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MOTION OF FREELY FALLING SPHERES AT MODERATE REYNOLDS NUMBERS
Hermann Viets*
von Karman Institute, Rhode-Saint-Genese, Belgium
and
D. A, Lee**
Aerospace Research Laboratories, WPAFB, Ohio 45433
Abstract
A basic mechanism for the wandering of freely falling spheres, in
certain ranges of Reynolds number and sphere-to-fluid density ratio, is
shown to be coupling between rocking of the spheres and their motions
perpendicular to the free fall direction. The rocking frequency is
determined by small displacements of the spheres' centers of mass from

their geometric centers.

Introduction

Several observers have noted that solid spheres falling freely in a
viscous fluid do not always move along straight lines2?3, It is natural to
suppose that the excursions may be due to some instability of the separated
flow region behind the sphere, or to regular vortex shedding. These
phenomena may very well cause wandering when the spheres fall at certain
Reynolds numbers, for certain ratios of the sphere and fluid densities.
However, during experiments with spheres whose specific gravities were close

to one, falling in water at Reynolds numbers between 3000 and 35,000, we
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noticed that the wahdering was always associated with rocking of the spheres.
Pursuing this, we have found fairly good agreement between observations and
a theory in which wandering is predicted as the result of coupling between
rocking of the spheres due to small displacements of their centers of mass
fram their geometric centers, and their lateral motion. The coupling is
essentially the same phenomenon as the lateral force on a sphere spinning in
a uniform flow predicted by Stokes! and observed by Maccolll.

The wandering phenomenon described in this paper appears to be relevant
to both atmospheric and oceanic sounding with spherical probes. For example,
balloon wind sensors operating at Reynolds numbers in the range of our study

do not rise vertically, even in a calm atmosphere".

Preliminary Theory

Our experiments involved a turbulent separated flow about a bluff body
in unsteady motion. In view of the complexity of this flow, we found it
appropriate to develop a phenomenological theory along the following lines:

If a sphere is biased, i.e. if its center of mass is displaced from its
geometric center, in a free fall it will tend to oscillate about a preferred
orientation in which its center of mass is directly below its geometric
center. Quite noticeable oscillations occur even when the c.m. is displaced
from the center by only a few hundredths of a radius. Also, when a sphere
rotates in a uniform flow, it experiences a '""lift" force in a direction
perpendicular to the uniform flow. This 1lifting phenomenon can couple
bias-induced rocking to the lateral motion of a freely falling sphere, so

that a wandering motion is observed.



Observations in the literature permit us to make this notion more precise.
According to Maccoll?, J. J. Stokes suggested that a sphere in a uniform flow
of speed Uo’ rotating with angular speed w about an axis perpendicular to the

uniform flow, will experience a force of magnitude

F=m%_ 1

in the direction of U x Q, where Q is the sphere's angular velocity and U
the free stream velocity. Stokes conjectured that the simple bilinear

dependence of F on w and Uy shown in (1) would be a good approximation so
long as the largest tangential velocity of the sphere was smaller than Ub,

i.e. so long as
o = wa/Uj < 1. (2)

Maccoll® tested this model experimentally. His results (Fig. 1) show that,

provided o is neither too large nor too small,

F = i ma2U_2 k(o-0.) ' (3)
2 o o’* _

Here the non-dimensional constant k is the slope of Maccoll's CL-O curve in
its linear portion. As indicated in Fig. 1, k depends on Reynolds number Re.
Provided that g>>0 while still in the linear range,

F:

T oo atk Wl = G0K) WU, 4)
2 °f o 8 v o

where v ps/pf, and m is the mass of the sphere. Thus, comparing (4) and

(1), one sees that Maccoll's observations confimm (1) for some values of o, with

c=32k ()
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To construct a preliminary theory of the coupling between a freely
falling sphere's rocking and its lateral motJ}on; we assume that: |

1.) Equation (1), subject to inequality (2); gives an acceptable
approximation to the lateral force experienced by a rocking sphete, even
when w is not constant, but is a periodic function of time;

2.) The rocking of a biased sphere is not itself affected by the
disturbances it produces in the sphere's motion;

3.) The vertical motion of the wandering sphere is negligibly different
from a steady fall. This assumption was in fact satisfied in each of our
experiments, after a brief initial acceleration period.

Assumption 2.) permits us to treat the rocking and the lateral motion
independently. For the present we will neglect damping, and assume that the

rocking of a biased sphere is described by the equation
I& = -6mg sina * -dmga, ©6)

where a is the sphere's angular displacement from its equilibrium orientation
(Fig. 2), I its moment of inertia about the axis of rotation, and § is the
distance of the sphere's c.m. from its geometric center. One then finds,

on solving (6), that the angular displacement of the rocking sphere is
a(t) = a, exp (ipt),

where as usual physical quantities are to be taken as the real parts of

complex quantities, and where

om;
2 /.
Then the sphere's angular speed w is given by

w=aq= ipe exp (ipt). (7)



If now y denotes the sphere's displacement in the direction of U x @,

by assumption 1.) its lateral motion will be described by

my = F, ®)
or, using (7) and (1),
my = iCp a U, exp (ipt), 9)
whence
-iC a U
y(t) = m; O exp (ipt) (10)

Thus this first model of the focking—wandering phenomenon predicts that
the rocking and the wandering are sinusoidal motions at the rocking frequency
of the sphere, and that the wandering lags the rocking by 90°. In each of
our experiments both rocking and wandering were indeed almost sinusoidal
motions at the sphere's rocking frequency. In some cases, when the frequency
was not too large, the 90° phase shift was also observed (Fig. 3). However,
especially at higher frequencies, the observed phase shift was greater than
90°, Also, as figure 3 illustrates, the rocking was always appreciably
damped. Finally, it proved necessary to induce angulér displacements on the
order of one radian so that the rocking could be measured accurately, which
casts doubt on the linearization of (6). | |

To remove these discrepancies, we developed the modified theory presented

in the following sections.

Modified Theory

The change in phase shift with frequency seems likely to arise because

changes in w do not in fact cause instantaneous changes in F, as required




by (1). Presumably the change in F inyolves a rearrangement of the region
of separated flow behind the sphere, or at least of the separation line on
the sphere, which takes place over a significant time. To account for such

a delay, we replaced (1) with the equations

F

Uoa | (11)

g+t H (12)

€
"

These equations imply that if w is changed suddenly from one constant value
to another, F does not change abruptly, but tends to its new value with the
factor (1 - exp(-t/t)). It must be emphasized that the modified relation
(11), (12) between w and F is an entirely artificial one, introduced to give
some idea of the effect of a time lag between changes in w and the
corresponding changes in F.

Using (8), (11), _and (12), one sees that in the new model y and o are

connected by the relation

a (13)

<L
+

AN
0

A<

where the quantity

v

- i

has the dimensions of a velocity.
The modified theory is completed by taking the pendulum equation with

linear damping, instead of (6), to describe the rocking:

I8 = -émg sin o - ¢& (15)



Boundary conditions appropriate to our experiments were

y(0) = 0, y(0) = 0, F(@Q) = 0, a(0) = a_, a(Q) = 0. 16)

The wandering determined from (13), (15), and (16) is a damped oscillation
about a straight line of negative slope. Such a negative drift was observed
in all our experiments. The observed drifts were considerably smaller than
those predicted by the theory, however, and the drifting eventually stopped,
so that the oscillations took place about a vertical line shifted from the
original free-fall line. Such a drift can be produced by the introduction
of a drag term into the equation of the lateral motion, Eq. (8). We think,
though, that the additional insight which might be gained by adding such a
term to the present model does not justify the required effort. Also, the
drift predicted by even a modified model will be strongly affected by the
initial conditions. While (16) is certainly a plausible set of initial
conditions to use with a model, the actual beginning of the motion involves
acceleration of the sphere, formation of a separated flow region behind the
sphere, and transition of this region to turbulence. The transition is
generally accompanied by a pronounced burst of vortex shedding. Some effects
of the starting process could be accounted for by modifying the present model,
Again, however, we do not think such a change would materially improve one's
understanding of the basic phenomenon, and we have removed the drift from
both theoretical and experimental data in the following. We hoped that the
resulting model would give acceptable predictions of the frequencies of the
rocking and wandering, and of the phase shift between them, after an initial

"starting" period, thus confirming that the basic mechanisms of the




phenomenon had been identified. It was gratifying but puzzling to find that

in many cases the model (13), (15), and (16) also gave a fairly gooci point-
by-point prediction of the observed motion, after a starting period of less
than one period of the rocking. In the following sections the experiments
and the comparisons between theory and experiments will be discussed in

detail.

Description of the Experiments

To test the validity of the theoretical model of the wandering described
above, biased spheres were released in a water filled tank and photographed
with a motion picture camera. Data were obtained from frame-by-frame
projection of the films, and included vertical and horizontal position and
angular orientation.

The investigation was carried out in a plexiglass water tank eight feet
high and one foot square in cross section. The lower half of the tank was
reinforced by aluminum angles at the corners, which were held in place by
bands of steel wire separated by a distance of two inches. The spheres were
released at an angle of 90° from their statically stable orientation. The
releasing mechanism consisted simply of a clamp constructed of spring steel,
which held the sphere at its initial orientation until release.

Biased spheres were constructed by two different methods. The first
was to fill table tennis balls with mixtures of solids of varying densities,
ranging from wax through clay to metal. The most successful method of
achieving low Reynolds number motion and low bias was to inject the sphere
with a gelatin solution using a hypodermic needle. The solution would then

solidify and thus produce the correct boundary condition at the inside of
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the sphere. The gelatin-filled spheres had specific gravities only slightly
greater than one and hence produced relatively low Reynolds number ﬁotion.
Liquid filled spheres could not be used since they do not satisfy the solid
body condition of interest to us.

The second method was to construct a single sphere with variable bias.
This was accomplished by first making a plexiglass sphere. A hoie was then
drilled on a diameter through the center of the sphere. This hole was filled
with a round plexiglass rod and the sphere was reworked. In this way end
caps were produced for the hollow éore of the sphere. Small disks of the same
diameter as the core hole were manufactured of plexiglass and steel. In this
way it was possible to fill the core of the sphere with various combinations
of plexiglass and steel disks, and produce various biases.

An attempt was made to visualize the flow about the rocking sphere by the
use of water-soluble fluorescein dye. However, the dye method was not
adequate for visualization of the time evolution of the entire flow. It was
possible to show that at a Reynolds number of several thousand the wake
behind a non-rocking freely falling sphere does not consist of a coherent
recirculation region which is continually shed. On the contrary, after a
shedding of vorticity during the initial acceleration, the wake appears to
be laminar for almost its entire length and turbulent at its end. It is
never entirely shed, although there is an exchange of fluid at the end of
the wake. Fluid leaves the wake on one side and enters it on the other.

This process is illustrated in Fig. 4, where it is evident that fluid is

entering the wake on the right side and leaving it on the left.

Comparison between Tiieory and Experiment

To compare the model of the wandering sphere given by Eqs. (13), (15),




and (16) with experiments, values of the damping factor ¢ and time constant
T are required. Since they are determined by the mean flow, T and q>‘ should
be functions only of Reynolds mumber. One could obtain t and ¢ by curve
fitting to the observed motion at one rocking frequency for each Reynolds
number, and check that these values led to satisfactory predictions for the
motion at other frequencies for the same Reynolds number. However, this
amounts to quite a bit of curve fitting. To provide a more demanding test
of the model, involving less curve fitting, we determined t and ¢ by curve
fitting at only one Reynolds number (2.78x10*) and one frequency (8.544 sec ').
We assumed that the damping would not vary markedly with Reynolds number, and
the same damping factor was used to obtain theoretical predictions for all
runs. The time constant T was scaled with Reynolds number by the following
considerations:

We interpret T as the time constant of some readjustment of the separated

wake. We assume that

Uo

is the time scale of this readjustment, so that

ToT. (18)
Since

2

a _ a

0= e (19)
for spheres of equal radii fallimg im a given fluid,

ToeTo=l/P2., (20)

10




The comparison between theory and experiment is shown in Figs. 5 and 6.
In Fig. 5, observed and predicted phase shifts are shown as functions of
frequency, at different Reynolds numbers. It appears that the theory does
predict qualitatively the connection between phase shift and frequency over
the range of frequencies and Reynolds numbers tested, although agreement is
poor at higher frequencies and Reynolds numbers. Fig. 6 shows two examples
of the comparison between predicted and observed trajectories and rocking
motions for Reynolds numbers and frequencies considerably different from the
one at which T and ¢ were determined. The predicted rocking agreed well with
observations in nearly every case, so that the assumed independence of ¢ from
Reynolds number is better supported than is the assumed variation of T as

1/Re.

Occurrence of the Phenomenon

The coupling necessary for the wandering described in this paper does
not occur if o is too large. Essentially, if the rocking frequency is too
high, the sphere rocks as it falls but does not wander. A rough estimate of
the range of parameters over which bias-induced wandering occurs can be
obtained from Maccoll's data, Fig. 1. From this picture it is clear that,
for the steadily spinning sphere, lateral force is proportional to angular

velocity only if
o < cmx(Re) 21)
While we have seen that there are differences between the periodic and

steady-state cases, it still seems that the required coupling is unlikely to

occur in the periodic case unless (21) is met, perhaps for a different




GmmcRe) than that of the steady-state case. Now, by assumption 3.)

whence

v - f2aly-l (22)

Also, the amplitude of w for the rocking sphere is

o n T 2

Taking this value for w to compute a o for the rocking sphere, one has

/ C52§eie
g = (Xo ']j_é——ﬁ_—lj——, where B = G/a. (24)

Condition (21) then implies that wandering does not occur unless

(Re)B
%;'E%VTIT_ < omxz(Re) (25)

On the other hand, if o is too small, the lateral force may be so small
that other perturbers, such as turbulence in the fluid, mask its effects.

It is clear from (24), however, that if y is very close to one, even a very
small bias 8 will bring o into the range where bias-induced wandering may be
expected.

The mechanism we have described will certainly be affected by transition
at Reynolds numbers around 10°, and by the possibility of a stably oscillating
recirculation region at Reynolds numbers below a few hundred. Therefore the
phenomenon considered here is to be expected mostly at moderate Reynolds

numbers (10° < Re < 10°) and low mass ratios (1 z vyl < 1.2).

12




We remark in passing that we observed no evidence of the 'negative lift"

observed - and questioned - by Maccoll for g < 0.5, even though some of our

experiments were at g = 0.16.

Summary and Conclusions

We find sufficiently good qualitative agreement between observed motions

of wandering, falling spheres and the present theoretical model, in which the

wandering is ascribed to coupling between bias-induced rocking of the spheres and

their lateral motion, to conclude that this model does reveal the basic

mechanisms of the wandering at certain combinations of Reynolds number,

frequency, and sphere-to-fluid density ratio. The bias-induced wandering

described above is more likely to occur for small, inadvertent bias if the

sphere is only slightly more (less) dense than the fluid in which it falls

(rises). Inequality (25) gives some indication of whether or not bias-

induced wandering will occur. The assumptions that damping of the sphere's

rocking is independent of Reynolds number, while the time constant for the

response of the lateral force on the sphere to changes in its angular

velocity is inversely proportional to Reynolds number, lead to fair agreement

with experiments over the range 2.18x10" < Re < 3.13x10%, which seems note-

worthy in view of the complexity of the flow.

Acknowledgements

The experiments were supported by Grant No. 478 from the NATO Advisory

Panel on the Research Grants Programme. We are grateful to Dr. J. D.

DeLaurier for his help with the experiments.




REFERENCES

(1) Maccoll, J, W., "Aerodynamics of a Spinning Sphere,“ J, Roy, Aero. Soc.,
Vol. 32, 1928, p. 777.

(2) Schmiedel, J., “Experimentelle Untersuchungen iiber die Fallbewegung von
Kugeln und Scheiben in reibenden Fliissigkeiten," Phys. Zeit., Vol. 29,
No. 17, September 1928, pp. 593-610.

(3) Shafrir, U., "Horizontal Oscillations of Falling Spheres," A. F.
Cambridge Res. Labs., AFCRL-65-141, AD 621 741, Feb. 65.

(4) Scoggins, J. R., '"Aerodynamics of Spherical Balloon Wind Sensors," J.
Geophys Res., Vol. 69, No. 4, 1964, pp. 591-598.

(5) Taneda, S., "Experimental Investigation of the Wake Behind a Sphere at

Low Reynolds Numbers,'" J. Phys. Soc. Japan, Vol. 11, No. 10, October

1956, pp. 1104-1108.




Figure
Figure
Figure
Figure
Figure

Figure

FIGURE CAPTIONS

Lift and drag on a steadily spinning sphere (from Maccoll').
Description of biased sphere and its motion.

Low frequency rocking and wandering. Wandering lags rocking by 90°.
Wake of freely falling sphere.

Variation of the wandering's phase lag with frequency and Reynolds
number. The upper and lower solid lines show the theoretical
limiting values for large and small frequencies, respectively.

Theoretical and experimental trajectories.
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