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ABSTRACT

Current bioenergy development has emphasized on degraded land, since the sustainability of bioenergy in the
forest sector remains a subject of debate related with emissions and deforestation risk. Thus, this study aims to
open new perspectives of how degraded land and social forestry can be potentially combined to significantly
impact the energy transition and environmental-societal enhancement. Considering sustainability of Bali as a
small island with its unique customary governance structure, a model of biomass energy optimization using
geospatial fuzzy-multicriteria analysis was developed to select potential green energy source sites. Firstly, po-
tential degraded land and social forestry were mapped to identify potential feedstock, then normalized using
Euclidian Distance and Fuzzy Logic based on identified five sustainability criteria. They are availability of raw
material, road, port, transmission, and demand proximities. Meanwhile, using identified three restriction criteria,
i.e. protected area, slope and land-use restrictions, a restriction map was developed. The two maps were then
integrated using Geospatial-based multicriteria analysis, fuzzy logic and Analytical Hierarchy Process (AHP)
weighting method, to further identify potential green energy source map. The integration shown a significant
increase of 60 % in land availability for bioenergy development. Results of study recognized potential 36,527 ha
of degraded land; 21,671 ha of social forestry; and 40 optimal locations for bioenergy facilities, considering
various spatial and temporal criteria. To conclude, the identified 120 social forestry sites in Bali involving 78,385
household provide opportunity to a community based socio-economic coupled with revitalizing environment
efforts, which lead to massive net zero emissions community participation. Further, the integration of social
forestry and degraded land should be highly recommended to policy maker in bioenergy development.

Introduction

Background and motivation of the study

Therefore, optimizing biomass energy production becomes an indis-
pensable pathway forward in addressing energy needs sustainably.
The sustainability of bioenergy remains a subject of debate,
emphasizing significant contrasts in perspectives on managing the entire
supply chain. Especially when it comes to resource management. Wood-

The quest for sustainable energy sources gains relevance as the world
addresses the climate crisis. Bioenergy stands as a promising renewable
energy source required for attaining energy security and independence
beyond the oil era (Chung, 2013; Hess et al., 2016; Lewandowski, 2015).
Bioenergy, including traditional biomass usage, dominates the global
renewable energy landscape, contributing about 12 % to final energy
consumption, as reported by the International Renewable Energy
Agency (IRENA, n.d.). IRENA projects a significant increase in bioenergy
consumption, almost tripling from 54 EJ in 2018 to 153 EJ by 2050.
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based biomass statistically to be the main resource globally, with the EU
and UK being the major consuming regions (IRENA, n.d.). However,
numerous studies continue to raise concerns about the long-term envi-
ronmental impact of forest-based bioenergy production. This debate
spans between studies suggesting that the risk of forest bioenergy es-
calates long-term greenhouse emissions due to carbon debt (Marland &
Schlamadinger, 1995; Mitchell et al., 2012; Schlamadinger & Marland,
1996), and those advocating the opposite view that bioenergy consid-
erably reduces emissions as an alternative to fossil fuels. (Bentsen, 2017;
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Nomenclature

AHP Analytical Hierarchy Process
GIS Geographic Information System

RUED Rencana Umum Energi Daerah / Regional Energy
General Plan

BPKH Balai Pemantapan Kawasan Hutan / Forest Area
Consolidation Agency

DKLH Dinas Kehutanan dan Lingkungan Hidup / Forestry and

Environment Service
DEM SRTM Digital Elevation Model Shuttle Radar Topographic

Mission

DEMNAS BIG Digital Elevation Model Nasional Badan Informasi
Geospatial

SHP Shapefile

PLN Perusahaan Listrik Negara / State Electricity Company

NGO Non-Governmental Organization

IPP Independent Power Producer

CR Consistency Ratio

SARBAGITA Denpasar, Badung, Gianyar, and Tabanan
Metropolitan

Nabuurs et al., 2017). Nevertheless, continuous research efforts have
actively addressed this issue over time, resulting in the emergence of
contradictory evidence and innovation among studies that have effec-
tively reduced the perceived risk of the initial hypothesis (Giuntoli et al.,
2022). Hence, a new perspective has emerged in overcoming the bio-
energy supply instability challenge by involving careful risk assessment
of forests as a potential source of biomass.

Biomass raw materials instability has persistently hindered the bio-
energy supply chain (IRENA, n.d.). Numerous studies aim to assess the
sustainability of these raw materials. Previous research, primarily
motivated by environmental concerns, heavily focused on degraded land
as the key pathway for bioenergy development (Milbrandt & Overend, n.
d.; Jaung et al., 2018; Nijsen et al., 2011). This focus on degraded land
comes from its definition as areas affected by activities like deforesta-
tion, mining, or agriculture, contributing to perceived environmental
benefits. However, there is still a lack of study in evaluating the potential
of the forest sector to bioenergy. The growing clarity regarding the
ambiguous risks associated with forest bioenergy in academic discourse
(Bentsen, 2017; Nabuurs et al., 2017) presents an opportune moment. It
opens a window to redefine the role of forest bioenergy in biomass
development alongside degraded land, emphasizing a strict commit-
ment to environmental sustainability criteria.

Numerous studies affirm that sustainable forest management stands
as a viable solution. Research focusing on social forestry or community-
based forest management consistently highlights its superior effective-
ness, producing better environmental and socio-economic outcomes
compared to other alternatives (Newton et al., 2015; Octavia et al.,
2022). The success of social forestry has notably positioned it as a key
element within Reducing Deforestation and Forest Degradation Emis-
sions (REDD+) policy strategies across various nations (Newton et al.,
2015; Octavia et al., 2022). Evidence from multiple studies further
supports this premise; for example, in Tanzania, community-managed
forests demonstrate greater efficacy in preserving forested lands
compared to exclusive national government management (Blomley
et al., 2008). Similarly, community forest management in Nepal is
associated with significant growth in forest area (Gautam et al., 2002).

A multi-criteria decision analysis (MCDA) as a state-of-the-art
method capable of considering various conflicting criteria is recog-
nized in renewable energy planning, as a field laden with uncertainty
and high complexity (Loken, 2007). Over the years, diverse MCDA
methods have been proposed. This study delves into the specific MCDA
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method in the classification of Value Measurement Models categorized
by Belton and Steward (Belton & Stewart, 2012). Through this
approach, different criteria will be assessed in terms of their influence on
the total score, combined by the Analytical Hierarchy Process (AHP)
developed by Saaty (Saaty, 1990), as a method for assigning value
functions with the use of pair-wise comparisons (Greening & Bernow,
2004; Jayarathna et al., 2022). Meanwhile, resource management in
renewable energy planning compels MCDA to evaluate -criteria
involving spatial and temporal uncertainty (Rodriguez et al., 2017),
such as leveraging geographical data for widely dispersed biomass,
minimizing transportation costs, and other economic, social, and envi-
ronmental criteria. Therefore, the use of Geographic Information Sys-
tems (GIS) serves as a valuable tool to assess the potential availability of
biomass raw materials (Beccali et al., 1998), as well as the challenges of
adapting the AHP method in dealing with spatially complex un-
certainties (Jaung et al., 2018; Kordi & Brandt, 2012), prompting this
study to integrates fuzzy logic with AHP to evaluate spatial and temporal
uncertainty criteria. Studies such as Rodriguez et al. (Rodriguez et al.,
2017) and Cebi et al. (Cebi et al., 2016) concluded that employing fuzzy
logic theory for modeling enhances the accuracy of biomass energy plant
location suitability analyses.

Research gaps and aims of the study

A discourse on the integration of degraded land with community-
managed social forestry, aiming to significantly impact the energy
transition and environmental-societal enhancement, is recognized in
this study. By focusing on the potential of these two land types as sources
of bioenergy raw materials, the study aims to develop a model for
determining suitable land areas, and identifying alternative sites for
wood-biomass energy conversion facilities and power plants in the study
area. Previous works commonly utilized GIS for potential assessment,
however this study attempts to expands the integration of Fuzzy-AHP
and Multi-Criteria Spatial Methodology by addressing limitations of
the prior studies that failed to comprehensively consider all sustain-
ability factors (Delivand et al., 2015; Jayarathna et al., 2022; Sharma
et al., 2017).

Contribution of the study

The primary contribution of this study in a theoretical context is its
initiation of a comprehensive discourse on the integration of degraded
land and social forestry, serving as a catalyst to foster meaningful dis-
cussions and considerations in the realm of sustainable land use prac-
tices. Another practical contribution of this study lies in paving the way
for future research advancements and policy frameworks within Indo-
nesia's renewable energy landscape. It facilitates detailed studies and
informed discussions concerning the tangible social, economic, and
environmental effects linked to the production of biomass energy.

Degraded land and social forestry in Bali, Indonesia

Indonesia, a significant bioenergy exporter, mainly contributes 35
billion liters of palm-based biodiesel and 2390 thousand tonnes of solid
biomass (IRENA, n.d.). Despite boasting a potential of 32,654 MW, the
installed capacity stands at a mere 1671 MW, accounting for around 5 %
(State Electricity Company (PLN), 2021). However, Indonesia has the
characteristics of an archipelago. Bali Island, which is currently leading
as one of the regions with the most aggressively pursuing energy tran-
sition, struggles to meet the target due to its condition as an isolated
Island that wants to have its own clean energy security (Provincial
Government, n.d.; Provincial Government, n.d.). Bali itself has a distinct
advantage in its strategic approach to governance through strong
customary villages (Desa Adat), setting it apart from other regions of
Indonesia. This unique governance structure could potentially serve as a
catalyst to enhance community engagement and alleviate tenure-related
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challenges, thus optimizing biomass production in social forestry. This
distinctive attribute positions Bali to stand as a compelling location for
biomass energy development.

Previous studies in Indonesia primarily defined potential land for
bioenergy emphasizing degraded land as the remaining potential (Artati
et al.,, 2019; Baral et al., 2022; Jaung et al., 2018). This is due to the
limited room for land expansion or conversion into agricultural areas
despite Indonesia possessing substantial landmass (Artati et al., 2019).
Furthermore, this approach anticipates the consequences of deforesta-
tion in Indonesian tropical forests, particularly concerning palm oil
cultivation (Jaung et al., 2018), which also holds potential for biofuel
production, considering Indonesia's position as the world's largest palm
oil producer and exporter. Nonetheless, given Indonesia's ambitious
targets, especially for smaller islands like Bali, which are committed to
independent clean energy, necessitates novel strategies to support sus-
tainable transitions. Hence, despite debates regarding forest utilization
for bioenergy, this study seeks to explore new dimensions of potential
land worthy of consideration. It does so cautiously, addressing the risks
outlined in academic discourse. Consequently, this study recognizes that
integrating social forestry with degraded land could provide solutions to
prevailing uncertainties.

Degraded land

Assessing the biomass energy potential depends on the availability
and attainability of land area, with the role of degraded land in biomass
energy production gaining increasing interest (Offermann et al., 2010).
Degraded land refers to areas that have suffered damage from activities
such as deforestation, mining, or agriculture. According to Jaung et al.
(Jaung et al., 2018), bioenergy production in degraded lands offers a
way to conserve critical resources by using lands that have limited roles
for food production and other functions. However, measuring the
biomass potential of degraded land and estimating achievable energy
crops is a complex task (Campbell et al., 2008).

The availability of degraded land area holds significant importance
as it ensures biomass production with minimal competing land uses
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(Offermann et al., 2010). Previous study (Jaung et al., 2018) shows that
degraded land without a commitment to conservation, agriculture,
mining, or built-up land can serve as potential biomass production sites.
However, implementing this approach in Bali, where land availability is
limited and most of the forestry sector is under protected status, was not
without its challenges. A potential solution lies in the conversion of
degraded lands previously used for mining and agriculture with the most
severity. Research from Menéndez et al. (Menéndez et al., 2019) em-
phasizes the significance of landscape recovery through the restoration
of degraded mining lands. They also argue that energy forests can be
cultivated efficiently on agricultural land by utilizing agroforestry
schemes to maintain an optimal land use balance and preserve ecolog-
ical harmony.

Social forestry

Forest ownership in Indonesia is classified into four categories: state
forests, non-state forests, areas for other purposes, and private-
community lands (Rakatama & Pandit, 2020). State forest jurisdiction
covers approximately 63 % of the total forested area. This area is then
allocated for management by the government or community. Non-state
forests include customary forests, which are managed by local com-
munities based on their traditional practices and beliefs. Social forestry
or community-based forest is a relatively new concept in Indonesia,
which aims to formalize the traditional forest management practices of
local communities and empower them to manage and benefit from forest
resources.

Social forestry scheme (as shown in Fig. 1) encompasses community
forestry, village forests, community plantation forests, forest partner-
ships, and customary forests (Moeliono et al., 2023). Among those five
types of social forests, four are the state forests allocated to community
forestry. Only customary forest is a non-state forest. Different charac-
teristics occur, such as tenurial, contract terms, and permitted activities,
which can influence their functions and outcomes. The role of Social
Forestry within Indonesia's land tenure systems is to establish a legal
framework and provide institutional support for local communities. This

Status of Forest
based on law 41/1999

3| State Forest Area Managed by Community Forestry ;
Government ' (Hutan Kemasyarakatan) .

Allocated to .| Village Forest ;

Community Forestry (Hutan Desa) '

Community Plantation
Forest
(Hutan Tanaman Rakyat)

Forest Partnership
(Hutan Kemitraan)

Non State Forest
Area

Private Forest Social Forestry ]

Customary Forest
(Hutan Adat) H

Customary Forest —>

Fig. 1. Social Forestry Scheme in Indonesia.
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Social Forestry framework enables these communities to manage and
derive benefits from forest resources, all while ensuring the conservation
and protection of forest ecosystems. (Rakatama & Pandit, 2020).

Material and method

For the purpose of the study, a spatially analytical and multi-criteria
approach was developed to map out and optimize biomass energy in the
upstream and downstream processes. This study utilized a combination
of primary and secondary data to ensure depth of information in the
research. Primary data included expert opinions and a literature review,
while secondary data encompassed diverse geographic and de-
mographic information relevant to Bali. Secondary data, comprising
spatial and demographic information, was acquired from various gov-
ernment institutions and agencies in Bali Province. These secondary
data included:

1. Degraded land and social forestry from the Forest Area Consolidation
Agency (BPKH) 8 Denpasar and the Forestry and Environment Ser-
vice (DKLH) of Bali Province

2. Protected area from the Bali Provincial of Public Works

3. Slope classification 30-m DEM SRTM Bali Province DEMNAS BIG
data

4. Land use data from BPKH 8 Denpasar

5. Road Network SHP data from the Bali Provincial Office of Public
Works

6. Port SHP data from the Bali Province Spatial Plan

7. Transmission Network SHP data and Electricity Demand SHP data
from PT PLN Bali Distribution Main Unit.

Data collection took place in June 2022, and all geospatial data were
standardized to the WGS84_1984_UTM_Zone_50S projection system.
Various types of data analysis were conducted within the ArcGIS Pro
environment and Expert Choice Software. The analysis consisted of re-
striction area analysis, biomass feedstock analysis, sustainability criteria
analysis, fuzzy membership normalization, Analytical Hierarchy Pro-
cess, and weighted overlay analysis (as shown in Fig. 2).

Defining criteria

For optimal sustainability and efficiency, a broad range of criteria
was considered, categorized into restriction criteria and sustainability
criteria for suitable site locations in this study. Restriction is a criterion
where the location of biomass facilities and power plants is not allowed.
Meanwhile, sustainability is a criterion that brings sustainability to the
development of bioenergy. The compilation of criteria incorporated
Geographic Information System (GIS) approaches from seven previous
studies (Delivand et al., 2015; Hohn et al., 2014; Jayarathna et al., 2022;
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Perpina et al., 2013; Rodriguez et al., 2017; Sultana & Kumar, 2012;
Zhang et al., 2011), laying the groundwork for this study's comprehen-
sive assessment framework (Table 1). Table 1 presents the identified
criteria for previous research and the position of this study, delineating
the focus of criteria used for sustainability and restriction criteria. A
total of 16 criteria were obtained from seven previous studies, which
will be later synthesized as sustainability criteria and restriction criteria.

Based on the combination of these two criteria, an overall Sustain-
ability and Restriction Criteria reference framework was developed as
also shown in Table 1.

Sustainability criteria

Sustainability criteria were adopted from previous studies (see also
to Table 1.), encompassing the availability of raw materials, industrial
areas, population density, proximity to roads and ports, and distance to
transmission networks. Subsequently, these sustainability criteria were
amalgamated into five crucial components tailored specifically for the
development of biomass energy in Bali: availability of raw materials,
proximity to ports and road networks, proximity to demand load centers
(comprising population density and industrial areas), and proximity to
transmission networks.

Restriction area criteria

Optimizing biomass energy both in the upstream and downstream
processes included environmental and regulatory considerations. The
study focused on identifying restriction areas for biomass power plants
and facilities. Guided by previous studies and customized for the unique
context of Bali, six restriction criteria were selected: conservation areas,
slopes, lakes, land cover, built-up areas, and airports. These criteria were
chosen based on environmental considerations that required protection
and areas unsuitable for biomass energy plant construction, as indicated
in previous literature studies detailed in Table 1. These criteria were
subsequently consolidated into three broader categories: restrictions on
protected areas, slope, and land use. The land use restriction encom-
passed considerations of lakes, land cover, built-up areas, and airports.
Further, a buffer zone was created for each restriction to calculate land
availability, as demonstrated in Table 2.

Holistic selection criteria framework

A comprehensive multi-dimensional assessment framework was
developed in this study, which aligned with Bali's unique environ-
mental, economic, and social context, as shown in Fig. 3. The framework
designed for biomass energy site selection in Bali was structured into
four key levels. At the highest level, it outlined the overarching purpose:
Biomass Energy Optimization Through Holistic Site Selection Criteria.
This purpose was divided into two primary categories: sustainability
criteria and restriction criteria, each with specific criteria tailored to

Purpose: Biomass Energy Optimization Through Holistic Site Selection Criteria

Sustainability Criteria

I | Restriction Criteria

[

\

Transmission
Proximity

Availability of Road
Raw Materials Proximity

Port Proximity

Protected Area
Restriction

Demand
Proximity

Slope Land-use
Restriction Restriction

Alternative Site 1

Alternative Site 2| | .......

Alternative Site
n-1

Alternative Site »

Fig. 2. Framework of the Study.
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Table 1
Mapping Sustainability and Restriction Criteria from Previous Studies.
No. Criterion Zhang et al. Sultana & Perpina et al. Hohn et al Delivand et al Rodriguez et al Jayarathna This study
Components (2011) Kumar (2012) (2013) (2014) (2015) (2017) (2022)
Bi R
1 N;aoi:fiisls aw Sustainability Sustainability Sustainability Sustainability Sustainability Sustainability Sustainability Sustainability
Distance to Roads s R o o R R,
2 and Ports Sustainability - Sustainability Sustainability - Sustainability Sustainability Sustainability
3 Population Density Sustainability - Sustainability - - - Sustainability Sustainability
E )
4 conomic - - Sustainability - - - Sustainability
Development
5 Geomorphology - - Sustainability - - - -
6 Industrial Areas - Restriction Restriction - Sustainability Restriction Sustainability Sustainability
Distance to
7 Transmission - Sustainability - - Sustainability Restriction Sustainability Sustainability
Network
8 Railway Network Sustainability - Restriction - - - Restriction
9 Airports - Restriction - - - - - Restriction
10 Lakes and Rivers - Restriction Restriction - Restriction Restriction Restriction Restriction
11 Slope - Restriction Sustainability Restriction Sustainability - Sustainability Restriction
12 Land Cover Restriction Restriction Restriction Restriction Restriction Restriction Restriction Restriction
13 Built-up Area - Restriction Restriction - Sustainability Restriction Restriction Restriction
14 Conservation Areas - Restriction Restriction - Restriction Restriction Restriction Restriction
15 Mining Areas - Restriction - - - - -
16 Viewshed - - - - - - Sustainability
Table 2 five classifications of social forestry land: customary forests, partner-
able - o ships, community plantations, community forests, and village forests.
Buffer Zone Restriction Criteria. . . .
Two distinct maps were created to represent the potential biomass
No  Restriction Criteria Safe Description feedstock from these sources. Subsequently, these maps were integrated
Bu‘;?e/r into one comprehensive map displaying the total potential biomass
Zone (m) feedstock in Bali Province.
Protected Restriction Area
National parks, conservation parks, F bershi i .
1 Conservation Areas 500 resource reserves, and native lands uzzy membership normalization
need a protective ring.
Protected Areas in All the Power plants cannot be built in To ensure all datasets were standardized and normalized, each cri-
the Spatial Plans area protected areas terion was assigned a fuzzy value using the fuzzy membership function
Sl Restriction A . . . . .
ope Restriction Area . . in ArcGIS. The fuzzy membership function took input data and assigned
Construction of a biomass power plant K R X R
9 Slone Avea 150 is not permitted on a slope of more than it a value between 0 and 1, indicating how likely it was to belong to a
P ’ 15 % and economically it is best to be at specific predefined category or set. This process ensured all datasets
0-5 %. were within the same value standard, allowing for an accurate overlay
Land Use Restriction Areas " analysis. In this study, fuzzy membership was employed to assign values
Lake and River 300 Plots of land within the buffer zone of h £ the Euclid di lysi £ . h
lakes and rivers are limited to 300 m FO the ou.tcom.es of the Euclidean distance ana ysis, trans OI'I'I.lll'lg them
The main flight zone and the 500 m into relative distances between 0 and 1. Consequently, all spatial data of
3 Airport 500 safety buffer area around it are the criteria shared the same standardized values before the overlay
restricted v 1o build process through the weighted overlay analysis.
Restrictions apply to buildings, Maulti . .13 cites . .
ultiple types of fuzzy logic were utilized within this study, adjusted
Built-up Areas 600 industrial zones, and a 600 m buffer ple typ Yy 108 Yy, adj

safe area around the development area.

Bali's context. Sustainability criteria assessed factors such as raw mate-
rial availability and proximity to essential infrastructure, while restric-
tion criteria considered environmental and regulatory limitations. At the
bottom level, the framework accommodated a series of alternative sites,
each evaluated against the established criteria. This comprehensive
framework guided the selection process, ensuring that chosen sites
aligned with sustainability objectives and complied with crucial
restrictions.

Biomass feedstock mapping

This stage, the mapping of biomass sources from degraded land and
social forestry was conducted. The datasets were obtained from the
Forest Area Consolidation Agency (BPKH) 8 Denpasar and the Forestry
and Environment Service (DKLH) of Bali Province in June 2022. The
degraded land data comprised five categories of land criticality levels:
very critical, critical, moderately critical, potentially critical, and non-
critical. Meanwhile, the social forestry data included the locations of

to the nature of the data within each sustainability criterion. The spec-
ification of each fuzzy logic was informed by prior research and stake-
holder interviews relevant to biomass energy. This approach yielded
determinations as presented in Table 3. Table 3 explained the specific
fuzzy functions utilized for each criterion, along with their minimum
and maximum values. The criteria using triangular fuzzy functions, such
as road proximity and transmission line proximity, showed a range that
represented the likelihood of suitability for each criterion's fulfillment.
Meanwhile, criteria like port proximity and availability of raw materials
employed decreasing linear fuzzy functions, describing the transition in
suitability as values decreased from the desired conditions. This stan-
dardized dataset, harmonized through fuzzy membership functions,
formed the foundation for the fuzzy membership and weighted overlay
analysis in section 4.3.1.

The parameters for each criterion were chosen based on previous
studies and expert input (Jayarathna et al., 2022; Rodriguez et al., 2017;
State Electricity Company (PLN), 2021). For Road Proximity, suitability
for PLTBm construction is highest between 100 m and 2000 m from the
road, decreasing to zero at 4000 m, balancing accessibility with minimal
environmental impact. Port Proximity optimizes transportation costs
with a maximum ideal distance of 25 km, decreasing linearly as distance
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Table 3
Fuzzy Logic in each Sustainability Criteria.
Criteria Fuzzy Function/ Membership Min Max
value
Road proximity Triangular Fuzzy 100, 4000 2000
Transmission Line 100.
Tri lar F ? 4000
Proximity nangiiar fuzzy 10,000
Port Proximity Decreasing Linear 2500 100
Demand Load Center 100
Tri lar F ?
Proximity riangular Fuzzy 10,000 4000
Avallab1.1 ity of Raw Decreasing Linear 25,000 100
Materials

increases due to logistical challenges. Demand Load Center Proximity
shows highest suitability within 100 m to 4000 m, ensuring efficient
power distribution, with suitability decreasing to zero at 10,000 m due
to higher transmission losses. Transmission Line Proximity follows a
similar pattern, with highest suitability within 100 m to 4000 m,
decreasing to zero at 10,000 m to account for increased transmission
losses. Lastly, Availability of Raw Materials considers a maximum dis-
tance of 25 km for optimal transportation costs, with suitability
decreasing linearly as distance increases, reflecting the difficulty and
cost of transporting biomass over longer distances. These justifications
ensure that the selected parameters are robust and grounded in both
practical and expert-informed considerations.

Pairwise comparison from analytical hierarchy process (AHP)

In this phase, the AHP methodology was utilized. A pairwise com-
parison matrix was employed to systematically assess the relative
importance of the criteria. Values were assigned on a scale from 1
through 9, where 1 signified equal significance between two criteria,
and 9 indicated a strong preference for one criterion over the other. This
process allowed for a comprehensive understanding of the interactions
between the selected criteria and their potential influence on the success
of biomass plant development.

A strategic selection of experts, encompassing the public sector,
private sector, academia, and NGOs, was made to ensure a diverse and
comprehensive set of opinions. These included representatives from:

1. The Department of Labor and Mineral Resources Energy of Bali
Province, representing provincial government services in the energy
sector.

2. PT PLN (Persero) Bali Distribution Main Unit, representing the State-
Owned Enterprises and the primary off-taker in the electricity sector.

3. CORE (Community-Centered Renewable Energy) at Udayana Uni-
versity, representing academia and acting as an NGO in the renew-
able energy sector.

4. PT Merauke Narada Energi, acting as an Independent Power Pro-
ducer (IPP) and developer of a biomass generator in Wapeko, Mer-
auke Regency, South Papua Province.

Pairwise comparison interviews were conducted based on the
selected criteria such as road access, port proximity, load centers,
transmission networks, and raw material availability, which were crit-
ical for optimizing biomass energy power plants.

In this research, pairwise comparisons were conducted using Expert
Choice software to assess the criteria and their corresponding categories.
Predefined values were given to each criterion using the pairwise
matrices. The objective was to establish the final values for each factor in
every hierarchy and compute the consistency ratio (CR). The CR serves
as an indicator of the mathematical coherence of the values assigned in
each matrix.

Suitability and alternative biomass energy power plants location

In this section, the suitability and alternative locations were deter-
mined using the weighted overlay method within ArcGIS. This involved
utilizing fuzzy maps for each criterion and the AHP-derived weights
from the earlier analysis. Through this process, a map representing
suitability levels was generated based on the multicriteria analysis.
Subsequently, an overlay was performed with predefined limitations
from the restriction analysis to pinpoint locations with high suitability
for potential biomass power generation projects. Once these suitable
locations were identified, alternative location points were established as
the central points of each high-suitability cluster, while excluding
restricted zones.

Result and discussion
Restriction area analysis

The outcome of the restriction area analysis is the limitation of the
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land availability map. About 129.187 ha, roughly 23,09 % of Bali's total
land area, are designated as protected areas. Additionally, the majority
of Bali features slopes over 15 %, primarily concentrated in the central
mountainous areas, resulting in slope restrictions (Fig. 5). Only white
and light brown colors are suitable for biomass power plants. Moreover,
around 259.752 ha (44 % of the total area), are subject to land-use re-
strictions (see Fig. 6). The colors yellow, red, black, and blue, in
sequence, indicate residential areas, airports, and lakes. These restricted
areas are mainly characterized by urban development, particularly in
the SARBAGITA metropolitan region (Denpasar, Badung, Gianyar,
Tabanan) (Figs. 4 and 7).

The road of degraded land and social forestry to forest bioenergy

This study focused on very critical and critical lands, including land
previously allocated to forestry, agriculture (only with the highest de-
gree of critical land), plantations, and mining, while excluding conser-
vation areas and other protected areas. This selection aims to avoid land
use conflicts, particularly those surrounding food security. For social
forestry, this study also encompasses a diverse range of community-
based management models within the scope of social forestry sites. As
a result, this study produced a total of 36,527 ha of degraded land and
21,671 ha of social forestry land (see Fig. 8). The red color indicates the
degraded land potential to be managed as an energy forest, meanwhile,
the green color indicates areas of social forestry that have the potential
to be developed into energy forests.

Potential location of biomass energy facilities

Normalization with fuzzy map analysis

Normalization through fuzzy map analysis employs sustainable
criteria to identify potential locations for a biomass plant. Firstly, road
access criteria (see Fig. 9¢), specifically to national and provincial roads,
is essential to transport the biomass feedstock and biomass energy
products effectively. Based on the model, the red color shows high
suitability that gradually decreases as the color changes towards green.
The fuzzy map indicates high indexes along the coastlines in Jembrana
and Buleleng Regencies, Central Bali, South Bali in the SARBAGITA
metropolitan area, and areas scattered evenly from East to North.

Port proximity is also crucial (see Fig. 9e), with crossing ports be-
tween provinces and the main seaport being the focal points. The red
color indicates high suitability that gradually decreases as the color
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Energy for Sustainable Development 83 (2024) 101566

changes towards green. The highest indexes are found in the northwest
of Buleleng Regency and south in the Badung and Denpasar Regencies,
plus the East and Southeast regions.

For the demand load centers (see Fig. 9a), this study identified five
main areas: three industrial areas (Celukan Bawang, Pengambengan,
Candi Kusumo) and two isolated areas (Tiga Nusa and Ban Karangasem
Village). According to the model, the red color indicates a high level of
suitability, which gradually decreases as the color transitions to green.
High indexes are found in the West around industrial areas and the
northeast in the Karangasem Regency.

Transmission networks (see Fig. 9d) are crucial for connecting the
generator to the substation. The red color represents a high level of
suitability, which gradually decreases as the color shifts towards green.
High indexes are concentrated in central Bali to the west. Finally, this
study considered raw materials availability from primary sources on
critical land and social forestry (see Fig. 9b). The red color indicates high
suitability that gradually decreases as the color changes towards green.
High indexes are present in western, northern, eastern, and central Bali,
excluding the SARBAGITA metropolitan area due to dominant settle-
ments and lack of forest areas and critical land.

Land suitability analysis

The Analytic Hierarchy Process (AHP) was utilized with the Con-
sistency Ratio (CR) achieved was 0.0091, indicating that the weight
criterion was acceptable (see Fig. 10). Raw materials emerged as the
highest criterion with a score of 0.487, followed by demand load centers,
transmission networks, ports, and highways.

Before being synthesized, there is an interesting pattern that can be
taken from the individual assessment. Parties representing government
actors focused on sustainability criteria for raw materials and load
centers, indicating their desire to fulfill areas that tend to need more
electricity or are not yet met by state-owned enterprises or are isolated
areas. This pattern is similar to state-owned enterprises. In contrast, the
Independent Power Producers (IPP) focused on ensuring the sustain-
ability of their biomass generation business without targeting specific
demand fulfillment. Meanwhile, parties representing academia and
NGOs had a broader preference, aiming for sustainability from various
angles. The final pairwise comparison results, as synthesized from the
expert assessments, are presented in Fig. 10. These results reflect the
aggregated views of the experts on the relative importance of the criteria
for biomass plant development.

Following the criteria weighting, a weighted overlay analysis was
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performed, taking into consideration the fuzzy maps of roads, ports,
demand load centers, transmission networks, and raw materials, with
each assigned its respective AHP weighting score. This analysis revealed
that a classification of ‘very high’ was achieved for an area spanning
27,143 ha across the Jembrana, Buleleng, Karangasem, and Klungkung
districts, with a particular focus on Nusa Penida. Dark green color in-
dicates very high suitability, gradually decreasing as the color changes
towards red (Fig. 11). This classification is indicative of these regions'
robust potential for sustainable biomass plant implementation based on
the selected criteria. It should be noted that this suitability analysis has
not been overlaid with the restriction areas analyzed in section 4.1.

Alternative location biomass energy power plant

The final step involved pinpointing alternative locations by factoring
in restricted areas, leading to the generation of a suitability map for
biomass development. This involved overlaying the suitability analysis
results from the previous section with the restriction areas described in
section 4.1. The objective was to identify regions that not only possess a
high degree of suitability but also do not overlap with the protected

restriction areas.

Using Jayarathna (Jayarathna et al., 2022) criteria as a guide, areas
with the highest compatibility were selected, with a minimum feasible
area of 10 ha for a biomass power plant. Subsequently, this study will
proceed to create a spatial mapping of alternative location points. This
will involve performing a central point analysis for each cluster of high-
suitability areas while ensuring that restricted zones are excluded. The
outcome of this mapping exercise will be a set of specific location points.
This will make it easier for policymakers to determine which location to
build.

As aresult, forty suitable locations were identified for Biomass Power
Plant development, taking into account raw material availability,
restricted areas, and sustainability criteria (Fig. 12). A clear clustering of
areas in the Jembrana, Buleleng, and Karangasem districts, and Nusa
Penida was observable. These locations stand as viable alternatives for
sustainable biomass plant implementation, reflecting the successful
integration of geospatial data and sustainability criteria in this
endeavor. Nevertheless, there are limitations that in this study has not
identified capacity at each point thus further research is needed.
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This study demonstrates that when both land sources are combined,
they complement each other. For instance, in the case of Jembrana, it
was found that the degraded land covers a minimal area of only 347 ha,
whereas social forestry dominates with an area of 5714 ha. Jembrana,
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being a major industrial center in Bali, receives significant benefits from
the additional potential land found. A similar scenario exists in Buleleng,
where there is potential demand arising from a partnership with the
State-Owned Electricity Company (PLN), with surrounding land being
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part of the co-firing program for coal-fired power plants in this area. The role of social forestry

Additional potential land has been significantly discovered with so-
cial forestry. Several previous studies have mapped potential lands in
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Indonesia (Gingold et al., n.d.; Jaung et al., 2018; Nijsen et al., 2011).
Jaung's research mapped 3 million hectares of potential degraded land
for biofuel production in Indonesia. It is argued that this 3 million
hectares area is still relatively small to support bioenergy at economies
of scale, as suggested by Gingold's study (Gingold et al., n.d.) on palm
oil, indicating a minimum parcel size of 5000 ha. However, the scale of
the study which is subnational level could be a limitation in comparing
the result. In aggregate proportion, the land area in Bali is considered
small compared to previous degraded land mappings. The integration
results in a significant increase of 60 % in land availability for Energy
Forest development. This can be a significant consideration for further
research by opening opportunities for social forestry to contribute to
bioenergy development.

Moreover, this study identified 120 social forestry sites covering an
area of 21,671 ha in Bali, involving approximately 78,385 households.
The study focuses on the significant involvement of smallholder forest-
dwelling communities as active local actors contributing to net-zero
emissions, ensuring ‘no one left behind.” However, this discourse is
not without challenges. These household-based smallholders exhibit
limited financial resilience (Zhunusova et al., 2019), preferring short-
rotation plantations for quick cash flow (Cuong et al., 2020). Nonethe-
less, despite being beneficial for afforestation, large-scale monocultural
short-rotation biomass conversion may negatively affect biodiversity
(Favero et al., 2020). Therefore, this study advocates for agroforestry as
a more viable solution. Bali's local community wisdom perceives agro-
forestry systems as an approach for sustainable land management,
meeting daily needs while conserving natural resources, given their
cultural ties with forests. Among the identified social forestry sites, 16
sites actively engage in agroforestry partnerships that incentivize
indigenous communities. Moreover, high-calorie indigenous plants like
Gliricidia Sepium (Gamal) naturally grow in several Bali regions. Thus,
local wisdom deserves consideration in future discourse concerning
social forestry's evolution towards bioenergy development.
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Conclusion

This study focuses on opening a broader discussion on the role of
social forestry in the development of bioenergy alongside degraded land.
It addresses challenges in the sustainability of energy forests and
biomass source instability, highlighting how the management of social
forestry as community-based forestry serves as a solution to these
challenges. By combining the analytical hierarchy process and fuzzy
logic methods and applying them in a geospatial multicriteria environ-
ment, this study quantitatively assesses how social forestry significantly
contributes to the theoretical biomass potential that has traditionally
focused on degraded land.

Several limitations within the methodology and findings should be
considered. Firstly, the availability of specific data related to biomass
plantation cover is limited, which could impact the analytical compre-
hensiveness. Nevertheless, considering the limitations of previous
studies in assessing the potential of integrating degraded land and social
forestry, this study still provides a novel contribution. Secondly, the
small-scale scope of the study focused on the subnational level may limit
the generalizability of findings to a broader regional or national context.
Therefore, this study recommends future research with extensive data
sets and expanding the geographical scope of the study beyond the
subnational level. We also acknowledge the use of the Analytic Hierar-
chy Process (AHP) and Fuzzy Logic methods, while robust and widely
accepted, may have certain biases inherent to these techniques, poten-
tially affecting the accuracy and objectivity. Furthermore, imple-
mentation complexity emerges as a significant limitation in the findings.
A profound understanding of community perceptions and behaviors is
essential. Conducting in-depth qualitative studies or social impact as-
sessments can offer valuable insights into the motivations, challenges,
and aspirations of local farmers, thereby promoting the adoption of
sustainable practices.

The key findings identified 36,527 ha of potentially degraded land,
21,671 ha of social forestry, and 40 alternative optimal locations for
bioenergy facilities, considering various spatial and temporal criteria.
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The integration results in a significant increase of 60 % in land avail-
ability for Energy Forest development. This can be a significant
consideration for further research by opening opportunities for social
forestry to contribute to bioenergy development. Moreover, this study
identified 120 social forestry sites in Bali, involving approximately
78,385 households. This could provide significant involvement of
smallholder forest-dwelling communities as active local actors contrib-
uting to net-zero emissions. Among the identified social forestry sites, 16
sites actively engage in agroforestry partnerships that incentivize
indigenous communities. Moreover, high-calorie indigenous plants like
Gliricidia Sepium (Gamal) naturally grow in several Bali regions. Thus,
local wisdom deserves consideration in future discourse concerning
social forestry's evolution towards bioenergy development.

Practical and policy implications

Global bioenergy demand has increased in recent decades.
Indonesia, as one of the major exporters, has the potential to strategi-
cally position itself in the bioenergy sector. However, bioenergy in
Indonesia remains heavily reliant on oil palm, leading to various criti-
cisms concerning deforestation, biodiversity loss, peatland drainage,
and other socio-environmental issues (Abram et al., 2017; Gaveau et al.,
2016; Sharma et al., 2018). Therefore, the formulation of a risk-based
sustainability strategy is necessary for future bioenergy development.
This study presents a proven management practice effective in mini-
mizing environmental risks and enhancing socio-economic outcomes
(Newton et al., 2015; Octavia et al., 2022), namely social forestry.
Through the generated mapping, social forestry can significantly aid in
meeting bioenergy demand alongside degraded land. Thus, it is rec-
ommended for policymakers at international, national, and subnational
levels to integrate social forestry and degraded land into management
guidelines and bioenergy strategies.

Previous studies have proven the effectiveness of social forestry, for
instance, how social forestry transformed Vietnam into the largest wood
pellet producer (Zhunusova et al., 2019). This positively impacted rapid
afforestation (Van Hung et al., 2020). Nevertheless, rapid afforestation
through monocultural fast-growing trees may not deliver the same
environmental benefits as natural regenerating forests and may nega-
tively affect biodiversity ([RENA, n.d.; Favero et al., 2020). The findings
of this study offer perspectives on how Bali's indigenous communities
possess local wisdom in managing their forests, such as the practice of
agroforestry. Additionally, there are partnership practices among
indigenous communities, government, and the private sector. These
findings can assist developers in proposing sustainable business models
for the diversification of plantation forests.

Finally, our findings successfully increased the potential land for
bioenergy and mapped potential optimal facility locations based on
sustainability criteria. This study discovered viable locations for biomass
plant development in the Jembrana, Buleleng, Karangasem, and Nusa
Penida districts. This can assist Bali's local government in achieving its
renewable energy targets. Additionally, it provides information to a
wide range of stakeholders with various interests and perspectives, such
as customary governance, Independent Power Producer developers in
their project planning, or the State Electricity Company (PLN), which is
currently targeting a blending mandate for co-firing for the phaseout of
coal plants.
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