large. For instance, in the northern region, the background sampling locations, sit-
uated 90 km upwind, is likely to exhibit different wind directions compared to the wind over the
fires, potentially resulting in uncertain background values. To further investigate this source of
uncertainty, wind rose diagrams at the locations where background values are sampled could be
created and compared with the wind rose diagrams at fire locations (see Figure A.3).

• Since different types of vegetation respond differently to droughts (see subsection 3.2.1), it is
recommended that the Standardised Precipitation-Evapotranspiration Index (SPEI) aggregated
over a 9-month period (SPEI-9) or a 12-month period (SPEI-12) be used for regions dominated
by forest-type vegetation. Conversely, for areas primarily covered by grasslands, it is advisable
to use SPEI aggregated over a shorter duration, such as a 1-month period (SPEI-1) or a 3-month
period (SPEI-3). This approach will more accurately reflect the differing sensitivities of these
vegetation types to drought conditions and its influence on combustion efficiency. Additionally, a
higher spatial resolution dataset of SPEI and SM could perhaps shed more light and provide a
more detailed analysis on their relationship with combustion efficiency.
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A
Appendix

A.1. Data Summary
An investigation on the dataset was conducted to attain a more detailed understanding of the results
(see Figure A.1 and Figure A.2).

Reasons for Masked Values: Low-quality pixels, such as those affected by clouds, shadows, or
other forms of invalid data, are excluded from analysis to ensure the accuracy and reliability of the
results. For instance, TROPOMI employs quality assurance values for pollutants like nitrogen dioxide
(NO2) and carbonmonoxide (CO). If the data falls below the established quality assurance thresholds, it
is systematically excluded from the analysis. This practice is crucial in remote sensing and atmospheric
studies to avoid inaccuracies that could arise from poor-quality measurements.

Reasons for Negative Values: Orography may significantly influence the observed data, particularly
in regions with varied terrain, such as the south. In such areas, fire can spread across different eleva-
tions, leading to complex interactions between the terrain and pollutant dispersion. In certain cases, the
background concentration of pollutants might be sampled from valleys, where pollutant accumulation
can be higher compared to areas directly affected by the fire. Consequently, this can result in nega-
tive enhancement values, where the measured pollutant concentration in the fire-affected area is lower
than the background levels. Understanding these topographical influences is essential for accurately
interpreting pollutant data in heterogeneous landscapes. Furthermore, negative NO2 enhancements
were more frequent than those of negative CO enhancements. Nearby urban/industrial areas could
possibly have higher levels of NO2 compared to the fires, especially during the end of the fires leading
to more number of negative values of NO2 enhancements compared to CO enhancements.

Reasons for Zero Values: Frequent zero values in the southern region indicate that the distance of
30 km used for sampling background values of NO2 and CO could mean sampling data from the same
grid cell as the fire. This results in a significant proportion of NO2 and CO enhancement concentrations
being zero. This is especially true for higher resolutions evident by the increase in the number of zero
data points as super-observation resolution increases from 0.3°×0.3° to 0.5°×0.5°. While in the northern
region the distance used for sampling is 90 km which ensures that sampling is not done from the same
grid cell as the fire.

Since NaN, negative and zero values are excluded from the MDR calculations, the counts of unique
positive and positive data points represent the available data for these calculations.
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Figure A.1: Data Summary : The figure presents a comparative summary of data points for the northern (top) and southern
(bottom) regions. Each bar represents the number of data points within specific date ranges, subdivided by resolutions and

categories of data type, indicated in the legend. The shading and patterning within the bars distinguish these categories: Nan,
negative, zero, positive and unique positive values. Different colours represent different resolutions, providing a visual

representation of the distribution and variability of data across the defined periods for both regions.
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Figure A.2: Daily Data Summary for TROPOMI resolution : The figure presents a summary of data points for the northern (top)
and southern (bottom) regions. Each bar represents the count of different data types recorded on each day. This summary aids
in understanding the data availability and quality for each day, highlighting days with insufficient data for an unreliable MDR

estimation.
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A.2. Monte Carlo Simulation
Monte Carlo simulations uses random sampling to compute results. In the context of this study, such
random sampling helps in understanding the day to day variability of NO2 and CO. By executing several
iterations, a more accurate estimate of the expected value and variability of the MDR can be achieved.
Each iteration involves sampling a subset of NO2 and CO enhancements. Following sampling, the
means of these subsets are computed, and their ratio is taken to determine the MDR. This process is
repeated 10,000 times, resulting in 10,000 MDR values. Subsequently, a simple arithmetic mean and
standard deviation of these MDR values are calculated.

A.3. Wind Rose Diagrams
A wind rose is a graphical tool used to visualise how wind speed and direction are distributed at a par-
ticular location over a specified time period. These wind rose diagrams are circular with the directions
(N, NE, E, SE, S, SW, W, NW) marked around the circumference. The variations in wind directions
between the two regions is also noticeable. The subplots on the left, corresponding to the northern
region and depicted in blue, illustrate a higher variation in wind direction compared to the southern
region subplots on the right, shown in red (see Figure A.3).
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Figure A.3: Period wise Wind Rose Diagrams for the northern and the southern regions. The concentric circles provide a scale
for frequency, marked at various intervals while the wind speeds are colour coded with blue for winds in the northern region and
red for winds in the southern region with darker shades representing higher wind speeds. For example, the top most wind rose
diagram on the right for the southern region (2020-08-21 to 2020-08-31) has the longest bar reaching the 43.2 mark suggests

that winds from the SW direction were the most frequent, with speeds mostly above 2.0 m/s.


	Abstract
	Introduction
	Methodology and Data
	Methods
	Calculation of background values of NO2 and CO
	Calculation of Mole Density Ratio (MDR)

	Datasets
	TROPOMI Retrievals
	Nitrogen dioxide (NO2) 
	Carbon monoxide (CO)
	Super-observations

	Environmental Indicators
	Standard Precipitation-Evapotranspiration Index (SPEI)
	Soil Moisture (SM)

	Land Cover Data
	Global Fire Emission Database (GFED)
	Moderate Resolution Imaging Spectroradiometer (MODIS)

	Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product 
	ERA5 Wind


	Results
	Mole Density Ratio
	Mole Density Ratio (MDR) and Environmental Indicators
	MDR link with Standard Precipitation-Evapotranspiration Index (SPEI)
	MDR link with Soil Moisture (SM)

	Mole Density Ratio (MDR) and Land Cover
	MDR link with GFED Land Cover
	MDR link with MODIS Land Cover
	Daily MDR link with MODIS Land Cover


	Discussion and Outlook
	References
	Appendix
	Data Summary
	Monte Carlo Simulation
	Wind Rose Diagrams


